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A B S T R A C T   

Johne’s disease (bovine paratuberculosis) is an endemic disease caused by Mycobacterium avium subspecies 
paratuberculosis (Map). Map is transmitted between herds primarily through movement of infected but unde-
tected animals. Within infected herds, possible control strategies include improving herd hygiene by reducing 
calf exposure to faeces from cows, reducing stress in cows resulting in a longer latently infected period where 
shedding is minimal, or culling highly test-positive cows soon after detection. Risk-based trading can be a 
strategy to reduce the risk that Map spreads between herds. Our objective was to assess whether within-herd 
measures combined with risk-based trading could effectively control Map spread within and between dairy 
cattle herds in Ireland. We used a stochastic individual-based and between-herd mechanistic epidemiological 
model to simulate Map transmission. Movement and herd demographic data were available from 1st January 
2009–31st December 2018. In total, 13,353 herds, with 4,494,768 dairy female animals, and 72,991 bulls were 
included in our dataset. The movement dataset consisted of 2,304,149 animal movements. For each herd, a 
weekly indicator was calculated that reflected the probability that the herd was free from infection. The indicator 
value increased when a herd tested negative, decreased when animals were introduced into a herd, and became 
0 when a herd tested positive. Based on this indicator value, four Johne’s assurance statuses were distinguished: 
A) ≥ 0.7 – 1.0, B) ≥ 0.3 – < 0.7, C) > 0.0 – < 0.3, and D) 0.0. A is the highest and D the lowest Johne’s assurance 
status. With risk-based trading some of the observed movements between herds were redirected based on Johne’s 
assurance status with the aim of reducing the risk that a non-infected herd acquired an infected animal. Risk- 
based trading effectively reduced the increase in herd prevalence over a 10-year-period in Ireland: from 50% 
without risk-based trading to 42% with risk-based trading in the metapopulation only, and 26% when external 
purchases were risk-based as well. However, for risk-based trading to be effective, a high percentage of dairy 
herds had to participate. The most important within-herd measures were improved herd hygiene and early 
culling of highly infectious cows. These measures reduced both herd and within-herd prevalence compared to the 
reference scenario. Combining risk-based trading with within-herd measures reduced within-herd prevalence 
even more effectively.  

Abbreviations: c, Rapid culling of test-positive cows of the highly infectious state; D, Typical dairy herds; DnR-C, Non-rearing dairy herds with contract rearing; 
DnR-nC, Non-rearing dairy herds without contract rearing; DRm, Dairy herds that also rear male calves; e30, Improved herd hygiene with calf exposure to general 
farm environment reduced to 30%; e70, Improved herd hygiene with calf exposure to general farm environment reduced to 70%; h, 50% of herds with the highest 
out-strength; IH, Highly infectious state; IL, Latently infected state; IM, Moderately infectious state; IT, Transiently infectious state; l, 50% of herds with the lowest out- 
strength; M, Mixed herds; Map, Mycobacterium avium subspecies paratuberculosis; p25, 25% of the herds have a herd indicator; p50, 50% of the herds have a herd 
indicator; p75, 75% of the herds have a herd indicator; R, Resistant; rI, No risk-based trading; rII, Risk-based trading within the metapopulation only; rIII, Risk-based 
trading within the metapopulation and of external purchases; S, Susceptible state; s, Slower progression from the latently infected to the moderately infectious state; 
SdR, (Store) herds that rear dairy females/contract rearing herds; t, Test herds twice a year. 
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1. Introduction 

Johne’s disease (bovine paratuberculosis) is an endemic disease 
caused by Mycobacterium avium subspecies paratuberculosis (Map). This 
disease has a large economic impact on the dairy sector worldwide due 
to milk losses, early culling and increased mortality (Garcia and Shalloo, 
2015). Heavy shedding and clinical signs, e.g., weight loss, decreased 
milk production, and diarrhoea, can be triggered by a stressful event 
such as first calving, but are sometimes never observed (Whitlock and 
Buergelt, 1996). 

Diagnosing infected animals is difficult because the sensitivity of 
available tests is low. Depending on the stage of infection, it ranges from 
15% to 71% (More et al., 2015a; Barkema et al., 2018). Infectious ani-
mals can therefore remain undetected in a herd. Map is transmitted 
between herds primarily through movement of these infected but un-
detected animals (Rangel et al., 2015; Marquetoux et al., 2016). Once an 
infected animal is introduced into a herd, the herd can remain infected 
for a long time (Marcé et al., 2011a). There is an estimated probability of 
persistence of 42.7% 15 years after the introduction of a single infected 
animal into a typical spring calving Irish dairy herd (Biemans et al., 
2021). 

Within infected herds, possible control strategies (bio-containment) 
include improving herd hygiene by reducing calf exposure to faeces 
from cows (Sweeney, 1995; Donat et al., 2016), reducing stress in cows 
resulting in a longer latently infected period where shedding is minimal 
(Kurade et al., 2004; Crossley et al., 2005), or culling highly test-positive 
cows as soon as possible after detection (Lu et al., 2010; Konboon et al., 
2018; Jordan et al., 2020). 

With respect to spread between herds, risk-based trading can be a 
strategy to reduce the risk that carriers enter a Map free herd (bio- 
exclusion) (Gates and Woolhouse, 2015; Ezanno et al., 2022). With such 
a strategy, each herd is assigned a ‘Johne’s assurance status’ based on 
the probability that it is free from infection. With risk-based trading in 
place, destination herds with a high Johne’s assurance status (that is, 
herds with a high probability of being free from infection) should avoid 
acquiring animals from a source herd with a lower Johne’s assurance 
status (Jordan et al., 2020; Ezanno et al., 2022). 

Epidemiological modelling can be used to investigate these strate-
gies, as it enables us to better understand Map spread both within a herd 
(Marcé et al., 2011a, 2011b; Biemans et al., 2021) and between herds 
(Beaunée et al., 2015; Ezanno et al., 2020; Biemans et al., 2022), and to 
assess a range of different control strategies (Beaunée et al., 2017; 
Ezanno et al., 2022). The use of an epidemiological model is a concep-
tual approach that allows us to investigate and combine control mea-
sures focusing on bio-containment and bio-exclusion. This would never 
be possible in a field study where, for example, the level of participation 
among farmers, the low sensitivity of diagnostic tests, and the long 
period between infection and the onset of clinical symptoms can be 
limiting factors. 

Here, we used a stochastic individual-based and between-herd 
mechanistic epidemiological model developed for western France 
(Camanes et al., 2018; Ezanno et al., 2022). In this model, within-herd 
management and infection dynamics for each herd are represented, 
and herds are linked through trade movements. Recently, a rewiring 
algorithm was added to this model, making it possible to change trade 
movements from those observed in the data through to movements 
based on the relative risk of source and destination herds to be Map-free 
(Ezanno et al., 2022). This model was adapted to represent the Irish 
dairy farming system (Biemans et al., 2022) which is predominantly 
highly seasonal (Tratalos et al., 2017). Furthermore, animals are traded 
much more frequently compared to France, i.e., > 2 million trade 
movements over ten years in Ireland (Biemans et al., 2022) compared to 
about 1 million trade movements over nine years in France (Ezanno 
et al., 2022) for a similar number of herds. 

For France, based on an assumed starting herd prevalence of 90%, 
the herd prevalence was 82% after nine years when trade movements 

were redirected between herds based on their within-herd prevalence 
status (Ezanno et al., 2022). For Ireland, herd prevalence is assumed to 
be lower with estimates ranging from 20.6% in 2005 (Good et al., 2009) 
to 28% in 2013–2014 (McAloon et al., 2016). Therefore, in this study, 
we focused on redirecting trade movements between herds based on the 
probability that many herds are free from infection. 

Our objective was to assess whether the within-herd measures of 
improved herd hygiene, reduced stress, and faster culling of test-positive 
animals, and the between-herd measure of redirecting trade movements 
based on Johne’s assurance status could effectively control Map spread 
between dairy cattle herds in Ireland. 

2. Material and methods 

2.1. Data 

We extracted movement and herd demographic data from the Ani-
mal Identification and Movement database of the Irish Government́s 
Department of Agriculture, Food and the Marine for the period 1st 
January 2009 – 31st December 2018 (the study period). These data were 
used to select the herds included in our dataset, which we subsequently 
refer to as ‘the metapopulation’. Herd selection is described in detail in 
Biemans et al. (2022) and is summarised briefly here. We only selected 
herds in which more than half of all animals were of a dairy breed. Also, 
more than 30% of the animals in the herd had to be female, and 
movement data needed to be available for each year of the study period. 
Only female animals were modelled, with the exception of the intro-
duction of some male animals for breeding. Herds that did not trade 
female animals with other herds were excluded. Finally, herds with 
fifteen animals or less, or five adults or less, were considered to be 
non-commercial dairy herds and were excluded. The inclusion of bulls 
was only considered for those herds that purchased bulls (83% of the 
herds). Bulls had to be purebred dairy or beef, they had to enter the herd 
via trade, and beef bulls had to come from a breeding herd. Bulls had to 
be at least one year of age upon entering a herd, and they had to remain 
in a herd for at least five months (one breeding season). Only bulls that 
stayed in a herd with a maximum length of four years for beef bulls and 
two years for dairy bulls were considered to be selected. It was assumed 
that about half of the cows would be serviced by a bull, with twenty 
cows per bull. In total, 13,353 herds, with 4,494,768 dairy female ani-
mals, and 72,991 bulls were included in the metapopulation. Herds were 
classified as one of six possible herd types (Table 1), as described in 
Brock et al. (2021). 

The movement dataset consisted of 2,304,149 animal movements of 
which 17% were animals moved between herds in the metapopulation, 
20% were animals moved from a herd outside of the metapopulation to a 
herd in the metapopulation, and 63% were animals moved from a herd 
in the metapopulation to a herd outside of the metapopulation. 

For each herd in the metapopulation, herd parameters for size and 
exit rates were calculated from the data. Herd size was calculated on the 
1st of January 2009. For each age group (see section “Within-herd 
model”), exit rates were calculated for each three-month period, in each 
year; January – March, April – June, July – September, October – 
December. Whenever a birth was registered in the data, a newborn calf 
(which could be susceptible or infected depending on the status of the 
dam) was added to the herd. 

2.2. Within-herd model 

The within-herd model is a stochastic individual-based model with a 
discrete time step of one week that is adapted from Camanes et al. 
(2018) and Biemans et al. (2021). The code is available under the 
Apache 2.0 license (Supplementary file 1). The within-herd model is 
fully described in Biemans et al. (2022). In brief, the model accounts for 
herd structure and infection dynamics. Animals belong to one of six age 
groups: newborn calves, unweaned calves, weaned calves, young 
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heifers, bred heifers, and cows. Animals progress to the next age group at 
a certain age or at a defined time in the year. Animals also belong to one 
of six health states: susceptible (S), resistant (R), transiently infectious 
(IT), latently infected (IL), moderately infectious (IM), and highly infec-
tious and possibly clinically affected (IH). Susceptibility decreases 
exponentially with age (Windsor and Whittington, 2010) and animals 
are assumed to be resistant after reaching one year of age. Animals with 
health state IT, IM, and IH are infectious and shed Map in their faeces and 
after calving in their colostrum/milk. The quantity of Map shed is het-
erogeneous between animals of the same state (Giese and Ahrens, 2000; 
Mitchell et al., 2015). Map can be transmitted in utero, via ingestion of 
contaminated colostrum or milk, and via contact with a 
faeces-contaminated environment. This is either the local environment 
or the general indoor farm environment. Transmission via the local 
environment is defined as the infection risk of the environment in which 
an animal resides contaminated by animals that are/were present in the 
same place but not necessarily at the same time. The local environment 
can either be indoor or on pasture. Transmission via the general indoor 
environment is defined as the infection risk of all indoor farm environ-
ments contaminated by animals that are/were not necessarily present at 
the same place or time. Details of all model parameters are in Supple-
mentary file 2. 

2.3. Between-herd model 

The between-herd model is fully described in Biemans et al. (2022) 
and the code is available under the Apache 2.0 license (Supplementary 
file 1). In brief, movements of animals from and to a herd in the meta-
population were modelled as observed in the data. Thus, the data defines 
the date that a movement occurs, the age of the animal that is moved, 
and the source and destination herds. The animal to be moved is selected 
randomly from the relevant age group in the source herd, and thus can 
be of any health state. When there is, due to chance, no animal present in 
the correct age group, an animal of the closest age group is selected. If an 
animal is coming from a herd outside of the metapopulation, its health 
state is drawn from a distribution that corresponds to the proportion of 
animals in each health state in the same age group within the entire 

metapopulation. It is therefore assumed that the average risk of intro-
ducing an infected animal is the same within and from outside of the 
metapopulation. When an animal was moved via a market, the move-
ment is represented as if it occurs directly from the source herd to the 
destination herd. 

2.4. Johne’s assurance status based on the probability of freedom from 
infection 

For each herd, a weekly indicator is calculated that reflects the 
probability that the herd is free from infection (Pfree) (Martin, 2008; 
More et al., 2013). This indicator takes values between 0 and 1, where 
0 indicates confirmed infection and 1 indicates assurance of freedom 
from infection within the constraints of test sensitivity. The indicator 
value increases when a herd tests negative, decreases when animals are 
introduced into a herd, and becomes 0 when a herd tests positive 
(Martin, 2008; More et al., 2013; Jordan et al., 2020). Based on the 
indicator value, four Johne’s assurance statuses are distinguished: 

A: ≥ 0.7 – 1.0. 
B: ≥ 0.3 – < 0.7. 
C: > 0.0 – < 0.3. 
D: 0.0. 
Where A is the highest and D the lowest Johne’s assurance status. 
At the start of the simulations, all herds have an indicator value of 1 – 

herd prevalence = 1 – 0.3, with the herd prevalence value based on the 
estimated 28% in 2013–2014 (McAloon et al., 2016; Meyer et al., 2019; 
Sergeant et al., 2019): 

Pfree(t = 0) = 0.7  

2.4. Yearly testing 

Herds are tested once a year. All animals of 2 years of age and older 
that were present in the herd at the moment of testing are first subjected 
to a serum ELISA test with a sensitivity of 0.15 for IT and IL animals, 0.47 
for IM animals, and 0.71 for IH animals, and a specificity of 0.985 for all 
animals (More et al., 2015b). In our simulations, health state specific 
sensitivities are used because we know the actual health state of the 
animal and we assume that animals in a more severe health state (i.e., 
animals that shed more) have a higher probability of testing positive. 
The number of animals in a herd with health state Ix (where x = T, L, M, 
or H) that are ELISA test positive is calculated using a binomial distri-
bution with parameters n = number of animals in health state Ix and 
p = ELISA test sensitivity for health state Ix. The number of animals that 
test faecal culture positive is then calculated using a binomial distribu-
tion with parameters n = number of animals in health state Ix that tested 
ELISA positive and p = faecal culture test sensitivity for health state Ix. 
For faecal culture, we used a sensitivity of 0.23 for IT and IL animals, and 
0.74 for IM and IH animals, and a specificity of 1.00 for all animals (More 
et al., 2015b). 

If the number of faecal culture positive animals in the herd is 
> 0 (More et al., 2013), 

Pfree(t) = 0.0 

If there is no ELISA positive animal in the herd, or if there are ELISA 
positive animals in the herd but there is no faecal culture positive animal 
(Martin, 2008; More et al., 2013), 

Pfree(t) =
Pfree(t − 1)

(
1 −

(
1 − Pfee(t − 1)

)
× SEherd(t)

)

where Pfree(t-1) is the indicator value of the previous week and SEherd is 
the herd sensitivity. SEherd is calculated as (More et al., 2013; Meyer 
et al., 2019; Sergeant et al., 2019): 

Table 1 
List of herd types. For a full description of these herd types please refer to Brock 
et al. (2021).  

Herd type Abbreviation Description 

Typical dairy D Female dairy calves are reared to become 
replacement heifers and male calves are sold at 
an early age. 

Dairy no rearing – 
contract 

DnR-C Sell most of their calves, with female dairy 
calves being moved to external rearing herds. 
Female calves return to their birth herd as 
pregnant heifers. 

Dairy no rearing – 
no contract 

DnR-nC Cows are bred to beef bulls and most of their 
calves are sold. Replacement animals are 
bought from herds with a surplus of cows or 
pregnant heifers. 

Dairy rearing 
males 

DRm Female dairy calves are reared to become 
replacement heifers. Male calves are not sold, 
however, they are assumed to be kept in a 
location different from the female animals and 
are therefore not included in the data. 

Mixed M Both milk and beef production activities. Both 
pure-bred dairy females and cross-bred dairy 
and beef animals are present. We assumed that 
the milk and beef production activities were 
managed in separate locations and that 
contact between dairy and beef animals was 
negligible. Beef animals are therefore not 
included in the data. 

Store dairy 
rearing 

SdR Female dairy calves are reared and 
inseminated before returning to their birth 
herd.  
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SEherd(t) = 1 −
(

(1 − SEoverall) ×
n(t)
N(t)

)d  

where SEoverall is the individual animal sensitivity, n is the number of 
animals of 2 years of age and older tested, N is the number of animals of 
2 years of age and older present in the herd at the moment of testing, and 
d is the expected number of infected animals in an infected herd. In our 
model, d does not have to be an integer. SEoverall and d are calculated as 
(More et al., 2013; Meyer et al., 2019; Sergeant et al., 2019): 

SEoverall = SEELISA × SEfaecal culture = 0.15 × 0.65 ≈ 0.1 

Here we used an average value for the test sensitivities instead of 
specific test sensitivities per health state because we assume that in re-
ality we do not know the actual health state of animals that tested 
negative. 

d = N × Prevalencedesign = N × 0.05  

where Prevalencedesign is the design prevalence, i.e., the minimum 
prevalence in a population which could be detected with a certain 
probability (Martin, 2008; More et al., 2009; Cameron, 2012). 

Herds that tested positive have an indicator value of Pfree = 0.0. With 
these herds, only when all eligible animals test negative in the following 
three consecutive years is the value increased to Pfree = 0.1, e.g., if a 
herd has faecal culture positive animals in year 1 Pfree(t = year 1) = 0.0, 
if in the three years thereafter all animals in this herd test negative, the 
indicator values become Pfree(t = year 2) = 0.0, Pfree(t = year 3) = 0.0, 
and Pfree(t = year 4) = 0.1. 

2.4.1. Weekly animal introductions 
In test positive herds, the introduction of animals does not affect the 

indicator value, i.e., in test positive herds, the Pfree is always 0.0. 
In test negative herds, the reduction of the indicator value with the 

number of animals introduced is calculated on a weekly basis. Two 
introduction types are distinguished: standard-risk introductions and 
low-risk introductions; #StandardRiskIntro is the number of animals 
introduced within the previous week in the destination herd coming 
from a source herd with a lower Johne’s assurance status, and #Low-
RiskIntro is the number of animals introduced within the previous week 
in the destination herd coming from a source herd with an equal or 
higher Johne’s assurance status. The risk of introducing an infected 
animal into the destination herd is calculated as (More et al., 2013; 
Meyer et al., 2019): 

Pintro(Δt) = 1 − (discountStandardRisk(Δt) × discountLowRisk(Δt) )

with 

discountStandardRisk(Δt) = (1 − Prevalenceanimal)
StandardRiskIntro(Δt)

discountLowRisk(Δt) = (1 − Prevalenceanimal × LowRiskMultiplier)LowRiskIntro(Δt)

where Prevalenceanimal is the animal level prevalence of 0.032 (McAloon 
et al., 2016). The LowRiskMultiplier of 0.5 reflects the assumed reduced 
risk of introducing an infected animal from a source herd with an equal 
or higher Johne’s assurance status. The probability of freedom from 
infection is calculated weekly as (Martin, 2008; More et al., 2009, 2013; 
Meyer et al., 2019), 

Pfree(t) = 1 −
( (

1 − Pfree(t − 1)
)
+Pintro(Δt) −

(
1 − Pfree(t − 1)

)

× Pintro (Δt)
)

If due to this calculation Pfree(t) < 0.1, it is set to Pfree(t) = 0.1. Thus, 
in a test negative herd the indicator value never falls below 0.1. 

2.5. Risk-based trading 

Risk-based trading means that some of the observed movements 
between herds were redirected based on Johne’s assurance status with 
the aim of reducing the risk that a non-infected herd will acquire an 
infected animal (bio-exclusion). The trade movement redirection algo-
rithm is fully described in Ezanno et al. (2022). The algorithm aims to 
change some of the animal movements as observed in the data so that a 
destination herd receives its animals from a source herd with a similar or 
better Johne’s assurance status. To do so, every week, all animal 
movements per age group were summarized with regard to the Johne’s 
assurance statuses of the source and destination herds. Next, animal 
movements from herds with a lower status to herds with a better status 
are identified and switched where possible with a relevant alternative so 
that the source herd has an equal or better status than the destination 
herd. For movements for which there was no alternative there were two 
possibilities: 1) the movement was kept as observed in the data, or 2) the 
source herd sent the animal to a herd outside of the metapopulation and 
the destination herd received an animal from a herd outside of the 
metapopulation (referred to as an external purchase) with an equal or 
better status. Therefore, the probability of receiving an infected animal 
from a herd outside of the metapopulation was equal to the average 
proportion of infected animals in the age group of the traded animal in 
herds within the metapopulation with an equal or higher status than the 
destination herd. 

The fact that multiple animals could be moved between two herds at 
the same time was neglected because the majority of the herds in the 
metapopulation sold or bought only one or two animals at a time 
(Supplementary file 3). 

Three trading options were considered (details in Supplementary file 
4): 

No risk-based trading; 
Risk-based trading within the metapopulation only; 
Risk-based trading within the metapopulation and of external 
purchases. 

In the no risk-based trading (rI) scenario, animals are moved be-
tween herds in the metapopulation as observed in the data. In the sce-
nario with risk-based trading within the metapopulation only (rII), 
movements were changed where possible for the source herd to have an 
equal or better status than the destination herd. Movements for which 
there was no alternative were kept as observed in the data. rII represents 
a scenario where all herds in the metapopulation were provided with an 
indicator for the probability of freedom, but risk-based trading was 
optional. Under this scenario we assumed that a herd preferred to buy 
from a herd with an equal or higher Johne’s assurance status, but that if 
this was not possible would buy from a herd with a lower Johne’s 
assurance status. In the scenario with risk-based trading within the 
metapopulation and of external purchases (rIII), movements were 
changed where possible for the source herd to have an equal or better 
status than the destination herd. For movements without an alternative, 
the source herd sends the animal to a herd outside of the metapopulation 
and the destination herd receives an animal from a herd outside of the 
metapopulation with an equal or better status. Under this scenario we 
therefore assumed that external purchases could be controlled in the 
same way as purchases within the metapopulation. rIII represents a 
scenario where all herds in Ireland were provided with an indicator for 
the probability of freedom, meaning that herds outside of the meta-
population had a Johne’s assurance status as well. Under this scenario 
we assumed that there were always enough options for a herd to buy 
from a low-risk herd. 

2.6. Within-herd measures 

We also investigated three on-farm control measures aimed at 
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controlling Map spread within herds. First, via improved herd hygiene 
through reduced (70% or 30%) calf exposure to the general farm envi-
ronment. Second, by assuming improved on-farm conditions that reduce 
stress in cows resulting in a slower progression (104 weeks instead of 52 
weeks) from the latently infected (IL) stage to the moderately infectious 
(IM) stage. Thus, a longer latently infected period where shedding is 
minimal. Third, by culling highly (IH) infectious faecal culture test- 
positive cows within one month after detection. 

2.7. Scenarios 

First, we investigated the three risk-based trade options separately 
(reference scenarios):  

1) No risk-based trading (rI).  
2) Risk-based trading within the metapopulation only (rII). 
3) Risk-based trading within the metapopulation and of external pur-

chases (rIII). 

Second, we combined the three risk-based trading options with the 
three within-herd measures applied to all herds:  

1) Improved herd hygiene where calf exposure to the general farm 
environment was reduced to 70% (e70-I/e70-II/e70-III) or 30% 
(e30-I/e30-II/e30-III).  

2) Slower progression from the IL to the IM stage (sI/sII/sIII).  
3) Rapid culling of IH test-positive cows (cI/cII/cIII). 

Third, we investigated three different scenarios within risk-based 
trading option II:  

1) Only a percentage of the herds have a herd indicator but all herds are 
subjected to risk-based trading. A percentage of herds, 75% (p75-II), 
50% (p50-II), or 25% (p25-II), is chosen at random, and for these 
herds the indicator value and corresponding Johne’s assurance status 
is calculated weekly and herds can trade according to the rules 
belonging to the status they have. The remaining herds that do not 
have an indicator all have Johne’s assurance status D and can only 
trade according to the rules belonging to Johne’s assurance status D.  

2) Only a specific subset of herds is subjected to risk-based trading; the 
other herds can trade freely. The 50% of herds with either the highest 
(hII) or lowest (l-II) out-strength were subjected to risk-based 
trading. The out-strength measures the number of animals sold by 
a herd (outgoing movements). For each herd, the out-strength was 
calculated for every year and then averaged over the ten-year period. 
Herds that did not belong to the subset could trade freely, meaning 
that trade was simulated as observed in the data, even if they traded 
an animal with a herd in the subset. For herds outside of the subset no 
animal movements were redirected.  

3) Test herds twice a year (tII) to have improved understanding of the 
actual Johne’s assurance status. Herds were tested once in the first 
three months of the year and once in the three months following the 
month of June. 

In total, 21 different scenarios were assessed (Table 2); an overview 
of all parameters relevant to these scenarios is given in Supplementary 
file 5. 

2.8. Simulation settings and model outputs 

Amongst 4006 candidate herds that were most likely to be infected 
(Biemans et al., 2022), 24% of the total number of herds were randomly 
chosen to be initially infected. An initial herd prevalence of 24% in 2009 
was in agreement with field observations, with an estimated herd 
prevalence of 20.6% in 2005 (Good et al., 2009) and 28% in 2013–2014 
(McAloon et al., 2016). The within-herd prevalence among those 

initially infected herds was drawn from a Gaussian distribution N 
(− 0.42,0.12), keeping only values below 0.7. Map transmission within 
and between herds was simulated for ten years, matching the temporal 
extent of the movement data. For each scenario, we simulated 10 sto-
chastic repetitions. 

For the three reference scenarios we investigated the following: the 
distribution of herds over the Johne’s assurance statuses over time, the 
evolution of the average indicator value per Johne’s assurance status 
over time, the percentage of herds in which at least one infected animal 
is present (herd prevalence) and the percentage of herds with a > 5% 
within-herd prevalence among > 2 year-old animals over time, and the 
number of infectious trade movements between pairs of Johne’s assur-
ance statuses. The average in-degree (number of herds that the herd of 
interest receives animals from) and out-degree (number of herds that the 
herd of interest sends animals to) of the reference scenario with no risk- 
based trading were compared to the two reference scenarios with risk- 
based trading. For all scenarios we investigated the herd prevalence 
after 10 years and percentage of herds with a > 5% within-herd prev-
alence among > 2 year-old animals after 10 years versus the movements 
in the metapopulation that were redirected as percentage of the total 
number of movements. Herd prevalence and percentage of false nega-
tive herds over time was compared for testing once versus twice a year. 
Finally, we investigated the relation between herd type and the number 
of movements redirected. 

The model was developed in C+ + Standard 14 (Stroustrup, 2000). 
Model outputs were analysed and visualised in R version 4.1.2 (R Core 

Table 2 
Overview of the 21 scenarios simulated.   

Risk-based trading option Within-herd measure/ 
additional option 

Symbol 

1 No risk-based trading – rI 
2 No risk-based trading Exposure to environment 

reduced to 70% 
e70-I 

3 No risk-based trading Exposure to environment 
reduced to 30% 

e30-I 

4 No risk-based trading Slower progression from IL to 
IM 

sI 

5 No risk-based trading Rapid culling of IH test- 
positive cows 

cI 

6 Risk-based trading within 
metapop. only 

– rII 

7 Risk-based trading within 
metapop. only 

Exposure to environment 
reduced to 70% 

e70-II 

8 Risk-based trading within 
metapop. only 

Exposure to environment 
reduced to 30% 

e30-II 

9 Risk-based trading within 
metapop. only 

Slower progression from IL to 
IM 

sII 

10 Risk-based trading within 
metapop. only 

Rapid culling of IH test- 
positive cows 

cII 

11 Risk-based trading within 
metapop. only 

75% of herds have a herd 
indicator 

p75-II 

12 Risk-based trading within 
metapop. only 

50% of herds have a herd 
indicator 

p50-II 

13 Risk-based trading within 
metapop. only 

25% of herds have a herd 
indicator 

p25-II 

14 Risk-based trading within 
metapop. only 

RBT for 50% highest out- 
strength herds 

hII 

15 Risk-based trading within 
metapop. only 

RBT for 50% lowest out- 
strength herds 

l-II 

16 Risk-based trading within 
metapop. only 

Test herds twice a year tII 

17 Risk-based trading within 
metapop. + ext. purch. 

– rIII 

18 Risk-based trading within 
metapop. + ext. purch. 

Exposure to environment 
reduced to 70% 

e70-III 

19 Risk-based trading within 
metapop. + ext. purch. 

Exposure to environment 
reduced to 30% 

e30-III 

20 Risk-based trading within 
metapop. + ext. purch. 

Slower progression from IL to 
IM 

sIII 

21 Risk-based trading within 
metapop. + ext. purch. 

Rapid culling of IH test- 
positive cows 

cIII  
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Team, 2021), using packages dplyr (Wickham et al., 2021) and viridis 
(Garnier, 2018). 

3. Results 

3.1. Johne’s assurance status over time 

After 10 years of simulations, the majority of herds had either status 
A (45–59%) or status D (24–41%), depending on the risk-based trading 
scenario (Fig. 1A). The percentage of herds with status B increased 
rapidly to 29% in the first year. From this point onwards, the percentage 
of herds with status B decreases steadily until it reaches to 8–12% after 
10 years. Herds that introduce a lot of animals either test positive and 
are assigned status D, or keep testing negative and become status C. 

For all three risk-based trading scenarios, the progression of the 
average indicator value per Johne’s assurance status is very similar 
(Fig. 1B). The biggest change over time was observed for herds with 
status A, for which this value increased over time from 0.7 at the start of 
the simulations to 0.9 at the end. 

3.2. Herd prevalence over time 

With no risk-based trading, the herd prevalence was 49.9% on 
average after ten years of simulations (Fig. 2A). With risk-based trading 
in the metapopulation only, the herd prevalence was 41.7% on average. 
With risk-based trading of external purchases as well, the herd preva-
lence was stable at 26.3% on average, this value was reached within the 
first year of simulations. For the percentage of herds with > 5% preva-
lence among > 2 year-olds in the metapopulation, a decrease from 
18.7% to 15.7% was observed for all three risk-based trading scenarios 
during the first three years of simulations (Fig. 2B). This initial decrease 
occurred because only few infected animals were present in newly- 
infected herds, also more than 50% of the infected animals traded 
were less than two years of age. Thereafter, this value increased to 
24.4% for no risk-based trading (rI), 21.7% for risk-based trading in the 
metapopulation only (rII), and to 18.1% for risk-based trading of 
external purchases as well (rIII). 

After 10 years, average within-herd prevalence among > 2-year-old 
animals within infected herds was 12.7% with no risk-based trading (rI), 
14.1% with risk-based trading in the metapopulation only (rII), and 
17.5% with risk-based trading in the metapopulation and of external 

purchases (rIII) (Fig. 3). 
For all reference risk-based trading scenario (rI/rII/rIII) and combi-

nations of these scenarios with within-herd measures (e70-I/e70-II/e70- 
III/e30-I/e30-II/e30-III/sI/sII/sIII/cI/cII/cIII), average herd prevalence 
decreased and average within-herd prevalence increased with more 
intense risk-based trading. Within-herd prevalence was lowest (6–7%) 
for the scenarios where calf exposure to the general farm environment 
was reduced to 30% (e30-I/e30-II/e30-III). The herd prevalence and 
within-herd prevalence for the scenarios where only part of the herds 
had a herd indicator (p75-II/p50-II/p25-II) or where only a specific 
subset of herds was subjected to risk-based trading (hII/l-II) were very 
similar to the reference scenario without risk-based trading (rI), with 
herd prevalence of 45–50% and within-herd prevalence of 12.6–13.6%. 

3.3. Movements redirected 

The percentage of movements where an infected animal was moved 
between herds was 7.3% without risk-based trading (rI), 7.1% with risk- 
based trading in the metapopulation only (rII), and 6.6% with risk-based 
trading in the metapopulation and of external purchases (rIII). For all 
three scenarios, source herds with status D were responsible for the vast 
majority of infectious trade movements (Table 3). However, the ma-
jority of these animals were sold to a herd outside of the meta-
population. Except for destination herds with status D and herds outside 
of the metapopulation, the number of infectious animals received 
decreased with a more stringent risk-based trading scenario. Compared 
to source herds with status A or B, herds with status C traded twice as 
many (Table 3A and B) or a similar number (Table 3C) of infectious 
animals, even though the percentage of herds with this status was 
relatively low (Fig. 1A). For rI, the percentage of infectious trade 
movements from a source herd was 0.5% for status A, 2.1% for status B, 
6.1% for status C and 21.8% for status D. Similarly for rII, the percentage 
of infectious trade movements from a source herd was 0.4% for status A, 
2.4% for status B, 6.0% for status C and 22.1% for status D. For rIII, the 
percentage of infectious trade movements from a source herd was 0.3% 
for status A, 1.8% for status B, 2.8% for status C and 23.6% for status D. 

Fig. 4 shows the in-degree and out-degree per herd for the three risk- 
based trading scenarios. For 54.2% of the herds in the metapopulation 
the in-degree was the same with (rII/rIII) and without (rI) risk-based 
trading. For 41.6% (rII) or 43.5% (rIII) of the herds, the in-degree 
increased with on average 0.60 or 0.63 herds per year, respectively. 

Fig. 1. Johne’s assurance status over time for the three reference scenarios. (A) Distribution of herds over Johne’s assurance statuses (A, B, C, D) over time. (B) 
Average indicator value per Johne’s assurance status (A, B, C, D) over time. 
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For 44.7% (rII) or 43.2% (rIII) of the herds in the metapopulation, the 
out-degree was the same as without risk-based trading. For 47.5% (rII) 
or 47.6% (rIII) of the herds, the out-degree increased with on average 
0.55 or 0.53 herds per year, respectively. 

Fig. 5 presents the relation between herd prevalence after 10 years of 
simulations and the percentage of movements within the meta-
population that was redirected. Without risk-based trading, all within- 
herd measures (e70/e30/s/c) effectively reduced herd prevalence 
compared to the reference scenario (rI). With risk-based trading in the 
metapopulation only (rII), this effect was less pronounced. With risk- 
based trading in the metapopulation and of external purchases (rIII), 
within-herd measures to reduce herd prevalence were no longer effec-
tive, with e30 as an exception. In the rII scenario, and in combinations of 
this scenarios with within-herd measures, between 4.6% and 4.8% 
percent of the movements were redirected. In the rIII scenario, and in 
combinations of this scenarios with within-herd measures, between 
5.2% and 5.4% percent of the movements were redirected. However, it 
should be noted that an additional 20% of all movements coming from a 

herd outside of the metapopulation, were also risk-based. 
For the scenarios where only a random part of the herds had a herd 

indicator but all herds were subjected to risk-based trading (p75-II/p50- 
II/p25-II) or the scenario where 50% of herds with a high out-strength 
were subjected to risk-based trading (hII), the herd prevalence after 
10 years lay in-between rI and rII (45.3%− 49.1%). This indicates that 
the more herds participate, the more effective risk-based trading be-
comes. However, which herds participate is important as well. Herd 
prevalence for the scenario where 50% of herds with a low out-strength 
were subjected to risk-based trading (l-II) was equal to the scenario with 
no risk-based trading at all. 

3.4. Accuracy of classification 

The percentage of herds with an infected animal present but not 
identified by a test (false negative herds) after 10 years of simulation was 
on average 8.3% for the reference scenario with risk-based trading in the 
metapopulation only (rII), 9.7% for this scenario together with a slower 
progression from IL to IM (sII), and 7.1% for this scenario when testing 
twice a year (tII) (Fig. 6). Average within-herd prevalence among > 2- 
year-old animals within infected herds after 10 years, however, was 
14.2% for scenario rII and tII, but 11.9% for scenario sII (Fig. 3), while 
herd prevalence after 10 years was between 41.1% and 41.7% for all 
three scenarios (Fig. 5). Thus, compared to scenario rII and tII, for sce-
nario sII a similar herd prevalence was observed even though Johne’s 
assurance status was less accurately classified; in contrast, the within- 
herd prevalence was lower. 

3.5. Herd type 

Table 4 shows the number of herds per herd type for which move-
ments were redirected. With risk-based trading in the metapopulation 
only (rII), for 26.7% of the herds no movements were redirected over the 
ten-year simulated period. For 19.1% of the herds, less than one out-
going movement was redirected, and for 13.6% of the herds, less than 
one incoming movement was redirected, on average. Furthermore, for 
18.7% of the herds more than 10 outgoing movements were redirected, 
and for 18.5% of the herds more than 10 incoming movements were 
redirected. The median average value for the number of redirected 
movements per herd was 1.4 for outgoing movements and 2.0 for 

Fig. 2. Herd prevalence over time for the three risk-based trading scenarios. (A) Percentage of herds in which at least one infected animal (of any age) is 
present. (B) Percentage of herds with an > 5% within-herd prevalence among > 2-year-old animals. Lines indicate the mean value calculated over ten replicates, 
shading shows the range from the minimum to the maximum value in the ten replicates. 

Fig. 3. Herd prevalence versus the within-herd prevalence in infected herds 
after 10 years for all 21 scenarios (Table 2). Herd prevalence was calculated as 
the percentage of herds in which at least one infected animal (of any age) 
is present. 
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incoming movements. The percentage of DnR-C herds with more than 10 
outgoing movements redirected was relatively high (40.3%) compared 
to other herd types. Similarly, the percentage of DnR-nC herds with 
more than 10 incoming movements redirected was relatively high 
(45.3%) compared to other herd types. 

4. Discussion 

Risk-based trading effectively reduced the increase in herd preva-
lence over a 10-year period in Ireland. Only about 5% of the movements 
were redirected. However, for risk-based trading to be effective, many 
(all) herds must participate and Johne’s assurance statuses must be 
accurately determined. When risk-based trading was combined with 
within-herd measures, the reduction in herd prevalence was even more 
pronounced. 

For our simulations we used an adapted version of the stochastic 
individual-based and between-herd mechanistic epidemiological model 
developed to simulate Map transmission between herds in western 
France (Camanes et al., 2018; Ezanno et al., 2022). Some important 
differences exist between the Irish and French dairy sector. First, the 
Irish dairy farming system is predominantly seasonal (Tratalos et al., 
2017), whereas in France calves are born all-year-round. Second, in 
Ireland, animals are traded twice as frequently compared to France 
(Biemans et al., 2022; Ezanno et al., 2022). And third, in Ireland, most 
dairy herds are assumed to be free from infection (Good et al., 2009; 
McAloon et al., 2016), while in France most dairy herds are assumed to 
be infected, albeit with a very low within-herd prevalence (Beaunée 
et al., 2017; Ezanno et al., 2022). Ezanno et al. (2022) investigated 
risk-based trading as well, and observed a decrease in herd prevalence 
for all scenarios compared to the control scenario. With regard to 
within-herd measures, improving herd hygiene was as effective as early 
culling in France. However, it should be noted that calf exposure was 
reduced from 35% to 10% in Ezanno et al. (2022), and in our study from 
100% to 70% or 30%. For the early culling scenario, they assumed that 
10%, 25%, or 50% of the test positive IM and IH cows were randomly 

chosen to be culled within one month after detection, while in our study 
100% of the test positive IH cows were culled within one month after 
detection. Despite these differences, the effect of these within-herd 
measures combined with risk-based trading in an Irish context was 
found to be very similar to those in France. 

In this study, we chose to limit the simulated period to the ten years 
for which we had data. Theoretically, we could have extended the 
simulated period to see whether an equilibrium would be reached for 
herd prevalence, the distribution of herds over the four statuses, etc. 
However, even though this is a simulation study, real data from 2009 to 
2018 was used to simulate animal movements between herds, to simu-
late the number of births per week, and to calculate the exit rates. 
Extending the simulated period beyond these ten years could be ach-
ieved by duplicating the data from 2009 to 2018. But a choice must be 
made on which years to duplicate. Data from 2009 might not be 
representative for 2019 given that cattle numbers have increased since 
2009, i.e., from 6.6 million in 2010 to just over 7.3 million in 2020 
(Anon, 2020). Duplicating data from 2018 only, could be another option 
because it is the most recent. Irrespective of which years are duplicated, 
one should be very careful when interpreting the results of an extended 
simulation since they might not be accurate. For each herd, herd size is 
calibrated once at the start of the simulations in 2009. Over time, 
however, simulated herd size starts to deviate from actual herd size due 
to missing data, under reporting, etc. (Biemans et al., 2022, additional 
file 3). When running the model for a period longer than ten years, 
especially when using data from another year, the discrepancy between 
simulated and actual herd size will only grow. Because we cannot be 
certain that the results obtained in that case are still accurate, we choose 
to restrict simulated period to the ten years for which we had data. 

In our study, Johne’s assurance status was defined based on an in-
dicator value for the confidence of freedom from infection. Based on this 
indicator, four Johne’s assurance statuses are distinguished, A: ≥ 0.7 – 
1.0, B: ≥ 0.3 – < 0.7, C: > 0.0 – < 0.3, and D: 0.0. At the start of the 
simulations all herds started with status A, based on test results and the 
number of animals introduced over time, herds were distributed over all 

Table 3 
Infectious trade movements between pairs of Johne’s assurance statuses. Numbers shown are for one representative replicate of the scenario.  

A. No risk-based trading (rI)   

Destination Johne’s assurance status   

A B C D Outside  Total 
Source 

Johne’s 
assurance 
status 

A 505 243 71 200 1764  2783 
B 133 171 42 216 1982  2544 
C 100 81 73 588 3380  4222 
D 3144 2439 1762 21,190 127,968  156,503 
Outside 3169 2609 2083 20,876 0  28,737         

Total 7051 5543 4031 43,070 135,094  194,789 
B. Risk-based trading in the metapopulation only (rII)   

Destination Johne’s assurance status   
A B C D Outside  Total 

Source 
Johne’s 
assurance 
status 

A 515 228 38 62 1674  2517 
B 13 259 91 409 2118  2890 
C 5 23 105 978 3163  4274 
D 304 322 469 23,788 126,677  151,560 
Outside 3421 2677 2068 19,710 0  27,876         

Total 4258 3509 2771 44,947 133,632  189,117  

C. Risk-based trading in the metapopulation and of external purchases (rIII)   
Destination Johne’s assurance status   
A B C D Outside  Total 

Source 
Johne’s 
assurance 
status 

A 460 172 58 35 1521  2246 
B 0 341 82 191 1702  2316 
C 0 0 106 361 1803  2270 
D 0 0 0 26,494 122,897  149,391 
Outside 1150 1192 575 16,074 0  18,991         

Total 1610 1705 821 43,155 127,923  175,214  
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statuses. However, at the end of the simulations the number of herds per 
status was far from equal, with the majority of herds having status A, 
followed by status D (Fig. 1). It would be worthwhile to investigate the 
need for four different statuses for risk-based trading, or whether three 
statuses (A, B+C, D) would suffice. An advantage of merging statuses B 
and C is the increase in trading options for herds with status C, possibly 
resulting in a reduced number of movements that need to be redirected. 
However, the risk of merging these statuses is an increase in herd 
prevalence. The number and percentage of infectious animals sold by 
herds with status C is relatively high (Table 3) especially given that the 
percentage of herds with this status is relatively low (Fig. 1). Another 
option could be splitting status D into several classes based on within- 
herd prevalence. In France, risk-based trading based on within-herd 
prevalence was found to reduce the proportion of infected herds and 
the number of newly infected herds over a nine-year period, especially 
when targeting herds that persistently have a low prevalence (Ezanno 
et al., 2022). Defining Johne’s assurance status based on confidence of 

freedom combined with within-herd prevalence might reduce herd 
prevalence even further. 

Under the scenario risk-based trading in the metapopulation only 
(rII), risk-based trading was optional. We assumed that a herd preferred 
to buy from a low-risk herd, but if this was not possible would buy from a 
high-risk herd. If risk-based trading would be optional, money would 
also play a role. Farmers might be willing to accept the risk of intro-
ducing Map if the animals from herds with a lower status were less 
expensive than animals from herds with an equal or better status 
(Bennett and Balcombe, 2012). Some farmers may decide to choose 
wealth over health, paying a lower price and accepting the risk of 
introduction of infection, while others might choose health over wealth, 
paying a higher price but minimizing this risk (Colman et al., 2020). The 
trading strategy a farmer chooses to follow will affect their trading 
behaviour, which will in turn affect the herd prevalence over time. 
Whether this divergence in trading strategies occurs depends on the 
burden of adverse health effects that a farmer is willing to accept before 

Fig. 4. In-degree and out-degree per herd for three risk-based trading scenarios. Under each scenario, for each herd the in-degree (A and C) and out-degree (B and D) 
were calculated yearly as an average over 10 replicates and this yearly average was subsequently averaged over the ten years. Each point represents one herd. Points 
on the line have the same in-degree/out-degree with and without risk-based trading. Points above the line have a higher in-degree/out-degree with risk-based trading 
compared to no risk-based trading. Points below the line have a lower in-degree/out-degree with risk-based trading compared to no risk-based trading. 
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seeking better trading options (Colman et al., 2020). 
Under the risk-based trading scenarios, spatial distance between 

trading herds was not taken into account. This might have led to animals 
being moved over larger distances than observed in the data. In Ireland, 
66% of animal movements were between herds located less than 50 km 
from each other (Tratalos et al., 2020). Whether farmers are willing to 
trade over larger distances to reduce infection risk could depend on the 
costs (Bennett and Balcombe, 2012; Colman et al., 2020). Future work 
on risk-based trading between dairy herds in Ireland could consider 
taking spatial distribution, costs of risk-based trading, and establishing 
systems to share status information between trading partners into 

account as well. 
For all reference risk-based trading scenarios, and the combinations 

of these scenarios with within-herd measures, the average herd preva-
lence after ten years was lower while the average within-herd preva-
lence was higher with more intense risk-based trading (Fig. 3). For 
example, under the no risk-based trading (rI) scenario, herd prevalence 
was 49.9% and average within-herd prevalence was 12.7% after ten 
years. In contrast, the scenario with risk-based trading in the meta-
population and of external purchases (rIII), herd prevalence after ten 
years was 26.3% and average within-herd prevalence was 17.5%. Risk- 
based trading is thus very effective in preventing spread between herds 
but does not prevent spread within herds. In scenario rI (no risk-based 
trading), 49.9% of the animals that entered a herd with status D came 
from a herd with status D, whereas the equivalent figure in scenario rIII 
(with risk-based trading) was 61.4% (Table 3). Thus, risk-based trading 
leads to increased trade between infected herds (status D). These herds 
are selling and buying infected animals, and are unable to reduce 
infection through trade, leading to an increased average within-herd 
prevalence after ten years compared to no risk-based trading. This in-
crease in average within-herd prevalence can be prevented by 
combining risk-based trading with within-herd measures. For example, 
when risk-based trading in the metapopulation and of external pur-
chases was combined with improved herd hygiene (e70-III), herd 
prevalence after ten years was 25.9% which is similar to the 26.3% with 
risk-based trading only (rIII), and average within-herd prevalence was 
13.6% which is close to 12.7% without risk-based trading (rI). 

Improving herd hygiene and early culling of highly infectious cows 
were found to be very effective within-herd measures, having positive 
effects on both herd and within-herd prevalence. Several studies have 
already shown the positive effects of improved herd hygiene and early 
culling (Doré et al., 2012; Donat et al., 2016; Wolf et al., 2016; Beaunée 
et al., 2017; McAloon et al., 2017; Biemans et al., 2021). Combining 
these two measures has been shown to be even more effective (Konboon 
et al., 2018; Ezanno et al., 2022). Whether this is also the case in an Irish 
context, especially when combined with risk-based trading, could be a 
topic for further exploration. 

We found that an increase to the duration of the latent period had a 
positive effect on within-herd prevalence but no effect on herd preva-
lence (Fig. 3). Relevant to this, we assumed that reduced stress in cows 
could result in a slower progression of disease from the latently infected 
stage to the moderately infectious stage. In mouflon, stress due to 
movement might have contributed to the start of Map shedding in ani-
mals that were previously diagnosed as MAP-negative (Pribylo-
va-Dziedzinska et al., 2014). In cattle, onset of clinical symptoms may 
occur due to stress induced by calving, feed changes, or movement 
(Animal Health Diagnostic Animal Health Diagnostic Center, 1999). 
However, a relation between calving associated stress and Map shedding 
levels was not observed (Kauffman et al., 2014). 

The model used in this study was developed to simulate transmission 
between dairy herds. Therefore, only herds belonging to one of six dairy 
herd types (Brock et al., 2021) were included in the model (Biemans 
et al., 2022): typical dairy herds (D), mixed herds (M), dairy herds that 

Fig. 5. Herd prevalence after 10 years versus the percentage of movements 
redirected for all 21 scenarios (Table 2). Herd prevalence was calculated as the 
percentage of herds in which at least one infected animal (of any age) is present. 

Fig. 6. Percentage of false negative herds over time. In a false negative herd, 
infected animals are present but they are not identified by a test. 

Table 4 
Number of herds per herd type with movements redirected; for the scenario with risk-based trading in the metapopulation only (rII).  

Herd 
type 

# total # herds with > 0 outgoing 
movements redirected (% of herd 
type) 

# herds with > 10 outgoing 
movements redirected (% of herd 
type) 

# herds with > 0 incoming 
movements redirected (% of herd 
type) 

# herds with > 10 incoming 
movements redirected (% of herd 
type) 

D 6299 5220 (82.9) 1577 (25.0) 4199 (66.7) 1004 (15.9) 
M 3509 1988 (56.7) 179 (5.1) 2740 (78.1) 742 (21.1) 
DRm 2364 1584 (67.0) 368 (15.6) 1674 (70.8) 448 (19.0) 
DnR-C 799 699 (87.5) 322 (40.3) 593 (74.2) 106 (13.3) 
DnR- 

nC 
380 297 (78.2) 55 (14.5) 346 (91.1) 173 (45.5) 

SdR 2 2 (100.0) 1 (50.0) 2 (100.0) 2 (100.0) 
Total 13,353 9.790 (73.3) 2502 (18.7) 9554 (71.5) 2475 (18.5)  
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also rear their male calves (DRm), non-rearing dairy herds (DnR-C and 
DnR-nC), and herds that rear dairy females (SdR). We observed that for 
87.5% of the source DnR-C herds and for 74.2% of the destination DnR-C 
herds at least one animal movement was redirected (Table 4). Further-
more, for 40.3% of the source DnR-C herds, more than ten movements 
were redirected. DnR-C herds sell most of their calves, with female dairy 
calves being moved to external contract rearing herds, e.g., SdR herds. 
The female calves return to their birth herd as pregnant heifers, a process 
known as contract rearing. Since DnR-C herds have a contract with SdR 
herds to rear their young stock, it is very unlikely that they will send 
their calves to a different farm when a movement is not allowed because 
of risk-based trading. One solution could be to exclude from risk-based 
trading only those movements that are related to such contracts. 
Another option is to exclude DnR-C and SdR herds from risk-based 
trading altogether. However, this might have an effect on herd preva-
lence because DnR-C and SdR herds have a higher out-degree and 
out-strength compared to all other herd types (Biemans et al., 2022). 
Excluding these high out-strength herds would lead to a scenario similar 
to subjecting only the 50% of herds with a low out-strength to risk-based 
trading (l-II), which was found to be completely ineffective (Fig. 5). 
Thus, if risk-based trading were to be implemented, a solution would 
need to be found for herds that engage in contract rearing. 

5. Conclusion 

We used a stochastic individual-based and between-herd mechanistic 
epidemiological model to simulate Map transmission between dairy 
herds in Ireland. We used this model to assess whether within-herd 
measures and redirecting trade movements based on Johne’s assur-
ance status could effectively control Map spread. Risk-based trading 
effectively reduced the increase in herd prevalence over a 10-year period 
in Ireland. However, for risk-based trading to be effective, a high per-
centage of dairy herds must participate. Combining risk-based trading 
with within-herd measures was even more effective. Improving herd 
hygiene and early culling of highly infectious cows were found to be the 
most important within-herd measures affecting both herd and within- 
herd prevalence. 
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