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ABSTRACT
Lateral Flow Immunoassays (LFA) are low cost, rapid and
highly efficacious Point-of-Care devices. Traditional LFA
testing faces challenges to detect high-sensitivity biomarkers
due to low sensitivity. Unlike most approaches based on av-
eraging image intensity from a region-of-interest (ROI), this
paper presents a novel system that considers each row of an
LFA image as a time series signal and, consequently, does
not require the detection of ROI. Long Short-Term Memory
(LSTM) networks are used to classify LFA data obtained from
multilevel high-sensitivity cardiovascular biomarkers. Dy-
namic Time Warping (DTW) was incorporated with LSTM
to align the LFA data from different concentration levels to a
common reference before feeding the distance maps into an
LSTM network. The LSTM network outperforms other clas-
sifiers with or without DTW. Furthermore, performance of all
classifiers is improved after incorporating DTW. The positive
outcomes suggest the potential of the proposed methods for
early risk assessment of cardiovascular diseases.

Index Terms— Lateral Flow Immunoassays, Long Short-
Term Memory, Dynamic Time Warping, high-sensitivity car-
diovascular biomarkers, classification

1. INTRODUCTION
There is a growing demand for a range of portable, rapid and
low-cost biosensing devices for the early detection of cardio-
vascular disease (CVD). Lateral Flow Immunoassays (LFA)
have attracted increased attention recently, but the low sen-
sitivity of LFA limits their ability to detect cardiovascular
biomarkers, such as high-sensitivity C-Reactive Protein (hs-
CRP) tests performed over a lower range (from 0.5mg/L to
10 mg/L), which can be used for early risk assessment of
CVD [1]. The enzyme-linked immunosorbent assay (ELISA)
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is more sensitive but more time consuming than LFA [2]. Im-
provements can be made by developing high sensitivity as-
says [3], improving labeling strategies, enhancing the optical
and electrochemical transducers and exploring the evolution
of recognition [4]. However, most of these approaches require
either external equipment, high-cost reagents, or complicated
fabrication with multistep procedures.

Smartphone-based LFA testing approaches have been
reported recently [5] [6] but most are focused on binary
classification via Support Vector Machine (SVM) based on
mean of image intensity from a recognised region-of-interest
(ROI). The performance of these approaches can be affected
by image quality and the accuracy of ROI detection. Very few
studies [7] [8] have applied neural networks to LFA scenarios.
Deep Belief Networks (DBN) were applied in [7] for LFA
testing based on human chorionic gonadotropin, in which
DBN was used to improve the efficiency of region of inter-
est (ROI) detection rather than classification. A Multi-Layer
Perceptron (MLP) neural network was used in [8] for drugs-
of-abuse detection based on image intensity to assess saliva
content rather than blood-based high-sensitivity biomarkers.

This paper presents a novel system considering LFA im-
age as time series that captures the temporal information
richer than image intensity, which aims to enhance the per-
formance involving multilevel or multiplex LFA testing [9]
via incorporating Dynamic Time Warping (DTW) [10] with
Long Short-Term Memory (LSTM) networks [11]. The rest
of this paper is organised as follows. The data details are ex-
plained in Section 2. In Section 3, the framework is described
including the LSTM and arrangement of DTW outputs for
LSTM. The experimental results are given in Section 4 with
the conclusion in Section 5.

2. LFA IMAGE DATA
For LFA image data commonly obtained from the scanners
or smartphone cameras, the performance of testing can be af-
fected by image quality since data are acquired under ambi-



ent lighting. In this study, a CMOS reader system has been
designed, in which LFA image data were obtained from an
opaque box under controlled lighting conditions. Fig. 1 gives
examples of a set of LFA strip images from eight hs-CRP con-
centration levels in a range from 0.05 mg/L to 5 mg/L, which
is aligned with clinically actionable categories for early risk
assessment of CVD [1]. The LFA images were captured at a
fixed time point (also known as an endpoint assay), follow-
ing ‘completion’ of the lateral flow assay. It can be seen from
Fig.1 that intensity of the Test line (T-line) changes accord-
ing to the concentration level of the target biomarkers. The
Control line (C-line) captures any particle therefore always
appears regardless of the presence of the target analyte. The
flow direction indicates that the sample flows from T-line to
C-line via capillary action. The images contain not only par-
ticular spatial phenomenon (i.e., the leading edge is stronger
than the trailing edge), but also valuable time-dependent in-
formation that arises from the interplay between biomarker
and labelled conjugate antibodies as it develops over time. It
is also noticed that the position of the T-line varies in each
image. For approaches based on image intensity, the perfor-
mance relies on the accuracy of detection of ROI (the T-line
area). This study considers the LFA data along the sample
flow direction as time series signals which not only captures
the temporal information but also no ROI detection is needed.

Fig. 1. Examples of LFA images from eight hs-CRP levels.

3. METHODS
3.1. System Overview
A block diagram of the proposed framework is given in Fig.
2. As mentioned above, the C-line does not change accord-
ing to concentration levels, the half of an image containing
the T-line is directly selected for testing. (In a fully integrated
analysis system the formation of the C-line would be used
as a quality control check to ensure the assay has performed
correctly). An LSTM network can be directly applied to LFA
signals but better performance is expected with additional fea-
tures. Since LFA time series reveal the change of intensity
with time steps (examples are given in Fig. 4), DTW was
applied to align the time series from all levels to one refer-
ence LFA image from level-8. The distance maps from DTW
capture the feature of alignment, which are arranged as input
sequences for LSTM, followed by a fully connected layer, a
softmax layer and an output layer for sequence classification.

Fig. 2. The block diagram for the proposed framework.

3.2. Incorporating DTW and LSTM
LSTM is one type of Recurrent Neural Networks (RNN) that
can learn long-term dependencies in time series data. LSTM
networks have been applied successfully to speech recogni-
tion [12], language modelling [13] and ECG arrhythmia de-
tection [14]. LSTM networks update the information for the
current state based on the previous state via different gates.
A block diagram of the LSTM is given in Figure 3. Given a
time series sequence X with k features of length N , the input
sequence for LSTM at the current time step t can be presented
as a vector x(t) = [x1(t), x2(t), ..., xk(t)]

T , where T denotes
the transpose operation. A cell state ct and the hidden state
(output state) ht are updated based on each at the previous
time step (ct−1, ht−1). There are four components to control
the system, it, ft, gt and ot, which denote the input gate, for-
get gate, cell candidate and output gate, respectively. More
details on how the network is updated via each gate can be
found in [11].

Fig. 3. Illustration of LSTM model.

In this study, DTW was applied to align the LFA time
series to a common reference first then the distance maps ob-
tained from DTW were fed into LSTM for classification. Ac-
cording to DTW [10], given two one-dimensional feature vec-
tors, a = [a1, a2, ..., ai] and b = [b1, b2, ..., bj ], which have
i and j samples respectively. A time warping function is de-
fined as

F = [p1, p2, ..., pl] (1)



where p is a sequence of points p(l) = (i(l), j(l)), which
maps the time axis of feature a onto that of feature b. The
difference between two features ai and bj can be measured by
the Euclidean distance function d(p) = d(i, j) = ||ai − bj ||.
When there is no difference, the distance becomes zeros at the
diagonal line (i = j). The DTW algorithm finds the optimal
solutions by minimising the distances between corresponding
points.

For half LFA image, the number of row is 450 pixels and
number of column is 800 pixels, in which 450 is the width of
LFA strip and 800 is the length across the strip (along the flow
direction). Each row of images is considered as a time series
(with 800 time-steps) since they contain the information that
arises as a result of temporo-spatial interactions throughout
the assay time (via the gradual accumulation of label conju-
gate particles). To apply DTW, each row of LFA images at
different concentration levels was aligned to the correspond-
ing row from a reference, therefore, the distance map is a
matrix with dimension of 450 × 450. To ensure all data is
compared with the same reference, a fixed LFA image from
level-8 was selected as a reference. It is noticed that different
number of input sequences can be obtained by dividing the
distance map into a number of mini maps, which may affect
the performance. A sequence for LSTM can be presented as:

X =


x11 x12 ... x1N

x21 x22 ... x2N

...
...

. . .
...

xk1 xk2 ... xkN

 (2)

where X is the sequence based on a mini distance map with
dimension k and N = 450. Then the number of sequences
from one distance map is 450/k. The dependence with the
dimension of distance map and the number of sequences was
investigated and the results are presented in the following sec-
tions.

4. EXPERIMENTAL RESULTS
The experiments were carried out based on LFA data obtained
from eight hs-CRP concentration levels and each level has 30
LFA images (hence 240 images in total). Each image con-
tains 450 time series so the total number of time series avail-
able is 450 × 30 × 8 = 108, 000. For all experiments, a
holdout data partition was used, in which 90% were randomly
selected for training and the remaining 10% for testing. (Dif-
ferent data partition and cross-validation will be considered
in future work). The number of input sequences for training
and testing under different arrangements are given in Table
1, in which the left column shows the number of dimensions
and sequences that can be obtained from one distance map.
The accuracy was defined as: sum (Predict = Test)/(Number
of Test). The number of epochs, batch size and iteration rate
was empirically set to 30, 32 and 0.01, respectively. The dis-
tance maps were rescaled to a range of [0, 1] before being
normalised by zscore and fed into the LSTM network. All

numerical aspects of the experimentation were conducted us-
ing MATLAB2019b.

Table 1. Size of Sequences for Training and Testing
(Dimension, Sequences) Training Testing

(10, 45) 9720 1080
(15, 30) 6480 720
(30, 15) 3240 360
(45, 10) 2160 240
(90, 5) 1080 120

4.1. Results from DTW
An example of one set of original LFA time series from eight
hs-CRP levels is shown in Fig.4 (a), which shows that the
intensity changes according to the concentration levels. Fig.
4(b) shows the results after DTW, in which the original sig-
nals from each level were aligned to the one at level-8 (which
remains itself as the reference). It is noticed that the length
of the signals changed as DTW stretches the original data to
match the reference. The examples of two distance maps from
DTW by aligning LFA level-1 and level-8 data with the ref-
erence (level-8) are given in Fig. 5 (a) and (b) respectively,
in which the distances are rescaled in the range of [0, 1]. It
can be seen in Fig. 5 (b) that the values along the diagonal
line are zeros because the rows from level-8 are aligned with
themselves.

4.2. Dependence with Input Dimension
The results based on different settings for feature dimension
in distance maps and the number of hidden layers in LSTM
are provided in Fig. 6. The dimensions were set as 10, 15,
30, 45 and 90, and the number of hidden layers were 10, 25,
50, 100 and 150. The results show the best performance is
achieved when the input dimension is 15 and number of hid-
den layers is 100, but 150 appears to give overall good per-
formance for all cases. Same experiment was carried for LFA
time series, the best setting for dimension is 45 and hidden
layers 150.

4.3. Comparison of Classification
The classification by the proposed method was compared
to five classifiers including SVM, K-Nearest Neighbours
(KNN), Linear Discriminant Analysis (LDA), Decision Tree
(DT) and Naive Bayes (NB). For fair comparison the same
data partition was used to test all algorithms and same size
of sequences as shown in Table 1. For LSTM, the number of
hidden layers was selected as 150 (based on the evaluation in
section 4.2). For other classifiers the multiclass models were
trained based on the error-correcting output codes (ECOC)
model [15]. The hyperparameters for each classifier were
obtained via minimising five-fold cross-validation loss by
varying parameters while running the automatic hyperpa-
rameter optimisation in Matlab. For SVM, the options for
optimisation include “one vs one” or “one vs all”, parame-
ters for box constraint and kennel scale. For KNN, different
distance functions and the number of neighbours were tested.



Fig. 4. LFA time series from eight concentration levels: (a)
original signals; (b) signals after DTW.

Fig. 5. Examples of two distance maps obtained from DTW
by aligning LFA data with the reference (level-8): (a) level-1
and (b) level-8.

For LDA, the parameters for Delta (linear coefficient thresh-
old) and Gamma (amount of regularisation) were considered.
For DT, the parameter of leaf size was varied and the best was
used for classification.

The results based on LFA and LFA + DTW are given in

Fig. 6. The classification results based on different dimen-
sions and number of hidden layers.

Table 2 and Table 3, respectively. It can be seen from Table
2, that for raw LFA time series data, LSTM clearly outper-
forms other classifiers. Table 3 shows that the performances
for all classifiers are improved after incorporating DTW and
the results from LSTM remain better than the rest.

Table 2. Classification based on LFA only
Accuracy (%)

Classifiers (10,45) (15,30) (30,15) (45,10) (90,5) Average
SVM 43.15 43.47 45.56 44.17 60.83 47.43
KNN 39.26 44.58 42.22 47.50 50.00 44.71
LDA 42.13 35.00 35.83 35.42 56.67 41.01
DT 51.57 45.97 42.22 52.92 57.50 50.03
NB 46.67 40.00 40.56 41.25 46.67 43.03
LSTM 76.30 73.30 73.33 78.75 76.67 75.67

Table 3. Classification based on LFA+DTW
Accuracy (%)

Classifiers (10,45) (15,30) (30,15) (45,10) (90,5) Average
SVM 84.54 81.53 84.17 81.25 79.17 82.13
KNN 70.46 74.17 80.56 76.67 79.17 76.21
LDA 81.39 84.03 83.33 80.83 79.17 81.75
DT 67.69 73.33 80.83 74.58 80.00 75.29
NB 60.65 61.81 66.94 67.08 70.00 65.30
LSTM 85.02 82.92 85.00 86.25 85.93 85.01

5. CONCLUSIONS
A novel system has been developed to enhance the detection
of multilevel cardiovascular biomarker in LFA testing via in-
corporation of DTW and LSTM. Apart from no need for ROI
detection, considering LFA image as the time series provides
a new perspective for LFA data analysis and captures the valu-
able temporal information richer than image intensity. The
outcomes based on the hs-CRP level below 5mg/L are encour-
aging, which suggest the potential of the proposed system not
only for early risk assessment of CVD but also more complex
LFA applications than binary classification in the future.
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mendi, Felipe Alonso-Atienza, Carlos Figuera, Unai Ayala, Es-
tibaliz Garrote, Lars Wik, Jo Kramer-Johansen, et al., “Mixed
convolutional and long short-term memory network for the de-
tection of lethal ventricular arrhythmia,” PloS one, vol. 14, no.
5, pp. e0216756, 2019.

[15] Thomas G Dietterich and Ghulum Bakiri, “Solving multiclass
learning problems via error-correcting output codes,” Journal
of artificial intelligence research, vol. 2, pp. 263–286, 1994.


