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Abstract—Wearable inertial sensors offer the possibility to 

monitor sleeping position and respiration rate during sleep, 

enabling a comfortable and low-cost method to remotely 

monitor patients. Novel methods to estimate respiration rate 

and position during sleep using accelerometer data are 

presented, with algorithm performance examined for two 

sensor locations, and accelerometer-derived respiration rate 

compared across sleeping positions. Eleven participants (9 

male; aged: 47.82±14.14 years; BMI 30.9±5.27 kg/m2; AHI 

5.77±4.18) undergoing a scheduled clinical polysomnography 

(PSG) wore a tri-axial accelerometer on their chest and upper 

abdomen. PSG cannula flow and position data were used as 

benchmark data for respiration rate (breaths per minute, bpm) 

and position. Sleeping position was classified using logistic 

regression, with features derived from filtered acceleration and 

orientation. Accelerometer-derived respiration rate was 

estimated for 30 s epochs using an adaptive peak detection 

algorithm which combined filtered acceleration and orientation 

data to identify individual breaths. Sensor-derived and PSG 

respiration rates were then compared. Mean absolute error 

(MAE) in respiration rate did not vary between sensor 

locations (abdomen: 1.67±0.37 bpm; chest: 1.89±0.53 bpm; 

p=0.52), while reduced MAE was observed when participants 

lay on their side (1.58±0.54 bpm) compared to supine 

(2.43±0.95 bpm), p<0.01. MAE was less than 2 bpm for 83.6% 

of all 30 s windows across all subjects. The position classifier 

distinguished supine and left/right with a ROC AUC of 0.87, 

and between left and right with a ROC AUC of 0.94. The 

proposed methods may enable a low-cost solution for in-home, 

long term sleeping posture and respiration monitoring. 

I. INTRODUCTION 

Respiration rate is an important vital sign, which has been 
shown to predict adverse cardiac events [1], and admission to 
an intense care unit. It is a useful indicator of disease 
progression to monitor patients with chronic respiratory or 
neuromuscular disease [2]. Respiration rate has also been 
reported to be better than pulse rate or blood pressure at 
discriminating between stable patients and patients at risk 
during acute medical admissions [3]. Low cost, unobtrusive 
monitoring of respiration rate and sleeping position using 
accelerometers could allow patients to be monitored in their 
own home, reducing hospital readmissions following surgery, 
or facilitating in-home monitoring of elderly or sick patients.  
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Respiration differs during sleep compared with 
wakefulness [4], and may be used to detect and distinguish 
between different types of sleep disordered breathing. 
Respiration rate during sleep is typically monitored using 
nasal cannulas, which measure the flow of air at the nostrils. 

Previous studies have used accelerometers to measure 
respiration rate while subjects are awake, and a more limited 
number have focused on sleep [5]–[10]. Previously reported 
accelerometer-based respiration rate algorithms have 
primarily used time domain methods, including peak 
detection [5], wavelet analysis [6] or state machine 
techniques [7]–[9]. Frequency domain methods to estimate 
respiration rate using accelerometers have also been reported 
[10], however the overlapping frequency bands of human 
respiration and movement cause issues for this method. 

Movements during sleep, including changes in sleeping 

position or arousals due to flow limitation events, are 

problematic for accelerometer-based respiration rate 

algorithms, as the noise due to this movement occurs in the 

same low frequency band as human respiration rate. Hence, 

most accelerometer-based respiration rate algorithms do not 

return valid respiration rates during these periods [8,11,12]. 

Sleeping position is associated with sleep disordered 

breathing [13], [14] and development of pressure ulcers [15]. 

Sleeping position has previously been classified using under 

mattress sensors [16], and accelerometers [17], [18]. Recent 

studies have reported methods to estimate posture and 

respiration rate simultaneously using a single accelerometer 

[11], or using two accelerometers on the chest [6], but 

validation against overnight PSG is required.  

In this study, a novel method to estimate respiration rate 

and classify position during sleep using a tri-axial 

accelerometer mounted on the torso is presented. The 

accuracy of the proposed methods is assessed by comparing 

results with position and respiration data determined using 

gold-standard clinical polysomnography (PSG). The effect 

of sleeping position and sensor location on the accuracy of 

the estimated respiration rate is presented.  

II. METHOD

A. Participants 

Eleven participants (9 male; aged: 47.82 ±14.14 years; BMI 

30.9 ± 5.27 kg/m2) gave their informed consent to participate 

in this study. Ethical approval was obtained from the human 

research ethics committee at St Vincent’s University 

Hospital, Dublin, Ireland. All participants were undergoing a 

scheduled overnight clinical polysomnography (PSG) study 

(10 full PSG, 1 limited channel PSG). 
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B. Protocol 

Low profile wearable inertial sensors (BiostampRC, 

MC10 Inc.) were programmed to record tri-axial 

acceleration data at 125 Hz (±4g), and were attached to the 

chest and upper abdomen of each participant during an 

overnight PSG test. Sensors were secured to the skin using 

double sided adhesive stickers. Additional taping was used 

to ensure the sensors stayed in place during the overnight 

test. 

The flexible inertial sensors measured 6.6 cm in length, 

3.4 cm in width and 0.45 cm in height. The x axis was 

aligned with the medial-lateral anatomical axis, the y axis 

was then perpendicular to the x axis, aligned with the distal-

proximal anatomical axis, and the z axis was perpendicular 

to surface of the skin, approximately vertical when the 

participant was lying in supine position, Fig. 1. 
PSG data were recorded using SomnoScreen 

(SomnoMedics GmbH, Germany). As part of the PSG 
protocol, air flow at the nostrils was measured using a nasal 
cannula, sampled at 32 Hz. Flow events (apneas, hypopneas) 
and arousals were reported by the PSG software, and were 
manually edited by an expert sleep physiologist. Posture 
(supine, prone, upright, left, right) was also reported every 30 
s, automatically by the PSG software. 

A B 

Fig. 1.A Illustration of participant lying supine in bed with sensor locations 

(1: chest sensor, 2: abdomen sensor) indicated; B: Sensor axes. 

C. Data analysis 

During each test, accelerometer data were stored locally 
on the sensor. After each test they were downloaded and 
exported to MATLAB (The MathWorks, Inc, Natick, MA) 
for offline analysis using custom developed algorithms. 

1) Pre-processing

Healthy human respiration rate is typically in the range 

12-20 bpm, (0.05-0.5 Hz), with rates above 30 indicating 

respiratory distress. Tri-axial accelerometer data were 

therefore filtered using an eighth order low-pass filter with 

cutoff frequency 0.5 Hz, and notch filtered to remove 

frequency components below 0.05 Hz, allowing respiration 

rates between 3 and 30 bpm to be captured. 
The movement of the chest wall due to breathing mainly 

occurs in the z axial direction for the sensor placement used 
in this study, Fig. 1, and the change in orientation of the 
sensor due to breathing will primarily be the rotation about 

the x axis, or the pitch. Sensor pitch, roll and yaw were 
calculated using the methods described in [5]. Baseline pitch 
was then subtracted from the signal, and resampled to 32 Hz 
(to match PSG flow signals). 

Accelerometer data was segmented into nonoverlapping 
30 s epochs, and respiration rate and sleeping position was 
estimated for each epoch as described in the following 
sections.  

2) Respiration rate estimation

Respiration rate was derived using the z acceleration and 

pitch signals. For each nonoverlapping 30 s epoch, data were 

normalized with respect to the signal maximum within that 

epoch. A peak detection algorithm was then applied to the 

accelerometer and pitch signals for each epoch, with a fixed 

minimum time between peaks, and adaptive thresholds 

(based on signal amplitude, and sleeping position) applied to 

peak prominence, and peak height. During each epoch, peaks 

were compared for the pitch and z acceleration signals, with 

the signal resulting in the most regular peaks (defined as the 

lower standard deviation in time between peaks) selected. 

Respiration rate (breaths per minute) was calculated as twice 

the number of peaks detected during each 30 s epoch for the 

selected signal. 
To reduce the influence of body movement on the 

acceleration-derived respiration signal, a binary movement 
vector was constructed using PSG-reported posture change, 
flow events and arousal data. Each 30 s nonoverlapping 
epoch was deemed to be during a period of movement if a 
posture change, a flow event, or arousal occurred during that 
window. Respiration rate was not calculated for windows 
during which movement occurred. 

3) Position classification

Two classifiers were developed to distinguish between the 

three observed sleeping positions (supine, left and right). 

Firstly, epochs during which the patient was lying on their 

left or right were merged, and a logistic regression classifier 

was developed to distinguish these epochs from epochs 

where the patient was supine (Model 1). If an epoch was 

classified as left/right, a second classifier was then applied to 

distinguish left and right positions (Model 2). 

Change in mean acceleration and orientation are expected 

as patients move between sleeping postures due to the 

changing influence of gravitational acceleration on each 

sensor axis. Hence, for each 30 s epoch, the mean 

acceleration along the x, y and z axes and the mean pitch, 

roll and yaw were used to create a feature matrix to develop 

a sleep position classifier. A training set was constructed 

using this feature matrix, including 20% of all epochs, 

pseudo-randomly selected to provide an even distribution 

across sleeping positions. The remaining 80% of data epochs 

were used to test the developed classifiers. Sequential 

forward feature selection was implemented to reduce the 

number of features included in the models, followed by 

logistic regression. PSG position data were used as the 

reference. 

Position results were only reported for sections of data 

where the same position persisted for at least 30 s. 



4) Statistical analysis

The mean absolute error (MAE), root mean squared error 

(RMSE) and the mean average error (MAvE) in respiration 

rate were calculated across all 30 s epochs by comparing 

accelerometer-derived respiration rates with cannula flow 

(PSG) respiration rates, and results are reported as an 

average across all subjects. Each error measure was 

compared across sleeping postures (with left and right 

postures merged), and between sensor locations (chest or 

abdomen), and the effect of posture and sensor location on 

the resulting error metrics were examined using Friedman’s 

test. The total usable data (hours) in each position were 

compared using rank sum tests. P values less than 0.05 were 

considered statistically significant. 

The performances of the position classifiers, Model 1 and 

Model 2, were assessed using sensitivity, specificity and the 

area under the curve of the receiver operator characteristic 

(ROC AUC). The correlation between the number of 

position changes scored by the accelerometer method and 

PSG was also examined. 

III. RESULTS

The mean recording length across all subjects was 7.16 ± 

1.5 hrs for the chest sensor, and 7.12 ± 1.63 hrs for the 

abdomen sensor. After movement data was removed, an 

average of 4.78 ± 1.53 hrs and 4.84 ± 1.63 hrs of data 

remained per subject for the chest and abdomen sensor 

respectively. 

The mean apnea hypopnea indices (AHIs) for the cohort 

was 5.77 ± 4.18 events per hour, with a maximum AHI of 

12.95 in this cohort. An AHI less than 5 is considered 

normal, 5-15 mild, 15-30 moderate, and greater than 30 is 

considered severe. 

Participants spent a mean time of 2.85 hrs supine, and 

3.11 hrs lying on their left or right side. There was no 

significant difference between time supine and time on 

left/right (p = 0.07). Participants also spent an average of 

0.19 hrs upright, and 0.17 hrs prone, but these data were 

excluded due to excessive movement. 

1) Respiration rate estimation

Error in respiration rate estimation did not vary between 

sensor location, Table 1. When results were compared for 

each sleeping position, reduced error in respiration rate 

estimation was observed when participants lay on their side 

compared to supine, Table 1. 

The accelerometer-derived respiration rate was within 2 

bpm of PSG for 83.6 % (chest sensor) and 80.9 % (abdomen 

sensor) of all 30 s epochs across all subjects. 

TABLE I. ERROR IN RESPIRATION RATE ESTIMATION 
Sensor location Abdomen Chest p 

MAE (bpm) 1.67 ± 0.37 1.89 ± 0.53 0.09 

RMSE (bpm) 2.56 ± 0.5 2.88 ± 0.72 0.05 

MAvE (bpm) 0.4 ± 0.43 0.07 ± 0.6 0.33 

Position Side Supine p 

MAE (bpm) 1.58 ± 0.54 2.43 ± 0.95 <0.05 

RMSE (bpm) 2.45 ± 0.78 3.25 ± 0.97 <0.05 

MAvE (bpm) 0.3 ± 2.18 0.69 ± 0.59 <0.05 

2) Position classifier

Performance metrics for Model 1 (supine vs left/right) and

Model 2 (left vs right) are presented in Table 2. 

The correlations between the total number of position 

changes reported by PSG and the number detected by the 

abdomen and chest sensors were 0.76 and 0.83 respectively 

(p<0.05). 

TABLE II. RESULTS FOR POSITION CLASSIFIERS 
Model 1: Supine vs Left/Right Model 2: Left vs. Right 

Sensitivity 81.05 84.37 

Specificity 81.32 90.79 

ROC AUC 0.87 0.95 

IV DISCUSSION 

A method to monitor position and respiration rate during 

sleep using wearable accelerometers is presented in this 

paper.  The cohort examined were referred for an overnight 

A B 
Fig. 2 Example chest sensor and PSG data from an overnight recording from a 54-year-old male participant (BMI = 33 kg/m2; AHI = 7.42). For this 

recording, MAE in respiration rate was 1.27 bpm. A: Flow, sensor-derived pitch, PSG (flow) and accelerometer-derived respiration rates, and PSG position 

data are presented for the overnight recording.  B: A 30 s section of normalized flow and pitch data for this participant, indicated using blue arrows in A. 
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clinical sleep study to investigate a potential sleep disorder, 

providing a challenging dataset with a wide range of sleep 

disordered breathing and restlessness severities. 

Nevertheless, the respiration rate method presented 

performed well, with estimated respiration rates within 2 

bpm of PSG values for 83.6% of all data examined. 

Respiration rate results were consistent across the two 

examined sensor locations.  

The sleeping posture classifiers presented had ROC AUCs 

of 0.87 for distinguishing supine from side positions, and 

0.95 for distinguishing left from right, with better results for 

the sensor placed on the chest. By automatically identifying 

sleeping position, and changes in sleeping position, in 

accelerometer signals, such a method could be used to 

monitor bed posture to avoid pressure ulcers, or to 

investigate position dependent sleep apnea.  

In this study, the maximum mean absolute error in 

respiration rate estimation across all subjects were 2.25 bpm 

and 2.67 bpm for the abdomen and chest sensors 

respectively. Jarchi et al. [10] reported similar results with a 

maximum mean absolute error of 2.56 bpm between their 

accelerometer-derived respiration rate method and 

photoplethysmography, based on data collected from ten 

patients on discharge from the ICU. Drummond et al. [8] 

examined a post-surgery cohort and reported that their 

accelerometer-derived instantaneous respiratory rates results 

were within 2 bpm of nasal cannula results for 86% of their 

data. In the current study, which examined pathological 

sleepers, 83.6% of respiration rates estimated using the 

abdomen sensor were within 2 bpm of cannula results. 

Another study reported a MAvE in respiration rate of 0.26 

bpm  [9], similar to the results of this study (0.4 and 0.07 

bpm for the abdomen and chest sensors respectively). 

Previous studies have classified sleeping posture using 

clustering methods, reporting a mean error of less than 3 

seconds in detecting a posture change in a healthy young 

cohort [18]. Decision rule techniques have also been 

reported to estimate body posture in healthy subjects [6], 

[17]. In the current study, supine, left and right positions 

were classified in a group of pathological sleepers, using a 

method trained on 20% of the dataset, and tested on the 

remainder, with all reported results based on the test data 

only. The sleeping position classifiers presented in this study 

performed well with a ROC AUC of 0.87 to discriminate 

supine from left/right, and 0.95 to discriminate left from 

right. Previous studies using accelerometers to classify 

sleeping position in healthy cohorts have reported accurate 

results [17], [18]. However, based on a thorough literature 

review, no previous studies have reported results for sleep 

position classification using accelerometers on a cohort of 

pathological sleepers. 

A limitation of the present study is the lack of prone 

position data in the collected dataset collected. This is a 

common issue for PSG studies [17], where the number of 

wires and sensors attached to the subject makes sleeping 

prone uncomfortable. Human factors may also influence 

data quality, including variations in sensor placement as 

examined in this study. The methods presented successfully 

estimate respiration rate and classify position during sleep. 

In future work, additional subjects will be included, and flow 

events and arousals will be reintroduced to the analysis. 
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