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Abstract

Strategic network formation is a branch of network science that takes an economic
perspective to the creation of social networks, considering that actors in a network
form links in order to maximise some utility that they attain through their
connections to other actors in the network. In particular, Jackson’s Connections
model, writes an actor’s utility as a sum over all other actors that can be reached
along a path in the network of a benefit value that diminishes with the path length.
In this paper we are interested in the “social capital” that an actor retains due to
their position in the network. Social capital can be understood as an ability to
bond with actors, as well as an ability to form a bridge that connects otherwise
disconnected actors. This bridging benefit has previously been modelled in another
“structural hole” network formation game, proposed by Kleinberg. In this paper, we
develop an approach that generalises the utility of Kleinberg’s game and combines
it with that of the Connections model, to create a utility that models both the
bonding and bridging capabilities of an actor with social capital. From this utility
and its associated formation game, we derive a new centrality measure, which we
dub “Structural Hole Centrality”, to identify actors with high social capital. We
analyse this measure by applying it to networks of different types, and assessing its
correlation to other centrality metrics, using a benchmark dataset of 299 networks,
drawn from different domains. Finally, using one social network from the dataset,
we illustrate how an actor’s “structural hole centrality profile” can be used to
identify their bridging and bonding value to the network.

Keywords: Strategic Networks; Graph Centrality; Social Capital; Structural Holes

1 Introduction
With the proliferation of online social networks, the spreading of ideas and

information has become easier than ever before. Individuals on these networks

connect with each other for various reasons and purposes. In a knowledge-sharing

environment, such as professional services or a software development organisation,

employees leverage internal social networking platforms to access information in

order to solve complex problems. In such competitive environments, individuals who

are better at finding information should perform better. It has been shown that

when it comes to accessing information and solving problems, people not only rely

on their skills and memory but also heavily on other people [1, 2]. Thus, it can be

anticipated that networks that facilitate access to information effectively constitute

an important form of social power or value and contribute to the performance of

those engaged in knowledge-intensive work. The underlying structure of a network

plays an important role in the spreading and accessing of information [3, 4, 5], and

studies have shown that certain types of structures are more beneficial than others.
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For example, Granovetter [1] conceptualised the strength of weak ties (SWT) theory,

in which strong ties corresponds to links in a social network over which a high

frequency of interactions occur and weak ties correspond to acquaintances. The

SWT suggests that weak ties are more likely the source of unique information than

strong ties. Similarly, in the enterprise context, studies have found that having more

contacts in diverse business units can give access to a wide range of resources that

are relevant for the instrumental objectives of career success [6, 7].

Organisations such as enterprises with large work-forces are becoming more

interested in understanding the dynamics of networking among employees and

in identifying those employees who are key to the flow of information and knowledge

through the organisation and those who facilitate innovation and new ideas.

Individual workers, on the other hand, are realising the necessity to build and

manage their own social contacts in a way that develops their own career prospects.

Thus, there is an interest in understanding the nature of social capital, how to

detect it and how to curate it. It is in this context that the work of this paper is

presented. The paper is focused on social capital, which is understood to depend

on an individual’s ability to bond with others and to form bridges between diverse

groups. In particular, we study social capital through the prism of a new strategic

network formation game. Such games have been studied in the state-of-the-art

as models of how networks evolve through the actions of nodes choosing their

connections in order to optimise some measure of personal utility attained from the

network. In particular, we present a game in which the utility corresponds to social

capital value. The paper offers two contributions; one in this area of strategic network

formation and a second in the area of social capital measurement. Specifically,

1 we propose a new model for strategic network formation that generalises and

combines two models from the state-of-the-art and takes into account value

accruing to individuals in the network due to both their direct and indirect

contacts (i.e. value attained through bonding); and value accruing due to

acting as intermediaries between other individuals in the network (i.e value

attained through bridging);

2 from the network formation game, we derive a new measure of social capital—a

structural hole centrality measure that identifies individuals in a social network

whose social connections provide them with bonding and bridging advantages

over their peers.

We demonstrate the application of this new measure on a number of networks and

carry out a thorough comparison of it, to a number of other well-known centrality

measures, using a dataset of 299 networks from different application domains.

The remainder of the paper is organised as follows. In the next section, we review

the state-of-the-art on social capital measures and strategic network formation. In

Section 3, we develop the new strategic network formation model and in Section 4,

we derive the new “structural hole centrality” measure. Finally in Section 5, we

present an analysis and evaluation of the new centrality measure. This section is

completed with a case-study of how new measure can be used in practice, in a study

of social capital in a network of Norwegian board directors.
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2 Related Work
2.1 Social Capital and Its Measurement

At its simplest, social capital is the value derived from social structures, such as social

relationships and social groups, in pursuit of one’s goals [8]. Among various definitions

of social capital, Putnam’s influential work in [8] describes it as: “Social capital

is about the value of social networks, bonding similar people and bridging diverse

people with norms of reciprocity”. This definition emphasises the difference between

bonding, the value obtained through direct friendship links within communities

of homogeneous groups of people, and bridging, the value obtained by being a

social connector between heterogeneous groups of people. Also influential is Burt’s

Structural Hole Theory [2], which focuses on the role an individual plays in a social

network and the position that an individual holds relative to others in the network.

A structural hole, is a ‘gap’ in the social network, an absence of connections between

different social groups. An individual who can straddle that gap, by forming a bridge

between these disparate groups has access to multiple sources of information and the

advantage to control the information flow between these groups. It is by bridging

such holes, that new innovation and ideas are often generated [9]. Burt refers to this

as the social capital of brokerage. In fact it is possible (see, e.g. [10]) to distinguish

between bridging and brokerage, by recognising bridging as a property of edges in

the network, related to the extent to which an edge forms a bridge and brokerage is

a node level property, that captures the extent to which a node controls the bridges

in the network.

A natural question that arises, then, is how an individual’s social capital can be

measured? Given the distinction between homogeneous and heterogeneous groups in

Putnam’s definition, one approach may be to determine the diversity or similarity of

social groups, through the attributes of individuals in the network. However, most

work has focused on deriving measures of social capital directly and solely from the

network structure due to data privacy concerns associated with individual attributes

data. This second approach is also the focus of this paper.

A social capital measurement assigns a numerical value to each actor or node in a

social network, that represents their social value. When such a value is based solely

on network structure, then the social capital value function is a type of network

centrality measure. Such centrality measures assign value to nodes in a network

according to their “importance”, where different notions of importance have been

adopted. Many centrality measures have been proposed; Oldham [11] studies the

similarities and differences between 17 such measures. In the context of social capital,

the most notable measures are closeness centrality [12], that measures an individual’s

average distance to all other nodes in the network and betweenness centrality [13],

which measures the extent to which a node lies on shortest paths between other pairs

of nodes in the network. Closeness may be considered as a network measurement of

bonding, where a node with high closeness centrality is connected directly or along

short paths to many other nodes in the network. Betweenness, on the other hand,

can be considered as a measure of brokerage, since a node with high betweenness

centrality is a connector on many short paths between other nodes in the network.

Also notable are a number of centrality measures where the centrality value

assigned to a node is the corresponding component of the dominant eigenvector
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of a particular linear map associated with the graph. Such measures arise when

the notion of importance is defined recursively, such that a node’s “importance” is

based on its association with other “important” nodes. Eigenvector centrality [14] is

formed from the components of the dominant eigenvector of the adjacency matrix

of the graph and correlates well with degree centrality, that values nodes with a

large number of connections highly. The Page-rank centrality [15] is formed from the

components of the dominant eigenvector of a matrix derived from a random walk

over the (directed) edges of the graph. In this paper, we will follow this approach by

proposing another linear map, relevant to bonding and bridging capital.

While the above are general network measures that have been applied in many

contexts to networks of different types, a number of measures have been proposed

specifically for the purpose of measuring social capital in social networks. Burt’s

constraint measure [9], captures the extent to which a node is constrained from

being a connector, due to the energy that the individual expends on maintaining a

tightly-knit neighbourhood of direct contacts. Thus, a node with a high constraint

value, is weak in terms of its ability to act as a broker. Everett and Valente [10]

discuss a number of other measures of brokerage and propose that brokerage can be

calculated as an induced centrality measure [16], that is, that a node’s centrality of

brokerage, can be derived from an edge centrality measure of bridging. In fact, they

specifically propose that a node’s brokerage centrality be measured as the average

edge-betweenness centrality of the edges incident to it.

One approach that an analyst can take is to compute multiple different centrality

metrics on a network and to reach a perspective on a node’s social capital, through

observing its rank when ordered according to these different metrics. Later in

this paper, we will propose a new centrality measure for social capital which is

parameterised in a way that allows analysts to directly observe how a node’s social

capital is divided among its bonding and bridging capabilities. This single measure

can then be used to characterise different node types in the network, according to

the mix of social capital value that they have accrued.

2.2 Strategic Network Formation

The issue of how networks are formed and evolve is another general question in

complex network analysis that has received much attention. Processes such as

preferential attachment have been argued to lead to the complex network structures

that are seen in diverse fields such as sociology, economics, computer science, and

biology. Jackson and Wollinsky [17] introduced an economic perspective to network

formation, arguing that networks form as a result of actors in the network strategically

choosing their connections in order to maximise some personal utility. In particular,

they proposed the Connections model, in which actors derive value or benefits

through connections along direct or indirect paths to other nodes, where this value

diminishes with path length. The core idea is that individuals receive benefits from

direct and indirect connections but must bear some cost of maintaining their direct

connections. Individuals make a decision about what personal links to maintain,

based on a utility which is the difference between the benefit and cost of their

connections. The total value of the network is then the sum of the value of each

node’s utility and an efficient network is one in which the total value is maximised.
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An alternative perspective is to consider firstly the total value of the network, and

then to consider an allocation function that determines how that total value is

distributed to the nodes in the network.

The process of multiple individuals simultaneously seeking to maximise the utility

they receive from the network can be modelled in a game theoretic manner where

each player’s strategy consists of a set of actors to which they want to link. The

research question arises as to whether a network formation game can reach an

equilibrium in which no individual can gain by modifying their links and what

sort of networks are equilibrium networks of this game. A number of different

network formation games have been formulated (see [18] for a survey). Modelling

as a non-cooperative game must address the fact that conceptually two nodes (aka

players in the game) must agree to form a link. Much analysis (e.g. [19],[20]) of the

Connections model has focused on the weaker concept of pairwise stability, where a

network is stable when no pair of nodes can increase their utility by agreeing to form

a link and no individual can increase their utility by unilaterally breaking a link.

An alternative approach, adopted by Kleinberg et al. in [21] is to model network

formation as a non-cooperative game in which players are allowed to unilaterally

form links. The Connections model may be thought of as a bonding game—value is

derived through connection—and does not model the value of bridging/brokerage.

To capture bridging benefits, Kleinberg et. al. [21] proposed a model for network

formation which captures the bridging benefits that an intermediary node (a node

connecting two unconnected nodes) accrues as a connector between these end-points.

It is these two models that we generalise and combine to form a bridging and bonding

strategic game, in which value is derived from direct and indirect connections, as

well as from bridging along paths between other nodes.

Our proposed strategic network formation model is most closely related to that

proposed in [22], which also encapsulates benefits from direct and indirect connections

that decay with path length, as well as intermediary benefits. In this work, the authors

firstly propose a network value function that generalises that of the Connections

model. They then propose a class of allocation rules to determine how the total value

of the network is distributed to individual nodes. Within this class of allocation

rules is the Myerson value [23] that allocates utilities to nodes in such a way that

benefits are attributed to nodes for their role as intermediaries. Nevertheless, the

parameterised allocation rule that we propose allows for a simple control mechanism

for determining the relative weight of bonding and bridging benefits, and, as we

discuss later, this model leads to a parameterised measure of social capital.

3 A Bonding and Bridging Strategic Game
Our starting point for developing a strategic game in which players consider their

social capital in choosing their network connections, is Jackson’s Connections

game [17] and the structural hole game proposed in [21]. We first review these

two games and then show how these can be combined into a single model, in which

both bonding and bridging benefits are taken into consideration when forming links.

3.1 Connections Model

The Connections Model, which we will refer to as conn was proposed originally

in [17] and introduces the following payoff function, representing the utility or value
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that a player u receives from a network G:

µu(G) =
∑
v 6=u

δduvuv −
∑
v

auvcuv (1)

where duv is the geodesic (shortest path) distance between u and v, δuv ≤ 1, is the

benefit obtained from having a direct link to node v, and cuv is the cost of forming

a direct link to v. An important characteristic of this model is that only direct links

incur a cost to player u, but u can benefit through indirect connections. However,

benefit diminishes the further u is from v. When faced with a decision of who to

connect with, the player weighs the cost of that direct connection, with the direct

benefit, δuv, together with the indirect benefits obtained along paths through v’s

connections. A common setting for analysis of this model is the symmetric conn, in

which δuv = δ and cuv = c, are constant for all u, v.

The main point to note about the conn model is that value through the connections

is accrued to the sources of those connections. The fact that u has a path to another

player v, allows u to reap the benefit of that connection. Intermediary nodes along

the path between u and v obtain value through their own connections to v, but they

do not obtain any benefit for their role as connectors between u and v. Thus the

conn does not assign value for the role of being a connector in a structural hole

and hence cannot be considered to model the utility of bridging social capital.

3.2 Kleinberg’s Structural Hole Model

A different strategic network formation model that models the payoff of being a

connector in a structural hole is proposed in [21]. We will refer to this as the ksh

model. The key difference between ksh and conn is that, in the ksh, the value

of indirect paths is assigned to the connectors along these paths, rather than the

end-points. Thus, if w is a player that forms a length-two path between vertices u

and v, i.e. the edges (u,w) ∈ G and (w, v) ∈ G, then the value δuv that u would

obtain for a connection to v, is allocated to w instead. In an undirected graph, w

accrues both v’s value to u, δuv and u’s value to v, δv. More exactly, since there may

be many length-two paths between u and v, the value obtained by each intermediary,

w, is a monotonically decreasing function of the number of such paths.

The structural hole model is limited only to intermediaries along length-2 paths.

A constant payoff δ is associated with direct links. An interesting version of the

model considers a Harmonic intermediary benefit, in which the value that could be

obtained by a direct link between u and v, is instead allocated equally among all

intermediaries on length-two paths between them. Keeping with the notation of the

conn model, if δ is the value that a direct link between u and v would assign to u,

then an intermediary w, obtains the value

βw(u, v) =

{
δ

m2uv
m2uv > 0 and auv = 0

0 otherwise

where m2uv is the number of length-two paths between u and v, such that u and v

are not directly connected. In the undirected case, this becomes

βw(u, v) =
2δ

m2uv
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as the intermediary receives u’s value from v, as well as v’s value from u. Interestingly,

for this version of the model, the network as a whole attains the same total value,

summed over all intermediaries, from length-2 paths, as it would if those end-points

were directly connected. The total value of the network, the sum over all node

utilities, is then

δ(
∑
uv

auv +
∑
uv

(1− auv)1(m2uv > 0))−
∑
uv

auvcuv

which can be optimised by choosing edges to maximise the total benefit over the

number of direct and length-two paths formed by a given cost of direct links.

3.3 Value functions and Allocation Rules

The conn and ksh games are examples of a value function/allocation rule game.

A network is formed in which individuals are connected by social links and those

interconnections convey on the group as a whole some total productivity or value.

Given individual utilities, such as those defined in Equation (1), the value function

of the network is given by

µ(G) =
∑
u

µu(G) . (2)

For a given value function, that assigns a real number to each network over some

fixed number of n nodes, it is interesting to consider its efficient networks, i.e. those

networks that attain the maximum value. For the conn and the ksh, we have arrived

at the value function by summing individual payoffs. Instead, given a value function,

it is possible to define an allocation rule, that is, a function that distributes the total

network value, µ(G), to the nodes, so that each node obtains a payoff µu(G) such

that Equation (2) holds. It is worth noting, that, for the specialisation of the conn

game in which only length-two paths accrue any benefit i.e. δduvuv = 0 when duv > 2,

the conn and the ksh have the same total value, but it is allocated differently—all

benefit goes to the source nodes in the case of conn, while the indirect benefit goes

to the intermediary nodes in the case of ksh.

3.3.1 Limitations of the conn and ksh

There are a number of limitations to the conn and ksh models. In particular,

• The ksh model only considers length-2 paths for indirect benefits.

• The ksh model allocates the entire indirect benefit to intermediary nodes.

This eliminates any personal motivation for a player to form indirect links.

• The conn model allocates no benefit to intermediary nodes, ignoring the

important role that they play in creating value in the network.

• Neither model takes account of the structural quality of the connecting nodes.

Considering this last point, the efficient networks of the symmetric conn are

studied in [17] and, depending on the relationship between the fixed direct benefit

δ and the cost c, consist of either a fully connected network, an empty network or

a complete star network, see Figure 2. In particular, the efficient networks do not

contain any triangles, which are known as strong social structures. We argue that the
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Figure 1: Network Payoff vs clustering coefficient of network resulted from

ksh

advantage that a node gains from paths in the network, depends on the quality of the

end-points of these paths. If the end-points are gateways into strong communities,

then there is significant advantage, while if the end-points are themselves dead-ends,

or have limited reach into the rest of the network, then they yield relatively less

value. We illustrate this point in Figure 1. Here, we measure the ksh value of a

network, as the network is modified to increase its clustering. Specifically, starting

with a network with a scale-free degree distribution, we carry out pairwise swaps of

edges in the network in such a way that the degree distribution remains fixed, while

the clustering coefficient of the network varies. The interesting features of this plot

are where the payoff remains fixed or nearly fixed, while the clustering coefficient

decreases. The reduction in clustering coefficient is indicative of intermediaries in

structural holes are connecting between ever weaker community structures. We

argue that the payoff of being an intermediary in such a situation should also ideally

decrease. We aim to develop a model that accounts for this anomaly and whose

efficient networks contain the sort of social structures that we might expect to find

in real social networks.

3.4 The structural hole connections model (shc)

The literature on social capital suggests that an individual’s social capital is enhanced

by their bridging and bonding capabilities. The ksh assigns value to bridging, while

the conn focuses more on bonding, over direct and indirect links. Our goal is to

propose a new model, that merges the features of the conn and the ksh, to capture

both bonding and bridging social capital. We call our model the structural hole

connections model (shc). In particular,

• We consider the structural value of nodes as the end-points of connections.

• We extend the ksh to longer paths, maintaining the Harmonic allocation of

value to intermediaries on these paths.

• We combine this extended ksh with the conn model, so that value is allocated

to both source and intermediary nodes along each path.

As will be seen, by maintaining a Harmonic distribution, our extended model

retains the same overall value as that of a conn model and hence our model can

be understood as a new allocation function for the value in that model. However,
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rather than restrict ourselves to the symmetric conn, instead we consider that the

benefit is dependent on the end node, v, so that:

δuv = δduv−1bv

where we define bv as some benefit or value that is obtained through a direct

connection to v and the discounting by distance is via a constant δ[1]. The value

bv represents the attraction of forming a connection to player v. For an undirected

network, in which edges are bidirectional, the value obtained by u through a

connection to v is δduv−1bv, while that obtained by v is δdvu−1bu. Hence, each

end-point may value the connection differently.

While bv > 0, could capture any type of benefit which may make sense in different

contexts, for the purpose of social capital we primarily have in mind, measures of

value that capture a node’s quality as a connector into a strong community. It is

a structural measurement of the neighbourhood v. Such a nodal benefit ensures

that the anonymity of the network value function is maintained. That is, that the

value remains independent of the node labels[2]. Several such measures are readily

available in the complex networks literature. For example,

btriv = σv

where σv is the number of triangles that include v as a vertex. Nodes in the

network that form many triangles with their neighbours are members of closely

knit communities and are hence worth to connect with, either directly or indirectly.

Another measure, which considers the density of triangles, rather than a simple

count, is the clustering coefficient:

bccv =
σv(
dv
2

)
where dv is the degree of v. Another possible measure is:

bconv =
∑
w

avw(pvw +
∑
u

pvupuw)2

where pvw = avw/dv. This is Burt’s constraint measure which captures the extent

to which a node is constrained by the community it belongs to. The smaller the

constraint, the better a node can act as a structural hole broker. On the other hand,

such a broker would like to connect to constrained nodes, as they are members of

strong communities.

The ksh assumes that intermediaries connecting nodes u and v, that are not

directly connected, receive the value that would otherwise go to the end-points.

The value is assigned entirely to the intermediary, while the conn assumes that

[1]Note that we are normalising here such that the value of a direct link is 1.
[2]More exactly, given a network G(V,E) defined over nodes {v1, . . . , vn}, and a

permutation π of the labels 1, . . . n. If Gπ(V π, Eπ) is the network such that (vπ(i), vπ(j)) ∈

Eπ ⇔ (vi, vj) ∈ E. Then µ(G) = µ(Gπ).
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nodes obtain value for other nodes to whom they have indirect, as well as direct,

connections. In merging these two perspectives, we consider that a source node on

a connecting path retains some fraction γ ≤ 1 of the value of the end-point of the

path, while the remainder of the value, (1− γ), goes to the intermediaries. Thus, we

allocate 100× γ% of the value, as the conn does, to the source of the connection

and 100× (1− γ)% of the value, as the ksh does, to the intermediaries.

Finally, we extend the ksh to longer paths. We retain the Harmonic benefit

allocation used in the ksh, so that the full value of an indirect link is retained in the

network, but is allocated between intermediary and source nodes. In particular, any

intermediary w on a length ` geodesic path between u and v, obtains the benefit

βw(`, u, v) =

{
(1− γ) δ`−1bv

(`−1)m`uv 0 < m`uv, ` ≤ dmax

0 otherwise

where m`uv is the number of geodesic paths of length ` between u and v and dmax

is some maximum distance beyond which value is lost. (To consider all connecting

paths, set dmax to the diameter of the graph; to reduce to the length-2 path of

the ksh, use dmax = 2). Note that, in this definition, the intermediary benefit is

allocated equally to `− 1 intermediaries along each path over all m`uv paths. Also,

we have retained the path distance discounting (δ`−1bv) of the conn model, which

was not applied in the original ksh model. To summarise, in the shc model, a node

obtains value from the network

• by direct connections to other nodes;

• by being the source of a length ` geodesic path to another node;

• by being an intermediary on a length ` geodesic path to another node,

where 1 < ` ≤ dmax.

In the following, we write the utility of a node w in the graph, by considering these

three types of benefit. Firstly, the value obtained by w due to the direct connections

can be obtained by summing the nodal benefits bv over all nodes v that are directly

connected to w:

∑
v

awvbv .

Next, the value obtained by w due to being a source of a geodesic path of length `

is:

∑
v

(
dmax∑
`=2

δ`−11(m`wv > 0)

)
bv ≡

∑
v

swvbv

where swv is defined by the expression between brackets, which is arrived summing

over all possible path lengths `, the discounted benefit obtained by being connected

to a node v at the end of such a length ` path.



Ghaffar and Hurley Page 11 of 26

Finally, the value obtained by w due to being an intermediary on a geodesic path

of length ` is

dmax∑
`=2

∑
v

∑
u

βw(`, u, v)

=

dmax∑
`=2

∑
v

∑
u

∑̀
j=2

δ`−1
mjuwm(`−j)wv

(`− 1)m`uv
bv

=
∑
v

(
dmax∑
`=2

δ`−1

`− 1

∑
u

f`uwv

)
bv

≡
∑
v

hwvbv

where f`uwv is the fraction of all length ` geodesic paths between u and v that

contain w and hwv is defined as the expression above it in brackets, which is arrived

at by considering all geodesic paths of length j from a node u to w, followed by all

geodesic paths of length `− j from w to v.

Now, if we define the matrices S = {swv} and H = {hwv} and the cost of connecting

to a node v as cv and the vector of costs as c. Then the utility vector µ = {µw} for

the shc can be written as:

µ =

(
A + γS(δ, dmax) + (1− γ)H(δ, dmax)

)
b−Ac , (3)

where A is adjacency matrix. Note that we have represented the dependence of S

and H on the parameters δ and dmax. Observe that
∑
w swv =

∑
w hwv, confirming

that the application of either matrix yields the same total value to the network, but

the total value is distributed differently by each matrix. In particular, it follows that

‖S‖1 = |H‖1.

We note that scaling the value vector b by any multiple does not change the

relative value of one node over another. However, if btri is used, then the benefit

values are integers in the set {0, . . .
(
n−1
2

)
}, but if bcc is used, then the values are

rational numbers in the interval [0, 1]. It makes sense therefore to scale b to a single

range of values. In the remainder of this paper, b is normalised so that, whenever

b 6= 0, it contains the same total benefit as the symmetric conn model, where

∀v, bv = 1. That is:

bv ←

{
n bv∑

u bu
provided maxu bu > 0

0 otherwise

We can then scale the cost, to compare different cost/benefit tradeoffs without having

to account for any scaling issues due to the choice of the nodal benefit function.

3.5 Discussion

While it is beyond the scope of this paper to explore in detail the efficient networks

of the shc, in Figure 2, we show some example efficient networks for n = 6, for

the case of a constant benefit bv = bequalv = 1, corresponding to a symmetric conn
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Figure 2: Example efficient networks of the shc model, using ‘equal’

benefits (corresponding to the symmetric conn) and using ‘tri’ benefits.

δ = 0.5.

model, and when bv = btri. It may be observed that, in the second case, efficient

networks containing triangles are found, as only nodes connected to triangles have a

non-zero nodal benefit. This shows that the shc, with bv = btriv yields a richer set of

efficient networks than the symmetric conn and that they contain structures that

are commonly observed in real social networks.

4 Structural Hole Centrality (shce)
Our primary interest in this paper is to use the shc game as a means of defining a

structural hole centrality measure that can identify nodes in a social network with

high social capital.

In the derivation of the shc, the γ parameter controls the allocation of value to

nodes in the network. Different values of γ may be considered as different allocation

functions, that distribute the total network value, which is determined by δ, dmax,

bv and the cost c. This total network value is obtained as a sum over all the paths in

the network of the path-length discounted benefits obtained from end-points of those

paths. The question of a fair allocation of such network value has been addressed in

works such as [24]. One approach is to identify desirable properties of the allocation

function and determine an allocation that satisfies those properties. Two desirable

properties of a fair allocation are that it be component additive, that is, the value

generated by any connected component in a network should be allocated among the

nodes in that component; and that it satisfy equal bargaining power, that is, that if

two nodes, u and v are connected, then the change in the value allocated to node u

when the edge (u, v) is removed, should equal the change in the value allocated to

node v. Equal bargaining power says that the pair of nodes each benefit or suffer

equally from the addition of a link between them. These two properties hold if and

only if nodes are allocated their so-called “Myerson value”, defined as:

µu(G) =
∑

W⊂V \{u}

(
|W |!(n− |W | − 1)!

n!

)
(µ(G|W∪{u})− µ(G|W ))
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where the sum is over all subsets W of the nodes in the network not containing

u and G|W means the network restricted only to those nodes in W . The Myerson

allocation will often allocate high value to intermediate nodes, as they are crucial

for the creation of value on paths that traverse them. However, it is not tractable

to compute the Myerson value on real-world networks, since the sum is over 2n−1

possible subsets.

Instead, the shc game allows for the exploration of a range of different allocations,

by modifying the value of γ and, when 0 < γ < 1, all nodes along a path get

allocated some proportion of the value that is generated by that path. In fact it is

generally the case, that the Myerson value correlates strongly (in rank order) to the

node utilities of the shc for some value of γ, typically when γ ≈ 0. On the other

hand, modifying γ allows an analyst to explore how different nodes benefit from

different allocation strategies and this can give some insight into their position of

influence in the network: when γ ≈ 1, nodes that are connected along short paths to

many other nodes can expect to benefit from a high payoff, while when γ ≈ 0, nodes

that are intermediaries on many short paths can expect a high payoff. Hence we

define the structural hole centrality measure, shce, as the payoff of the shc game.

To parameterise the cost, we stick with a fixed cost c for every link, and note that

the total value in the network is zero when

c1TA1 = 1T (A + S)b

Hence, we define shce as

shce(δ, dmax,b, γ, η) =

(
A + γS + (1− γ)H

)
b− η

(
1T (A + S)b

1TA1

)
A1

where η ∈ [0, 1], allows the exploration of costs ranging from a zero-cost model to a

cost that reduces the value of the network to zero. The parameters of the shce are

summarised in Table 1.

Table 1: shce centrality parameters
Parameter Description
bv Benefit associated with connecting to a node v, where that benefit

captures the structural quality of v in the network
δ Indirect path benefit discount, such that a path of length ` ≥ 2 to a

node v, accrues a benefit of δ`bv
dmax The maximum path length, such that there is no benefit to being

connected along a path of greater length.
γ proportion of the indirect path benefit that is associated to the source

of a path.
η the scaled cost of a connection to a node.

4.1 Relationship to other centrality measures

In Section 5, we carry out a detailed comparison of the shce with a set of other

commonly used centrality measures in network analysis. From the above presentation,

it is clear that the shce is similar to closeness centrality (a measure of the average

closeness of a node to other nodes in a network) when γ = 1 and is similar to edge-

betweenness centrality (a measure of the extent to which a node is found on shortest
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(a) shce (b) Betweenness

(c) Closeness

shc bet cls
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0.3383
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0.3827

1

1

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Rank Correlations

Figure 3: shce, betweenness and closeness centrality on the Minnesota

network

paths in the network), when γ = 0. Nevertheless, the shce is not identical to either

measure. In fact the dmax and δ parameters allow for a restriction in the horizon

over which a node’s distance to other nodes influences its shce value, while closeness

and edge-betweeness consider the relationship to all nodes in the network. The γ

parameter, then allows for a mixture of the betweenness and closeness perspectives.

The difference in the measures is illustrated for the Minnesota road network, shown

in Figure 3, which has a diameter of 98. The settings of the shce focus value strongly

on intermediate nodes, by taking γ = 0, along with a maximum cost of η = 1.0

for edges. The plot shows the tied rank of the measures, where nodes with largest

centrality value have rank n and nodes with smallest have rank 1. The Spearman

rank correlation of shce with closeness and betweenness is not particularly strong

for these settings. The shce also has similarities to the Katz centrality measure,

which computes a node’s centrality in relation to its discounted distance to other

nodes in the network. However, the Katz allocates its value solely to the source

nodes on such paths and so cannot be used as a measure of bridging capital. We

will show in our case-study in Section 5 that computing a profile of shce centrality

scores as γ is varied allows for some insight into the mix of values that actors get

from the position in a social network and provides a single framework with which

social capital can be assessed.
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4.2 Comparison of shce with Myerson value

It is instructive to compare the shc allocation of value to that of the Myerson value

in a simple network, with a constant benefit function. In Figure 4(a), we show a

network consisting of a single 4-node undirected path. By counting all shortest paths

in this network, we can find the total network value as

µ(G) = 2(3(1− η) + 2δ + δ2)

which may be observed by counting 3 direct connections (with cost η), 2 paths of

length 2 and a single path of length 3, which occur with multiplicity 2, considering

that edges are bidirectional. The Myerson value allocates the value of each path

evenly among all the nodes along the path, since each node is equally responsible for

bringing that value to the network. Hence, each node is allocated the value 2δ2/4

for its contribution to the length 3 path, the end points receive a value of δ/3 for

each of the two length-two paths that start or terminate at them and so on. We can

arrive at the Myerson allocation as

µmyerson(G) =


1− η + 2δ/3 + δ2/2

2(1− η) + 4δ/3 + δ2/2

2(1− η) + 4δ/3 + δ2/2

1− η + 2δ/3 + δ2/2


On the other hand, the shce allocation depends on the value of γ and is given by

µshce(G) =


1− η + γδ + γδ2

2(1− η) + (2− γ)δ + (1− γ)δ2

2(1− η) + (2− γ)δ + (1− γ)δ2

1− η + γδ + γδ2


If a fifth node is added in order to produce a second length-3 path connecting the

end-points, as shown in Figure 4(b) and (c), then the Myerson will distribute the

2δ2 value of that path as shown in Figure 4(b), while the shce will do so as shown

in Figure 4(c). Both methods give higher weight to node 3 than nodes 2 and 5, since

Figure 4: Myerson and shce values on a simple path
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the value remains in the network if either one of these is removed. However, the

value that shce gives to the end-points of paths depends on the γ parameter.

For further comparison, we examine the relationship between the shce and the

Myerson value on a random network of n = 13 nodes, using both the triangle nodal

benefit (btriv ) and constant nodal benefit (bequalv ) functions. Again, in Figure 5, the

colour indicates the rank of the node. In the case of the triangle benefit, value is

concentrated on the nodes that form the single triangle in the network (nodes, 1, 4

and 13), for both measures. The Myerson gives higher values to peripheral nodes 7

and 8, since these nodes add to the value of the network by linking to nodes with

non-zero benefit. With γ = 0.0, the shce focuses more value on intermediary nodes

such as 3 and 11 that straddle paths to the non-zero benefit nodes. The overall

rank correlation of the shce and Myerson is 0.34 in this case. When all nodes have

the same benefit, high Myerson values attach to nodes 3 and 5 that add value to

the network by forming the path that connects the nodes in the lower left corner

to the rest. But, again Myerson credits the peripheral nodes 7, 8 and 9 because

they too add to the overall value in the network. The highest correlation (0.99)

between these Myerson scores and the shce score occurs when we choose a value of

γ = 0.5, that allocates the value equally between source and intermediary nodes on

connecting paths. From these examples, it is clear that there is no best value of

the shce parameters, in the fairness sense from which the Myerson is derived. But

it is also generally the case that some settings of the shce parameters can achieve

centrality scores that correlate strongly with the Myerson. While adjusting γ cannot

lead to a fair allocation in the sense of the Myerson value, it can allow insight to

(a) shce, bv = btriv (b) shce, bv = bequalv

(c) Myerson value bv = btriv (d) Myerson value bv = bequalv

Figure 5: shce vs Myerson value
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be derived into which nodes benefit, when the allocation of value favours bridging

capital over bonding or vice versa. The shce relies on the analyst to determine

an insightful allocation of the value in the network by adjusting its parameters,

while the Myerson provides a single best allocation in some well-defined sense. We

note however that work such as [24] argues that the fairness criteria of the Myerson

may not be appropriate, depending on the context in which the strategic game is

analysed.

5 Evaluation
5.1 shce correlation with other centralities

The work of [11] is the most comprehensive recent study of network centrality

measures. This work examines the correlations between 17 centrality measures

across a large range of different graphs, drawn from different application domains.

According to this work, the general observed trend for most networks is a “high and

positive correlation” between centrality metrics, although there is also “considerable

heterogeneity”. To obtain a good understanding of where the shce fits in relation

to other metrics, it is worthwhile applying this same analysis to the shce.

Following the work of [11] we evaluate the proposed shce centrality measure using

a sub-set of the CommunityFitNet corpus of networks [25] which, in total, contains

572 real-world networks drawn from the Index of Complex Networks (ICON) [26].

The CommunityFitNet corpus includes a variety of network sizes and structures.

Our analysis assumes unweighted, simple, undirected networks. We only consider

networks with a single connected component and also reject any other networks for

which any of the analysed centrality measures fails to compute [3]. There remains 299

networks, on which our analysis is performed, which come from 6 different domains

(see Table 2), with a range of nodes from 8 to 3,155 (average 464) and a mean

sparsity of 4.72%.

Table 2: Networks from ICON
Domain Number Percent
Biological 117 39%
Economic 12 4%
Informational 17 6%
Social 84 28%
Technological 53 18%
Transportation 16 5%

Following [11], we use Spearman’s ρ as the centrality measure correlation (CMC)

between the shce measure and various other node centrality measures. This statistic

is chosen in [11] on the basis that relationships between measures can be nonlinear,

though they are generally always monotonic. The centrality measures that we

compare against are listed and defined in Table 3. From their definitions, the

connections to the shce are apparent. In particular, shce relies on values measured

along shortest paths, similarly to the cc, hc, bc and kc. Like the cc and hc, path

contributions are inversely proportional to their lengths. Like the kc, the contribution

of a path decays according to a benefit factor δ < 1, such that a path’s contribution

is proportional to δ`, where ` is the path length. Nevertheless, the γ, δ and η

[3]Betweenness centrality (scikit-learn) failed to compute for some networks.
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Table 3: Node Centrality Measures. Note that `wv is shortest path

distance between w and v, δ is the benefit of a direct link, such that a

connection along a length ` path gets benefit δ`, ev is the eigenvector of

A corresponding to the dominant eigenvalue λ1; m`uv, pwv and f`uwv

are as defined in Section 3
Measure Symbol Formula
Shortest-path Betweenness Centrality bc cw =

∑
u6=v 6=w

∑
` 1(m`uv > 0)f`uwv

Shortest-path Closeness centrality cc cw = n−1∑
v `wv

Eigenvector centrality ec cw = 1
λ1

∑
v awvev

Katz centrality kc cw =
∑
v

(
(I− δAT )−1 − I

)
wv

Degree centrality dc cw =
∑
v awv

Harmonic centrality hc cw = 1
n−1

∑
v

1
`wv

Constraint centrality conc cw =
∑
v awv(pwv +

∑
u pwupuv)

2

parameters allow control over the shce, so that preference can be given to a node’s

bonding or bridging capabilities.

It is interesting to note the similarities between the shce and the Katz measure,

kc. Differently to many other centrality measures (such as cc and hc, where only

the length of the path is important), both kc and shce accumulate a contribution

along all shortest paths between pairs of nodes, in proportion to δ`. However, for

the Katz measure, this contribution is associated with the source of the path, while

in the shce, we can use γ to control whether the contribution is assigned to the

source, or among the intermediary nodes on the path.

Considering the parameters of the shce, we note that δ, dmax, η and bv relate to

how the network is valued—the extent to which value is placed on indirect paths,

and how the end-points of these paths are relatively valued. The parameter γ relates

bc cc ec kc dc hc conc
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0.5

1

(e) γ = 0.0

bc cc ec kc dc hc conc
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(f) γ = 0.5

bc cc ec kc dc hc conc
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(g) γ = 0.7

bc cc ec kc dc hc conc
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-0.5

0

0.5

1

(h) γ = 1.0

Figure 6: CMC measures for 299 networks from CommunityFitNet corpus,

for different values of γ and δ, with δ = 0.9, η = 0.0, bv = bequalv
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(d) γ = 1.0

Figure 7: CMC measures for 299 networks from CommunityFitNet corpus,

for different values of γ and δ, with δ = 0.9, η = 0.5, bv = bequalv

to how that value is allocated to the nodes in the network. Generally, actors bring

value to the network through the paths that they occupy and that value is allocated

to them proportionately, as determined by γ. The parameter η controls the value of

direct connections, the more costly they are, the more value needs to attain through
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(b) γ = 0.5
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(c) γ = 0.7

bc cc ec kc dc hc conc
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(d) γ = 1.0

Figure 8: CMC measures for 299 networks from CommunityFitNet corpus,

for different values of γ and δ, with δ = 0.9, η = 0.5, bv = btriv
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Figure 9: CMC measures for 299 networks from CommunityFitNet corpus,

for different values of γ and δ, with δ = 0.9, η = 0.5, bv = btriv

the indirect connections that they help form. dmax and δ together determine the

distance horizon over which an actor can attain some value for others in the network.

In the following analysis, we fix dmax = 10, which for most of the involved networks

exceeds or is close to their diameter and set δ = 0.9.

In Figures 6 and 7 we show boxplots of the correlations of the shce with the

centralities defined in Table 3 when η = 0.0 and η = 0.5, respectively, and a constant

nodal benefit function is used. Figures 8 and 9 contain the analogous boxplots for

the case of the triangle benefit function. We can observe the effect of varying the

γ parameter to distribute the network value in different ways. When γ = 0.0, the

value from indirect links is placed fully on the intermediaries, the shce correlates

most strongly with the betweenness centrality bc and this correlation weakens as

γ is raised to 1.0. At the same time, we see a strengthening of the correlation to

the cc, bc and hc that value short connections from source nodes to other nodes in

the network. Generally, when η = 0.0 and there is no cost associated with direct

link formation, so that high degree nodes are not penalised, we see that the shce is

consistently negatively correlated with the conc, which values dense neighbourhoods.

On the other hand, when a cost for link formation is introduced (Figures 7 and 9,

then the shce exhibits increasing positive correlation with conc as value is focused

away from intermediaries. We can see that the shce becomes less well-correlated

with standard centrality measures as a mixture of benefits (Figures 7b and 9b) is

valued. We also see less strong correlations with the standard centrality measures

when the triangle benefit function is used. It should be noted that, particularly, for

some of the smaller networks in the dataset, these can be a high fraction of nodes

that are not incident on any triangles, reducing the benefit of connecting to them to

zero.
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(a) bv = btriv , γ = {0.0, 0.5, 1.0}, η = {0.0, 0.5}
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(b) bv = bequalv , γ = {0.0, 0.5, 1.0}, η = {0.0, 0.5}

Figure 10: mean of between network CMCs standard centralities

correlation with shce for different values of γ and η, with δ = 0.9,

dmax = 10

Similar to correlation analysis between centrality measures in [11], in Figure 10, we

examine the similarity of shce with other centrality measures. Different combinations

of γ, η, and δ were used to measure shce values using both constant and triangle

based nodal benefits. The Spearman’s ρ correlation plots show that most of the pairs

of centrality measures have medium-to-high positive correlation (with the exception

of conc) with each other when compared using mean between-network CMC (the

mean CMC for each pair of centrality measures across 299 networks) values. Similar

to the boxplots, in these plots, for both constant and triangle based benefits, the

conc is negatively correlated with other measures as it values for zero values of γ

and η at δ = 0.9.

In addition to correlation between shce and other centrality measures, we also

examined the association between network properties and the CMC for different

networks. We used following six out of the eight global network properties used

for the similar analysis in [11]: assortivity, connection density, clustering, global

efficiency, majorization gap, and spectral gap. In particular, objective of this analysis

to examine how the shce relates to the network topology as well as how it is compared

relative to other centrality measures. Before results of this analysis are discussed,

we briefly remind ourselves the definitions of network topological properties that

were used in the analysis. Assortivity measures node’s preferences to connect with

other nodes with similar degree. Clustering is the number of closed triangles in the

network. The efficiency measure defined by [27] is the inverse of path connecting two

nodes in the network and at global scale global efficiency is the average of efficiency

for all the nodes in the network [28]. The majorization gap is the difference between

empirical network and idealized threshold network [29].It is calculated as difference

in network degree sequence and its corrected conjugate sequence.Networks with high

majorization gap will be distant from a threshold network and have lower CMCs [11].
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(a) bv = btriv

(b) bv = bequalv

Figure 11: Correlation between network topology and CMCs with shce

for values of γ = 0.5, η = 0.5, δ = 0.9, and dmax = 10

Finally, the spectral gap is the difference between moduli of two largest eigenvalues

of the adjacency matrix. It quantifies the extent to which a network being sparse

and well connected at the same time [11].

The Figure 11 shows the association between the network measures and the mean

within network CMC including the shce with γ = 0.5, δ = 0.5, η = 0.5 calculated

for both, the triangle nodal benefit (btriv ) and the constant nodal benefit (bequalv )

functions, shown in Figure 11a and Figure 11b respectively. The lower triangle in each

subplot indicates the Spearman correlation between CMC and the network property.

The upper triangle indicates if this correlation was significant (grey) or not(while).

Through our analysis with various combinations of parameters, we observed that

shce consistently is significantly correlated with path based network measures and

negatively correlated with assortivity across various values of γ.

Overall, it may be concluded that the shce behaves in an expected manner and

aligns with other centrality measures to a greater or lesser extent, depending on

the setting of its parameters. However, a single measure that allows control over a
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node’s bonding and bridging capabilities can be useful. For instance, an analysis of

a node’s rank vs γ, can allow an analyst to better understand how the actor’s social

status is composed. A low rank will indicate low status, in any case, but a rank

which diminishes with γ suggests that status is being maintained mainly through

bonding relationships, suggesting a route to increasing social capital would focus on

enhancing its role as a bridges.

5.2 The Norwegian Boards Social Network

We illustrate an application of the shce in the analysis of the social network of

Norwegian boards of directors introduced in [30]. This set of networks were originally

used to analyse the social capital of women directors in Norway. We take the May

2011 one-mode dataset in which actors correspond to board members and a link

between a pair of actors exists in the network if they are members of a common

board. We extract the largest connected component of this network, which consists

of 784 nodes and 2,522 edges. For each actor in the network, we compute the shce
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Figure 12: shce profiles and the corresponding ego-networks of three

actors from the Norwegian boards social network
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Figure 13: Proportion of Male and Female Actors ordered by Peak

Position in shce Profile

value with dmax = 10, δ = 0.9, η = 0.5, bv = bequalv and a range of γ values from

0 to 1. Thus, we allow long paths up to 10 connections to impact on the shce

and discount according to path length relatively slowly. We examine the different

shce profiles that result, where a profile of each actor is a graph of an actor’s shce

centrality vs γ. We focus on how the profile can allow broad categories of actor to

be identified. In particular, we examine at what value of γ an actor achieve their

highest shce value. A large majority of actors (83%) achieve their maximum shce

value at γ = 1, indicating that it is primarily through their bonding (over direct

and indirect paths) to other actors that their social status is achieved. Only two

actors, who are both female, achieve them maximum shce score at γ = 0, indicating

indicating that it is primarily through their bridging capabilities that their social

status in the network is achieved. Just 6 out of 784, have a balanced profile, in which

their greatest shce value is achieved at γ = 0.5. Four out of six of these ‘balanced’

profiles are female. Examples of the three different profile types, are illustrated in

Figure 12, where ego-networks, extending to depth two from the ego are displayed

alongside the shce profile. We can observe in these examples, how actor 646, whose

profile shce increases with γ is bound in a tightly knit community, while actor 273

bridges along many paths between friends-of-a-friend; the balanced profile actor

751 is also a good bridge, while having many direct connections in well-connected

neighbours. As another indication that female actors are somewhat more inclined to

act as bridges in the social network, the actors are ordered according to the value of

γ at which their shce profile peaks, so that actors whose shce profile peaks at γ = 0

are ordered first and those whose profile peaks at γ = 1 are last in the ordering.

Focusing only on the 17% of actors whose peak is before γ = 1, in Figure 13, we plot

the cumulative proportion of females and males in that ordering. We see that females

are over-represented among the low values of γ, indicating a greater tendency for

female actors to get more value from the network, when that value is allocated to

bridges.

The purpose of this example is to illustrate the potential of the shce to shed light

on issues of social capital in social networks. We do not offer definitive conclusions and
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refer readers to [30] for a deep sociological analysis of these networks. However, we do

contend that the shce can yield deeper insights, in comparison to the betweenness

centrality measure that was exploited in the original study.

6 Conclusion
This paper has extended the state-of-the-art on strategic network formation by

proposing a new utility with associated formation game, that generalises and

combines the previously proposed conn and ksh network formation games. While

we have shown some examples of efficient networks that emerge from this game, the

main focus of this paper has been on a new centrality measure, that is defined as a

fixed point of the linear system that spreads the benefit associated with each node

in the network, among those nodes that connect to it along geodesic paths. The new

centrality measure has the advantage of the Katz measure in that it depends on the

connecting paths, rather than simply on path-lengths. But, more particularly, it is

parameterised in a way that allows the analyst to control the way nodes are valued

according to their bonding and bridging capabilities. We have benchmarked the

new measure against a number of other common centrality measured and showed

its application on some example networks. In future work, we will provide a more

detailed analysis of the bonding and bridging game and identify the structures that

emerge as stable networks from this game.
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