
Title On Designing Programming Error Messages for Novices: Readability and its Constituent Factors

Authors(s) Denny, Paul, Prather, James, Becker, Brett A., Mooney, Catherine

Publication date 2021-05-13

Publication information Denny, Paul, James Prather, Brett A. Becker, and Catherine Mooney. “On Designing

Programming Error Messages for Novices: Readability and Its Constituent Factors.” ACM, 2021.

Conference details The 2021 ACM CHI Virtual Conference on Human Factors in Computing Systems (CHI'21),

Virtual Conference, 8-13 May 2021

Publisher ACM

Item record/more

information

http://hdl.handle.net/10197/24389

Publisher's statement © ACM, 2021. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in CHI '21:

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems

http://doi.acm.org/10.1145/3411764.3445696

Publisher's version (DOI) 10.1145/3411764.3445696

Downloaded 2023-10-31T04:02:18Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-1-4503-8096-6&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F24389

On Designing Programming Error Messages for Novices:
Readability and its Constituent Factors

Paul Denny
The University of Auckland

James Prather
Abilene Christian University

Brett A. Becker
University College Dublin

Auckland, New Zealand Abilene, Texas, USA Dublin, Ireland
paul@cs.auckland.ac.nz james.prather@acu.edu brett.becker@ucd.ie

Catherine Mooney John Homer Zachary Albrecht
University College Dublin Abilene Christian University Abilene Christian University

Dublin, Ireland Abilene, Texas, USA Abilene, Texas, USA
catherine.mooney@ucd.ie john.homer@acu.edu zca16a@acu.edu

Garrett Powell
Abilene Christian University

Abilene, Texas, USA
gbp18a@acu.edu

ABSTRACT
Programming error messages play an important role in learning
to program. The cycle of program input and error message re-
sponse completes a loop between the programmer and the com-
piler/interpreter and is a fundamental interaction between human
and computer. However, error messages are notoriously problem-
atic, especially for novices. Despite numerous guidelines citing the
importance of message readability, there is little empirical research
dedicated to understanding and assessing it. We report three re-
lated experiments investigating factors that infuence programming
error message readability. In the frst two experiments we identify
possible factors, and in the third we ask novice programmers to rate
messages using scales derived from these factors. We fnd evidence
that several key factors signifcantly afect message readability:
message length, jargon use, sentence structure, and vocabulary.
This provides novel empirical support for previously untested long-
standing guidelines on message design, and informs future eforts
to create readability metrics for programming error messages.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); HCI theory, concepts and models; Empirical studies
in HCI ; • Social and professional topics → Computing educa-
tion; CS1; • Software and its engineering → Error handling
and recovery; Compilers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445696

KEYWORDS
compiler design and implementation; compiler error messages;
CS1; HCI; human computer interaction; introductory programming;
novice programmers; programming error messages; students; read-
ability

ACM Reference Format:
Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary Albrecht, and Garrett Powell. 2021. On Designing Programming
Error Messages for Novices: Readability and its Constituent Factors. In
CHI Conference on Human Factors in Computing Systems (CHI ’21), May
8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3411764.3445696

1 INTRODUCTION
Feedback is a fundamental aspect of human-computer interaction,
defned by Shneiderman as communication with a user resulting
directly from the user’s action [54]. For programmers, this com-
munication often takes the form of error messages generated by a
compiler resulting from the action of building (or compiling) code in
preparation for execution. And yet, feedback provided in the form
of compiler error messages has been notoriously poor for decades.
In 1983, Brown stated in Communications of the ACM: “One of the
most important yet most neglected aspects of the human/machine
interface is the quality of the error messages produced by the ma-
chine when the human makes a mistake” [15, p246]. This, we argue,
is still true today. A recent case study revealed that developers
at Google found some error messages to be “confusingly worded,”
they spent a median of 12 minutes resolving each one, and such
errors are common – afecting nearly 30% of all builds [52]. Even
more recently, compelling evidence of the need for improving pro-
gramming error messages was provided by Barik et al., who used
eye-tracking to discover that student software developers allocate
25% of their fxations to error messages [6]. While experienced
developers may fnd poor error messages an irritation, for novices
they can be paralyzing [5].

https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/3411764.3445696
mailto:permissions@acm.org

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

In educational contexts, the detrimental efects of cryptic error
messages on novice programmers have been reported throughout
the literature for decades [12, 20, 26, 31, 32, 34–36, 41, 60]. Stu-
dent frustration is exacerbated because such feedback is provided
regardless of whether an instructor is present and comes from a
machine that many novices see as infallible [36]. Educators are
afected indirectly as they must devote time to helping students
correct programming errors when the messages cannot be under-
stood [7, 17, 21, 25, 56]. As early as 1965, systems were beginning
to be developed that provided students with detailed error mes-
sages as this was seen as essential [51]. Nevertheless, educators
and researchers are still documenting the many problems that poor
programming error messages present to students [9].

Improving programming error messages is difcult. Becker et
al. advocate that improving error messages after they are issued
by the compiler but before they are seen by a user – commonly
called Enhanced Compiler Error Messages (ECEMs) [8] – is only
a makeshift fx and that improving messages from frst-principles
is likely a better solution [9]. Aside from the technical challenges
around accurate error diagnosis and localization [49], there are
many ways in which the description of an error can be presented
to a programmer. There are at least two basic levels at which error
messages can be assessed – usability and readability. In this paper
we focus on readability which, we argue, is more fundamental.
A message that is unreadable is likely unusable. Additionally, a
very easy to read message isn’t necessarily usable (e.g. a readable
message suggesting a wrong solution). Specifcally, readability is
necessary but not sufcient for usability. We view usability as how
actionable a message is, and this carries with it certain context
(such as error locality and message precision) that is independent
of message readability.

To date, the readability of programming error messages has
received very little attention. Papers from the 1970s onward
that provide any guidelines whatsoever for designing or eval-
uating programming error messages have almost unanimously
listed ‘readability’ or some synonym as an essential guideline
[4, 9, 29, 40, 42, 53, 58]. However these guidelines are vague, often
conficting, and rarely backed up with empirical evidence [9]. In
all of this prior work, the word ‘readability’ is either undefned, or
uses the same defnition as the readability of natural languages. The
readability of natural language prose is quite well researched, but
most obviously not the same. Brown seems to echo this when he
wrote in 1982 [14, p94]: “Most of us who write systems do not pro-
duce good error messages; we produce shoddy ones. Just because
error messages are in some approximation to natural language,
we claim that they are easy to understand. We deceive no-one but
ourselves.” Almost forty years later, this problem remains: there
is still no defnition of what makes a programming error message
“readable,” and therefore no usable metric for assessing message
readability, unlike the variety that exist for natural languages. A
recent systematic review of the literature on programming error
messages by Becker et al. concludes with a specifc call for research
on readability, as a prerequisite for improving message design [9].

In this paper, we explore the characteristics of programming
error messages that impact their readability for students learning to
program. We report the results from three experiments, the frst two
of which inform the design of the third. Each experiment involved

a distinct cohort of novice programming students from institutions
in North America, China, and Australasia. Our rationale for diverse
recruitment was two-fold: to avoid survey fatigue, and to strengthen
external validity. The frst experiment was a quantitative study, in
which participants rated the readability of the most common error
messages from three popular languages on a numeric scale. By
ranking these messages from most to least readable, we identifed
the most relevant potential factors among those that had previously
been suggested in the literature. The second experiment was a
qualitative study where factors were elicited directly by showing
participants a set of messages and asking them what made the
programming error messages easy or difcult to read. A number of
common themes were identifed by coding responses from students
across two countries. Those themes that overlapped with factors
from the frst study were of particular interest. Finally, in the third
experiment, participants were asked to rate a subset of the messages
from the frst study according to a fxed set of criteria derived from
the frst two studies. Figure 1 provides an overview of these three
experiments. Across these related experiments, we address the
following research questions:

• RQ1: What factors afect the readability of programming
error messages for novices?

• RQ2: To what extent does each factor have an impact on
message readability?

We provide three important contributions in this paper. First, we
report on the results of multiple studies aimed at discovering which
characteristics impact the readability of programming error mes-
sages for novices. This is the frst work to empirically identify such
factors. Second, we discuss how these characteristics can inform
the design of more readable error messages. Third, we fnd several
insights that can help guide future eforts to design a readability
metric for programming error messages.

We begin by considering the literature related to programming er-
ror messages, their design, empirical studies for enhancement, and
how a lack of defnition of readability has frustrated those eforts
(Section 2). Next, we report on Study 1, which was an exploratory
study to begin uncovering why some messages are perceived as
more readable than others (Section 3). We then report on Study 2,
a qualitative efort to elicit from novices the factors they believe
improve or impede readability (Section 4). Study 1 and Study 2 led
us to design Study 3 (see Figure 1), which follows and confrms the
factors we empirically discovered as being direct characteristics of
readability for programming error messages (Section 5). We dis-
cuss these results and their implications for design (Section 6). We
address some limitations in our work (Section 7), then summarize
our fndings and conclude with a clear call for future work (Section
8). To aid the reader, Table 1 provides a high-level summary of the
three studies and their key results.

2 BACKGROUND
From both HCI and pedagogical points of view, compiler error mes-
sages play a unique role in programming and learning to program.
They are integral to the input/output loop between programmers
and programming environments. However, for more than ffty years
educators and researchers have been documenting the difculties
that programming error messages present, particularly to students

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 1: Summary of studies and key results.

Study Participants Method summary Key results

1: Exploring Message Readability 33 (US) Participants rated the readability Two initial factors emerged: shorter
(on a 1–10 scale) of the 20 most fre- messages tended to be rated as more
quently occurring error messages readable; messages containing jar-
in three popular languages (Java, gon and technical terms tended to
Python and C) be rated as less readable

2: Eliciting Readability Factors 114 (US, China) Participants were shown 8 error Thematic analysis revealed four fac-
messages (used in a prior study on tors relating to readability: length,
message readability) and asked to jargon, sentence structure and vo-
describe what makes each message cabulary – the latter of importance
easy or difcult to read to non-native English speakers

3: Confrming Readability Factors 95 (Australasia) Participants were shown 18 mes- Ratings for all four factors strongly
sages (selected from Study 1) and correlated with understandability
rated each (on a 1–5 scale) against ratings, which in turn were highly
the four factors identifed in Stud- correlated with ratings of readabil-
ies 1 and 2, and a holistic rating of ity from Study 1, providing an em-
understandability pirical basis for design guidelines

<error1> 1 …. 10
<error2> 1 …. 10
<error3> 1 …. 10
<error4> 1 …. 10

<error60> 1 …. 10

60 messages
(20 most common in
Python, C and Java

languages)

Study 1

<error1>
<error2>
<error3>
<error4>

<error8>

8 messages
(4 original and 4

reworded as published
in Denny et al. [22])

Study 2

f1: 1 …. 5
<error1> f2: 1 …. 5

fn: 1 …. 5

f1: 1 …. 5
<error2> f2: 1 …. 5

fn: 1 …. 5

f1: 1 …. 5
<error18> f2: 1 …. 5

fn: 1 …. 5

18 messages
(subset from Study 1)

Study 3

Factors
(derived from

Studies 1 and 2)

Exploring Message Readability

Eliciting Readability Factors

Confirming Readability Factors

Figure 1: In Study 1 (quantitative), participants rated common error messages using a holistic numeric scale. In Study 2 (qual-
itative), participants were asked what afected message readability. In Study 3, messages were rated using scales derived from
common themes emerging from Studies 1 and 2.

[4, 29]. In a recent landmark review of the literature on program-
ming error messages, Becker et al. surveyed 107 papers dating back
to 1967, fnding that guidelines for authoring programming error
messages were rarely supported by robust evidence and were often
entirely anecdotal [9]. They found more than half of the reviewed
papers that presented guidelines mentioned readability as a core
component of good message design, yet no metric exists for assess-
ing such readability. Although similar metrics do exist for natural
language prose and even programming source code, these are not
suitable for application to error messages. Becker et al. conclude
their review by calling for research that focuses on understanding
and assessing readability, claiming it is fundamental for future ef-
forts to improve the design and efectiveness of programming error
messages.

2.1 Motivating example
To illustrate how error messages can be problematic for novices,
consider a hypothetical student, May, who is interested in becom-
ing a civil engineer and is required to take an introductory C pro-
gramming course at her university. With no prior experience in
programming, she is learning by carefully copying examples from
the textbook and observing the behaviour of the running programs.
She has just fnished typing in the source code for a program that
converts temperatures from fahrenheit to celsius, and she is now
ready to run the program to perform some conversions. Unfortu-
nately, she has made a small typographical error by forgetting to
include a comma between two identifers (‘fahrenheit’ and ‘celsius’).
When she tries to build the program, her compiler (gcc) issues an

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

error message. The message reads: “error: expected ‘=’, ‘,’, ‘;’, ‘asm’
or ‘__attribute__’ before ‘celsius’”. This is the beginning in a series
of interactions between May and her compiler, the frst three of
which are shown in Table 2. In Step 1, the line of code that contains
the syntax error is shown, along with the generated error message.
On the surface, the message is not easy to read, however it suggests
that some type of symbol is “expected” before the identifer ‘celsius’,
and several possible symbols are shown. May selects the frst one
listed, the ‘=’ symbol, and places it between the two identifers (as
shown in Step 2) before building her code again. This time, a new
error message suggests that the identifer ‘celsius’ is “undeclared”.
This message is short, but not descriptive of a solution using lan-
guage with which May is familiar. Searching for the error online,
May fnds a simple fx – the identifer should be defned prior to
the statement – and she has seen examples of this in her course-
book. Doing so, she fnds the compiler issues yet another message,
leading May even further from the simple solution to her original
typographical error – the missing comma.

Such interactions are all too common. Denny et al. document
a case of a student spending more than two hours in a similar
kind of interaction loop with a compiler, without success, before
abandoning their session [19]. In our own experience, students have
responded to surveys about learning to program with disparaging
statements about error messages, including: “Absolutely losing my
mind trying to fgure out what the error messages are asking me
to do.” There is even documented evidence of programming error
messages being a contributing factor to students leaving computing
majors [39]. There is a clear need to improve the usefulness of
programming error messages for novices. We argue that achieving
this goal requires an evidence-based understanding of message
readability.

2.2 The Problem with Programming Error
Messages

Wrenn and Krishnamurthi argue that as error messages are a
human-computer interaction element, they should be subject to
user studies and similar forms of evaluation [62]. Why more efort
has not gone into improving error messages in popular program-
ming environments is an open question. Alexandrescu posed this
question to compiler designers, fnding that many are so familiar
with their environment they don’t appreciate the difculty of those
with less expertise, along with the simple fact that producing better
error messages is simply not as high a priority as building new
features [3].

An eye-tracking study conducted by Barik et al. [6] provided
compelling empirical evidence of the need for improving error
messages, including:

(1) Programmers do read error messages (corroborated by [46]);
(2) the difculty of reading these messages is comparable to the

difculty of reading source code;
(3) difculty reading error messages signifcantly predicts par-

ticipants’ task performance, and;
(4) participants allocate a substantial portion of their total task

to reading error messages (13-25%).
The fnal item above resonates with Buse and Weimer who cited

several sources noting that the act of reading code is the most
time-consuming of all maintenance activities [16]. This paints a

picture contrary to common wisdom which says that programmers
spend most of their time writing code. Instead there is evidence
that programmers spend a lot of time reading code and reading
error messages.

While poorly designed error messages can afect all program-
mers in writing code, for novices they can interfere with learning
which is more formative and complex. Educators and researchers
have been documenting for more than 50 years the difculties that
programming error messages present to students [9]. The efects
of poor error messages may also be particularly severe for students
who lack confdence in the subject. In their seminal work, “Unlock-
ing the Clubhouse”, Margolis and Fisher examined the gender gap
in computing education, and found that women were more likely
than men to transfer out of undergraduate computer science de-
grees early in their studies [24]. The authors propose that this may
be due to a lack of confdence, stating “women and other students
who do not ft the prevailing norm are disproportionately afected
by problems like poor teaching, hostile peers, or unapproachable
faculty” [24, p140]. It is possible that student confdence may be
negatively impacted by the use of unfriendly tools, which produce
cryptic and unhelpful messages that are hard to read. Despite the
problems with poor error messages persisting for over half a cen-
tury, there remain ongoing calls for their improvement to help
novices learn more efectively [48].

2.3 Programming Error Message Readability
Programming error messages are a subset of the much broader area
of system error messages which, like programming error messages,
leave much to be desired. Maglio & Kandogan found that System
Administrators spend up to 25% of their time down blind alleys
suggested by poorly constructed and unclear messages [38]. In
1982, Shneiderman developed recommendations for system error
message design including several specifc recommendations for
error messages as shown in Table 3.

We take Shneiderman’s guideline of ‘comprehensible’ to be a
synonym for ‘readability’, which is the focus of the present study.
While error message readability has received almost no attention
from human factors and usability researchers, a few studies through
the years touch on it. At the second CHI conference in 1983, Isa et
al. presented their work on error messages from an HCI perspec-
tive, noting that they can contain unnecessary jargon, be cryptic,
unfriendly, or misleading [30]. They concluded that “Surely, the
use of guidelines is a valuable frst step in the production of usable
error messages” [p71].

The only guidelines for the readability of programming error
messages that have been put forward in the literature are mostly
vague and not easily measurable. There is such a lack of literature
that most have to be inferred from more general usability guidelines
not necessarily specifc to programming, for instance Jakob Nielsen
at CHI ’94 wrote that “[Error Messages] should be expressed in
plain language. . . ” [44, p156]. In contrast, the readability of prose is
a well-studied area. Metrics such as the Dale-Chall formula, Farr-
Jenkins-Paterson formula, Flesch formula, Fry’s Readability Graph,
Kincaid formula, Gunning Fog Index, and Linsear Write Index have
been used for decades [37]. These metrics all focus on natural
language prose for novels and technical manuals, and some even
produce a grade-level as output (such as Fry’s Formula) which

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

Step Code Error message
1 int fahrenheit celsius; error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘celsius’
2 int fahrenheit = celsius; error: ‘celsius’ undeclared
3 int celsius; int fahrenheit = celsius; error: ‘celsius’ is used uninitialized in this function
Table 2: A short interaction between May, a novice programming student, and her compiler.

Error messages should be... Error message should not be...
Brief

Positively toned
Constructive

Specifc
Comprehensible

Emphasize user control-
over system

Wordy
Negatively toned
Critical of errors

General
Cryptic

Suggest system control-
over user

Table 3: System error message design guidelines from [53].

might not be a helpful distinction to make in programming. These
metrics were not designed for programming error messages, which
are often terse and flled with symbols, and have recently been
shown to produce entirely nonsensical results when applied to
them [22].

Buse and Weimer developed a model for the readability of source
code. They defne readability as “a human judgment of how easy a
text is to understand” [16, p121], and argue that the readability of a
program is related to its maintainability, and therefore is a critical
factor in overall software quality [16]. They also make several
fndings that could inform a readability metric for programming
error messages which are, by nature, short. They found that:

(1) Length of identifer names had almost no infuence on source
code readability. This is important as programming error
messages must necessarily repeat identifer names (and thus
have no control over them). Additionally, it indicates that an
error message metric might be stable from programmer to
programmer, and language to language.

(2) A high number of identifers had a very strong infuence on
readability of source code.

(3) A high number of characters on a line had a very strong
infuence on readability of source code.

Buse and Weimer conclude that code readability is an essential
characteristic of code quality. We propose that the readability of
programming error messages is an essential characteristic of their
potential usefulness. Although prior work has argued that more
readable error messages will result in increased student satisfac-
tion [63], lower error rates and fewer repeated errors [7], and less
frustration for students [50], they have stopped short of defning
readability, assessing readability in isolation, or providing a way to
measure readability.

2.4 Improving Programming Error Message
Usability

Various eforts have been made, with increasing frequency in recent
years, to enhance, side-step, or otherwise improve the usability of
programming error messages. For instance:

(1) Many eforts have been made to improve programming error
messages by intercepting them between the compiler and the
user and translating them into more “usable” forms – often
called Enhanced Compiler Error Messages (ECEMs) [12].
However, the evidence for the efectiveness of ECEMs is not
overwhelming. Eforts focusing on enhancing/improving
compiler error messages have been made by researchers such
as Barik [4], Becker [13], Denny [19], Kohn [33], Pettit [45],
Prather [46], and Karkare [2]. However, it is not apparent
that any have addressed the core issue of readability.

(2) Changes in the presentation of error messages, particularly
through non-textual IDE features, have also attempted to ad-
dress the shortcomings of the messages themselves. One very
recent attempt by Dong and Khandwala shortened incredibly
verbose error messages behind ellipses, utilized color, and
added newlines and meaningful headings [23] to program-
ming error messages in Java. They found a large increase in
usability (measured via comprehension and resolution rate)
with just those small cosmetic changes.

(3) Other work has sought to reimagine the standard program-
ming error message. Hartmann et al. updated error messages
in their system HelpMeOut, which presented novices with
examples of how other programmers fxed the same kinds
of errors [28]. While certainly novel, it sidesteps the issue of
readability entirely.

(4) Programming language designers are now starting to take
“good” error messages seriously (for instance, Rust [59] and
Elm [18]). However, most eforts on this front focus on struc-
turing messages, consistency, and context-specifc improve-
ments, overlooking the more basic issue of readability. Often
it seems to be a premise that more information is better.
The Quorum language takes an evidence-based approach
to language design [56], including ongoing work on error
messages. Although the focus on message design in these
modern languages is promising, the vast majority of novice
programming students still learn using one of the three lan-
guages we explore in this work [11, 55].

(5) Other eforts seek to use external information, such as
Stack Overfow, to provide more error-correcting ability to
users [57, 61]. Given the advances in machine learning tech-
niques, large repositories outside of the code can be used
to diagnose problems with source code [2]. Yet again, these
eforts seem to take the view that more information is better,
and are operating at a level much higher than improving
basic readability.

As is evident, researchers have gone to great lengths to alleviate
the inefectiveness of programming error messages they see in the
classroom. One of the root causes of this inefectiveness must lie
in the poorly-understood readability of these messages – a critical
aspect which has remained largely unstudied.

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

3 STUDY 1: EXPLORING MESSAGE
READABILITY

We set out to answer our frst research question without any pre-
conceptions of what afects message readability for novices. We
therefore designed Study 1 as an exploratory pilot study, to begin
developing an understanding of novice perceptions of readability.
The goal of this study was to produce a ranked list of messages us-
ing a holistic measure of readability. We then inspected diferences
between those rated as most and least readable to identify possible
factors that may infuence readability.

3.1 Methodology
We began by constructing a set of 60 error messages to present to
novices to rate. We selected the 20 most frequently occurring error
messages in three popular programming languages: Java (SE 7), C
(gcc 5.4.0), and Python (3.6). For the Java dataset [7], consisting
of 28,000 code submissions, the top 20 messages cover 89% of all
errors present in the set. The top 20 messages in the Python dataset
[61] covered 99% of the 35,000 submissions. The C dataset [43]
contained 5,002 total errors with the top 20 errors covering 95% of
the submissions. These are the most commonly taught introduc-
tory languages. The Java and C messages are drawn from existing
corpora of syntax errors generated directly by novice (frst-year)
programmers. Although the Python corpus is from a more general
source (Stack Overfow) the messages themselves are frequently
encountered by novices. Specifcally, "invalid syntax" is the most
common novice message, and the EOF and indentation-based mes-
sages are among the fve most common [47] accounting for four of
the six Python messages shown in Study 3.

We constructed a questionnaire that presented each of the twenty
most frequent error messages from our three languages (Java,
Python, and C), and asked participants to rate the readability of the
message on a scale from 1 (least readable) to 10 (most readable). No
specifc criteria were provided to defne what “readable” meant, as
in this exploratory study we did not wish to constrain participants
by the researchers’ defnitions without any evidence.

3.2 Results
Participants were frst-year students enrolled in a typical CS1 course
being taught in C++ at a North American university (n=33) with
8 identifying as women and 25 as men. Data was collected in the
fourth week of term, and thus participants had only a few weeks
of experience encountering programming error messages. Partici-
pants responded to the questionnaire during a 50 minute in-class
session. Two of the participants rated all 60 messages at 10 and
were therefore excluded from analysis.

Table 4 shows the 10 most readable and the 10 least readable
messages, ranked according to mean readability score. Despite the
fact that our sample represented three diferent programming lan-
guages, the individual error messages with the highest average
readability score generally appeared to be alike and shared certain
qualities. Likewise, the messages with the lowest average readability
score also shared certain qualities. Examination of the similarities
of these messages within groups (the top and bottom 15 represent

quartiles) suggests two qualities which may play a role in the per-
ceived readability for novice programmers: message length and the
density of jargon/acronyms.

Across all participants, shorter messages tended to be rated as
more readable. The median number of characters per message
among the 15 most readable messages (21) is less than half that
of the 15 least readable messages (44). While a few more words of
explanation can often go a long way to helping a novice under-
stand an error, these messages were often verbose without aiding
understanding. This supports earlier work in which the addition of
words does not consistently improve novice comprehension [9].

There is also some evidence that messages with more jargon,
technical terms, and acronyms are perceived to be less readable.
Acronyms such as ‘EOF’ and ‘EOL’, and technical terms such as ‘po-
sitional argument’, ‘keyword argument’, and ‘triple-quoted string
literal’ are prevalent among the least readable messages. In addition,
the lowest ranked message contained quite a bit of jargon: “unicode
error ‘unicodeescape’ codec can’t decode bytes.”

The main limitation of this frst study was that we provided no
guidance to participants on what “readable” meant, although as an
exploratory study this was also a strength. The purely quantitative
nature of the data was also a limitation. To better understand how
readability is perceived, in our second study we sought to elicit
responses from participants. For analysis of other data from this
study, see our prior work [10].

4 STUDY 2: ELICITING READABILITY
FACTORS

In our frst study, we identifed message length and use of jargon
as possible factors afecting readability, however these were in-
ferred from manual inspection of the ranked list of messages. In
our second study, we sought explicit statements from students. A
smaller number of messages were needed given the nature of the
data collection, in which participants provided written feedback
rather than responding with a numeric rating. For this purpose, we
adopted the set of eight error messages described in the study by
Denny et al. [22]. This is one of the few studies we are aware of
that has presented empirical evidence for the greater usability of
one set of messages over another, as measured by the time required
for participants to resolve errors. If message usability is indeed im-
pacted by readability, as we expect, including both sets of messages
from this prior study may elicit a wide range of responses from our
participants.

4.1 Methodology
Table 5 shows the eight messages used in Study 2, taken from
[22]. These messages correspond to four basic syntax errors in a
C-language program: (1) misspelled fle name, (2) missing comma
in sequenced variable declaration, (3) missing function opening
brace, and (4) missing ampersand in input scan. Each error is repre-
sented by two error message variants: [A] the unedited compiler
messages shown in the “Regular” column, and [B] a reworded mes-
sage intended to provide a clearer explanation of the error in the
“Enhanced” column.

In our experiment, novice programmers in CS1 and CS2 courses
were given the erroneous program along with a set of four error

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

Readability
Rank Language Error message Mean SD
1 Java ‘else’ without ‘if’ 9.3 1.7
2 Java ‘(’ expected 9.2 1.4
3 Java ‘]’ expected 9.2 1.5
4 Java ‘;’ expected 9.2 1.7
5 C ‘else’ without a previous ‘if’ 9.1 2.0
6 Java ‘)’ expected 9.0 1.8
7 Java while expected 8.6 2.2
8 C expected <x> before <y> 8.5 1.7
9 Java <identifer> expected 8.4 1.9
10 C no such fle or directory 8.2 2.5
51 Java reached end of fle while parsing 5.9 2.7
52 Python positional argument follows keyword argument 5.8 2.6
53 Python unexpected EOF while parsing 5.8 3.2
54 C invalid type argument of <. . . > 5.8 2.5
55 C missing terminating <x> character 5.7 2.6
56 Python EOL while scanning string literal 5.6 3.1
57 Python EOF while scanning triple-quoted string literal 5.4 3.0
58 C invalid operands to binary <x> (have <y> and <z>) 5.1 2.7
59 C expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘_attribute_’ before <x> 4.3 2.9
60 Python (unicode error) ‘unicodeescape’ codec can’t decode bytes 4.3 2.9

Table 4: From the original set of 60 messages, the 10 rated most readable, and the 10 rated least readable.

Regular Enhanced

1 1:10: fatal error:
studio.h: No such fle or directory.

A fle name appears to be misspelled.
The fle being included cannot be found
and so is probably not spelled correctly.

2 9:21: error: expected ‘=’, ‘,’, ‘;’, ‘asm’
or ‘__attribute__’ before ‘feet’.

A comma appears to be missing.
When declaring multiple variables on the same line,
names should be separated by commas.

3 13:5: error:
expected declaration specifers before ‘scanf’.

An opening brace appears to be missing.
Functions should have a matching opening and closing brace.

4 13:13: error:
format ‘%d’ expects argument of type ‘int *’,
but argument 2 has type ‘int’.

An ampersand (&) appears to be missing.
An address must be provided to the scanf() function,
by using an & before the variable name

Table 5: Regular and enhanced compiler error messages (ECEMs) from [22].

messages chosen at random from four counter-balanced sets: {1A,
2A, 3B, 4B}, {1B, 2B, 3A, 4A}, {1A, 2B, 3A, 4B}, or {1B, 2A, 3B, 4A}.
In this way, each participant viewed the four errors in a consistent
order, but provided feedback on the readability of two regular and
two enhanced messages.

To assess readability, participants were asked the yes/no ques-
tion, “Would the inclusion of certain information make the error
message above easier to read?” with the following prompts for fur-
ther explanation: “If yes, what information?” and “If no, is there
any information that’s unnecessary, excessive, or could be removed?”.
Participants were also asked to directly respond to the question:
“For the error message shown, what do you think makes it easy or hard
to read? (Consider: number of words, word length, specifc characters,
line numbers, sentence structure, etc.)” with separate responses for
“Easy” and “Hard”.

4.2 Results
Participants were recruited from two introductory programming
courses taught at universities in the United States (n=41) and in
China (n=73). Since programming error messages are written in
English, this design allows us to explore diferences between stu-
dents whose frst language is English and students whose frst
language is Chinese. Of the 73 Chinese respondents, 26 identifed
as women, and 47 as men. The survey was available to respondents
for one week, and students had already taken a semester of Python,
but were learning C at the time of this study. Of the 41 US respon-
dents, 6 identifed as women, and 35 as men. Survey responses
were collected during a 50 minute in-class session. Students in this
cohort were familiar with C++ at the time they participated in the
study.

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

Two authors collated the open-ended responses into thematic
groups based on use of similar words and synonyms. The groupings
for participants whose frst language was English are shown in
Table 6. Likewise, groupings for participants whose frst language
was Chinese are shown in Table 7. Participants were able to mention
multiple factors that help or hinder readability, so counts in the
tables do not add up to participant totals.

English-speaking and Chinese-speaking participants tended to
mention the same kinds of ideas, though the groups prioritized
them diferently. English-speaking participants thought that more
English (i.e. more explanation instead of the often terse existing
error messages) would be the most helpful, while Chinese-speaking
participants prized fewer and more precise words over lengthier
explanations. Likewise, only four participants whose frst language
was English mentioned heavy jargon as a problem, while partic-
ipants whose frst language was Chinese mentioned it 43 times.
However, it seems both groups valued brevity where possible, the
inclusion of source code line numbers, and clear sentences. Both
groups also thought the use of jargon and unfamiliar vocabulary
could make it more difcult to understand the messages.

One participant wrote that what hindered their understanding
of the original message was that it was "perhaps too concise to
fgure out where/what caused the error from the code." Another
participant wrote almost the opposite about one of the enhanced
messages "It is clear and concise and tells the problem immediately."
Short and concise can be helpful at times, but brevity alone is not
the goal. One participant wrote, "It is short and thus easy to read but
there is little information, thus not as helpful." Another participant
noted that "It is easy to read. It is more in English than in code"
perhaps noting the penchant of error messages to make heavy use
of jargon, symbols, and code. Clearly, some kind of balance must
be struck between concision and helpfulness.

Most of the common themes between groups align well with
existing, but untested, guidelines from programming error message
design [9], such as being as succinct as possible without sacrifcing
meaning. In this experiment, because participants were shown
the program code as well as the corresponding error messages,
some of the themes were directly tied to context and could not be
independently attributed to the error messages themselves. The
inclusion of line numbers mapping to the corresponding source
code is one such example. Also, because some of the messages were
enhanced (the variants in set [B]) to deliberately suggest potential
solutions, themes that related to this are of less practical value for
evaluating existing programming messages in popular languages.

Three authors met and discussed these concerns alongside the
existing guidelines proposed in the literature for the design of
programming error messages. We settled on four themes emerging
from Studies 1 and 2 that appeared promising for evaluating existing
messages:

(1) succinct / verbose
(2) less jargon / more jargon
(3) clear sentence structure / unclear sentence structure
(4) simple vocabulary / complex-advanced vocabulary

The frst three were inspired by the English-speaking partici-
pants with support from the Chinese-speaking participants. How-
ever, we learned from the Chinese-speaking participants that even

non-jargon words could afect readability if English isn’t one’s frst
language. We therefore added a fourth theme to help target accessi-
bility for non-native English speakers. Additionally, the frst two
themes overlapped with those from Study 1, contributing evidence
to their validity.

5 STUDY 3: CONFIRMING READABILITY
FACTORS

Finally, having identifed four possible factors through our frst two
studies, we turn to our second research question and examine the
extent to which each one impacts message readability. To this end,
we designed a third experiment to collect student perceptions of
message readability with respect to message length, use of jargon,
sentence structure and vocabulary use. We used a subset of the
same 60 messages from Study 1, so that we could relate the results
back to the holistic ratings of readability collected in the earlier
experiment. Data for Study 3 was collected from students at an
institution distinct from those used in Studies 1 and 2.

5.1 Methodology
We prepared a questionnaire consisting of a set of error messages,
each of which could be rated against the four scales: length, jargon,
sentence structure and vocabulary. We selected a set of 18 error
messages from the original set of 60 messages that were used in
Study 1. Including all 60 messages on the questionnaire was not
practical, as early piloting revealed that it would take too much
time for students to complete. The trade-of between questionnaire
length and response rate is complex, however previous studies with
university students have shown that shorter questionnaires can
lead to higher response rates in a non-linear fashion [1]. Selecting
the messages from the original Study 1 pool ensured that we were
using messages that commonly occur in practice.

Messages were shown to participants one at a time, and for each
message, an item for each factor could be rated on a 5-point Likert
scale. We also included, for each message, a holistic rating of the
general understandability of the message. We use this to compare
with prior ratings of readability for the same messages from Study
1, and to correlate with each of the four factors being tested. Table
8 gives the full list of items, and associated descriptors, that were
presented to participants for each error message.

5.1.1 Error message selection. Selection of the 18 messages appear-
ing in the questionnaire was accomplished with a view of achieving
an even balance across language, length, and prior ratings of read-
ability. The original set of 60 messages were ranked, in order from
most to least readable, based on the holistic scores from Study 1.
With three programming languages represented, all messages for a
language could be grouped into quartiles of size fve using these
rankings. The length of the messages in the original set ranged
from two to nine words, respectively. The set of 18 messages were
selected such that all lengths between two and nine words were
represented either two or three times, and for each language, six
messages were chosen with one or two messages taken from each
readability quartile. Table 9 shows these 18 messages.

5.1.2 Participant recruitment. Students were recruited from a large
urban university in Australasia. Invitations were sent by email to

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

Benefcial to Readability Count Detrimental to Readability Count

More English makes it easier to read
Explanation of error

Brevity
Line number helps in fnding error

Error separated into 2 lines
Clear wording

Gives many possible solutions

29
27
24
20
10
7
7

No line number
Verbose

Line number output confusing or difcult to read
Poor wording

Excessive punctuation (colons, commas, quotations, ...)
Vague description of error

No template / example of proper declaration
Multiple solutions cause confusion

Heavy jargon
Too short or not descriptive enough

Error separated into 2 lines

39
22
20
20
16
12
8
5
4
3
1

Table 6: Readability themes of students whose frst language was English and the number of responses grouped by that theme.

Benefcial to Readability Count Detrimental to Readability Count

Specifc characters
Brevity/right amount of words

Line number helps with fnding error
Sentence structure (little to no specifcation)

Word length

76
63
48
46
35

Confusion with or lack of line number
Specifc characters/confusing jargon
Sentence is too long/too many words

Sentence structure (little to no specifcation)
Word length

Message is too short

51
43
36
31
19
4

Table 7: Readability themes of students whose frst language was Chinese and the number of responses grouped by that theme.

Item Range (1) – (5) Descriptor
Length
Jargon

Sentence structure
Vocabulary

Understandability

Succinct – Verbose
Less – More

Clear – Unclear
Simple – Complex/Advanced

Easy – Hard

Is the message expressed using more words than needed?
Does the message contain jargon and technical terms?
How clear is the sentence structure of the message?
How complex is the vocabulary used?
How easy/hard do you think the message is to understand?

Table 8: The items against which each error message was rated.

all students across the faculties of Engineering and Science who
were enrolled in programming intensive courses in their frst year
of study. Approximately 2,000 students received an invitation, con-
taining a link to the online questionnaire, and an indication that
it would take approximately 15 minutes to complete and that all
responses were anonymous. Participation was optional, in that no
course credit was associated for completing the questionnaire.

5.2 Results
The questionnaire was available for approximately seven days, and
in that time received a total of 95 responses (representing approxi-
mately a 5% response rate). One student was removed because they
did not answer 20 of the 90 core questions (fve Likert questions
× 18 messages). Two students did not answer two of the 90 ques-
tions and four did not answer one. We assumed that these were
erroneously skipped and we replaced the blank with the median
response for that question.

Of the 94 respondents, fve students did not identify as a woman
or man, 24 identifed as women, and 65 as men. 67% reported that
English was their frst language. 54% of students listed Python as

a language they are most familiar with, followed by Java (20%),
MATLAB (19%) and C (6%). We found no statistically signifcant
diferences between the following groups in terms of understand-
ability:

(1) Students identifying as women and men (the small numbers
not identifying as either a man or woman prevented us from
making meaningful statistical comparisons outside these
groups)

(2) Native and non-native English speakers
(3) Number of natural languages spoken
(4) Number of programming languages students are familiar

with.

Table 9 lists the 18 error messages used in Study 3, along with
the corresponding language and understandability ranking (1 is
most understandable).

5.2.1 Length, Jargon, Sentence Structure, Vocabulary & Understand-
ing. Table 10 reports coefcients for the Pearson’s product-moment

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

Language Error message Understandability rank
C no such fle or directory 1
C ‘else’ without a previous ‘if’ 2

Java ‘else’ without ‘if’ 3
Java ‘;’ expected 4

Python unexpected unindent 5
C storage size isn’t known 6

Python invalid syntax 7
Java not a statement 8
Java reached end of fle while parsing 9

Python unindent does not match any outer indentation level 10
C conficting types for ‘add’ 11
C expected declaration or statement at end of input 12

Java bad operand types for binary operator ‘*operator*’ 13
Python generator expression must be parenthesized if not sole argument 14
Java illegal start of type 15
C expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘_attribute_’ before <x> 16

Python (unicode error) ‘unicodeescape’ codec can’t decode bytes 17
Python EOF while scanning triple-quoted string literal 18

Table 9: The 18 error messages in Study 3, corresponding languages, and understandability rankings (1 = most understandable).

correlation between each of the four factors (length, jargon, sen-
tence structure and vocabulary) with the holistic rating of the un-
derstandability of the error message. All factors are strongly corre-
lated with understandability, and all correlations are positive which
matches our intuitive sense for each factor to varying extents. This
is evidence that students fnd messages easier to understand when
those messages are more succinct, include less jargon, use a clear
sentence structure, and have simpler vocabulary. Message length
correlates less strongly with understandability compared with the
other factors. This makes some intuitive sense as students may fnd
messages that are too short harder to understand. Theoretically the
optimal length can’t be zero. This is not the case for other factors,
such as jargon, where a complete absence of jargon in an error
message may indeed make it easier to understand. In other words,
message length will always be a matter of balance.

Figures 2A-2D show length, jargon, sentence structure, and vo-
cabulary vs. understandability. Each plot has 1,692 data points
representing all 18 error messages for each of the 94 students. For
instance, Figure 2A shows all length scores for all messages, for
all students. The white ‘bands’ are a visualization artifact due to
‘jitter’ (x and y) being used to make density perceptible – otherwise
all points would be 1, 2, 3, 4 or 5, exactly on top of other points
at the same coordinates. On the x-axis, each point is grouped into
one of three categories: easy, moderate and hard (to understand).
These groupings were determined by summing all understandabil-
ity scores given to each of the 18 error messages. The error messages
were then ranked (see Table 9) and divided into three groups corre-
sponding to easy (messages ranked 1–6), moderate (ranked 7–12)
and hard (ranked 13–18) to understand. Therefore, in Figure 2A, a
given point represents a student’s length score for a given message,
and that messages’ position in relation to the others in terms of
understandability. The horizontal bar represents the median and
the boxes represent the interquartile range of each distribution.

Although our raw data was normal, when grouped by easy,
moderate and hard, the data was not. Therefore we utilised

non-parametric tests for signifcance. We performed a Kruskal-
Wallis rank-sum test on each triad in each of Figures 2A-2D. In all
cases the diferences between each understandability grouping is
statistically signifcant. Details such as test statistics are presented
in Table 11.

The diferences in rating distributions between pairs of under-
standability groupings are also statistically signifcant, and hold for
each of the four factors (Figures 2A-2D), as determined by pairwise
Wilcoxon signed rank tests. Details of these comparisons are pre-
sented in Table 12. These agree with the correlations discussed in
Table 10. The biggest diferences occur with Jargon and Vocabulary,
which are also the factors with the largest correlations. Combined
with the correlations this is evidence that shorter messages, less
jargon, clearer sentence structure and simpler vocabulary all result
in more understandable error messages. A Bonferroni correction
for 12 Wilcoxon signed-rank tests would yield a signifcance level
of .004 (with α = 0.05) and our results are still signifcant with this
correction. A similar correction for the Kruskal-Wallis tests would
not afect the signifcance of those tests.

5.2.2 Readability and Understandability. In Study 1, participants
were asked to make a holistic assessment of readability, without
specifc guidance on a scale from 1 to 10, as we did not wish to
infuence participants’ views, given that no one defnition of read-
ability is agreed on, particularly when it comes to programming
error messages. In Study 3, which involved a subset of the mes-
sages from Study 1, participants were asked to rate the messages
for understandability. We did this because we were concerned that
readability without any guidance may be interpreted in a num-
ber of diferent ways, and that understandability likely has a more
universally understood meaning. Figure 3 shows a scatterplot of
the normalized readability rank in Study 1 against the normalized
understandability rank in Study 3, for all 18 messages. In this plot,
0 corresponds to most readable/understandable and 1 corresponds
to least readable/understandable. Pearson’s correlation coefcient

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

Factor Correlation p Relationship with understandability
Length
Jargon

Sentence structure
Vocabulary

r (1690)=.56
r (1690)=.65
r (1690)=.64
r (1690)=.68

<.001
<.001
<.001
<.001

Succinct =̂ more , Verbose =̂ less
Less jargon =̂ more , More jargon =̂ less

Clear =̂ more, Unclear =̂ less
Simple =̂ more, Advanced/Complex =̂ less

Table 10: Correlations of the four factors with understandability; r is Pearson’s correlation coefcient (=̂ → “corresponds to”).

Figure 2: Message length, jargon, sentence structure and vocabulary scores vs. understandability (grouped into easy, moderate
and hard to understand). Wilcoxon signed-rank tests show statistical signifcance between pairs of distributions, and Kruskal-
Wallis rank-sum tests show statistical signifcance within each triad.

shows that the correlation between readability and understandabil-
ity is very strong, r (16)=.86, p<.001. This is important, as it indicates
that each of the correlations of understandability with length, jar-
gon, sentence structure, and vocabulary are also applicable to a
general but undefned notion of readability.

Although these results were expected and may even seem to
be purely common sense, it is important to note that to date there

has been no empirical data on what makes a programming error
message readable. We have provided the frst evidence of the factors
that make up readability in this context. Moreover, as discussed
above, this is necessary work because researchers have been calling
for “readable” error messages for decades and yet no one has defned
it and error messages continue to frustrate novices on multiple
levels.

https://r(16)=.86

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

Fig. 2 Kruskal-Wallis
A χ2(2) = 299.68, p < .001
B χ2(2) = 479.18, p < .001
C χ2(2) = 275.20, p < .001
D χ2(2) = 390.68, p < .001

Table 11: Kruskal-Wallis rank-sum test results for Figure 2
(α = 0.05) - see Section 5.2.1 for discussion on correction for
multiple tests.

Fig. 2 Pair N M SD N M SD

A
Hard-Moderate 564 2.21 1.13 564 1.57 0.90
Moderate-Easy 564 1.57 0.90 564 1.28 0.70
Hard-Easy 564 2.21 1.13 564 1.28 0.70

B
Hard-Moderate 564 3.10 1.23 564 2.08 1.03
Moderate-Easy 564 2.08 1.03 564 1.51 0.82
Hard-Easy 564 3.10 1.23 564 1.51 0.82

C
Hard-Moderate 564 2.41 1.23 564 1.61 0.94
Moderate-Easy 564 1.61 0.94 564 1.41 0.84
Hard-Easy 564 2.41 1.23 564 1.41 0.84

D
Hard-Moderate 564 2.57 1.20 564 1.79 0.98
Moderate-Easy 564 1.79 0.98 564 1.31 0.72
Hard-Easy 564 2.57 1.20 564 1.31 0.72

Table 12: Wilcoxon signed-rank test details for Figure 2 (α =
0.05, 0.004 with Bonferroni correction). In all cases, p < .001.

.

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Understandability (Study 3)

R
ea

da
bi

lit
y

(S
tu

dy
 1

)

r(16) = .86, p < .001

Figure 3: Scatterplot of normalized readability vs normal-
ized understandability for all 18 error messages. On the axes,
0 is most readable/understandable and 1 is least. r is Pear-
son’s correlation coefcient.

6 DISCUSSION: DESIGN IMPLICATIONS
Finally, in light of our fndings, we now present specifc insights
about the design of programming error messages that will make
them more readable and, therefore, more usable. We present these
in the form of four concrete design guidelines. These guidelines

can be used directly to inform the creation or enhancement of
programming error messages, and may also form the basis for
future eforts to construct a readability metric appropriate for such
messages.

6.1 Remove Jargon
It is clear that students found messages with less jargon to be more
readable than those with more. The highest ranked message in
Study 3 was the following C error message: “no such fle or di-
rectory”. From the perspective of a typical novice programmer,
this contains no jargon. In contrast, the lowest ranked message, a
Python error message, consisted almost entirely of jargon: “EOF
while scanning triple-quoted string literal”. Applying the proposed
design criterion to this lowest ranked message could yield some-
thing like “A triple-quoted string is missing the triple closing quotes.”
This removes jargon from the message without sacrifcing readabil-
ity.

6.2 Write Messages in Complete Sentences
As mentioned in our introduction to this paper, Brown wrote in 1982
that programming error messages are in some semblance of English
and so we deceive ourselves about their readability [14]. However,
our results show that this is not always the case. Many messages
use very little English and are not written in complete sentences.
For instance, the lowest-ranked message in C was “expected ‘=’, ‘,’,
‘;’, ‘asm’ or ‘_attribute_’ before <x>” which can be broken down
to “expected <symbol> before <statement>” which is still not a
complete sentence. Applying the design criterion to this statement
could perhaps result in the following: “A symbol, such as a comma
(‘,’) or semicolon (‘;’), is missing.”

6.3 Use Simple Vocabulary
While programming error messages are often full of jargon, even
the remaining words are often written using advanced terminology
and vocabulary. Our results show that this harms the message’s
readability for English-speaking novices, but we found that this
is especially exacerbated among non-native English speakers who
may not have such a deep well of vocabulary upon which to draw.
One of the lower-ranked Python error messages, “generator ex-
pression must be parenthesized if not sole argument” is a prime
example. Words like “argument” and “expression” are common pro-
gramming jargon, but the words “generator,” “parenthesized,” and
even “sole” represent a more advanced vocabulary that may prove a
barrier for non-native English speakers. Looking up those words in
a dictionary may prove entirely unhelpful. Moreover, in this Python
example, if the generator expression was the sole function argu-
ment, the error would not be triggered in the frst place. Therefore,
shortening the message (see Section 6.4) and removing the complex
vocabulary might produce something like: “Put ‘(’ and ‘)’ around
expression that generates list”. This supports the fndings of Guo
et al. [27] who found that non-English speakers wanted simplifed
English without English-specifc slang.

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

6.4 Use An Economy of Words
Many programming error messages are terse, probably in an efort
to be precise and concise. Other messages are often verbose, prob-
ably to communicate as much information and detail as possible.
But either of these extremes typically means that error messages
are not readable because they do not have what is often called an
“economy of words,” which means that only as many words are used
as are necessary to communicate the point to the reader. One might
be tempted to think that brevity, in and of itself, is a reasonable goal,
but our results indicate this is not the case. One of the lowest-ranked
Java messages: “illegal start of type” is very short and yet rated
nearly incomprehensible by our participants. The message posi-
tioned immediately above it in the rankings was a Python message:
“generator expression must be parenthesized if not sole argument”
and the longest of all messages in the set. Of course, two of the
most readable messages in the set were very terse: ‘else’ without
‘if’ and ‘;’ expected. Our novel results above indicate that while
novices generally prefer shorter messages, this category had the
weakest correlation to understandability and therefore readability.
Therefore, the fnal design criterion is that messages should use an
economy of words, using as few as necessary without sacrifcing
clarity or eschewing important details.

We propose one fnal example which applies this design guide-
line to another of the poorly-rated Python messages “(unicode
error) ‘unicodeescape’ codec can’t decode bytes”. Although this
message also contains jargon, with respect to using an economy
of words, we would argue that in this case reducing the number
of words would further harm readability. In other words, this mes-
sage does not use enough words and could use more. The message
describes an error in which a string contains a unicode escape se-
quence (“\U”) followed by illegal characters (this is commonly due
to specifying a fle path incorrectly, such as “C:\Users\”, which can
be resolved by duplicating each ‘\’ character to create appropriate
escape sequences). Applying the current design guideline, keeping
the message succinct but with sufcient detail, could result in the
following message: “A string contains an invalid character after
‘\U’. Check the unicode sequence or duplicate each ‘\’.”

These four design guidelines do not necessarily stand alone, but
together can be applied to make readable messages. Many of the
examples of poor messages above could be improved through appli-
cation of several of these guidelines – if not all four – and further
research is needed to test this. Taken together, these guidelines
could be used to inform the creation of new programming error
messages and in the revision of existing ones.

7 LIMITATIONS
There are several limitations to the work we have presented here,
though we have tried to mitigate each one. The frst is that neither
a formal defnition nor informal guidance was provided to partic-
ipants in Study 1 regarding how to rate readability. As a result,
individual participants may have interpreted the term quite difer-
ently, potentially invalidating the ratings. However, evidence from
Study 3 shows that the notion of readability expressed by novice
programmers is valid, and strongly correlated to both understand-
ability and the four constituent factors of readability.

A further limitation in this work is the subjective decision regard-
ing the programming languages from which to select error mes-
sages. We intentionally chose three contemporary languages that
are frequently used in introductory programming courses [11, 55],
since our work is targeted at novices. For Study 1, we selected the
error messages from these languages that are most often encoun-
tered in practice by novices. Our rationale is that guidelines rooted
in empirical analysis of the most common error messages are likely
to have the largest impact. The messages used in Study 2 were taken
from prior work by Denny et al. [22], in which a set of enhanced
messages resulted in faster error resolution times for participants
compared to a set of existing compiler messages. Our rationale
for using both sets of messages was that we might elicit a wider
range of perceptions regarding readability by showing participants
messages known to be both efective and inefective in practice.
For Study 3, the messages were a representative subset of those
from Study 1 with good, medium, and poor readability rankings.
We only used a subset of the messages, instead of all 60, because
early piloting of the full questionnaire revealed it was far too long
(60 error messages x 5 scales) and led to high abandonment rates.

We observed a low response rate of around 5% for Study 3. In
accordance with the institution’s ethical protocols, no external in-
centive was provided to students for engaging with the anonymous
questionnaire, and this likely had an impact on the response rate.
Another factor may have been the length of the questionnaire itself,
despite our deliberate eforts to trade-of some length for a higher
rate of response [1]. Although it is likely therefore that our sam-
ple exhibits some selection bias, the proportional representation
of participants with respect to gender and language experience
was consistent with the courses across which the invitations were
distributed. To mitigate the low rate of response, we were able to
distribute the invitation widely, and thus obtained nearly 100 com-
plete responses – enough to give our statistical analyses sufcient
power.

Another limitation of this work is that, although we have pre-
sented four distinct factors of readability for programming error
messages, we cannot guarantee that these are all the factors. Other
researchers may determine there are additional factors and we leave
this to future work.

Finally, our fndings are based on self-reported and subjective
data. We have attempted to mitigate this concern by running three
studies, collecting both quantitative and qualitative data, and con-
frming the validity of Study 1 via Studies 2 and 3. It is also important
to note that the frst step towards producing a metric for the read-
ability of programming error messages involves wading into the
subjective idea of what readability means to novices, which neces-
sitates self-reported data. Future work producing a formula-based
metric can build upon the research we have presented here.

8 CONCLUSION
In this paper, we presented the results of three related studies that
targeted the concept of readability and its constituent factors for
programming error messages. We originally set out to answer two
research questions – the frst to identify potential factors that might
afect readability, and the second to measure the extent to which

CHI ’21, May 8–13, 2021, Yokohama, Japan Denny, Prather, Becker, Mooney, Homer, Albrecht and Powell

they do. In answer to RQ1, we found four factors that are indepen-
dent of presentation or development environment: length, jargon,
sentence structure, and vocabulary. Based on these factors, we pre-
sented concrete design guidelines for writing more readable error
messages in Section 6. In answer to RQ2, we found that each factor
is strongly correlated to message readability and understandabil-
ity. The factor with the weakest correlation was message length,
because shorter messages are not necessarily easier to read – what
matters is that words are used economically to communicate the
error to the reader. Future work includes the creation of a readabil-
ity metric for programming error messages that can use our data to
confrm its accuracy. Finally, we hope that the empirically-derived
guidelines presented here will aid in the creation of new program-
ming error messages, as well as guide eforts to revise or enhance
existing messages. Our goal is to see error messages become more
readable, and therefore more usable, in the coming years – eas-
ing a decades-long struggle between countless novices and their
programming environments.

ACKNOWLEDGMENTS
This project was approved by the University of Auckland Human
Participants Ethics Committee, reference UAHPEC2883.

REFERENCES
[1] L. La Mar Adams and Darwin Gale. 1982. Solving the Quandary Between Ques-

tionnaire Length and Response Rate in Educational Research. Research in Higher
Education 17, 3 (1982), 231–240. https://doi.org/10.1007/BF00976700

[2] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, Sumit Gul-
wani, and A.; et al Ahmed, U.; Kumar, P.; Karkare. 2018. Compilation Er-
ror Repair: For the Student Programs, From the Student Programs. In ICSE-
SEET 2018 : 2018 ACM/IEEE 40th International Conference on Software Engineer-
ing : Software Engineering Education and Training : proceedings : 30 May - 1
June 2018, Gothenburg, Sweden. ACM Press, New York, New York, USA, 78–87.
https://doi.org/10.1145/3183377.3183383

[3] Andrei Alexandrescu. 1999. Better Template Error Messages. C/C++ Users J. 17,
3 (March 1999), 37–47.

[4] Titus Barik. 2018. Error Messages as Rational Reconstructions. Ph.D. Dissertation.
North Carolina State University, Raleigh. https://repository.lib.ncsu.edu/handle/
1840.20/35439

[5] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
Should Compilers Explain Problems to Developers?. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 633–643.
https://doi.org/10.1145/3236024.3236040

[6] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error Mes-
sages?. In Proceedings of the 39th International Conference on Software Engineering
(Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 575–585.
https://doi.org/10.1109/ICSE.2017.59

[7] Brett A. Becker. 2015. An Exploration Of The Efects Of Enhanced Compiler Error
Messages For Computer Programming Novices. Masters Thesis. Dublin Institute of
Technology. https://doi.org/10.13140/RG.2.2.26637.13288

[8] Brett A. Becker. 2016. An Efective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). ACM, New York, NY,
USA, 126–131. https://doi.org/10.1145/2839509.2844584

[9] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[10] Brett A. Becker, Paul Denny, James Prather, Raymond Pettit, Robert Nix, and
Catherine Mooney. 2021. Towards Assessing the Readability of Programming
Error Messages. In Australasian Computing Education Conference (Virtual) (ACE
’21). Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3441636.3442320

[11] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About
Our Expectations of Introductory Programming Students?. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 1011–1017. https://doi.org/10.1145/3287324.3287485

[12] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Efective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. https://doi.org/10.1080/08993408.2016.1225464

[13] Brett A. Becker, Kyle Goslin, and Graham Glanville. 2018. The Efects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (Baltimore,
Maryland, USA) (SIGCSE ’18). ACM, New York, NY, USA, 640–645. https://doi.
org/10.1145/3159450.3159461

[14] P. J. Brown. 1982. My System Gives Excellent Error Messages - Or Does It?
Software: Practice and Experience 12, 1 (Jan 1982), 91–94. https://doi.org/10.1002/
spe.4380120110

[15] P. J. Brown. 1983. Error Messages: The Neglected Area of the Man/Machine
Interface. Commun. ACM 26, 4 (Apr 1983), 246–249. https://doi.org/10.1145/
2163.358083

[16] Raymond P.L. Buse and Westley R. Weimer. 2008. A Metric for Software Read-
ability. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis (Seattle, WA, USA) (ISSTA ’08). ACM, New York, NY, USA, 121–130.
https://doi.org/10.1145/1390630.1390647

[17] Natalie J. Coull. 2008. SNOOPIE: Development of a Learning Support Tool for Novice
Programmers within a Conceptual Framework. Ph.D. Dissertation. University of
St Andrews, St Andrews, Scotland. http://hdl.handle.net/10023/522

[18] Evan Czaplicki. 2015. Compiler Errors for Humans. https://elm-lang.org/news/
compiler-errors-for-humans

[19] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing Syntax
Error Messages Appears Inefectual. In Proceedings of the 19th Conference on
Innovation and Technology in Computer Science Education (Uppsala, Sweden)
(ITiCSE ’14). ACM, New York, NY, USA, 273–278. https://doi.org/10.1145/2591708.
2591748

[20] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (Haifa, Israel) (ITiCSE ’12). ACM,
New York, NY, USA, 75–80. https://doi.org/10.1145/2325296.2325318

[21] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education
(Darmstadt, Germany) (ITiCSE ’11). ACM, New York, NY, USA, 208–212. https:
//doi.org/10.1145/1999747.1999807

[22] Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 480–486.
https://doi.org/10.1145/3341525.3387384

[23] Tao Dong and Kandarp Khandwala. 2019. The Impact of "Cosmetic" Changes on
the Usability of Error Messages. In Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19).
ACM, New York, NY, USA, Article LBW0273, 6 pages. https://doi.org/10.1145/
3290607.3312978

[24] Allan Fisher and Jane Margolis. 2002. Unlocking the Clubhouse: The Carnegie
Mellon Experience. SIGCSE Bull. 34, 2 (June 2002), 79–83. https://doi.org/10.
1145/543812.543836

[25] Thomas Flowers, Curtis A. Carver, and James Jackson. 2004. Empowering Stu-
dents and Building Confdence in Novice Programmers Through Gauntlet. In
34th ASEE/IEEE Annual Frontiers in Education (FIE ’04, Vol. 1). IEEE, Savannah,
GA, USA, T3H/10–T3H/13. https://doi.org/10.1109/fe.2004.1408551

[26] David Gries. 1974. What Should We Teach in an Introductory Programming
Course?. In Proceedings of the Fourth SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’74). ACM, New York, NY, USA, 81–89. https://doi.
org/10.1145/800183.810447

[27] Philip J. Guo. 2018. Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3173574.3173970

[28] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 1019–1028. https:
//doi.org/10.1145/1753326.1753478

[29] James J Horning. 1976. What the Compiler Should Tell the User. In Compiler
Construction: An Advanced Course, G Goos and J Hartmanis (Eds.). Springer-
Verlag, Berlin-Heidelberg, 525–548.

https://doi.org/10.1007/BF00976700
https://doi.org/10.1145/3183377.3183383
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.13140/RG.2.2.26637.13288
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3441636.3442320
https://doi.org/10.1145/3441636.3442320
https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1002/spe.4380120110
https://doi.org/10.1002/spe.4380120110
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/1390630.1390647
http://hdl.handle.net/10023/522
https://elm-lang.org/news/compiler-errors-for-humans
https://elm-lang.org/news/compiler-errors-for-humans
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/3290607.3312978
https://doi.org/10.1145/3290607.3312978
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836
https://doi.org/10.1109/fie.2004.1408551
https://doi.org/10.1145/800183.810447
https://doi.org/10.1145/800183.810447
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/1753326.1753478

On Designing Programming Error Messages for Novices CHI ’21, May 8–13, 2021, Yokohama, Japan

[30] Barbara S. Isa, James M. Boyle, Alan S. Neal, and Roger M. Simons. 1983. A Method-
ology for Objectively Evaluating Error Messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Boston, Massachusetts,
USA) (CHI ’83). ACM, New York, NY, USA, 68–71. https://doi.org/10.1145/
800045.801583

[31] Matthew C. Jadud. 2006. An Exploration of Novice Compilation Behaviour in BlueJ.
Ph.D. Dissertation. University of Kent at Canterbury. https://jadud.com/dl/pdf/
jadud-dissertation.pdf

[32] Ioannis Karvelas, Joe Dillane, and Brett A. Becker. 2020. Compile Much? A
Closer Look at the Programming Behavior of Novices in Diferent Compi-
lation and Error Message Presentation Contexts. In United Kingdom & Ire-
land Computing Education Research Conference. (Glasgow, United Kingdom)
(UKICER ’20). Association for Computing Machinery, New York, NY, USA, 59–65.
https://doi.org/10.1145/3416465.3416471

[33] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Error
Messages in Python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). ACM, New
York, NY, USA, 524–530. https://doi.org/10.1145/3287324.3287381

[34] Sarah K. Kummerfeld and Judy Kay. 2003. The Neglected Battle Fields of Syntax
Errors. In Proceedings of the Fifth Australasian Conference on Computing Education
- Volume 20 (Adelaide, Australia) (ACE ’03). Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 105–111. http://dl.acm.org/citation.cfm?id=
858403.858416

[35] Thomas Kurtz. 1978. BASIC. ACM SIGPLAN Notices - Special issue: History of
programming languages conference 13, 8 (1978), 103–118. https://doi.org/10.1145/
960118.808376

[36] Michael J. Lee and Amy J. Ko. 2011. Personifying Programming Tool Feedback
Improves Novice Programmers’ Learning. In Proceedings of the Seventh Interna-
tional Workshop on Computing Education Research (Providence, Rhode Island,
USA) (ICER ’11). ACM, New York, NY, USA, 109–116. https://doi.org/10.1145/
2016911.2016934

[37] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of
Design, Revised and Updated: 125 Ways to Enhance Usability, Infuence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design. Rockport
Publishers, Beverly, Massachusetts.

[38] Paul P. Maglio and Eser Kandogan. 2004. Error Messages: What’s the Problem?
Queue 2, 8 (Nov. 2004), 50–55. https://doi.org/10.1145/1036474.1036499

[39] Qusay H. Mahmoud, Wlodek Dobosiewicz, and David Swayne. 2004. Redesigning
Introductory Computer Programming with HTML, JavaScript, and Java. SIGCSE
Bull. 36, 1 (March 2004), 120–124. https://doi.org/10.1145/1028174.971344

[40] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measur-
ing the Efectiveness of Error Messages Designed for Novice Programmers. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Ed-
ucation (Dallas, TX, USA) (SIGCSE ’11). ACM, New York, NY, USA, 499–504.
https://doi.org/10.1145/1953163.1953308

[41] David Mccall. 2016. Novice Programmer Errors-Analysis and Diagnostics. Ph.D.
Dissertation. The University of Kent. https://kar.kent.ac.uk/id/eprint/61340

[42] Linda Kathryn. McIver and Damian. Conway. 1996. Seven Deadly Sins of In-
troductory Programming Language Design. In 1996 International Conference on
Software Engineering: Education and Practice (SEEP’96). IEEE Computer Society,
Dunedin, New Zealand, 309–316. https://doi.org/10.1109/SEEP.1996.534015

[43] Cormac Murray. 2019. An Analysis of Programming Process Data in a CS1 Pro-
gramming Module: Factors Infuencing Success. Masters Thesis. University College
Dublin.

[44] Jakob Nielsen. 1994. Enhancing the Explanatory Power of Usability Heuristics.
In Conference companion on Human factors in computing systems - CHI ’94. ACM
Press, New York, New York, USA, 152–158. https://doi.org/10.1145/259963.260333

[45] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Wash-
ington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 465–470. https://doi.org/10.1145/3017680.3017768

[46] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,

NY, USA, 74–82. https://doi.org/10.1145/3105726.3106169
[47] David Pritchard. 2015. Frequency Distribution of Error Messages. In Proceedings of

the 6th Workshop on Evaluation and Usability of Programming Languages and Tools
(Pittsburgh, PA, USA) (PLATEAU 2015). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/2846680.2846681

[48] Timothy Rafalski, P. Merlin Uesbeck, Cristina Panks-Meloney, Patrick Daleiden,
William Allee, Amelia Mcnamara, and Andreas Stefk. 2019. A Randomized Con-
trolled Trial on the Wild Wild West of Scientifc Computing with Student Learners.
In Proceedings of the 2019 ACM Conference on International Computing Education
Research (Toronto ON, Canada) (ICER ’19). Association for Computing Machinery,
New York, NY, USA, 239–247. https://doi.org/10.1145/3291279.3339421

[49] H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision
Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366. http://www.jstor.org/
stable/1990888

[50] Peter C. Rigby and Suzanne Thompson. 2005. Study of Novice Programmers
using Eclipse and Gild. In Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange. ACM, San Diego, California, 105–109. https://doi.org/10.
1145/1117696.1117718

[51] Saul Rosen, Robert A. Spurgeon, and Joel K. Donnelly. 1965. PUFFT - The Purdue
University Fast FORTRAN Translator. Commun. ACM 8, 11 (nov 1965), 661–666.
https://doi.org/10.1145/365660.365671

[52] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ Build Errors: A Case Study (at Google).
In Proceedings of the 36th International Conference on Software Engineering
(Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 724–734. https:
//doi.org/10.1145/2568225.2568255

[53] Ben Shneiderman. 1982. Designing Computer System Messages. Commun. ACM
25, 9 (1982), 610–611. https://doi.org/10.1145/358628.358639

[54] Ben Shneiderman. 1997. Designing the User Interface: Strategies for Efective
Human-Computer Interaction (3rd ed.). Addison-Wesley Longman Publishing Co.,
Inc., USA.

[55] Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Murphy. 2018.
Language Choice in Introductory Programming Courses at Australasian and
UK Universities. In Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). Association for
Computing Machinery, New York, NY, USA, 852–857. https://doi.org/10.1145/
3159450.3159547

[56] Andreas Stefk and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education 13,
4 (2013), 1–40. https://doi.org/10.1145/2534973

[57] Emillie Thiselton and Christoph Treude. 2019. Enhancing Python Compiler Error
Messages via Stack. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, Piscataway, New Jersey,
1–12.

[58] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What
They Mean. Advances in Human-Computer Interaction 2010 (2010), 1–26. https:
//doi.org/10.1155/2010/602570

[59] Johathan Turner. 2016. Shape of Errors to Come. https://blog.rust-lang.org/
2016/08/10/Shape-of-errors-to-come.html

[60] Richard L. Wexelblat. 1976. Maxims for Malfeasant Designers, or How to Design
Languages to Make Programming As Difcult As Possible. In Proceedings of the
2nd International Conference on Software Engineering (San Francisco, California,
USA) (ICSE ’76). IEEE Computer Society Press, Los Alamitos, CA, USA, 331–336.
http://dl.acm.org/citation.cfm?id=800253.807695

[61] Alexander William Wong, Amir Salimi, Shaiful Chowdhury, and Abram Hindle.
2019. Syntax and Stack Overfow: A Methodology for Extracting a Corpus
of Syntax Errors and Fixes. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Piscataway, New Jersey, 318–322.

[62] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages are Classifers: A
Process to Design and Evaluate Error Messages. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Refections
on Programming and Software. ACM New York, NY, USA, Vancouver, BC, Canada,
134–147. https://doi.org/10.1145/3133850.3133862

[63] Stelios Xinogalos, Maya Satratzemi, and Vassilios Dagdilelis. 2006. An Intro-
duction to Object-Oriented Programming with a Didactic Microworld: objec-
tKarel. Computers and Education 47, 2 (2006), 148–171. https://doi.org/10.1016/j.
compedu.2004.09.005

https://doi.org/10.1145/800045.801583
https://doi.org/10.1145/800045.801583
https://jadud.com/dl/pdf/jadud-dissertation.pdf
https://jadud.com/dl/pdf/jadud-dissertation.pdf
https://doi.org/10.1145/3416465.3416471
https://doi.org/10.1145/3287324.3287381
http://dl.acm.org/citation.cfm?id=858403.858416
http://dl.acm.org/citation.cfm?id=858403.858416
https://doi.org/10.1145/960118.808376
https://doi.org/10.1145/960118.808376
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/1036474.1036499
https://doi.org/10.1145/1028174.971344
https://doi.org/10.1145/1953163.1953308
https://kar.kent.ac.uk/id/eprint/61340
https://doi.org/10.1109/SEEP.1996.534015
https://doi.org/10.1145/259963.260333
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/2846680.2846681
https://doi.org/10.1145/3291279.3339421
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1145/365660.365671
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/358628.358639
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/2534973
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
http://dl.acm.org/citation.cfm?id=800253.807695
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1016/j.compedu.2004.09.005
https://doi.org/10.1016/j.compedu.2004.09.005

