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Abstract: Although litter can regulate the global climate by influencing soil N2O fluxes, there is
no consensus on the major drivers or their relative importance and how these impact at the global
scale. In this paper, we conducted a meta-analysis of 21 global studies to quantify the impact of litter
removal and litter doubling on soil N2O fluxes from forests. Overall, our results showed that litter
removal significantly reduced soil N2O fluxes (−19.0%), while a doubling of the amount of litter
significantly increased soil N2O fluxes (30.3%), based on the results of a small number of studies.
Litter removal decreased the N2O fluxes from tropical forest and temperate forest. The warmer the
climate, the greater the soil acidity, and the larger the soil C:N ratio, the greater the impact on N2O
emissions, which was particularly evident in tropical forest ecosystems. The decreases in soil N2O
fluxes associated with litter removal were greater in acid soils (pH < 6.5) or soils with a C:N > 15.
Litter removal decreased soil N2O fluxes from coniferous forests (−21.8%) and broad-leaved forests
(−17.2%) but had no significant effect in mixed forests. Soil N2O fluxes were significantly reduced in
experiments where the duration of litter removal was <1 year. These results showed that modifications
in ecosystem N2O fluxes due to changes in the ground litter vary with forest type and need to be
considered when evaluating current and future greenhouse gas budgets.

Keywords: litter; forest soil; greenhouse gases; N2O

1. Introduction

Since the 1970s, increasing attention has been directed at N2O emissions, largely
because they make a major contribution to the greenhouse gas (GHG) budget of managed
ecosystems and have a large global warming potential [1]. In addition to its impact on
global warming, N2O is also the primary ozone-depleting substance in the stratosphere [2,3].
Although N2O concentrations in the atmosphere are only one percent of the concentration
of CO2, N2O has a global warming potential nearly 300 times that of CO2 [4], and therefore,
any changes in N2O emissions could have a significant impact on the global climate even
though the current contribution of N2O to anthropogenic greenhouse gas emissions is
lower (7%) than that of CO2 (56%) [1].

Soil N2O emissions are dependent on N availability and are affected by many envi-
ronmental factors, such as soil stability [5], soil microbial communities [6], and plant litter
inputs [7,8]. In particular, changes in above-ground litter inputs can have a major influ-
ence on soil biogeochemical processes by changing their physical and chemical properties
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(organic C and nutrient inputs) and/or by modifying the activities of soil microorgan-
isms [9,10]. Forest soil is one of the major sources of N2O in the atmosphere, and it has
been estimated that N2O is released from forest ecosystems to the atmosphere at a rate of
3.62 Tg N yr−1 [11]. In 2020, forests covered 31% of the total land area, equivalent to about
4.06 billion hectares [12] and could make a potentially significant contribution to global
N2O budgets.

Climate change may affect litterfall in forests because of changes in rainfall patterns
and increased temperatures. Increases in the average annual temperature can also affect tree
phenology and tree species distribution [10,13], and increases in productivity and litterfall
have been observed due to elevated atmospheric CO2 concentration or temperature [14,15].
Whilst forest ecosystems are typically associated with significant litter accumulation, it is
unclear how the litter layer affects soil N2O fluxes. Plant litter is an important source of
organic matter, which can regulate soil physical and chemical properties, microbial biomass
and activity, and affect soil N2O emissions through the provision of readily available
C, N, and other chemical components (for example, condensed tannins and terpenes)
during the decomposition process [9,16]. Further, litter can modify soil temperature and
water content by forming a barrier at the interface between the atmosphere and soil
surface [17–19]. Despite the potentially important contribution of litter to N2O emissions
from forest ecosystems, there is currently no consensus on the direction or magnitude of
any impact nor have the underlying drivers or their relative importance been resolved [20].
For example, some researchers have found that N2O emissions decreased when litter
was removed [21–25], while others have found that this had no significant influence on
soil-atmosphere N2O fluxes [9,26–28].

The inconsistencies in previous results may be due to several reasons, including dif-
ferences in forest ecosystem type, characteristics, climatic conditions, litter volume, or
experimental duration [29,30]. The results from a single study were often highly hetero-
geneous, making it difficult to integrate and analyze the effects of many of the above
factors. To evaluate how litter changes affect soil N2O fluxes of forests at a global scale,
we extracted data on the effects of litter inputs on GHG fluxes from field experiments.
We retrieved 21 published articles from a range of national and international studies to
address the following two questions: (1) How do soil N2O fluxes respond to litter changes
in different forest types? (2) What key factors underpin the response of soil N2O fluxes to
litter changes?

2. Materials and Methods
2.1. Data Collection

We searched for peer-reviewed articles from the Web of Science, Google Scholar, and
the China Knowledge Resource Integrated Database (CNKI) using the following research
terms: litter removal/double litter/litter inputs, N2O flux, and GHG flux. In order to
specifically address the research questions identified and to reduce any bias brought
about by screening the literature, we extracted papers that matched the following criteria:
(a) The experimental studies were conducted in the field, and were not subjected to other
confounding factors (e.g., fire, drought, irrigation, fertilization, and warming). (b) In the
field experiments, the existing ground litter cover found under natural conditions was used
as the control group, the litter removal treatment represented the complete removal of all
aboveground litter, and the increased litter treatment involved a doubling of the existing
ground litter cover. (c) The means, standard deviations/errors, and replication of variables
in control and treatment groups could be extracted directly from the tables, or text, and/or
by digitizing graphs. (d) When data from the same site and treatments were presented in
multiple publications, we used the data from the most recent year.

Additionally, forest type (e.g., tropical forest and temperate forest), location (e.g., lati-
tude and longitude), climatic information (e.g., MAT, mean average temperature and MAP,
mean average precipitation), soil properties (e.g., soil pH and soil C:N), and experimental
duration (year) were acquired directly from the papers. In total, 37 observations were
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extracted from 21 publications published during 2000–2020. By grouping MAT, MAP, HI
(humidity index), soil pH, soil C:N, and experimental duration, we were able to explore
the influence of climate conditions, soil properties, and experimental duration on soil N2O
fluxes. The sampling plot information is shown in Figure S1 in the Supplementary Material.

2.2. Meta-Analysis

The raw data were either obtained from tables or extracted by digitizing graphs using
the GetData Graph Digitizer (version 2.24; http://getdata-graph-digitizer.com, accessed on
1 March 2022). If the data provided in the paper was the standard error (SE), the standard
deviation (SD) could be converted using the formula shown below (1). In the three reports
where SD or SE were not reported, SD was estimated as 10% of the mean [31,32]. The
meta-analysis approach requires that all observations are independent. To meet these
assumptions for the meta-analysis, where the temporal dynamics of a target variable was
presented in the same studies, the average mean (M) and the average standard error (SE)
of the variable were estimated using (2) and (3) [33]:

SD = SE
√

N (1)

M =
j

∑
i=1

Mi/j (2)

SE =

√√√√√ ∑
j
i=1 SE2

i (ni − 1)ni(
∑

j
i=1 ni − 1

)
∑

j
i=1 ni

(3)

where j is the sampling times (≥2); Mi, SEi, and ni were mean value, standard error, and
sample size on the ith sampling date, respectively.

The meta-analysis was carried out using the MetaWin software (Version 2.1; Sinauer
Associates, Inc., Sunderland, MA, USA). The valid data for inputting into the model were
the mean (Mean), standard deviation (SD), number of samples (n), and the categorical
variables of N2O fluxes in the treatment control groups. A response ratio (RR) was used
to represent the degree of influence of litter alterations on N2O fluxes. The RR value
was calculated as the ratio of the mean value in the treatment group and that in the
control group.

lnRR =
ln Xe

ln Xc
= ln Xe − ln Xc (4)

The corresponding variance (V) for each lnRR was calculated as follows:

V =

(
1
ne

)
×
(

Se

Xe

)2
+

(
1
nc

)
×
(

Sc

Xc

)2
(5)

where Xe and Xc are the means of the treatment and control groups, respectively; ne and
nc are the corresponding sample numbers; and Se and Sc are the corresponding standard
deviations (SD).

The effect value of each pair of data was calculated, and then the combined effect value
(RR++) and 95% confidence interval (CI) were calculated using MetaWin 2.1. The specific
related formulas are found in [34,35]. A positive value of RR++ represented a positive
effect, and a negative value of RR++ represented a negative effect. The effect of litter
change on N2O fluxes within a categorical subdivision was considered to be significant at
p < 0.05 if the 95% CI did not include 0. In addition, to facilitate the interpretation of the
results, the percentage change in soil N2O fluxes (%) was calculated using the following
formula [36,37]:

Increase(%) =
(

eRR++ − 1
)
× 100% (6)

http://getdata-graph-digitizer.com
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The figures in this paper were drawn in Origin (Version 9.0; OriginLab, Northampton,
MA, USA) and correlations were tested using the SPSS software v19.0 for Windows (IBM,
Chicago, IL, USA). Processing of all the original data was completed in Microsoft Excel
v2016 (Microsoft, Washington, DC, USA).

3. Results
3.1. Effects of Litter Removal and Doubling on Soil N2O Fluxes of Forests

Considering all forest types together, litter removal decreased soil N2O fluxes by
19.1%, while litter doubling increased soil N2O fluxes by 30.3% (Figure 1). Litter removal
decreased the N2O fluxes from tropical forest and temperate forest soils by 18.0% and
20.2%, respectively (Figure 1). Litter removal decreased soil N2O fluxes from coniferous
forests and broad-leaved forests by 21.8% and 17.2%, respectively. However, litter removal
had no significant effect in mixed forests (Figure 1).
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3.2. Influence of Climate Factors on Soil N2O Fluxes in Response to Litter Manipulations

The response of soil N2O fluxes to litter removal was also affected by climatic factors
and only significantly reduced in regions where the MAT was >20 ◦C or where the MAP
was between 500 and 1000 mm (Figure 2a,b). The soil N2O flux was significantly reduced
after litter removal in humid regions with an HI value >60 (22.6%) and medium humid
regions with an HI between 30 and 60 (12.6%) (Figure 2c). Due to insufficient data from
in situ experiments, it was not possible to evaluate the effects of climate factors on the
response of N2O fluxes to litter doubling.
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Figure 2. Effects of litter removal and a doubling of litter inputs on soil N2O fluxes for different values
of MAT ((a), mean average temperature), MAP ((b), mean average precipitation), HI ((c), humidity
index), soil pH (d), soil C: N ratio (e), experimental duration (f). Horizontal lines represent the 95%
confidence intervals (CI) and the number of observations is included in parentheses. The means were
considered significantly different if their 95% CI did not overlap with zero.

3.3. Influence of Other Factors on Soil N2O Fluxes in Response to Litter Manipulations

The decrease in soil N2O fluxes associated with litter removal was greater in acid
soils (pH < 6.5) (Figure 2d). The response of soil N2O fluxes to litter removal was also
affected by the soil C:N ratio and significantly reduced in regions where the soil C:N was
>15 (Figure 2e). The experimental duration also influenced the effect of litter removal on
soil N2O fluxes, and only decreased significantly when the experimental duration was less
than 1 year (Figure 2f). Again, due to insufficient data from in situ experiments, it was not
possible to evaluate the effects of soil pH, soil C:N ratio, and experimental duration on the
response of N2O fluxes to litter doubling.
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4. Discussion
4.1. The Effect of Litter Removal and Doubling on Soil N2O Fluxes

Litter plays an important impact in modifying nutrient retention and availability in
forest ecosystems, and litter decomposition is an important route through which nutrients
present in the vegetation are returned to the soil [38–40]. Therefore, changes in litter
inputs may affect soil-atmosphere N2O fluxes by changing the availability of labile organic
substrates and inorganic nutrients [41]. While, overall, our results showed that litter
removal significantly reduced soil N2O fluxes from forests, there is a paucity of data
from litter doubling treatments, although the limited available data does suggest that litter
doubling can increase N2O fluxes from forest soils. Litter can influence N transformations in
the soil that lead to N2O emissions through the addition of both C and N substrates as well
as providing nitrate as an alternative electron acceptor for denitrification processes under
low oxygen conditions [42,43]. In addition, an anaerobic environment can be formed due to
the consumption of soil O2 in soil respiration, which may indirectly enhance denitrification,
thereby increasing N2O emissions [44,45]. However, the contrasting impacts with different
forest types indicate that other factors are involved, and litter removal will not always lead
to a decrease in N2O emissions, with the overall impact globally dependent on the relative
proportion of each forest type.

The inputs of exogenous organic matter often change the diversity and number of
microorganisms in the soil, and increases in the contribution of root turnover and root
exudates for supporting microbial growth and metabolism could potentially stimulate the
decomposition of organic nitrogen in the soil [46,47]. Therefore, we speculate that N2O
emissions are more sensitive to litter doubling than litter removal. In our study, we found
differences in the effect of litter doubling and removal on soil N2O fluxes from forests in
21 studies, and litter doubling had a greater effect (30.3%) on N2O emissions than litter
removal (19.1%). However, we only focused on three studies that included both litter re-
moval and doubling to conduct an integrated analysis, and in this case, inconsistent results
were found and the effects of litter removal (31.8%) on N2O emissions were only slightly
greater than that of litter doubling (30.1%). Clearly, any definitive conclusions are limited
by the paucity of available data, and we cannot infer the effect of litter addition on soil N2O
emissions based on the effects of litter removal (opposite sign), due to differences in the
effects of the two treatments. Considering the likely increase in plant productivity brought
about by future global climate change, this will lead to an increase in litter production and
a likely increase in the magnitude of the impact on soil N2O fluxes, a factor that should
be considered when modeling soil N2O emissions from terrestrial ecosystems. Therefore,
further attention needs to be paid to the impact of litter addition on soil N2O emissions as
one of the effects of climate change on forest ecosystems.

4.2. Factors Affecting the Response of Soil N2O Fluxes to Changes in Litter Inputs

Tropical forest (especially tropical rainforests) soils are considered to be the main source
of atmospheric N2O due to the improved hydrothermal conditions (higher temperatures
and higher water availability) and a higher soil microbial activity [48,49]. Globally, the
total N2O efflux from tropical rain forests has been reported to be 1.34 Tg N yr−1, which
accounts for about 18% of the total N2O efflux from soil under natural vegetation [50].
Considering the seasonality of litter inputs, vegetation degradation, and climate condition,
the production and decomposition of litter in tropical forests are larger and faster than
in temperate forests [51]. Therefore, we assumed that the impact of litter removal on soil
N2O fluxes in tropical forests was greater than that in temperate forests, but our results
are inconsistent with this. We found litter removal reduced soil N2O fluxes in tropical and
temperate forests. The higher temperature conditions, water availability, and the greater
substrate availability in tropical forests may contribute to form a thicker humic layer [52,53].
The recalcitrant humic materials in an advanced state of decay contribute to relatively
high soil nitrogen contents in tropical forests [54], which may alleviate the impact of litter
removal on soil N2O.
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Forest type also influenced the response of N2O fluxes to litter inputs. Chen [55]
found that the impact of litter removal on broad-leaved tree species was greater than on
coniferous tree species (coniferous forest) in field experiments, which was inconsistent with
the global research results of this study. Our results showed that litter removal decreased
soil N2O fluxes from coniferous forests and broad-leaved forests, especially in coniferous
forests. However, litter removal had no significant effect in mixed forests. This may be
due in part to differences in nutrient availability. Du et al. [56] predicted global patterns
of N and P availability, and overlapped their predictions with a global map of major
terrestrial biomes, and found that N limitation was relatively more common in boreal and
temperate coniferous forests, whereas P was more restricted in tropical and subtropical
forests, temperate broadleaf, and mixed forests. Under N limited conditions, litter removal
may significantly reduce the N2O fluxes indicating that soil N availability has a key role to
play in determining the effect of changes in external litter inputs [25].

The response of soil N2O emissions to litter inputs was affected by soil pH. The N2O
flux of acid soils (<6.5) decreased significantly after litter removal. As acid rain is often
associated with acid soils, this may be because litter can modify soil pH changes consistent
with the results of Zhong et al. [57] who found that soil pH increased with litter inputs.
Litter also provides cations to the soil during the decomposition process, which can slow
down soil acidification. Litter removal leads to increased acidification of the soil, decreasing
the number of nitrifying bacteria, and inhibiting nitrification which, in turn, significantly
reduces N2O emissions [58]. At the same time, the high concentration of hydrogen ions
in acidified soil disperses soil aggregates into single particles and breaks down the soil
structure [59], indirectly affecting the abundance of soil nitrifying and denitrifying bacteria.
The presence of litter can also reduce the leaching of soil N and P and their impact on N2O
emissions [59]. The effect of litter removal on N2O emissions was also affected by the soil
C:N ratio and significantly reduced in regions where the soil C:N was >15. A high soil
C:N ratio promotes an increase in soil microbial populations and greater response of soil
N2O fluxes to litter inputs [36,60]. Short-term (<1 year) litter removal experiments were
associated with significantly reduced soil N2O emissions, while longer-term litter removal
had no significant effect on the emissions that could be related to a time-dependent effect.
As well as the above factors, litter quality and quantity can also have a significant impact
on the response of N2O emissions to litter inputs. However, due to insufficient information,
a more detailed assessment of the influence of litter C:N ratio on soil N2O emissions awaits
further experimental studies.

5. Conclusions

Our study found that litter removal significantly reduced N2O emissions from forest
soils, while a few existing studies found that doubling the amount of litter significantly
increased emissions. Underlying this were differences among the forest types examined,
which were related to climatic conditions, soil pH, soil C:N, and experimental duration.
Litter removal significantly reduced soil N2O fluxes in tropical and temperate forests. The
decrease in soil N2O fluxes associated with litter removal was greater in acid soils (pH < 6.5)
or soil C:N > 15. Litter removal had a greater effect on N2O fluxes from coniferous forest,
which may be due to the low availability of N, emphasizing the importance of an improved
understanding of how interactions with soil properties determine litter-related emissions.
Experimental duration was also found to have an important impact on N2O emissions;
short-term (<1 year) litter removal experiments were associated with significantly reduced
soil N2O emissions. It was often considered reasonable in many meta-analyses to estimate
the SD as 10% of the mean when standard errors were not available, this may have led to
errors in some biological and empirical systems. However, the potential errors are likely
to be small because there were only a few values (three values) where we had to do this.
Overall, these results show that changes in the ground litter of forests have the potential
to modify ecosystem N2O fluxes and need to be considered when evaluating current
and future GHG budgets. Considering the likely increase in plant productivity brought
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about by future global climate change, this should lead to an increase in litter production.
Therefore, further studies are required to investigate the impact of litter addition on soil
N2O emissions in the future in order to fully assess the effect of climate change on forest
ecosystems. In addition, the majority of litter production studies have been conducted
in temperate and tropical forests, whilst studies in other forest systems, especially boreal
forests, have received less attention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13050742/s1, Figure S1: Global distribution of sampling
sites used for this meta-analysis; Table S1: The relationships between the response ratios (RR) and its
relevant factors.
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