(19) United States
 (12) Patent Application Publication Preuss et al.
 (54) PLANT CHROMOSOME COMPOSITIONS AND METHODS
 (75) Inventors: Daphne Preuss, Chicago, IL (US); Gregory P. Copenhaver, Chapel Hill, NC (US); Kevin C. Keith, Chicago, IL (US)

(10) Pub. No.: US 2005/0266560 A1
(43) Pub. Date:

Dec. 1, 2005

Correspondence Address:
MARSHALL, GERSTEIN \& BORUN LLP
233 S. WACKER DRIVE, SUITE 6300 SEARS TOWER
CHICAGO, IL 60606 (US)

Assignee: UNIVERSITY OF CHICAGO, Chicago, IL (US)
(21) Appl. No.: 11/117,187
(22) Filed:

Apr. 28, 2005
Related U.S. Application Data
(63) Continuation of application No. 09/531,120, filed on Mar. 17, 2000.
(60) Provisional application No. 60/125,219, filed on Mar. 18, 1999. Provisional application No. 60/127,409, filed on Apr. 1, 1999. Provisional application No. 60/134,770, filed on May 18, 1999. Provisional application No. 60/153,584, filed on Sep. 13, 1999. Provisional application No. 60/154,603, filed on Sep. 17, 1999. Provisional application No. $60 / 172,493$, filed on Dec. 16, 1999.

Publication Classification

Int. Cl. ${ }^{7}$ \qquad C12N 15/82; C12N 15/81; C12N 15/79
U.S. Cl. 435/419; 435/320.1; 435/252.3; 435/254.11; 800/278

(57)

ABSTRACT

The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.

Patent Application Publication Dec. 1, 2005 Sheet 3 of 183 US 2005/0266560 A1

Patent Application Publication Dec. 1, 2005 Sheet 4 of 183 US 2005/0266560 A1

	A	B ${ }^{\text {a }}$	C
1	T1-1	PLA391	tetrad seed stock
2	T1-2	PLA392	tetrad seed stock
3	T1-3	PLA393	tetrad seed stock
4	T1-4	PLA394	tetrad seed stock
5			
6	T2-1	PLA 395	tetrad seed stock
7	T2-2	PLA396	tetrad seed stock
8	T2-3	PLA397	tetrad seed stock
9	T2-4	PLA398	tetrad seed stock
10			
11	T3-1	PLA399.	tetrad seed stock
12	T3-2	PLA400	tetrad seed stock
13	T3-3	PLA401	tetrad seed stock
14	T3-4	PLA402	tetrad seed stock
15			
16	T4-1	PLA403:	tetrad seed stock
17	T4-2	PLA404	tetrad seed stock
18	T4-3	PLA405	tetrad seed stock
19	T4-4	PLA406	tetrad seed stock
20			
21	T5-1	PLA407	tetrad seed stock
22	T5-2	PLA408	tetrad seed stock
23	T5-3	PLA409	tetrad seed stock
24	T5-4	PLA410	tetrad seed stock
25			
26	T6-1	PLA411	tetrad seed stock
27	T6-2	PLA412	tetrad seed stock
28	T6-3	PLA413	tetrad seed stock
29	T6-4	PLA414	tetrad seed stock
30			

FIG. 4A

	A	B	C
31	T7-1	PLA415	tetrad seed stock
32	T7-2	PLA416	tetrad seed stock
33	T7-3	PLA417	tetrad seed stock
34	T7-4	PLA418	tetrad seed stock
35			
36	T8-1	PLA419	tetrad seed stock
37	T8-2	PLA420	tetrad seed stock
38	T8-3	PLA421	tetrad seed stock
39			
40	T10-1	PLA422	tetrad seed stock
41	T10-2	PLA423	tetrad seed stock
42	T10-3	PLA424	tetrad seed stock
43			
44	T11-1	PLA425	tetrad seed stock
45	T11-2	PLA426	tetrad seed stock
46	T11-3	PLA427	tetrad seed stock
47			
48	T12-1	PLA428	tetrad seed stock
49	T12-2	PLA429	tetrad seed stock
50	T12-3	PLA430	tetrad seed stock
51			
52	T13-1	PLA431	tetrad seed stock
53	T13-2	PLA432	tetrad seed stock
54	T13-3	PLA433	tetrad seed stock
55			
56	T14-1	PLA434	tetrad seed stock
57	T14-2	PLA435	tetrad seed stock
58	T14-3	PLA436	tetrad seed stock
59			
60	T18-1	PLA437	tetrad seed stock

FIG. 4B

	A	B	C	
61	T18-2	PLA438	tetrad	seed stock
62	T18-3	PLA439	tetrad	seed stock
63				
64	T20-1	PLA440	tetrad	seed stock
65	T20-2	PLA441	tetrad	seed stock
66	T20-3	PLA442	tetrad	seed stock
67				
68	T27-1	PLA443	tetrad	seed stock
69	T27-2	PLA444	tetrad	seed stock
70	T27-3	PLA445	tetrad	seed stock
71				
72	T28-1	PLA446	tetrad	seed stock
73	T28-2	PLA447	tetrad	seed stock
74	T28-3	PLA448	tetrad	seed stock
75				
76	T29-1	PLA449	tetrad	seed stock
77	T29-2	PLA450	tetrad	seed stock
78	T29-3	PLA451	tetrad	seed stock
79				
80	T30-1	PLA452	tetrad	seed stock
81	T30-2	PLA453	tetrad	seed stock
82	T30-3	PLA454	tetrad	seed stock
83	T30-4	PLA455	tetrad	seed stock
84				
85	T31-1	PLA456	tetrad	seed stock
86	T31-2	PLA457	tetrad	seed stock
87	T31-3	PLA458	tetrad	seed stock
88				
89	T32-1	PLA459	tetrad	seed stock
90	T32-2	PLA460	tetrad	seed stock

FIG. 4C

	A	B	C
91	T32-3	PLA461	tetrad seed stock
92	T32-4	PLA462	tetrad seed stock
93			
94	T33-1	PLA463	tetrad seed stock
95	T33-2	PLA464	tetrad seed stock
96	T33-3	PLA465	tetrad seed stock
97			
98	T34-1	PLA466	tetrad seed stock
99	T34-2	PLA467	tetrad seed stock
100	T34-3	PLA468	tetrad seed stock
101	T34-4	PLA469	tetrad seed stock
102			
103	T35-1	PLA470	tetrad seed stock
104	T35-2	PLA471	tetrad seed stock
105	T35-3	PLA472	tetrad seed stock
106	T35-4	PLA473	tetrad seed stock
107			
108	T36-1	PLA474	tetrad seed stock
109	T36-2	PLA475	tetrad seed stock
110	T36-3	PLA476	tetrad seed stock
111	T36-4	PLA477	tetrad seed stock
112			
113	T37-1	PLA478	tetrad seed stock
114	T37-2	PLA479	tetrad seed stock
115	T37-3	PLA480	tetrad seed stock
116	T37-4	PLA481	tetrad seed stock
117			
118	T38-1	PLA482	tetrad seed stock
119	T38-2	PLA483	tetrad seed stock
120	T38-3	PLA484	tetrad seed stock

FIG. 4D

	A	B	C		
121	T38-4	PLA485	tetrad seed stock		
122					
123	T39-1	PLA486	tetrad seed stock		
124	T39-2	PLA487	tetrad seed stock		
125	T39-3	PLA488	tetrad seed stock		
126					
127	T40-1	PLA489	tetrad seed stock		
128	T40-2	PLA490	tetrad seed stock		
129	T40-3	PLA491	tetrad seed stock		
130					
131	T41-1	PLA492	tetrad seed stock		
132	T41-2	PLA493	tetrad seed stock		
133	T41-3	PLA494	tetrad seed stock		
134	T41-4	PLA495	tetrad seed stock		
135					
136	T42-1	PLA496	tetrad seed stock		
137	T42-2	PLA497	tetrad seed stock		
138	T42-3	PLA498	tetrad seed stock		
139					
140	T43-1	PLA499	tetrad seed stock		
141	T43-2	PLA500	tetrad seed stock		
142	T43-3	PLA501	tetrad seed stock		
143					
144	T44-1	PLA502	tetrad seed stock		
145	T44-2	PLA503	tetrad seed stock		
146	T44-3	PLA504	tetrad seed stock		
147	T44-4	PLA505	tetrad seed stock		
148		P45-1	PLA506		tetrad seed stock
:---					
149					

FIG. $4 E$

	A	B	C
151	T45-3	PLA508	tetrad seed stock
152	T 45-4	PLA509	tetrad seed stock
153			
154	T46-1	PLA510	tetrad seed stock
155	T46-2	PLA511	tetrad seed stock
156	T46-3	PLA512	tetrad seed stock
157	T46-4	PLA513	tetrad seed stock
158			
159	T48-1	PLA514	tetrad seed stock
160	T48-2	PLA515	tetrad seed stock
161	T48-3	PLA516	tetrad seed stock
162			
163	T49-1	PLA517	tetrad seed stock
164	T49-2	PLA518	tetrad seed stock
165	T49-3	PLA519	tetrad seed stock
166	T49-4	PLA520	tetrad seed stock
167			
168	T52-1	PLA521	tetrad seed stock
169	T52-2	PLA522	tetrad seed stock
170	T52-3	PLA523	tetrad seed stock
171			
172	T53-1	PLA524	tetrad seed stock
173	T53-2	PLA525	tetrad seed stock
174	T53-3	PLA526	tetrad seed stock
175			
176	T55-1	PLA527	tetrad seed stock
177	T55-2	PLA528	tetrad seed stock
178	T55-3	PLA529	tetrad seed stock
179			
180	T56-1	PLA530	tetrad seed stock

FIG. 4F

	A	B	C
181	T56-2	PLA531	tetrad seed stock
182	T56-3	PLA5 32	tetrad seed stock
183	T56-4	PLA533	tetrad seed stock
184			
185	T57-1	PLA534	tetrad seed stock
186	T57-2	PLA535	tetrad seed stock
187	T57-3	PLA536	tetrad seed stock
188	T57-4	PLA537	tetrad seed stock
189			
190	T58-1	PLA538	tetrad seed stock
191	T58-2	PLA539	tetrad seed stock
192	T58-3	PLA540	tetrad seed stock
193			
194	T60-1	PLA541	tetrad seed stock
195	T60-2	PLA542	tetrad seed stock
196	T60-3	PLA543	tetrad seed stock
197	T60-4	PLA544	tetrad seed stock
198			
199	T61-1	PLA545	tetrad seed stock
200	T61-2	PLA546	tetrad seed stock
201	T61-3	PLA547	tetrad seed stock
202	T61-4	PLA548	tetrad seed stock
203			
204	T62-1	PLA549	tetrad seed stock
205	T62-2	PLA550	tetrad seed stock
206	T62-3	PLA551	tetrad seed stock
207			
208	T63-1	PLA552	tetrad seed stock
209	T63-2	PLA553	tetrad seed stock
210	T63-3	PLA554	tetrad seed stock

FIG. 4G

	A	B	C
211			
212	T64-1	PLA555	tetrad seed stock
213	T64-2	PLA556	tetrad seed stock
214	T64-3	PLA557	tetrad seed stock
215	T64-4	PLA558	tetrad seed stock
216			
217	T66-1	PLA559	tetrad seed stock
218	T66-2	PLA560	tetrad seed stock
219	T66-3	PLA561	tetrad seed stock
220			
221	T68-1	PLA562	tetrad seed stock
22.2	T68-2	PLA563	tetrad seed stock
223	T68-3	PLA564	tetrad seed stock
224			
225	T69-1	PLA5 65	tetrad seed stock
226	T69-2	PLA566	tetrad seed stock
227	T69-3	PLA567	tetrad seed stock
228			
229	T70-1	PLA5 68	tetrad seed stock
230	T70-2	PLA569	tetrad seed stock
231	T70-3	PLA570	tetrad seed stock
232			
233	T71-1	PLA571	tetrad seed stock
234	T71-2	PLA572	tetrad seed stock
235	T71-3	PLA573	tetrad seed stock
236			
237	T72-1	PLA574	tetrad seed stock
238	T72-2	PLA575	tetrad seed stock
239	T72-3	PLA576	tetrad seed stock
240	T72-4	PLA577	tetrad seed stock

FIG. 4H

	A	B	C
241			
242	T73-1	PLA578	tetrad seed stock
243	T73-2	PLA579	tetrad seed stock
244	T73-3	PLA580	tetrad seed stock
245			
246	T74-1	PLA581	tetrad seed stock
247	T74-2	PLA582	tetrad seed stock
248	T74-3	PLA583	tetrad seed stock
249			
250	T75-1	PLA5 84	tetrad seed stock
2.51	T75-2	PLA585	tetrad seed stock
252	T75-3	PLA586	tetrad seed stock
253			
254	T78-1	PLA587	tetrad seed stock
255	T78-2	PLA588	tetrad seed stock
256	T78-3	PLA589	tetrad seed stock
257			
258	T79-1	PLA590	tetrad seed stock
259	T79-2	PLA591	tetrad seed stock
260	T79-3	PLA592	tetrad seed stock

FIG. 41

Chromosome \#	Marker name	name used in '99 manuscript	Marker Type	Public?
1	nga59		SSLP	YES
1	nga63		SSLP	YES
1	m59		CAPS (BstU I)	YES
1	g2395		CAPS (Xba I)	YES
1	m235		CAPS (Hind III)	YES
1	athZFPG		SSLP	YES
1	SO392		SSLP	YES
1	UFO		CAPS (Taq I)	YES
1	Cxc 750		SSLP	NO
1	7G6		CAPS (Acc I)	NO
1	AlG1		CAPS (Mnl I)	NO
1	ml63		CAPS (Nla III)	NO
1	ml342	ml342	CAPS (Hinf I)	NO
1	T22C23-t7	T22C23-t7	CAPS (Mnl I)	NO
1	T5D18-sp6		CAPS (Acl I)	NO
1	F16K23-sp6	F16K23-sp6	SSLP	NO
1	T19K14-sp6		SSLP	NO
1	F5L13-sp6	F5L13-sp6	CAPS (Cac8 I)	NO
1	T3L4-sp6	T3L4-sp6	CAPS (Mae III)	NO
1	T3P8-sp6	T3P8-sp6	CAPS (Hae III)	NO
		FIG. 5A-1		

CGCCAAAGACTACGAAATGATC GGGTCTGGTTATGCCGTGAAG
AAATGGCCAACGATCAGAAGAATAG
CAAGTCGCAAACGGAAAATG
GAAGTACAGCGGCTCAAAAAGAAG GTTGACTTGTATTTGATTTCTTTTTC
AAGATAAAGCAGCGAATGTGTC
TACCAGCATACAGGAGAACG
TCCATACCTAAGTTCCACAAG
GAAGTGCGGATCTGTTTGAAG
ATTCATGAGTGGAAAGGGTAGAG
AAGCTTGATTCTGTGGTTTTG

ATAATAGATAAAGAGCCCCACAC GTTTTACTTAGTCCAATGGTAG GAAGTCCGGCATGTTATCACCCAAG AAACTACGCCTAACCACTATTCTC
TTGCTGCCATGTAATACCTAAGTG CGAGTGATTTCCTTTTGCTACC CGAAAGCCGTAACTAGATAATAAG CCTGATTGCAGTTTTATTTACC AGGGGCGAGTAAATCAATC ATAAAAAGCCGGAGATGGTTG CTCAGCCAAAGAATCAAGTAGAG AGAATCCTTAGCCGTCCTG

FIG. 5A-2

1	T10N9-sp6	T10N9-sp6	SSLP	NO
1	T27K12		SSLP	YES
1	jcc3		CAPS (N1a III)	NO
1	GPCml19		CAPS (Fnu4H I)	NO
1	nga280		SSLP	YES
1	ngal28		SSLP	YES
1	ETR		CAPS (NCO I)	YES
1	TAG1		SSIP	YES
1	AthATPASE		SSIP	YES
1	nga692		SSLP	YES
2	ngal145		SSLP	YES
2	m246		CAPS (Mae III)	YES
2	m1310		SSLP	NO
2	F5J15-sp6	F5J15-sp6	CAPS (Fhu4h I)	NO
2	F28M8-t7		CAPS (Mse I)	NO
2	F16D14-t7		SSLP	NO
2	T22D4-t7	T22D4-t7	CAPS (Hinf I)	NO
2	T2015-t7		SSLP	NO
2	F9A16-t7	F9A16-t7	SSLP	NO
2	m1421b	ml421b	CAPS (Hae III)	NO
2	F8P2-t7	F8P2-t7	SSIP	NO
2	T15D9-19	T15D9	SSLP	NO

FIG. 5B-1

GCCTTGGATGATCAGTGGTG

GGCTACTGGTCAAATCATTC GCGGCTGATGATCTCCACCTC

AGCCCTTGGATCATATTCTTTAGC

GAATCTTTGCAAACGAGTGG
TTACCCCGCAGGAAAAAGTATG

ACTTCATCACTTGCGGGACTG ACCGGAAGTGTGGCTGTTG ATGCCTATTTAGCCTTTTTATAG TGAGAGGTGCAAAATCATAACAG GGCCGCGTAAGAGGAGAC CGTTCGAAGCGTTTGTTC AAGTTGATTTTCTACTGTTTATTTAG TAACGTTCCGAGATGAGG CATCTCCATGAAGGTGAATAG GAGCCCTTCTATGAGCCTACCTGTTC

GGCCCAAGAAGCCCACAACAC
CTATTCTAGAAGATTGTTAGGAGTTAC
CGTCTGTATGGATTCGTAGC
ACCGCGTCGTTGGAGG
AAACTGATATTGTAGATGTGTATTCG ATTAGAGTTTTGCGTAGAAGATGG
CATCGTCATATGGGTTGTTC
AACTCTGTACGTGGTGGA
AAGTTATGCAAAATGTTATGACG
AGAGATCCCCTGTTACTAAAGCCTATTCTG

FIG. 5B-2

T6A13-sp6	T6A13-sp6
T13H18-t7	T13H18-t7
T13H18-sp6	
T10J7-sp6	T10J7-t7
T17A11-t7	
GPC6	
m1398	
THY1B	
PhyB	
nga1126	
nga361	
nga168	
nga32	
nga172	
nga162	
ARLim	
GAPA	atpox
GL1	T25C10-sp6
atpox'	T9G9-sp6
T25C10-sp6	
T27C7-sp6	
T9G9-sp6	

SSLP	NO
SSLP	NO
SSLP	NO
SSLP	NO
CAPS (Msp I)	NO
SSLP	NO
CAPS (Mn I)	NO
CAPS (Rsa I)	NO
CAPS (Xho I)	YES
SSLP	YES
SSLP	YES
SSLP	YES
SSLP	YES
SSLP	YES
SSLP	YES
CAPS (EcoR I)	YES
SSLP	YES
CAPS (Taq I)	YES
CAPS (MSp I)	NO
SSLP	NO
SSLP	NO
SSLP	NO

FIG. 5C-1

ATATTTCGTCGATCGTGTTTG
GGTAACAGCCTTCACTCGTC
TCTTTCCCTTAATCTATTTGTTGTG TCTCTGTGCTTTCTCTTTCCTGAC TTGTTTTTCTAGGTTTTGTTGTAAG AGTCGATGTCTAGGCTCTTC
ACTAAGGCCTGTGTTGATGTTTCTC GGCGACCTTGGACCTGTATACG

GTGCCTCAGGGACTTCAC
AAAGACTTGTATTTGGGATTTG
AAACGATTGTTTTCCTGTAGTG
GCAATGCTACCGCTCTGATAG
ATGCTGCGATGTTTGTAAGG
CTTCCATTTCTTGATTTAGTTC
AACCGCTTCCCATTCGTCTTC
AACCGCCATTTTCATTTCTATC

TAGGGGACATATCAAACCAAC
ATGCCTAACTATTCGCTGAC
GGCATTAATTGGGAAGGTC

GTCTAAAACCATCTTCACCATAAT
TTCTGTAGTTCTTTGTGAGTGC
TATAACATCAAAAGCGGTCATCAG

FIG. 5C-2

GCATTAAAGACAAAAAGCCC
TTCGGGAATCATGGTCTACAAG
CAAGCTTCATGGGGACTAG
CTAATTGTAACGGAGAAGAGAG
CAAATGATGTCTGGTCTATCTTC
ATGATCAAAGGGGGACGAGG
GAGACAGAGGATTTGGAAC
CCCCTCCCGCCCTAAACCTAC

CGTTGACCCCGAGAAGATTAC TGTCACATACACGGTTTCTCTTAG TAATACGGGACAATCTACAACAC AAGCATGTTACGTGGGATTG AATTTAAAAGGAATCAGAGAACTAC AAGGAAACACCACCAAACGAAAAC GAAACCCTCTCCTCAAAC TTCCGCTACATGGCCTTCTACCTTG

ACATCCGGCCTTCCCATTG AAACATGCTGCAGCTTGATTAG ATCATGGGGACGCTGCTTTTC ATGCGCAGAAGAGACGATGATAG CTTTGGGCGATGTAGGAGTAG TGTGGGCAGGGTAATGGATG CCGCGAGATGGATGTGATGAC TTCCCCCGAGGCGACTGAC GTGGCACGATCGTATGAGTTAGC

FIG. 5D-2

4	T7M24.30k13	T7M24.3	SSLP	NO
4	T25H8.30k8		SSLP	NO
4	T25H8.30k7		SSLP	NO
4	T24H24.30k3	T24H24.3	SSLP	NO
4	T27D20.C4	T27D20.4	CAPS (Dde I)	NO
4	mi306	mi306	CAPS (Tal I)	NO
4	ngal2		SSLP	YES
4	T15D16-sp6	T15D16-t7	CAPS (Mse I)	NO
4	mi87	mi87	SSLP	NO
4	F14G16-t7	F14G16-t7	SSLP	NO
4	F13H14-t7	F13H14	SSLP	YES
4	mi167	mi167	SSLP	NO
4	T25J3-sp6		SSLP	NO
4	T3F12.0		CAPS (Bgl II)	NO
4	HY4		CPAS (Rsa I)	YES
4	nga 8		SSLP	YES
4	ngal111		SSLP	YES
4	DET1		SSLP	YES
4	COP9		CAPS (Apo I)	YES
4	SC5		CAPS (Acc I)	YES
4	g4539		CAPS (Hind III)	YES
4	AG		CAPS (Xba I)	YES
4	ngal139	:	SSLP	YES
4	nga1107		SSLP	YES

FIG. 5E-1

CTCTCATCGACCCTCACTCTCAAG GGCCTCCATGCTACCAACAAC TGGCAGCAGAGTTATTTGACGAG GGCCTGCCCATAAACCTG AAACGCCGCCAAAATCAGAAC CTGCGAGCGACGGTCAATG

AATCAATTGGTTTCTACTTTTTAG TTTGCACCGCCTATGTTACC
TCGACTAGATTTATTATTTCTCTCAG CCCAATTCCTTGCCACTAAG AGTGGACGCCTTCTTCAATGTG CTTCACGCTGCCTTCACTCTC
CAAAACCAAATCCGCGAAGAAC

AGTCCCAACAAAACCAAAAACATAAAC CACAAAATGCCACCCCTACTACC ATGCGCGACTGAAGGACACC CCGCTGTGGAACCTGAAAG ACAACCTTAGCCCGATCCATTC GCAGCCGTGTGGATGGAG

AACTCCGACTGAAGGTATAGC
GAGGACGTTTTGCAGAGTG
TTTGGCTTGACTCTGTGAAC
AAGAAGAAGAGGAGGAAGAAGATGTC
TGGTCCGTCGTAGGGCAAC
GATACGCTCGTTCCCACTCG
AGTGGCCAGCCTTCTTAACATACC

FIG. 5E-2

TTTGTGCAATTTATTAGGGTAG CCGTGGTCGAGAGTTGAGTTAGTC AGCTTCGATAACAAACTCACC AACGCTTATCCTCTTTCTCTTTTAC TCTCGTTCTGATGGCTCCTGTG CGACGAAGCAGTGGAGGAAC AGCTACTACCCGAATGTGAATC TAGGACGCAAATCAGAGAAG TTGGGCTGGCGTGGAATC GCTGCGAAGGCTGATGAAG CACCGACGTTATCTGGGAAAG GAGCGTGCTTTTGGAGTTTTG GACTCATATGTGGCGTTTTC

ATTTGCAGAAGTTGAAGTTGGTC ACCCGGAGTAGTTTTTCAGTGTTC AGAAGATAAATCAACTAAACAAAATG ACGGTTGCCCATCTTATCAGTG GTGTAACCGGTGATACTCTCGCC GCGAGAAAACGTGAAGAGATAG TTGGTGTGTTAAGAAGAGTGG CTAATCATGTGTCTTTAGGCTATC AGGGCAGAAAGCGTCAGG TCGCCGGGAAAAACAGTAAC AAAAGTTAGGTAGTAGGAAAGAAAGAAG AACCCTAGATCGCCCTTTTTTC AGGATTCACTGGCGGTTG

$\operatorname{Fin} A$

Patent Application Publication Dec. 1, 2005 Sheet 27 of 183 US 2005/0266560 A1

Patent Application Publication Dec. 1, 2005 Sheet 28 of 183 US 2005/0266560 A1

Patent Application Publication Dec. 1, 2005 Sheet 29 of 183 US 2005/0266560 A1

FIG. $7 D$

FIG. $7 E$

FIG. $7 F$

Patent Application Publication Dec. 1, 2005 Sheet 33 of 183 US 2005/0266560 A1

Plant
ARS
FIG. 7 II

FIG. 7J

Patent Application Publication Dec. 1, 2005 Sheet 36 of 183 US 2005/0266560 A1

FIG. 7L
Patent Application Publication Dec. 1, 2005 Sheet 37 of 183 US 2005/0266560 A1

FIG. 7M

FIG. $7 N$

FIG. 8A

FIG. 8B

FIG. 9
1)

FIG. 10

Patent Application Publication Dec. 1, 2005 Sheet 44 of 183 US 2005/0266560 A1

FIG. 11B

FIG. 11 C

FIG. 11D

FIG. $11 E$

FIG. 11F

FIG. 11G

Patent Application Publication Dec. 1, 2005 Sheet 53 of 183 US 2005/0266560 A1

FIG. 14A

FIG. 14B

Sequenced Clone	Marker name	Marker or Primer pair	Marker Location	marke prope posit	er erties, tion
T13E11	T13E11.01	primer	1755-2385	Lan \&	\& Col
T13E11	T13E11.30	primer	30628-31270	Lan \&	\& Col
T13E11	T13E11.48	primer	48187-48969	Lan \&	\& Col
T13E11	T13E11.63	primer	63886-64530	Lan \&	\& Col
T13E11	T13E11.78	primer	78190-78878	Lan \&	\& Col
T13E11	T13E11.93	primer	93907-94579	Lan \&	\& Col
F27C21	F27C21.18	primer	18383-19057	Lan \&	\& Col
F27C21	F27C21.02	primer	2570-3293	Lan \&	\& Col
F9A16	F9A16.71	primer	71978-72592	Lan \&	\& Col
F9A16	F9A16.53	primer	53253-53921	Dom	
F9A16	F9A16.38	primer	37116-37733	Dom	
F9A16	F9A16. 22	primer	22166-22889	Dom	
F9A16	F9A16.03		3308-4091	Lan \&	\& Col
T5M2	mito border	marker	17685	Dom	
T5E7	T5E7.23	primer	109092-109688	Lan \&	\& Col
T5E7	T5E7.73	primer	73460-74120	Lan \&	\& Col
T5E7	T5E7.58	primer	57942-58583	Lan \&	\& Col
T5E7	T5E7.40	primer	40913-41537	Lan \&	\& Col
T5E7	mito border	marker	13507	Dom	
T5E7	T5E7.02	primer	2919-3585	Lan \&	\& Col
FIG. 15A-1A					

Forward Primer
AGCGCTGGGATGGGTTGGTTG
CAGGTTGCGGTTACTACATGGGTTTCAG
AACCCCCGTAAATTAAACCACAC
ACGGCGGTTGAGAGGAGAAGC
AACAAAACAAATGCCAGGTCAGG
GTTACCCCGGTCCTGAGATTGAG
CAGGCGATTGTCTTTTATAGGCTGTAAG
ACAAAAGCCGAACTCGTGGAAG
AATGCTTTTGCGACTCTTTTGAC
CGCAGGCGGCTACTTGTTTG
CAAGGCGGGAAAACAACTC
GTATTTAGCATTATGTTAGTCTGTTAGTGG
GATCCAGCAACCTTAGCCTCCTTC
AAGGCATCAACGTTTGTGTG
ATTATTGGCTGCTGCACTTCTGTCAC
TCTCGGGAGTAGGGGCTTTGTTCTG
AGGGGGCTTACAAGAATGAAC
GTAGCCGGCTCAGTCTCATAACATC
CGAATTCCTTCAGATGATGC
AAATGGCAGAAGCAGAAGCAGGAATAG

Reverse Primer
TTAATGCGGCAATGGCTGAACAAG TATGCATGCGAGTTGGTGGAGGTAAAG CGATACGGGCATGACTCCAG CCCCAAACGCAGCAAGACAATC
CTCCGGTCGCAAAGTTACATACAG
TTGGGGAGCAGGATTTGATGTG TTTTGCTGGAACGGAGGGAGTAC TGCCTGGTTGATTATTGCTGAAAG TTGTTATTTTGGGTTTTGGGTTGG GATGAATTGATCCGTTGTTTTATGTCT AATTATTTTCAACGGCTCTTTACC GCTCCTTGCGTATTCTTCACC GATCCCTCAGTTCGAAATCAATCTTC CTACCAGGTAGGTGAAACG AGGGCCGGAGCTCGTATGGA CGGTCGCCCTCGTTCTGTATCTG TCGCCAATGAAAGAGGGTAG CTAAATCCCGAAAACCCAAACCAC
TTGCCTTACCTATACCCGAC
TAATGCAAGGGTCTCGTAATGGAAATG

FIG. 15A-2A

T12J2	T12J2.01	primer	1373-1998	Lan	\& Col
T12J2	T12J2.19	primer	19369-20038	Lan	\& Col
T12J2	T12J2.37	primer	37750-38359	Lan	\& Col
T12J2	ATEDA59	marker	50592	Lan	\& Col
T12J2	T12J2.56	primer	56455-57533	Lan	\& Col
T12J2	T12J2.73	primer	73911-74556	Lan	\& Col
T14C8	T14C8.1	primer	8862-9544	Lan	\& Col
T14C8	T14C8.6	primer	10837-11485	Lan	\& Col
T14C8	T14C8.7	primer	45334-46016	Lan	\& Col
T14C8	T14C8.3	primer	46672-47283	Lan	\& Col
T14C8	T14C8.8	primer	48833-49538	Lan	\& Col
T14C8	T14C8.9	primer	71115-71878	Lan	\& Col
T14C8	T14C8.5	primer	73841-74456	Lan	\& Col
T14C8	T14C8.4	primer	75442-76122	Lan	\& Col
F7B19	F7B19.1	primer	108-757	Lan	\& Col
F7B19	F7B19.12	primer	13831	Lan	\& Col
F7B19	F7B19.27	primer	27033	Lan	\& Col
F7B19	F7B19.2	primer	30189-30791	Lan	\& Col
F7B19	F7B19.43	primer	43142	Lan	\& Col
F7B19	F7B19.3	primer	55446-56209	Lan	\& Col
F7B19	F7B19.59	primer	59771	Lan	\& Col
F7B19	F7B19.4	primer	70859-71492	Lan	\& Col
F7B19	F7B19.77	primer	77633	Lan	\& Col
F7B19	F7B19.95	primer	95351	Lan	\& Col

FIG. 15A-1B

GTGTGGCCTCGTGTGACCTGAC CTGGCCCATCCCTTATCGGTTTAC
AССТСССССАСАСТTAAACGACACTG
TGAATGCTATGAAAGATGGATGAAAC
AATCGGGCTCGGTTGTGTAGAAAC
ACTTGTAGGCCCTTTGATGTTCTG
ACGAACCCGACGACCACTG
GACGGGTTGAAAGAAAGCACAG
CGACCATTCACGACCCATAC
ATAGCGTCAGCCCTCATTTCAG
CAAATGGGCGGAGGGGG
GGTGCGGGAGAACGATGAC
TTCCGCGCCCAAAAGGTG
AAGAAGGCTGGAAATTGGTTGAG
AAGGTCCGGCGGTGGTGAG
TAACGTCATCAGCGGTAGGAAAC
CCCCGCTGAACTGACTGACTACGAG
GCTCGTTGCGGTTGCTGTTC
CAGGGAAAGTGGTTGGATTGATG ATTTGTTGCCCATCGTCCTTC TTGAAGAATGCGCATAGCCGTAG AAAAACCGTGAGACCCATAAATG ATAACCGAAGAAGCCGAGAAATC TCGATTGCCAGCAGAGTCAGAAC

AGTTTGCTTCGTTGCTTGCTTATTATG AGCGCAATCAAGCTATCCCTACATA CTCAGAATCCCAAAACAGAGCCACAC AGACGGCTAGTGATTTGGTGG ATGGCGCAATCAAAAGCAATCC tGCTTTGTGTTGCTTTGATTATTCTATTAG ACGCCTTTGATTCCATTTCTTACC AGAAGATGATGGCAAGTTACGAAGAG AAGCCCATTCAAAAGAGTTAGGAGAG ACCTTTTGCTTGTATTTTTCGTG TGTGGCAAGTCATGGGTAAGGAG CCGGTTTCTGCGATATTTGGTTAG AGAGTCAAGCCAAGCAATAACAGG GAGCGGAAGTAGATGCAGAATGTC GGGTCGAGTGATGTGATTGAGTG TTACAAGCGAGAAAAGATGAGAAGC TCCGCCCACCGATAAGATACGAC CCGCGGTGGCTGCTTTTTAG TGCCTCTTCCGGAACTGGTG TTATCAATGTATTTCCCCTGTGTATC TCTGGGATGAAGAGAAAGAGAACTGTC TCCAAATCGCGAAAGTGACAG ATCCGGAGACGAAAATGAACTTAG tGGGGGCTTGTAAGGAGGAGTAAC

FIG. 15A-2B

F7B19	F7B19.5	primer	$98977-99658$	Dom?
F7B19	F7B19.6	primer	$112337-113039$	Lan \& Col
T15D9	T15D9.3	primer	2985	Lan \& Col
T15D9	T15D9.1	primer	$12299-12914$	Lan \& Col
T15D9	T15D9.19	MARKER	18991	LAST RECOMBINANT Col
T15D9	T15D9.2	primer	$37103-37728$	Lan \& Col
T15D9	T15D9.3a	primer	$52189-52811$	Col
T15D9	T15D9.55	primer	55134	Lan \& Col
T15D9	T15D9.73	primer	72993	Lan \& Col
T15D9	T15D9.4	primer	$73930-74552$	Lan \& Col
T15D9	T15D9.5	primer	$86724-87494$	Lan \& Col
T15D9	T15D9.93	primer	93763	Lan \& Col
F7K9	F7K9.3	primer	$21647-22276$	Lan \& Col
F7K9	F7K9.2	primer	$12216-12843$	Lan \& Col
F7K9	F7K9.1	primer	$3590-4226$	Lan \& Col
F12P23	F12P23.3	primer	$61772-62430$	Lan \& Col
F12P23	F12P23.5	primer	$44870-45511$	Lan \& Col
F12P23	F12P23.4	primer	$40880-41507$	Lan \& Col
F12P23	F12P23.2	primer	$22431-23107$	Lan \& Col
F12P23	F12P23.1	primer	$3352-4026$	Lan \& Col
T4D8	T4D8.5	primer	$81647-82250$	Lan \& Col
T4D8	T4D8.3	primer	$47146-47883$	Lan \& Col
T4D8	T4D8.2	primer	$21848-22453$	Lan \& Col
T4D8	T4D8.1	primer	$18915-19589$	Lan \& Col

FIG. 15A-1C

AGATGGGGTGCTATTCTTGTATG
AGGGCGAAACTTTGAGAGCAC
AGCGTCGGCGGTGTGGAG
GCTCCGCCATCTCCTCGTC
GAGCCCTTCTATGAGCCTACCTGTTC
ATGGGGTAATCGAATAGTGTGGTC
CGGAGAAAGTTGGGGGTTAGTTG
GCTGCGAACCCACACTTTGCTC
AACCGGTTGATAGTAGACGAGATG
GTAAGACGGAGCCCCTGAAG
TCGGAAAGGCTAGAGATGGGTAACTG
TTTGCGGATATTCTAAAGGTGATG.
GGATGCAATGCCCGTTATGATG
CAAAGCGGCCATCTCCTTC
ACTATGCGTGGGTGGCTTTGTG
AgCGAGGTTATCTATCAGGGTTG
CTTCATTTGCATCATCGTTATTAG
TACCCATGCCTTGACTGCTG
TCGTCGAACTAATTGGTGGGAAC
ACAATGGCAACAATGGGCTGATAG
CTCGGTCTGGTAATGTGAAGTGGT
GCCCGTCTGCCATCTCTATC
AAACTCGCCGCCTCGTGTAAC
CTCGTCTCATCCAAATCCGTCC

GCGGTCGAGTGATTTGCTGTAG TATCGGGTTTTGAAGAGGGAAGG TCCTGGCAAATTGTCTTCTCGTTG GAAGTCCCATGCCTATCCCTG AGAGATCCCCTGTTACTAAAGCCTATTCTG CCCTAGGGCATCCGTTTTTATCTC
GAGAGGTTTGGGTTGGGCTTGTAG ATGTTATCGTCGCCGCGTTTTATG TCCGGGGTTGCGATAGAG
AACATGTTAAAGCCAATACCCTCTC ATTGGACTATATGGGCCTCGTGAC TACTATTGCGCTGCTGTTGAGG TCGAGGGAGGATGCTGAGTATG
GCAATTCATACCGCCACATCTG
CAGGGGCATGCGGAATCTC
GATTAGGTCCGCTTCTTCCAGTTAG
GGTGTGAAGTCTGAGGCTCCC
TTCTGAACGTGTGTGTTCTATTTG
TCGGGAAGAGTGCCTAAGAG
TTCGGGTCGTTGTTCCTAAAG
ATACGTCGCGGGAGTTGAG
CGCCTCCTTCACAGCCACAA
AGGATAAACCCATAGCTTGACCAG
CAATATAACCCCGTCCCGTGAAG

FIG. 15A-2C

Sequenced Clone	Marker name	Marker or Primer pair	Marker Location	marker properties, position
T5H22	T5H22.00	primer	248-2654	Lan \& Col SSLP
T5 H 22	T5H22. 21	primer	21508-22868	Col Dom
T5 H 22	T5H22.41.3	primer	35072-35719	Lan \& Col
T5 H 22	T5H22.41.4	primer	64404-65591	Col Dom
T5H22	T5H22.65	primer	65036-66470	Lan \& Col
T7M24	T7M24.04	primer	4816-8214	Lan \& Col
T7M24	T7M24.46	primer	46240-47868	Col Dom
T25H8	T25H8.01	primer	1889-2953	Lan \& Col
T25H8	T25H8.17	primer	16846-17990	Col Dom
T25H8	T25H8.22.9	primer	22482-25074	Ler \& Col
T24M8	T24M8.65	primer	65402-66309	Lan \& Col
T24M8	T24M8.54	primer	53857-54655	Col Dom
T24M8	T24M8.43	primer	42439-43274	Lan \& Col
T24M8	T24M8. 22	primer	22640-23386	Lan \& Col
T24M8	T24M8.09	primer	5961-8374	Lan \& Col
T24H24	T24H24.82	primer	82814-82890	Ler \& Col
T24H24	T24H24.66	primer	66082-66765	Ler \& Col
T24H24	T24H24.48	primer	47836-48636	Ler \& Col
T24H24	T24H24.11	primer	11212-11867	Ler \& Col
T27D20	T27D20.77	primer	77681-78420	Lan \& Col

FIG. 15B-1A

Forward Primer

TTTGTTACCCCTTTGGCTCGGACTGG GTCGCCCTTGGTCTAGTAAATGG TTGCGAGAAACTTGCGAGGAACATC CTCCCTCGCATATTTTGTGACTG TCAACCTAAGGCAAATTTTCTAAG GTGCATGGCCTAAACAACAG ATGTTATGTTTACGTCGGGGTTGTGTTG TGACGAAGAAGGGGGAAAAGTTG ACTAAAGCCCCAACTGAAGAGGAAG AATCGATCCGTCTTTCACCAAC CGGCATGACCAAACCCTAAACTC TAATAAACCGCTCAGCCACCACTCTAAG CTTAAATTGCCCGTGATGATGGTTG ACGAGAAGCGAAAACCGAAGATAG GAGTTCTGGGGTAATTTCCTCTCG AGACAGCCGGAAGCAATGGTGG GTTGAAGGACCGGAGTTGTTAGAC CCCCCAGCCCATTGAGTGAGTAG GGCGGCGTAGTTATGTTGATTGAG TCGCGCAAATGGGACACG

Reverse Primer

AAGGGGACACGCACAAAAACGCTCTC CTGTTCGTCGCCTTCTGCTG TTAGAAAAGCATCGGGCACCAAAC GTTGCCAAAGTTCTCTACGATTC TTTAATGAAGGCCCAACACC GTTCTCATAACGGGTCAGTCC TCTCGGCTCCGGATGCTATTTGTATTTTC TGACGTGGTGAAAGTAGGCTGTGAAG AAACCGCCACTACCGCCATAA CTTCCTGCAGCCGTTCTTC
AgGGGAAAGATGAAAGATGAAATAAG
GGGCTGCTCCAATCTCGCTACAC GATGGAGTCGGCAAAAGATAGGATG CGAACCTAAACCAAACCTAAACTGAATC ATTCTTGCGTGTCCCTGGTGTAAC TCTCGCTGCTGGACATACTCACTCAC TGTGGATCGGTTATTGGAGGG AgCGGCGGCCTTGAGAGTATC TACCACGGCCCCGAGATACTAAC CGGGGAGGCTCGGGAATC

T27D20	T27D20.64
T27D20	T27D20.51
T27D20	T27D20.41
T27D20	T27D20.06
T19B17	T19B17.96
T19B17	T19B17.77
T19B17	T19.B17.59
T19B17	T19B17.44
T19B17	T19B17.30
T19B17	T19B17.11
T26N6	T26N6.12
T26B6	T26N6.27
T26B6	T26N6.42
T26B6	T26N6.59
T26B6	T26N6.74
T26B6	T26N6.93
F4H6	F4H6.44
F4H6	F4H6.60
F4H6	F4H6.82
F4H6	F4H6.100
T19J18	T19J18.12
Y19J18	T19J18.27
T4B21	T19J18.71
T4B21	T19J18.42

64198-66686	Ler \& Col
$51084-51783$	Lan \& Col
$41203-42770$	Lan \& Col
$6107-6887$	Col Dom
$96402-97060$	Lan \& Col
$77318-78093$	Lan \& Col
$59092-59808$	Lan \& Col
$44057-44788$	Col Dom
$30680-31352$	Lan \& Col
$11260-12044$	Lan \& Col
$12724-13462$	Lan \& Col
$27839-28536$	Lan \& Col
$43996-44639$	Col only
$59333-59938$	Col only
$74460-75083$	Lan \& Col
$93352-93986$	Lan \& Col
$42567-43173$	Lan \& Col
$60209-60835$	Lan \& Col
$82859-83642$	Lan \&Col
$100331-101001$	Lan \& Col
$12781-13435$	Lan \& Col
$28093-29954$	Lan \& Col
$6380-7009$	Lan \& Col
$20045-20648$	Lan \& Col

FIG. 15B-1B

ACCTGCGATAGAGTTGTGAGTTC CCGCCGGCTTATGCTGAG GTGATTCGCAGGACATTGAGTG TCGAATGGCTGAAAGAAAAGAATAAGAG CGTCTCCCGTGAGGTGGC CGAACCCCATCCGAACTAAC AGCGGTCAATGTTCTTCAATGTCGTAG CTGCCCCGACCACCTTTCAAC ATCGCCGCCGTCTTCTTCAG TCATTTGCGTCTAGAGGTGGAGTGC CACGGCATCATTCATCAAACGAG TCTTCCGATGACGACAACGACAC GACGGCCTTTTCATTCTCACACAG GCCTCGAACCCTACACCTCCAC ATGGGGCCCTTTGACTACTGAG TTCCCGCATGCATTAGTTCTTGTG GCAGACGCGAGGACACAGACAG GTTCCAACGCTAGCAAGGTCTG ACAAATCAGAGGCCCAAAGTCAATG ATCCAAACGCCCAAATGTCAAC ATGCCCATAAAGAAAGCCCGTC CAGCGCTGTACAGTGGTCAAATG CATTACTTACCCGCTTCCGTCTTTATC TGTCGCCTTACTCCATTCGTTCAAC

CTGCCTTTGCCGATAATAGTC GAAGAGAAATGCCCTGTGAGTCC TACATTTTTGCAGCCATTTTGTG AAAACGGGTGGCGGAGAATG ATTTTCATAATTATTTGGCGTGTGC TGCCACAACAAACTCCACTATG TATCGCGGCGGAGTCAGGAG TTGCGGATTCGTTATGCTGTTCTC
CAGGTTCAGCCCGTTCAACTATAATC
GGGGTAGAAAGAAGCGAGAGGGATAG
GTAGGATCCGGCTGAATAGTGGTGG
ATTCTGCTGCTGCTGATTCCTG
TTTCATATTTGCTCATCTAACCCCTTC
AGTCGCCGTAGCAAATGAAACC
TCCGGAGACGATTTTGATGAC
TTGCCATCATCTTTCTGTGTTTGTCTATC
CAGCCTAAGCCCATTTGTTTTGAAG
AGGGGCCAACATGCACTACAAG
TGGGCCGAATAACAGCAAGTCC
TTAAGTGCGGTGCGGTTCAAATAC CGCCTATCTTCGGTGTCTCGTC CGTGGGTCAGGTGGGTCAGG
AATGTTAGTGCGAGTTTATGGTTGTGTC CGGCCGCCTTCATGTATCTATCTC

FIG. 15B-2B

T4B21	T4B21.20	primer	21757-22522	SSLP polymorphic
T4B21	T4B21.35	primer	37346-38074	Lan \& Col
T4B21	T19J18.57	primer	38498-39157	Lan \& Col
T4B21	T4B21.52	marker	54320-55077	Lan \& Col
T4B21	T4B21.68	primer	69927-70543	Lan \& Col
T4B21	T4B21.83	primer	85772-86299	Lan \& Col
T1J1	T1J1.08	primer	8862-9483	Lan \& Col
T1J1	T1J1. 23	primer	23155-23843	Lan \& Col
T1J1	T15D16	marker	38027	CAPS
T1J1	T1J1. 39	primer	39177-40174	Lan \& Col
T1J1	T1J1. 50	primer	50248-50937	Lan \& Col
T32N4	T32N4.09	primer	10175-11108	Lan \& Col
T32N4	T32N4. 24	primer	24917-25724	Lan \& Col
T32N4	T32N4.45	primer	45840-46451	Lan \& Col
T32N4	T32N4.46	primer	46637-47558	Col Dom
T32N4	T32N4.60	primer	60777-61645	Lan \& col
T32N4	T32N4.66	primer	66497-67374	Col Dom
T1J24	T1J24.114	primer	114825-115648	Lan \& Col
T1J24	T1J24.90	primer	90665-91646	Lan \& Col
T1J24	T1J24.81	primer	80921-81638	Col Dom
T1J24	T1J24.79	primer	79569-80351	Lan \& Col
T1J24	T1J24.61	primer	60440-61245	Lan \& Col
T1J24	T1J24.51	primer	51061-51.798	Lan \& Col
T1J24	T1J24. 27	primer	27855-28895	Lan \& Col

FIG. 15B-1C

AATAGGCTTTTCCGGTGCTTCTC GTGAAAGGAGCAGCAGGAACAGTG CTATCAAACGCAGTCAAAGAAAGG ATAGACAAAATTGGCAACACATACC TTGTCATTGGCGCTGCTCTATC AAGCCCGCGATTTGGTTC TAGAGCGGTAACTTAACGAATGTGC TGGAGGGCTTGCATGTGAGAGTG AATCAATTGGTTTCTACTTTTTAG ACCGGCTCATTGGCTAAAAAGTTC AAGTCTGGGAAGAGGATGAGAACCC GGCAGATACGGCGGGTCCATAC CGTGGGAGCTGCCGTAGAAG CGCCCCTTCAGGTTAGTCC CTGGCGTACGAGAGTGCTTGTG CTCTCGGCGTTGCTTCTGG AAAGAAGCGAAACAACATAACCATAG CATGCCCGAATTACGACACCTC AATGAATGGGACGAAAACGAAACT AATCGCGACTTTGCCTTCC GTGTATCGGGGGCCATCTCAG CCCAAAGTATAAGCGCCCACCTA TCCGGAAGGAGCCACATAAG GGCCGGGAGTTGGTCATAAGG

AATTGATTTTGGGGTTTCTCTGTTC ATTTATAGGCCAATGACCCAATCG AGAAGGTGAGCCAAAGAGATTAGTG CACGCCACTCTTCATCTCCTTTC GCTTTCCCCACCAATATCCTTTC CGCTACGCATGGGTCTATTTG ATGTGGGGCCAAATAAATCAAAAC CAGAGCCGGATGAGAAAACAGAGC AACTCCGACTGAAGGTATAGC TTAAGGGTTGGGGTTCATCTGTCAC ATAAAGTACGCCGCCCATCAATAG TCTGAATCGCATCTCCTCGTGTAAAG GCCGTTGATGATGAAAATAGGGTG GTTTGCTCCCCTCCCAGTG
ATGACCCTGTGCTTTTGCTCCTC
GCCCGGCTGGTGCTATTC
GGAGACAAAGAAATCGGCAGAGTAG
GCGCCAAATCTCTAAACAACACTC
GCATCCCCGGTACTGGTGAG
TAAACTACTATCCCACCACCACTACC GCTCAACATCGCCGCAATCT TAAGCGCCTCACTTCACCATTG TCCCCAGACCTCTCGTTGAC TCAATTTCAATCCCCGCTGGTC

FIG. 15B-2C

TGGTCGGGCATATTGTTTTTCTTGTG
TTCCCCAAAAATCGTTCAGC
ACCCGAGAAGCCGATGACC
GCTAAGCCATCCAAGTTCTGAG
CGTGCAGGGGAGTGTCGTG
CGCGGCTGCCTTCATGTATCTATC
TTTTTGGGGATAGGGATTGAGTGTG
TGCTGGCCTTTGTCATCTATTTGTC
CCAGAGCCGGGGAAAGCAATAC
TGACTATAGGGGCGGTTGTGGTAAG ACCTTTCTTCCTCAACGCACCTCACC GTGGGGTCGAGTGGTGTGGTAG AAAATCCTCCCGCGTCAACATC AAACTTTCGCCACTCTCCTCTATTATG CGTCTTCATCGGCTTCGTTCAG AGCGATTGTACCCCACCATTC ACTTTGGGCAATGAAGCGTATG TCTCGCAGTTGCAGAGATGGTG AGCGATTGTACCCCCACCATTC TGGTGTATTTTTGCTTTGTTTCTCAGG GTGCGGAAATCTCTGGGCTC ATCAACCCCCAAATCACCAGAAAC CGGCTGGCTTTATTATCTGAGTTG

CGGCGCTGTCCCTGGTTCC
ACATCGCCTCTTCAACCCACTC
AAATTTGGGGGAGTTTGATAAGTGTG
GTTTGAGTCTTTGGCTTTGTATGTTC
CAATTTCAATCCCCGCTGGTC
GCCCATTTGTCGCCTTATTCTATTC
TAAGCGGAAGGAGAGGTTTGAAGTTG CCGCGGGGACTGCCTACTC

TAGCCGGGGTGGTCTCGTCG
TTGGCTTGGAGTTTGCGTCGTC
AACCCCTTGGCATATAACTCCGACTC
GGATCCCCTGTTACTTAAGCCTATTC
CATCATCCCAATCCCAAATACAAGTC ATTTGCGTAAGGCGTTGATGACTC
TGGGGAGCGGAGGATTCTTG
GCTCCGGCAATCTTCTTCCTCTC
AACCCCTTAGGATTATTCGTAGTGTTC TCCGCGAAGAGAAGAGTGATGG GCTCGGCAATCTTCTTCCTCTC GTTGTTCCGCTATGGGGCTAAGG AATCACTCAACCGCGAAACTCTATC AATCGCGGTTAGCCACTTCATC TTCGGGAAGCCTGTGGAAG

F28D6	F28D6.58	primer	$58994-59869$	Col Dom
F28D6	F28D6.76	primer	$76571-77289$	Lan \& Col
F28D6	F28D6.93	primer	$93823-94512$	Lan \& Col
F28D6	F28D6.120	primer	$7985-8702$	Lan \& Col

ACCCCGAGCTCAACTTCTTAGG AgAATAGGAGCTGGGAGGTCAAAC CCCCATCCTGCCGACATAAAG GAGGGGCGAGTAGTTGAATCTGC

GGACGGGAGATGGGATTACC ATACTTAGATGCAATGGGTGTGGTG TACTCCGCATCATCTTCCATCTCTTC CCTAAGCCCGAAACCAAGTGAG

FIG. 16

CEN 1

CEN 3

T8N9 T15D2 T25F15 T28G19 T15N15 T26P13 T4P3 F4M19 F26B15 T32A11 F6H5 F1D9 F23H6 T18B3 T14A11 F21A14 T27B3 T14K23

CEN 5

FIG. 19

CENTROMERE 2

FIG. 20

FIG. 21

Measuring centromere functions in plant mini-Chromosomes

Quantitative assays
Patent Application Publication Dec. 1, 2005 Sheet 81 of 183 US 2005/0266560 A1

AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
10 20 $20 \quad 40 \quad 60$
f12g6-1 AAGCTTCTTCCTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGGCTTTGG f12g6-10 AAGCTTCTTCTTGCTTCTCGAAGCTTTGATGGTGTAGCTGAACTTCGTATGAGTCTTTGA f12g6-11 AAGCTTCTTCCTACTTCTCAAAGCTTTGGTGGTGTAGACGAAGTCCGTATGAGTATTTGG f12g6-12 --GCTTCTTCTTGGTTCTCAAAACTTTGATGGTGTAGCCGAAGTC-GTATGAGTCTTTGG f12g6-13 AAGCTTCTTCTTGCTTCTCGAAGCTTTGATGGTGTAGCTGAAGTCAGTATGAGTCTTTGA f12g6-14 ----------------------- CTTTGATGGTGTAGCCGAATTCCATATGATTCTTTGG f12g6-15 AAGCTTCTTTTTGCTTCTCATAGCTTTGAAGGTGTAGCCGAAGTCCGTATGAGTCTTGGG f12g6-16 AAGCTTCTTCTTGCTTCTAAAAGCTTTGATGGTGTAGTAAAAGTTTGTACGAGTCTTTGT f12g6-17 --GCTTCTTCTTGGTTCTCAAAGCTTTGCTCGTGTTGCCATAGTTCTTATTTGTCTTTTG f12g6-18 AAGCTTCTTTTTGCTTCTAAAAGCTTTGATAGTGTAGTCGAAGTCCATACGAGTCATTGG f12g6-2 AAGCTTCTTTCTACTTCTCAAAGCTTTGCTGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f12g6-20 A-GCTTCTTCTTGCTTCTCGAAGCTTTGATTGTGTAGCTGAAGTCAGTATGAGTCTTTGA

CTTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATCCGGTTGCGGTTCTAG
$7080 \quad 90 \quad 100 \quad 110 \quad 120$

CTTTGCATCTTCTAACAAGGAAACACTACTTATGCTTTTACGATTCAGTTGCGGTTCTAG ATTTGTATCTTCTAACAAAGAAACACTAATTAGGCTTTTAAGATCATGTTGCGGTTCTAG CTTTGCATCTTCTAACAAGGAAACACTACTTATGCTTTTACGATTCGGTTGCGGTTCTAG CTTTCTATCTTCTAAGAAGGAAACACTTCTTAGGCTTTTAAGATCCGGTTGCGGTTCTAA ATTGGTATCTTCTAACAAGTCAACACTACTTAGGCTTTTAAGATCCAGTTGCGGTTCTAG CTTTGTATCTACAAACAAAGAAACACTACTTAGGCTTTTTAGATCCGGTAGCGGTGCTAG CTTTCTATCTTCTAACAAGGAAACACTACTTTGGCTTT-------CGGTTGCGGTTCTAA CTTCATATCTTCTAACAAGGAAACACTACTTATGCTTTTAAGGTCCAGTTGCCGGTCTAG CTTTGTATCTTCTAACATGGAAACACTACAGAGGCTTTTAAGATCCGGTTTCAGTTCTGG СTTTCTATCTTCTAAAAAGAAAACATTACATGTGCTTTTAAGATCCGGTTGCGATTCTAG CTTTGCATCTTCTAACAAGGAAACACTACTTAGGCTTTTACGATTCAGTTACGGTTCTAG ATTTGTATCTTCTAACAAGTAAAAACTACTTAGGCTTTTAAGATCCAGTTGTGGTTCTAG
TTCTTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAAXX 130140150160170
TTCTTATACTCAATCATACACATGACATCTAGTCATATTTGACTCGAAAACACTAACC 178
TTCTTATACTCAATCATACACACGATATCTAGTCATATTTAACTCCAAAACACTAA 176
TTCTTATACTTAATCATACACATGACATTTAGTCATATTTGAATCCAAAGTACTAACC 178
GTCTTATACTTAATCATACACATGACATCAAGTCATCTTTGACTCCAAAACA 169
TTCTTATTCTAAATCATAAACATGATATCTAGTCATATTTTACTCCAAAACACTAA 176
TTCTTATACTCAATCATACACATGCAATCTAGTCATATTTGATTCCAAAACACTAACC 155
GTCTTATACTTAATCATACACATGACATCAAGTCATTTTTGACTCCAAACCACAAACC 171
TTCTTATACTTAATCATACGCATGCAATCTAGTCATATTTGACTCCAAAAGACTAA 176
TTCTTATACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTA 173
TTCTTATACTCAATCATACACATGACATCTAGTCATATTTGACT 164
TTCTTATACTCAATCATACACATGACATTTAGTCATATTTGACTCCAAAACACAAACC 178
TTCTTATACTAAATTATAAACATGATATCTAGTCATATTTGACCTCAAAACACTAA 175
f12g6-21 ----TTCTTCTTGCTTCTCCAAGCTTTGATGGTGTAGCCGAATTGCGTATGAATCTTTGG f12g6-26 ----TTCTTCTTGCTTCTCCAAGCTTTGATGGTGTATCCAAAATTCGTATGAATCTTTGG f12g6-3 -----------TGCTTCTCAAAGCTTTGATGGTGTAGCCAAAGTCCGTATAAGTCTTTTA f12g6-30 ----TTCTTCTTGCTTCTCCAAGCTTTGATGGCGTAGCCGAAATCTGTATGAATATTTGG f12g6-4 AAGCTTTTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f12g6-5 AAGCTTCTTCTTGCTTCTCATAGCTTTGATGGTGTA-CCGAAGTCCGTATGAGTCTTTGG f12g6-6 AAGCTTCTTCGTGCTTCTCAAAGCTTTGATGGTGTAGCAGAAGTCCGTATGAGTCATTGG f12g6-7 AAGCATCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCAAAAATCTGTATGAGTCTTTGA f12g6-8 AAGCTTCTTCTTGCTTCTAGAAGTTTTGATGGTGTAGCTGAAGTCCGTATGAGTCTTTAA f12g6-9 AAGCTTCTTCTTGGTTCTCAACGCTTTGATGGTGTAGTTGAAGTCCATATGAGTCTTTGG f5a13-1 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCAAAGTCTGTATGAGTTTTTGG f5a13-2 ---CTTCTTATTGTTTCTCAAAGGTTTGATGGTTTAGCCGATGTCCGTATGAGTCTTTGC f5a13-3 AAGCTTCTTATTGCTTCTCAAAGCTTTGATAGTGTAGCCGAAGTCTGTATGAGTCTTTGG

CTTTCTATCTTCTAACAAGGAAACACTA----GGCTAATATGGTCTAGTTGCGGTTCTAG CTTTGTATCTTCTAACAAGGAAACACTA----GGCTTTTAAGATCCGGTTGCGGTTCTAA CTTTGCATCTTCTAACAAGGAAACACTACTTAGGCTTTTACGATTCAGTTGCGGTTCTAG CTTTGTATCTTCTAACAAGGAAACACTA----GGCTTTTAAGATCATGTTGCGATTCTAA CTTTGTATCTTCATACAAGGAAACACTACTTAGGCTTTGAAGATCAGAATGTTGTTCTAG CTTTCTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATTCGGTTACGGTTCTAA CTTTGCATCTTCTAACAAGAAAAAACTA-TTAGGCTTTTACGATTCGGTTGCGCTTCTAG ATTTGTATCTGCTAACAAGGATACACTACTTAGGCTTATAAGATCCGGTTTCGGTTATAG ATTTGTATCTTTTAACAAGGAAACACTACTTAGGCTTTTAAGATCCATTTGCAGTTCTAG CTTTCTATCTTCTAAGAAGGAAACATTAGTTCGGCTTTTAAGATCCGGTTGCGATTCTAG CTTTGTATCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAACCGATTGCGGTTCTAC CTTTGTATCTTCTAAAAAGGAAACACTACTTTAGCTTTTGGGAACCGATTGCGGTTCTAC CTTTGTATTTTCTAATAAAGAAATACTGCTTTAGCTTTTGCGAACCAGTTGTGGTTCTAG

FIG. 23A-2B
TTCTTATACTCAATCATACACATAACATCTAGTCATGTTTGACTCGAAAACACTAACC 170
GTCTTATATTCAATCATCCACATGACATTTTGTCATATTTGACTCGAAAACA 164
TTCTTATACTCAATCATACACATGACAT 137
GTCTTATACTCAATCATACACAAGACATCTTGTCATATTTGACT 156
TTCTAATACTCAATCATACACATGACATCTAGTCATATTTGACTCCATAACA 172
GTCTTATACTTAATCATACACATGACATCAAGTCATTTTTGACTCCAAACCACAAACC 177
TTCTTATACTCAATCATACACATGACATTTAGTCATATTTGACTCCAAAACACTAACC 177
TTCTTATACTCAATTATACACATGCCATCATGTCATATTTGACTCCAAAACAC 173
TTCTTATACTCAATCATAGACATGATATATAGTCATATTTGATTCCAAAACACTAA 176
TTCTTATACTCAATCATACACATGACATCTAGTCATATTCGATTCCAA 168
TTCTTATACTCAATCATACACATGAAATCTTGTCACATTTGACTCCAAAACACTAAC 177
TTCTTATACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAACAGTAACC 175
TTCTTATACTCAATCAGAAACATGACATCTAGTCATATTTGACTCCAAAACA----CT 174
---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-C-AAAGTCCGTATGAGTCTTTG
$1020 \quad 30 \quad 40 \quad 50$
t12j2-1 AAGCTTCTTCTAGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCGTATGAGTCTTTG t12j2-10 AAGCCTCTTCTAGCTTCTCCAAGCTTTCATGGTTTAG-CCAAATTCTGTATGAGTTTTTG t12j2-11 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCCGTATGAGTCTTTG t12j2-12 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCCGTATGAGTCTTTG t12j2-13 ---CTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAG-CCGAAGTCCATATGAGTCTTTG t12j2-14
t12j2-15 --------------------------TGATGGTGTAG-CCGAAGTCCATATGAGTTTTTT
t12j2-16
t12j2-17 AAGCTTCTTCTTGCTTCTCAAAGCTTTGAGGGTGTAG-CCAGAGTTTGTGTGAGTCTTTG t12j2-18 ---CT--------------------TTGATGGTGTAG-CCGAAGTCTGTATGAGTTTTTA t12j2-2 AAGCTTCTTCTAGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCGTATGAGTCTTTG t12j2-3. AAGCTTCTTCTAGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCGTATGAGTCTTTG t12j2-4 AAGCTTCTTCTAGCTTCTCAAAGCTTTCATTGTGTAGCC-AAAGTCCGTATGAGTCTTTG t12j2-5 AAGCTTCTTCTAGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCGTATGACTCTTTG t12j2-6 AAGCCTCTTCTAGCTTCTCCAAGCTTTCATGGAGTAGCC-AAAGTCCGTACGAGTCTTTG t12j2-7 AAGCTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCCGTATGAGTCTTTG
 t12j2-9 AAGCCTCTTCTAGCTTCTCCAAGCTTTCATGGTTTAG-CCAAATTCTGTATGAGTTTTTG t14c8-1 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCC-AAAGTCCATATGAGTCTTTG

FIG. 23B-1A
GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCCGGTTGCGGTTTAA
GCTTTGTATCTT--CTAACAAGGAAACACTACTAAGGCTTTTAA-------G-ATCGGGTTGCGATTTAA
GCATTGTATCTT--CTAACAAGGAAACACTACGTAGGCTTTTAA-------G-ATTGGGTTGCGGTTTAA
GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACCGCTTTAA-------G-ATACCATTATGGTTTAA
GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACCGCTTTAA-------G-ATACCATTATGGTTTAA
GGTTTTTATTTT--CTAACAAGGAATCACTACTTAATCTTTTAATCTTTCAAGATCTGGTTGCGGTTCTA
-CTTTGTATCTT--CTAGCAAGGAAACACTACTATAGCTTTTG--------GGATCTGGTTGCGGTTCTA
GTTTAAGATCTT--CTAACAAGGAAACACTATTTAAGCTTTTT--------AGATCCCGTTGTTGTTCTA
-------ATCTT--CTAAAAGGGAAACACTACTTTAGCTTTTG---------GGATCCAATTGCGGTTCTA
GGTTTGTATCTT--CTAACAAG
GTTTTGGATCTT--CTAATATGGAAACACTACTT
GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGAGTTGCGGTTTAA
GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGAGTTGCGGTTTAA
GCTTTGTATCTT--CTAACAAGGAAACACTACTAAGGCTTTTAA-------G-ATCGGGTTGCGATTTAA
GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGAGTTGCGGTGTAA
GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA
GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGGCTTTAA-------G-ATCCGATTGCGGTTTAA
--------------CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA
GCATTGTATCTT--CTAACAAGGAAACACTACGTAGGCTTTTAA-------G-ATTGGGTTGCGGTTTAA
GCTTTGTATCTT--ATAACAAGGTAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCAGTTTAA
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC $140150 \quad 160 \quad 170 \quad 180 \quad 190$
G-----ATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
GTTCTTATACTTAATCATACACATGACATATAGTCAT--ATTTGACTTCAAAACACTAACC 178
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTCTACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTCTACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATTAGATCTAGTCAT--ATGTGACTCCAAAACACTA 180
GTTCTTATACTCATTCATATACATGACATCTAGTCAT--ATTTGACTCCAAAACACTA 115
GTTCGTATACTCAATCATACACGTGACATCTAGTCAT--ATTTGACTCCAAAACGCTAAC 151
GCTCTCATACTTAATCATACACTTGACATCTACTCAT--ATTTGACTCCAAAACACTAACC 112
-----------CAATCAT 9268
GTTCTTATACTCAATCATACACATTACATCAAGTCAT--ATTTGACTCCAAAACACTAAC 177
GTTCTTATACTCAATCATACACATTACATCAAGTCAT--ATTTGACTCCAAAACACTAAC 177
GTTTTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
GTTCTTATAATCAATCATACACATGACCTCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
GTTTTTATACTCAATCATACACATGACATAAAGTCAT--ATTCGATTCCAAAACACTAACC 178
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCTACTCCAAÄACACTAACC 178
GTTTTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 110
GTTCTTATACTTAATCATACACATGACATATAGTCAT--ATTTGACTCCAAAACACTAACC 178
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
t14c8-10 ----TTCTTCTTGCTTCTCAAATATTTGAAGGTGTAGCC-GAAATCCGTATGAGTCTTTG t14c8-11 ---CTTCTTCTTGATTCTCAAAGCTTTGATGGTGTAGTC-AAAGTCCGTAGGAGTCTTTG t14c8-12 -------TTCTTGCTTCTCAAAGCTTTGATGGTGTAGCC-AAAGTCCAGATAAGTCTTTG t14c8-13 AAGCTTCTTTTTGCTTCTCAAATCTTTGATGGTGAAGAC-AAAGTCCGTATGAGTCTTTG t14c8-14 AAGCTTCTTTGTGCTTCTCAAACCTTTGATGGTGTAG-TCGAAGTCCTTATGACTCTTTG t14c8-15 AAGCTTCCTCTTGCTTCTGAAAGTTTTGATGGTGTAGGT-GAAGTCCGTATGAGTGTTTG t14c8-16 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGACATC-GAAGTCCGTATGAGTCTTTG t14c8-17 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCG-GAAATCCGTATGAGTCTTTG t14c8-18 AAGCTTCTTCTTGCTTTTCAAAGCTTTGATGGTGAAGCC-AAAGTCCGTATGAGTCTTTG t14c8-19 AAGCTACTTCTTGCTTCTCATAGCTTTGATGGTGTAG-CCAAAGTCCGTATGAGTCTTTG t14c8-2 AAGCTTCTTCTTGCTTCTCAAAGCTT゙TGAT゙GGTGTAG-CCAAAGTCCGTATGAGTCTTTG t14c8-20 ---CTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCC-GAAGTCTTTATGAGTCTTTG t14c8-21 AAGCTTCTTCTTACTTTTCAAAGCTTTGCTGGTTTAG-CCGAATTCCGTATGAGTCTTTG t14c8-22 ----TTCTTTTTGCTTCTCAAAACTTTGATGGTGAAGCC-GAAGTCTGTATGAGTCTTTG t14c8-23 ----------TTGCTTCTCAAAGCTTTGATGGTGTAGCC-GAAGTCTGTATGAGTCTTTG t14c8-24 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATAGTGACGTC-GAAGTCCGTATGAGTCTTTG t14c8-25 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCT-GAAGTCCGTATGAGTACTTG t14c8-26 AAGCTTCTTCTTACTTCCCAAAGCTTTGATGGTGTAG-CCCAAGTCCGTATGAGTCTTTG t14c8-27 ---CTTCTTCTTGCTTCCAAAAGCTTCGATGGTGTAT-CCGAAGTCCGTATGAGTCTTTG t14c8-29 AAGCTTCTTCTTTGTTCTTAAAGCATTGATGGTGAAGCC-AAAGTCCGTATGAGTCTTTG t14c8-28 -----------TTGCTTCTCAAAACTTTGATGGTGAAGCT-GAAGTCCGTATGAGCCTTTT

FIG. 23B-1B

GCTTTGTATCTT--CTAACAAGGAAACACTACTTA-GCTTTT-A-------AGATCCGGTTGCTGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-AGCCGGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACAATACTTAGGCTTTC-A-------AGATCTGGTTGCGGTTATA GCTTTCTATCTT--CAAACAAGGAAACACTACTTAGGCTTTC-A-------AGATCCGGTTGCGATTCTA GATTTGTATCTT--CTAACAAGAAAACATTACATAGGATTTTAA-------G-ATTAGTTTGCAGTTCTA GTTTTGTATCTT--CTAACAAGGAAACACAACTTAGGCTTTT-A-------AGATCTGATTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACATTACTTAGGCTTTTAA-------G-ATCCGGTTGCAGTTCTT GCTTTGTATCTT--CTAACAAGGAAACACTACTTAT-CTTTT-A-------AGATCCAGTTGTGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACAATATTTAGGCTTTC-A-------AGATCCGGTTGCGGTTCTA GTTTTGTATCTT--CTAGCATGGAAACAAAACTTTAGCTTTTA--------GGATCTGGTTGTGCTTCTA GCTTTGTATCTT--CTAACAAGGTAACACTACTTAGGCTTTTAA - - - - - - - ATCAGGTTGCAGTTTAA GATTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCCAGTTGTGGTGCTA GCTTTGTATCTTCG--AACAAGGAAACACTCCTTAGGCTATTAA-------G-ATC-AGTTGCGGTTCTA CCTTTCTATCTT--CTAACAAGGAAACACTACTTACGCTTTC-A-------AGATTCGCTTAAGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCCAGTTGTGGTGCTA GCTTTGTATCTT--CTAACAAGGAAACAATAATTAAGGTTTC-A-------AGATCCGGTTGCGGTTCTA GCTTTGTATCTT--CTAACCAGGAAACACTACTTAGGCTTTTAA-------A-ATCCGTTTGCGGTGCTA GCTTTGTATCTCTACTAATAAGGAGACTCTACTTAGGCTTCTAAA------G-ATCTCGTTGAGGTTCTA GCTTTGTATCTT--CTAGCATGGAAACACAACTTTAGCTTTAG--------GGATTCGGTTGCGGTTCTA GTTTTGTATCTT--CTAACTAGGAAACACTACTTAGGCTTTC-A-------AGATCGGATTGCGGTTCTA GCTTTCTATCTT--CTAACAAGGAAACACTACTTAGGCTTTC-A-------AGATCCGATTGTGATTCTA

FIG. 23B-2B
GTTTTTATACTCAATCATACACATGATATCAAGTCAT--ATTCGACTCCAAAACACTAACC 173
GATCTTATACTCAATCATACAACTGACATCTAGTTAT--ATTTGACTCCAAAATACTAACC 175
GTTCTTATACTTAATCATACACATGACATATTGTCAT--ATTTCAGTCCGAAACACTAAC 170
GTTCTTATACTCAATCATACACATGACGTCTAGTCAT--ATCTGACCCCTAAACACTAACC 178
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAACC 178
GTTCTTATACTCAATCATAGACATGACATCTAGTCAT--ATTTGACTGCAAAACAATAACC 178
GTTCTTATACTCAACCATACAAATGACATCTAGTCAT--ATTTGACTCCAAAATACTAACC 178
ATTCTTATACTCAATCATACACATGAAATCTAGTCAT--ATTTGACTCCAAAACACTAACC 177
GTTCTTAGACTTAATCATAGACATGACATATAGTCAT--ATTTATCTCCAAAACACTAAC 177
GTTCTTATAATCAATCATACACATGACATCTAGTCAT--ATTTGACTCTAAAACACTAAC 177
GTTCTTATACTCAATCATACACATGACATCATGACATCAAGTCATATTCGACTCCAAAACA 180
GTTCTTATACACAATCATACACATGACATCTAGTCAT--ATTTCATTCCAAAACACTAA 173
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAATCACTAA 175
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAAGCACTAACC 174
GTTCTTATACAAAATCATACACATGACATCTAGTCAT--ATTTCATTCCAAAACACTAA 166
GTTCTTATACTCAATCATACACATGACATATAGTCAT--ATTTAACTCCAAAACACTAAC 177
GTTGTCATACTCAATCATACATATAACATCTAGTCAT--ATTTGACTCCAAAACACTAA 176
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAA 178
GTTCTTATACGCAATCAAATACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAACC 175
GTTCTCATACTCATTCATACACATCACATCTACTCAT--ATTTGACAATAAAACACTAACC 178
GATCTTATACTCAATCATACACATGACATCTAGTCAT--ATATGACTCCAAAACACTAACC 168
t14c8-3 AAGCTTCTTCTTACTTCTCAAAGCTTTGATGGTGTAGCC-CAAGTCCGTATGAGTCTTTGt14c8-30 AAGCTTCTTTTTGCTTCTCAAAACTTTGATGGTGACACC-AAAGTCCGTATGAGTCTTTGt14c8-31 AAGCTTCCTCTTGCTTCTCAAAGTTTTGATGGTGTAGGT-GAAGTCCGTATGAGTGTTTGt14c8-32 AAGCTTCTTCTTGCTTCTCAAAGCTTTGAAGACGTAGCC-AAAATCTATATGAGTCTTTGt14c8-33 AAGCTTCTTCTTGCTTCCCAAAGCTTTGATGGTATAG-TCGAAATCCGTATGAGTCTTTGt14c8-34 AAGCTTCTTCTTGCTTCCCAAAGCTTTGATCGTGAAGCC-GAAGTCCGTATGAGTCTTTGt14c8-35 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATAGTGTAG-CTGAAGTCCGTATGAGTATTTGt14c8-36 AAGCCTCTTCTTGCTTCTCAAAGCTTTGATGGTGAAG-CCAAAGTTCGTATAAATATTTGt14c8-37 ---CTTCTTCTTGCTTCTCAAAGCTTTGATGGTGAAGCC-AAAGTTCGCATGAATATTTGt14c8-38 AAGCTTCTTCGTGCTTCTCAAAGCTTTGATGGTGTTG-TCGAAGTCCGTAGGAGTCTTTG
t14c8-39 --1
t14c8-4 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCC-GAAATCCGTATGAGTCTTTG
t14c8-40 AAGCTTCTTTGTGCTTCTCAAACCTTTGATGGGGTAG-TCGAAGTCCTTATGACTCTTTG

t14c8-42 AAG--TCCGTATGAGTCTTTG
t14c8-43 AAGCTACTTCTTGCTTCTCATAGTTTTGATGGTGTAG-CCATAGTCCGTATGAGTGTTTG
t14c8-44 AAGCTTCTTCTTACTTCTCAAAACTTTGATGGTGTTG-TCAAAATCTGTATGAGACTTTA
t14c8-48 A---GTCTTTG

FIG. 23B-1C

GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATTCGGTTGCGGTTCTA GCTTTCTATCTT--GTAATAAGGAAACATTATTTAGGCTTTC-A-------AGATCTGGTTGCGATTCTA GTTTTGTATCTT--CTAACAAGAAAACACTACTTAGGCTTTTTA-------AGATCTGATTGCGGTTCTA GCATTGTATCTT--CTAACAACGAAACACTACTTA-GCTTTT-A-------AGATCCCGTTGCAGTTCTA GATTTGTATCTT--CTAACAAGGAAACAGTTCTTAGGCTTTTAA-------G-ATTCGGCTGCG-TTCTA GCTTTTTATCTT--CTAACAAGAAACTAATACTTAAGCTTCC-A-------AGATCCGGTTGCGGTTATA GCTTTGTATATT--CTAACAAGGAAACATTACTTAGGCTTTTAA-------G-ATCCAGTTATTGTTCTA GCTTTGTATCTTCG--AACAAGGAAACACTCTTTAGGCTATTAA-------G-ATC-AGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTC-A-------AGATCCGGTTGCGGTTCTT GATTGGTATCTT--CTAACAAGGAAACATTACATAGGATTTTAA--------G-ATTAATTTGCGATTCTA -CTTTGTATCTT--CTAACAAGGAAACAATACTTAGGCTTTC-A-------AGATCTGGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGAAAACACTACTTAGGCTTTC-A-------AGATCCGGTTGTGGTTCTA GATTTTTATCTT--CTAACATGGAAACATCACATAGGATTTTAA-------G-ATTACTTTGTAGTTCTA ------TATATT--CTAACAACGAAACACTACTTAGGCTTTC-A-------AGATCCGGTTGCGATTCTA GCTTTGTATCTTT---GACAAGGAAACACTACATAGGCTTTTAA-------G-ATCCTGTTGCGGTTCTA GTTTTGTATCTT--CTAGCATGGAAACAAAACCTTAGCTTTTA--------GGATCTAGTTGTGGTTCTA GATTTGTTTCTT--CTAACAAGGAAACACTACATAGGCTTTCAA---------ATCCGGTTGTGGTTCTA ----TGTATCTT--CTAGCATGGAAACACAACTTTAGCTTTTA-------- GGATCTGGTTGTGGTTCTA GCTTTCTATCTT--CTAACAAGGAAACAATACTTAGGCTTTC-A-------AGATCCAGTTGCAATTCTA GCTTTGTATCTTT--TAACAACGAAACATTACTTAGGCTTTTAA-------G-ATCCTGTTACGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTT-TGCTTTT-A-------AGATTTGGATGTGGTTCTA

FIG. 23B-2C
GTTCTTATACTCAATCATACAAATGACATCTAGTCAT--ATTTGACTCCAAAATACTAACC 178
GTTCTGATACTCAATCATACAGATGACATCTATTCAT--ATCTGACTCCAAAACACTAACC 178
GTTCTTATACTCAATCATAGACATGACATCTAGTCAT--ATTTGACTGCAAAACAATAACC 179
GTTCTTATACTCAATAATACACATGACATCTAGTAAT--ATTTAACTCCAAAACACTAACC 177
GTTCTTACACTCAATCATACACATGATATCTAGTCAC--ATTTGACTCCAAAACACTAACC 177
GTTCTTATACTCAATCATACACATGACATATAGTCAT--ATTTCACTCCAAAACACTAAC 177
GTTCTTTTACTTAATCATACACATGAAACCTAGTCAT--ATTTGACTCCAAAACACTAAC 177
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAATCACTAACC 177
GTTATCATACTGAGTCATACACATGATATCTACTCAT--ATTTGACTCCAAAACACT 171
GTTCTTATAGTCAATTATACACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAACC 178
GTTCTTATAATTAATCATACACATGACATATTGTCAT--ATTTCACTCCAAAACACTAAC 117
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAATCACTAACC 178
GTTCTTATACTCAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAACC 178
GTTCTTATACTGAATCATACACATGACATCTAGTCAT--ATCTGACTCCAAAACACTAA 114
GTTCTTATACTCAATCATACACATGACCTCTTGTCAT--ATTTGACTCCAAAACACTA 134
GTTCTTATAATCAATCATACACATGACATCTAGTCAT--ATTTGACTCTAAAAGACTAAC 177
GTTCTTATACTGAATCATACACATGACATCTAGTCAT--ATTTGACTCCAAATAACTAACC 177
GTTCTTATAGTCAATCATAGACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAA 113
GTTTTTATACTCAATCATACACATGACATCTAGTCAT--ATCTGACTCCAAAATACTAACC 176
GTTATTATACTGAATCATACACATGACCTCTTGTCAT--ATTTCACTCCAAATCACTAA 176
GTTCTTATACTCAATCATACACATGACATATACTCAT--ATTTGACTTCAAAACACTAACC 126
t14c8-49 AAGCTTTTTTTTGCTTCTCAACACTTTGATGGTGAAACC-GAAGTCCGTATGAGTCTTTGt14c8-5 ----TT------GCTTCTCAAAACTTTGATGGTGAAGCC-GAAGTCCGTATGAGTCTTTTt14c8-50 -------------TTCTCAAAGCTTTGATGGTGTAG-CCGAAGTCTGTATGATTCTTTGt14c8-51 AAGCTTCTTCTTGCTTTTCAAAGCTTTGATGGTGAAGCC-GAAGTCCGTATGAGTCTTTGt14c8-52 AAGCTTCTTCTTACTTCTCAAAGCTTTGATGGTGGAG-CTGAAGTCCGTAGGAGTCTGTGt14c8-53 AAGCTTCTTCGTGCTTCTCACAGCTTTGATGGTGTCG-TCGAAGTCCGTATGAGTCTTTG

t14c8-56 AAGCTTCTTCTTGCTTCCCAAAGCTTCGATGATGTAG-CCGAAGTCCGTATGAGTCTTTG
七14c8-57 AAGCTTCTTCTTGCTTTTCAAAGATTTGATACTGAAG-CTGAAGTCTATATGAGTTTTTG
t14c8-58 - - - СTTCTTCTTCCTTTTCAAAGCTTCGATGGTGTAG-CCGAAGTTCATATGAGTCTTTG
t14c8-6 ---СTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGGC-AAAGTCCGTATGAGTCTTTG
t14C8-7 ----TTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGGC-AAAGTCCGTATGAGTCTTTG
t14c8-8 ----TTCTTCTTGCTTCTCAAATCTTTGATGGTGTATCC-GAAATCCGTATGAGTCTTTG
t14c8-9 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTATAT-TCGAAATCCGTATGAGTCTTTG
t 6c20-1 --- СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCGTATGAGTCTTTG
t $6 \mathrm{C} 20-10$ - - - СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG
t6c20-11 ----CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCGTATGAGTCTTTG
t6c20-12 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCGTATGAGTCTTTG
t6c20-13 -----------------------CTTTCATGGTGTAGCC-AAAGTCCGTATGAGTCTTTG
t $6 \mathrm{c} 20-14$----CTTCTTGTTGCTTCTCAAAGCTTCCACGGTGTAGCC-AAAGTCCATATGAGTCTTCG

FIG. 23B-1D

GGTTTCTATCTT--GTAATAAGGAAACATTATTTAGGCTTTC-A------AGATCCGGTTGCGATTCTA GCTTTCTATCTT--CTAACAAGAAAACACTACTTAGGCTTTT-A-------AGATCGGGTTGTGGTTTAA GCTTTGTATCTTT--TAACAACGAAATATTACTTAGGCTTTTAA-------G-ATCCTTTTACGGTTCTA GCTTTGTATCTT--CTAAGAAGGAAACAATATTTAGGCTTTC-A-------AGATCCGGTTGCG----TA GCTGTGTATCTTC---GACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCCTGTTAGGGTTCTA GATTTGTATCTT--CTAACAAGGAAACATTACATAGGATTTTAA-------G-ATTAGTTTGCGGTTCTA ----TGTATCTT--CTAGCATGGAAACACAACTTTAGCTTTTA--------GGATCTGGTTGTGCTTCTA GCTTTGTATCTT--CTGAAAAGGAAACACTACTTACGCTTTTAA-------G-ATCCAGTTACTGTTCTA GCTTTATACCTT--CTAGCATGGAAACACAACTTTAGCTTTTG--------GGATCCAGTTGTTGTTCTA GCTTTGTATCTT--TTAACAAGGAAACAGTACTTAGGCTTTCAA-------G-ATCCAGTTATTGTTCTA
 GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTAAA-------G-ATCCGGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTC-A-------AGATCGGGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAAACACTACTTA-GCTTTT-A------AGATCTGGTTGCGGTTCTA GATTTGTATCTT--CTAACAAGGAAACAGCTCTTAGGCTTTTAA-------G-ATTCGGTTGCGGTTCTA GCTTTGTATCTT--CTAACAAGGAATCACTACTTAGGC゙TTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTCTTAA-------G-ȦCGGGTTGCGGTTTAA GCTITGTATCTT--TTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAATACTACTTAGGCTTTTAA-------G-ATAGGGTTGCGGTTTAA

FIG. 23B-2D
GTTCTGATACTCAATCATACACATGACATCTATTCAT--ACTTGACTCCAAAACACTAACC 178
GTTGTTATACTCAATCATACACATGACATCAAGTCAT--ATATGACTCCAAAACACTAACC 168
GTTCTTATACTCAATCACACACATGACCTCTTGTCAT--ATTTGACTCCAAAACACTA 161
TTTCTTAGACTTAATCATATACATGACATATAGTCAT--ATTTATCTCCAAAACACTAAC 173
GTTCTTATACTCAATCATACACATGACCTTTTGTCAT--ATTTGACTCCAAAACACTA 174
GTTCTTATACTGGATCATAACCATGACATCTAAACAA--ATTTGAGTCCAAAACACTAACC 178
CTTCTTATAGTCAATCATAGACATGACATCTAGTCAT--ATTTGACTCCAAAACACTAA 113
GTTCTTTTACTCAATCAGACACATGAAGTCTAGTCAT--ATTTGACTCCAAAACACTAACC 127
GTTCTTATACGCAATCAAATACATGATATCTAGTCAT--ATTTGACTCCAAAACTCTAACC 178
GTTCTTTTGCTCACCCATACACATGAAATCTAGTCAT--ATTTGACTCCATAACACTAACC 178
GTTCTTATACTTAATCATAAACATGAAATCTAGTCAG--ATTTGTCTCCAAA 166
GTTCTTATACTCAATCATAAAAATGACATCTAGTCAT--ATTTGACTCGAAAATACTAACC 175
GTTCTCATACTCATTCATACACATGACATCTACTCAT--ATTTAACTCTAAAACACTAACC 174
GTTCCGATACTCAATCATACACATGATATCAAGTCAT--ATTCAACTCCAAAACACTAACC 173
GTTCTTATACTCAATCATACACATGATATCTAATCAT--ATTTGACTCCAAAACACTAACC 178
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTATTTTTCTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATTCACATGACATCAAGTCAT--ATTCGACTCCAAAACGCTAACC 175
GTTCTTATACTGAATCATACACATGACATCAAGTTAT--ATTCGACTCCAAAACACTAACC 175
GTTTTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 155
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAAC 174

七6c20-15 --- СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-16 AAGCTTCTCCTTGCTTCTCAAAGCTTTGATGGTGTAGCC-GAAGTCTTTATGAGTCTTTG t6c20-17 ----TTCTTCTTGCTTCTCAAAGCTATGATGGTGTAGAG-GAAGTCCATATGAGTCTTTG t6c20-18 ----CTTCTTGTTGCTTCTCAAAGCTTTCACGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-19 AAGCTTCTTCTAGCTTCTCAAAGCTTTCATGGTGTATCC-AAAGTCCGTATGAGTCTTTG t6c20-2 - - - СTTCTTCTTGCTTCTCAAAGCTTTCACGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-20 --- СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCTATATGAGTCTTTG t6c20-21 --- CTTCTTGTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCTTATGAGTCTTTG t6c20-22 --- CTTCTTGTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCTTATGAGTCTTTG t6c20-23---CTTCTTCTTGCTTCTCAAAGCGTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-24 --- СTTCTTCTTGCTTCTCAAAGCATTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-25 ----TTCTTCTTGCTTTTTAAAGCTTTCATTGTGTCGCC-AAAGTCCATATGAGTCTTTG t6c20-26 ----СTTCTTCTTGCTTCTCAAAGCTTTCATGTTGTAGCC-AAAGTCCATATGAGTCTTAG t6c20-27 ----CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCCATATGAGTCTTTG t6c20-28 --- CTTCTTGTTGCTTCTCAAAGCTTTCATGGTGTAGCCCAAAGTCCATATGAGTCCTTG t6c20-29---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-3 - - - CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCCGTATGAGTCTTTG t6c20-30 - - - СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-31 ---CTTCTTGTTGCTTCTCAAAGCTTTCACGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-32 ----CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCC----GAGTCTTTG t6c20-33 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGTC-AAAGTCC----GAGTCTTTG七6c20-34 - - - СTTCTTCTTGCTTCTAAAAGCTTTCATGGTATAG-CCAAATTCCATATGAGTCTTTG

FIG. 23B-1E

GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA TCTTTGTATCTT--CTAACAATGAAACTTTACTTTGGCTTTTAA-------G-ATCCGGTTGCGGTTTAA TCGTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAG-------G-ATAAAGTTGCGGTTTAA CCTTTGTGTCTT--TTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATAGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTCTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTCTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--TTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCAGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAACTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGAGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCATTTAA-------G-ATCAGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATTAGGTTGGGGTTTAA GCTTTGTGTCTT--CTAACAAGGCAACACTACTGAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--TTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATAGGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGATGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGATGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGCCTTTAA-------G-ATCCGGTTGCGGTTTAA

FIG. 23B-2E
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
GTTCTTATACGCAATCATACTCATGACATCAAGTCAT--ATTTGACTCCAAAACACTAACC 174
GTTGTTATACTCAATCATACACATGACATCAAGTCGT--ATTCGACTCCAAAACACTAAC 174
GTTTTTATACTCAATCATACGCATGACATAAAGTCAT--ATTCGACTCCAAAACACTAACC 178
GTTGTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAAC 174
GTTGTTTTTCTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
TTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCTAAACACTAACC 175
TTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCTAAACACTAACC 175
GTTGTTTTTCTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTCTTATACTCAATCATACACATGACAACAAGTCAT--ATTCGACTCCAAAACACTAACC 174
GTTGTTATACTCAATCATACACATGACAACAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACACGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 176
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTC 162
GTTCTTATACTCAATCATACACATGACATCAAGTCAT-ーÄTTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATTATACACATCACATCAAGTCAT--ATTCGACTCCAAAACAATAAC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC 157
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACGCTAACC 171
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACGCTAACC 171
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAACCACTAACC 175
FIG. 23B-3E
t6c20-35 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-36 ---CTTCTTTTTGCTTCTCAAAGCTITCATGGTGTAGCC-AAAGCCCATATGAGTCTTTG t6c20-37 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAATTCCATATGAGTCTTTG t6c20-38 ---СТTСTTСTTCСТTСТСАААGCTTTCATGGTGTAG-CCAAAGTCCATATGAGA-TTTG t6c20-39 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-4 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-40 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-41 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-42 ----TTCTTCTTTCTTTTTAAAGCTTTCATGGTGTAGGC-AAAGTCCATATGAGTCTTTG t6c20-43 ----TTCTTCTTTCTTTTTAAAGCTTTCATGGTGTAGGC-AAAGTCCATATGAGTCTTTG t6c20-44 -----TCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-45.----TTCTTCTTTCTTTTTAAAGCTTTCATGGTGTAGGC-AAAGTCCATATGAGTCTTTG t6c20-46 ----TTCTTCTTTCTTTTTAAAGCTTTCATGGTGTAGGC-AAAGTCCATATGAGTCTTTG t6c20-47 ---СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-48 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCGATATGAGTCTTTG t6c20-49 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCTAAGTCCATATGAGTCTTTG t6c20-5 ---СТTСTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-50 ---СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCTAAGTCCATATGAGTCTTTG t6c20-51 ---CTTCTTCTTGCTTCTCAAGGCTTTCATGGTGTAGTC-AAAATCCGTATGAATCTTTG t6c20-52 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-53 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-54 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAR-CCAAAKTCCATATRAGTCTTTG

FIG. 23B-1F

GCTTTGTGTCTT--CTAACAAGGAAACATTACTTAGGTTTTTAA-------G-ATCAGCTTGCGGTTTGA GCTTTGTGTCTT--CTAACAAGGAAACATTATTTAGGCTTTTAA-------G-ATCGGGTTACGGTTTAA TCTTTGTGTCTT--CTAACAAGGATACAATTCTTACTCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGCAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTAAA GTTTTGTGTCTT--CTCACAAGGAAACACTACTTAGGCTTTTAA--------G-ATCGGGTTGCTGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCATTTAA--------G-ATCGGGTTGCAGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTAAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGATTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCTGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTCTTAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCATTTAA-------G-ATCAGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCTGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTAAAA GCTTTGTGTCTT--CTAATAAGGATTCAATTCTTACGCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTGTCTT---CTAATAAGGATTCAATTCTTACGCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGCTTGCGGTTTAA GCTTTGTGTCTT--CTAATAAGGATTCAATTCTTACGCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA--------G-ATCGGGTTGTGGTTTAA GCTTTGTGTTTT--CTAACAAGGAAACACTACTTAGGCATTTAA------- - - ATTGGGTTGCAGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCATTTAA-------G-ATCGGGTTGTAGTTTAA GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGCCTTTAA-------G-ATCCAGTTGCGGTTTAA

FIG. 23B-2F
GTTGTTATACTCAATCACACACATGACAACAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTGTTATACTCAATCATACACATGACAACAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTTTACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAAC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 174
ATTCTTATACTCAATCATACACATGAGATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCTAAAACACTAACC 174
ATTCTTATACTCAATCATACACATGAGATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTCCAAA 165
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTCCAAA 165
GTTGTTTTTCTCAATCATACATATGACATCAAGTAAT--ATTCGACTCAAAAACACTAACC 173
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTCCAAA 165
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTCCAAA 165
ATTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCCAAAACACTAA 172
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAACAACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAACAACTAACC 175
GTTCTTATACTCAATCATACACATGGCATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCTAAAACACTAACC 174
GTTCTTATACTCAATCATACACACGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
t6c20-55 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCCAAGTCCATATGAGTCTTTG t6c20-56 ---CTTCATCTTGCTTCTCAAGGCTTTCATGGTGTAGCC-AAAATCCGTATGAATCTTTG t6c20-57 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAATTCCATATGAGTCTTTG t6c20-58 -----------------------CTTTCATGGTGTAGGC-AAAGTCCATATGAGTCTATG t6c20-59 ---CTTCTTCTTGCTTCTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGTGTCTTTG t6c20-6 ---CTTCTTTTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGCCCATATGAGTCTTTG t6c20-60 ---CTTCTTCTTGCTTCTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGTGTCTTTG t6c20-61 ---CTTCTTCTTGCATCTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGAGTCTTTG t6c20-62 ---CTTCTTCTTGCATCTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGAGTCTTTG $\mathrm{t} 6 \mathrm{c} 20-63$---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTGG-CCAAAGTCTATATGAGTCTTTG t6c20-64 ---CTTCTTCTTGCATCTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGAGTCTTTG t6c20-65 ---CTTCTTCTTGCTTCTCATGTATTTCATGGTGTAGTC-AAAATCCGTATGAATCTTTG t6c20-66 ---CTTCTTCTTTCTTCTCAATGATTTCATGGTGTAA-CCAAAGTCCATATGAGTCTTTG t6c20-67 ---CTTCTTCTTGCTTCTCAAGGCTTTCACGGTGTAGTC-AAAATCCGTATGAATCTTTG t6c20-68 ---CTTCTTCTTGCTTATCAAAGCTTTCATGGTGTAG-CCAAAGTCCATATGAGTCTTTG t6c20-69 ---TCCATATGAGTCTTTG t6c20-7 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCC-AAAGTCCATATGAGTCTTTG t6c20-70 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAG-CCAAAGTCCGTATGATTCTTTG t6c20-71 ---TT------------CTGAAAGCTTTCATGGTGTAG-CCAAAGTCTATATGAGTCTTTG t6c20-8 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCC-AAAGTCTGTATGAGTCTTTG t6c20-9 AAGCTTCTTTTAGCTTCTCAAAGCTTTCATGGTGTAGCC-AATGTCCGTATGAGTCTTTG

FIG. 23B-1G

GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGCCTTTAA-------G-ATCCAGATGCGGTTTAA GCTTTGTATCTT--CTAAGAAGGAAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGCCTTTAA-------G-ATCCAGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACWCGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATTGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACTCGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCGGTTTAA GCTTGGTGTCTT--CTAACACGGAAACACTACTTAGGCTTTTAA-------G-ATTAGGTTGCGGTTTAA GCTTGGTGTCTT--CTAACACGGAAACACTACTTAGGCTTTTAA-------G-ATTAGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACACGGAAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCAGTTTAA GCTTGGTGTCTT--CTAACACGGAAACACTACTTAGGCTTTTAAA-------G-ATTAGGTTGCGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-ATCGGGTTGCGGTTTAA GCTTTATGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGGGTTGCGGTTAAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTATAA-------G-AT----TTGCGGTTTAA GCTTTGTGTCTT--CTAATAAGGATACAATTCTTACGCCTTTAA-------G-ATCCGGTTGCTGTTTAA TCTTTGTGTCTT--CTAACAAGGATACAATTCTTACTCCTTTAA-------G-ATCCGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCAGCTTGCGGTTTAA GCTTTGTGTCTT--CTAACAAGGATACAATTCTTACGGCTTTTA-------AGATCGGGTTGCGGTTTAA GCTTTGTGTCTT--CTAACACGGTAACACTACTTAGGCTTTTAA-------G-ATCAGGTTGCGGTTTAA TATTTGTATCTT--CCAACAAGGAAACACTACTTAGGCTTTTAA-------GGATAAAGTTGTGGTTTAA GCTTTGTATCTT--CTAACAAGGAAACACTACTTAGGCTTTTAA-------G-ATCGAGTTGCGGTTTAA

FIG. 23B-2G
GTTCTTATACTCAATCATACACACGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATTAAGTCAT--ATTCGACTCCAAACAACTAACC 175
GTTCTTATACTCAATCATACACACGACATCAAGTCAT--ATTCAACTCCAAAACACTAACC 175
GTTGTTATACTCAATCATACACATGACATCAAGTCCT--ATTCGACTCCAAA 146
GTTGTTATAATGAATCTTACACATGACAACAAGTCAT--ATTTGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTGTTATAATGAATCTTACACATGACAACAAGTCAT--ATTTGACTCCAAAACACTAACC 175
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACGCCAAA 166
ATTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTC-ACTCCAAAACACTAACC 174
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCTAAACCACTAACC 171
GTTCTTATATTCAATCATACACATGACATCAAGTCAT--ATTCGACTCACAAACACTAACC 175
GTTCTTTTACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAAC 134
GTTGTTATACTCAATCATACACATGACAACAAGTCAT--ATTCGACTCCAAAACACTAACC 175
GTTCTAATACTCAATCATACACATGACATTAAGTCAT--ATTC-ACTCCAAAACACTAACC 175
GTTGTTATAATGAATCTTACACATGGCATCAAGTCAT--ATTC-ACTCTAAAACACTAACC 163
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 179
GTTCTTATACTCAATCATACACATGACATCAAGTCAT--ATTCGACTCCAAAACACTAACC 178
--- CTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG
$1020 \quad 30 \quad 40 \quad 50$
t25f15-1 --- СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATGAGTCTTTGA t25£15-10 - - - СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATGAGTCTTTGG t25f15-11 ---CTTCTTCTTGCTTCTCATAGCTTTCATGGCGTAGCCAAAGTCCATATGAGTCTTTGG t25f15-12 ---CTTCTTCTTGCTTCTCAAAGCTTTTATGGTGTAGCCAAAGTCCACATGAGTCTTTGG t25£15-13 AAGCTTCTTCTTGCTTCACAAAGCTTTGATGGTGTAGCTAAAGTCCGCATGATTTATTGG t25£15-14 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTTTAACCAAAGTCCGTATGAGAATTTGG t25£15-15 AAGCTTCTTCTTGCTTCACAAAGCTTTGATGGTGTAGCGAAAGTCCGTATGATTCATTGG t25£15-16 AAGCTTTTTCTTGCTTCTCAAAGCTTTAATGGTGTAACCAAAGTCCGTATGAATGTTTGG t25£15-17 AAGCTTCTTCTTTCTTCTCAAAGCATTGTTGGTGTAGCTGAAGTCCGTATGAGTCTTTGG t25£15-18 --GCTTCTTCTTGCTTCCCAAAGTTTTGATGGTGTACCCAAAGTCCGTATGAGTCTTTGT
 t25f15-2 ---СТTCTTCTTGCTTCTCAAAGCTTTCATCGTGTAGCCAAAGTCCATATGAGTCTTTGG t25£15-20 - - - CTTCTTCTTGATTCTCAAAGTTTTGATGGTGTAGCCĞAAGTCCATATGAGTCTTTGG t25£15-21 AAGCTTCTTCTTGCTTCTCAAAGTTTTGATGGTGTACCCAAAGTCCGTATGAGTCTTTGT t25f15-22 ----TTCTTCTTGCTTCGCAAAGCTTTGTTGGTGTAGCTGAAGTCCGTATGAGTTTTTGG t25f15-23 AAGCTTCTTCTTGCTTCTCGAAACTTTGTTGGTGTAGCTGAAGTCCGTATGAGTCTTTGG t25f15-24 ----TTCTTCTTGCTTCTTAAAGTTTTAATGGTGTAATCAAAATCTGTATGAGTCTTTGG t25f15-25 -------------------------TTGATGGTGTAGCCGAAGTCCGTATGAGTATTTGG t25£15-26 AAGCCTCTTCTTGCTTTTCAAAGCTTTGATAGTGTAGCCAAAGTCCGTATGAGTATTTGG t25f15-27 AAGCTTCTTCTTGCTTCACAAAGCTTTAATGGTGTAACCAAAGTCCGTATGAATGTTTGG

FIG. 23C-1A

CTTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATCC-GGTTGCGGTTCTAGTTCTTATAC $7080 \quad 90 \quad 100 \quad 110 \quad 120 \quad 130$ CTTTGTGTCTTCTAACAAGGATACACTACTTAGGCTTACAAGATCG-GGTTGYGGTTTAAGTTSTTATAC CTTTGTGTCTTCTAATAAGGATACAATTCTTACGCCTTTAAGATCC-GGTTGCGGTTTAAGTTCTTATAC CTTTGTGTCTTCTAACAAGGATACAATTCTTACGCCTTTAAGATCG-GCTTGCGGTTTAAGTTCTTACAC CTTTGTGTCTTCTAACAAGGACACAATTCTTACGCCTTTAAGATCC-GGTTGCGGTTTAAGTTCTTATAC CTTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATCC-GGTTGTGGTTCTAGTTCTTATAC CTTTGTATCTTCTAACAAGGAAACACTACTTGGGCTTTCAAGATCT-GGTTGTAGTTCGAGTTTTTATAC CTTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATCC-GGTTGCAATTCTCGTCCTTATAC CTTTGTATCTTCTAAAAAACAAATACTACTTAGGCTTTTAAGATCC-GGTTGCGGTTCTAGTTCTTATAC CTITGTATCTTCTAACAAGGAAACACTACTTAGGATTTTAAGATCG-GGTTACAGTTCTAGTTTTTATAC CTTTGTACCTTCTAATAAGGAAACACTACTTGGACTTTCAAGATCC-GGTTGCGGTTCGAGTTCTTATAC CTTTGTATCTTCTAACAAGGAAACACTAATTTGGGTTTTAAGATCC-GGTTGTGGTTCTAGTTCGTATAC CTTTGTGTCTTCTAACAAGGATACAATTCTTACGCCTTTAAGATCC-GGTTGCGGTTTAAGTTCTTATAC ATTTGTATCTTCTAACAAGGAAACACTACTTGGGCATTCAAGATCC-GATTGCGGTTTGAGTATTTATAC CTTTGTACCTTCTAAAAAGGAAACACTACTTGGGCTTTCAAGATCC-GGTTGTGGTT-GAGTTCCTATAC ATTTGTATCTTCTAACAAGGAAACACTAACTAGGCTTTTAAGATCG-GGTTGCAGTTCCAGTTTTTATAC CTTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTAAAGATCG-GGTTGCAGTTCTAGTTCTTATAC -TTTGTATCTTCTAACAAGGAAACACTACTTAGGCTTTTAAGATCT-GGTAGTGGTTCTAGTTCTTATAC CTTTGTATCTTCTAACAAAGAAACACTACTTGGGCTTTCAAGATCT-GGTTACGGTTTGAGTTTTTATAC CTTTGTATCTTCTAACAAACAAACACTAGTTGGGCTTTCAAGATCC-GGTTGCGATTTGAGTTTTTATAC CTTTGTATCTTCTAAA-------TACTACTTAGGCTTTTAAGATCC-GGTTGCGGTTCTAGTTCTTATAC

FIG. 23C-2A
TC-AATCATACACATGACATCAAGTCATATTTGACTCCAAAACACTAACC$140150160170 \quad 180$
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 175
TC-AATCATACACATGACATCAAGTCATATTCGACTTTAAAACACTAACC 175
TC-AATCATACACATGACATCAAGTCATAATCGACTCCAAAACACTAACC 175
TC-AATCGTACACATGACATCAAGTCATATTTGACTTTAAAACACTAACC 175
TC-AATAATACACATGACATCAAGTCATATTTGACTCTAAAACACTAAC 177
TA-AATCATAGACATGCCATCTTGTCATATTTGACTCCAAAACACTAACC 178
TCCA-TCATACACATGACATCAAGTCATATTTGATTCCAAAACATTAACC 178
CC-AATCATACACATGACATCAAGTCATATTTGACTCGAAAACACTAACC 178
TCAA-TCATACACATGAAATCTAGTCATATTTGACTCCAAAACACTAACC 178
TC-AATCATACACATGTCATCTAGTCATATTTGTCTCCAAAACAATAACC 176
TC-AATCATACACATGACATCAAGTCATATTTGACTCTAAAACACTAAC 140
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 175
TC-AATCATACACATGTCATCTAGTCATATTTGACTCCAAAACAATAACC 175
TC-AATCATACACATGCCATCAAGTCATATTTGACTTCAAAACACCAACC 177
TCAA-TCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 173
TCAAATCATACACATGAAATCTAGTCATATTTGACACCAAAATACTAACC 179
TC-AATCATATACATTACATCAAGTCATATTTGACTCTAAAACACTAAC 172
TC-AATCATACACATGCAATCTAGTCATATTGGACTCCAAAAAACTAAC 152
TC-AATCATACACATGTCATCTAGTCATATTTGACTCCAAAA 170
CС-AATCATACACATGACATCAAGTCATATTTGACTCGAAAACACTAACC 171
t25f15-28 ----TTCTTCTTGCTTCTCAAAGCTTTGTTGGTGTAGCTGAAGTCCGTATGAGTCTTTGG t25f15-29 AAGCTTCTTCTTGCTTCTCAAAGCTTTAATGGTGTAACCAAAGCCCGTATGAATGTTTGG t25f15-3 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCACAGTCCATATGAGTCTTTGG t25f15-30
t25f15-31 --------------------------TTTGATGGTGTAGCCGAAATCCGTATGAGTCATTGG t25f15-32 AAGCTTCTTCTTGATTCTCAATGCTTTAATAGTGTTACCAAAGTCCACATGCGTCTTTTG t25f15-33 AAGCTTCTTCTTGCTTCACAAAGCTTTGATGGTGTAGCTAAAGTCCGTATGATTCATTGG t25f15-34 ------------------------CTTTGATGGTGTAGCCGAAGTCCGTATGAGTCATTGG t25f15-35 AAGCTTCTTCTTGCTTCTCAAAGCATTGATGGTGTAGCCGACGTTCGTATGAGAATTTGG t25f15-36 ----TTCTTCTTGCTTCTCAAAGCTTTGACGGTGTAGCCGAAGTCCGTATGAGTAATTGG t25£15-37 ------CTT t25£15-38 ------CTTCTTGTTTCTCAAAGCTTTGATAGTGAAGCCGAAGTCCGTATGAGTCATTAG t25f15-39 AAGCTTCTTCTTGATTCCCAACGCTTTAATAGTGTTACCAAAGTCCACAACAATCTTTAG t25f15-4 ----TTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCTATATGAGTCTTTGG t25f15-40 AAGCCTCTTCTTGCTTCTCAAAGCTTTGATA GTGTAGCTGAAATTCGTATGAGTCATTGG t25£15-41 ---CTTCTTCTTGCTTCTCAAAGCTTTAATGGTGTAACCGAAGTCCGTATGAGTCTTGGG

 t25f15-44 ----------------------------GATGGTGTAGCCAAAGTCCGTATGAGTATTTGG t25f15-45 ----TTCTTCTTGCTTCTCAAAGTTTTAATGGTGTAATCAAAATCTGTATTAGTCATTGG t25f15-46 AAG---1CCGTATGAGTCTTTGG t25f15-47 AAGCTTCTTCATGCTTCCTAAGGCTTTGATGGTGATGTCAAAGTCCGTATGAATCTTTTG

CTTTGTATCTTCTAAAAGGGAAACACTAACTAGG-TTTTAAGATCG-GGTTGCAGTTCCAGTTTTTATAC CTTTGTATCTTCTAAAAAATAAATACTACTTAGG-TTTTAAGATCC-GGTTGCGGTTATAATTCTTATAC CTTTGTGTCTTCTAACAACGATACACTACTTAGGCTTACAAGATCG-GGTTGCGGTTTAAGTTGTTATAC -TTTGTATCTTCTAACAAGGAAACACTACTTAGACTTTTAAGATCC-GGTTGTGGTTCTAGTTCTTATAC CGTTGTATCTTCTAACAAGGAAACACTACTTGGGCTTTCAAGATCC-AGTTGCGGTTCGAGTTCTTGTAC CTTTGTATCTTCTAACAAGGAAACACTACTTTGGGTTTTAAGATCC-AGTTAAGGTTCTAGTTCGTATAC CTT-GTATCTTCTAACAAGGAAACACTACTTAGGCTTTAAAGATCC-GATTCGAATTCTTGTCCTGATAC CGTTGTATCTTCTAACAAAGAAACACTACTTGGGCTTTCAAGATCC-AGTTGCGGTTCGAGTTCTTGTAC СTTTGTATCTTCTATCAAGGAAACACTATTTGGGCTTTCAAGATCC-GGCTGTGGTTTGAGTTCTTATAC CGTTGCATCTTCTAACAAGGAAACACTACTTTGGCTTTCAAGATCC-AGTTGTGGTTCGAGTTCTTGTAC ---TGTATGTTCTAACAAGGAAACACTATTTAGGCTTTCAAGATC゙T-GGTTGCCAATCTAGGTCTTATAC CTTTGTCTGTTCTAACAAGAAAACACTATTTGGGCTTTCAATATCC-GGTTGCCAATCTAGTTCTTATAC CTTTGTATCTTCTAACAAAGAAACACTACTTTGGGTTTTAAGATCC-GGTTGTGGTTCTAGTT---ATAC CTTTGTTTCTTCTAACAAGGATACAATTCTTACGCCTTTAAGATCG-GGTTGCGGTTTAAGTTCTTATAC CTTTGTATGTTCTAACAAGGAAACACTATTTGGGCTTTCAAGATTA-GGTTGTAGTTCGAGTTCTTATAC CTTTGTATCTTCTAACAAGGAAACACTACTT
----GTATCTTCTAAAAAAGAAATACTACTTAGGCTTTTAAGATCC-GGTTGCGGTTCTACTTCTTATAC CTTTGTATCTTCTAGCATGGAAAAACTAATTTTGCTTTTGGGATCC-GTTTGTAGTTTAAGTTCTAATAC CTTTGTATCTTCTAAAAAAGAAACACTACTTCGGCATTCAAGATCC-GGTTGCAGTTTGAATTCTTATAC CTTTGTATGTTCTAACAAGGAAACACTATTTGGGCTTTCGGGATTA-GGTTGTAGTTCGAGTTCTTATAC CTTTGTATCTTCTCGCATGGAAACTCTACTTTTCCTTTTCGGATCC-GTTTGCGGTTCAAGTTCTAATAC TTTTGTATCTTCTAGCATGGAAACACTACTT
TCAA-TCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 173
CC-AATCATACACATGACATCAAGTCATATTTGACTCCAAAACACTAACC 177
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 175
TC-AATCATACAGATTACATCAAGTCATATTTGACTCTAAAACACTAAC 116
TC-AATCATACACATGACATCTAGGCATATTTGACTCCAAAACAATAACC 154
TC-AATCATACACATGACATCAAGTCATATTTGACTCTAAAATACTAAC 177
TCCA-TCATACACATGACATCAAGTCATATTTGACTCCAAAACAATAACC 177
TC-AATCATACACATGCCATCTAGGCATATTTGACTCCAAAAC 148
TC-AATCATACAAATGACATCTGGTCATATTTGACTGAAAAACACAAACC 178
TC-AATCATACACATGCCATCTAGGCATATTTGACTCTAAAACA 168
T-TAATCATACACAGGACATCAATTCATATTTGACTCCAAAACACTAACC 118
T-AAATCATACACAGGACATCAATTCATATTTGACTCCAAAACACTAACC 172
TC-AATCATACACATGACATCAAGTCATATTTGACTCTAAAACACTAAC 174
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 174
T-AAATCATACACATGTCGTCTGGACATATTTGACTCCAAAACACTAACC 17888
CC-AATCAAAAACATGAAATCAAGTCATATTTGATTCCAAAAAACTAACC 114
TT-AAACATACACATGACATAAAGTCATATTTGACTCCAAAACACTAACC 118
TC-AATCATA 111
T-AAATCATACAAATGTCGTCTGGTCATATTTGACTCCAAAACACTAACC 174
TC-AACCATAGACATGACATCAATTTATATCTAACTCCAAAACACAAACC 13891FIG. 23C-3BPatent Application Publication Dec. 1, 2005 Sheet 114 of 183 US 2005/0266560 A1
t25f15-48 AAGCTTCTTCATGCTTCCTAAGGCTTTGATGGTGATGTCGAAGTCCTTATGAATCTTTTG t25f15-49 AAG---TCCGTATGAGTCTTTGG t25f15-5 ---CTTCTTCTTGCTTCTCAAAGTTTTCATGGTGTAGCCAAAGTCAATATGAGTCTTTGG t25f15-50 A-GCTTCTTCATGCTTCCTAAGGCTTTGATGGTGATGTCGAAGTCCTTATGAATCTTTTG t25f15-51 --1TGAGTCTTTGG t25f15-6 ---СTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATGAGTCTTTGG t25£15-7 ----TTCTTCTTGCTTTTCAAAGCTTTCATGGTGTAGCCAAAGTCAATATGAGTCTTTGG t25f15-8 ---CTTCTWCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATGAGTCTTTGG t25f15-9 ---CTTCTTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATGAGTATTTGG

CTTTGTATCTTCTAGCATGGAAACACTACTT
CTTTGTATTTTCTGGCATGGAAACACTACTTTTCCTTTTTGGATCC-GTTTGCGGTTCAAGTTCTAATAT CTTTGTGTCTTCTAACAAGGATACACTACTTAGGCTTATA-GATCA-GGTTGCGGTTTAAGTTCTTATAC CTTTGTATCTTCTAGCATGGAAACACTACTT
CTTTGTATCTTCTAGCATGGAAACACTACTTTTCCTTTTCAGATCC-GTTTGCGGTTCAAGTTCTAATAT CTTTGTGTCTTCTAACAAGGATACAATTCTTACGCCTTTAAGATCC-GGTTGCGGTTTAAGTTCTTATAC CTTTGTGTCTTCTAACAAGGATACACTACTTAGGCTTACAAGATCG-GGTTGCGGTTTAAGTTGTTATAC CTTTGTGTCTTCTAACAAGGATACAATTCTTACGCCTTTAAGACCG-GGTTGAGGTTTAAGTTCTTATAC CTTTGTGTCTTCTAACAAGGATACATCTCTTACGCCTTTAAGATCT-GGTTGCGGTTTAAGTTCTTATAC

TC-AACCATAGACATCACATCACTTTATATTTAACTCCAAAACACAAACC 138
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 174
TC-AACCACAGACAGGACATCAATTTATATTTAACTCCAAAACA 125
TC-AATCATACACATGACATCAAGTCATATTCGACTTTAAAACACTAACC 175
TC-AATCATACACATGACATCAAGTCATATTTGACTCCAAAACACTAACC 174
TC-AATCATACACATGACATCAAGTCATATTCGACTCCAAAACACTAACC 175
TC-AATCATACACATGACATCAAGTCATATTCGACTTTAAAACACTAACC 175

FIG. 23C-3C

AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG $1030 \quad 30 \quad 40 \quad 50$
f21i1-37 AAGCTTCTTCTTGCTTCTCACTGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i1-71 AAGCTTTTTATTGCTTCTCAAAGCTTTGATAGTGTAGCCGAAGTCCGTATGAGTCTTAGG f21i2 AAGCTTCTTTTTGCTTTTCAAAGCTTTGATGGTGTAGCAGAAGTCCGTATGAGTCTTTGG f21i2-1 ----TTCTTATTGCTTCTCAAAGTTTTGATGGTGTAGCCGAAATCCGTATGAGTCTCTAT f21i2-10 AAGCTTCTTCTAGCTTCTCAAAGTTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-100 AAGCTTCTTATTGCTTCTCAATATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-101 --TATGAGTCTTTGG
 f21i2-103 ------------------------CTTTGATGGTGTAGCCGATGTCCGTATGACTCTTTGG f21i2-104 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCTGTATGAATTTTTGG f21i2-105 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAACTCTATATGAGTCTTTTG £21i2-106 AAGCTTCTTCTTGCTTCTCAATGCTTTGACGGTGTTACCAAAGTCCGTGTGAATCTTCGT f21i2-107 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f21i2-108 AAGCTTCTTCATGCTTTTCAAAGCATTGATGGTGAAGCCAAAGTCCGTGTGAATCTTCGG f21i2-109 AAGCTTTTTCTTGCTTGTCAAAGCTTTGTTGGTGTTGCCAAAGTCAGTATGAGTCTTTGG f21i2-11 AAGCTTCTTATTACTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-110 A-GCTTCTTCATGCTTCTCAAAGCTTATATGCTGTAGCCAAAGTCCGTATGAGTCTTTGG f21i2-111 AAGCTTGTTCTTGCTTCTTAATGCTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTAAGG f21i2-112 ---TATGAGTCTTTGG f21i2-113 -----TCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTTTTTGG

FIG. 23D-1A

CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAACCGGTTGCGGTTCTAGTTC $7080 \quad 90 \quad 100$ 110 120 130 CTTTGTCTCTTCTAA-CAAGGAAACACTACTTT------ACCTTTTGGGATCCGGTTGCGGTTCTAATTC CGTTGTATCTTCTAA-TAAGGAACCACTACTTT------AGCTTTTGGAAACCAGTTGCGGTTCTAGTTC CTTTGTATCCTTTAA-CAACGAAGCAATACTTT------AGCTTTTCGGAACCGGTTGCGGTTCTATTCC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAACCAGTTGCGGTTTTAGTTC CTTTGTATCTTCTAA-TAAGGAAACACTATTTT------AGCTTTTGGGAACCGGTTGCGGTTATAGTTC CTTTGTATCTTCTAA-CAAGGAAAAAATACTTT------ATCTTTTGGGAACCGACTGCGATTCCAGTTC CTATGTATCTTCTAA-CAAGGAAATACTACTTT------AGCTTTTGGGAACCGGTTCCGGTTCTAGTTC ----------------CAAGAAAACAC------TACTTAGGCTTTTAAGATCTTGTTGCGGTTCTAGTTC TTTTGTATCTTCAAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATTGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAG-AAGGGAAACACAACTTT------AGCTTTTGGGAATCAGTTGTGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAGATACTACTT------AGGCTTTCAAGATCTAGTTAAGATTCTACTTC CTTTGTATCTTCAAA-CAAGGAAATAC------AAGTTTAGCTTCTGGGATCCGGTTGCAGTTCTAGTTC CTTTCTATCTTCTAA-CAAGGAAACACTACCTT------ACCTTTTGGGAACCGATTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CCAGGAAACAC------TAATTTAGCTTTTGGGATCTTATTGCGGCTCTAGTTC ATTTGTATCTTCAAA-CAAGGAAACACTACTTT------GGCTTTTGGGAACCAGTTGCGTTTCTAGTTC CTTTGTATCTTGTAA-CAAGGAAACACTACTTT------AGCCTTTGGAAACCGGTTGCGGTTCTAGTTC CTTTGTATCTCCTAA-CAAGGAAACACAACTTT------AACTTTTCGGAACCGGTTGTGGTTCTAGGTC CTTTGTATCTTTTAA-CAAGAAAACACTAATTT------ACATTTTGGGATCCTTTTGCGGTTCTAGTTC TTATGTATTTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGATCCGTTTGCGGTTCTATATC CTTTGTATCTTCTAG-AAGGGAAACATTACTTT------AGCTTTTGGGAAGATGTTGCGGTTCTAGTTC
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC $140150160 \quad 170 \quad 180$
TCATACTCAATTATACAAATGACATCTAGTCATATTTGACTCCAAGACAC 173
TTATACTCCATCATACACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 178
TTATACTCAATCATACACATGACATCTCGTCATATT 159
TTATGCTCAATCATACACATGACATCAAGTCATATTTGACTCCAAAACACTAACC 174
TTATACTCAATCATACACATGACATATAGTCATATTTGAATCCAAAACACT 174
TTATACTCCATCATACACATGACATCTAGTCATATTTGACTCTAAAACACTA 175
TTATACTCAATCATACAAATGACATCTATTCATATTTGTCTCCAAAACACTAACC 131
TCATACTCAATCATACACATGAGATCAAGTTATATTTGACTCCCAAACACTAA 103
TTATACTCAATGATACACATGACATCCTGTAATATTTGACTCTAAAATACTAACC 155
TTATACTTAATCAAACACATAACATCTAGTCATATTTGACTCCAAAAAACTAAC 174
TTATACTCACTCAAACACATGACATGTCGTCATATTTGACTCTGAAACAATAACC 178
TTATACTCAATCATACACATGACCTCTAGTCATATTTGAATCCAAAACAGTAACC 178
TTATACTCAATACTATACATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
TAATACTCAATCACACACATGACATCTAGTCATATGTGACACCAAAACACTAACC 178
TTATACTCAATCATACACATGACAAGTAGTCGTATGTGGCTTCAAAACACTAACC 178
TTATACTCAATCATCCACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 178
TTATACTCAATCATATAAATGACATCCAGTTATATTTGACTGGAAAACACTAACC 177
TTATACTCAATCATACAAATGACATCTAGTCATATTTGACTCCAAGACAC 173
TTATACTCAATCATACACATGACATCGAGTCATCTTTGACTCCAAAACACTAA 129
TTATACTCAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 173

FIG. 23D-3A
f21i2-114 --GCTTCTTAATGCTTCCCAAAACTTTTATGGTGTAGCCAAAGTCCGTATAAGTCTTTGG
f21i2-115 AAGCTTCTTCTTGCTTCTCATAGATTTGATGGTGTAGCCGAAGTCCGTATTAGTCTTTGG
f21i2-116 ----------TTGCTTCTCAAAAATTTGATGGTGTAGCCGAAGTCCGTATGCGTCTTTGG
f21i2-117 ----TTCTTATTGCTTCTCCAAGCTTTGATGGTGTAGCCGAAGTCCGTATGTGTATTTAG
f21i2-118 ---CTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCTGTATGAGTTTTTGG
f21i2-119 ---СTTCTTATTGCTTCTCAAAGCATTGATGGTGTAGCCGATGTCTGTATGTGTCTTTGG
f21i2-12 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-120 AAGCTTCTTTTTGCTTTTCAAAGCTTTGATGGTGTAGCAGAAGTCCGTATGAGTCTTTGG
f21i2-121 ---СTTCTTCTCGCTTCTCAAAGATTTGATGATGTTTCCAAAGTCCGTGTGAATCTTCCG
f21i2-122 ----------------------- CTTTGATGGTGTAGCCGATGTCCGTATGAGCCTTTGG
f21i2-123
f21i2-124
--1
f21i2-125 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGAAGCCGAAGTCCGTACGAGTCTTTGG
f21i2-126 AAGCTTATTTTTGCTTCTCAAAGCTTTGATGGTGTAGCCGAACTCTATATGAGTCTTTTG
f21i2-127 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCGAACTTTGTATGAGTCTTTTG
f21i2-128 AAGCTTCTTATTGCTTCTCATAGCTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTGG
f21i2-129 AAGCTTCTGCTTGCTTCTCAAAGCTTTGATGGTGTTGCCGAATTCAGTATGTGTCTTTGG
f21i2-13 AAGCTTCTTCTTGCTTCTCAAAGTTTTGATGGTGTTGCCATAGTCCGTGTGAATCTTCGT
£21i2-130 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGTGTCTTTGG
£21i2-131 AAGCTTCTTCTTGCTTCTCAATGCTTTGATGGTGTAGCCGAAGTTCGTATGAGTCTTTGG
f21i2-132 A
f21i2-133 ----------T-GCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCCTTATGACTTTTTGG

FIG. 23D-1B

ATTTGTATCTTTTAT-AAAGGAAACATTACTTT------CGCTMITGGGAATIGGTTGCGGTTCTAGTTC ATATGCATCTTCTAA-CAAGGAAACACGTCTT------TCGCTTTTAAGATCCGGTTGCGATTCTAGTTC CTTTGTATCTTCTAA-CAAGAAAACACTACTTT------AGCTTTTGGGAACCAGTTGCAGTCCTAGCTG CTTTGTATCTTCAAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATCAGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-TAGGGAAACATAACTTT------AGCAATTGGGAATCGGTTGCCGTTCTAGTTC CTTTGTATCTTCTAA-CGAGGAAACCCTACTTT------AAGTTTTTGGAACCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCCCTTGGGAACCAGTTGCGGTTTTAGTTC CTTTGTTTCCTCTAA-CAAGGAAGCAATACTTT------AGCTTTTCGGAACCGGTTGCGGTTCTAGTCC CTTTGTATCTTCTAA-CAAGGGTACAC------TAATTAAGATTTTGGGATCCGGTTGCGATTTTAGTTC TTTTGTATCTTCAAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATTGGTTACGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACATTACTCT------AGCTTTTAGGAATCGGCTGCGGTTCTAGTTC

CTTTGTATCTTCTAA-CAAGGAAACATTACTTA------AGCTTT
CTTTGTATCTTCTAA-CAAGGAGATACTACTT------AGGCTTT
CGTTGTATCTTCTGA-CAAGGAGATACTACTT------AGGCTTTCAAGATCCAGTTGAGATTCTAGTTC CTTTGAATCTTCTAA-TAAGGAAACACAACTTT------AACTTTTGGGAACCGGTTGTGGTTCTAGGTC GTTTGTATCTTCTAA-CAAGGAAACAC------TTCTTAAGGTTTTAAGATCCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACAC------TACTTTAGCTTTTAGGATCTTGTTGCGATTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTAAATT------TGCTTTTGGGAACCAGTTGCGGTTCTAGTTT CTTTGTCTCTTCTAA-CTACGAAACATTACTTT------ACCTTTTGGAATCCGATAGCGGTTCTAATTA ------------------------CAC------TACTTAGGCTTTTAAGACCCGGTTGCAGTTCTAGTTC CTTTGTATCTTCTAG-AAGGGAAATATTACTTT------AGCTTTTGGGAAGATGTTGCGGTTCTAGTTC

FIG. 23D-2B
TTATACTCAATGATTCACATGACATCATGTAATATTTGACTTCAAAATACTAACC 176
ATATACTCAAACATACACATGATATCTAGACATATTTGACTCCCAAACACTAA 176
TTAAACTCAATCGTACACATGACATCTAGTCATATTTAACTCCAAAACACTAACC 168
TTATACTCAATCATACACACGACAT 144
TTATACTCAATCATACACATGACATCTAGTCATATTTGATTCCAAAACACTAACC 175
TTATAGTCAATCATACACATGACATCTTGTCATACTTGACTCCAAAACATTAACC 175
TTATACTCAATCATCCACATTACATCTAGTCATATTTGACTCCAAAA 170
TTATACTCAATCATACACATGAAATCTCGTCATATT 159
TTATAATCAATCATACACATGACCTCCAGTCATATTTGAATCCAAAACAGTAACC 175
TTATACTCAATGATACACATGACATCCTGTAATATTTGACTCTAAAATACTAACC 155
СТАТАСТСААТСАTACACATGACATATAGTCATATTTGACTCTGAAACACTAACC 118
TTATACTCAATAATACACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 70
9898
TTATACTCAACCATACACAGGACATATCGTCATATTTGACTCTGAAACACTAACC 178
TTATAGTCAATCATATAAAAGACATCTAGTCATATTTGACTCGAAAACACTAACC 178
TTATACATAATGTTACACATGAGATCTAGTCATATTAGATACCAAAACATTAACC 178
TTATACTCAATCATACACATGACCTCTAGTCATATCTGAATCCAAAACAGTAACC 178
TAATACTCAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAAC 177
TTATACTCAATCATACAAATGACATCTAGTCATATTTGACTCCAAGACAC 173
TTATACTCAATCATACAAATGACATCTACTCATATTTGACTCCAAAACACTAACC 96
TTATACTCAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 167
f21i2-134 --f21i2-135 AAGCTTCTTATTGCTTTTCCAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTTG f21i2-136
£21i2-137 ---CTTCTTGTTGCTTCTTAAAGCTTTGATTGTGTACCCAAAGTCCGTATGAGGTTTTTG f21i2-138 -------TTCTTGCTTTTTAATGCTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-139 ------------------------TTTGATGGTGTAGCCGAAATCCGTATGAGTCTTTGG f21i2-14 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAATTCCATATGATTCTTTGG f21i2-140 -------T-CTTGCTTCTCAATGCTTTGATGGTGTAACCGAAGTCTGTATGAGTCTTTGG f21i2-141 AAGCTTCTTATTGCTTCTCAAAGATTTGATGGTGTAGCTGAACTCTGTATGAATCTTTTG f21i2-142 ----------TTGCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTTTTTGG f21i2-143 ----------TTGCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGACGTTTTGG f21i2-144 -----------------------CTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-145
f21i2-146 AAGCTTCTTCTTGCTTCTCAATGCTTTGATGGTGTAGACGAAGTCCTTATGAGTTTTTGG f21i2-147 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f21i2-148 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG
 f21i2-15 A-GCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTGGCTGAAGTCCATATGATTCTTTTG f21i2-150 AAGCTTCTTCTTGCTTCTCAATGCTTTGATGGTGTAGCCTAACTCCGTATGAGGTTTTGG £21i2-151 ------------------------CTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-152 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGGCGAAGACCGTATGAGCCTTTGG f21i2-153 --- CTTCTTATTGCTTCTCAAAGATTTAATGGTGTAGCCGAACTCTGTATGAATCTTTTG

FIG. 23D-1C

CTTTGACTCCTCTAA-CAAGGAAACAC------TACATAGACTTTTAAGATCCAGTTGTGGTTCTACTTC CTTTGTATCTTCTAA-CAAGGAAACAATACTT
--GTTGCGGTTTTAGTTC
TTTTGTATCTTCTAG-AAGGGAAACATTACTTT------AGCTTTTGGAAAAATGTTGCGGTTCTAGTTC
CTTTATATCTTCTAA-CAAGAAATCTCTACTT------AGGATTTTAAGTTCTTGTTGGGGTTCTAGTTC
CTTTGT-ATCTTTAA-CAAGGAACCACTACTTT------AGCTTTTGAGAACCGATTGCGGTTCTATTTC
CTTTGTAACTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAAACGATTGCGGTTCTAGTTC
CTTTGTATCTTCTAA-CAAGATAACACTACTT------AGGATTTTAAGATCTTGCTGGGCTTCTAGTTC
CTTTGTATCTTCTAA-CAAGGAGATATTATTT------AGGCTTTCAAGATCCAGTTGAGATTCTAGTTC
CTTTGTATCTTCTAG-AAGGGAAACATTACTTT------AGCTTTTGGGAAGATGTTGTGGTTCTAGTTC
CTTTGTATCTTCTAG-AAGGGAAACATTACTTT------AGCTTTTGGGAAGATGTTGCGGTTCTAGTTC
CTTTGTATCTTTGAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATCGGTTGCGGTTCTAATTC
--TTGCGGTTTTAGTTC
TTTTGGATATTCGAA-TAGGGAAACACTACTTTTACTTAACCTTTTGGGATCTTGTTGCGGTTCTAGTTC -TTTGTATTTTCTAA-CAAGGAAACACTACTTT------AGCTTTTTGGATCCGATTGCAGTTCTAGTTC CTTTGTATCTTCTAA-CA
CTTTGTATTTTCTAA-CAATGAAATACAACTTT------AGTTTTTGGTATCCGGTTGCGGTTCTAGTTC
CTTTGTATCTTCTAA-GAAGGAAACACTACTTT------AGCTTTTGGAAAATGGGTTCGATTCTAGTTC
TTTTGGATCTTCTAA-TAGGGAAACACTACTTT------AGCTTTTGGGATCCGGTTGAAGTTCTAGTTC
-TTTGTCTCTTCTAA-CAAGGAAACATTACTTT------ACATTTTTGGGTCCTTTTGCGGTTCTAGTTC
СTTTGTTTCTTCTAA-CAAGGAAACACTACTTT------ACCTTTTGGGAACCAGTTGCGGTTCTAGTTC CTTTGTATCTTCTTA-CAAGGAGATACTATTT------AGGCTTTCAAGATCCAGTTGAGATTCTAGTTC
TTATACTCATTCATACACATGACATCTAGTCATATTTGACACCAAAACCCTAACC 131
TTATACTCAATCATCCACATGACATCTAGTCATATTTGACTCCAAAA 63
TTATACTCAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
TAATATAAAATCATACACATGACAT- 146
TTATACTCAGTCATACACAGGACATCTAGTTATATTTGACTCCAAAACACTAACC 153
TTATACTCAATCATACACATGACATTTAGTCATATTTGACTCCAAAA 170
TAATATTCATCATACGCATGACAT 145
TTATACTCAATCATACACATGACATGTAGTCATATTTGACT 164
TTATACTCAATCAAACAAATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 168
TTATACTCAATCAAACACATAACATCTTATCTTATTTGACTCCAAAATACTAACC 168
TTATAGTCAATGATACACATAACATCCTGTAATATTTGACTTTAAAATACTAACC 155
TTATACTCAAAATTACACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 70
TTATACTCAATCATACACATGACATCTAGTCATTTTTTACTCTAAAACACT 180
TTATACTCAATCCTACACATCACATCTAGTTATAATTGACTCCTTAACACTAACC 17777
TTATACTCAATCATACACATGACATCTAGTCAT 109
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACT 173
TTATACTCAATCATCCACATTACATC 149
TTATACTCTATCATACAAATGACATCTAGTCATATTTGACTCCAAGACAC 149
TTATACTCAATACTACACATGACAT 148
TTATACTCAATCATACACATGACATGACATGTAGTCATATT 156

FIG. 23D-3C

```
f21i2-154 AAGCTTCTTCTTGCTTCTCATAGATTTGATGGTGTAGCCGAAGTCCGTATAAGTCTTTGG
f21i2-155 AAGCTTCGTCTTGCTTCTCAAAGATTTGATGGTGTAGCCGAAGTCCGTATAAGTCTTTGG
f21i2-156 ----------TTGCTTCTAAAAGCTTTGATGGTGTAGCAGAAGTACGTATGAGTCTTTGG
f21i2-157 AAGCTTCTTATTGCTTCTAAATATTTTCATGGTGTAGCCGAATTCCGTATGAGTCTTTGG
f21i2-158 -----------TGCTTCTCAAAGCTTTGATGGTGTA-CCAAACTCCGTATGAGTCTTTTG
f21i2-159 AAGCTTCTTCTAGCTTCTCAAACATTTGATGGTGTAGCAAAAGTTTGTATGAGTCTTTGG
f21i2-16 ----TTCTTATTGCTTCTCATAGCTTTGATGTTGTAACCAAAGTCCGTATGATTCTTTGG
f21i2-160 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG
f21i2-161 -----------------------CTTTGATGGTGTAGCCGAAGTTTGTATAAGTCTTTGG
f21i2-162 AAGCTTCTTCTTGCATCTCAAAGATTTGATGGTCTAGCGAAAGTGCGTATAAGTCTTTGG
f21i2-163 AAGCTTCTTCTTGCTTCTTAAAGATTTGATGGTGTAGCCGAAGTCGGTATAAGTCTTTGG
f21i2-164 AAGCTTCGTCTTGATTCTCAAACCTTTGATGGTGTAGCAGAAGTTTCTATGTGTCTTTGT
f21i2-165 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG
f21i2-166 ------------------------TTTGATGGTGTAGCCGAAGTCCATATGAGTCTCTGG
f21i2-167 -------------GCTTCTCAAAGCTTTGATAGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-168 AAGCTTCTTATTGTTTCTCAAAGAATTGATGGTGTAGCCGAAGTCCGTATGACTCTTTGG
f21i2-169
f21i2-17 ---CTTCTTCTTGCTTCTCAACGCTTTGATGGTGTAGCCGAACTCCGTATGAGTCTTTTG
f21i2-170 AAGCTTCTTATTGCTTCTCAAAACTTTAATAGTGTAGCTGAAGTCCGTATAAGTCTTTGG
f21i2-171 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCAGAAGTCTGTATGAGTTTTTGG
f21i2-172 ------------GCTTCTCAAAGCTTTAATAGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-173
```

FIG. 23D-1D

```
ATCTGCATCTTCTAA-CAAGGAAATACTTCTT------AGGCTTTTA
ATATGCATCTTCTAA-CAAGGAAACACTTCTT------TCGCTTTTAAAATCCGGTTGCGATTCTAGTTC
CTTTGTATCTTCTAA-CTTGGAAACACTACTTT------AGCCTTTGGGAACCAGTTGCGATTCTATTTC
CTTTGTATCTTCTAA-CAAGGAAACAATACTT
CTTTGTATCTTCTAA-CAAGGAGATACTACTT------AGGCTTT
CTCTGTATCCTCGAA-CAAGGAAACACTACT
CTTTGAATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAACCAGTTGCGGTTCTAGTTC
CTTTGTATCTACAAA-CAAG-AAACATTACTTT------AGCTTTTGGGAATCGGTTGCGGTTCTAGTTC
ATTTGTATCTTTTAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATCGATGGCGGTTCTAGTTC
ATTTACATCTTCTAA-CAAGGAAACATTTGTT------TGGCTTTTCAGATCTGGTTAAGGTTCTTGTTC
ATTTACATCTTCTAA-CAAGGAAACATTTGTT------TGGCTTTTAAGACCCGGTTGTGGTTCTAGTTC
CTTTGTATCCTCTAA-CAAGGACACACTA
CTTTGTATCTACAAA-CAAG-AAACATTACTTT------AGCTTTTGGGAATCGGTTGCGGTTCTAGTTC
CTTTGTATCTTCTAA-TACGGAACCACTACTT
CTTTGTATCTCCTAA-TAAGGAACCACTACTT
ATTTGTATCTTCTAA-CAAGGAAACATTACTT
GTTGCGGTTCTAGTTC
CTTTGTATCTTCTAA-CAAGGAGATACTACTT------AGGCTTTCAAGATCTAGTTGAGATTCTAGTTC
CTTTGTATCTTCTAA-CACAGAAACATACTTT------AGCTTTTGGGAATTGGTTGCGGTT
CTTTTTATCTTCAAG-AAGTGAAACACTATTTT------AGCTTTTGGGAAGATGTTGCGGTTCTAGTTC
CTTTGTATTTTCTAA-TAAGGAACCACTA------------------------------------------------
-----TATCTTCTAA-CAAGGAAACAATACTTT------AACTTTTAGGAACCGGTTGTGATTCTAGGTC
```100
TTATACTTAAACATACACATTACAT 148
TGTTACTCAATCGAACACATGACATCTAGTCATATTTGACTCCAAAA 16091
8690
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAA 172
TTATACTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 177
TTATACTCAATCATAAACATAACATCTAGTCATATTTGACT 141
GTATACTCAATCATACACATGACATC 149
TTATACTCAA 133
TTATACTCAATGATACACATGA 14488
677991
TTATACGCAATCATACACATGACATCTAGTTGTATTTGAATCCTAAACACTAA 69
TTATACTCAATCATACACATGACATATAGTCATATTTGACTCTGAAACACTAACC 175116
TTATGCTCAATCAAACACATAACATATTGTCTTATTTGACTCCAAAATACTAA 173
-- 77
TTATCCTCAATCATATAACTGACATCTAGTCATAGTTGACTACAAAACACTAACC 113 --- СTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCAGAAGTCTGTATGAGTTTTTGG
 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA
f21i2-19 - - - -TTCTTATTGCTTCTCAAAGTTTTGATGGTGTAGCCGAAATTCGTATGAGTCTCTAG
f21i2-2 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGAATGAGTCTTTGG
f21i2-20 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTAGCCAAAGTCTGTATGTGTCTTTGC
£21i2-21 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCCGTATGAGTCTTTGG
f21i2-22 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCAAAGTCCGTATGAGTTTTTAG
f21i2-23 AAGCTTCTTATTGCTTCTCAAAACTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-24 AAGCTTCTTATTGCTTCTCAAAGCATTGATGGTGTAGCCGAAGTACGTATGAGTCTTCGG
f21i2-25 AAGCTTATTCTAGCTTCTCAAACCTTTGATGGTGTATCAAAAGTTTGTATGAGTCTTTTG
f21i2-26 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTAGCTGAAGTCCGTTTGAGACTTTGG
f21i2-27 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAATCCGTAAGAGTCTTTGG
f21i2-28 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-29 AAGCTTCTTATTGCTTTTCCAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-3 ---СТTCTTCTTGCTTCTCAAAGCTTTGTTGGTGTAGCCAAAGTCCGTATGAGTCTTTGA
f21i2-30 ----------TTGCGTCTTATAGCTTTGATAGTGTAGCCGAAGTTCGTATGAATCTTTGT
f21i2-31 AAGCTTCTTCTTGCTTCTCAAACCTTTGATGGTGAAGCCAAAGGCTGTATGAGTCTTTGG
f21i2-32 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGGAGCCGAAGTCCGTATGAGTCTTTGG
f21i2-33 AAGCTTCTTCTTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG

FIG. 23D-1E
-TTTGTATCTTCTAA-CAAGGAAACTCTATTTT------AGCTTTTGGGAACCAGTTGCAGTTCTAGTTC
CTTTGTATCTTCTAA-TACGGAACCACTACTT
CTTTTTATCTTC
CTTTGTATCTTCAAA-CAAGGAAATATTACTTT------AGGTTTTGGGAAACGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGCAACCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTC------AGCTTTTGGGAAGCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AATTTTTTGGAACCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACATAACTTT------AGCTATTGGCAATCGGTTGCCGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACATTAATTT------AGCTTTTGGGAATTAGTTGCGGTTCTAGTTC CTTTGTATCTTCTGA-CAAGGAAACACTACTTT------TGCTTTTGGGAACCGGTTGCGGTTCTAGTTC CTTTGTATTTTCTAA-CAAGGAAACACTACTTT------AGATTTTGGGAACCGGTTGTAGTTCTAGTTC CTTTGTATCCTCCAA-CAAGGAAACAC------TACTTAGGCTTTTAAGATCCAGTTGTGGTTCTACTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTAGGAACCAGTTGCGGTTATAGTTC CTTTGTATTTTCTAA-CAAGGAAACATTACTTT------AGCTTTTGGGAACCGGTTGCGGTTCTAGTTC СTTTAAATCTTCTAA-CAAGGAAACATTACTTT------AGCTTTCGGGAACCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAGCATTACTTT------AGCTTTTCGGAACCGGTTGCGGTTCTAGTTT CTTTGTATCTTCTAA-CAAGGATACAC------TACTTGGGCTTTTAAGATCCGGTTGTGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACAC------TACTTAGGCTTTTAAGATCCGGTTGCAGTTCTAGTTC CTTTGTATTTTCTAA-CAAGGAAACACTACTTT------AGCATTTGGGATCATATTGCGGTTCTTGTTC CTTTGTATCTTCTAA-TAAGGAACCACTACTTC------TGCTTATGGAAACCAGTTGCGGTTTTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------TGCTTTTGGGAACCAGTTGCGGTTCTAGTTT
TTATATAGAATCATACATATGACCTCTAGCCATATTTGACTCCAAAACACTAAC 69
СТСTACTCAATCATACACATGACATCTAGTTTTATTTTATTCCAAAACGCTAACC 1176769
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 154
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 166
TTATACTCAATCATCCACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 177
TTATACTCAATCATACACATGACATCTTGTCATACTTGACTCCAAAACATTAACC 178
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
TTATACTCAATACTACACATGACATATAGTCTTATTTGACTCCAAAATACTAACC 178
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATCTAGTCATATTTGACACAAAAACACTAACC 178
TTATAATCAATCATACACATGACATCTAGTCATACTTGACTCCAAAACATTAACC 178
TTATACTCAATCATACACATGACATATAGTCATATTTGACTCCACÄACAC 173
TTATACTTAATCATCCACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
TTATACTCAATCATACACTTGACATCTAGTCATATTTGTCTCCAAAACACTAA 176
TTATACTCAATCATACACATGACATCAAATTATATTTAACTCCAAAAAACTAACC 175
TTATACATAATCATACACATGACTACAATTCATATTTGACTCCAGAACACTAACC 168
TTATACTCAATCATACACATGAAATGTAGTCATTTTTGACTCCAAAGCACTA 175
TTATACTCAATCATACACATGACATCTAGTCATATTTGAGTCCAAAATACTAACC 178
TTATACTCAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
f21i2-34 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f21i2-35 -------TTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f21i2-36 AAGCTTCTTATTGCTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCCTATGAGTATTTGG f21i2-38 AAGCTTCTTATTGCTTTTCCAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTTG f21i2-39 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGCTTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-4 A-GCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCTTATGATTCTCTGG f21i2-40 ----TTCTTCCTGCTTCTCAAAGCTTTGATGGTGAAGCCGAAGTCCGTATGAGTCATTGT f21i2-41 AAGCTTGTTATTGCTTCTCAAAATTTTGATGGTGTAGCCGGAGTCCGTATGAGTCTTTGG f21i2-42 AAGCTTCTTCTTTGTTCTCAAATATTTAATGGTGTAGCCAAAGTCCATATAAGTCTTTGG f21i2-43 AAGCTTCTTATTGCTTCTCAAAGCTTTAATGGTGTAGCCGAAGTCAGTATGAGTCTTTGG £21i2-44 AAGCTTCTTATTGCTTCTCATAGCTTTGATGATGTAGCTGAATTCCATATGATTCTTTGG f21i2-45 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGT f21i2-46 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f21i2-47 AAGCTTCTTATTGCTTCTCATAGCTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTGG f21i2-48 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTTCGTATGAGTCTTTGG f21i2-49 AAGCTTCTTCTAGTTTCTCAAAGATTTGATGGTGTAGCCGAAGTCCATATGAGTCTTTGG f21i2-5 AAGCTTCTTCTTTCTTCTCAAAGCTTTGATGGTGTAGGCGAAGTCCGTATGTGTCTTTGG f21i2-50 AAGCTTCTTATTGCTTCTCAGAACTTGGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f21i2-51 AAGCTTCTTATTGCTTCTCAAAACTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-52 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTAGG f21i2-53 AAG--1CCATATGAGTCTTTGG f21i2-54 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTAGG

FIG. 23D-1F

CTTTGTATCTTCTAA－CAAGGAAACATAACTTT－－－－－－AGCTATTGGGAATCGGTTGCCATTCTAGTTC CTTCGTATCTTTTAAACAAGGAAACACTACTT－－ーーー－AGGCTTTTAAGATTCGGTTGCGGTTCTAGTT－ CTTTGTATCTTCTAA－CAAGGAAACACTACTTG－－－－－－AACCTTTGGGAACCGGTTCCGGTTCTAGTTC CTTTGTATCTTCTAA－CAAGGAAGCACTACTTT－－－－－－AGCTTTTTGGAACTGGTTGTGGTTCTAGTCC CTTTGTATCTTCTAA－CAGG－AAACAATACTTT－－－－－－TGCTTTTGGGAACCGGTTACGGTTCTAGTTC CTTTGTATCTTCTAA－CAAGGAAACACTACTTT－－－－－－AGCTTTTGGGAAACGGTTGCGGTTCTAGTTC CTTCGTATCGTCTAA－CAAGGAAACACTACTTT－－－－－－AGCTTTTGG－AACCGTTTGCGGTTCTAGTTC CTTTGTATCTTCTAA－CAAGGAAACATTACTTT－－－－－－AGCTAGTGGGAATCGGTTGCGGTTCTAGTTC ATCTGCATCTTCTAA－CAAGGAAACACTTTTT－－－－－－TGTCTTTTAAGATCCGGTTGCGGTTTTAGTTC CTTTGTATCTTTTAT－AAGGGAAACTCTACTTT－－－－－－AGCTTTTGGGAACCGATTGCGGTTCTAGTTC CTTTGAATCTTCTAA－CAAGGAAACACTACTTT－－－－－－AGCTTTTGGGAAGCAGTTGCGGTTCTAGTTC СTTTCTATCTTCTAA－TAAGGAAACACTACTTT－－ー－ー－ACGTTTTGGGAACAGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAG－AAGGGAAACACAACTTT－－－－－－AGCTTTTGGGAAGATGTTGCGGTTCTAGTTC CTTTGAATCTTCTAA－CAAGGAAACACTACTTT－－－－－－AGCTTTTGGGAAGCAGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA－TAAGGAACCACTACTTT－－－－－－AGCTTATGGAAACTAGTTGCGGTTTTAGTTC CTTTGTATCTTCTAA－TAAGGAAACACTATTTT－－－－－－AGCTTTTGGGAACCGGTTGCGGTTATAGTTC CTTTGTATCTTTTAA－CAAGGAAACAC－－－－－－TTCTTAGGCTTTTAAGATCCGGTTGCGCTTCTAGTTC ATTTGTATCTTCTAA－CAAAGAAACATTACTTT－－－－－－AGTTTTTAGGAATCAGTTGCGGTTCTAGTTC CTTTGTATCTTTTGA－CAAGGAAACACTACTTT－－－－－－TGCTTTTGGGAACCGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA－TAAGGAACCACTACTTT－－－－－－AGCTTTTGTAAACCAGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA－CAAGGAAATATTACTTT－－－－－－AGCTTTTGGGAACTGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA－TAAGGAACCACTACTTT－－－－－－AGCTTTTGGAAACCAGTTGCGGTTCTAGTTC

FIG．23D－2F
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
TTATATTCAATCATACACATGACATCAAATCATATTTGACTCCAAAACACTAACC 171
TTATACTCAATCATACACATAACATATAGTCATATTTGAATCCAAAACACTAACC 178
TTATACTCAATCATAGACATGACATCTAGTCATATTTGTCTCCGAAACACTAAC 177
TTATAAACAATCATCCACATGACATCAAGTCATATTTGACTCCAAAATACTAACC 177
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACATTAACC 177
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 173
TTATACTCAATCATACACATGACAACTAGTCATATTTGACTCCAAAAAACTAA 176
TTATACTAAAACATACACATGACATCAAGTTATATTTGACTCCCAAACACTAA 176
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACCCTAACC 178
TTATACTCAGTCATCCACATGACATATAGTCATATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATCTTGTCATACTTGACTCCAAAACATTAACC 178
TTATACTCAATCAAACACATAACATCTTGTCATATTTGACTCCAAAAAACTAAC 174
TTATACTCAAACATACACATGACATCTTGTCATACTTGACTCTAAAACATTAACC 178
TTATATTCAATGATACACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 178
TTATACTCAATCATACACATGCCATATAATCATATTTGAATCCAAAGCACT 174
TTATACTCAATGATACACATGACATCTAGTCATATTTGACACCAAAACACTAACC 178
TTATACTCAATCGTACACATGACATCTAGTCATATTTGACTCCGAAAAACTAACC 178
TTATACTCAATACTACACATGACATATAGTCTTATTTGACTCCAAATTACTAACC 178
TTATACTCCATCATACACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 178
TAATACTCAATCATACAAATGACATCTATTCATATTTCACTCCAAAACACTAACC 138
TTATACTCCATCATAGACATGACATCTAGTCATATTTGACTCCAAAATACTAACC 178

FIG. 23D-3F
f21i2-55 AAGCTTCTTATTGATTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f21i2-56 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGAATGAATCTTTGG f21i2-57 A-GCTTCTTCATGCTTCTCAAAGCTTTTATGGTGTAGCCAAAGTCCGTACGAGTCTTTGG f21i2-58 AAGCTTCTTCTTGCTTCTCATAGATTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-59 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGCGTTTCCACATTCCGTGTGAATCTTCGG f21i2-6 AAGCTTCTTATTGCTTCTCAAAGCATTGATGGTGTAGCCGAAGTCCGAATGAGTCTTTGG £21i2-60 ---CTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTTGCGAAAGTCAGTATGAATCTTCGG f21i2-61 ---CTTCTTATTGCTTCTCAAAACATTATTGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f21i2-62 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f21i2-63 ------------------------CTTTGATTGTGTAGCCAAAGTCTGTATGAGTCTTTGG f21i2-64 AAG---CCGTTTGAGTCTTTGG f21i2-65 AAGCTTCTTATTGCTTCTCAAAATGTTGATGGTGTATCCGAAGTCCGTATGAGTCTTTGG f21i2-66 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCCGTATGAGTTTTTGG f21i2-67 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTTGCCAAAGTAAGTATGTGTCTTTGG
 f21i2-69 AAGCTTCTTCTTGATTCTCAAACCTTTGATGGTGTAGAAGAAGTTTGTATGAGTCTTTGT f21i2-7 ---CTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCTTATGATTCTTTGG f21i2-70 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGTCGAAGTTTGTATGAGTCTTTGG f21i2-72 AAGCTTTTTATTGCTTCTCAAAGCTTTGATAGTGTAGCCGAAGTTCGTATGAGTGTTTGG f21i2-73 AAGCTTATTATTGCTTCTGAAAGCTTTAATGGTGTAGCTGAAGTCCATATGAGTCTTTGG f21i2-74 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f21i2-75 AAGCTTTTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG

FIG. 23D-1G

CTTTGTATCTTCTAA-CAAGGAAACATAACTTT------AGCTATTGGGAATCGGTTGCCATTCTAGTTC СTTTTTATCTTCTAA-CAAGGAATCACTACGTC------AGCTTTTGGGAAGCAATTGCGGTTCTAGTTC CTTTGTATCTCCTAA-CAAGGAAACACAACTTT------AACTTTTGGGAACCGGTTGTGGTTCTAGGTC СTTTGTCTCTTCTAA-CTACGAAACATTACTTT------ACCTTTTGGAATCCGATAGCGGTTCAAGTTC CTTTGTATCTTCTAA-CAAGGAAACAC------TAATTTAGCTTTTGGGATCTTGTTGCGGTTCTAGTTC СTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAAGCGGTTGCGGTTCTAGTTC CTTTATATCTTCTAA-CAAGGAAACAC-----TAATTTAGCTTTTGGGATCTGGTTGCGATTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACATTAATTT------AGCTTTTGGGAATTAGTTGCGGTTCTAGTTC СТTTCTATCTTCTAA-CAAGGGAACACTACTTT------ACCTTTTGGGAACCGGTTGCGGTTCTAGTTC CTTTGT-TCTTCAAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATCGGTTGCGGTTCTAGTTC CTATGTATCTTCTAA-CAAGGAAATACTACTTT------AGCTTTTGGGAATTGGTTGCGGTTCTAGTTC CTTTGTATCTTCTAA-CAAGAAAACATAACTTT------AGCTATTGGGAATCGGTTGCCGTTCTAATTC CTTTGTATCTTCTAA-CAGGGAAACATAACTTT-------AGCTATTGGGAATCGGTTGCCGTTCTAGTTC ATTTGTAACTTCAAA-CAAGGAAACACTACTTT------GGCTTTTGGGAACCAGTTGCGTTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAATACTACTTT-----AGCTTTTGGGAACCGGTTGCGGTTCTAGTTC CTTTGTATCCTCTAA-CAAGGAAACACTACTT------AGCCTTTTAAGATCCGTTTGTAGTTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAAACGGTTGCGATTCTAGTTC CTTTGTATCTTCTAA-CAAGGAAACAATACTTT------ATCTCTTGGGAACCAGTTGCGGTTCTAGTTC CATTGTATCTTCTAA-TAAGGAACCACTACTTT------AGCTTTTAGGAACCAGTTGCAGTTCTAGTTC CTTTGTATCTTCTAA-TAAGGAACCACTAATTT------AGCTTATGGAAACTAGTTGCGGTTTTAGTTC CTTTCTATCTTCTAA-CAAGGCAACACTACTTT------GGCTTTTGGGAACCGGTTGCGATTCTAGTTC CATTGTATCTTCTAA-TAAGGAACCACTAGTTT------AGCTTATGGAAACCAGTTGCGGTTTTAGTTC

FIG. 23D-2G
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATCCACATGACATCTAGTCATATTTGACTCCCAAACACTAAC 177
TTATACTCAATCATATAAATGACATCCAGTCATATTTGACTCGAAAACACTAACC 177
TTATACTCAATCATACACATGATATCTAGTCATATTTGACTCCAAAACGCTAA 176
TTTTACTCAATCATACAAATGACATCAAGTTATATTTGACTCCCAAACACTAA 176
TTATATTCAATCATCCACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 177
TTATACTTAATCATACACATGAACTCTAGTCATATTTGAATCCAAAACAGTAACC 175
TTATACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 175
TTATACTCAATACTACACATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATCTAGTCGTATTTGACTCCAAAACACTAACC 154
TTATACTCAATCATATAAATGACATCTACTCATATTTGACTCCAAAACACTAACC 138
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 178
TTATACTCAATCATACACATTACATCTAGTCATATTTGATTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACAAGTAGTCATATCTGACTTCAAAACACTAACC 178
TAATACTCAATCATACAAATGACATCTATTCATATTTCACTCCAAAACACTAACC 138
TTATACTTACTCATACAAATGACCTGAAGTCATAGTTGACTCCȦAAACATTAACC 178
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCGAAAAACTAACC 175
TTCTACTCAATCATACACATGACATATAGTCATATTTGACTCCGAAACACTAACC 178
TTATACTCAATCATACACATTACATCTAGTCATATTTGACTCCAAAATACTAACC 178
TTATATTCGATCATACTCATGACATCTAGTCATATTTGACTCCAAAATACTAACC 178
TTATATTCAATACTACACATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTC 165
f21i2-76 AAGCTTCTTATTTCTTCTCAATGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTTTTTGG f21i2-77 A-GCTTCTTCATGCTTCTAAAAGCTTTTATGGTGTAGCAAAAGTCCGTATGAGTCTTTGG f21i2-78 --TATGAGTCTTTGG
f21i2-79 ------------------------CTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG
f21i2-8 ---CTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCTTATGATTCTTTGG
f21i2-80 -----------------------CTTTGATGGTATAGCCGAAGTCCGTATGAGTCTTTTG
f21i2-81 AAGCTACTTCTTGCTTCTCAATGCTTTGATGATGTAGCCGAAGGCCGTATGAGTTTTTGG
f21i2-82 AAGCTTCTTCTTGCTTGTCAAAGCGTTGATGGTGTAGCCGAATTTTATATGAATCTTTTG
f21i2-83 AAGCTTCTTCTTGCTTCTCAAAGCTiTTGATAGTGTTGCCATAGTCCGTGTGAATCTTCGG
f21i2-84 ---СТTССТСTTGCTTCTCAAAGCTTTGATGGTGTA-CCAAACTCCGTATGAGTCTATTG
f21i2-86 ------------GCTTCTCAAAGCTTTCATGGGTTAGCCGAAGTCCGTATGAGTCTTTGG AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG 10 20 . 30 ... 40 50 60
f21i2-87 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCAAACGCCGTATGAATCTTTTG f21i2-88 AAGCTTCTTCTTGCTTCACTAAGCTTTGATGGTGTAGCCGAAGTCCGTATGTGTGTTCCG f21i2-89 AAGCTTCTTATTGCTTCTCAAACCTTTGATGGTGTAGAGGAAGTCCGTATGAGTCGTTGG f21i2-9 AAGCTTCTTATTGCTTCTCAAAGC்TTTGATĞGTGTAGCCAAAATCCGTAAGACTCTTTGG f21i2-90 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f21i2-91 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTACCCAAAGTCTGTTTGAGTCTTTGG f21i2-92 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGTCGAACTCTGTATGAGTCTTTTG f21i2-93 A-GCTTCTACATGCTTCTCAAAGCTTTTATGGTGTAGCCAAAGTCCGTACGAGTCTTTGG f21i2-94 AAGCTTCTTATTGCTTCTCAAAATTTCGATGGTGTATCCGAAGACCGTATGAGTCTTTGG

FIG. 23D-1H

CTTTGTCTCTTCTAA-CAAGGAAACACTACTTT------ACCTTTTCGGATCCGATTGCGGTTCTAATTC CTTTGTATCTCСTAA-CAAGGAAACACAACTTT------AACTTTTGGGAACCGTTTGTGGTTCTAGGTC CTTTGTATCCTCTAA-TAAGAAAACAC------TACTTAGGCTTTTAAGATCCAGTTGTGGTTCTACTTC CTTTGTATCTTCCAA-CAAGGAAACATTACTTT------AGCTTTTGGGAATCGGTTGAGGTTCTATTTC CTTTGTATCTTCTAA-CAAGGAAACACTACTTT------AGCTTTTGGGAAACGGTTGCGATTCTAGTTC CTTTGTATCTTCTAA-CTTGGAAACACTACTTT------AGCTATTGGGAACCTGTTGCGGTTCTAGTTC TTTTGGATCTTCTAA-TAAGGAAACACTACTTT------AGCTTTTGGGATCCGGTTGCGGTTCTAGTTC CTTTGTATCCTCTAA-CAAGGAAACACTACTT------AGCCTTTTAAGATTCGTTTGTAGTTCTAGTTC CTTCGTATCTTCTAA-CAAGTAAACAC------TACTTTAGCTTTTGGGATCCAGTTGTGGTTCTACTTC CTTTGTATCTTCTAA-CAAGGAGATACTACTT------AGGCTTTCAAGATCCAGTTGAGATTCTAGTTC CTTTGTATCTTCTAG-TAAGGAACCACTACTTT------AGCTTATGGAAACCAGTTGCGGTTTTAGTTC CTTTGTATCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAATCAGTTGCGGTTCTAGTTCTTATACT
\(7080 \quad 90 \quad 100 \quad 110 \quad 120 \quad 130\) CTTTGTATCTTCTAACAAGGAGATACTACTTAAGCTTTCAAGATCTAGTTGAGATTCCAGTTCTTATACT CTTTGTATTTTCTAACAAGGAAACACTTCTTGGGGTTTTATGATCCGGTTGCGGTTCTAGTGCTTATACT CTTAGTATCTTCAAACAAGGAAATATTACTTTAACTTTTGGGAATCGGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTCTAGCTTTTAGGAATCGGCTGCGGTTCTAGTTCCTATACT CTTTCTATCTTCTAACAAGGAAACACTACTTTGGGTTTTGGGAACCGGTTGCGATTCTAGTTCTTATATT CTTTGTATGTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACTGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAGATACTACTTAGGCTTTCAAGATCAAGTTGATATTCTAGTTCTTATACT CTTTGTATCTCCTAACAAGGAAACACAACTTTAACTTTTGGGAACCGGTTGGGGTTCTAGGTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCGTTCAAGTTCTTATGCT

FIG. 23D-2H
TTATACTCTATCATACAAATGACATCTAGTCATATTTGACTCCAAGACAC 173
TTATACTCAATCATATAAATGACATCTAGTCATATTTGACTCTAAAACACTAACC 177
TTATACTCAATCATACACATGCCATCTAGTCATATTTGACACCAAAACACTAACC 131
TTATACTCAATGATACATATGACATCCTGTAATATTTGACTCCAAAATACTAACC 155
TTATACTCAATCATACACATGACATCTAGTCATATTTGACTCCGAAAAACTAACC 175
TTATACTCAATCGAACACATGACATCTAGTCATATTTGAGTCCAAAAAACTAACC 155
TTATACTCAATCATACACATTACATCTAGTTATAATTGACTCTTAAACACTAACC 178
TTATACTTAATCATACAAATGACCTGAAGTCATAGTTGACTCCAAAACATTAACC 178
TTATACTCAATCATACACATGACCTCTAGTCATATATGAATCCAAAACACTAACC 178
TTATACTCAATCATACACATGACATATAGTCATATTTGACTCTGAAACACTAACC 174
TTATACTCAATCATACACATAACATCTAGTCAGATTTGACTCCAAAATACTAACC 166
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC
140 150 160 170
TAATCGTACACATGACATGTAGTCATATTTGACTCTGAAACACGAACC 178
CAATGATACACAAAACATCTAGTCATATTTCACTCCAAAACAGTAACC 178
CAATCATACACATGACACCTAGTAATATTTGAATCCAAAGCACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 177
CAATACTACAGATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATACTTTTATTTGACTCCAAAATACTAACC 178
CAATCATACACATGACATGTAGTCATATTTGACTCTGAAACAATAACC 178
CAATCATATAAATGACATCTAGTCATATTTGACTCGAAAGCACTAACC 177
CAATCATACACATGACATCTAGTCAT-TTTGACTCCAAAACACTAACC 177
f21i2-95 AAGCTTCTTATTGCTTTTCCAAGCTTTGATTGTGTAGCCGAAGTCCGTATGAGTCTTTGG f21i2-96 AAGCTTCTTCTTGCTGCTCAATTCTTTGATAGTGTAGCCGAAGTTTGTATGAGTCTTTGG
f21i2-97 --TATGAGTCTTTGG
f21i2-89 AAGCTTCTTCTTACTTCTCAAAGATTTGATGGTGTAGCCGAAGTCCGTATAAGTCTTTGG f21i2-99 AAGCTTCTTCTTGCTTCTCAAAGCATTGATGGTGTAGCCAAAGTCCGTATGAATCTTTGG f6h8-1 AAGCTTCTTATTGCTTCTTAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-10 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-100 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-101. AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-102 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-103 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-104 ---CTTCTTCTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-105 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-106 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-107 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-108 AAGCTTCTTATTGCTTCTCAGAACTTGGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-109 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-11 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-110 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-111 ---CTT--------------------TGATGGTGTAGCTGAAGTCCATATGATTCTTTTG f6h8-112 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-113 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGGAGTCCGTATGAGTTTTTAG

FIG. 23D-1I

CTTTGTATCTTCTAACAAGGAAACACTACTTTAGCTATTGGGAACCGATTGCGGTTCTAGTTCTTATACT CTTTGTCTCGTCTAACAAGGAAACTCTACTTTACCTTTTGGGATCCGGTTGCGGTTCTAATTCTTATACT CTTTGTATTTTCTAACAAGGAAACACTACTTTAGCTTTTGGGATCAGTTTGCGGTTCTAGTTCTTATACT ATCTGCATCTTCTAACAAGGAAACATTTCTTTGGCTTTTAAGATCCGCTTCCGGTTCTAATTCTTATACT СTTTGTATCTACTAACAAGGAAACACTACCTACGCATTTAAGATCAGGTTGCGGTTTTGCTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACTAGGAAACATTACTTTAGCTTTTGGGAACCAGTTGCAGTTCTAGTTCTTATACT CTTTGTATCTTCTAACTAGGAAACATTACTTTAGCTTTTGGGAACCAGTTGCAGTTCTAGTTCTTATACT CTTTGTATCTTCTAACTAGGAAACATTACTTTAGCTTTTGGGAACCAGTTGCAGTTCTAGTTCTTATACT CTTTGTATCTTCTAACTAGGAAACATTACTTTAGCTTTTGGGAACCAGTTGCAGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAAATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTAAAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATTCT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCGGTTCTAGTTTTTATACT ATTTGTATCTTCTAACAAAGAAACATTACTTTAGTTTTTAGGAATCAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAATTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTAAAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTCGGAATTAGTTGCGGTTCTAGTTCTTATACT

FIG. 23D-2I
CA-TCATACAAATGACATCTATTCATATTTCACTCCAAAACACTAACC 177
CAATCATACAAATGACATCTAGTCATATTTGACTCCAACACAC 173
CAATCAT-CACATGACCTCTAGTCATATTTGACTCCAAAACACTAA 128
CAAACATACACATGACATCTAGACATATTTGACTCCCAAACACTAA 176
-- 131
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATCCACATGACCTCTAGTCATATGTGACTCCAAAAC 171
CAATCATCCACATGACCTCTAGTCATATGTGACTCCAAAAC 171
CAATCATCCACATGACCTCTAGICATATGTGACTCCAAAAC 171
CAATCATCCACATGACCTCTAGTCATATGTGACTCCAAAAC 171
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
TAATCATACACATAACATCTTGTCTTATTTGACACCAAAATACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATCTAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATCGTACACATGACATCTAGTCATATTTGACTCCGAAAAACTAACC 178
CAATCAAACACATAACATCTAGTCATATTTGACTCCCAAAAACTAAC 174
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 177
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACAT-CAGTCATATTTGACTCCAAAA 146
TAATCATACACATAACATCTTGTCTTATTTGACACCAAAATACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178

FIG. 23D-3I
f6h8-114 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-115 AAGCTTCTTATTGCTTCTCAAAATTTTGATCCTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-116 -------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-117 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-118 AAGCTTCCTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-119 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTAG f6h8-12 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-120 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATTAGTCTTTGG f6h8-121 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-122 AAGCTTCTTATTGCTTCTCAÄAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-123 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-124 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-125 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGGAGTCCGTATGAGTTTTTAG f6h8-126 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-127 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGT f6h8-128 AAGCTTCTTATTGATTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-129 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-13 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-130 ---CTT--------------------TGATGGTGTAGCTGAAGTCCATATGATTCTTTTG f6h8-131 AAGCTTCTTATTGCTTCTCAAAACTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-132 AAGCTTCTTCTAGTTTCTCAAAGATTTGATGGTGTAGCCGAAGTCCATATGAGTCTTTGG f6h8-133 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG

FIG. 23D-1J

CTTTGTATCTTCAAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCAAACAAGGAAATATTACTTTAGGTTTTGGGAATCGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCAAACAAGGAAATATTACTTTAGGTTTTGGGAATCGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTGGTATCTTCAAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCCAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATTCT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTGTCTTCAAACAAGGAAACATTACTTTAGCTTTTGGGAATCGGTTGCGGTTCTAGTTCTTATACT CTTTCTATCTTCTAATAAGGAAACACTACTTTACGTTTTGGGAACAGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAATTCTTATACT CTTTGTATCTTTTGACAAGGAAACACTACTTTTGCTTTTGGGAACCGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAATAAGGAAACACTATTTTAGCTTTTGGGAACCGGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT

FIG. 23D-2J
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
СААТСАТАСАСАТGACATCTAGTCATATTTGACTCCAAAAAACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 177
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
TAATCATACACATGACATCTAGTCATATTTGACTCTAAAA 170
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
TAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
CAATCATACACATGACATCTTGTCATACTTGACTCCAAAACATTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGȦCTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACAAACC 178
CAATCATACACATGACAT-CAGTCATATTTGACTCCAAAA 146
CAATACTACACATGACATATAGTCTTATTTGACTCCAAATTACTAACC 178
CAATCATACACATGCCATATAATCATATTTGAATCCAAAGCACT 174
CAATCAAACACATAACATCTTGTCATATTTGACTCCAAAAAACTAAC 174
f6h8-134 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-135 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-136 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGGAGTCCGTATGAGTTTTTGG f6h8-137 AAGCTTCTTATTGCTTCTCATAGCTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTGG f6h8-138 AAGCTTCCTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-139 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGAATGAATCTTTGG f6h8-14 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f6h8-140 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-141 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-142 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-143 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-144 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-145 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-146 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-147 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-148 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-149 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-15 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f6h8-150 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-151 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-152 ---CTTCTTATTGCTTCTCAAAACATTATTGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-153 ---CTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-154 ---CTTCTTGTTGCTTCTTAAATCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG

FIG. 23D-1K

CTTTGTATCTTCAAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTCGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGAATCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAGCAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT СTTTTTATCTTCTAACAAGGAATCACTACGTCAGCTTTTGGGAAGCAATTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTATGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATATAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAAGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTAAAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTCGGAAGATGTTGCGGTTCTAGTTCTTATACT

\section*{FIG. 23D-2K}
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCAAACACATAACATCTTGTCATATTTGACTCCAAAAAACTAAC 174
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAAACATACACATGACATCTTGTCATACTTGACTCTAAAACATTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAATCATCCACATGACATCTAGTCATATTTGACTCCCAAACACTAAC 177
CAATCATACACATGACATCTAGTCATATTTG̣ACTCCAAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAAC 177
САATCATCCACATGACCTCTAGTCATATGTGACTCCAAAA-------C 171
САATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
САATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
СААТСАAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCATACACATGACATCTAGCCATATT 159
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
СААТСАААСАСАТААСАТСTTGTCTTATTTGȦСTCСAAAATACTȦACC 175
CAATCAAACACATAACATCTTGTCTTATTTTACTCCAAAATACTAACC 175
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
СААТСАAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 175
TAATCATACACATAACATCTTGTCTTATTTGACACCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
FIG. 23D-3K
f6h8-155 ---CTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-156 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-157 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-158 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-159 ---CTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-16 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG £6h8-160 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-161 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-162 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-163 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-164 AAGCTTCTTATTGCTTCTCAAAATGTTGATGGTGTATCCGAAGTCCGTATGAGTCTTTGG f6h8-165 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-166 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGC f6h8-167 AAGCTTCTTATTGCTTCTCAAAACATTAATGTCTTAGCCGGAGTCCGTATGAGTTTTTAG f6h8-168 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-169 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCCGTATGAGTTTTTGG f6h8-17 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAATCCGTATGAGTCTTTGG f6h8-170 AAGCTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTTGCCAAAGTAAGTATGTGTCTTTGG f6h8-171 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-172 A----------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-173 A------------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-174 AAGCTTCCTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG

FIG. 23D-1L

CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTAAAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGCTTTTGGGAATCAGTTGTGGTTAAAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAATACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTCGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGAAAACATAACTTTAGCTATTGGGAATCGGTTGCCGTTCTAATTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTTCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTCGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAGGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT ATTTGTAACTTCAAACAAGGAAACACTACTTTGGCTTTTGGGAACCAGTTGCGTTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGTGGTTCTAGTTCTTATACT

FIG. 23D-2L
TAATCATACACATAACATCTTGTCTTATTTGACACCAAAATACTAACC 175
СААТСАAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
TAATCATACACATAACATCTTGTCTTATTTGACACCAAAATACTAACC 175
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAATCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
СААТСАААСССАТААСАТСТАGTCATATTTGAСТСССАААААСТААС 174
CAATCATACACATTACATCTAGTCATATTTGATTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACAAGTAGTCATATCTGACTTCAAAACACTAACC 178
CAATCAAACACATAACATCTTGTCATATTTGACTCCGAAAAACTAAC 174
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
f6h8-175 A-----------------------------TGGCTTAGCCGAGTCCGTATGAGTTTTTAG
f6h8-176 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f6h8-177 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGTCGAAGTTTGTATGAGTCTTTGG
f6h8-178 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-179 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGC f6h8-18 AAGCTTCTAATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-180 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGC f6h8-181 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-182 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f6h8-183 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-184 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGATTCTTTGG f6h8-185 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGC f6h8-186 A----------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-187 AAGCTTCCTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-188 ------------------------CTTTGATTGTGTAGCCAAAGTCTGTATGAGTCTTTGG f6h8-189 A-----------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-19 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-190 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-191 ---TCATATGATTCTTTGG f6h8-192 AAGCTTCATATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-193 A-GCTTCTTCATGCTTCTAAAAGCTTTTATGGTGTAGCAAAAGTCCGTATGAGTCTTTGG f6h8-194 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA

FIG. 23D-1M

CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAÄTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGGTTTTATACT CTTTGTATCTTCTAACAAGGAAACAATACTTTATCTCTTGGGAACCAGTTGCGGTTCTAGTTCTTCTACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTTCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAATGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATATT CTTTCTATCTTCTAACAAGGCAACACTACTTTGGCTTTTGGGAACCGGTTGCGATTCTAGTTCTTATATT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAGGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTACGGTTCTAGTTCTTATACT CTTTGT-TCTTCAAACAAGGAAACATTACTTTAGCTTTTGGGAATCGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCAAACAAGGAAATATTACTTTAGGTTTTGGGAATCGGTCGCGGTTCTAGTTCTTATACT CTTTGAATCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAGCAGTTGCGGTTCTAGTTCTTATATT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTCCTAACAAGGAAACACAACTTTAACTTTTGGGAACCGTTTGTGGTTCTAGGTCTTATACT CTTTGTATCTTCAAACAAGGAAACATTACTTTAGCTTTTGGGAATCGGTTGCGGTTCTACTTCTTATACT

FIG. 23D-2M
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATATAGTCATATTTGACTCCGAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAATCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCTAAAACACTAACC 178
CAATACTACACATGACATATAATCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACT 174
CAATACTACACATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAATCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAATCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAATCATACACATGACATCTAGTCGTATTTGACTCCAAAACACTAACC 154
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 170
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
CAATCATCCACATGACATCTAGTCATATTTGACTCCAAAACACTAAC 134
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATCATATAAATGACATCTAGTCATATTTGACTCTAAAACACTAACC 177
CAATCATACACATGACATC-AGTCATATTTGACTCCAAAA 145
f6h8-195 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAATTTTTGG f6h8-196 ---CTTCTTATTGCTTTTCAAAACATTGATGGCTTAGTCGAAGTCCGTATGAGTTTTTAG f6h8-197 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-198 ------------------------CTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-199 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-2 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-20 ----TTCTTATTGCTTCTCAAAGTTTTGATGGTGTAGCCGAAATCCGTATGAGTCTCTAT f6h8-200 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-201 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-202 AAGCTTCTTATTGCTTCTCAAACCTTTGATGGTGTAGAGGAAGTCCGTATGAGTCGTTGG f6h8-203 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTACCCAAAGTCTGTTTGAGTCTTTGG f6h8-204 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-205 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-206 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-207 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGCAGCCGAAGTCCGTATGAGTCTTTGG f6h8-208 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-209 AAGCTTCCTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-21 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTGTTTGG f6h8-210 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-211 AAGCTTCTTATTGCCTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGATTCTTTGG f6h8-212 AAGCTTCTTATTTCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGC f6h8-213 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG

FIG. 23D-1N

CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTTCAACAAGGAAACATTAATTTAGCTTTTGGGAATTAGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCCAACAAGGAAACATTACTTTAGCTTTTGGGAATCGGTTGAGGTTCTATTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAACCAGTTGCGGTTTTAGTTCTTATGCT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTATAGTTCTTATACT CTTAGTATCTTCAAACAAGGAAATATTACTTTAACTTTTGGGAATCGGTTGCGGTTATAGTTCTTATACT CTTTGTATGTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACTGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGATCCAGTTGTGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACAAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGCAACATTAATTTAGCTTTTGGGAATTAGTTACGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAGGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCATTCTAGTTCTTATACT CTTTGTATCTGCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAATTGCGGTTATAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT

FIG. 23D-2N
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCATAAACATGACATCTAGTCATATTTGACTCCCAAAAACTAACC 175
CAATCAAACACATATCATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATGATACATATGACATCCTGTAATATTTGACTCCAAAATACTAACC 155
CAATCAAACACATAACATCTTGTCTTATTTTACTCCAAAATACTAACC 175
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCAAGTCATATTTGACTCCAAAACACTAACC 174
СААТСАAACACATATCATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCAAACACATATCATCTTGTCTTATTTGACTCCAAAATACTAACC 175
CAATCATACACATGACACCTAGTAATATTTGAATCCAAAGCACTAACC 178
CAATACTACACATGACATATACTTTTATTTGACTCCAAAATACTAACC 178
CAATACTACACATGACATATATTCTTTTTTGACTTCAAAACACTAACC 178
CAATACTACACATGAGATATAGTCTTTTTTTACTCCAAAACACTAACC 178
САATACTACACATGAGATATAGTCGTTTTTTACTCCAAAACACTAACC 178
CAATACAACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
СААТАСТАСАСАТGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATACTACACATGACATATAGTCTTTTTTTACTCCAAAACACTAACC 178
CAATACTACACATGAGATATAGTCTTTTTTTACTCCAAAACACTAACC 178
f6h8-214 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-215 AAGCTTCCTATTGCTT゙CTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-216 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-217 A-----------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-218 AAGCTTCTTATTGCTTCTCAAAATTTCGATGGTGTATCCGAAGACCGTATGAGTCTTTGG f6h8-219 ----TTCTTATTGCTTCTCAAAATGTTGATGGTGTATCCGAAGTCCGTATGAGTCTTTGG f6h8-22 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCTGAAGTCCGTATGAGTCTTTGG f6h8-220 AAGCTTTTTCTTGCTTGTCAAAGCTTTGTTGGTGTTGCCAAAGTCAGTATGAGTCTTTGG f6h8-221 AAGCTTCTTATTGCTTCTCAATATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-222 ----------------------- CTTTGATGGTGTAGCCGATGTCCGTATGACTCTTTGG f6h8-223 ----CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTTTTTGG f6h8-224 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-225 AAGCTTCATATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-226 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-227 AAGCTTCTTATCGCTTCTCAAAATTTTCȦTGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-228 --- СTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCTGTATGAATTTTTGG f6h8-229 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-23 - - - -TTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-230 AAGCTTCTTATTGTTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCGTATGAGTATTTGG f6h8-231 A-GCTTCTTCATGCTTCTCAAAGCTTATATGCTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-232 AAGCTTCTTACTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG

FIG. 23D-10

CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAAGATGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGCAACATTAATTTAGCTTTTGGGAATTAGTTACGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACATTAATTTÄGCTTTTGGGAAT゙TAGTTGCGGTTCTTGGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGCTATTGGGAATCGGTTGCCGTTCAAGTTCTTATGCT CTTTGTATCTTTTAACAAGAAAACACTACTTTAGCCTTTGGGAACCGGTTGCGGTTCTAGTTCTTATACT CTTTGTAGCTTCTAACAAAGAAACACTACTTTAGCTTTTGGGAAACGGTTGCGGTTCTAGTTCTTATACT ATTTGTATCTTCAAACAAGGAAACACTACTTTGGCTTTTGGGAACCAGTTGCGTTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAAAAATACTTTATCTTTTGGGAACCGACTGCGATTCCAGTTCTTATACT TTTTGTATCTTCAAACAAGGAAACATTACTTTAGCTTTTGGGAATTGGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTATAAGGGAAACACAACTTTAGCTTTTGAGAAGCTGTTGCGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTTCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGCTTTTGGGAATCAGTTGTGGTTCTAGTTCTTATACT CTTTGTATCTTCTAACAAGGAAACATAACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGCTTTTGGGAAACAGTTGCGGTTCTAGTTCTTATACT CTTTCTATCTTCTAACAAGGAAACACTACCTTACCTTTTGGGAACCGATTGCGGTTCTAGTTCTTATACT CTTTGTATCTCCTAACAAGGAAACACAACTTTAACTTTTCGGAACCGGTTGTGGTTCTAGGTCTTATACT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGCTTTTGGGAACCAGTTGCGGTTCTAGTTTTTATACT

FIG. 23D-20
CAATCAAACACATAACATCTTGTCTTATTTGACTCCAAA 166
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
CAATACTACACATGAGATATAGTCTTTTTTTACTCCAAAACACTAACC 178
CAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 150
CAATCATACACATGACATCTAGTCAT-TTTGACTCCAAAACACTAACC 177
CAATTATCCACTTGACATCTAGTCATATTTGACTCTAAAACACTA 171
CAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
CAATCATACACATGACA 147
CCATCATACACATGACATCTAGTCATATTTGACTCTAAAACACTA 175
CAATGATACACATGACATCCTGTAATATTTGACTCTAAAATACTAACC 155
CAATCAAACACATAACATCTTGTGTTATTTGACTCCAAAATACTAACC 175
CAATACTACACATGACATATAGTCTTTTTTGACTTCAAAACACTAACC 178
CAATACTACACATGAGATATAGTCGTTTTTTACTCCAAAACACTAACC 178
CAATACTACACATGAGATATAGTCGTTTTTTACTCCAAAACACTAACC 178
CAATACTACACATGAGATATAGTCTTTTTTTACTCCAAAACACTAACC 178
TAATCAAACACATAACATCTAGTCATATTTGACTCCAAAAAACTAAC 174
CAATACTACACATGACATATAGTGTTTTTTGACTCCAAAACACTAACC 178
CAATCATACACATGACAACTAGTCATATTTGACTCCAAAACACTAACC 174
CAATACTATACATGACATATAGTCTTATTTGACTCCAAAACACTAACC 178
CAATCATATAAATGACATCCAGTTATATTTGACTGGAAAACACTAACC 177
CAATACTACACACGACATATAGTCTTTTTTGACCCCAAAACACTAAC 177

AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG \(1030 \quad 30 \quad 40 \quad 60\)
f6h8-232 AAGCTTCTTACTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-233 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-234 ----TTCTTATTGCTTCTCCAAGCTTTGATGGTGTAGCCGAAGTCCGTATGTGTATTTAG f6h8-235 --GCTTCTTAATGCTTCCCAAAACTTTTATGGTGTAGCCAAAGTCCGTATAAGTCTTTGG f6h8-236 ---CTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCTGTATGAGTTTTTGG f6h8-237 ------------------------CTTTGATGGTGTAGCCGATGTCCGTATGAGCCTTTGG f6h8-238 AAGCTTCTTATTGCTTCTCATAGCTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTGG f6h8-239 ---CTTCTTATCGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTAG f6h8-24 AAGCTTATTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-240 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGTGTCTTTGG f6h8-241 ----------T-GCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCCTTATGACTTTTTGG f6h8-242 ---CTTCTTGTTGCTTCTTAAAGCTTTGATTGTGTACCAAAGTCCGTATGAGGTTTTTTG f6h8-243 AAGCTTCTTATTGCCTCACAAAGCTTTGATGATGTAGCCTAAGTCCGTATGAGTCTTTCA f6h8-244 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTTGCCGAAGTCCGTATGTGTCTTTGG f6h8-245 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-246 -----------TTGCTTCTTAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGACGTTTTGG f6h8-247 ------------------------CTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-248 AAGCTTCTTATTGCTTCTCAATATTTTCATGGTGTTGCCGAAGTCCGTAAGAGTCTTTGG f6h8-249 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTAAACGAAGTCCGTATGAGTCTTTGG f6h8-25 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG

FIG. 23D-1P
©BCDGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT
\(7080 \quad 90 \quad 100 \quad 110 \quad 120 \quad 130\)

CTTTGTATCTTCTAACAAGGAAACACTACTTTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT
CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-CTTCTTAT CTTTGTATCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTTTTATAAAGGAAACATTACTTTCGC--TTTTGGGAATTGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAATAGGGAAACATAACTTTAGC--AATTGGGAATCGGTTGCCGTTCTA-GTTCTTAT TTTTGTATCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATTGGTTACGGTTCTA-GTTCTTAT CTTTGAATCTTCTAATAAGGAAACACAACTTTAAC--TTTTGGGAACCGGTTGTGGTTCTAGGT-CTTAT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGC--TTTTGGGAATCAGTTGTGGTTCTA-GTTCTTAT CTTTGTATCTTCTAGAAGGGAAACACAACTTTAGC--TTTTGGGAATCAGTTGTGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTCGGGAAACGGTTGCAGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTAAATTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTAAT CTTTGTATCTTCTAGAAGGGAAATATTACTTTAGC--TTTTGGGAAGATGTTGCGGTTCTA-GTTCTTAT TTTTGTATCTTCTAGAAGGGAAACATTACTTTAGC--TTTTGGAAAAATGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTAAATTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT CTTTGTATCTTCAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAGAAGGGAAACATTACTTTAGC--TTTTGGGGAAGATGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTTGAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-ATTCTTAT CTTTGTATCTTCTAACAAGGAAACACAACTTTAGC--TTTTGGGAACCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACA
CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT

\section*{FIG. 23D-2P}
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC
140 150 160
170 180
ACTCAATACTACACACGACATATAGTCTTTTTTGACCCCAAAACACTAAC 177
ACTCAATGATACACATGATATCTAGTCATATTTGACTCCAAAACACTAACC 177
ACTCAATCATACACACGACAT 144
ACTCAATGATTCACATGACATCATGTAATATTTGACTTCAAAATACTAACC 176
ACTCAATCATACACATGACATCTAGTCATATTTGATTCCAAAACACTAACC 175
ACTCAATGATACACATGACATCCTGTAATATTTGACTCTAAAATACTAACC 155
AGTCAATCATATAAAAGACATCTAGTCATATTTGACTCGAAAACACTAACC 178
ACTTAATCAAACACATAACATCTAGTCATATTTGACTCCAAAAAACTAAC 174
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
AСTCAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAAC 177
AСTCAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 167
ACTCAATCAAACACATAACATCTTGTCTTATTTGACTCCAAAATACTAACC 175
ACTTAATGATACACATGACATCTTGTAATATTTGACTCTAAAATACTAACC 178
ACTCAATACTACACATGACATATAGTCTTTTTTTACTCCAAAACACTAAC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATCAAACACATAACATCTTATCTTATTTGACTCCAAAATACTAACC 168
AGTCAATGATACACATAACATCCTGTAATATTTGACTTTAAAATACTAACC 155
ACTCAAT 13485
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
f6h8-250 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG
f6h8-251 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG
f6h8-252 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-253 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCAAAGTCGGTATGAGTCTTTGG f6h8-254 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTTGCCGAAGTCCGTATGTGTCTTTGG f6h8-255 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-256 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-257 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-258 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f6h8-259 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-26 AAGCTTATTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f6h8-260 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGGCGAAGACCGTATGAGCCTTTGG f6h8-261 AAGCTTCTTATTGCTTCTAAATATTTTCATGGTGTAGCCGAATTCCGTATGAGTCTTTGG f6h8-262 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCCAAAGTCCGTACGAGTTTTTGG f6h8-263 -----------------------CTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-264 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-265 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-266 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-267 -----------------------CTTTGATGGTGTAGCCGAAGTTTGTATAAGTCTTTGG f6h8-268 AAGCTTCTTATTGCCTCACAAAACTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-269 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-27 AAGCTTATTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG

FIG: 23D-1Q

CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACA
CTTTGTATCTTCAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTCCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTAAATTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACA
CTTTGTATCTTCTAACA
CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTCGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTTTCTTCTAACAAGGAAACACTACTTTACC--TTTTGGGAACCAGTTGCGGTTCTA-GTTCTTAT
 CTTTGTATCTTCTA
CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTCCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTCCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTTTTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGATGGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTCGGGAAACGGTTGCGGTTCTA-GTTCTTAT

FIG. 23D-2a
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
85
ACTCAATGATACACATGATATCCTGTAAAATTTGACTCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATACTACACAGGACATATAGTCTTTTTTTACTCCAAAACACTAAC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 1778577
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATACTACACATGACAT 148
ACT---T 91
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC71
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 177
ACTCAATCATAAACATAACATCTAGTCATATTTGACT 141
ACTCAATGATACACATGA 144
ACTCAATGATACACATGA 144
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
f6h8-270 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-271 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-272 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-273 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCTGAAGTCGGTATGAGTCTTTGG f6h8-274 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-275 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-276 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-277 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-278 AAGCTTCTTATTGCTTCTCAAAACTTTAATAGTGTAGCTGAAGTCCGTATAAGTCTTTGG f6h8-279 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-28 A-GCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCTTATGATTCTCTGG f6h8-280 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-281 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-282 --GCTTCTTATTGCCTCACAAAGCTTTGATGGTGTAGCCGAAGTCGGTATGAGTCTTTGG f6h8-283 ---1 f6h8-284 ---CTTCTTGTTGCTTCTTAAAGCTTTGATGGTGTAGCAGAAGTCTGTATGAGTTTTTGG f6h8-285 AAGCTTCTTATTGCCTCACAAAGCTTTGATGGTGTCGCCGAAGTCGGTATGAGTCTTTGG f6h8-287 ---CTTCTTCTTGCTTCTCAAAGCTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGA f6h8-29 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAATTCCATATGATTCTTTGG f6h8-3 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-30 ---CTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCTTATGATTCTTTGG f6h8-31 -----------------------CTTTGATGGTGTAGCAGAAGTCCATATGATTCTTTTG

CTTTGTATCTACAAACAAG-AA-CATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTCCTA-GTTCTTAT ATTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACACAGAAACATTACTTTAGC--TTTTGGGAATTGGTTGCGGTT
CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT TTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AA-CATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT ------ATCTTCTAACAAGGAAACAATACTTTAAC--TTTTAGGAACCGGTTGTGATTCTAGGT-CTTAT CTTTTTATCTTCAAGAAGTGAAACACTATTTTAGC--TTTTGGGAAGATGTTGCGGTTCTA-GTTCTTAT ATTTGTATCTACAAACAAG-AAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTGGGC--ATTTAAGATTCGGTTGTGGTTCTA-ATTCTTAT CTTTGTAACTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGATTCTA-GTTCTTAT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT

\section*{FIG. 23D-2R}
ACTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAAC̈ 176
ACTCAATGATACACATGATATCCTGTAATATTTGACTCTAAAATACTA 174
ACTCAATGATACACATGATATCCTGTAATATTTGACCCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTGACCCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 177
AСTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 177
ACTCAATGATACACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 177
ACTCAAT-ATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 176116
ACTCAAT-ATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 176
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACATTAACC 177
ACTCAAT-ATACACATGATATCCTGTAATATTTGACTCTAAAATACTAACC 176
ACTCAATGATGCACATGATATCCTGTAATATTTCACTCTAAAATACTAACC 176
АСТСААТ-АТАСАСАТGATATCCTGTAATATTTGACTCTAAAATACTAACC 174
CCTCAATCATATAACTGACATCTAGTCATAGTTGACTACAAAACACTAACC 113
GCTCAATCAAACACATAACATATTGTCTTATTTGACTCCAAAATACTAA 173
ACTCAATGATACACATGA 144
ACTCAATCATACACATGACATCAAATTATATTTAACTCCAAAACACTAACC 175
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCGAAAAACTAACC 175
ACTCAATCATACACATGACATCAAGTCATATTTGACTCCAAAA 147
f6h8-32 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAȦTCCATATGATTCTTTGG f6h8-33 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAATTCCATATGATTCTTTGG f6h8-34 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAATTCCATATGATTCTTTGG f6h8-35 ---CTTCTTATTGCTTCTCAAAACTTTGATGCCTTAGCCGAAGTCCGTATGCGTTTTTAG f6h8-36 AAGCTTCTTATTACTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-37 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-38 AAGCTTCTTCTAGCTTCTCAAAGTTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-39 AAGCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAATTCCATATGATTCTTTGG f6h8-4 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-40 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG f6h8-41 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-42 A-GCTTCTTATTGCTTCTCAAAGCTTTGATGGTGTGGCTGAAGTCCATATGATTCTTTTG f6h8-43 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-44 ---CTTCTTATTGCTTCTCAAAGCTTTGATGGTGTAGCTGAAGTCCATATGATTTTGTGG f6h8-45 AAGCTTCTTATTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-46 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-47 AAGCTTCTTATTGCTTCTCAAAACTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-48 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-49 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCATATGAGTTTTTAG f6h8-5 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-50 -------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-51 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCAAAGTCCGTATGAGTTTTTAG

CTTTGTAACTTCTAACAAGGAAACACTACCTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTAACTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAAAGGTTGCGGTTCTA-GTTGTTAT CTTTGTAACTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTGTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTAAGAATCAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTGTAACAAGGAAACACTACTTTAGC--CTTTGGAAACCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGC--CCTTGGGAACCAGTTGCGGTTTTA-GTTCTTAT CTTTGTATCTTCTAATAAGGAAACACTATTTTAGC--TTTTGGGAACCGGTTGCGGTTATA-GTTCTTAT CTTTGTAACTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGATTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACTAGGAAACATTACTTTAGC--TTTTGGGAACCAGTTGCAGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTGTGGTTCTA-GTTCTTAT CTTTGTATCTTCTAAGAAGGAAACACTACTTTAGC--TTTTGGAAAATGGGTTCGATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTȦCTTAGC--TTTTGGGȦATCAGTTGTGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACACCTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTAAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTGACAAGGAAACACTACTTTTGC--TTTTGGGAACCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTTGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT

FIG. 23D-2S
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 175
ACTCAATCATCCACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 178
AСTCAATCATCCACATTACATCTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATATAGTCATATTTGAATCCAAAACACT 174
ACTCAATCATACACATGACATTTAGTCATATTTGACTCCAAAA 170
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATCCACATGACATCTAGTCATATGTGACTCCAAAACACTAAC 177
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACT 173
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTA 172
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATACTACACATGACATATAGTCTTATTTGACTCCAAAATACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
f6h8-52 AAGCTTCTTATTGCTTCTCAAAGCATTGATGGTGTAGCCGAAGTACGTATGAGTCTTCGG
f6h8-53 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTATCCGAAGTCCGTATGAGTCTTTGG
f6h8-54 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f6h8-55 ----TTCTTATTGCTTCTCAAAGTTTTGATGGTGTAGCCGAAATTCGTATGAGTCTCTAG
f6h8-56 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCAAAGTCCGTATGAGTTTTTAG
f6h8-57 ------------------------TTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGA
f6h8-58 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTAGCTGAAGTCCGTTTGAGACTTTGG
f6h8-59 AAGCTTCGTATTGCTTCTCAAAATTTTGGTGGTGTATCCGAAGTCCGTATGAGTCTTTGG
f6h8-6 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f6h8-60 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA
f6h8-61 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCAAAGTCCGTATGAGTTTTTAG
f6h8-62 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCAAAGTCCGTATGAGTTTTTAG
f6h8-63 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-64 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-65 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f6h8-66 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-67 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-68 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-69 ---CTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-7 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG
f6h8-70 ---СТTСТTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG
f6h8-71 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG

FIG. 23D-1T

CTTTGTATTTTCTAACAAGGAAACACTACTTTAGA--TTTTGGGAACCGGTTGTAGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGCAATCGGTTGCCGTTCTA-GTTCTTAT CTTTGTATCTACTAACAAGGAAACACTACTTTAGG--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGCAACCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTGTCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTAGC--TTTTAGGAACCAGTTGCGGTTATA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTCGGC--TATTGGGAATCGGTTGCCGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAATATTACTTTAGG--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CTTTAAATCTTCTAACAAGGAAACATTACTTTAGC--TTTCGGGAACCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTGTGGTTAAA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTGTGGTTAAA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTTTC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT

FIG. 23D-2T
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 166
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
AATCAATCATACACATGACATCTAGTCATACTTGACTCCAAAACATTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAACC 154
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 1.78
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTTAATCATCCACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAAC 177
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTTAATCATACACATGACATCTAGTCTTATTTGACACCAAAATACTAACC 175
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTTAATCATACACATGACATCTAGTCTTATTTGACACCAAAATACTAACC 175
ACTCAATACTACACATGACATATAGTCTTTTTTGACTCCAAAACACTAACC 178

FIG. 23D-3T
f6h8-72 -------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-73 --------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-74 A-----------------------------TGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-75 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG £6h8-76 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-77 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-78 AAGCTTCTTATTGCTTCTCAAAACTTTTATGGTGAAGCCAAAGTCCCTATGAGTATTTGG f6h8-79 -----------------------CTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTTG f6h8-8 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-80 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-81 -----------------------CTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTTG f6h8-82 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-83 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTGG f6h8-84 AAGCTTCTTCTTGCTTCTCAAAATTTTCATGGTGTAGCCGAAGTCCGTATGAGTCTTTGG f6h8-85 ------------------------CTTTGATGGTGTAGCTGAAGTCCATATGATTCTTTTG f6h8-86 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTAG f6h8-87 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-88 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTAG f6h8-89 -------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-9 AAGCTTCTTATTGCTTCTTAAAACTTTGATGGTGTAGCCGAAGTCTGTATGAGTCTTTGG f6h8-90 ------------------------TTTGATGGTGTAGCCGAAGTCCGTATGAGTCTTTGA f6h8-91 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG

FIG. 23D-1U

CTTTGTGTCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGG̈TTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAATATTACTTTAGG--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAAGAAACATTAATATAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTGAAC--CTTTGGGAACCGGTTCCGGTTCTA-GTTCTTAT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCAATTCTA-GTTCTTAT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACACTACTTTTGC--TTTTGGGAACCAGTTGCGGTTCTA-GTTTTTAT CTTTGTATGTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTGTCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTAGCTTCTAACAAGGAAACACTACTTTAGC--TTTTGGGAAACGGTTGCGGTTCTA-GTTCTTAT CTTTGTGTCTTCAAACAAGGAAACATTACTTTAGC--TTTTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT

FIG. 23D-2U
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 150
ACTCAATACTACCCATGACATATAGTCTTTTTTGACTCCAAAACACTAAC்C 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATAACATATAGTCATATTTGAATCCAAAACACTAACC 178
ACTCAATCATACACATGACATCA-ATCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCA-GTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATACTACACATGACATATAGTCTTTTTTGACTCCAAAÄCACTAACC 178
ACTCAATCATACACATGACATCA-GTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 178
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAA 146
ACTTAATCATACACATGACATCTAGTCGTATTTGACTCCAAAAAACTAAC 177
f6h8-92 AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-94. AAGCTTCTTATTGCTTCTCAAAATTTTGATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-95 --GCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTAG f6h8-96 --GCTTCTTATTGCTTCTCAAAATTTTGATGGTGTACACGAAGTCCGTATGAGTCTTTAG f6h8-97 AAGCTTGTTATTGCTTCTCAAAATTTTGATGGTGTAGCCGGAGTCCGTATGAGTCTTTGG f6h8-98 AAGCTTCTTATTGCTTCTCAAAACATTAATGGCTTAGCCGAAGTCCGTATGAGTTTTTAG f6h8-99 AAGCTACTTATTGCTTCTCAAAACTTTGATGGTGTAGCCAAAGTCCGTATGAGTCTTTGG xf6h8-93 AAGCTTCTTATTGCTTCTCAAAACTTTGATGGCTTAGCCGAAGTCCGTATGAGTCTTTGG

\section*{FIG. 23D-1V}

CTTTCTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CATTGTATCTTCTAACAAGGAAACATTACTTTAGC--TTTTGGGAATCAGTTATGGTTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCAAACAAGGAAACATAACTTTAGC--TATTGGGAATCGGTTGCCATTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTACTTTAGC--TAGTGGGAATCGGTTGCGGTTCTA-GTTCTTAT CTTTGTATCTTCTAACAAGGAAACATTAATTTAGC--TTTTGGGAATTAGTTGCGGTTCTA-GTTCTTAT, CTTTGTATCTTCTAACTAGGAAACATTACTTTAGC--TTTTGGGAACCAGTTGCAGTTCTA-GTTCTTAT CTTTGTATCTTCTAACA-GGAAACAATACTTTTGC--TTTTGGGAACCGGTTACGGTTCTA-GTTCTTAT
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTTAATCATACACATGACATCTAGTCATATTTGACTCCAAAAAACTAAC 177
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 176
ACTCAATCATACACATGACATCTAGTCATATTTGACTCCAAAACACTAACC 176
ACTCAATCATACACATGACAACTAGTCATATTTGACTCCAAAAAACTAA 176
ACTCAATCATACACATGACATCTAGCCATATTTGATTCCGAAAAACTAA 176
ACTCAATCATCCACATGACCTCTAGTCATATGTGACTCCAAAAC 171
AAACAATCATCCACATGACATCAAGTCATATTTGACTCCAAAATACTAACC 177

\section*{PLANT CHROMOSOME COMPOSITIONS AND METHODS}
[0001] This application claims the priority of U.S. Provisional Application Ser. No. 60/125,219, filed Mar. 18, 1999, U.S. Provisional Application Ser. No. 60/127,409, filed Apr. 1, 1999, U.S. Provisional Application Ser. No. 60/134,770, filed May 18, 1999, U.S. Provisional Application Ser. No. 60/153,584, filed Sep. 13, 1999, U.S. Provisional Application Ser. No. 60/154,603, filed Sep. 17, 1999 and U.S. Provisional Application Ser. No \(\qquad\) , filed Dec. 16, 1999, each of which disclosures is specifically incorporated herein by reference in its entirety.
[0002] The government owns rights in the invention pursuant to U.S. Department of Agriculture Grant No. 96-35304-3491, National Science Foundation Grant No. 9872641 and Grant No. DOEDE-FG05-920R22072 from the Consortium for Plant Biotechnology.

\section*{BACKGROUND OF THE INVENTION}

\section*{[0003] I. Field of the Invention}
[0004] The present invention relates generally to the field of molecular biology. More a particularly, it concerns plant chromosome compositions and methods for using the same.
[0005] II. Description of Related Art
[0006] Two general approaches are used for introduction of new genetic information ("transformation") into cells. One approach is to introduce the new genetic information as part of another DNA molecule, referred to as a "vector," which can be maintained as an independent unit (an episome) apart from the chromosomal DNA molecule(s). Episomal vectors contain all the necessary DNA sequence elements required for DNA replication and maintenance of the vector within the cell. Many episomal vectors are available for use in bacterial cells (for example, see Maniatis et al., 1982). However, only a few episomal vectors that function in higher eukaryotic cells have been developed. The available higher eukaryotic episomal vectors are based on naturally occurring viruses and most function only in mammalian cells (Willard, 1997). In higher plant systems the only known double-stranded DNA viruses that replicate through a double-stranded intermediate upon which an episomal vector could be based is the gemini virus, although the gemini virus is limited to an approximately 800 bp insert. Although an episomal plant vector based on the Cauliflower Mosaic Virus has been developed, its capacity to carry new genetic information also is limited (Brisson et al., 1984).
[0007] The other general method of genetic transformation involves integration of introduced DNA sequences into the recipient cell's chromosomes, permitting the new information to be replicated and partitioned to the cell's progeny as a part of the natural chromosomes. The most common form of integrative transformation is called "transfection" and is frequently used in mammalian cell culture systems. Transfection involves introduction of relatively large quantities of deproteinized DNA into cells. The introduced DNA usually is broken and joined together in various combinations before it is integrated at random sites into the cell's chromosome (see, for example Wigler et al., 1977). Common problems with this procedure are the rearrangement of introduced DNA sequences and unpredictable levels of expression due to the location of the transgene in the genome
or so called "position effect variation" (Shingo et al., 1986). Further, unlike episomal DNA, integrated DNA cannot normally be precisely removed. A more refined form of integrative transformation can be achieved by exploiting naturally occurring viruses that integrate into the host's chromosomes as part of their life cycle, such as retroviruses (see Cepko et al., 1984). In mouse, homologous integration has recently become common, although it is significantly more difficult to use in plants (Lam et al. 1996).
[0008] The most common genetic transformation method used in higher plants is based on the transfer of bacterial DNA into plant chromosomes that occurs during infection by the phytopathogenic soil bacterium Agrobacterium (see Nester et al., 1984). By substituting genes of interest for the naturally transferred bacterial sequences (called T-DNA), investigators have been able to introduce new DNA into plant cells. However, even this more "refined" integrative transformation system is limited in three major ways. First, DNA sequences introduced into plant cells using the Agrobacterium T-DNA system are frequently rearranged (see Jones et al., 1987). Second, the expression of the introduced DNA sequences varies between individual transformants (see Jones et al., 1985). This variability is presumably caused by rearranged sequences and the influence of surrounding sequences in the plant chromosome (i.e., position effects), as well as methylation of the transgene. A third drawback of the Agrobacterium T-DNA system is the reliance on a "gene addition" mechanism: the new genetic information is added to the genome (i.e., all the genetic information a cell possesses) but does not replace information already present in the genome.
[0009] One attractive alternative to commonly used methods of transformation is the use of an artificial chromosome. Artificial chromosomes are man-made linear or circular DNA molecules constructed from cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (see Murray et al., 1983). Desired elements include: (1) Autonomous Replication Sequences (ARS) (these have properties of replication origins, which are the sites for initiation of DNA replication), (2) Centromeres (site of kinetochore assembly and responsible for proper distribution of replicated chromosomes at mitosis or meiosis), and (3) Telomeres (specialized DNA structures at the ends of linear chromosomes that function to stabilize the ends and facilitate the complete replication of the extreme termini of the DNA molecule).
[0010] At present, the essential chromosomal elements for construction of artificial chromosomes have been precisely characterized only from lower eukaryotic species. ARSs have been isolated from unicellular fungi, including Saccharomyces cerevisiae (brewer's yeast) and Schizosaccharomyces pombe (see Stinchcomb et al., 1979 and Hsiao et a1., 1979). An ARS behaves like a replication origin allowing DNA molecules that contain the ARS to be replicated as an episome after introduction into the cell nuclei of these fungi. Plasmids containing these sequences replicate, but in the absence of a centromere they are partitioned randomly into daughter cells.
[0011] Artificial chromosomes have been constructed in yeast using the three cloned essential chromosomal elements. Murray et al, 1983, disclose a cloning system based on the in vitro construction of linear DNA molecules that can
be transformed into yeast, where they are maintained as artificial chromosomes. These yeast artificial chromosomes (YACs) contain cloned genes, origins of replication, centromeres and telomeres and are segregated in daughter cells with high fidelity when the YAC is at least 100 kB in length. Smaller CEN containing vectors may be stably segregated, however, when in circular form.
[0012] None of the essential components identified in unicellular organisms, however, function in higher eukaryotic systems. For example, a yeast CEN sequence will not confer stable inheritance upon vectors transformed into higher eukaryotes. While such DNA fragments can be readily introduced, they do not stably exist as episomes in the host cell. This has seriously hampered efforts to produce artificial chromosomes in higher organisms.
[0013] In one case, a plant artificial chromosome was discussed (Richards et al., U.S. Pat. No. 5,270,201). However, this vector was based on plant telomeres, as a functional plant centromere was not disclosed. While telomeres are important in maintaining the stability of chromosomal termini, they do not encode the information needed to ensure stable inheritance of an artificial chromosome. It is well documented that centromere function is crucial for stable chromosomal inheritance in almost all eukaryotic organisms (reviewed in Nicklas 1988). For example, broken chromosomes that lack a centromere (acentric chromosomes) are rapidly lost from cell lines, while fragments that have a centromere are faithfully segregated. The centromere accomplishes this by attaching, via centromere binding proteins, to the spindle fibers during mitosis and meiosis, thus ensuring proper gene segregation during cell divisions.
[0014] In contrast to the detailed studies done in \(S\). cerevisiae and \(S\). pombe, little is known about the molecular structure of functional centromeric DNA of higher eukaryotes. Ultrastructural studies indicate that higher eukaryotic kinetochores, which are specialized complexes of proteins that form on the chromosome during late prophase, are large structures (mammalian kinetochore plates are approximately \(0.3 \mu \mathrm{~m}\) in diameter) which possess multiple microtubule attachment sites (reviewed in Rieder, 1982). It is therefore possible that the centromeric DNA regions of these organisms will be correspondingly large, although the minimal amount of DNA necessary for centromere function may be much smaller.
[0015] While the above studies have been useful in elucidating the structure and function of centromeres, they have failed to provide a cloned centromere from a higher eukaryotic organism. The extensive literature indicating both the necessity of centromeres for stable inheritance of chromosomes, and the non-functionality of yeast centromeres in higher organisms, demonstrate that cloning of a functional centromere from a higher eukaryote is a necessary first step in the production of artificial chromosomes suitable for use in higher plants and animals. The production of artificial chromosomes with centromeres which function in higher eukaryotes would overcome many of the problems associated with the prior art and represent a significant breakthrough in biotechnology research.

\section*{SUMMARY OF THE INVENTION}
[0016] In one aspect of the invention, a method is provided for the identification of plant centromeres. In one embodi-
ment of the invention, the method may comprise tetrad analysis. Briefly, tetrad analysis measures the recombination frequency between genetic makers and a centromere by analyzing all four products of individual meiosis. A particular advantage arises from the quartet (qrt 1) mutation in Arabidopsis, which causes the four products of pollen mother cell meiosis in Arabidopsis to remain attached. The quartet mutation may also find use in accordance with the invention in species other than Arabidopsis. For example, several naturally occurring plant species are also known to release pollen clusters, including water lilies, cattails, heath (Ericaceae and Epacridceae), evening primrose (Onagraceae), sundews (Droseraceae), orchids (Orchidaceae), and acacias (Mimosaceae) (Preuss 1994; Smyth 1994). None of these species however, has been developed into an experimental systems thus severely limiting their use for genetic analysis. However, it is contemplated by the inventors that a quartet mutation could be introduced into a host plant to enable the use of tetrad analysis in potentially any species. When used to pollinate a flower, one tetrad can result in the formation of four seeds, and the plants from these seeds can be analyzed genetically. With unordered tetrads, however, such as those produced by Arabidopsis, genetic mapping using tetrad analysis requires that two markers be scored simultaneously.
[0017] In another aspect, the invention provides a recombinant DNA construct comprising a plant centromere. The recombinant DNA construct may additionally comprise any other desired sequences, for example, a telomere, including a plant telomere such as an Arabidopsis thaliana telomere, or alternatively, a yeast or any, other type of telomere. One may also desire to include an autonomous replicating sequence (ARS), such as a plant ARS, including an Arabidopsis thaliana ARS. Still further, one may wish to include a structural gene on the construct, or multiple genes (for example, two, three, four, five, six, seven, eight, nine, ten, fifteen, twenty, twenty-five, fifty, one hundred, two hundred, five hundred, one thousand) up to and including the maximum number of structural genes (roughly 5000) which can physically be placed on the recombinant DNA construct Examples of structural genes one may wish to use include a selectable or screenable marker gene, an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stress-induced gene, a toxin gene, a receptor gene, a ligand gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, a growth factor gene and a seed storage gene. In one embodiment of the invention, the construct is capable of expressing the structural gene, for example, in a prokaryote or eukaryote, including a lower eukaryote, or a higher eukaryote such as a plant.
[0018] In yet another aspect, the invention provides a recombinant DNA construct comprising a plant centromere and which is a plasmid. The plasmid may contain any desired sequences, such as an origin of replication, including an origin of replication functions in bacteria, such as \(E\). coli and Agrobacterium, or in plants or yeast, for example, such as \(S\). cerevisiae. The plasmid may also comprises a selection marker, which may function in bacteria, including E. coli and Agrobacterium, as well as a selection marker that functions in plants or yeast, such as \(S\). cerevisiae.
[0019] In still yet another aspect, the invention provides a recombinant DNA construct comprising a plant centromere and which is capable of being maintained as a chromosome, wherein the chromosome is transmitted in dividing cells. The plant centromere may be from any plant.
[0020] In still yet another aspect, the invention provides a plant centromere which is further defined as an Arabidopsis thaliana centromere. In yet another embodiment of the invention, the plant centromere is an Arabidopsis thalianachromosome 1 centromere, and may still further be defined as flanked by the genetic markers T22C23-T7 and T3P8SP6, or still further as flanked by the genetic markers T22C23-T7 and T5D18, T22C23-17 and T31A, T5D18 and T3P8-SP6, T5D18 and T31A, and T3LA and T3P8-SP6. In yet another embodiment of the invention, the plant centromere comprises an Arabidopsis thaliana chromosome 2 centromere. The chromosome 2 centromere may comprise, for example, from about 100 to about 611,000 , about 500 to about 611,000 , about 1,000 to about 611,000 , about 10,000 to about 611,000 , about 20,000 to about 611,000 , about 40,000 to about 611,000 , about 80,000 to about 611,000 , about 150,000 to about 611,000 , or about 300,000 to about 611,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:209, including comprising the nucleic acid sequence of SEQ ID NO:209. The centromere may also be defined as comprising from about 100 to about 50,959 , about 500 to about 50,959 , about 1,000 to about 50,959 , about 5,000 to about 50,959 , about 10,000 to about \(50,959,20,000\) to about 50,959 , about 30,000 to about 50,959 , or about 40,000 to about 50,959 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:210, and may comprise the nucleic acid sequence of SEQ A) NO:210. The centromere may comprise sequences from both SEQ ID NOS:209 and 210 , including the aforementioned fragments, or the entirety of SEQ ID NOS:209 and 210. In particular embodimemnts, the inventors contemplate a 3 ' fragment of SEQ ID NO:209 can be fused to a 5 ' fragment of SEQ ID NO:210, optionally including one or more 180 bp repeat sequence disposed therebetween.
[0021] In still yet another aspect, the invention provides an Arabidopsis thaliana chromosome 3 centromere. In one embodiment of the invention, the centromere may be further defined a: flanked by the genetic markers T9G9-SP6 and T5M14-SP6, and still further defined as flanked by a pair of genetic markers selected from the group consisting of T9G9SP6 and T14H \({ }_{20}\), T9G9-SP6 and T7K14, T9G9-SP6 and T21P0, \(\mathrm{T} 14 \mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{T} 7 \mathrm{~K} 14, \mathrm{~T} 14 \mathrm{H}_{2} \mathrm{O}\) and T21P20, \(\mathrm{T} 14 \mathrm{H}_{2} \mathrm{O}\) and T5M14-SP6, 17K14 and T5M14SP6, T7K14 and T21P20, and T21P20 and T5M14-SP6.
[0022] In still yet another aspect, the invention provides an Arabidopsis thaliana chromosome 4 centromere. In certain embodiments of the invention, the centromere may comprise from about 100 to about \(1,082,000\), about 500 to about \(1,082,000\), about 1,000 to about \(1,082,000\), about 5,000 to about \(1,082,000\), about 10,000 to about \(1,082,000\), about 50,000 to about \(1,082,000\), about 100,000 to about 1,082 , 000 , about 200,000 to about \(1,082,000\), about 400,000 to about \(1,082,000\), or about 800,000 to about \(1,082,000\) contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:211, including comprising the nucleic acid sequence of SEQ ID NO:211. The centromere may also be defined as comprising from about 100 to about 163,317 , about 500 to about 163,317 , about 1,000 to about 163,317 , about 5,000 to
about 163,317 , about 10,000 to about 163,317 , about 30,000 to about 163,317 , about 50,000 to about 163,317 , about 80,000 to about 163,317 , or about 120,000 to about 163,317 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:212, and may be defined as comprising the nucleic acid sequence of SEQ ID NO:212. The centromere may comprise sequences from both SEQ ID NOS:211 and 212, including the aforementioned fragments, or the entirety of SEQ ID NOS:211 and 212. In particular embodiments, the inventors contemplate a \(3^{\prime}\) fragment of SEQ ID NO:211 can be fused to a \(5^{\prime}\) fragment of SEQ D) NO:212, optionally including one or more 180 bp repeat sequence disposed therebetween.
[0023] In yet another embodiment, there is provided a Arabidopsis thaliana chromosome 1, 3 or 5 centromere selected from the nucleic acid sequence given by SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ED NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID-NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID) NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, or fragments thereof. In one embodiment, the construct comprises at least 100 base pairs, up to an including the full length, of one of the preceding sequences. In addition, the construct may include 1 or more 180 base pair repeats.
[0024] In still yet another aspect, the invention provides an Arabidopsis thaliana chromosome 5 centromere. The centromere may be further defined as flanked by the genetic markers F13K20-T7 and CUE1, and still further defined as flanked by a pair of genetic markers selected from the group consisting of F13K20 T7 and T18M4, F13K20-T7 and T18F2, F13K20-T7 and T24I20, T18M4 and T18F2, T18M4 and T24I20, T18M4 and CUE1, T18F2 and T24I20, T18F2 and CUE1, and T24I20 and CUE1.
[0025] In still yet another aspect, the invention provides a recombinant DNA construct comprising a plant centromere, and further defined as comprising \(n\) copies of a repeated nucleotide sequence, wherein \(n\) is at least 2 . Potentially any number of repeat copies capable of physically being placed on the recombinant construct could be included on the construct, including about \(5,10,15,20,30,50,75,100,150\), \(200,300,400,500,750,1,000,1,500,2,000,3,000,5,000\), \(7,500,10,000,20,000,30,000,40,000,50,000,60,000\), \(70,000,80,000,90,000\) and about 100,000 , including all ranges in-between such copy numbers. In one embodiment the repeated nucleotide sequence may be isolatable from the nucleic acid sequence given by SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ D NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ HD NO:211 or SEQ ID NO:212. Examples of such sequences that could be used are given in FIGS. 23A-23D. The length of the repeat used may vary, but will preferably range from about 20 bp to about 250
bp, from about 50 bp to about 225 bp , from about 75 bp to about 210 bp , from about 100 bp to about 205 bp , from about 125 bp to about 200 bp , from about 150 bp to about 195 bp , from about 160 bp to about 190 and from about 170 bp to about 185 bp including about 180 bp .
[0026] In conjunction with SEQ ID NOS:209, 210, 211 and 212 , the repeats may be included as part of centromeric structures. The number of repeats may vary and include 1 , \(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19\), \(20,21,22,23,24,25,30,35,40,45,50,60,70,80,90,100\), \(125,150,175,200,300,400,500\) or more.
[0027] In still yet another aspect, the invention provides a minichromosome vector comprising a plant centromere and a telomere sequence. Any additional desired sequences may be added to the minichromosome, such as an autonomous replicating sequence, a second telomere sequence and a structural gene. One or more of the foregoing sequences may be added, up to the maximum number of such sequences that can physically be placed on the minichromosome. The minichromosome may comprise any of the centromere compositions disclosed herein. In one embodiment of the invention, the minichromosome may comprise a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:1, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID
[0028] NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21. The minichromosome also may contain "negative" selectable markers which confer susceptibility to an antibiotic, herbicide or other agent, thereby allowing for selection against plants, plant cells or cells of any other organism of interest containing a minichromosome. The minichromosome also may include genes which control the copy number of the minichromosome within a cell. One or more structural genes also may be included in the minichromosome. Specifically contemplated as being useful will be as many structural genes as may be inserted into the minichromosome while still maintaining a functional vector. This may include one, two, three, four, five, six, seven, eight, nine or more structural genes.
[0029] In still yet another aspect, the invention provides a recombinant DNA construct comprising a plant centromere. The cell may be of any type, including a prokaryotic cell or eukaryotic cell. Where the cell is a eukaryotic cell, the cell may be, for example, a yeast cell or a higher eukaryotic cell, such as plant cell. The plant cell may be from a dicotyledonous plant, such as tobacco, tomato, potato, soybean, canola, sunflower, alfalfa, cotton and Arabidopsis, or may be a monocotyledonous plant cell, such as wheat, maize, rye, rice, turfgrass, oat, barley, sorghum, millet, and sugarcane. In one embodiment of the invention, the plant centromere is an Arabidopsis thaliana centromere, and the cell may be an Arabidopsis thaliana cell. The recombinant DNA construct may comprise additional sequences, such as a telomere, an autonomous replicating sequence (ARS), a structural gene, or a selectable or screenable marker gene, including as many of such sequences as may physically be placed on said recombinant DNA construct. In one embodiment of the invention, the cell is further defined as capable of expressing
said structural gene. In another embodiment of the invention, a plant is provided comprising the aforementioned cells.
[0030] In still yet another aspect, the invention provides a method of preparing a transgenic plant cell comprising contacting a starting plant cell with a recombinant DNA construct comprising a plant centromere, whereby said starting plant cell is transformed with said recombinant DNA construct. The recombinant DNA construct may comprise any desired sequences, such as many structural genes as can physically be placed on said recombinant DNA construct. In particular embodiments, the centromere is an Arabidopsis thaliana centromere, and the plant cell may be an Arabidopsis thaliana cell.
[0031] In still yet another aspect, the invention provides a transgenic plant comprising a minichromosome vector, wherein the vector comprises a plant centromere and a telomere sequence. The minichromosome vector may further comprise an autonomous replicating sequence, second telomere sequence, or a structural gene, such as an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stressinduced gene, a toxin gene, a receptor gene, a ligand gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. As many of such sequences may be included as can physically be placed on the minichromosome. The minichromosome vector may further comprise a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ED NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ D NO: 10, SEQ NO:11, SEQ ID NO:12, SEQ ED NO: 13, SEQ ED NO: 14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21. The transgenic plant may be any type of plant, such as a dicotyledonous plant, for example, tobacco, tomato, potato, pea, carrot, cauliflower, broccoli, soybean, canola, sunflower, alfalfa, cotton and Arabidopsis, or may be a monocotyledonous plant, such as wheat, maize, rye, rice, turfgrass, oat, barley, sorghum, millet, and sugarcane.
[0032] In still yet another aspect, the invention provides a method of producing a minichromosome vector comprising: (a) obtaining a first vector and a second vector, wherein said first vector or said second vector comprises a selectable or screenable marker, an origin of replication, a telomere, and a plant centromere, and wherein said first vector and said second vector comprises a site for site-specific recombination; and (b) contacting said first vector with said second vector to allow site-specific recombination to occur between said site for site-specific recombination on said first vector and said site for site-specific recombination on said second vector to create a minichromosome vector comprising said selectable or screenable marker, said origin of replication, said telomere and said plant centromere. The contacting may be done in vitro or in vivo, including wherein the contacting is carried out in a prokaryotic cell such as an Agrobacterium or \(E\). coli cell, or in a lower eukaryotic cell, such as a yeast cell. The contacting may still further be carried out in a higher eukaryotic cell, such as a plant cell, including an Arabidopsis thaliana cell. The contacting may be done in the presence of potentially any recombinase, including Cre, Flp, Gin, Pin, Sre, pinD, Int-B13, and R. The first vector or
second vector may comprise border sequences for Agrobac-terium-mediated transformation. In one embodiment of the invention, the plant centromere is an Arabidopsis thaliana centromere. The telomere may be a plant telomere. Any plant selectable or screenable marker could be used, including GFP, GUS, BAR, PAT, HPT or a NPTII.
[0033] In still yet another aspect, a method is provided of screening a candidate centromere sequence for plant centromere activity, said method comprising the steps of: (a) obtaining an isolated nucleic acid sequence comprising a candidate centromere sequence; (b) integratively transforming plant cells with said isolated nucleic acid; and (c) screening for centromere activity of said candidate centromere sequence. In the method, the screening may comprise observing a phenotypic effect present in the integratively transformed plant cells or plants comprising the plant cells, wherein the phenotypic effect is absent in a control plant cell not integratively transformed with said isolated nucleic acid sequence, or a plant comprising said control plant cell. Types of phenotypic effects that could be screened for include reduced viability, reduced efficiency of said transforming, genetic instability in the integratively transformed nucleic acid, aberrant plant sectors, increased ploidy, aneuploidy, and increased integrative transformation in distal or centromeric chromosome regions. The isolated nucleic acid sequence may comprise a bacterial artificial chromosome, which may be further defined as a binary bacterial artificial chromosome. The integratively transforming may comprise use of any type of transformation, such as Agro-bacterium-mediated transformation. In one embodiment of the invention, the control plant cell has been integratively transformed with a nucleic acid sequence other than a candidate centromere sequence.
[0034] In still yet another aspect, the invention provides a recombinant DNA construct comprising an Arabidopsis polyubiquitin 11 promoter, wherein the promoter comprises from about 25 to about 2,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:180. In further embodiments of the invention, the promoter may comprise from about 75 to about 2,000, from about 125 to about 2,000 , from about 200 to about 2,000 , from about 400 to about 2,000 , from about 800 to about 2,000 , from about 1,000 to about 2,000 , or from about 1,500 to about 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:180, or may comprise the nucleic acid sequence of SEQ ID NO:180. The promoter containing construct may comprise any additional desired sequences, for example, that of an enhancer, a telomere sequence, a plant centromere sequence, an ARS, or a structural gene, including an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stressinduced gene, a toxin gene, a receptor gene, a ligand gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. In one embodiment of the invention, the promoter may be operably linked to the \(5^{\prime}\) end of the structural gene.
[0035] In still yet another aspect, the invention provides a recombinant DNA construct comprising an Arabidopsis 40S ribosomal protein S16 promoter, wherein said promoter comprises from about 25 to about 2,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:182. In particular embodiments of the invention, the promoter may
comprise from about 75 to about 2,000 , from about 125 to about 2,000 , from about 200 to about 2,000 , from about 400 to about 2,000 , from about 800 to about 2,000 , from about 1,000 to about 2,000 or from about 1500 to about 2,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:182, or may comprise the nucleic acid sequence of SEQ ID NO:182. The promoter containing construct may comprise any additional desired sequences, for example, that of an enhancer, a telomere sequence, a plant centromere sequence, an ARS, or a structural gene, including an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stressinduced gene, a toxin gene, a receptor gene, a ligand gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. In one embodiment of the invention, the promoter may be operably linked to the \(5^{\prime}\) end of the structural gene.
[0036] In still yet another aspect, the invention provides a recombinant DNA construct comprising an Arabidopsis polyubiquitio \(113^{\prime}\) regulatory sequence including the terminator sequence, wherein the \(3^{\prime}\) regulatory sequence comprises from about 25 to about 2001 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO: 181. In one embodiment of the invention, the 3 ' regulatory sequence may be further defined as comprising from about 75 to about 2001, from about 125 to about 2001, from about 200 to about 2001, from about 400 to about 2001, from about 800 to about 2001, or from about 1,000 to about 2001 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:181, and may comprise the nucleic acid sequence of SEQ ID NO:181. The recombinant sequence may further comprise any other sequence, for example, an enhancer, a telomere sequence, a plant centromere sequence, an ARS, and a structural gene, including an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stress-induced gene, a toxin gene, a receptor gene, a ligand gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. In one embodiment of the invention, the terminator may be operably linked to the \(3^{\prime}\) ' end of the structural gene.
[0037] In still yet another aspect, the invention provides a recombinant DNA construct comprising an Arabidopsis 40 S ribosomal protein S16 3' regulatory sequence including the terminator sequence, wherein the \(3^{\prime}\) regulatory sequence comprises from about 25 to about 2,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:183. In particular embodiments of the invention, the \(3^{\prime}\) regulatory sequence may comprise from about 75 to about 2,000 , from about 125 to about 2,000 , from about 200 to about 2,000 , from about 400 to about 2,000 , from about 800 to about 2,000 , or from about 1,000 to about 2,000 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:183, and may comprise the nucleic acid sequence of SEQ ID NO:183. The recombinant sequence may further comprise any other sequence, for example, an enhancer, a telomere sequence, a plant centromere sequence, an ARS, and a structural gene, including an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stress-induced gene, a toxin gene, a receptor gene, a ligand gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a
clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. In one embodiment of the invention, the terminator may be operably linked to the \(3^{\prime}\) end of the structural gene.
[0038] In still yet another aspect, the invention provides methods for expressing foreign genes in plants, plant cells or cells of any other organism of interest. The foreign genes may be from any organism, including plants, animals and bacteria. It is further contemplated that minichromosomes could be used to simultaneously transfer multiple foreign genes to a plant comprising entire biochemical or regulatory pathways. In yet another embodiment of the invention, it is contemplated that the minichromosomes can be used as DNA cloning vectors. Such a vector could be used in plant and animal sequencing projects. The current invention may be of particular use in the cloning of sequences which are "unclonable" in yeast and bacteria, but which may be easier to clone in a plant based system.
[0039] In still yet another aspect of the invention, it is contemplated that the minichromosomes disclosed herein may be used to clone functional segments of DNA such as origins of DNA replication, telomeres, telomere associated genes, nuclear matrix attachment regions (MARs), scaffold attachment regions (SARs), boundary elements, enhancers, silencers, promoters, recombinational hot-spots and centromeres. This embodiment may be carried out by cloning DNA into a defective minichromosome which is deficient for one or more type of functional elements. Sequences which complement such deficient elements would cause the minichromosome to be stably inherited. A selectable or screenable marker on the minichromosome could then be used to select for viable minichromosome containing cells which contain cloned functional elements of the type that were non-functional in the defective minichromosome.
[0040] In still yet another aspect of the invention, the sequences disclosed herein may be used for the isolation of centromeric sequences from plants other than Arabidopsis. Such techniques may employ, for example, hybridization or sequence-based analysis. In one embodiment of the invention, the centromere may be isolated from agriculturally important species such as, for example, vegetable crops, including artichokes, kohlrabi, arugula, leeks, asparagus, lettuce (e.g., head, leaf, romaine), bok choy, malanga, broccoli, melons (e.g., muskmelon, watermelon, crenshaw, honeydew, cantaloupe), brussels sprouts, cabbage, cardoni, carrots, napa, cauliflower, okra, onions, celery, parsley, chick peas, parsnips, chicory, chinese cabbage, peppers, collards, potatoes, cucumber plants (marrows, cucumbers), pumpkins, cucurbits, radishes, dry bulb onions, rutabaga, eggplant, salsify, escarole, shallots, endive, garlic, spinach, green onions, squash, greens, beet (sugar beet and fodder beet), sweet potatoes, swiss chard, horseradish, tomatoes, kale, turnips, and spices. Alterantively, centromeres could be isolated from fruit and vine crops such as apples, apricots, cherries, nectarines, peaches, pears, plums, prunes, quince almonds, chestnuts, filberts, pecans, pistachios, walnuts, citrus, blueberries, boysenberries, cranberries, currants, loganberries, raspberries, strawberries, blackberries, grapes, avocados, bananas, kiwi, persimmons, pomegranate, pineapple, tropical fruits, pomes, melon, mango, papaya, and lychee.
[0041] In still yet another aspect of the invention, centromeres could be isolated in accordance with the invention
from field crop plants, such as evening primrose, meadow foam, corn (field, sweet, popcorn), hops, jojoba, peanuts, rice, safflower, small grains (barley, oats, rye, wheat, etc.), sorghum, tobacco, kapok, leguminous plants (beans, lentils, peas, soybeans), oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts), fibre plants (cotton, flax, hemp, jute), lauraceae (cinnamon, camphor), or plants such as coffee, sugarcane, tea, and natural rubber plants. Still other examples of plants from which centromeres could be isolated include bedding plants such as flowers, cactus, succulents and ornamental plants, as well as trees such as forest (broad-leaved trees and evergreens, such as conifers), fruit, ornamental, and nut-bearing trees, as well as shrubs and other nursery stock.
[0042] In still yet another aspect of the invention, the minichromosome vectors described herein may, be used to perform efficient gene replacement studies. At present, gene replacement has been detected on only a few occasions in plant systems and has only been detected at low frequency in mammalian tissue culture systems (see Thomas et al., 1986; Smithies et al., 1985). The reason for this is the high frequency of illegitimate nonhomologous recombination events relative to the frequency of homologous recombination events (the latter are responsible for gene replacement). Artificial chromosomes may participate in homologous recombination preferentially. Since the artificial chromosomes remain intact upon delivery, no recombinogenic broken ends will be generated to serve as substrates for the extremely efficient illegitimate recombination machinery. Thus, the artificial chromosome vectors disclosed by the present invention will be maintained in the nucleus through meiosis and available to participate in homology-dependent meiotic recombination. In addition, because in principle, artificial chromosomes of any length could be constructed using the teaching of the present invention, the vectors could be used to introduce extremely long stretches of DNA from the same or any other organism into cells. Specifically contemplated inserts include those from about several base pairs to one hundred megabase pairs, including about 1 kb , \(25 \mathrm{kB}, 50 \mathrm{kB}, 100 \mathrm{kB}, 125 \mathrm{kB}, 150 \mathrm{kB}, 200 \mathrm{kB}, 300 \mathrm{kB}, 400\) \(\mathrm{kB}, 500 \mathrm{kB}, 600 \mathrm{kB}, 700 \mathrm{kB}, 800 \mathrm{kB}, 900 \mathrm{kB}, 1 \mathrm{MB}, 1.25\) \(\mathrm{Mb}, 1.5 \mathrm{Mb}, 2 \mathrm{Mb}, 3 \mathrm{Mb}, 5 \mathrm{Mb}, 10 \mathrm{Mb}, 25 \mathrm{Mb}, 50 \mathrm{Mb}\) and 100 Mb .
[0043] In still yet another aspect, the present invention provides methods for the construction of minichromosome vectors for the genetic transformation of plant cells, uses of the vectors, and organisms transformed by them. Standard reference works setting forth the general principles of recombinant DNA technology include Lewin, 1985. Other works describe methods and products of genetic engineering. See, e.g., Maniatis et al., 1982; Watson et al., 1983; Setlow et al., 1979; and Dillon et al., 1985.
[0044] In still yet another aspect, the invention provides a method of preparing a transgenic cell. In one embodiment of the invention, the method comprises the steps of: a.) obtaining a nucleic acid molecule comprising Arabidopsis thaliana centromere DNA having the following characteristics: 1.) mapping to a location on an Arabidopsis thaliana chromosome defined by a pair of genetic markers selected from the group consisting of: mi 342 and T27K12, mi310 and g4133, atpox and ATA, mi233 and mi167, and F13K20t7 and CUE1, and 2.) sorts DNA to the spindle poles in meiosis 1 in a pattern indicating the disjunction of
homologous chromosomes, b) preparing a recombinant construct comprising said nucleic acid molecule; and c) transforming a recipient cell with said recombinant construct.
[0045] The cell may be, for example, a lower eukaryotic cell including a yeast cell, or may be a higher eukaryotic cell. Where the cell is a higher eukaryotic cell, the cell may be an animal or plant cell. In one embodiment of the invention, the cell is not an Arabidopsis thaliana cell. In another embodiment of the invention, the Arabidopsis thaliana centromere is defined by the marker pair mi342 and T27K12, which may be further defined by the genetic marker pair T22C23-17 and T3P8-sp6; and/or is defined by the marker pair mi310 and g4133, which may be further defined by the genetic marker pair F5J15-sp6 and T15D9; and/or is defined by the marker pair atpox and ATA, which may be further defined by the genetic marker pair T9G9-sp6 and T5M14-sp6; and/or is defined by the marker pair mi233 and mi167, which may be further defined by the genetic marker pair T24H24.30k3 and F13H14-t7; and/or is defined by the genetic marker pair F13K20-t7 and CUE1, which may be further defined by a genetic marker pair selected from the group consisting of F13K20-T7 and T18M4, F13K20-T7 and T18F2, F13K20-7 and T24I20, T18M4 and T18F2, T18M4 and T24I20, T18M4 and CUE1, T18F2 and T24I20, T18F2 and CUE1, and T24I20 and CUE1.
[0046] In one embodiment of the invention, the transforming may comprise use of a method selected from the group consisting of: Agrobacterium-mediated transformation, protoplast transformation, electroporation, or particle bombardment. The recombinant construct may comprise desired elements, including a telomere, such as an Arabidopsis thaliana or yeast telomere. The recombinant construct may also comprise an autonomous replicating sequence (ARS), for example, an Arabidopsis thaliana ARS. The recombinant construct may also comprise a prokaryotic or eukaryotic selectable or screenable marker gene. Also desired to include with a recombinant construct may be one or more structural genes. Exemplary structural genes include a gene selected from the group consisting of an antibiotic resistance gene, a herbicide resistance gene, a nitrogen fixation gene, a plant pathogen defense gene, a plant stress-induced gene, a toxin gene, a seed storage gene, a hormone gene, an enzyme gene, an interleukin gene, a clotting factor gene, a cytokine gene, an antibody gene, and a growth factor gene. The method may further comprise the step of regenerating a transgenic plant from said cell.
[0047] In still yet another aspect, the invention provides a method of identifying a nucleic acid molecule capable of conferring centromere activity comprising the steps of: a) obtaining a nucleic acid molecule comprising Arabidopsis thaliana centromere DNA, wherein the Arabidopsis thaliana centromere is defined by a pair of genetic markers selected from the group consisting of mi342 and T27K12, mi310 and g4133, atpox and ATA, mi233 and mi167, and F13K20-t7 and T17M11-sp6; b) preparing a recombinant construct that comprises the nucleic acid molecule; and c) determining the ability of the recombinant construct to demonstrate a stable inheritance pattern. In the method, the ability to demonstrate a stable inheritance pattern may be determined by preparing a recombinant cell that comprises the recombinant construct. In another embodiment of the invention, the Arabidopsis thaliana centromere is defined by the marker pair mi342 and T27K12, which may be further
defined by the genetic marker pair T22C23-17 and T3P8-sp6; and/or is defined by the marker pair mi310 and g4133, which may be further defined by the genetic marker pair F5J15-sp6 and T15D9; and/or is defined by the marker pair atpox and ATA, which may be further defined by the genetic marker pair T9G9-sp6 and T5M14-sp6; and I or is defined by the marker pair mi233 and mi167, which may be further defined by the genetic marker pair T24H24.30k3 and F13H14-t7; and/or is defined by the genetic marker pair F13K20-17 and CUE1, which may be further defined by a genetic marker pair selected from the group consisting of F13K20-7 and T18M4, F13K20-T7 and T18F2, F13K20-7T and T24I20, T18M4 and T18F2, T18M4 and T24I20, T18M4 and CUE1, T18F2 and T24I20, T18F2 and CUE1, and T24I20 and CUE. I.
[0048] In one embodiment of the invention, the recombinant construct is not chromosomally integrated. Said obtaining may comprise obtaining a BAC or YAC clone comprising said Arabidopsis thaliana centromere DNA. The DNA may be obtained by a method that includes the use of pulsed-field gel electrophoresis, and may be obtained by a method that includes positional cloning. In another embodiment of the invention, the positional cloning may comprise identifying a contiguous set of clones comprising said Arabidopsis thaliana centromere DNA, wherein said set of clones is flanked by a pair of genetic markers selected from the group consisting of mi 342 and T 27 K 12 , mi310 and g4133, atpox and ATA, mi233 and mi167, and F13K20-17 and T17M11-sp6.
[0049] The contiguous set of clones may span the Arabidopsis thaliana centromere. The recombinant construct may comprise a selectable or screenable marker and said step of determining may comprise determining a phenotype conferred by the selectable or screenable marker. The determining may comprise, for example, determining the ability of the recombinant construct to demonstrate a stable inheritance pattern in mitosis and/or meiosis. In still another embodiment, the invention provides a transgenic cell prepared by a method provided by the invention. Also provided by the invention are a transgenic plant, plant parts and tissue cultures comprising the transgenic cell. In another embodiment of the invention, the Arabidopsis thaliana centromere is defined by the marker pair mi342 and T27K12, which may be further defined by the genetic marker pair T22C23-17 and T3P8-sp6; and/or is defined by the marker pair mi310 and g 4133 , which may be further defined by the genetic marker pair F5J15-sp6 and T15D9; and/or is defined by the marker pair atpox and ATA, which may be further defined by the genetic marker pair T9G9-sp6 and T5M14-sp6; and/or is defined by the marker pair mi233 and mi167, which may be further defined by the genetic marker pair T 24 H 24.30 k 3 and F13H14-t7; and/or is defined by the genetic marker pair F13K20-17 and CUE1, which may be further defined by a genetic marker pair selected from the group consisting of F13K20-T7 and T18M4, F13K20-T7 and T18F2, F13K20T7 and T24I20, T18M4 and T18F2, T18M4 and T24I20, T18M4 and CUE1, T18F2 and T24I20, T18F2 and CUE1, and T24I20 and CUE1.
[0050] In still yet another aspect of the invention, a centromere used in accordance with the invention is not from Arabidopsis, for example, from Arabidopsis thaliana. Similarly, a plant or plant cell comprising a centromere
composition in accordance with the invention, may also be from a plant other than Arabidopsis.

\section*{BRIEF DESCRIPTION OF THE DRAWINGS}
[0051] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
[0052] FIG. 1. Centromere mapping with unordered tetrads: A cross of two parents (\(\mathrm{A} A B B \times a b b\)), in which " A " is on the centromere of one chromosome, and " B " is linked to the centromere of a second chromosome. At meiosis, the A and B chromosomes assort independently, resulting in equivalent numbers of parental ditype (PD) and nonparental ditype (NPD) tetrads (recombinant progeny are shown in gray). Tetratype tetrads (TT) result only from a crossover between " B " and the centromere.
[0053] FIG. 2. Low resolution map location of Arabidopsis centromeres. Trisomic mapping was used to determine the map position of centromeres on four of the five Arabidopsis chromosomes (Koornneef, 1983; Sears et al, 1970). For chromosome 4, useful trisomic strains were not obtained. With the methods of Koornneef and Sears et at 1983. (which rely on low-resolution deletion mapping) the centromere on chromosome 1 was found to lie between the two visible markers, tt 1 and ch1, that are separated by 5 cM . Centromere positions on the other chromosomes are mapped to a lower resolution.
[0054] FIG. 3. Physical maps of the genetically-defined Arabidopsis centromeres. Each centromeric region is drawn to scale; physical sizes are derived from DNA sequencing (chromosomes II and IV) or from estimates based on BAC fingerprinting (Marra et al., 1999; Mozo et al., 1999) (chromosomes I, III, and V). Indicated for each chromosome are positions of markers (above), the number of tetratype/total tetrads at those markers (below), the boundaries of the centromere (thick black bars), and the name of contigs derived from fingerprint analysis (Marra et al., 1999; Mozo et al., 1999). For each contig, more than two genetic markers, developed from the database of BAC-end sequences (http://www.tigr.org/tdb/at/abe/bac end_search.html) were scored. PCR primers corresponding to these sequences were used to identify size or restriction site polymorphisms in the Columbia and Landsberg ecotypes (Bell and Ecker, 1994; Konieczny and Ausubel, 1993); primer sequences are available (http://genome-www.stanford.edu/Arabidopsis/aboutcaps.html). Tetratype tetrads resulting from treatments that stimulate crossing over (boxes); positions of markers in centimorgans (cM) shared with the recombinant inbred (RI) map (ovals) (http://nasc.nott.ac.uk/new_ri_map.html; Somerville and Somerville, 1999); and sequences bordering gaps in the physical map that correspond to 180 bp repeats (open circles) (Round et al., 1997), 5 S rDNA (black circles) or 160 bp repeats (gray circles) are indicated (Copenhaver et al., 1999).
[0055] FIG. 4. Exemplary list of seed stock used for tetrad analysis in Arabidopsis thaliana. The individual strains are
identified by the strain number (column B). The tetrad member number (column A) indicates the tetrad source (i.e., T1 indicates seeds from tetrad number 1 , and the numbers \(-1,-2,-3\), or -4 indicate individual members of the tetrad). The strains listed have been deposited with the Arabidopsis Biological Resources Center (ABRC) at Ohio State University under the name of Daphne Preuss.
[0056] FIG. 5. Marker information for centromere mapping. DNA polymorphisms used to localize the centromeres are indicated by chromosome (Column 1). The name of each marker is shown in Column 2, the name of the markers used by Copenhaver et al., 1999 to position centromeres is given in Column 3 and marker type is indicated in Column 4. CAPS (Co-dominant Amplified Polymorphic Sites) are markers that can be amplified with PCR and detected by digesting with the appropriate restriction enzyme (also indicated in Column 3). SSLPs (Simple Sequence length Polymorphisms) detect polymorphisms by amplifying different length PCR products. Column 5 notes if the marker is available on public web sites (e.g., http://genome-www.stanford.edu/Arabidopsis). For those markers that are not available on public web sites the sequences of the forward and reverse primers used to amplify the marker are listed in columns 6 and 7, respectively.
[0057] FIG. 6. Scoring PCR-based markers for tetrad analysis. The genotype of the progeny from one pollen tetrad (T2) was determined for two genetic markers (SO392 and nga76). Analysis of the four progeny plants (T2-1 through T24) using PCR and gel electrophoresis allows the genotype of the plant to be determined, and the genotype of the pollen parent to be inferred.
[0058] FIG. 7A-7N. Exemplary Minichromosome vectors: The vectors shown in FIG. 7A, FIG. 7B, FIG. 7E, FIG. 7F, FIG. 7I and FIG. 7J have an E. coli origin of replication which can be high copy number, low copy number or single copy. In FIGS. 7A-7N, the vectors include a multiple cloning site which can contain recognition sequences for conventional restriction endonucleases with \(4-8\) bp specificity as well as recognition sequences for very rare cutting enzymes such as, for example, I-Ppo I, I-Cue I, PI-Tli, PI-Psp I, Not I, and PI Sce I. In FIG. 7A-7N, the centromere is flanked by Lox sites which can act as targets for the site specific recombinase Cre. FIG. 7A. Shows an \(E\). coli plant circular shuttle vector with a plant ARS. FIG. 7B. Shows a plant circular vector without a plant ARS. The vector relies on a plant origin of replication function found in other plant DNA sequences such as selectable or screenable markers. FIG. 7C. Shows a yeast-plant circular shuttle vector with a plant ARS. The yeast ARS is included twice, once on either side of multiple cloning site to ensure that large inserts are stable. FIG. 7D. Shows a yeast-plant circular shuttle vector without a plant ARS. The vector relies on a plant origin of replication function found in other plant DNA sequences such as selectable markers. The yeast ARS is included twice, once on either side of the multiple cloning site to ensure that large inserts are stable. FIG. 7E. Shows an E. coli-Agrobacterium-plant circular shuttle vector with a plant ARS. Vir functions for T-DNA transfer would be provided in trans by a using the appropriate Agrobacterium strain. FIG. 7F. Shows an E. coli-Agrobacterium-plant circular shuttle vector without a plant ARS. The vector relies on a plant origin of replication function found in other plant DNA sequences such as selectable markers. Vir functions for

T-DNA transfer would be provided in trans by a using the appropriate Agrobacterium strain. FIG. 7G. Shows a linear plant vector with a plant ARS. The linear vector could be assembled in vitro and then transferred into the plant by, for example, mechanical means such as micro projectile bombardment, electroporation, or PEG-mediated transformation. FIG. 7H. Shows a linear plant vector without a plant ARS. The linear vector could be assembled in vitro and then transferred into the plant by, for example, mechanical means such as micro projectile bombardment, electroporation, or PEG-mediated transformation. FIGS. 7I-7N. The figures are identical to FIGS. 7A-7F , respectively, with the exception that they do not contain plant telomeres. These vectors will remain circular once delivered into the plant cell and therefore do not require telomeres to stabilize their ends.
[0059] FIG. 8. Sequence features at CEN2 (A) and CEM4 (B). Central bars depict annotated genomic sequence of indicated BAC clones; black, genetically-defined centromeres; white, regions flanking the centromeres. Sequences corresponding to genes and repetitive features, filled boxes (above and below the bars, respectively), are defined as in FIG. 12A-T; predicted nonmobile genes, red; genes carried by mobile elements, black; nonmobile pseudogenes, pink; pseudogenes carried by mobile elements, gray; retroelements, yellow; transposons, green; previously defined centromeric repeats, dark blue; 180 bp repeats, pale blue. Chromosome-specific centromere features include a large mitochondrial DNA insertion (orange; CEN2), and a novel array of tandem repeats (purple; CEN4). Gaps in the physical maps (//), unannotated regions (hatched boxes), and expressed genes (filled circles) are shown.
[0060] FIG. 9. Method for converting a BAC clone (or any other bacterial clone) into a minichromosome. A portion of the conversion vector will integrate into the BAC clone (or other bacterial clone of interest) either through nonhomologous recombination by (transposable element mediated) or by the action of a site specific recombinase system, such as Cre-Lox or FLY-FRT.
[0061] FIG. 10. Method for analysis of dicentric chromosomes in Arabidopsis. BiBAC vectors containing centromere fragments (\(\sim 100 \mathrm{~kb}\)) are integrated into the Arabidopsis genome using Agrobacterium-mediated transformation procedures and studied for adverse affects due to formation of dicentric chromosomes. 1) BiBACs containing centromere fragments are identified using standard protocols. 2) Plant transformation. 3) Analysis of defects in growth and development of plants containing dicentric chromosomes.
[0062] FIG. 11A-G. Method for converting a BAC clone (or any other bacterial clone) into a minichromosome. The necessary selectable markers and origins of replication for propagation of genetic material in E. coli, Agrobacterium and Arabidopsis as well as the necessary genetic loci for Agrobacterium mediated transformation into Arabidopsis are cloned into a conversion vector. Using Cre/loxP recombination, the conversion vectors are recombined into BACs containing centromere fragments to form minichromosomes.
[0063] FIG. 12A-T. Properties of centromeric regions on chromosomes II and IV. (Top) Drawing of geneticallydefined centromeres (gray shading, CEN2, left; CEN4, right), adjacent pericentromeric DNA, and a distal segment
of each chromosome, scaled in Mb as determined by DNA sequencing (gaps in the grey shading correspond to gaps in the physical maps). Positions in cM on the RI map (http:// nasc.nott.ac.uk/new_ri_map.html) and physical distances in Mb , beginning at the northern telomere and at the centromeric gap, are shown. (Bottom) The density of each feature (FIGS. 12A-12T) is plotted relative to the position on the chromosome in Mb. (FIGS. 12A, 12K) cM positions for markers-on the RI map (solid squares) and a curve representing the genomic average of \(1 \mathrm{cM} / 221 \mathrm{~kb}\) (dashed line) A single crossover within CEN4 in the R1 mapping population (http://nasc.nott.ac.uk/new_rimap.html; Somerville and Somerville, 1999) may reflect a m difference between male meiotic recombination monitored here and recombination in female meiosis. (FIGS. 12B-12E and FIGS. 12L-12O) The \% of DNA occupied by a repetitive elements was calculated for a 100 kb window with a sliding interval of 10 kb . (FIGS. 12B, 12L) 180 bp repeats; (FIGS. 12C, 12M) sequences with similarity to retroelements, including del, Ta1, Tal1, copia, Athila, LINE, Ty3, TSCL, 106B (Athila-like), Tat1, LTRs and Cinful; (FIGS. 12D, 12N) sequences with similarity to transposons, including Tag1, \(\mathrm{En} / \mathrm{Spm}, \mathrm{Ac} / \mathrm{Ds}\), Tami MuDR, Limpet, MITES and Mariner; (FIGS. 12E, 12O) previously described centromeric repeats including \(163 \mathrm{~A}, 164 \mathrm{~A}, 164 \mathrm{~B}, 278 \mathrm{~A}, 11 \mathrm{~B} 7 \mathrm{RE}\), mi 167 , pAT27, \(160-180-\) and \(500-\mathrm{bp}\) repeats, and telomeric sequences (Murata et al., 1997; Heslop-Harrison et al., 1999; Brandes et al., 1997; Franz et al., 1998; Wright et al., 1996; Konieczny et al., 1991; Pelissier et al., 1995; Voytas and Ausubel, 1988; Chye et al., 1997; Tsay et al., 1993; Richards et al., 1991; Simoens et al., 1988; Thompson et al., 1996; Pelissier et al., 1996 Franz et al., 1998; Pelissier et al., 1995; Voytas and Ausubel, 1988; Thompson et al., 1996). (FIGS. 12F, 12P) \% adenosine+thymidine was calculated for a 50 kb window with a sliding interval of 25 kb (FIGS. 12G-12J, \(12 \mathrm{Q}-12 \mathrm{~T}\)). The number of predicted genes or pseudogenes was plotted over a window of 100 kb with a sliding interval of 10 kb . (FIGS. 12G, 12I, 12Q, 12S) predicted genes (FIGS. 12G, 12Q) and pseudogenes (FIGS. 12I, 12S) typically not found on mobile DNA elements; (FIGS. 12H, 12J, 12R, 12T) predicted genes (FIGS. 12H, 12R) and pseudogenes (FIGS. 12J, 12T) often carried on mobile DNA, including reverse transcriptase, transposase, and retroviral polyproteins. Dashed lines indicate regions in which sequencing or annotation is in progress, annotation was obtained from GenBank records (http://www.ncbi.nlm.nihgov/Entrez/nucleotide.htm1), from the AGAD database (http://www.tigr.org/tdb/at/agad/.), and by BLAST comparisons to the database of repetitive Arabidopsis sequences (http://nucleus.cshl.org/protarab/AtRepBase.htm); though updates to annotation records may change individual entries, the overall structure of the region will not be significantly altered.
[0064] FIG. 13. Methods for converting a BAC clone containing centromere DNA into a minichromosome for introduction into plant cells. The specific elements described are provided for exemplary purposes and are not limiting. A) diagram of the BAC clone, noting the position of the centromere DNA (red), a site-specific recombination site (for example, lox P), and the F origin of replication. B) Conversion vector containing selectable and color markers (for example, 35S-Bar, nptII, LAT52-GUS, ScarecrowGFP), telomeres, a site-specific recombination site (for example, lox P), antibiotic resistance markers (for example,
amp or spc/str), Agrobacterium T-DNA borders (Agro Left and Right) and origin of replication (RiA4). C) The product of site specific recombination with the Cre recombinase at the lox P sites yields a circular product with centromeric DNA and markers flanked by telomeres. D) Minichromosome immediately after transformation into plants; subsequently, the left and right borders will likely be removed by the plant cell and additional telomeric sequence added by the plant telomerase.
[0065] FIGS. 14A-B. Conservation of centromere DNA. BAC clones (bars) used to sequence CEN2 (FIG. 14A) and CEN4 (FIG. 14B) are indicated; arrows denote the boundaries of the genetically-defined centromeres. PCR primer pairs yielding products from only Columbia (filled circles) or from both Landsberg and Columbia (open circles); BACs encoding DNA with homology to the mitochondrial genome (gray bars); 180 bp repeats (gray boxes); unsequenced DNA (dashed lines); and gaps in the physical map (double slashes) are shown.
[0066] FIGS. 15A-B. Primers used to analyze conservation of centromere sequences in the \(A\). thaliana Columbia and Landsberg ecotypes. FIG. 15A: Primers used for amplification of chromosome 2 sequences. FIG. 15B: Primers used for amplification of chromosome 4 sequences.
[0067] FIG. 16. Sequences common to CEN2 and CEN4. Genetically-defined oj centromeres (bold lines), sequenced (thin lines), and unannotated (dashed lines) BAC. Id clones are displayed as in FIG. 14A, B. Repeats AtCCS1 (A. thaliana centromere conserved sequence) and AtCCS2 (closed and open circles, respectively), AtCCS3 (triangles), and AtCCS4-7 (4-7, respectively) are indicated (GenBank Accession numbers AF204874 to AF204880), and were identified using BLAST 2.0 (http://blast.wustl.edu).
[0068] FIG. 17. Sequenced BAC clones from centromere 2 . The sequenced BAC clones are indicated by the horizontal lines near the top of the figure (see for example T14A4). The red box denotes the boundaries of centromere 2 , and for the BAC clones that comprise the centromere, GenBank Accession numbers are given in the lower right panel. The contiguous sequences within the red box are given by SEQ ID NO:209 and SEQ ID NO:210. Horizontal lines below the sequenced clones indicate additional BAC clones; sequenced end points of these BACs are indicated with a closed circle. Clones with one or more endpoints that are undetermined are indicated by red text.
[0069] FIG. 18. Sequenced BAC clones from centromere 4. The sequenced BAC clones from centromere 4 are indicated by the horizontal lines near the top of the figure (see for example T24M8). The red box denotes the boundaries of centromere 4, and for the BAC clones that comprise the centromere, GenBank Accession numbers are given in the lower right panel. The contiguous sequences within the red box are given by SEQ ID NO:211 and SEQ ID NO:212. Horizontal lines below the sequenced clones indicate additional BAC clones; sequenced end points of these BACs are indicated with a closed circle. Clones with one or more endpoints that are undetermined are indicated by red text.
[0070] FIG. 19. Sequence tiling path of centromeres 1,3 and 5 . The boundaries of these centromeres was determined as described in Copenhaver et al (1999). Contig numbers refer to the fingerprint contigs assembled by Marra et al.
(1999). Some of these clones have been sequenced and accession numbers are provided (see attached list). In other cases, sequencing will be finished by the Arabidopsis genome project.
[0071] FIG. 20. Position of DNA from centromere 2 carried in BiBAC vectors. Clones were placed on the physical map by fingerprint and PCR analysis and comparison with the sequenced BAC clones.
[0072] FIG. 21. Exemplary methods for adding selectable or screenable markers to BiBAC clones. The desired marker is flanked by transposon borders, and incubated with the BiBAC in the presence of transposase. Subsequently, the BiBAC is introduced into plants. Often these BiBACs may integrate into natural chromosome, creating a dicentric chromosome which may have altered stability and may cause chromosome breakage, resulting in novel chromosome fragments.
[0073] FIG. 22. Assay of chromosome stability. The stability of natural chromosomes, constructed minichromosome, or dicentric chromosomes can be assessed by monitoring the assortment of color markers through cell division. The markers are linked to the centromere in modified BAC or BiBAC vectors and introduced into plants. Regulation of the marker gene by an appropriate promoter determines which tissues will be assayed. For example, root-specific promoters, such as SCARECROW make it possible to monitor assortment in files of root cells; post-meiotic pollenspecific promoters such as LAT52 allow monitoring of assortment through meiosis, and general promoters such as the 35S Cauliflower mosaic virus promoter make it possible to monitor assortment in many other plant tissues. Qualitative assays assess the general pattern of stability and measure the size of sectors corresponding to marker loss, while quantitative assays require knowledge of cell lineage and allow the number of chromosome loss events to be calculated during mitosis and meiosis.
[0074] FIG. 23A-D. Sequence alignments for 180 bp repeats from centromeres 14 . The left hand column indicates the BAC source of the repeat copy and an arbitrarily assigned number given to the sequence. For example, the designation f12g6-1 indicates a repeat copy from BAC number f12g6 and arbitrarily given a repeat number of 1 . The nucleic acid sequences of the BACs containing the repeat copies, designated \(\mathrm{f} 12 \mathrm{~g} 6, \mathrm{f} 5 \mathrm{a} 13, \mathrm{t} 25 \mathrm{f} 15, \mathrm{t} 12 \mathrm{j} 2, \mathrm{t} 14 \mathrm{c} 8\), t6c20, f21i2, and f6h8 are given by SEQ ID NO:184, SEQ ID NO:191, SEQ ID NO:189, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:186, SEQ ID NO:208 and SEQ ID NO:207, respectively. FIG. 23A. Alignment of 180 bp repeats from centromere 1. FIG. 23B. Alignment of 180 bp repeats from centromere 2. FIG. 23C. Alignment of 180 bp repeats from centromere 3. FIG. 23D. Alignment of 180 bp repeats from centromere 4.

\section*{DETAILED DESCRIPTION OF THE INVENTION}
[0075] The inventors have overcome the deficiencies in the prior art by providing, for the first time, the nucleic acid sequence of a plant chromosome. The significance of this achievement relative to the prior art is exemplified by the general lack of detailed information in the art regarding the centromeres of multicellular organisms in general. To date, the most extensive and reliable characterization of cen-
tromere sequences has come from studies of lower eukaryotes such as \(S\). cerevisiae and \(S\). pombe, where the ability to analyze centromere functions has provided a clear picture of the desired DNA sequences. The \(S\). cerevisiae centromere consists of three essential regions, CDEI, CDEII, and CDEIII, totaling only 125 bp , or approximately 0.006 to \(0.06 \%\) of each yeast chromosome (Carbon et al., 1990; Bloom 1993). S. pombe centromeres are between 40 and 100 kB in length and consist of repetitive elements that comprise 1 to \(3 \%\) of each chromosome (Baum et al., 1994). Subsequent studies, using tetrad analysis to follow the segregation of artificial chromosomes, demonstrated that less than \(1 / 5\) of the naturally occurring \(S\). pombe centromere is sufficient for centromere function (Baum et al., 1994).
[0076] In contrast, the centromeres of mammals and other higher eukaryotes are poorly defined. Although DNA fragments that hybridize to centromeric regions in higher eukaryotes have been identified, little is known regarding the functionality of these sequences (see Tyler-Smith et al., 1993). In many cases centromere repeats correlate with centromere location, with probes to the repeats mapping both cytologically and genetically to centromere regions. Many of these sequences are tandemly-repeated satellite elements and dispersed repeated sequences in arrays ranging from 300 kB to 5000 kB in length (Willard 1990). To date, only one of these repeats, a 171 bp element known as the alphoid satellite, has been shown by in situ hybridization to be present at each human centromere (Tyler-Smith et al., 1993). Whether repeats themselves represent functional centromeres remains controversial, as other genomic DNA is required to confer inheritance upon a region of DNA (Willard, 1997). Alternatively, the positions of some higher eukaryotic centromeres have been estimated by analyzing the segregation of chromosome fragments. This approach is imprecise, however, because a limited set of fragments can be obtained, and because normal centromere function is influenced by surrounding chromosomal sequences (for example, see Koornneef, 1983; FIG. 2).
[0077] A more precise method for mapping centromeres that can be used in intact chromosomes is tetrad analysis (Mortimer et al., 1981), which provides a functional definition of a centromere in its native chromosomal context. At present, the only centromeres that have been mapped in this manner are from lower eukaryotes, including the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Kluyveromyces lactis (Carbon et al., 1990; Hegemann et al., 1993). In these systems, accurate mapping of the centromeres made it possible to clone centromeric DNA, using a chromosome walking strategy (Clarke et al., 1980). Subsequently, artificial chromosome assays were used to define more precisely the centromere sequences (Hegemann et al., 1993; Baum et a1., 1994).
[0078] Attempts to develop a reliable centromeric assay in mammals have yielded ambiguous results. For example, Hadlaczky et al., (1991) identified a 14 kB human fragment that can, at low frequency, result in de novo centromere formation in a mouse cell line. In situ hybridization studies, however, have shown that this fragment is absent from naturally occurring centromeres, calling into question the reliability of this approach for testing centromere function (Tyler-Smith et al., 1993). Similarly, transfection of alphoid satellites into cell lines results in the formation of new chromosomes, yet these chromosomes also contain host
sequences that could contribute centromere activity (Haaf et a1., 1992; Willard, 1997). Further, the novel chromosomes can have alphoid DNA spread throughout their length yet have only a single centromeric constriction, indicating that a block of alphoid DNA alone may be insufficient for centromere function (Tyler-Smith et al., 1993).
[0079] Although plant centromeres can be visualized easily in condensed chromosomes, they have not been characterized as extensively as centromeres from yeast or mammals. Genetic characterization has relied on segregation analysis of chromosome fragments, and in particular on analysis of trisomic strains that carry a genetically marked, telocentric fragment (for example, see Koornneef 1983; FIG. 2). In addition, repetitive elements have been identified that are either genetically (Richards et al, 1991) or physically (Alfenito et al., 1993; Maluszynska et al., 1991) linked to a centromere. In no case, however, has the functional significance of these sequences been tested.
[0080] Cytology in Arabidopsis thaliana has served to correlate centromere structure with repeat sequences. A fluorescent dye, DAPI, allows visualization of centromeric chromatin domains in metaphase chromosomes. A fluorescence in situ hybridization (FISH) probe based on 180 bp pAL1 repeat sequences colocalized with the DAPI signature near the centromeres of all five Arabidopsis chromosomes (Maluszynska et al., 1991; Martinez-Zapater et al., 1986). Although a functional role for pAL1 has been proposed, more recent studies have failed to detect this sequence near the centromeres in species closely related to Arabidopsis thaliana (Maluszynska et al., 1993). These results are particularly troubling because one of the species tested, A. pumila, is thought to be an amphidiploid, derived from a cross between A. thatiana and another close relative (Maluszynska et al., 1991; Price et al., 1995). Another repetitive sequence, \(\mathrm{pAtT12}\), has been genetically mapped to within 5 cM of the centromere on chromosome 1 and to the central region of chromosome 5 (Richards et al., 1991), although its presence on other chromosomes has not been established. Like pAL1, a role for pAtT12 in centromere function remains to be demonstrated.
[0081] Due to the fact that kinetochores constitute a necessary link between centromeric DNA and the spindle apparatus, the proteins that are associated with these structures recently have been the focus of intense investigation (Bloom 1993; Earnshaw 1991). Human autoantibodies that bind specifically in the vicinity of the centromere have facilitated the cloning of centromere-associated proteins (CENPs, Rattner 1991), and at least one of these proteins belongs to the kinesin superfamily of microtubule-based motors (Yen 1991). Yeast centromere-binding proteins also have been identified, both through genetic and biochemical studies (Bloom 1993; Lechner et al., 1991).
[0082] The centromeres of Arabidopsis thaliana have been mapped using trisomic strains, where the segregation of chromosome fragments (Koornneef 1983) or whole chromosomes (Sears et al., 1970) was used to localize four of the centromeres to within \(5,12,17\) and 38 cM , respectively (FIG. 2). These positions have not been refined by more recent studies because the method is limited the difficulty of obtaining viable trisomic strains (Koornneef 1983). These factors introduce significant error into the calculated position of the centromere, and in Arabidopsis, where 1 cM
corresponds roughly to 200 kB (Koornneef 1987; Hwang et al., 1991), this method did not map any of the centromeres with sufficient precision to make chromosome walking strategies practical. Mapping of the Arobidopsis genome was also discussed by (Hauge et al., 1991).

\section*{[0083] I. Tetrad Analysis}
[0084] With tetrad analysis, the recombination frequency between genetic markers and a centromere can be measured directly (FIG. 1). This method requires analysis of all four products of individual meiosis, and it has not been applied previously to multicellular eukaryotes because their meiotic products typically are dissociated. Identification of the quartet mutation makes tetrad analysis possible for the first time in a higher eukaryotic system (Preuss et al., 1994). The quartet (qrt 1) mutation causes the four products of a pollen mother cell meiosis in Arabidopsis to remain attached. When used to pollinate a flower, one tetrad can result in the formation of four seeds, and the plants from these a 20 seeds can be analyzed genetically.
[0085] With unordered tetrads, such as those produced by S. cerevisiae or Arabidopsis, genetic mapping using tetrad analysis requires that two markers be scored simultaneously (Whitehouse 1950). Tetrads fall into different classes depending on whether the markers are in a parental (nonrecombinant) or nonparental (recombinant) configuration (FIG. 1).
[0086] A tetrad with only nonrecombinant members is referred to as a parental ditype (PD); one with only recombinant members as a nonparental ditype (NPD); and a tetrad with two recombinant and two nonrecombinant members as a tetratype (CT) (Perkins 1953). If two genetic loci are on different chromosomes, and thus assort independently, the frequency of tetratype (crossover products) versus parental or nonparental assortment ditype (noncrossover products) depends on the frequency of crossover between each of the two loci and their respective centromeres.
[0087] Tetratype tetrads arise only when a crossover has occurred between a marker in question and its centromere. Thus, to identify genes that are closely linked to the centromere, markers are examined in a pair-wise fashion until the TT frequency approaches zero. The genetic distance (in centimorgans, cM) between the markers and their respective centromeres is defined by the function \([(1 / 2) T T] / 100\) (Mortimer et al., 1981). Because positional information obtained by tetrad analysis is a representation of physical distance between two points, as one approaches the centromere the chance of a recombination event declines.
[0088] Tetrad analysis has been used to genetically track centromeres in yeasts and other fungi in which products of a single meioses can be collected. The budding yeast Saccharomyces cerevisiae lacks mitotic condensation and thus cytogenetics (Hegemann et al., 1993), yet due to tetrad analysis, has served as the vehicle of discovery for centromere function. Meiosis is followed by the generation of four spores held within an ascus and these can be directly assayed for gene segregation.
[0089] The recessive qrt1 mutation makes it possible to perform tetrad analysis in Arabidopsis by causing the four products of meiosis to remain attached (Preuss et al., 1994; and Smythe 1994; both incorporated herein by reference). As previously shown, within each tetrad, genetic loci seg-
regate in a \(2: 2\) ratio (FIG. 6). Individual tetrads can be manipulated onto flowers with a fine brush (at a rate of 20 tetrads per hour), and in \(30 \%\) of such crosses, four viable seeds can be obtained (Preuss et al., 1994).
[0090] Mapping centromeres with high precision requires a dense genetic map, and although the current Arabidopsis map contains many visible markers, it would be laborious to cross each into the qrt1 background. Alternatively, hundreds of DNA polymorphisms can be introduced simultaneously by crossing two different strains, both containing the qrt1 mutation. A dense RFLP map (Chang et al., 1988) and PCR-based maps (Konieczny et al., 1993; Bell et al., 1994) have been generated in Arabidopsis from crosses of the Landsberg and Columbia strains (Arabidopsis map and genetic marker data is available from the internet at http:// genome-www.stanford.edu/Arabidopsis and http://cbil.humgen.upenn.edu/atgc//sslpjnfo/sslp.html). These strains differ by \(1 \%\) at the DNA sequence level and have colinear genetic maps (Chang et al., 1988; Koornneef, 1987).
[0091] Centromere mapping with tetrad analysis requires simultaneous analysis of two markers, one of which must be centromere-linked (FIG. 1). To identify these centromerelinked markers, markers distributed across all 5 chromosomes were scored and compared in a pairwise fashion.
[0092] Initially, genetic markers that can be scored by PCR analysis were tested (Konieczny et al., 1993; Bell et al., 1994). Such markers are now sufficiently dense to a map any locus an as additional PCR-detectable polymorphisms are identified they are incorporated into the analyses. In addition, as described in FIG. 5, new CAPS and SSLP markers useful for mapping the centromere can be readily identified.
[0093] A collection of Arabidopsis tetrad sets was prepared by the inventors for use in tetrad analysis. To date, progeny plants from \(>1,000\) isolated tetrad seed sets have been germinated and leaf tissue collected and stored from each of the tetrad progeny plants. The leaf tissue from individual plants was used to make DNA for PCR based marker analysis. The plants also were allowed to selffertilize and the seed they produced was collected. From each of these individual seed sets, seedlings can be germinated and their tissues utilized for making genomic DNA. Tissue pooled from multiple seedlings is useful for making Southern genomic DNA blots for the analysis of restriction fragment length polymorphisms (RFLPs). An exemplary list of the seed stock of informative individuals used for tetrad analysis is given in FIG. 4.

\section*{[0094] II. Mapping Strategy}
[0095] Previous DNA fingerprint and hybridization analysis of two bacterial artificial chromosome (BAC) libraries had led to the assembly of physical maps covering nearly all single-copy portions of the Arabidopsis genome (Marra et a1., 1999). However, the presence of repetitive DNA near the Arabidopsis centromeres, including 180 bp repeats, retroelements, and middle repetitive sequences complicated efforts to anchor centromeric BAC contigs to particular chromosomes (Murata et al. 1997; Heslop-Harrison et al., 1999; Brandes et al., 1997; Franz et al., 1998; Wright et al., 1996; Konieczny et al., 1991; Pelissier et al., 1995; Voytas and Ausubel, 1988; Chye et al., 1997; Tsay et al., 1993; Richards et al., 1991; Simoens et al., 1988; Thompson et al., 1996; Pelissier et al., 1996).
[0096] The inventors used genetic mapping to unambiguously assign these unanchored contigs to specific centromeres, scoring polymorphic markers in 48 plants with crossovers informative for the entire genome (Copenhaver et al., 1998). In this manner, several centromeric contigs were connected to the physical maps of the chromosome arms (see EXAMPLE 6), and a large set of DNA markers defining centromere boundaries were generated. DNA sequence analysis confirmed the structure of the contigs for chromosomes II and IV (Lin et al., 1999).
[0097] CEN2 and CEN4 were selected in particular for analysis. Both reside on structurally similar chromosomes with a 3.5 Mb rDNA arrays on their distal tips, with regions measuring 3 and 2 Mb , respectively, between the rDNA and centromeres, and \(16-\) and 13 Mb regions on their long arms (Copenhaver and Pikaard, 1996).
[0098] The virtually complete and annotated sequence of chromosomes II and IV was used to conduct an analysis of centromeres at the nucleotide level (http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html). The sequence composition was analyzed within the genetically-defined centromere boundaries and compared to the adjacent pericentromeric regions (FIGS. 12A-T). Analysis of the two centromeres facilitated comparisons of sequence patterns and identification of conserved sequence elements.
[0099] The centromere sequences were found to harbour 180 bp repeat sequences. These sequences were found to reside in the gaps of each centromeric contig (FIG. 3, FIGS. 12B, 12L), with few repeats and no long arrays elsewhere in the genome. BAC clones near these gaps have end sequences corresponding to repetitive elements that likely constitute the bulk of the DNA between the contigs, including 180 bp repeats, 5 S rDNA or 160 bp repeats (FIG. 3). Fluorescent in situ hybridization has shown these repetitive sequences are abundant components of Arabidopsis centromeres (Murata et al., 1997; Heslop-Harrison et al., 1999; Brandes et al., 1997). Genetic mapping and pulsed-field gel electrophoresis indicate that many 180 bp repeats reside in long arrays measuring between 0.4 and 1.4 Mb in the centromeric regions (Round et al., 1997); sequence analysis revealed additional interspersed copies near the gaps. The inventors specifically contemplate the use of such 180 bp repeats for the construction of minichromosomes. The annotated sequence of chromosomes II and IV identified regions with homology to middle repetitive DNA, both within the functional centromeres and in the adjacent regions (FIGS. 12B-12E and 12L-12O).
[0100] In a 4.3 Mb sequenced region that includes CEN2 and a 2.8 Mb sequenced region that includes CEN4, retrotransposon homology was found to account for \(>10 \%\) of the DNA sequence, with a maximum of \(62 \%\) and \(70 \%\), respectively (FIGS. 12C, 12M). Sequences with similarity to transposons or middle repetitive elements were found to occupy a similar zone, but were less common (\(29 \%\) and \(11 \%\) maximum density for chromosomes II and IV respectively (FIGS. 12D-12E and FIG. 12N-12O). Finally, unlike in the case of Drosophila and Neurospora centromeres (Sun et al., 1997; Cambareri et al., 1998) low complexity DNA, including microsatellites, homopolymer tracts, and AT rich isochores, were not found to be enriched in the centromeres of Arabidopsis. Near CEN2, simple repeat sequence densities were comparable to those on the distal chromosome arms,
occupying \(1.5 \%\) of the sequence within the centromere, \(3.2 \%\) in the flanking regions, and ranging from 20 to 319 bp in length (71 bp on average). Except for an insertion of mitochondrial DNA at CEN2 the DNA in and around the centromeres did not contain any large regions that deviated significantly from the genomic average of \(-64 \% \mathrm{~A}+\mathrm{T}\) (FIGS. 12F, 12P) (Bevan et al., 1999).
[0101] Unlike the 180 bp repeats, all other repetitive elements near CEN2 and CEN4 were less abundant within the genetically-defined centromeres than in the flanking regions. The high concentration of repetitive elements outside of the functional centromere domain suggest they may be insufficient for centromere activity. Thus, identifying segments of the Arabidopsis genome that are enriched in these repetitive sequences does not pinpoint the regions that provide centromere function; a similar situation may occur in the genomes of other higher eukaryotes.
[0102] The repetitive DNA flanking the centromeres may play an important role, forming an altered chromatin conformation that serves to nucleate or stabilize centromere structure. Alternatively, other mechanisms could result in the accumulation of repetitive elements near centromeres. Though evolutionary models predict repetitive DNA accumulates in regions of low recombination (Charlesworth et a1., 1986; Charlesworth et al., 1994), many Arabidopsis repetitive elements are more abundant in the recombinationally active pericentromeric regions than in the centromeres themselves. Instead, retroelements and other transposons may preferentially insert into regions flanking the centromeres or be eliminated from the rest of the genome at a higher rate.

\section*{[0103] III. Centromere Compositions}
[0104] Certain aspects of the present invention concern isolated nucleic acid segments and recombinant vectors comprising a plant centromere. In one embodiment of the invention, the plant centromere is an Arabidopsis thaliana centromere. In a further embodiment of the invention, nucleic acid sequences comprising an A. thaliana chromosome 2 centromere are provided. The sequence of the Arabidopsis thaliana chromosome 2 centromere is exemplified by the nucleic acid sequences of SEQ ID NO:209 and SEQ ID NO:210. As shown in FIG. 17, the nucleic acid sequences of SEQ ID NO:209 and SEQ ID NO:210 flank a series of 180 bp repeats in centromere 2 of A. thaliana. As such, the chromosome 2 centromere may further be defined as comprising \(n\) number of repeats linked to a nucleic acid sequence included in SEQ ID NO:209 or SEQ ID NO:210, or sequences isolated from both of those sequences. In particular embodiments of the invention, the number of repeats (n), is about \(2,4,8,15,25,40,70,100,200,400\), \(600,800,1,000,1,500,2,000,4,000,6,000,8000,10,000\), \(30,000,50,000\) or about 100,000 . The actual repeat sequence used may vary. Representative samples of repeat sequences that could be used are given in FIGS. 23A-23D and included in the nucleic acid sequences given by SEQ ID NOs 184208. The length of the repeat used may also vary, and may include repeats of, for example, about \(10 \mathrm{bp}, 20 \mathrm{bp}, 40 \mathrm{bp}\), \(60 \mathrm{bp}, 80 \mathrm{bp}, 100 \mathrm{bp}, 120 \mathrm{bp}, 140 \mathrm{bp}, 150 \mathrm{bp}, 160 \mathrm{bp}, 170\) \(\mathrm{bp}, 180 \mathrm{bp}, 190 \mathrm{bp}\), or about 200 bp or larger or a repeat sequence, for example, as listed in FIG. 23A-FIG. 23D and included in the nucleic acid sequences given by SEQ ID NOs 184-208
[0105] Isolated segments of the nucleic acid sequences of SEQ ID NO:209 and SEQ ID NO:210 are also contemplated to be of use with the invention, either with or without being linked to a series of repeats. Particularly, contiguous nucleic acid segments of about \(100,200,400,800,1,500,3,000\), \(5,000,7,500,10,000,15,000,25,000,40,000,75,000,100\), \(000,125,000,150,000,250,000,350,000,450,000,600,000\), 700,00 and a about \(800,000 \mathrm{bp}\) of the nucleic acid sequences of SEQ ID NO:209 or SEQ ID NO:210 specifically form part of the instant invention. In particular embodiments of the invention, such nucleic acid sequences may be linked to n number of repeated sequences, for example, where n is 2 , \(4,8,15,25,40,70,100,200,400,600,800,1,000,1,500\), \(2,000,4,000,6,000,8000,10,000,50,000\) or about 100,000 . The repeat sequence may comprise, for example, about 10 \(\mathrm{bp}, 20 \mathrm{bp}, 40 \mathrm{bp}, 60 \mathrm{bp}, 80 \mathrm{bp}, 100 \mathrm{bp}, 120 \mathrm{bp}, 140 \mathrm{bp}, 150\) \(\mathrm{bp}, 160 \mathrm{bp}, 170 \mathrm{bp}, 180 \mathrm{bp}, 190 \mathrm{bp}\), or about 200 bp or a larger segment of contiguous nucleotides of, for example, a repeat listed in FIG. 23A-FIG. 23D and included in the nucleic acid sequences given by SEQ ID NOs 184-208.
[0106] In another embodiment of the invention, nucleic acid sequences comprising an A. thatiana chromosome 4 centromere are provided. The sequence of the Arabidopsis thaliana chromosome 4 centromere is exemplified by the nucleic acid sequences of SEQ ID NO:211 and SEQ ID NO:212. As shown in FIG. 18, the nucleic acid sequences of SEQ ID NO:211 and SEQ ID NO:212 in Arabidopsis flank a series of repeated sequences. As such, the chromosome 4 centromere may further be defined as comprising n number of repeats linked to a nucleic acid sequence included in SEQ ID NO:211 or SEQ ID NO:212, or sequences from both SEQ ID NO:211 and SEQ A) NO:212. In particular embodiments of the invention, the number of repeats (n), is about \(2,4,8,15,25,40,70,100,200,400,600,800,1,000\), \(1,500,2,000,4,000,6,000,8000,10,000,50,000\), or about 100,000 . The actual repeat sequence used may vary. Representative samples of repeat sequences that could be used are given in FIGS. 23A-23D, wherein these sequences are included in the nucleic acid sequences given by SEQ ID NOs 184-208. The length of the repeat used may also vary, and may include repeats of, for example, about \(10 \mathrm{bp}, 20 \mathrm{bp}\), \(40 \mathrm{bp}, 60 \mathrm{bp}, 80 \mathrm{bp}, 100 \mathrm{bp}, 120 \mathrm{bp}, 140 \mathrm{bp}, 150 \mathrm{bp}, 160 \mathrm{bp}\), \(170 \mathrm{bp}, 180 \mathrm{bp}, 190 \mathrm{bp}\), or about 200 bp or larger.
[0107] Isolated segments of the nucleic acid sequences of SEQ ID NO:211 and SEQ ID NO:212 are also contemplated to be of use with the invention, either with or without being linked to a series of repeated sequences. Particularly, contiguous nucleic acid segments of about \(100,200,400,800\), \(1,500,3,000,5,000,7,500,10,000,15,000,25,000,40,000\), \(75,000,100,000,125,000,150,000,250,000,350,000,450\), \(000,600,000,700,00 \mathrm{bp}\) of the nucleic acid sequences of SEQ ID NO:211 or SEQ ID NO:212 specifically form part of the instant invention. In particular embodiments of the invention, such nucleic acid sequences may be linked to \(n\) number of repeated sequences, for example, where n is 2,4 , \(8,15,25,40,70,100,200,400,600,800,1,000,1,500\), \(2,000,4,000,6,000,8000,10,000,50,000\) or about 100,000 . The repeat sequence may comprise, for example, about 10 \(\mathrm{bp}, 20 \mathrm{bp}, 40 \mathrm{bp}, 60 \mathrm{bp}, 80 \mathrm{bp}, 100 \mathrm{bp}, 120 \mathrm{bp}, 140 \mathrm{bp}, 150\) \(\mathrm{bp}, 160 \mathrm{bp}, 170 \mathrm{bp}, 180 \mathrm{bp}, 190 \mathrm{bp}\), or about 200 bp , or a larger segment of contiguous nucleotides of the sequence of SEQ ID NO:184-208.
[0108] Also provided by the invention are regulatory regions from the Arabidopsis polyubiquitin 11 gene, including promoter and terminator sequences thereof. The nucleic acid sequences of these regulatory regions are exemplified by the nucleic acid sequences of SEQ ID NO:180 and SEQ ID NO:181. Also included with such sequences are contiguous stretch of from about \(10,15,20,25,30,40,50,75,100\), \(125,150,200,300,500,750,1,000,1,500\), and about 2,000 nucleotides of the nucleic acid sequence of SEQ ID) NO:180 and SEQ ID NO:181. In particular embodiments of the invention, it may be desirable to operably link the Arabidopsis polyubiquitin II promoter sequences to the 5 ' end of a coding sequence. It may also be desirable to operably link the Arabidopsis polyubiquitin 11 terminator sequence to the 3 ' end of a coding sequence.
[0109] Still further provided by the invention are regulatory regions from the Arabidopsis 40S ribosomal protein S16 gene, including promoter and terminator sequences thereof. The nucleic acid sequences of these regulatory regions are exemplified by the nucleic acid sequences of SEQ ID NO:182 and SEQ ID NO: 183. Also included with such sequences are contiguous stretch of from about 10,15 , \(20,25,30,40,50,75,100,125,150,200,300,500,750\), \(1,000,1,500\), and about 2,000 nucleotides of the nucleic acid sequence of SEQ ID NO:182 and SEQ ID NO:183. In particular embodiments of the invention, it may be desirable to operably link the Arabidopsis 40S ribosomal protein S16 gene sequences to the \(5^{\prime}\) end of a coding sequence. It may also be desirable to operably link the Arabidopsis 40 S ribosomal protein S16 gene sequence to the 3' end of a coding sequence.
[0110] Still further provided by the invention are gene sequences and related regulatory elements and sequences with other functions from centromere regions. In particular, the invention includes the centromere sequences given by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21, as well as lengths of about \(5,10,15,20,25,30,40,50,60,70,80,90\), \(100,110,125,150,175,200,250,300,350,400,500,550\), \(590,1,000\), and about 1,500 contiguous nucleotides of these sequences, up to and including the full length of the sequences.
[0111] Centromere-containing nucleic acid sequences may be provided with other sequences for the creation and use of recombinant minichromosomes. Such nucleic acid sequences specifically within the scope of the invention include the nucleic acid sequences listed in the sequence listing provided herewith.
[0112] The present invention concerns nucleic acid segments, isolatable from A. thaliana cells, that are enriched relative to total genomic DNA or other nucleic acids and are capable of conferring centromere activity to a recombinant molecule when incorporated into the host cell. As used herein, the term "nucleic acid segment" refers to a nucleic acid molecule that has been purified from total genomic nucleic acids of a particular species. Therefore, a nucleic acid segment conferring centromere function refers to a nucleic acid segment that contains centromere sequences yet
is isolated away from, or purified free from, total genomic nucleic acids of \(A\). thaliana. Included within the term "nucleic acid segment", are nucleic acid segments and smaller fragments of such segments, and also recombinant vectors, including, for example, BACs, YACs, plasmids, cosmids, phage, viruses, and the like.
[0113] Similarly, a nucleic acid segment comprising an isolated or purified centromeric sequence refers to a nucleic acid segment including centromere sequences and, in certain aspects, regulatory sequences, isolated substantially away from other naturally occurring sequences, or other nucleic acid sequences. In this respect, the term "gene" is used for simplicity to refer to a functional nucleic acid segment, protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences and smaller engineered gene segments that may express, or may be adapted to express, proteins, polypeptides or peptides.
[0114] "Isolated substantially away from other sequences" means that the sequences of interest, in this case centromere sequences, are included within the genomic nucleic acid clones provided herein. Of course, this refers to the nucleic acid segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.
[0115] In particular embodiments, the invention concerns isolated nucleic acid segments and recombinant vectors incorporating nucleic acid sequences that encode a centromere functional sequence that includes a contiguous sequence from the centromeres of the current invention. In certain other embodiments, the invention concerns isolated nucleic acid segments and recombinant vectors that include within their sequence a contiguous nucleic acid sequence from an A. thaliana centromere. Again, nucleic acid segments that exhibit centromere function activity will be most preferred.
[0116] The nucleic acid segments of the present invention, regardless of the length of the sequence itself, may be combined with other nucleic acid sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.

\section*{[0117] (i) Primers and Probes}
[0118] In addition to their use in the construction of recombinant constructs, including minichromosomes, the nucleic acid sequences disclosed herein may find a variety of other uses. For example, the centromere sequences described herein may find use as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that nucleic acid segments that comprise a sequence region that consists of at least a 14 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 14 nucleotide long contiguous DNA segment of a centromere sequence of the current invention, for example, of the sequences given by SEQ ID NOS:1-212, and particularly, SEQ ID NOS:1-21 and SEQ ID NOS:180-212, will find particular utility. Longer contiguous identical or
complementary sequences, e.g., those of about \(20,30,40\), \(50,100,200,500,1,000,2,000,5,000 \mathrm{bp}\), etc., including all intermediate lengths and up to and including the full-length sequence of the sequences given in SEQ ID NOS:1-212, also will be of use in certain embodiments.
[0119] As described in detail herein, the ability of such nucleic acid probes to specifically hybridize to centromeric sequences will enable them to be of use in detecting the presence of similar, partially complementary sequences from other plants or animals. However, other uses are envisioned, including the use of the centromeres for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.
[0120] Nucleic acid fragments having sequence regions consisting of contiguous nucleotide stretches of \(8,9,10,11\), \(12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27\), \(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43\), \(44,45,46,47,48,49,50,55,60,65,70,75,80,85,90,95\), 100 or even of 101-200 nucleotides or so, identical or complementary to a centromere sequence of the current invention, including the sequences given in SEQ ID NOS:1212, are particularly contemplated as hybridization C) probes for use in, e.g., Southern and Northern blotting. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 10-14 and about 100 or 200 nucleotides, but larger contiguous complementarity stretches also may be used, according to the length complementary sequences one wishes to detect.
[0121] Of course, fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion. Small nucleic acid segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the \(\mathrm{PCR}^{\mathrm{TM}}\) technology of U.S. Pat. Nos. 4,683,195 and 4,683,202 (each incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.
[0122] Accordingly, the centromere sequences of the current invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about \(50^{\circ} \mathrm{C}\). to about \(70^{\circ} \mathrm{C}\). Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating centromeric DNA segments. Nucleic acid sequences hybridizing under these conditions and the conditions below to the nucleic acid sequences provided by the invention, including those given by SEQ ID NOS:1-212, form a part of the invention. Detection of nucleic acid segments via hybridization is well-known to those of skill in
the art, and the teachings of U.S. Pat. Nos. 4,965,188 and \(5,176,995\) (each specifically incorporated herein by reference in its entirety) are exemplary of the methods of hybridization analyses. Teachings such as those found in the texts of Maloy et al., 1991; Segal, 1976; Prokop, 1991; and Kuby, 1994, are particularly relevant.
[0123] Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate centromere function-conferring sequences from related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ conditions such as about 0.15 M to about 0.9 M salt, at temperatures ranging from about \(20^{\circ} \mathrm{C}\). to about \(55^{\circ} \mathrm{C}\). Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature or decreased salt. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.
[0124] In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/ biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.
[0125] In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C content, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantitated, by means of the label.
[0126] (ii) Large Nucleic Acid Segments
[0127] Using the markers flanking each centromere (see FIG. 3) it may be possible to purify a contiguous DNA fragment that contains both flanking markers and the centromere encoded between those markers. In order to carry this out, very large DNA fragments up to the size of an entire chromosome are prepared by embedding Arabidopsis tis-
sues in agarose using, for example, the method described by Copenhaver et al., (1995). These large pieces of DNA can be digested in the agarose with any restriction enzyme. Those restriction enzymes which will be particularly useful for isolating intact centromeres include enzymes which yield very large DNA fragments. Such restriction enzymes include those with specificities greater than six base pairs such as, for example, Asc I, Bae I, BbvC I, Fse I, Not I, Pac I, Pme I, PpuM I, Rsr II, SanD I, Sap L, SexA I, Sfi I, Sgf I, SgrA L Sbf I, Srf I, Sse8387 I, Sse8647 I, Swa, UbaD I, and UbaE I, or any other enzyme that cuts at a low frequency within the Arabidopsis genome, and specifically within the centromeric region. Alternatively, a partial digest with a more frequent cutting restriction enzyme could be used.
[0128] Alternatively, large DNA fragments spanning some or all of a centromere could be produced using RecAAssisted Restriction Endonuclease (RARE) cleavage (Ferrin, 1991). In order to carry this out, very large DNA fragments up to the size of an entire chromosome are prepared by embedding Arabidopsis tissues in agarose using, for example, the method described by Copenhaver et a1., (1995). Single stranded DNA oligomers with sequences homologous to sites flanking the region of DNA to be purified are made to form triple stranded complexes with the agarose embedded DNA using the recombinase enzyme RecA. The DNA is then treated with a site specific methylase such as, for example, Alu I methylase, BamH I methylase, dam methylase, EcoR I methylase, Hae III methylase, Hha I methylase, Hpa II methylase, or Msp methylase. The methylase will modify all the sites specified by its recognition sequence except those within the triplex region protected by the RecA/DNA oligomer complex. The RecA/ DNA oligomer complex are then removed from the agarose embedded DNA and the DNA is then cleaved with the restriction enzyme corresponding to the methylase used, for example, if EcoRI methylase was used then EcoRI restriction endonuclease would be used to perform the cleavage. Only those sites protected from modification will be subject to cleavage by the restriction endonuclease. Thus by choosing targets flanking the centromeric regions that contain the recognition sequence of a site specific methylase/restriction endonuclease pair RARE can be used to cleave the entire region from the rest of the chromosome. It is important to note that this method can be used to isolate a DNA fragment of unknown composition by using sequence information flanking it. Thus, this method may be used to isolate the DNA contained within any gaps in the physical map for the centromeres. The DNA isolated by this method can then be sequenced.
[0129] The large DNA fragments produced by digestion with restriction enzymes or by RARE cleavage are then separated by size using pulsed-field gel electrophoresis (PFGE) (Schwartz et al., 1982). Specifically, Contourclamped Homogeneous Electric Field (CHEF) electrophoresis (a variety of PFGE) can be used to separate DNA molecules as large as 10 Mb (Chu et al., 1985). Large DNA fragments resolved on CHEF gels can then be analyzed using standard Southern hybridization techniques to identify and measure the size of those fragments which contain both centromere flanking markers and therefor, the centromere. After determining the size of the centromere containing fragment by comparison with known size standards, the region from the gel that contains the centromere fragment can be cut out of a duplicate gel. This centromeric DNA can
then be analyzed, sequenced, and used in a variety of applications, as described below, including the construction of minichromosomes. As indicated in detail below, minichromosomes can be constructed by attaching telomeres and selectable markers to the centromere fragment cut from the agarose gel using standard techniques which allow DNA ligation within the gel slice. Plant cells can then be transformed with this hybrid DNA molecule using the techniques described herein below.
[0130] IV. \#\#Recombinant Constructs Comprising Centromere Sequences \#\#
[0131] In light of the instant disclosure it will be possible for those of ordinary skill in the art to construct the recombinant DNA constructs described herein. Useful construction methods are well-known to those of skill in the art (see, for example, Maniatis et al., 1982). As constructed, the minichromosome will preferably include an autonomous replication sequence (ARS) functional in plants, a centromere functional in plants, and a telomere functional in plants.
[0132] The basic elements in addition to a plant centromere that may be used in constructing a minichromosome vector are known to those of skill in the art. For example, one type of telomere sequence that could be used is an Arabidopsis telomere, which consists of head to tail arrays of the monomer repeat CCCTAAA totaling a few (for example 34) kb in length. The telomeres of Arabidopsis, like those of other organisms, vary in length and do not appear to have a strict length requirement. An example of a cloned telomere can be found in GenBank accession number M20158 (Richards and Ausubel, 1988). Yeast telomere sequences have also been described (see, e.g., Louis, 1994; Genbank accession number S70807). Additionally, a method for isolating a higher eukaryotic telomere from Arabidopsis thaliana was described by Richards and Ausubel (1988).
[0133] It is commonly believed that higher eukaryotes do not posses a specific sequence that is used as a replication origin, but instead replicate their DNA from random sites distributed along the chromosome. In Arabidopsis, it is thought that the cell will form origins of replications about once every 70 kb (Van't Hof, 1978). Thus, because higher eukaryotes have origins of replication at potentially random positions on each chromosome, it is not possible to describe a specific origin sequence, but it may generally be assumed that a segment of plant DNA of a sufficient size will be recognized by the cell and origins will be generated on the construct. For example, any piece of Arabidopsis genomic DNA larger than 70 kb would be expected to contain an ARS. By including such a segment of DNA on a recombinant vector, ARS function may be provided to the vector. Additionally, many \(S\). cerevisiae autonomous replicating sequences have been sequenced and could be used to fulfill the ARS function. One example is the Saccharomyces cerevisiae autonomously replicating sequence ARS131A (GenBank number L25319). Many origins of replications have been also been sequenced and cloned from E. coli and could be used with the invention, for example, the Col E1 origin of replication (Ohmori and Tomizawa, 1979; GenBank number V00270). One Agrobacterium origin that could be used is RiA4. The localization of origins of replication in the plasmids of Agrobacterium rhizogenes strain A4 was describe by Jouanin et al. (1985).
[0134] (i) Considerations in the Preparation of Recombinant Constructs
[0135] In addition to the basic elements, positive or negative selectable plant markers (e.g., antibiotic or herbicide resistance genes), and a cloning site for insertion of foreign DNA may be included. In addition, a visible marker, such as green fluorescent protein, also may be desirable. In order to propagate the vectors in E. coli, it is necessary to convert the linear molecule into a circle by addition of a stuffer fragment between the telomeres. Inclusion of an E. coli plasmid replication origin and selectable marker also may be preferred. It also may be desirable to include Agrobacterium sequences to improve replication and transfer to plant cells. The inventors have described a number of exemplary minichromosome constructs in FIGS. 7A-7H, although it will be apparent to those in skill art that many changes may be made in the order and types of elements present in these constructs and still obtain a functional minichromosome within the scope of the instant invention.
[0136] Artificial plant chromosomes which replicate in yeast also may be constructed to take advantage of the large insert capacity and stability of repetitive DNA inserts afforded by this system (see Burke et al., 1987). In this case, yeast ARS and CEN sequences may be added to the vector. The artificial chromosome is maintained in yeast as a circular molecule using a stuffer fragment to separate the telomeres.
[0137] A fragment of DNA, from any source whatsoever, may be purified and inserted into a minichromosome at any appropriate restriction endonuclease cleavage site. The DNA segment usually will include various regulatory signals for the expression of proteins encoded by the fragment. Alternatively, regulatory signals resident in the minichromosome may be utilized.
[0138] The techniques and procedures required to accomplish insertion are well-known in the art (see Maniatis et al., 1982). Typically, this is accomplished by incubating a circular plasmid or a linear DNA fragment in the presence of a restriction endonuclease such that the restriction endonuclease cleaves the DNA molecule. Endonucleases preferentially break the internal phosphodiester bonds of polynucleotide chains. They may be relatively unspecific, cutting polynucleotide bonds regardless of the surrounding nucleotide sequence. However, the endonucleases which cleave only a specific nucleotide sequence are called restriction enzymes. Restriction endonucleases generally internally cleave DNA molecules at specific recognition sites, making breaks within "recognition" sequences that in many, but not all, cases exhibit two-fold symmetry around a given point. Such enzymes typically create double-stranded breaks.
[0139] Many of these enzymes make a staggered cleavage, yielding DNA fragments with protruding single-stranded \(5^{\prime}\) or 3' termini. Such ends are said to be "sticky" or "cohesive" because they will hydrogen bond to complementary \(3^{\prime}\) or \(5^{\prime}\) ends. As a result, the end of any DNA fragment produced by an enzyme, such as EcoRI, can anneal with any other fragment produced by that enzyme. This properly allows splicing of foreign genes into plasmids, for example. Some restriction endonucleases that may be particularly useful with the current invention include HindIII, PstI, EcoRI, and BamHI.
[0140] Some endonucleases create fragments that have blunt ends, that is, that lack any protruding single strands.

An alternative way to create blunt ends is to use a restriction enzyme that leaves overhangs, but to fill in the overhangs with a polymerase, such as klenow, thereby resulting in blunt ends. When DNA has been cleaved with restriction enzymes that cut across both strands at the same position, blunt end ligation can be used to join the fragments directly together. The advantage of this technique is that any pair of ends may be joined together, irrespective of sequence.
[0141] Those nucleases that preferentially break off terminal nucleotides are referred to as exonucleases. For example, small deletions can be produced in any DNA molecule by treatment with an exonuclease which starts from each 3' end of the DNA and chews away single strands in a \(3^{\prime}\) to \(5^{\prime}\) direction, creating a population of DNA molecules with single-stranded fragments at each end, some containing terminal nucleotides. Similarly, exonucleases that digest DNA from the \(5^{\prime}\) end or enzymes that remove nucleotides from both strands have often been used. Some exonucleases which may be particularly useful in the present invention include Bal31, SI, and ExoIII. These nucleolytic reactions can be controlled by varying the time of incubation, the temperature, and the enzyme concentration needed to make deletions. Phosphatases and kinases also may be used to control which fragments have ends which can be joined. Examples of useful phosphatases include shrimp alkaline phosphatase and calf intestinal alkaline phosphatase. An example of a useful kinase is T4 polynucleotide kinase.
[0142] Once the source DNA sequences and vector sequences have been cleaved and modified to generate appropriate ends they are incubated together with enzymes capable of mediating the ligation of the two DNA molecules. Particularly useful enzymes for this purpose include T4 ligase, E. coli ligase, or other similar enzymes. The action of these enzymes results in the sealing of the linear DNA to produce a larger DNA molecule containing the desired fragment (see, for example, U.S. Pat. Nos. 4,237,224; 4,264, \(731 ; 4,273,875 ; 4,322,499\) and \(4,336,336\), which are specifically incorporated herein by reference).
[0143] It is to be understood that the termini of the linearized plasmid and the termini of the DNA fragment being inserted must be complementary or blunt in order for the ligation reaction to be successful. Suitable complementarity can be achieved by choosing appropriate restriction endonucleases (i.e., if the fragment is produced by the same restriction endonuclease or one that generates the same overhang as that used to linearize the plasmid, then the termini of both molecules will be complementary). As discussed previously, in one embodiment of the invention, at least two classes of the vectors used in the present invention are adapted to receive the foreign oligonucleotide fragments in only one orientation. After joining the DNA segment to the vector, the resulting hybrid DNA can then be selected from among the large population of clones or libraries.
[0144] A method useful for the molecular cloning of DNA sequences includes in vitro joining of DNA segments, fragmented from a source of high molecular weight genomic DNA, to vector DNA molecules capable of independent replication. The cloning vector may include plasmid DNA (see Cohen et al., 1973), phage DNA (see Thomas et al., 1974), SV40 DNA (see Nussbaum et al., 1976), yeast DNA, E. coli DNA and most significantly, plant DNA.
[0145] A variety of processes are known which may be utilized to effect transformation; i.e., the inserting of a heterologous DNA sequences into a host cell, whereby the host becomes capable of efficient expression of the inserted sequences.

\section*{[0146] (ii) Regulator Elements}
[0147] In one embodiment of the invention, constructs may include a plant promoter, for example, the CaMV 35S promoter (Odell et al., 1985), or others such as CaMV 19S (Lawton et al., 1987), nos (Ebert et al., 1987), Adh (Walker et al., 1987), sucrose synthase (Yang \& Russell, 1990), a-tubulin, actin (Wang et al., 1992), cab (Sullivan et al., 1989), PEPCase (Hudspeth \& Grula, 1989) or those associated with the R gene complex (Chandler et al., 1989). Tissue specific promoters such as root cell promoters (Conkling et al., 1990) and tissue specific enhancers (Fromm et a1., 1989) are also contemplated to be useful, as are inducible promoters such as ABA- and turgor-inducible promoters. In particular embodiments of the invention, a Lat52 promoter may be used (Twell et al., 1991). A particularly useful tissue specific promoter is the SCARECROW (Scr) root-specific promoter (DiLaurenzio et al., 1996).
[0148] As the DNA sequence between the transcription initiation site and the start of the coding sequence, i.e., the untranslated leader sequence, can influence gene expression. Therefore, one may also wish to employ a particular leader sequence.
[0149] It is envisioned that a functional gene could be introduced under the control of novel promoters or enhancers, etc., or perhaps even homologous or tissue specific (for example, root-, collar/sheath-, whorl-, stalk-, earshank-, kernel- or leaf-specific) promoters or control elements. In particular embodiments of the invention, the functional gene may be in an antisense orientation relative to the promoter.
[0150] (ii) Terminators
[0151] It may also be desirable to link a functional gene to a \(3^{\prime}\) end DNA sequence that acts as a signal to terminate transcription and allow for the poly-adenylation of the mRNA produced by coding sequences. Such a terminator may be the native terminator of the a functional gene or, alternatively, may be a heterologous \(3^{\prime}\) end. Examples of terminators that could be used with the invention are those from the nopaline synthase gene of Agrobacterium tumefaciens (nos \(3^{\prime}\) end) (Bevan et al., 1983), the terminator for the T 7 transcript from the octopine synthase gene of Agrobacterium tumefaciens, and the \(3^{\prime}\) end of the protease inhibitor I or II genes from potato or tomato.

\section*{[0152] (iii) Marker Genes}
[0153] It may be desirable to use one or more marker genes in accordance with the invention. Such markers may be adapted for use in prokaryotic, lower eukaryotic or higher eukaryotic systems, or may be capable of use in any combination of the foregoing classes of organisms. By employing a selectable or screenable marker protein, one can provide or enhance the ability to identify transformants. "Marker genes" are genes that impart a distinct phenotype to cells expressing the marker protein and thus allow such transformed cells to be distinguished from cells that do not have the marker. Such genes may encode either a selectable or screenable marker, depending on whether the marker
confers a trait which one can "select" for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a trait that one can identify through observation or testing, i.e., by "screening" (e.g., the green fluorescent protein). Of course, many examples of suitable marker proteins are known to the art and can be employed in the practice of the invention.
[0154] Included within the terms selectable or screenable markers also are genes which encode a "secretable marker" whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which are secretable antigens that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA; small active enzymes detectable in extracellular solution (e.g., \(\alpha\)-amylase, \(\beta\)-lactamase, phosphinothricin acetyltransferase); and proteins that are inserted or trapped in the cell wall (e.g., proteins that include a leader sequence such as that found in the expression unit of extensin or tobacco PR-S).
[0155] With regard to selectable secretable markers, the use of a gene that encodes a protein that becomes sequestered in the cell wall, and which protein includes a unique epitope is considered to be particularly advantageous. Such a secreted antigen marker would ideally employ an epitope sequence that would provide low background in plant tissue, a promoter-leader sequence that would impart efficient expression and targeting across the plasma membrane, and would produce protein that is bound in the cell wall and yet accessible to antibodies. A normally secreted wall protein modified to include a unique epitope would satisfy all such requirements.

\section*{[0156] 1. Selectable Markers}
[0157] Many selectable marker genes may be used in accordance with invention including, but not limited to, neo (Potrykus et al., 1985), which provides kanamycin resistance and can be selected for using kanamycin, G418, paromomycin, etc.; bar, which confers bialaphos or phosphinothricin resistance; a mutant EPSP synthase protein (Hinchee et al., 1988) conferring glyphosate resistance; a nitrilase such as bxn from Klebsiella ozaenae which confers resistance to bromoxynil (Stalker et al., 1988); a mutant acetolactate synthase (ALS) which confers resistance to imidazolinone, sulfonylurea or other ALS inhibiting chemicals (European Patent Application 154,204, 1985); a methotrexate resistant DHFR (Thillet et al., 1988), a dalapon dehalogenase that confers resistance to the herbicide dalapon; or a mutated anthranilate synthase that confers resistance to 5 -methyl tryptophan. Where a mutant EPSP synthase is employed, additional benefit may be realized through the incorporation of a suitable chloroplast transit peptide, CTP (U.S. Pat. No. \(5,188,642\)) or OTP (U.S. Pat. No. \(5,633,448\)) and use of a modified maize EPSPS (PCT Application WO 97/04103).
[0158] An illustrative embodiment of selectable marker capable of being used in systems to select transformants are those that encode the enzyme phosphinothricin acetyltransferase, such as the bar gene from Streptomyces hygroscopicus or the pat gene from Streptomyces viridochromogenes. The enzyme phosphinothricin acetyl transferase C) (PAT)
inactivates the active ingredient in the herbicide bialaphos, phosphinothricin (PPT). PPT inhibits glutamine synthetase, (Murakami et al., 1986; Twell et a1., 1989) causing rapid accumulation of ammonia and cell death. The use of bar as a selectable marker gene and for the production of herbicideresistant rice plants from protoplasts was described by Rathore et al., (1993).
[0159] A number of \(S\). cerevisiae marker genes are also known and could be used with the invention, such as, for example, the HIS4 gene (Donahue et al., 1982; GenBank number J01331). An example of an E. coli marker gene which has been cloned and sequenced and could be used in accordance with the invention is the Ap gene, which confers resistance to beta-lactam antibiotics such as ampacillin (nucleotides 4618 to 5478 of GenBank accession number U66885).

\section*{[0160] 2. Screenable Markers}
[0161] Screenable markers that may be employed include a \(\beta\)-glucuronidase (GUS) or uidA gene which encodes an enzyme for which various chromogenic substrates are known; an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., 1988); a \(\beta\)-lactamase gene (Sutcliffe, 1978), which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a xylE gene (Zukowsky et al., 1983) which encodes a catechol dioxygenase that can convert chromogenic catechols; an \(\alpha\)-amylase gene (Ikuta et al., 1990); a tyrosinase gene (Katz et al., 1983) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to form the easilydetectable compound melanin; a \(\beta\)-galactosidase gene, which encodes an enzyme for which there are chromogenic substrates; a luciferase (lux) gene (Ow et al., 1986), which allows for bioluminescence detection; an aequorin gene (Prasher et al., 1985) which may be employed in calciumsensitive bioluminescence detection; or a gene encoding for green fluorescent protein (Sheen et al., 1995; Haseloff et al., 1997; Reichel et al., 1996; Tian et al., 1997; WO 97/41228).
[0162] Genes from the maize R gene complex can also be used as screenable markers. The R gene complex in maize encodes a protein that acts to regulate the production of anthocyanin pigments in most seed and plant tissue. Maize strains can have one, or as many as four, R alleles which combine to regulate pigmentation in a developmental and tissue specific manner. Thus, an R gene introduced into such cells will cause the expression of a red pigment and, if stably incorporated, can be visually scored as a red sector. If a maize line carries dominant alleles for genes encoding for the enzymatic intermediates in the anthocyanin biosynthetic pathway (\(\mathrm{C} 2, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{Bz} 1\) and Bz 2), but carries a recessive allele at the R locus, transformation of any cell from that line with R will result in red pigment formation. Exemplary lines include Wisconsin 22 which contains the rg-Stadler allele and TR112, a K55 derivative which is r-g, b, Pl. Alternatively, any genotype of maize can be utilized if the C 1 and R alleles are introduced together.
[0163] Another screenable marker contemplated for use in the present invention is firefly luciferase, encoded by the lux gene. The presence of the lux gene in transformed cells may be detected using, for example. X-ray film, scintillation counting, fluorescent spectrophotometry, low-light video
cameras, photon counting cameras or multiwell luminometry. It also is envisioned that this system may be developed for populational screening for bioluminescence, such as on tissue culture plates, or even for whole plant screening. The gene which encodes green fluorescent protein (GFP) is contemplated as a particularly useful reporter gene (Sheen et al., 1995; Haseloff et al., 1997; Reichel et al., 1996; Tian et al., 1997; WO 97/41228). Expression of green fluorescent protein may be visualized in a cell or plant as fluorescence following illumination by particular wavelengths of light.
[0164] 3. Negative Selectable Markers
[0165] Introduction of genes encoding traits that can be selected against may be useful for eliminating minichromosomes from a cell or for selecting against cells which comprise a particular minichromosome. An example of a negative selectable marker which has been investigated is the enzyme cytosine deaminase (Stouggard, 1993). In the presence of this enzyme the compound 5 -fluorocytosine is converted to 5 -fluorouracil which is toxic to plant and animal cells. Therefore, cells comprising a minichromosome with this gene could be directly selected against. Other genes that encode proteins that render the plant sensitive to a certain compound will also be useful in this context. For example, T-DNA gene 2 from Agrobacterium tumefaciens encodes a protein that catalyzes the conversion of \(\alpha\)-naphthalene acetamide (NAM) to \(\alpha\)-naphthalene acetic acid (NAA) renders plant cells sensitive to high concentrations of NAM (Depicker et al., 1988).

\section*{[0166] V. Isolation of Centromeres from Plants}
[0167] The inventors have provided, for the first time, the nucleic acid sequence of a plant centromere. This will allow one of skill in the art to obtain centromere sequences from potentially any species. The inventors specifically provide herein below a number of methods which may be employed to isolate such centromeres.
[0168] (i) Utilization of Conserved Sequences
[0169] Numerous of the centromere sequences identified by the inventors were also shown by the inventors to be highly conserved (see e.g., Example 5B, Table 3, and Table
4). The novel finding of the inventors that a number of genes reside within the Arabidopsis centromere can therefore be used to find syntenic genes in other organisms (i.e., evolutionarily conserved relationships in gene order from species to species). For example, the sequence of each Arabidopsis gene can be used to search through sequence databases from other plants. An exemplary list of such sequences that could be used is a sequence given by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO: 6 , SEQ ID NO:7, SEQ ID NO:8, SEQ ED NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ED NO:20, and SEQ ID NO:21. Also useful would be the genes listed in Tables 3 and 4. Finding identical or similar genes would identify candidates that may reside within or near centromeric regions. Mapping these genes using linked markers would identify potential centromeric regions.
[0170] Where hybridization is used to obtain centromere sequences, it may be desirable to use less stringent hybridization conditions to allow formation of a heteroduplex. In these circumstances, one may desire to employ conditions
such as about 0.15 M to about 0.9 M salt, at temperatures ranging from about \(20^{\circ} \mathrm{C}\). to about \(55^{\circ} \mathrm{C}\). Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature or decreased salt. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.
[0171] (ii) Identification of Centromere-Associated Characteristics
[0172] The second method takes advantage of the unique DNA properties that the inventors have discovered at the Arabidopsis centromere and adjacent pericentromere regions. The centromeres are composed of long arrays of 180 bp repeats flanked by regions that are \(10-70 \%\) retroelements, up to \(15 \%\) pseudogenes and up to \(29 \%\) transposons (see FIGS. 12A-T). This is unique to the centromere since retroelements, transposons and pseudogenes are very rare outside the centromere and pericentromere region. Furthermore, gene density decreases from an average of a gene every 4.5 kb on the chromosomal arm down to one in 150 kb at the centromere. This unique centromere composition could be exploited in a number of ways to find centromere regions in other species, for example:
[0173] 1) Markers specific for retroelements, transposons, repeat DNA elements and pseudogenes can be devised to genetically map regions which are dense with similar elements.
[0174] 2) The second method involves in situ hybridization, and preferably, fluorescent in situ hybridization (FISH). Fluorescently labeled DNA probes consisting of retroelements, transposons and/or repetitive DNA native to a particular species can be combined with microscopy to identify parts of a chromosome with a similar percentage of DNA elements as that found at the Arabidopsis centromere.
[0175] 3) Utilizing sequence databases, regions of genomes that have increased numbers of repetitive DNA, pseudogenes, retroelements and transposons, similar to the composition of Arabidopsis identified by the inventors, can be used to identify regions of an organisms' chromosome that are centromeric.
[0176] (iii) Utilization of Centromere-Associated Proteins
[0177] The third method involves immunoprecipitating known centromere proteins or kinetochore proteins and analyzing bound DNA. Antibodies specific to centromere proteins can be incubated with proteins extracted from cells. Extracts can be native or previously treated to cross-link DNA to proteins. The antibodies and bound proteins can be purified away from the protein extracts and the DNA isolated. The DNA can then be used as a probe for FISH (as talked about above) or to probe libraries to find neighboring centromere sequences.
[0178] 1. Centromere-Associated Protein Specific Antibodies
[0179] By identifying, for the first time, centromere-associated genes, the inventors have enabled the production of antibodies to the proteins encoded by such centromere-
associated genes. The antibodies may be either monoclonal or polyclonal which bind to centromere-associated proteins of the current invention. The centromere-associated protein targets of the antibodies, include proteins which bind to the centromere region. Further, it is specifically contemplated that these centromere-associated protein specific antibodies would allow for the further isolation and characterization of the centromere-associated proteins. For example, proteins may be isolated which are encoded by the centromeres. Recombinant production of such proteins provides a source of antigen for production of antibodies.
[0180] Alternatively, the centromere may be used as a ligand to isolate, using affinity methods, centromere binding proteins. Once isolated, these protein can be used as antigens for the production polyclonal and monoclonal antibodies. A variation on this technique has been demonstrated by Rattner (1991), by cloning of centromere-associated proteins through the use of antibodies which bind in the vicinity of the centromere.
[0181] Means for preparing and characterizing antibodies are well known in the art (see, e.g., Antibodies: ALaboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). The methods for generating monoclonal antibodies (mAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. A rabbit is a preferred choice for production of polyclonal antibodies because of the ease of handling, maintenance and relatively large blood volume.
[0182] As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin also can be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimido-bencoyl-N-hydroxysuccinimide ester, carbodimide and bisbiazotized benzidine.
[0183] As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.
[0184] The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immuni-
zation. A second, booster, injection also may be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate mAbs.
[0185] Monoclonal antibodies may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified minichromosome -associated protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep, or frog cells also is possible. The use of rats may provide certain advantages (Goding 1986), but mice are preferred, by with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.
[0186] Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the mAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibodyproducing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately \(5 \times 10^{7}\) to \(2 \times 10^{8}\) lymphocytes.
[0187] The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas)
[0188] Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding 1986; Campbell 1984). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/ 1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.
[0189] One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8 -azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.
[0190] Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells
usually comprise mixing somatic cells with myeloma cells in a \(2: 1\) ratio, though the ratio may vary from about \(20: 1\) to about \(1: 1\), respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described (Kohler et al., 1975; 1976), and those using polyethylene glycol (PEG), such as \(37 \%\) (\(\mathrm{v} / \mathrm{v}\)) PEG, (Gefter et al., 1977). The use of electrically induced fusion methods also is appropriate (Goding 1986).
[0191] Fusion procedures usually produce viable hybrids at low frequencies, about \(1 \times 10^{4}\) to \(1 \times 10^{-8}\). However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.
[0192] The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B-cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B-cells.
[0193] This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.
[0194] The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs. The cell lines may be exploited for mAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide mAbs in high concentration. The individual cell lines also could be cultured in vitro, where the mAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. mAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

\section*{[0195] 2. ELISAs and Immunoprecipitation}
[0196] ELISAs may be used in conjunction with the invention, for example, in identifying expression of a cen-tromere-associated protein in a candidate centromere sequence. Such an assay could thereby facilitate the isolation of centromeres from species other than Arabidopsis. By identifying conserved, centromere-associated coding sequences, the inventors have provided the essential tools for such a screen.
[0197] In an ELISA assay, proteins or peptides comprising minichromosome-encoded protein antigen sequences are immobilized onto a selected surface, preferably a surface exhibiting a protein affinity such as the wells of a polystyrene microtiter plate. After washing to remove incompletely adsorbed material, it is desirable to bind or coat the assay plate wells with a nonspecific protein that is known to be antigenically neutral with regard to the test antisera such as bovine serum albumin (BSA), casein or solutions of milk powder. This allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
[0198] After binding of antigenic material to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the antisera or clinical or biological extract to be tested in a manner conducive to immune complex (antigen/antibody) formation. Such conditions preferably include diluting the antisera with diluents such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween(®. These added agents also tend to assist in the reduction of nonspecific background. The layered antisera is then allowed to incubate for from about 2 to about 4 hours, at temperatures preferably on the order of about \(25^{\circ}\) to about \(27^{\circ} \mathrm{C}\). Following incubation, the antisera-contacted surface is washed so as to remove nonimmunocomplexed material. A preferred washing procedure includes washing with a solution such as PBS/Tween \({ }^{\circledR}\), or borate buffer.
[0199] Following formation of specific immunocomplexes between the test sample and the bound antigen, and subsequent washing, the occurrence and even amount of immunocomplex formation may be determined by subjecting same to a second antibody having specificity for the first. To provide a detecting means, the second antibody will preferably have an associated enzyme that will generate color or light development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact and incubate the antisera-bound surface with a urease or peroxidase-conjugated anti-human IgG for a period of time and under conditions which favor the development of immunocomplex formation (e.g., incubation for 2 hours at room temperature in a PBS-containing solution).
[0200] After incubation with the second enzyme-tagged antibody, and subsequent to washing to remove unbound material, the amount of label is quantified by incubation with a chromogenic substrate such as urea and bromocresol purple or 2,2'-azino-di-(3-ethyl-benzthiazoline)-6-sulfonic acid (ABTS) and \(\mathrm{H}_{2} \mathrm{O}_{2}\), in the case of peroxidase as the enzyme label. Quantitation is then achieved by measuring the degree of color generation, e.g., using a visible spectra spectrophotometer.
[0201] 3. Western Blots
[0202] Centromere-associated antibodies may find use in immunoblot or western blot analysis, for example, for the identification of proteins immobilized onto a solid support matrix, such as nitrocellulose, nylon or combinations thereof. In conjunction with immunoprecipitation, followed by gel electrophoresis, these may be used as a single step reagent for use in detecting antigens against which secondary reagents used in the detection of the antigen cause an adverse background. This is especially useful when the antigens studied are immunoglobulins (precluding the use of immunoglobulins binding bacterial cell wall components), the antigens studied cross-react with the detecting agent, or they migrate at the same relative molecular weight as a cross-reacting signal.
[0203] Immunologically-based detection methods for use in conjunction with Western W blotting include enzymati-cally-, radiolabel-, or fluorescently-tagged secondary antibodies against the protein moiety are considered to be of particular use in this regard.

\section*{[0204] (iv) Genetic Mapping Based Approaches}
[0205] The genetic mapping techniques outlined here for the identification of centromeres in Arabidopsis may find use in other species. In one aspect, this may comprise actual use of the mapping data provided herein, based on synteny between Arabidopsis chromosomes and those of other species. Further, new mapping data may be obtained using the techniques described herein. For example, in any plant that makes tetrads, the detailed methodology described herein for tetrad analysis could be used for the isolation of centromeres. Briefly, tetrad analysis measures the recombination frequency between genetic makers and a centromere by analyzing all four products of individual meiosis. A particular advantage arises from the quartet (qrt 1) mutation in Arabidopsis, which causes the four products of pollen mother cell meiosis in Arabidopsis to remain attached.
[0206] Several naturally occurring plant species in addition to Arabidopsis are known to release pollen clusters, including water lilies, cattails, heath (Ericaceae and Epacridceae), evening primrose (Onagraceae), sundews (Droseraceae), orchids (Orchidaceae), and acacias (Mimosaceae) (Preuss 1994, Smyth 1994). However, none of these species has been developed into an experimental system, limiting their use for genetic analysis. However, it is contemplated by the inventors that the cloning and introduction of the quartet mutation, or an antisense copy of a non-mutated Quartet gene, could allow the use of tetrad analysis in potentially any species.
[0207] Southern genomic DNA blots in combination with RFLP analysis may be used to map centromeres with a high degree of resolution. The stored seedling tissue provides the necessary amount of DNA for analysis of the restriction fragments. Southern blots are hybridized to probes labeled by radioactive or non-radioactive methods.
[0208] It may, in many cases, be desired to identify new polymorphic DNA markers which are closely linked to the target region. In some cases this can be readily done. For example, in many plant genomes, a polymorphic Sau3A site can be found for about every 8 to 0.20 kB surveyed. Subtractive methods are available for identifying such polymorphisms (Rosenberg et al., 1994), and these subtractions
may be performed using DNA from selected, centromeric YAC or BAC clones. Screens for RFLP markers potentially linked to centromeres also can be performed using DNA fragments from a centromere-linked YAC clone to probe blots of genomic DNA from a target organism that has been digested with a panel of restriction enzymes.
[0209] To be certain that an entire centromeric region has been cloned, clones or a series of clones, are identified that hybridize to markers on either side of each centromere. These efforts can be complicated by the presence of repetitive DNA in the centromere, as well as by the potential instability of centromere clones. Thus, identification of large clones with unique sequences that will serve as useful probes simplifies a chromosome walking strategy.
[0210] Blot hybridization allows comparison of the structure of the clones with that of genomic DNA, and thus determines whether the clones have suffered deletions or rearrangements. The centromeric clones identified are useful for hybridization experiments that can be used to determine whether they share common sequences, whether they localize in situ to the cytologically defined centromeric region, and whether they contain repetitive sequences thought to map near Arabidopsis centromeres (Richards et al., 1991; Maluszynska et al., 1991).
[0211] Exemplary methods for conducting PFGE and YAC genome analysis described (Ecker, 1990). A large insert YAC library for genome mapping in Arabidopsis thaliana was described in Creusot (1995). The analysis of clones carrying repeated DNA sequences in two YAC libraries of Arabidopsis thaliana DNA was discussed by Schmidt et al., (1994). The construction and characterization of a yeast artificial chromosome library of Arabidopsis was described by Grill and Somerville (1991).
[0212] A particularly useful type of clone is the bacterial artificial chromosome (BAC), as data has suggested that YAC clones may sometimes not span centromeres (Willard, 1997). The construction and characterization of a bacterial artificial chromosome library from, for example, Arabidopsis thaliana has been described (Choi et al., 1995). The complementation of plant mutants with large genomic DNA fragments can be achieved using transformation-competent minichromosome vectors, thereby speeding positional cloning. (Liu et al., 1999). The construction and characterization of the IGF Arabidopsis BAC library was described by Mozo et al., (1998.). A complete BAC-based physical map of the Arabidopsis thaliana genome has been described (Mozo et al., 1998).
[0213] VI. Site Specific Integration and Excision of Nucleic Acid Segments
[0214] It is specifically contemplated by the inventors that one could employ techniques for the site-specific integration or excision of nucleic acid segments for the construction of minichromosomes (see, e.g., Example 8B, below). Such techniques also could be used for the site-specific integration or excision of transgenes which are introduced into a plant, including minichromosome vectors.
[0215] Site-specific integration or excision of nucleic acid molecules can be achieved by means of homologous recombination (see, for example, U.S. Pat. No. 5,527,695, specifically incorporated herein by reference in its entirety). Homologous recombination is a reaction between any pair
of DNA sequences having a similar sequence of nucleotides, where the two sequences interact (recombine) to form a new recombinant. DNA species. The frequency of homologous recombination increases as the length of the shared nucleotide DNA sequences increases, and is higher with linearized plasmid molecules than with circularized plasmid molecules. Homologous recombination can occur between two DNA sequences that are less than identical, but the recombination frequency declines as the divergence between the two sequences increases.
[0216] Introduced DNA sequences can be targeted via homologous recombination by linking a DNA molecule of interest to sequences sharing homology with endogenous sequences of the host cell. Once the DNA enters the cell, the two homologous sequences can interact to insert the introduced DNA at the site where the homologous genomic DNA sequences were located. Therefore, the choice of homologous sequences contained on the introduced DNA will determine the site where the introduced DNA is integrated via homologous recombination. For example, if the DNA sequence of interest is linked to DNA sequences sharing homology to a single copy gene of a host plant cell, the DNA sequence of interest will be inserted via homologous recombination at only that single specific site. However, if the DNA sequence of interest is linked to DNA sequences sharing homology to a multicopy gene of the host eukaryotic cell, then the DNA sequence of interest can be inserted via homologous recombination at each of the specific sites where a copy of the gene is located.
[0217] DNA can be inserted into a host chromosome or vector by a homologous recombination reaction involving either a single reciprocal recombination (resulting in the insertion of the entire length of the introduced DNA) or through a double reciprocal recombination (resulting in the insertion of only the DNA located between the two recombination events). For example, if one wishes to insert a foreign gene into the genomic site where a selected gene is located, the introduced DNA should contain sequences homologous to the selected gene. A single homologous recombination event would then result in the entire introduced DNA sequence being inserted into the selected gene. Alternatively, a double recombination event can be achieved by flanking each end of the DNA sequence of interest (the sequence intended to be inserted into the genome) with DNA sequences homologous to the selected gene. A homologous recombination event involving each of the homologous flanking regions will result in the insertion of the foreign DNA. Thus only those DNA sequences located between the two regions sharing genomic homology become integrated into the genome.
[0218] Although introduced sequences can be targeted for insertion into a specific site via homologous recombination, in higher eukaryotes homologous recombination is a relatively rare event compared to random insertion events. In plant cells, foreign DNA molecules find homologous sequences in the cell's genome and recombine at a frequency of approximately \(0.54-2 \times 10^{-4}\). Thus any transformed cell that contains an introduced DNA sequence integrated via homologous recombination will also likely contain numerous copies of randomly integrated introduced DNA sequences. Therefore, it may be desirable to use more precise mechanisms for site-specific recombination. A preferred manner for carrying out site-specific recombination
comprises use of a site-specific recombinase system. In general, a site specific recombinase system consists of three elements: two pairs of DNA sequence (first and second site-specific recombination sequences) and a specific enzyme (the site-specific recombinase). The site-specific recombinase will catalyze a recombination reaction only between two site-specific recombination sequences.
[0219] A number of different site specific recombinase systems could be employed in accordance with the instant invention, including, but not limited to, the Cre/lox system of bacteriophage P1 (Hoess et al., 1982; U.S. Pat. No. \(5,658,772\), specifically incorporated herein by reference in its entirety), the FLP/FRT system of yeast (Golic and Lindquist, 1989), the Gin recombinase of phage Mu (Maeser and Kahmann, 1991), the Pin recombinase of E. coli (Enomoto et al, 1983), the recombinase encoded by the sre gene (ORF469) and which is capable of mediating integration of the R4 phage genome. (Matsuura et al., 1996), the site-specific recombinase encoded by pinD of Shigelia dysenteriae (Tominaga, 1997), the site-specific recombinase encoded in the major 'pathogenicity island' of Salmonella typhi (Zhang et al., 1997) the Int-B 13 site-specific recombinase of the bacteriophage P4 integrase family (Ravatn et al., 1998), as well as the and the R/RS system of the pSR1 plasmid (Araki et al., 1992). The bacteriophage P1 Cre/lox and the yeast FLP/FRT systems constitute two particularly useful systems for site specific recombination. In these systems, a recombinase (Cre or FLP) will interact specifically with its respective site-specific recombination sequence (lox or FRT, respectively) to invert or excise the intervening sequences. The sequence for each of these two systems is relatively short (34 bp for lox and 47 bp for FRT) and therefore, convenient for use with transformation vectors.
[0220] The FLP/FRT recombinase system has been demonstrated to function efficiently in plant cells, but could also be used in, for example, a bacterial cell or in vitro. The performance of the FLP/FRT system indicates that FRT site structure, and amount of the FLP protein present affect excision activity. In general, short incomplete FRT sites lead to higher accumulation of excision products than the complete full-length FRT sites. The systems can catalyze both intra- and intermolecular reactions, indicating their utility for DNA excision as well as integration reactions. The recombination reaction is reversible and this reversibility can compromise the efficiency of the reaction in each direction. Altering the structure of the site-specific recombination sequences is one approach to remedying this situation. The site-specific recombination sequence can be mutated in a manner that the product of the recombination reaction is no longer recognized as a substrate for the reverse reaction, thereby stabilizing the integration or excision event.
[0221] In the Cre-lox system, discovered in bacteriophage P1, recombination between loxP sites occurs in the presence of the Cre recombinase (see, e.g., U.S. Pat. No. 5,658,772, specifically incorporated herein by reference in its entirety). This system has been utilized to excise a gene located between two lox sites which had been introduced into a yeast genome (Sauer, 1987). Cre was expressed from an inducible yeast GAL1 promoter and this Cre gene was located on an autonomously replicating yeast vector.
[0222] Since the lox site is an asymmetrical nucleotide sequence, lox sites on the same DNA molecule can have the same or opposite orientation with respect to each other. Recombination between lox sites in the same orientation results in a deletion of the DNA Segment located between the two lox sites and a connection between the resulting ends of the original DNA molecule. The deleted DNA segment forms a circular molecule of DNA. The original DNA molecule and the resulting circular molecule each contain a single lox site. Recombination between lox sites in opposite orientations on the same DNA molecule result in an inversion of the nucleotide sequence of the DNA segment located between the two lox sites. In addition, reciprocal exchange of DNA segments proximate to lox sites located on two different DNA molecules can occur. All of these recombination events are catalyzed by the product of the Cre coding region.

\section*{[0223] VII. Transformed Host Cells and Transgenic Plants}
[0224] Methods and compositions for transforming a bacterium, a yeast cell, a plant cell, or an entire plant with one or more minichromosomes are further aspects of this disclosure. A transgenic bacterium, yeast cell, plant cell or plant derived from such a transformation process or the progeny and seeds from such a transgenic plant also are further embodiments of the invention.
[0225] Means for transforming bacteria and yeast cells are well known in the art. Typically, means of transformation are similar to those well known means used to transform other bacteria or yeast such as \(E\). coli or Saccharomyces cerevisiae. Methods for DNA transformation of plant cells include Agrobacterium-mediated plant transformation, protoplast transformation (as used herein "protoplast transformation" includes PEG-mediated transformation, electroporation and protoplast fusion transformation), gene transfer into pollen, injection into reproductive organs, injection into immature embryos and particle bombardment. Each of these methods has distinct advantages and disadvantages. Thus, one particular method of introducing genes into a particular plant strain may not necessarily be the most effective for another plant strain, but it is well known in the art which methods are useful for a particular plant strain.
[0226] There are many methods for introducing transforming DNA segments into cells, but not all are suitable for delivering DNA to plant cells. Suitable methods are believed to include virtually any method by which DNA can be introduced into a cell, such as by Agrobacterium infection, direct delivery of DNA such as, for example, by PEGmediated ID transformation of protoplasts (Omirulleh et al., 1993), by desiccation/inhibition-mediated DNA uptake, by electroporation, by agitation with silicon carbide fibers, by acceleration of DNA coated particles, etc. In certain embodiments, acceleration methods are preferred and include, for example, microprojectile bombardment and the like.
[0227] Technology for introduction of DNA into cells is well-known to those of skill in the art. Four general methods for delivering a gene into cells have been described: (1) chemical methods (Graham et al., 1973; Zatloukal et al., 1992); (2) physical methods such as microinjection (Capecchi, 1980), electroporation (Wong et al., 1982; Fromm et al., 1985; U.S. Pat. No. 5,384,253) and the gene gun (Johnston et al., 1994; Fynan et al., 1993); (3) viral vectors (Clapp

1993; Lu et al., 1993; Eglitis et al., 1988a; 1988b); and (4) receptor-mediated mechanisms (Curiel et al., 1991; 1992; Wagner et al., 1992).
[0228] (i) Electroporation
[0229] The application of brief, high-voltage electric pulses to a variety of animal and plant cells leads to the formation of nanometer-sized pores in the plasma membrane. DNA is taken directly into the cell cytoplasm either through these pores or as a consequence of the redistribution of membrane components that accompanies closure of the pores. Electroporation can be extremely efficient and can be used both for transient expression of cloned genes and for establishment of cell lines that carry integrated copies of the gene of interest. Electroporation, in contrast to calcium phosphate-mediated transfection and protoplast fusion, frequently gives rise to cell lines that carry one, or at most a few, integrated copies of the foreign DNA.
[0230] The introduction of DNA by means of electroporation, is well-known to those of skill in the art. In this method, certain cell wall-degrading enzymes, such as in pectin-degrading enzymes, are employed to render the target recipient cells more susceptible to transformation by electroporation than untreated cells. Alternatively, recipient cells are made more susceptible to transformation, by mechanical wounding. To effect transformation by electroporation one may employ either friable tissues such as a suspension culture of cells, or embryogenic callus, or alternatively, one may transform immature embryos or other organized tissues directly. One would partially degrade the cell walls of the chosen cells by exposing them to pectin-degrading enzymes (pectolyases) or mechanically wounding in a controlled manner. Such cells would then be recipient to DNA transfer by electroporation, which may be carried out at this stage, and transformed cells then identified by a suitable selection or screening protocol dependent on the nature of the newly incorporated DNA.
[0231] (ii) Microprojectile Bombardment
[0232] A further advantageous method for delivering transforming DNA segments to plant cells is microprojectile bombardment. In this method, particles may be coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, gold, platinum, and the like.
[0233] An advantage of microprojectile bombardment, in addition to it being an effective means of reproducibly stably transforming monocots, is that neither the isolation of protoplasts (Cristou et al., 1988) nor the susceptibility to Agrobacterium infection is required. An illustrative embodiment of a method for delivering DNA into maize cells by acceleration is a Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with plant cells cultured in suspension. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates. It is believed that a screen intervening between the projectile apparatus and the cells to be bombarded reduces the size of projectiles aggregate and may contribute to a higher frequency of transformation by reducing damage inflicted on the recipient cells by projectiles that are too large.
[0234] For the bombardment, cells in suspension are preferably concentrated on filters or solid culture medium.

Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate. If desired, one or more screens also are positioned between the acceleration device and the cells to be bombarded. Through the use of techniques set forth herein one may obtain up to 1,000 or more foci of cells transiently expressing a marker gene. The number of cells in a focus which express the exogenous gene product 48 hours post-bombardment often range from 1 to 10 and average 1 to 3 .
[0235] In bombardment transformation, one may optimize the prebombardment culturing conditions and the bombardment parameters to yield the maximum numbers of stable transformants. Both the physical and biological parameters for bombardment are important in this technology. Physical factors are those that involve manipulating the DNA/microprojectile precipitate or those that affect the flight and velocity of either the macro- or microprojectiles. Biological factors include all steps involved in manipulation of cells before and immediately after bombardment, the osmotic adjustment of target cells to help alleviate the trauma associated with bombardment, and also the nature of the transforming DNA, such as linearized DNA or intact supercoiled plasmids. It is believed that pre-bombardment manipulations are especially important for successful transformation of immature embryos.
[0236] Accordingly, it is contemplated that one may wish to adjust various of the bombardment parameters in small scale studies to fully optimize the conditions. One may particularly wish to adjust physical parameters such as gap distance, flight distance, tissue distance, and helium pressure. One also may minimize the trauma reduction factors (TRFs) by modifying conditions which influence the physiological state of the recipient cells and which may therefore influence transformation and integration efficiencies. For example, the osmotic state, tissue hydration and the subculture stage or cell cycle of the recipient cells may be adjusted for optimum transformation. The execution of other routine adjustments will be known to those of skill in the art in light of the present disclosure.

\section*{[0237] (iii) Agrobacterium-Mediated Transfer}
[0238] Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described (Fraley et al., 1985; Rogers et al., 1987). Advances in Agrobacterium-mediated transfer now allow introduction of large segments of DNA (Hamilton, 1997; Hamilton et al., 1996).
[0239] Using conventional transformation vectors, chromosomal integration is required for stable inheritance of the foreign DNA. However, the vector described herein may be used for transformation with or without integration, as the centromere function required for stable inheritance is encoded within the minichromosome. In particular embodiments, transformation events in which the minichromosome is not chromosomally integrated may be preferred, in that problems with site-specific variations in expression and insertional mutagenesis may be avoided.
[0240] The integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences, and intervening DNA is usually inserted into the plant genome as described (Spielmann et al., 1986; Jorgensen et al., 1987). Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described (Rogers et al., 1987), have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes. In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agro-bacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.
[0241] Agrobacterium-mediated transformation of leaf disks and other tissues such as cotyledons and hypocotyls appears to be limited to plants that Agrobacterium naturally infects. Agrobacterium-mediated transformation is most efficient in dicotyledonous plants. Few monocots appear to be natural hosts for Agrobacterium, although transgenic plants have been produced in asparagus and more significantly in maize using Agrobacterium vectors as described (Bytebier et al., 1987; U.S. Pat. No. 5,591,616, specifically incorporated herein by reference). Therefore, commercially important cereal grains such as rice, corn, and wheat must usually be transformed using alternative methods. However, as mentioned above, the transformation of asparagus using Agrobacterium also can be achieved (see, for example, Bytebier et al., 1987). Agrobacterium-mediated transfer may be made more efficient through the use of a mutant that is defective in integration of the Agrobacterium T-DNA but competent for delivery of the DNA into the cell (Mysore et a1., 2000a). Additionally, even in Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation, germ-line transformation may be carried out (Mysore et al., 2000b)
[0242] A transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome. Such transgenic plants can be referred to as being hemizygous for the added gene. A more accurate name for such a plant is an independent segregant, because each transformed plant represents a unique T-DNA integration event.
[0243] More preferred is a transgenic plant that is homozygous for the added foreign DNA; i.e., a transgenic plant that contains two copies of a transgene, one gene at the same locus on each chromosome of a chromosome pair. A homozygous transgenic plant can be obtained by sexually mating (selfing) an independent segregant transgenic plant that contains a single added transgene, germinating some of the seed produced and analyzing the resulting plants produced for enhanced activity relative to a control (native, non-transgenic) or an independent segregant transgenic plant.
[0244] Even more preferred is a plant in which the minichromosome has not been chromosomally integrated. Such a plant may be termed \(2 \mathrm{n}+\mathrm{x}\), where 2 n is the diploid number of chromosomes and where x is the number of minichromosomes. Initially, transformants may be \(2 \mathrm{n}+1\), i.e. having 1 additional minichromosome. In this case, it may be desirable to self the plant or to cross the plant with another \(2 n+1\) plant to yield a plant which is \(2 n+2\). The \(2 n+2\) plant is preferred in that it is expected to pass the minichromosome through meiosis to all its offspring.
[0245] It is to be understood that two different transgenic plants also can be mated to produce offspring that contain two independently segregating added, exogenous minichromosomes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous minichromosomes that encode a polypeptide of interest. Back-crossing to a parental plant and out-crossing with a non-transgenic plant also are contemplated.

\section*{[0246] (iv) Other Transformation Methods}
[0247] Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Lorz et al., 1985; Fromm et al., 1986; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et. al., 1988).
[0248] Application of these systems to different plant strains for the purpose of making transgenic plants depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts are described (Fujimura et al., 1985; Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986).
[0249] To transform plant strains that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described (Vasil 1988). In addition, "particle gun" or high-velocity microprojectile technology can be utilized (Vasil 1992).
[0250] Using that latter technology, DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described (Klein et al., 1987; Klein et al., 1988; McCabe et al., 1988). The metal particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.
[0251] Protoplast fusion, for example, could be used to integrate a minichromosome constructed in a host cell, such as a yeast cell, and then fuse those cells to plant protoplasts. The chromosomes lacking plant centromeres (such as yeast chromosomes in this example) would be eliminated by the plant cell while the minichromosome would be stably maintained. Numerous examples of protocols for protoplast fusion that could be used with the invention have been described (see, e.g., Negrutiu et al., 1992, and Peterson).
[0252] Liposome fusion could be used to introduce a recombinant construct comprising a centromere, such as a minichromosome, by, for example, packaging the recombinant construct into small droplets of lipids (liposomes) and then fusing these liposomes to plant protoplasts thus delivering the AC into the plant cell (see Lurqui and Rollo, 1993).
[0253] VIII. Exogenous Genes for Expression in Plants
[0254] One particularly important advance of the present invention is that it provides methods and compositions for expression of exogenous genes in plant cells. One advance of the constructs of the current invention is that they enable the introduction of multiple genes, potentially representing an entire biochemical pathway. Significantly, the current invention allows for the transformation of plant cells with a minichromosome comprising a number of structural genes. Another advantage is that more than one minichromosome could be introduced, allowing combinations of genes to be moved and shuffled. Moreover, the ability to eliminate a minichromosome from a plant would provide additional flexibility, making it possible to alter the set of genes contained within a plant. Further, by using site-specific recombinases, it should be possible to add genes to an existing minichromosome once it is in a plant.
[0255] Added genes often will be genes that direct the expression of a particular protein or polypeptide product, but they also may be non-expressible DNA segments, e.g., transposons such as Ds that do not direct their own transposition. As used herein, an "expressible gene" is any gene that is capable of being transcribed into RNA (e.g., mRNA, antisense RNA, etc.) or translated into a protein, expressed as a trait of interest, or the like, etc., and is not limited to selectable, screenable or non-selectable marker genes. The inventors also contemplate that, where both an expressible gene that is not necessarily a marker gene is employed in combination with a marker gene, one may employ the separate genes on either the same or different DNA segments for transformation. In the latter case, the different vectors are delivered concurrently to recipient cells to maximize cotransformation.
[0256] The choice of the particular DNA segments to be delivered to the recipient cells often will depend on the purpose of the transformation. One of the major purposes of transformation of crop plants is to add some commercially desirable, agronomically important traits to the plant. Such traits include, but are not limited to, herbicide resistance or tolerance; insect resistance or tolerance; disease resistance or tolerance (viral, bacterial, fungal, nematode); stress tolerance and/or resistance, as exemplified by resistance or tolerance to drought, heat, chilling, freezing, excessive moisture, salt stress; oxidative stress; increased yields; food content and makeup; physical appearance; male sterility; drydown; standability; prolificacy; starch quantity and quality; oil quantity and quality; protein quality and quantity; amino acid composition; and the like. One may desire to incorporate one or more genes conferring any such desirable trait or traits, such as, for example, a gene or genes encoding herbicide resistance.
[0257] In certain embodiments, the present invention contemplates the transformation of a recipient cell with minichromosomes comprising more than one exogenous gene. As used herein, an "exogenous gene," is a gene not normally found in the host genome in an identical context. By this, it is meant that the gene may be isolated from a different species than that of the host genome, or alternatively, isolated from the host genome but operably linked to one or more regulatory regions which differ from those found in the unaltered, native gene. Two or more exogenous genes also can be supplied in a single transformation event using either
distinct transgene-encoding vectors, or using a single vector incorporating two or more gene coding sequences. For example, plasmids bearing the bar and aroA expression units in either convergent, divergent, or colinear orientation, are considered to be particularly useful. Further preferred combinations are those of an insect resistance gene, such as a Bt gene, along with a protease inhibitor gene such as pinII, or the use of bar in combination with either of the above genes. Of course, any two or more transgenes of any description, such as those conferring herbicide, insect, disease (viral, bacterial, fungal, nematode) or drought resistance, male sterility, drydown, standability, prolificacy, starch properties, oil quantity and quality, or those increasing yield or nutritional quality may be employed as desired.
[0258] (i) Herbicide Resistance
[0259] The genes encoding phosphinothricin acetyltransferase (bar and pat), glyphosate tolerant EPSP synthase genes, the glyphosate degradative enzyme gene gox encoding glyphosate oxidoreductase, deh (encoding a dehalogenase enzyme that inactivates dalapon), herbicide resistant (e.g., sulfonylurea and imidazolinone) acetolactate synthase, and bxn genes (encoding a nitrilase enzyme that degrades bromoxynil) are good examples of herbicide resistant genes for use in transformation. The bar and pat genes code for an enzyme, phosphinothricin acetyltransferase (PAT), which inactivates the herbicide phosphinothricin and prevents this compound from inhibiting glutamine synthetase enzymes. The enzyme 5 -enolpyruvylshikimate 3 -phosphate synthase (EPSP Synthase), is normally inhibited by the herbicide N -(phosphonomethyl)glycine (glyphosate). However, genes are known that encode glyphosate-resistant EPSP synthase enzymes. These genes are particularly contemplated for use in plant transformation. The deh gene encodes the enzyme dalapon dehalogenase and confers resistance to the herbicide dalapon. The bxn gene codes for a specific nitrilase enzyme that converts bromoxynil to a non-herbicidal degradation product.
[0260] (ii) Insect Resistance
[0261] Potential insect resistance genes that can be introduced include Bacillus thuringiensis crystal toxin genes or Bt genes (Watrud et al., 1985). Bt genes may provide resistance to lepidopteran or coleopteran pests such as European Corn Borer (ECB). Preferred Bt toxin genes for use in such embodiments include the CryIA(b) and CryIA(c) genes. Endotoxin genes from other species of B. thuringiensis which affect insect growth or development also may be employed in this regard.
[0262] It is contemplated that preferred Bt genes for use in the transformation protocols disclosed herein will be those in which the coding sequence has been modified to effect increased expression in plants, and more particularly, in monocot plants. Means for preparing synthetic genes are well known in the art and are disclosed in, for example, U.S. Pat. No. 5,500,365 and U.S. Pat. No. 5,689,052, each of the disclosures of which are specifically incorporated herein by reference in their entirety. Examples of such modified Bt toxin genes include a synthetic Bt CryIA(b) gene (Perlak et al., 1991), and the synthetic CryIA(c) gene termed 1800 b (PCT Application WO 95/06128). Some examples of other Bt toxin genes known to those of skill in the art a are given in Table 1 below.

TABLE 1
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{New Nomenclature} & giensis \(\delta\)-Endotoxin & \\
\hline & Old Nomenclature & \begin{tabular}{l}
GenBank \\
Accession
\end{tabular} \\
\hline Cry1Aa & CryIA(a) & M11250 \\
\hline Cry1Ab & CryIA(b) & M13898 \\
\hline Cry1Ac & CryIA(c) & M11068 \\
\hline Cry1Ad & CryIA(d) & M73250 \\
\hline Cry1Ae & CryIA(e) & M65252 \\
\hline Cry1Ba & CryIB & X06711 \\
\hline Cry1Bb & ET5 & L32020 \\
\hline Cry1Bc & PEG5 & Z46442 \\
\hline Cry1Bd & CryE1 & U70726 \\
\hline Cry1Ca & CryIC & X07518 \\
\hline Cry1Cb & CryIC(b) & M97880 \\
\hline Cry1Da & CryID & X54160 \\
\hline Cry1Db & PrtB & Z22511 \\
\hline Cry1Ea & CryIE & X53985 \\
\hline Cry1Eb & CryIE(b) & M73253 \\
\hline Cry1Fa & CryIF & M63897 \\
\hline Cry 1 Fb & PrtD & Z22512 \\
\hline Cry1Ga & PrtA & Z22510 \\
\hline Cry1Gb & CryH2 & U70725 \\
\hline Cry1Ha & PrtC & Z22513 \\
\hline Cry 1 Hb & & U35780 \\
\hline Cry1Ia & CryV & X62821 \\
\hline Cry1Ib & CryV & U07642 \\
\hline Cry1Ja & ET4 & L32019 \\
\hline Cry 1 Jb & ET1 & U31527 \\
\hline Cry1K & & U28801 \\
\hline Cry2Aa & CryIIA & M31738 \\
\hline Cry2Ab & CryIIB & M23724 \\
\hline Cry2Ac & CryIIC & X57252 \\
\hline Cry3A & CryIIIA & M22472 \\
\hline Cry3Ba & CryIIIB & X17123 \\
\hline Cry 3 Bb & CryIIIB2 & M89794 \\
\hline Cry3C & CryIIID & X59797 \\
\hline Cry4A & CryIVA & Y00423 \\
\hline Cry4B & CryIVB & X07423 \\
\hline Cry5Aa & CryVA(a) & L07025 \\
\hline Cry5Ab & CryVA(b) & L07026 \\
\hline Cry6A & CryVIA & L07022 \\
\hline Cry6B & Cry VIB & L07024 \\
\hline Cry7Aa & CryIIIC & M64478 \\
\hline Cry7Ab & CryIIICb & U04367 \\
\hline Cry8A & CryIIIE & U04364 \\
\hline Cry8B & CryIIIG & U04365 \\
\hline Crysc & CryIIIF & U04366 \\
\hline Cry9A & CryIG & X58120 \\
\hline Cry9B & CryIX & X75019 \\
\hline Cry9 \({ }^{\text {c }}\) & CryIH & Z37527 \\
\hline Cry 10A & CryIVC & M12662 \\
\hline Cry11A & CryIVD & M31737 \\
\hline Cry11B & Jeg80 & X86902 \\
\hline Cry12A & CryVB & L07027 \\
\hline Cry13A & CryVC & L07023 \\
\hline Cry14A & CryVD & U13955 \\
\hline Cry15A & 34 kDa & M76442 \\
\hline Cry16A & cbm71 & X94146 \\
\hline Cry17A & cbm71 & X99478 \\
\hline Cry 18 A & CryBP1 & X99049 \\
\hline Cry19A & Jeg65 & Y08920 \\
\hline Cyt1Aa & CytA & X03182 \\
\hline Cyt1Ab & CytM & X98793 \\
\hline Cyt2A & CytB & Z14147 \\
\hline Cyt2B & CytB & U52043 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Adapted from: http://epunix.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/ index.html
[0263] Protease inhibitors also may provide insect resistance (Johnson et al., 1989), and will thus have utility in plant transformation. The use of a protease inhibitor II gene, pinII, from tomato or potato is envisioned to be particularly useful. Even more advantageous is the use of a pinII gene in
combination with a Bt toxin gene, the combined effect of which has been discovered to produce synergistic insecticidal activity. Other genes which encode inhibitors of the insect's digestive system, or those that encode enzymes or co-factors that facilitate the production of inhibitors, also may be useful. This group may be exemplified by oryzacystatin and amylase inhibitors such as those from wheat and barley.
[0264] Also, genes encoding lectins may confer additional or alternative insecticide properties. Lectins (originally termed phytohemagglutinins) are multivalent carbohydratebinding proteins which have the ability to agglutinate red blood cells from a range of species. Lectins have been identified recently as insecticidal agents with activity against weevils, ECB and rootworm (Murdock et al., 1990; Czapla \& Lang, 1990). Lectin genes contemplated to be useful include, for example, barley and wheat germ agglutinin (WGA) and rice lectins (Gatehouse et al., 1984), with WGA being preferred.
[0265] Genes controlling the production of large or small polypeptides active against insects when introduced into the insect pests, such as, e.g., lytic peptides, peptide hormones and toxins and venoms, form another aspect of the invention. For example, it is contemplated that the expression of juvenile hormone estersse, directed towards specific insect pests, also may result in insecticidal activity, or perhaps cause cessation of metamorphosis (Hammock et al., 1990).
[0266] Transgenic plants expressing genes which encode enzymes that affect the integrity of the insect cuticle form yet another aspect of the invention. Such genes include those encoding, e.g., chitinase, proteases, lipases and also genes for the production of nikkomycin, a compound that inhibits chitin synthesis, the introduction of any of which is contemplated to produce insect resistant plants. Genes that code for activities that affect insect molting, such as those affecting the production of ecdysteroid UDP-glucosyl transferase, also fall within the scope of the useful transgenes of the present invention.
[0267] Genes that code for enzymes that facilitate the production of compounds that reduce the nutritional quality of the host plant to insect pests also are encompassed by the present invention. It may be possible, for instance, to confer insecticidal activity on a plant by altering its sterol composition. Sterols are obtained by insects from their diet and are used for hormone synthesis and membrane stability. Therefore alterations in plant sterol composition by expression of novel genes, e.g., those that directly promote the production of undesirable sterols or those that convert desirable sterols into undesirable forms, could have a negative effect on insect growth and/or development and hence endow the plant with insecticidal activity. Lipoxygenases are naturally occurring plant enzymes that have been shown to exhibit anti-nutritional effects on insects and to reduce the nutritional quality of their diet. Therefore, further embodiments of the invention concern transgenic plants with enhanced lipoxygenase activity which may be resistant to insect feeding.
[0268] Tripsacum dactyloides is a species of grass that is resistant to certain insects, including corn root worm. It is anticipated that genes encoding proteins that are toxic to insects or are involved in the biosynthesis of compounds toxic to insects will be isolated from Tripsacum and that
these novel genes will be useful in conferring resistance to insects. It is known that the basis of insect resistance in Tripsacum is genetic, because said resistance has been transferred to Zea mays via sexual crosses (Branson and Guss, 1972). It is further anticipated that other cereal, monocot or dicot plant species may have genes encoding proteins that are toxic to insects which would be useful for producing insect resistant plants.
[0269] Further genes encoding proteins characterized as having potential insecticidal activity also may be used as transgenes in accordance herewith. Such genes include, for example, the cowpea trypsin inhibitor (CpTI; Hilder et al., 1987) which may be used as a rootworm deterrent; genes encoding avermectin (Avermectin and Abamectin, Campbell, W. C., Ed., 1989; Ikeda et al., 1987) which may prove particularly useful as a corn rootworm deterrent; ribosome inactivating protein genes; and even genes that regulate plant structures. Transgenic plants including anti-insect antibody genes and genes that code for enzymes that can convert a non-toxic insecticide (pro-insecticide) applied to the outside of the plant into an insecticide inside the plant also are contemplated.

\section*{[0270] (iii) Environment or Stress Resistance}
[0271] Improvement of a plants ability to tolerate various environmental stresses such as, but not limited to, drought, excess moisture, chilling, freezing, high temperature, salt, and oxidative stress, also can be effected through expression of novel genes. It is proposed that benefits may be realized in terms of increased resistance to freezing temperatures through the introduction of an "antifreeze" protein such as that of the Winter Flounder (Cutler et al., 1989) or synthetic gene derivatives thereof. Improved chilling tolerance also may be confereed through increased expression of glycerol3 -phosphate acetyltransferase in chloroplasts (Wolter et al., 1992). Resistance to oxidative stress (often exacerbated by conditions such as chilling temperatures in combination with high light intensities) can be conferred by expression of superoxide dismutase (Gupta et al., 1993), and may be improved by glutathione reductase (Bowler et al., 1992). Such strategies may allow for tolerance to freezing in newly emerged fields as well as extending later maturity higher yielding varieties to earlier relative maturity zones.
[0272] It is contemplated that the expression of novel genes that favorably effect plant water content, total water potential, osmotic potential, and turgor will enhance the ability of the plant to tolerate drought. As used herein, the terms "drought resistance" and "drought tolerance" are used to refer to a plants increased resistance or tolerance to stress induced by a reduction in water availability, as compared to normal circumstances, and the ability of the plant to function and survive in lower-water environments. In this aspect of the invention it is proposed, for example, that the expression of genes encoding for the biosynthesis of osmotically-active solutes, such as polyol compounds, may impart protection against drought. Within this class are genes encoding for mannitol-L-phosphate dehydrogenase (Lee and Saier, 1982) and trehalose-6-phosphate synthase (Kaasen et al., 1992). Through the subsequent action of native phosphatases in the cell or by the introduction and coexpression of a specific phosphatase, these introduced genes will result in the accumulation of either mannitol or trehalose, respectively, both of which have been well documented as protective com-
pounds able to mitigate the effects of stress. Mannitol accumulation in transgenic tobacco has been verified and preliminary results indicate that plants expressing high levels of this metabolite are able to tolerate an applied osmotic stress (Tarczynski et al., 1992, 1993).
[0273] Similarly, the efficacy of other metabolites in protecting either enzyme function (e.g., alanopine or propionic acid) or membrane integrity (e.g., alanopine) has been documented (Loomis et al., 1989), and therefore expression of genes encoding for the biosynthesis of these compounds might confer drought resistance in a manner similar to or complimentary to mannitol. Other examples of naturally occurring metabolites that are osmotically active and/or provide some direct protective effect during drought and/or desiccation include fructose, erythritol (Coxson et al., 1992), sorbitol, dulcitol (Karsten et al., 1992), glucosylglycerol (Reed et al., 1984; ErdMann et al., 1992), sucrose, stachyose (Koster and Leopold, 1988; Blackman et al., 1992), raffinose (Bernal-Lugo and Leopold, 1992), proline (Rensburg et al., 1993), glycine betaine, ononitol and pinitol (Vernon and Bohnert, 1992). Continued canopy growth and increased reproductive fitness during times of stress will be augmented by introduction and expression of genes such as those controlling the osmotically active compounds discussed above and other such compounds. Currently preferred genes which promote the synthesis of an osmotically active polyol compound are genes which encode the enzymes mannitol-1-phosphate dehydrogenase, trehalose-6-phosphate synthase and myoinositol 0 -methyltransferase.
[0274] It is contemplated that the expression of specific proteins also may increase drought tolerance. Three classes of Late Embryogenic Proteins have been assigned based on structural similarities (see Dure et al., 1989). All three classes of LEAs have been demonstrated in maturing (i.e. desiccating) seeds. Within these 3 types of LEA proteins, the Type-II (dehydrin-type) have generally been implicated in drought and/or desiccation tolerance in vegetative plant parts (i.e. Mundy and Chua, 1988; Piatkowski et al., 1990; Yamaguchi-Shinozaki et al., 1992). Recently, expression of a Type-III LEA(HVA-1) in tobacco was found to influence plant height, maturity and drought tolerance (Fitzpatrick, 1993). In rice, expression of the HVA-1 gene influenced tolerance to water deficit and salinity (Xu et al., 1996). Expression of structural genes from all three LEA groups may therefore confer drought tolerance. Other types of proteins induced during water stress include thiol proteases, aldolases and transmembrane transporters (Guerrero et al., 1990), which may confer various protective and/or repairtype functions during drought stress. It also is contemplated that genes that effect lipid biosynthesis and hence membrane composition might also be useful in conferring drought resistance on the plant.
[0275] Many of these genes for improving drought resistance have complementary modes of action. Thus, it is envisaged that combinations of these genes might have additive and/or synergistic effects in improving drought resistance in plants. Many of these genes also improve freezing tolerance (or resistance); the physical stresses incurred during freezing and drought are similar in nature and may be mitigated in similar fashion. Benefit may be conferred via constitutive expression of these genes, but the preferred means of expressing these novel genes may be through the use of a turgor-induced promoter (such as the
promoters for the turgor-induced genes described in Guerrero et al., 1990 and Shagan et al., 1993 which are incorporated herein by reference). Spatial and temporal expression patterns of these genes may enable plants to better withstand stress.
[0276] It is proposed that expression of genes that are involved with specific morphological traits that allow for increased water extractions from drying soil would be of benefit. For example, introduction and expression of genes that alter root characteristics may enhance water uptake. It also is contemplated that expression of genes that enhance reproductive fitness during times of stress would be of significant value. For example, expression of genes that improve the synchrony of pollen shed and receptiveness of the female flower parts, i.e., silks, would be of benefit. In addition it is proposed that expression of genes that minimize kernel abortion during times of stress would increase the amount of grain to be harvested and hence be of value.
[0277] Given the overall role of water in determining yield, it is contemplated that enabling plants to utilize water more efficiently, through the introduction and expression of novel genes, will improve overall performance even when soil water availability is not limiting. By introducing genes that improve the ability of plants to maximize water usage across a full range of stresses relating to water availability, yield stability or consistency of yield performance may be realized.

\section*{[0278] (iv) Disease Resistance}
[0279] It is proposed that increased resistance to diseases may be realized through introduction of genes into plants, for example, into monocotyledonous plants such as maize. It is possible to produce resistance to diseases caused by viruses, bacteria, fungi and nematodes. It also is contemplated that control of mycotoxin producing organisms may be realized through expression of introduced genes.
[0280] Resistance to viruses may be produced through expression of novel genes. For example, it has been demonstrated that expression of a viral coat protein in a transgenic plant can impart resistance to infection of the plant by that virus and perhaps other closely related viruses (Cuozzo et al., 1988, Hemenway et al., 1988, Abel et al., 1986). It is contemplated that expression of antisense genes targeted at essential viral functions may also impart resistance to viruses. For example, an antisense gene targeted at the gene responsible for replication of viral nucleic acid may inhibit replication and lead to resistance to the virus. It is believed that interference with other viral functions through the use of antisense genes also may increase resistance to viruses. Further, it is proposed that it may be possible to achieve resistance to viruses through other approaches, including, but not limited to the use of satellite viruses.
[0281] It is proposed that increased resistance to diseases caused by bacteria and fungi may be realized through introduction of novel genes. It is contemplated that genes encoding so-called "peptide antibiotics," pathogenesis related (PR) proteins, toxin resistance, and proteins affecting host-pathogen interactions such as morphological characteristics will be useful. Peptide antibiotics are polypeptide sequences which are inhibitory to growth of bacteria and other microorganisms. For example, the classes of peptides referred to as cecropins and magainins inhibit growth of
many species of bacteria and fungi. It is proposed that expression of PR proteins in monocotyledonous plants such as maize may be useful in conferring resistance to bacterial disease. These genes are induced following pathogen attack on a host plant and have been divided into at least five classes of proteins (Bol, Linthorst, and Cornelissen, 1990). Included amongst the PR proteins are \(\beta-1,3\)-glucanases, chitinases, and osmotin and other proteins that are believed to function in plant resistance to disease organisms. Other genes have been identified that have antifungal properties, e.g., UDA (stinging nettle lectin) and hevein (Broakaert et a1., 1989; Barkai-Golan et a1., 1978). It is known that certain plant diseases are caused by the production of phytotoxins. It is proposed that resistance to these diseases would be achieved through expression of a novel gene that encodes an enzyme capable of degrading or otherwise inactivating the phytotoxin. It also is contemplated that expression of novel genes that alter the interactions between the host plant and pathogen may be useful in reducing the ability of the disease organism to invade the tissues of the host plant, e.g., an increase in the waxiness of the leaf cuticle or other morphological characteristics.

\section*{[0282] (v) Plant Agronomic Characteristics}
[0283] Two of the factors determining where crop plants can be grown are the average daily temperature during the growing season and the length of time between frosts. Within the areas where it is possible to grow a particular crop, there are varying limitations on the maximal time it is allowed to grow to maturity and be harvested. For example, a variety to be grown in a particular area is selected for its ability to mature and dry down to harvestable moisture content within the required period of time with maximum possible yield. Therefore, crops of varying maturities is developed for different growing locations. Apart from the need to dry down sufficiently to permit harvest, it is desirable to have maximal drying take place in the field to minimize the amount of energy required for additional drying postharvest. Also, the more readily a product such as grain can dry down, the more time there is available for growth and kernel fill. It is considered that genes that influence maturity and/or dry down can be identified and introduced into plant lines using transformation techniques to create new varieties adapted to different growing locations or the same growing location, but having improved yield to moisture ratio at harvest. Expression of genes that are involved in regulation of plant development may be especially useful.
[0284] It is contemplated that genes may be introduced into plants that would improve standability and other plant growth characteristics. Expression of novel genes in plants which confer stronger stalks, improved root systems, or prevent or reduce ear droppage would be of great value to the farmer. It is proposed that introduction and expression of genes that increase the total amount of photoassimilate available by, for example, increasing light distribution and/ or interception would be advantageous. In addition, the expression of genes that increase the efficiency of photosynthesis and/or the leaf canopy would further increase gains in productivity. It is contemplated that expression of a phytochrome gene in crop plants may be advantageous. Expression of such a gene may reduce apical dominance, confer semidwarfism on a plant, and increase shade tolerance (U.S. Pat. No. \(5,268,526\)). Such approaches would allow for increased plant populations in the field.

\section*{[0285] (vi) Nutrient Utilization}
[0286] The ability to utilize available nutrients may be a limiting factor in growth of crop plants. It is proposed that it would be possible to alter nutrient uptake, tolerate pH extremes, mobilization through the plant, storage pools, and availability for metabolic activities by the introduction of novel genes. These modifications would allow a plant such as maize to more efficiently utilize available nutrients. It is contemplated that an increase in the activity of, for example, an enzyme that is normally present in the plant and involved in nutrient utilization would increase the availability of a nutrient. An example of such an enzyme would be phytase. It is further contemplated that enhanced nitrogen utilization by a plant is desirable. Expression of a glutamate dehydrogenase gene in plants, e.g., E. coli gdhA genes, may lead to increased fixation of nitrogen in organic compounds. Furthermore, expression of gdhA in plants may lead to enhanced resistance to the herbicide glufosinate by incorporation of excess ammonia into glutamate, thereby detoxifying the ammonia. It also is contemplated that expression of a novel gene may make a nutrient source available that was previously not accessible, e.g., an enzyme that releases a component of nutrient value from a more complex molecule, perhaps a macromolecule.

\section*{[0287] (vii) Mate Sterility}
[0288] Male sterility is useful in the production of hybrid seed. It is proposed that male sterility may be produced through expression of novel genes. For example, it has been shown that expression of genes that encode proteins that interfere with development of the male inflorescence and/or gametophyte result in male sterility. Chimeric ribonuclease genes that express in the anthers of transgenic tobacco and oilseed rape have been demonstrated to lead to male sterility (Mariani et al., 1990).
[0289] A number of mutations were discovered in maize that confer cytoplasmic male sterility. One mutation in particular, referred to as \(\mathbf{T}\) cytoplasm, also correlates with sensitivity to Southern corn leaf blight. A DNA sequence, designated TURF-13 (Levings, 1990), was identified that correlates with T cytoplasm. It is proposed that it would be possible through the introduction of TURF-13 via transformation, to separate male sterility from disease sensitivity. As it is necessary to be able to restore male fertility for breeding purposes and for grain production, it is proposed that genes encoding restoration of male fertility also may be introduced.

\section*{[0290] (viii) Improved Nutritional Content}
[0291] Genes may be introduced into plants to improve the nutrient quality or content of a particular crop. Introduction of genes that alter the nutrient composition of a crop may greatly enhance the feed or food value. For example, the protein of many grains is suboptimal for feed and food purposes, especially when fed to pigs, poultry, and humans. The protein is deficient in several amino acids that are essential in the diet of these species, requiring the addition of supplements to the grain. Limiting essential amino acids may include lysine, methionine, tryptophan, threonine, valine, arginine, and histidine. Some amino acids become limiting only after corn is supplemented with other inputs for feed formulations. The levels of these essential amino acids in seeds and grain may be elevated by mechanisms
which include, but are not limited to, the introduction of genes to increase the biosynthesis of the amino acids, decrease the degradation of the amino acids, increase the storage of the amino acids in proteins, or increase transport of the amino acids to the seeds or grain.
[0292] The protein composition of a crop may be altered to improve the balance of amino acids in a variety of ways including elevating expression of native proteins, decreasing expression of those with poor composition, changing the composition of native proteins, or introducing genes encoding entirely new proteins possessing superior composition.
[0293] The introduction of genes that alter the oil content of a crop plant may also be of value. Increases in oil content may result in increases in metabolizable-energy-content and density of the seeds for use in feed and food. The introduced genes may encode enzymes that remove or reduce ratelimitations or regulated steps in fatty acid or lipid biosynthesis. Such genes may include, but are not limited to, those that encode acetyl-CoA carboxylase, ACP-acyltransferase, \(\beta\)-ketoacyl-ACP synthase, plus other well known fatty acid biosynthetic activities. Other possibilities are genes that encode proteins that do not possess enzymatic activity such as acyl carrier protein. Genes may be introduced that alter the balance of fatty acids present in the oil providing a more healthful or nutritive feedstuff. The introduced DNA also may encode sequences that block expression of enzymes involved in fatty acid biosynthesis, altering the proportions of fatty acids present in crops.
[0294] Genes may be introduced that enhance the nutritive value of the starch component of crops, for example by increasing the degree of branching, resulting in improved utilization of the starch in livestock by delaying its metabolism. Additionally, other major constituents of a crop may be altered, including genes that affect a variety of other nutritive, processing, or other quality aspects. For example, pigmentation may be increased or decreased.
[0295] Feed or food crops may also possesses insufficient quantities of vitamins, requiring supplementation to provide adequate nutritive value. Introduction of genes that enhance vitamin biosynthesis may be envisioned including, for example, vitamins A, E, B \(_{12}\), choline, and the like. Mineral content may also be sub-optimal. Thus genes that affect the accumulation or availability of compounds containing phosphorus, sulfur, calcium, manganese, zinc, and iron among others would be valuable.
[0296] Numerous other examples of improvements of crops may be used with the invention. The improvements may not necessarily involve grain, but may, for example, improve the value of a crop for silage. Introduction of DNA to accomplish this might include sequences that alter lignin production such as those that result in the "brown midrib" phenotype associated with superior feed value for cattle.
[0297] In addition to direct improvements in feed or food value, genes also may be introduced which improve the processing of crops and improve the value of the products resulting from the processing. One use of crops if via wetmilling. Thus novel genes that increase the efficiency and reduce the cost of such processing, for example by decreasing steeping time, may also find use. Improving the value of wetmilling products may include altering the quantity or quality of starch, oil, corn gluten meal, or the components of
gluten feed. Elevation of starch may be achieved through the identification and elimination of rate limiting steps in starch biosynthesis or by decreasing levels of the other components of crops resulting in proportional increases in starch.
[0298] Oil is another product of wetmilling, the value of which may be improved by introduction and expression of genes. Oil properties may be altered to improve its performance in the production and use of cooking oil, shortenings, lubricants or other oil-derived products or improvement of its health attributes when used in the food-related applications. Novel fatty acids also may be synthesized which upon extraction can serve as starting materials for chemical syntheses. The changes in oil properties may be achieved by altering the type, level, or lipid arrangement of the fatty acids present in the oil. This in turn may be accomplished by the addition of genes that encode enzymes that catalyze the synthesis of novel fatty acids and the lipids possessing them or by increasing levels of native fatty acids while possibly reducing levels of precursors. Alternatively, DNA sequences may be introduced which slow or block steps in fatty acid biosynthesis resulting in the increase in precursor fatty acid intermediates. Genes that might be added include desaturases, epoxidases, hydratases, dehydratases, and other enzymes that catalyze reactions involving fatty acid intermediates. Representative examples of catalytic steps that might be blocked include the desaturations from stearic to oleic acid and oleic to linolenic acid resulting in the respective accumulations of stearic and oleic acids. Another example is the blockage of elongation steps resulting in the accumulation of \(\mathrm{C}_{8}\) to \(\mathrm{C}_{12}\) saturated fatty acids.
[0299] (ix) Production or Assimilation of Chemicals or Biologicals
[0300] It may further be considered that a transgenic plant prepared in accordance with the invention may be used for the production or manufacturing of useful biological compounds that were either not produced at all, or not produced at the same level, in the corn plant previously. Alternatively, plants produced in accordance with the invention may be made to metabolize certain compounds, such as hazardous wastes, thereby allowing bioremediation of these compounds.
[0301] The novel plants producing these compounds are made possible by the introduction and expression of one or potentially many genes with the constructs provided by the invention. The vast array of possibilities include but are not limited to any biological compound which is presently produced by any organism such as proteins, nucleic acids, primary and intermediary metabolites, carbohydrate polymers, enzymes for uses in bioremediation, enzymes for modifying pathways that produce secondary plant, metabolites such as flavonoids or vitamins, enzymes that could produce pharmaceuticals, and for introducing enzymes that could produce compounds of interest to the manufacturing industry such as specialty chemicals and plastics. The compounds may be produced by the plant, extracted upon harvest and/or processing, and used for any presently recognized useful purpose such as pharmaceuticals, fragrances, and industrial enzymes to name a few.

\section*{[0302] (x) Non-Protein-Expressing Sequences}
[0303] DNA may be introduced into plants for the purpose of expressing RNA transcripts that function to affect plant
phenotype yet are not translated into protein. Two examples are antisense RNA and RNA with ribozyme activity. Both may serve possible functions in reducing or eliminating expression of native or introduced plant genes. However, as detailed below, DNA need not be expressed to effect the phenotype of a plant.

\section*{[0304] 1. Antisense RNA}
[0305] Genes may be constructed or isolated, which when transcribed, produce antisense RNA that is complementary to all or part(s) of a targeted messenger RNA(s). The antisense RNA reduces production of the polypeptide product of the messenger RNA. The polypeptide product may be any protein encoded by the plant genome. The aforementioned genes will be referred to as antisense genes. An antisense gene may thus be introduced into a plant by transformation methods to produce a novel transgenic plant with reduced expression of a selected protein of interest. For example, the protein may be an enzyme that catalyzes a reaction in the plant. Reduction of the enzyme activity may reduce or eliminate products of the reaction which include any enzymatically synthesized compound in the plant such as fatty acids, amino acids, carbohydrates, nucleic acids and the like. Alternatively, the protein may be a storage protein, such as a zein, or a structural protein, the decreased expression of which may lead to changes in seed amino acid composition or plant morphological changes respectively. The possibilities cited above are provided only by way of example and do not represent the full range of applications.

\section*{[0306] 2. Ribozymes}
[0307] Genes also may be constructed or isolated, which when transcribed, produce RNA enzymes (ribozymes) which can act as endoribonucleases and catalyze the cleavage of RNA molecules with selected sequences. The cleavage of selected messenger RNAs can result in the reduced production of their encoded polypeptide products. These genes may be used to prepare novel transgenic plants which possess them. The transgenic plants may possess reduced levels of polypeptides including, but not limited to, the polypeptides cited above.
[0308] Ribozymes are RNA-protein complexes that cleave nucleic acids in a site-specific fashion. Ribozymes have specific catalytic domains that possess endonuclease activity (Kim and Cech, 1987; Gerlach et al., 1987; Forster and Symons, 1987). For example, a large number of ribozymes accelerate phosphoester transfer reactions with a high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech et al., 1981; Michel and Westhof, 1990; Reinhold-Hurek and Shub, 1992). This specificity has been attributed to the requirement that the substrate bind via specific base-pairing interactions to the internal guide sequence ("IGS") of the ribozyme prior to chemical reaction.
[0309] Ribozyme catalysis has primarily been observed as part of sequence-specific cleavage/ligation reactions involving nucleic acids (Joyce, 1989; Cech et al., 1981). For example, U.S. Pat. No. 5,354,855 reports that certain ribozymes can act as endonucleases with a sequence specificity greater than that of known ribonucleases and approaching that of the DNA restriction enzymes.
[0310] Several different ribozyme motifs have been described with RNA cleavage activity (Symons, 1992).

Examples include sequences from the Group I self splicing introns including Tobacco Ringspot Virus (Prody et al., 1986), Avocado Sunblotch Viroid (Palukaitis et al., 1979; Symons, 1981), and Lucerne Transient Streak Virus (Forster and Symons, 1987). Sequences from these and related viruses are referred to as hammerhead ribozyme based on a predicted folded secondary structure.
[0311] Other suitable ribozymes include sequences from RNase P with RNA cleavage activity (Yuan et al., 1992, Yuan and Altman, 1994, U.S. Pat. Nos. 5,168,053 and \(5,624,824\)), hairpin ribozyme structures (Berzal-Herranz et al., 1992; Chowrira et al., 1993) and Hepatitis Delta virus based ribozymes (U.S. Pat. No. 5,625,047). The general design and optimization of ribozyme directed RNA cleavage activity has been discussed in detail (Haseloff and Gerlach, 1988, Symons, 1992, Chowrira et al., 1994; Thompson et al., 1995).
[0312] The other variable on ribozyme design is the selection of a cleavage site on a given target RNA. Ribozymes are targeted to a given sequence by virtue of annealing to a site by complimentary base pair interactions. Two stretches of homology are required for this targeting. These stretches of homologous sequences flank the catalytic ribozyme structure defined above. Each stretch of homologous sequence can vary in length from 7 to 15 nucleotides. The only requirement for defining the homologous sequences is that, on the target RNA, they are separated by a specific sequence which is the cleavage site. For hammerhead ribozyme, the cleavage site is a dinucleotide sequence on the target RNA is a uracil (U) followed by either an adenine, cytosine or uracil (A,C or U) (Perriman et al., 1992; Thompson et al., 1995). The frequency of this dinucleotide occurring in any given RNA is statistically 3 out of 16 . Therefore, for a given target messenger RNA of 1,000 bases, 187 dinucleotide cleavage sites are statistically possible.
[0313] Designing and testing ribozymes for efficient cleavage of a target RNA is a process well known to those skilled in the art. Examples of scientific methods for designing and testing ribozymes are described by Chowrira et al., (1994) and Lieber and Strauss (1995), each incorporated by reference. The identification of operative and preferred sequences for use in down regulating a given gene is simply a matter of preparing and testing a given sequence, and is a routinely practiced "screening" method known to those of skill in the art.

\section*{[0314] 3. Induction of Gene Silencing}
[0315] It also is possible that genes may be introduced to produce novel transgenic plants which have reduced expression of a native gene product by the mechanism of cosuppression. It has been demonstrated in tobacco, tomato, and petunia (Goring et al., 1991; Smith et al., 1990; Napoli et al., 1990; van der Krol et al., 1990) that expression of the sense transcript of a native gene will reduce or eliminate expression of the native gene in a manner similar to that observed for antisense genes. The introduced gene may encode all or part of the targeted native protein but its translation may not be required for reduction of levels of that native protein.

\section*{[0316] 4. Non-RNA-Expressing Sequences}
[0317] DNA elements including those of transposable elements such as Ds, Ac, or Mu, may be inserted into a gene
to cause mutations. These DNA elements may be inserted in order to inactivate (or activate) a gene and thereby "tag" a particular trait. In this instance the transposable element does not cause instability of the tagged mutation, because the utility of the element does not depend on its ability to move in the genome. Once a desired trait is tagged, the introduced DNA sequence may be used to clone the corresponding gene, e.g., using the introduced DNA sequence as a PCR primer together with PCR gene cloning techniques (Shapiro, 1983; Dellaporta et al., 1988). Once identified, the entire gene(s) for the particular trait, including control or regulatory regions where desired, may be isolated, cloned and manipulated as desired. The utility of DNA elements introduced into an organism for purposes of gene tagging is independent of the DNA sequence and does not depend on any biological activity of the DNA sequence, i.e., transcription into RNA or translation into protein. The sole function of the DNA element is to disrupt the DNA sequence of a gene.
[0318] It is contemplated that unexpressed DNA sequences, including novel synthetic sequences, could be introduced into cells as proprietary "labels" of those cells and plants and seeds thereof. It would not be necessary for a label DNA element to disrupt the function of a gene endogenous to the host organism, as the sole function of this DNA would be to identify the origin of the organism. For example, one could introduce a unique DNA sequence into a plant and this DNA element would identify all cells, plants, and progeny of these cells as having arisen from that labeled source. It is proposed that inclusion of label DNAs would enable one to distinguish proprietary germplasm or germplasm derived from such, from unlabelled germplasm.
[0319] Another possible element which may be introduced is a matrix attachment region element (MAR), such as the chicken lysozyme A element (Stief, 1989), which can be positioned around an expressible gene of interest to effect an increase in overall expression of the gene and diminish position dependent effects upon incorporation into the plant genome (Stief et al., 1989; Phi-Van et al., 1990).
[0320] 5. Other
[0321] Other examples of non-protein expressing sequences specifically envisioned for use with the invention include tRNA sequences, for example, to alter codon usage, and rRNA variants, for example, which may confer resistance to various agents such as antibiotics.

\section*{[0322] IX. Biological Functional Equivalents}
[0323] Modification and changes may be made in the centromeric DNA segments of the current invention and still obtain a functional molecule with desirable characteristics. The following is a discussion based upon changing the nucleic acids of a centromere to create an equivalent, or even an improved, second-generation molecule.
[0324] In particular embodiments of the invention, mutated centromeric sequences are contemplated to be useful for increasing the utility of the centromere. It is specifically contemplated that the function of the centromeres of the current invention may be based upon the secondary structure of the DNA sequences of the centromere and/or the proteins which interact with the centromere. By changing the DNA sequence of the centromere, one may alter the affinity of one or more centromere-associated protein(s) for
the centromere and/or the secondary structure of the centromeric sequences, thereby changing the activity of the centromere. Alternatively, changes may be made in the centromeres of the invention which do not effect the activity of the centromere. Changes in the centromeric sequences which reduce the size of the DNA segment needed to confer centromere activity are contemplated to be particularly useful in the current invention, as would changes which increased the fidelity with which the centromere was transmitted during mitosis and meiosis.

\section*{[0325] X. Plants}
[0326] The term "plant," as used herein, refers to any type of plant. The inventors have provided below an exemplary description of some plants that may be used with the invention. However, the list is not in any way limiting, as other types of plants will be known to those of skill in the art and could be used with the invention.
[0327] A common class of plants exploited in agriculture are vegetable crops, including artichokes, kohlrabi, arugula, leeks, asparagus, lettuce (e.g., head, leaf, romaine), bok choy, malanga, broccoli, melons (e.g., muskmelon, watermelon, crenshaw, honeydew, cantaloupe), brussels sprouts, cabbage, cardoni, carrots, napa, cauliflower, okra, onions, celery, parsley, chick peas, parsnips, chicory, chinese cabbage, peppers, collards, potatoes, cucumber plants (marrows, cucumbers), pumpkins, cucurbits, radishes, dry bulb onions, rutabaga, eggplant, salsify, escarole, shallots, endive, garlic, spinach, green onions, squash, greens, beet (sugar beet and fodder beet), sweet potatoes, swiss chard, horseradish, tomatoes, kale, turnips, and spices.
[0328] Other types of plants frequently finding commercial use include fruit and vine in crops such as apples, apricots, cherries, nectarines, peaches, pears, plums, prunes, quince almonds, chestnuts, filberts, pecans, pistachios, walnuts, citrus, blueberries, boysenberries, cranberries, currants, loganberries, raspberries, strawberries, blackberries, grapes, avocados, bananas, kiwi, persimmons, pomegranate, pineapple, tropical fruits, pomes, melon, mango, papaya, and lychee.
[0329] Many of the most widely grown plants are field crop plants such as evening primrose, meadow foam, corn (field, sweet, popcorn), hops, jojoba, peanuts, rice, safflower, small grains (barley, oats, rye, wheat, etc.), sorghum, tobacco, kapok, leguminous plants (beans, lentils, peas, soybeans), oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts), fibre plants (cotton, flax, hemp, jute), lauraceae (cinnamon, camphor), or plants such as coffee, sugarcane, tea, and natural rubber plants.
[0330] Still other examples of plants include bedding plants such as flowers, cactus, succulents and ornamental plants, as well as trees such as forest (broad-leaved trees and evergreens, such as conifers), fruit, ornamental, and nutbearing trees, as well as shrubs and other nursery stock.

\section*{[0331] XI. Definitions}
[0332] As used herein, the terms "autonomous replicating sequence" or "ARS" or "origin of replications" refer to an origin of DNA replication recognized by proteins that initiate DNA replication.
[0333] As used herein, the terms "binary BAC" or "binary bacterial artificial chromosome" refer to a bacterial vector that contains the T-DNA border sequences necessary for Agrobacterium mediated transformation (see, for example, Hamilton et al., 1996; Hamilton, 1997; and Liu et al., 1999.
[0334] As used herein, the term "candidate centromere sequence" refers to a nucleic acid sequence which one wishes to assay for potential centromere function.
[0335] As used herein, a "centromere" is any DNA sequence that confers an ability to segregate to daughter cells through cell division. In one context, this sequence may produce a segregation efficiency to daughter cells ranging from about \(1 \%\) to about \(100 \%\), including to about \(5 \%, 10 \%\), \(20 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 90 \%\) or about \(95 \%\) of daughter cells. Variations in such a segregation efficiency may find important applications within the scope of the invention; for example, mini-chromosomes carrying centromeres that confer \(100 \%\) stability could be maintained in all daughter cells without selection, while those that confer \(1 \%\) stability could be temporarily introduced into a transgenic organism, but be eliminated when desired. In particular embodiments of the invention, the centromere may confer stable segregation of a nucleic acid sequence, including a recombinant construct comprising the centromere, through mitotic or meiotic divisions, including through both meiotic and meitotic divisions. A plant centromere is not necessarily derived from plants, but has the ability to promote DNA segregation in plant cells.
[0336] As used herein, the term "centromere-associated protein" refers to a protein encoded by a sequence of the centromere or a protein which is encoded by host DNA and binds with relatively high affinity to the centromere.
[0337] As used herein, "eukaryote" refers to living organisms whose cells contain nuclei. A eukaryote may be distinguished from a "prokaryote" which is an organism which lacks nuclei. Prokaryotes and eukaryotes differ fundamentally in the way their genetic information is organized, as well as their patterns of RNA and protein synthesis.
[0338] As used herein, the term "expression" refers to the process by which a structural gene produces an RNA molecule, typically termed messenger RNA (mRNA). The mRNA is typically, but not always, translated into polypeptide(s).
[0339] As used herein, the term "genome" refers to all of the genes and DNA sequences that comprise the genetic information within a given cell of an organism. Usually, this is taken to mean the information contained within the nucleus, but also includes the organelles.
[0340] As used herein, the term "higher eukaryote" means a multicellular eukaryote, typically characterized by its greater complex physiological mechanisms and relatively large size. Generally, complex organisms such as plants and animals are included in this category. Preferred higher eukaryotes to be transformed by the present invention include, for example, monocot and dicot angiosperm species, gymnosperm species, fern species, plant tissue culture cells of these species, animal cells and algal cells. It will of course be understood that prokaryotes and eukaryotes alike may be transformed by the methods of this invention.
[0341] As used herein, the term "host" refers to any organism that is the recipient of a replicable plasmid, or
expression vector comprising a plant chromosome. Ideally, host strains used for cloning experiments should be free of any restriction enzyme activity that might degrade the foreign DNA used. Preferred examples of host cells for cloning, useful in the present invention, are bacteria such as Escherichia coli, Bacillus subtilis, Pseudomonas, Streptomyces, Salmonella, and yeast cells such as S. cerevisiae. Host cells which can be targeted for expression of a minichromosome may be plant cells of any source and specifically include Arabidopsis, maize, rice, sugarcane, sorghum, barley, soybeans, tobacco, wheat, tomato, potato, citrus, or any other agronomically or scientifically important species.
[0342] As used herein, the term "hybridization" refers to the pairing of complementary RNA and DNA strands to produce an RNA-DNA hybrid, or alternatively, the pairing of two DNA single strands from genetically different or the same sources to produce a double stranded DNA molecule.
[0343] As used herein, the term "linker" refers to a DNA molecule, generally up to 50 or 60 nucleotides long and synthesized chemically, or cloned from other vectors. In a preferred embodiment, this fragment contains one, or preferably more than one, restriction enzyme site for a bluntcutting enzyme and a staggered-cutting enzyme, such as BamHI. One end of the linker fragment is adapted to be ligatable to one end of the linear molecule and the other end is adapted to be ligatable to the other end of the linear molecule.
[0344] As used herein, a "library" is a pool of random DNA fragments which are cloned. In principle, any gene can be isolated by screening the library with a specific hybridization probe (see, for example, Young et al., 1977). Each library may contain the DNA of a given organism inserted as discrete restriction enzyme-generated fragments or as randomly sheered fragments into many thousands of plasmid vectors. For purposes of the present invention, E. coli, yeast, and Salmonella plasmids are particularly useful when the genome inserts come from other organisms.
[0345] As used herein, the term "lower eukaryote" refers to a eukaryote characterized by a comparatively simple physiology and composition, and most often unicellularity. Examples of lower eukaryotes include flagellates, ciliates, and yeast.
[0346] As used herein, a "minichromosome" is a recombinant DNA construct including a centromere and capable of transmission to daughter cells. The stability of this construct through cell division could range between from about \(1 \%\) to about \(100 \%\), including about \(5 \%, 10 \%, 20 \%, 30 \%, 40 \%\), \(50 \%, 60 \%, 70 \%, 80 \%, 90 \%\) and about \(95 \%\). The minichromosome construct may be a circular or linear molecule. It may include elements such as one or more telomeres, ARS sequences, and genes. The number of such sequences included is only limited by the physical size limitations of the construct itself. It could contain DNA derived from a natural centromere, although it may be preferable to limit the amount of DNA to the minimal amount required to obtain a segregation efficiency in the range of \(1-100 \%\). The minichromosome may be inherited through mitosis or meiosis, or through both meiosis and mitosis. As used herein, the term minichromosome specifically encompasses and includes the terms "plant artificial chromosome" or "PLAC," and all teachings relevant to a PLAC or plant artificial chromosome specifically apply to constructs within the meaning of the term minichromosome.
[0347] As used herein, by "minichromosome-encoded protein" it is meant a polypeptide which is encoded by a sequence of a minichromosome of the current invention. This includes sequences such as selectable markers, telomeres, etc., as well as those proteins encoded by any other selected functional genes on the minichromosome.
[0348] A "180 base pair repeat" is defined as any one of the specific repeats disclosed in SEQ ID NOS:184-212, or a "consensus" sequence derived therefrom. Thus, a given "180 base pair repeat" may include more or less than 180 base pairs, and may reflect a sequence not represented by any of the specific sequences provided herein.
[0349] As used herein, the term "plant" includes plant cells, plant protoplasts, plant calli, and the like, as well as whole plants regenerated therefrom.
[0350] As used herein, the term "plasmid" or "cloning vector" refers to a closed covalently circular extrachromosomal DNA or linear DNA which is able to autonomously replicate in a host cell and which is normally nonessential to the survival of the cell. A wide variety of plasmids and other vectors are known and commonly used in the art (see, for example, Cohen et al., U.S. Pat. No. 4,468,464, which discloses examples of DNA plasmids, and which is specifically incorporated herein by reference).
[0351] As used herein, a "probe" is any biochemical reagent (usually tagged in some way for ease of identification), used to identify or isolate a gene, a gene product, a DNA segment or a protein.
[0352] As used herein, the term "recombination" refers to any genetic exchange that involves breaking and rejoining of DNA strands.
[0353] As used herein the term "regulatory sequence" refers to any DNA sequence that influences the efficiency of transcription or translation of any gene. The term includes, but is not limited to, sequences comprising promoters, enhancers and terminators.
[0354] As used herein, a "selectable marker" is a gene whose presence results in a clear phenotype, and most often a growth advantage for cells that contain the marker. This growth advantage may be present under standard conditions, altered conditions such as elevated temperature, or in the presence of certain chemicals such as herbicides or antibiotics. Use of selectable markers is described, for example, in Broach et al. (1979). Examples of selectable markers include the thyridine kinase gene, the cellular adenine-phosphoribosyltransferase gene and the dihydrylfolate reductase gene, hygromycin phosphotransferase genes, the bar gene and neomycin phosphotransferase genes, among others. Preferred selectable markers in the present invention include genes whose expression confer antibiotic or herbicide resistance to the host cell, sufficient to enable the maintenance of a vector within the host cell, and which facilitate the manipulation of the plasmid into new host cells. Of particular interest in the present invention are proteins conferring cellular resistance to ampicillin, chloramnphenicol, tetracycline, GA418, bialaphos, and glyphosate for example.
[0355] As used herein, a "screenable marker" is a gene whose presence results in an identifiable phenotype. This phenotype may be observable under standard conditions,
altered conditions such as elevated temperature, or in the presence of certain chemicals used to detect the phenotype.
[0356] As used herein, the term "site-specific recombination" refers to any genetic exchange that involves breaking and rejoining of DNA strands at a specific DNA sequence.
[0357] As used herein, a "structural gene" is a sequence which codes for a polypeptide or RNA and includes 5 ' and 3 ' ends. The structural gene may be from the host into which the structural gene is transformed or from another species. A structural gene will preferably, but not necessarily, include one or more regulatory sequences which modulate the expression of the structural gene, such as a promoter, terminator or enhancer. A structural gene will preferably, but not necessarily, confer some useful phenotype upon an organism comprising the structural gene, for example, herbicide resistance. In one embodiment of the invention, a structural gene may encode an RNA sequence which is not translated into a protein, for example a tRNA or rRNA gene.
[0358] As used herein, the term "telomere" refers to a sequence capable of capping the ends of a chromosome, thereby preventing degradation of the chromosome end, ensuring replication and preventing fusion to other chromosome sequences.
[0359] As used herein, the terms "transformation" or "transfection" refer to the acquisition in cells of new DNA sequences through the chromosomal or extra-chromosomal addition of DNA. This is the process by which naked DNA, DNA coated with protein, or whole minichromosomes are introduced into a cell, resulting in a potentially heritable change.

\section*{XII. EXAMPLES}
[0360] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skilled the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

\section*{Example 1}

\section*{Generation of an Arabidopsis thaliana Mapping Population}
[0361] To generate a pollen donor plant, two parental lines carrying qrtl were crossed to one another. The qrtl-1 allele was in the Landsberg ecotype background and the qrtl-2 allele was in the Columbia ecotype background. The Landsberg ecotype was readily discernible from the Columbia ecotype because it carries a recessive mutation, erecta,
which causes the stems to thicken, infloresences to be more compact, and the leaves to be more rounded and small than wildtype. To utilize this as a marker of a donor plant, qrt1-2 pollen was crossed onto a qril-1 female stigma. The \(\mathrm{F}_{1}\) progeny were heterozygous at all molecular markers yet the progeny retain the quartet phenotype of a tetrad of fused pollen grains. In addition, progeny display the ERECTA phenotype of the Columbia plant. This visible marker serves as an indication that the crossing was successful in generating plants segregating ecotype specific markers. Further testing was done to the donor plants by performing PCR analysis to insure that progeny were heterozygous at molecular loci.
[0362] Due to the fact that the pollen grains cannot be directly assayed for marker segregation and because of the desire to create a long-term resource available for multiple marker assays, it was necessary to cross individual tetrads generated by the donor plant. This created sets of progeny plants which yielded both large quantities of tissue and seed. These crosses were accomplished efficiently by generating a recipient plant homozygous for male sterility (ms1). The recessive mutant ms1 was chosen to guard against the possibility of the recipient plant self-fertilizing and the progeny being mistaken for tetrad plants. Due to the fact that the homozygous plant does not self, a stock seed generated by a heterozygous male sterility 1 plant needs to be maintained from which sterile recipient plants can be selected.

\section*{Example 2}

\section*{Tetrad Pollinations}
[0363] Tetrad pollinations were carried out as follows. A mature flower was removed from the donor plant and tapped upon a glass microscope slide to release mature tetrad pollen grains. This slide was then placed under a \(20-40 \times\) Zeiss dissecting microscope. To isolate individual tetrad pollen grains, a small wooden dowel was used to which an eyebrow hair with rubber cement was mounted. Using the light microscope, a tetrad pollen unit was chosen and touched to the eyebrow hair. The tetrad preferentially adhered to the eyebrow hair and was thus lifted from the microscope slide and transported the recipient plant stigmatic surface. The transfer was carried out without the use of the microscope, and the eyebrow hair with adhering tetrad was then placed against the recipient stigmatic surface and the hair was manually dragged across the stigma surface. The tetrad then preferentially adhered to the stigma of the recipient and the cross pollination was completed.
[0364] Initially, 57 tetrad seed sets consisting of 34 seeds each, were collected. Plants were grown from these tetrad seed sets, and tissue was collected. DNA was extracted from a small portion of the stored tissue for PCR based segregation analysis. Additionally the segregation of the visible erecta phenotype was scored. When the plants set seed, the seed was collected as a source for the larger amounts of DNA required to analyze RFLP segregation by Southern blotting.

\section*{Example 3}

\section*{Preparation and Analysis of Centromere-Spanning Contigs}
[0365] Previously, DNA fingerprint and hybridization analysis of two bacterial artificial chromosome (BAC) libraries led to the assembly of physical maps covering
nearly all single-copy portions of the Arabidopsis genome (Marra et al., 1999). However, the presence of repetitive DNA near the Arabidopsis centromeres, including 180 bp repeats, retroelements, and middle repetitive sequences complicated efforts to anchor centromeric BAC contigs to particular chromosomes (Murata et al., 1997; Heslop-Harrison et al., 1999; Brandes et al., 1997; Franz et al., 1998; Wright et al., 1996; Konieczny et al., 1991; Pelissier et al, 1995; Voytas and Ausubel, 1988; Chye et al., 1997; Tsay et a1., 1993; Richards et al., 1991; Simoens et al., 1988; Thompson et al., 1996; Pelissier et al., 1996). The inventors used genetic mapping to unambiguously assign these unanchored contigs to \(\pm 20\) specific centromeres, scoring polymorphic markers in 48 plants with crossovers informative for the entire genome (Copenhaver et a1., 1998). In this manner, several centromeric contigs were connected to the physical maps of the chromosome arms (see EXAMPLE 6 and Table 4), and a large set of DNA markers defining centromere boundaries were generated. DNA sequence analysis confirmed the structure of the contigs for chromosomes II and IV (Lin et al., 1999).
[0366] CEN2 and CEN4 were selected in particular for analysis. Both reside on structurally similar chromosomes with a 3.5 Mb rDNA arrays on their distal tips, with regions measuring 3 and 2 Mb , respectively, between the rDNA and centromeres, and 16 and 13 Mb regions on their long arms (Copenhaver and Pikaard, 1996).
[0367] The virtually complete and annotated sequence of chromosomes II and IV was used to conduct an analysis of centromeres at the nucleotide level (http://www.ncbi.nlmnih.gov/Entrez/nucleotide.html). The sequence composition was analyzed within the genetically-defined centromere boundaries and compared to the adjacent pericentromeric regions (FIGS. 12A-T). Analysis of the two centromeres facilitated comparisons of sequence patterns and identification of conserved sequence elements.
[0368] The centromere sequences were found to harbour 180 bp repeat sequences. These sequences were found to reside in the gaps of each centromeric contig (FIG. 3, FIGS. 12B, 12L), with few repeats and no long arrays elsewhere in the genome. BAC clones near these gaps have end sequences corresponding to repetitive elements that likely constitute the bulk of the DNA between the contigs, including 180 bp repeats, 5 S rDNa or \(160-\mathrm{bp}\) repeats (FIG. 3). Fluorescent in situ hybridization has shown these repetitive sequences w3 are abundant components of Arabidopsis centromeres (Murata et al, 1997; Heslop-Harrison et a1., 1999; Brandes et al., 1997). Genetic mapping and pulsedfield a gel electrophoresis indicate that many 180 bp repeats reside in long arrays measuring between 0.4 and 1.4 Mb in the centromeric regions (Round et a1., 1997); sequence analysis revealed additional interspersed copies near the gaps. The inventors specifically contemplate the use of such 180 bp repeats for the construction of minichromosomes. The annotated sequence of chromosomes II and IV identified regions with homology to middle repetitive DNA, both within the functional centromeres and in the adjacent regions (FIGS. 12B-12E and 12L-12O).
[0369] In a 4.3 Mb sequenced region that includes CEN2 and a 2.8 Mb sequenced region that includes CEN4, retrotransposon homology was found to account for \(>10 \%\) of the DNA sequence, with a maximum of \(62 \%\) and \(70 \%\), respectively (FIGS. 12C, 12M). Sequences with similarity to transposons or middle repetitive elements were found to occupy a similar zone, but were less common (\(29 \%\) and \(11 \%\)
maximum density for chromosomes II and IV respectively (FIGS. 12D-12E and FIGS. 12N-12O). Finally, unlike in the case of Drosophila and Neurospora centromeres (Sun et al., 1997; Cambareri et al., 1998) low complexity DNA, including microsatellites, homopolymer tracts, and AT rich isochores, were not found to be enriched in the centromeres of Arabidopsis. Near CEN2, simple repeat sequence densities were comparable to those on the distal chromosome arms, occupying \(1.5 \%\) of the sequence within the centromere, \(3.2 \%\) in the flanking regions, and ranging from 20 to 319 bp in length (71 bp on average). Except for an insertion of mitochondrial DNA at CEN2 the DNA in and around the centromeres did not contain any large regions that deviated significantly from the genomic average of \(\sim 64 \%\) A+T (FIGS. 12F, 12P) (Bevan et al., 1999).
[0370] Unlike the 180 bp repeats, all other repetitive elements near. CEN2 and CEN4 were less abundant within the genetically-defined centromeres than in the flanking regions. The high concentration of repetitive elements outside of the functional centromere domain suggest they may be insufficient for centromere activity. Thus, identifying segments of the Arabidopsis genome that are enriched in these repetitive a sequences does not pinpoint the regions that provide centromere function; a similar situation may occur in the genomes of other higher eukaryotes.
[0371] The repetitive DNA flanking the centromeres may play an important role, forming an altered chromatin conformation that serves to nucleate or stabilize centromere structure. Alternatively, other mechanisms could result in the accumulation of repetitive elements near centromeres. Though evolutionary models predict repetitive DNA accumulates in regions of low recombination (Charlesworth et al., 1986; Charlesworth et al., 1994), many Arabidopsis repetitive elements are more abundant in the recombinationally active pericentromeric regions than in the centromeres themselves. Instead, retroelements and other transposons may preferentially insert into regions flanking the centromeres or be eliminated from the rest of the genome at a higher rate.

\section*{Example 4}

\section*{Genetic Mapping of Centromeres}
[0372] To map centromeres, \(\mathrm{F}_{1}\) plants which were heterozygous for hundreds of polymorphic DNA markers were generated by crossing quartet mutants from the Landsberg and Columbia ecotypes (Chang et al. 1988; Ecker, 1994; Konieczy and Ausubel, 1993). In tetrads from these plants, genetic markers segregate in a \(2: 2\) ratio (FIG. 6; Preuss et al. 1994). The segregation of markers was then determined in plants which were generated by crossing pollen tetrads from the \(\mathrm{F}_{1}\) plants onto a Landsberg homozygote. The genotype of the pollen grains within a tetrad was inferred from the genotype of the progeny. Initially, seeds were generated from greater than 100 successful tetrad pollinations, and tissue and seeds were collected from 57 of these. This provided sufficient material for PCR, as well as seeds necessary for producing the large quantities of tissue required for Southern hybridization and RFLP mapping. In order to obtain a more precise localization of the centromeres the original tetrad population was increased from 57 tetrads to over \(>1,000\) tetrads.
[0373] PCR analysis was performed to determine marker segregation. To account for the contribution of the Landsberg background from the female parent, one Landsberg
complement from each of the four tetrad plants was subtracted. As shown in FIG. 5, markers from sites spanning the entire genome were used for pair-wise comparisons of all other markers. Tetratypes indicate a crossover between one or both markers and their centromeres where as ditypes indicate the absence of crossovers (or presence of a double crossover).
[0374] Thus, at every genetic locus, the resulting diploid progeny was either \(\mathrm{L} / \mathrm{C}\) or \(\mathrm{C} / \mathrm{C}\). The map generated with these plants is based solely on male meioses, unlike the existing map, which represents an average of recombination's in both males and females. Therefore, several wellestablished genetic distances were recalculated and thus will determine whether recombination frequencies are significantly altered.
[0375] The large quantities of genetic data generated by the analysis must be compared pair-wise to perform tetrad analysis. All of the data was managed in a Microsoft Excel spread-sheet format, assigning Landsberg alleles a value of " 1 " and Columbia alleles a value of " 0 . Within a tetrad, the segregation of markers on one chromosome was compared to centromere-linked reference loci on a different chromosome (see Table 2 below). Multiplying the values of each locus by an appropriate reference, and adding the results for each tetrad easily distinguished PD, NPD, and TT tetrads with values of 2,0 , and 1 , respectively.
[0376] Monitoring the position of crossovers in this population identified chromosomal regions that could be separated by recombination from centromeres (tetratype), as well as regions that always cosegregated with centromeres (ditype) (Copenhaver et al., 1998; Copenhaver et al, 1999). Tetratype frequencies decrease to zero at the centromere; consequently, centromere boundaries were defined as the positions that exhibited small but detectable numbers of tetratype patterns. By scoring the segregation of centromere linked markers in approximately 400 tetrads, centromeres 1-5 were localized to regions on the physical map corresponding to contigs of \(550,1445,1600,1790\) and 1770 kb , respectively (FIG. 3). Additionally, for each centromeric interval, a number of useful recombinants were identified. The results of the analysis indicated that centromeres reside within large domains that restrict recombination machinery activity and that the transition between these domains and the surrounding recombination-proficient DNA is markedly abrupt.

TABLE 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Indi-vidual members of a tetrad} & \multicolumn{6}{|c|}{Scoring protocol for tetratypes.} \\
\hline & Locus 1 & \begin{tabular}{l}
Reference \\
Locus
\end{tabular} & Locus 2 & Reference Locus & Locus 3 & Reference Locus \\
\hline A & 1 & \(\times 1=1\) & 0 & \(\times 1=0\) & 0 & \(\times 1=0\) \\
\hline B & 1 & \(\times 1=1\) & 0 & \(\times 1=0\) & 1 & \(\times 1=1\) \\
\hline C & 0 & \(\times 0=0\) & 1 & \(\times 0=0\) & 0 & \(\times 0=0\) \\
\hline D & 0 & \(\times 0=0\) & 1 & \(\times 0=0\) & 1 & \(\times 0=0\) \\
\hline & & 2 & & 0 & & 1 \\
\hline & & PD & & NPD & & TT \\
\hline
\end{tabular}
[0377] Analysis of polymorphisms corresponding to 180 bp repeats (RCEN markers, Round et al, 1997) confirmed
that these repeats map within the genetically-defined centromeres. Polymorphisms associated with the 180 bp repeats were analyzed by pulsed field gel electrophoresis as described previously (Round et al., 1997). Segregation of these polymorphisms in tetrads with informative crossovers confirmed complete linkage of a 180 bp repeat array at each centromere. In genetic units, the centromere intervals averaged 0.44 cM , (\(\%\) recombination= \(1 / 2\) tetratype frequency), reflecting recombination rates at least 10-30 fold below the genomic average of \(221 \mathrm{~kb} / \mathrm{cM}\) (Somerville and Somerville, 1999; http://nasc.nott.ac.uk/new_ri_map.html).
[0378] The low recombination frequencies typically observed near higher eukaryotic centromeres may be due to DNA modifications or unusual chromatin states (Choo, 1998; Puechberty, 1999; Mahtani and Willard, 1998; Charlesworth et al., 1986; Charlesworth et al., 1994). To modify these states, and thus improve centromere mapping resolution by raising recombination frequencies, F1 Landsberg/ Columbia plants were treated with one of a series of compounds known to cause DNA damage, modify chromatin structure, or alter DNA modifications. F1 Landsberg qrt/ Columbia qrt1 plants were grown under 24 hour light in \(1^{\prime \prime}\) square pots and treated with methanesulfonic acid ethyl ester (\(0.05 \%\)), 5-aza-2'-deoxycytidine (25 or 100 mgAl), Zeocin (\(1 \mathrm{ug} / \mathrm{ml}\)), methanesulfonic acid methyl ester (75 ppm), cis-diamminedichloro-platinum (\(20 \mathrm{ug} / \mathrm{ml}\)), mitomycin C (\(10 \mathrm{mg} / \mathrm{l}\)), n-nitroso-n-ethylurea (100 uM), n-butyric acid (20 uM), trichostatin A (10 uM), or 3-methoxybenzamide (2 \(\mathrm{mM})\). Plants were watered and flower-bearing stems were immersed in these solutions. Alternatively, plants were exposed to 350 nm UV (7 or 10 seconds), or heat shock (38 or \(42^{\circ} \mathrm{C}\). for 2 hours). Pollen tetrads from these plants were used to pollinate Landsberg stigmas 3-5 days after each treatment; the F1 plants were subsequently subjected to additional treatments (up to 5 times per plant, every 3-5 days).
[0379] Tetrads from treated plants were crossed to Landsberg stigmas, and progeny from 8-107 tetrads subjected to each treatment were recovered and analyzed, yielding \(>600\) additional tetrads. These tetrads exhibited higher recombination in regions immediately flanking the centromeres (1.6 vs. \(3.4 \%\) recombination in untreated and treated plants, respectively), although the sample size was insufficient to determine if any individual treatment had a profound affect. The map locations of centromeres were refined on chromosomes 2 to 5 (FIG. 1), yielding intervals spanned by contigs of \(880,1150,1260\), and 1070 kb , respectively, with all tetrads consistently localizing centromere functions to the same region (Copenhaver et al., 1999).
[0380] Efforts to increase recombination yielded a large number of tetrads with crossovers near the centromeres; these crossovers clustered within a narrow region at the centromere boundaries. Five crossovers occurred over a 70 kb region near CEN2, and 7 over a 200 kb region near CEN1, yet no crossovers were detected in the adjacent centromeric intervals of 880 and 550 kb respectively (FIG. 3). Thus, the centromeres were found within large domains that restrict recombination machinery activity; the transition between these domains and surrounding, recombinationproficient DNA is remarkably abrupt (FIGS. 12A and K). Although analysis of more tetrads would yield additional
recombination events, the observed distribution of crossovers indicate that centromere positions would not be significantly refined.

\section*{Example 5}

\section*{Sequence Analysis of Arabidopsis Centromeres}
[0381] A. Abundance of Genes in the Centromeric Regions
[0382] Expressed genes are located within 1 kb of essential centromere sequences in \(S\). cerevisiae, and multiple copies of tRNA genes reside within an 80 kb fragment necessary for centromere function in \(S\). pombe (Kuhn et al., 1991). In contrast, genes are thought to be relatively rare in the centromeres of higher eukaryotes, though there are notable exceptions. The Drosophila light, concertina, responder, and rolled loci all map to the centromeric region of chromosome 2, and translocations that remove light from its native heterochromatic context inhibit gene expression. In contrast, many Drosophila and human genes that normally reside in euchromatin become inactive when they are inserted near a centromere. Thus, genes that reside near centromeres likely have special control elements that allow expression (Karpen, 1994; Lohe and Hilliker, 1995). The sequences of Arabidopsis CEN2 and CEN4, provided herein, provide a powerful resource for understanding how gene density and expression correlate with centromere position and associated chromatin.
[0383] Annotation of chromosome II and IV (http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html) identified many genes within and adjacent to CEN2 and CEN4 (FIG. 8, FIGS. 12A-12T). The density of predicted genes on Arabidopsis chromosome arms averages 25 per 100 kb , and in the repeat-rich regions flanking CEN2 and CEN4 this decreases to 9 and 7 genes per 100 kb , respectively (Bevan et a1., 1999). Many predicted genes also reside within the recombination-deficient, genetically-defined centromeres. Within CEN2, there were 5 predicted genes per 100 kb ; while CEN4 was strikingly different, with 12 genes per 100 kb.
[0384] There was strong evidence that several of the predicted centromeric genes are transcribed. The phosphoenolpyruvate gene (CUE1) defines one CEN5 border; mutations in this gene cause defects in light-regulated gene expression (L1 et al., 1995). Within the sequenced portions of CEN2 and CEN4, 17\% (27/160) of the predicted genes shared \(>95 \%\) identity with cloned cDNAs (ESTs), with three-fold more matches in CEN4 than in CEN2 (http:// www.tigr.org/tdb/at/agad/). Twenty-four of these genes have multiple exons, and four correspond to single-copy genes with known functions. A list of the predicted genes identified is given in Table 3, below. A list of additional genes encoded within the boundaries of CEN4 are listed in Table 4. The identification of these genes is significant in that the genes may themselves contain unique regulatory elements or may reside in genomic locations flanking unique control or regulatory elements involved in centromere function or gene expression. In particular, the current inventors contemplate use of these genes, or DNA sequences 0 to 5 kb upstream or downstream of these sequences, for insertion into a gene of choice in a minichromosome. It is expected that such elements could potentially yield beneficial regulatory con-
trols of the expression of these genes, even when in the unique environment of a centromere
[0385] To investigate whether the remaining 23 genes were uniquely encoded at the centromere, a search was made in the database of annotated genomic Arabidopsis sequences. With the exception of two genes, no homologs with \(>95 \%\) identity were found elsewhere in the \(80 \%\) of the genome that has been sequenced. The number of independent cDNA clones that correspond to a single-copy gene provides an estimate of the level of gene expression. On chromosome II, predicted genes with high quality matches to the cDNA database (\(>95 \%\) identity) match an average of four independent cDNA clones (range 1-78). Within CEN2 and CEN4, 11127 genes exceed this average (Table 3). Finally, genes encoded at CEN2 and CEN4 are not members of a single gene family, nor do they correspond to genes predicted to play a role in centromere functions, but instead have diverse roles.
[0386] Many genes in the Arabidopsis centromeric regions are nonfunctional due to early stop codons or disrupted open reading frames, but few pseudogenes were found on the chromosome arms. Though a large fraction of these pseudogenes have homology to a mobile elements, many correspond to genes that are typically not mobile (FIGS. 12I-J and FIGS. 12S-T). Within the geneticallydefined centromeres there were 1.0 (CEN2) and 0.7 (CEN4) of these nonmobile pseudogenes per 100 kb ; the repeat-rich regions bordering the centromeres have 1.5 and 0.9 per 100 kb respectively. The distributions of pseudogenes and transposable elements are overlapping, indicting that DNA insertions in these regions contributed to gene disruptions.

TABLE 3
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Predicted genes within CEN2 and CE
to the cDNA databa} & N4 that corres & \multirow[t]{2}{*}{\begin{tabular}{l}
d \\
\# of EST matches*
\end{tabular}} \\
\hline & GenBank protein accession & \\
\hline \multicolumn{3}{|l|}{CEN2} \\
\hline Unknown & AAC69124 & 1 \\
\hline SH3 domain protein & AAD15528 & 5 \\
\hline Unknown & AAD15529 & 1 \\
\hline unknown \(\dagger\) & AAD37022 & 1 \\
\hline RNA helicaset & AAC26676 & 2 \\
\hline 40S ribosomal protein S16 & AAD22696 & 9 \\
\hline \multicolumn{3}{|l|}{CEN4} \\
\hline Unknown & AAD36948 & 1 \\
\hline Unknown & AAD36947 & 4 \\
\hline leucyl tRNA synthetase & AAD36946 & 4 \\
\hline aspartic protease & AAD29758 & 6 \\
\hline Peroxisomal membrane protein (PPM2)§ & AAD29759 & 5 \\
\hline 5'-adenylylsulfate reductase§ & AAD29775 & 14 \\
\hline symbiosis-related protein & AAD29776 & 3 \\
\hline ATP synthase gamma chain 1 (APC1)§ & AAD48955 & 3 \\
\hline protein kinase and EF hand & AAD03453 & 3 \\
\hline ABC transporter & AAD03441 & 1 \\
\hline Transcriptional regulator & AAD03444 & 14 \\
\hline Unknown & AAD03446 & 12 \\
\hline human PCF11p homolog & AAD03447 & 6 \\
\hline NSF protein & AAD17345 & 2 \\
\hline 1,3-beta-glucan synthase & AAD48971 & 2 \\
\hline pyridine nucleotide-disulphide oxidoreductase & AAD48975 & 4 \\
\hline Polyubiquitin (UBQ11)§ & AAD48980 & 72 \\
\hline wound induced protein & AAD48981 & 6 \\
\hline short chain dehydrogenase/reductase & AAD48959 & 7 \\
\hline
\end{tabular}

TABLE 3-continued
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Putative function} & within CEN2 and CEN4 that correspond to the cDNA database. & \multirow[t]{2}{*}{\begin{tabular}{l}
\# of EST \\
matches*
\end{tabular}} \\
\hline & GenBank protein accession & \\
\hline SL15 \(\dagger\) & AAD48939 & 2 \\
\hline WD40-repeat protein & AAD48948 & 2 \\
\hline
\end{tabular}
*Independent cDNAs with \(>95 \%\) identity,
\(\dagger\) trelated gene present in non-centromeric DNA,
tpotentially associated with a mobile DNA element,
§characterized gene (B. Tugal, 1999; J. F. Gutierrez-Marcos, 1996; N. Inohara, 1991; J. Callis, 1995).
[0387]
TABLE 4
\begin{tabular}{|c|c|c|}
\hline Putative Function & GenBank accession & Nucleotide Position \\
\hline \(3^{\prime}\left(2^{\prime}\right), 55^{\prime}\)-Bisphosphate Nucleotidase & AC012392 & 71298-73681 \\
\hline Transcriptional regultor & AC012392 & 80611-81844 \\
\hline Equilibrative nucleoside transporter 1 & AC012392 & 88570-90739 \\
\hline Equilibrative nucleoside transporter 1 & AC012392 & 94940-96878 \\
\hline Equilibrative nucleoside transporter 1 & AC012392 & 98929-101019 \\
\hline Equilibrative nucleoside transporter 1 & AC012392 & 113069-115262 \\
\hline known & AC012392 & 122486-124729 \\
\hline 4-coumarate-CoA ligase & AC012392 & 126505-128601 \\
\hline ethylene responsive protein & AC012392 & 130044-131421 \\
\hline Oxygen-evolving enhancer protein precursor & AC012392 & 134147-135224 \\
\hline Kinesin & AC012392 & 137630-141536 \\
\hline receptor-like protein kinase & AC012392 & 141847-144363 \\
\hline LpxD-like protein & AC012392 & 144921-146953 \\
\hline hypersensitivity induced protein & AC012392 & 147158-147838 \\
\hline ubiquitin & AC012392 & 149057-149677 \\
\hline unknown & AC012392 & 150254-151072 \\
\hline ubiquitin-like protein & AC012392 & 153514-154470 \\
\hline ubiquitin-like protein & AC012392 & 155734-156513 \\
\hline ubiquitin-like protein & AC012392 & 156993-157382 \\
\hline nown & AC012392 & 159635-165559 \\
\hline unknown & AC012392 & 166279-166920 \\
\hline unknown & AC012392 & 167724-170212 \\
\hline ubiquitin-like protein & AC012392 & 176819-178066 \\
\hline polyubiquitin (UBQ10)§ & AC012392 & 180613-182007 \\
\hline phosphatidylinositol-3,4,5-trip hosphate binding protein & AC012477 & 89384-91291 \\
\hline Mitochondrial ATPase & AC012477 & 94302-94677 \\
\hline RING-H2 finger protein & AC012477 & 95522-96142 \\
\hline unknown & AC012477 & 104747-105196 \\
\hline Mitochondrial ATPase & AC012477 & 105758-106595 \\
\hline ferredoxin-NADP+ reductase & AC012477 & 107451-109095 \\
\hline unknown & AC012477 & 109868-110620 \\
\hline U3 snoRNP-associated protein & AC012477 & 111841-114133 \\
\hline UV-damaged DNA binding factor & AC012477 & 114900-121275 \\
\hline Glucan endo-1,3-Beta-Glucosidase precursor & AC012477 & 122194-122895 \\
\hline D123 -like protein & AC012477 & 125886-126887 \\
\hline Adrenodoxin Precursor & AC012477 & 127660-129246 \\
\hline N7 like-protein & AC012477 & 129718-131012 \\
\hline N7 like-protein & AC012477 & 131868-133963 \\
\hline N7 like-protein & AC012477 & 134215-136569 \\
\hline N7 like-protein & AC012477 & 139656-140864 \\
\hline
\end{tabular}
§̧characterized gene (J. Callis, 1995).

\section*{[0388] B. Conservation of Centromeric DNA}
[0389] To investigate the conservation of CEN2 and CEN4 sequences, PCR primer pairs were designed that
correspond to unique regions in the Columbia sequence and used to survey the centromeric regions of Landsberg and Columbia at -20 kb intervals (FIGS. 14A, B). The primers used for the analysis are listed in FIGS. 15A, B. Amplification products of the appropriate length were obtained in both ecotypes for most primer pairs (\(85 \%\)), indicating that the amplified regions were highly similar. In the remaining cases, primer pairs amplified Columbia, but not Landsberg DNA, even at very low stringencies. In these regions, additional primers were designed to determine the extent of nonhomology. In addition to a large insertion of mitochondrial DNA in CEN2, two other non-conserved regions were identified (FIGS. 14A, B). Because this DNA is absent from Landsberg centromeres, it is unlikely to be required for centromere function; consequently, the relevant portion of the centromeric sequence is reduced to 577 kb (CEN2) and 1250 kb (CEN4). The high degree of sequence conservation between Landsberg and Columbia centromeres indicated that the inhibition of recombination frequencies was not due to large regions of nonhomology, but instead was a property of the centromeres themselves.
[0390] C. Sequence Similarity Between CEN2 and CEN4
[0391] In order to discern centromere function, a search was conducted for novel sequence motifs shared between CEN2 and CEN4, excluding from the comparison retroelements, transposons, characterized centromeric repeats, and coding sequences resembling mobile genes. After masking simple repetitive sequences, including homopolymer tracts and microsatellites, contigs of unique sequence measuring 417 kb and 851 kb for CEN2 and CEN4, respectively, were compared with BLAST ail (http://blast.wustl.edu).
[0392] The comparison showed that the complex DNA within the centromere regions was not homologous over the entire sequence length. However, 16 DNA segments in CEN2 matched 11 regions in CEN4 with \(>60 \%\) identity (FIG. 16). The sequences were grouped into families of related sequences, and were designated AtCCS1-7 (Arabidopsis thaliana centromere conserved sequences 1-7). These sequences were not previously known to be repeated in the Arabidopsis genome. The sequences comprised a total of 17 \(\mathrm{kb}(4 \%)\) of CEN2 DNA, had an average length of 1017 bp , and had an A+T content of \(65 \%\). Based on similarity, the matching sequences were sorted into groups, including two families containing 8 sequences each (AtCCS1 and AtCCS2; SEQ ID NOS: 1-14), 3 sequences from a small family encoding a putative open reading frame (AtCCS3; SEQ ID NOS:21-22)), and 4 sequences found once within the centromeres (AtCCS4-AtCCS7; SEQ ID NOS:15-20), one of which (AtCCS6; SEQ ID NO:17) corresponds to predicted CEN2 and CEN4 proteins with similarity throughout their exons and introns (FIG. 16).
[0393] Searches of the Arabidopsis genomic sequence database demonstrated that AtCCS1-AtCCS5 were moderately repeated sequences that appear in centromeric and pericentromeric regions. The remaining sequences were present only in the genetically-defined centromeres. Similar comparisons of all 16 S . cerevisiae centromeres defined a consensus consisting of a conserved 8 bp CDEI motif, an AT-rich 85 bp CDEII element, and a 26 bp CDEII region with 7 highly conserved nucleotides (Fleig et al., 1995). In contrast, surveys of the three \(S\). pombe centromeres revealed conservation of overall centromere structure, but no universally conserved motifs (Clark, 1998).

\section*{Example 6}

Mapping Results: Arabidopsis Chromosomes 1-5
[0394] The centromere on chromosome 1 was mapped between mi342 (56.7 cM) and U1 T27K12 (59.1 cM). A more refined position places the centromere between the marker T22C23-t7 (\(\sim 58.5 \mathrm{cM}\)) and T3P8-sp6 (\(\sim 59.1 \mathrm{cM}\)). Contained within this interval are the previously described markers EKRIV and RCEN1.
[0395] The centromere on chromosome 2 was mapped between mi310 (18.6 cM) and g 4133 (23.8 cM). A more refined position places the centromere between the markers F5J15-sp6 (\(\sim 19.1 \mathrm{cM}\)) and T15D9 (\(\sim 19.3 \mathrm{cM}\)). The following sequenced (http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html) BAC (bacterial artificial chromosome) clones are known to span the region between the markers F5J15sp6 and T15D9: T13E11, F27C21, F9A16, T5M2, T17H1, T18C6, T5E7, T12J2, P27B22, T6C20, T14C8, F7B 19, and T15D9.
[0396] There is a gap in BAC coverage between T12J2 and F27B22. RARE cleavage, pulse field gels or DNA sequence tiling will be used to isolate DNA in the gap for sequencing.
[0397] The centromere on chromosome 3 was mapped between atpox (48.6 cM) and ATA (53.8 cM). A more refined position places the centromere between the marker T9G9sp6 (\(\sim 53.1 \mathrm{cM}\)) and T5M14-sp6 (\(\sim 53.3 \mathrm{cM}\)). Contained within this interval is the previously described marker RCEN3.
[0398] The centromere on chromosome 4 was mapped between mi233 (18.8 cM) and mi167 (21.5 cM). A more refined position places the centromere between the markers T24H24.30k3 (\(\sim 20.3 \mathrm{cM}\)) and F13H14-t7 (\(\sim 21.0 \mathrm{cM}\)). The following sequenced (http://www.ncbi.nlm.nih.gov/Entrez/ nucleotide.html) BAC (bacterial artificial chromosome) clones are known to span the region between the markers F5J15-sp6 and T6A13-sp6: T27D20, T19B17, T26N6, F4H6, T19J18, T4B21, T1J1, T32N4, C17L7, C6L9, F6H8, F2I12, F14G16, and F28D6.
[0399] There is a gap in BAC coverage between F2I12 and F14G16. RARE cleavage, pulse field gels or DNA sequence tiling will be used to isolate DNA in the gap for sequencing.
[0400] The centromere on chromosome 5 was mapped between nga76 (71.6 cM) and PhyC (74.3 cM). A more refined position places the centromere between the markers F13K2017 (\(\sim 69.4 \mathrm{cM}\)) and CUE1 (\(\sim 69.5 \mathrm{cM}\)). Contained within this interval are the publicly available markers: um579D, mi291b, CMs1.
[0401] A table listing the BAC clones known to reside within the centromeres on chromosomes I-V given as well as Genbank Accession numbers for the sequences of these clones, is given below, in Table 5 and Table 6.
[0402] Genetic positions (i.e. cM values) correspond to the Lister and Dean Recombinant Inbred Genetic map, available on-line at http://nasc.nott.ac.uk/new_ri_map.html Markers are available at http://genome-www.stanford.edu/Arabidopsis/aboutcaps.html.

TABLE 5
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} & \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} \\
\hline & GENBANK ACCESSION \# & \multicolumn{2}{|r|}{GENBANK ACCESSION \#} \\
\hline \multicolumn{2}{|l|}{CENTROMERE 1} & \multicolumn{2}{|l|}{GAP} \\
\hline F24P1 & B23044* & F19M16 & AQ011032* \\
\hline F13J4 & AL086967* and AL086966* & F22M21 & B96432* and B96431* \\
\hline F7G10 & AL083686* and AL083685* & F27K16 & none \\
\hline F28L22 & AC007505 & F21K24 & B97937* \\
\hline F17A20 & B23767* & F13P3 & AL087187* and AL087186* \\
\hline F13G14 & AL086828* and AL086827* & F15P18 & none \\
\hline F13018 & AL087175* and AL087174* & F28G19 & B25637* \\
\hline F24A15 & AQ011599* and B98125* and B98124* & F5E5 & AL082645* and AL082644* \\
\hline F25C4 & B23065* and B23064* & F5K9 & AL082841* and AL082840* \\
\hline F3A6 & none & F5E12 & AL082657* and AL082656* \\
\hline T32E20 & AC020646 & F21N15 & B61476* \\
\hline F2007 & B22665 and B22664* & F5L13 & AL082880* and AL082879* \\
\hline F16K23 & B97718* and B25748* and B23714* & F17L20 & B23905* and B23904* \\
\hline F8L2 & AL084364* and AL084363* & F14K1 & AL087586* and AL087585* \\
\hline F6C2 & AL083089* and AL083088* & F16J4 & B98573* \\
\hline F1H9 & AL080601* and AL080600* & F15M18 & none \\
\hline F27O22 & AQ011488* and B25518* & F14I16 & AL087535* and AL087534* \\
\hline F15P3 & B97045* and B22971* and B22970* & F21K13 & none \\
\hline F24O6 & B23041* & F16E23 & none \\
\hline F20P22 & AQ251396* and AQ251287* & F1405 & AL087748* and AL087747* \\
\hline F2C1 & AL081001* and AL081000* & F20G9 & B22553* and B22552* \\
\hline F15F11 & B23547* & F2719 & AQ011427* and B25464* \\
\hline F1F24 & AL080554* and AL080553* & F1118 & AL080658* \\
\hline F6J1 & AL083277* & F16C8 & B98552* and B22985* \\
\hline F26H20 & none & F2001 & B22655* \\
\hline F16J24 & none & F13H12 & AL086902* and AL086901* \\
\hline F19M18 & AQ011034* & F13B12 & none \\
\hline F20K7 & AQ251392* and AQ251282* & F27D7 & none \\
\hline F12G6 & AC007781† & F21B16 & B24625* \\
\hline F23F21 & none & F8F1 & AL084170* and AL084169* \\
\hline F28G17 & none & F9A12 & none \\
\hline F28G13 & none & F22I11 & B24855* and B24854* \\
\hline F27A14 & AQ251243* and AQ251137* & F16N17 & B25774* and B23737* \\
\hline F28G9 & B23346* and B23345* & F17H11 & B23833* \\
\hline F21F1 & B95997* and B22704* & F15A12 & none \\
\hline F16K24 & B97719* and B25749* & F20M21 & none \\
\hline F20C15 & AQ251381* and AQ251272* & F19E19 & B24191* \\
\hline F9G18 & AL084752* and AL084751* and B26534* & F25015 & B25275* and B25274* \\
\hline F10G23 & AL085268* and AL085267* & F27J13 & AQ011435* and B25468* \\
\hline \multirow[t]{2}{*}{F22016} & AQ250131* and AQ249777* and B96460* and & F15J7 & B22603* and B22602* \\
\hline & B96459* and B12588* and B08235* & F13J1 & AL086961* and AL086960* \\
\hline F23P24 & AQ011594* and B98116* and B98115* & F9D18 & AC007183† \\
\hline F24A9 & AQ010513* and B96134* and B96133* & F9M8 & AL084923* \\
\hline F26B21 & B25313* & F5I9 & AL082775* \\
\hline F28019 & B25706* & F3L22 & AL081822* and AL081821* \\
\hline F19J21 & AQ011011* & F5P23 & AL083021* \\
\hline F28E13 & B25592* and B25591* & F10023 & AL085527* and AL085526* \\
\hline F24G19 & B28443* & F20.11 & AQ010790* and B22625* \\
\hline F15H9 & B22577* and B22576* & F7K22 & AL083828* and AL083827* \\
\hline F28A11 & B25540* & F6, 23 & AL083299* and AL083298* \\
\hline F26N17 & B25374* & T4121 & AC022456 \(\dagger\) \\
\hline F15J24 & AQ011049* and B97568* & F1I6 & AL080639* and AL080638* \\
\hline F25J4 & B23109* and B23108* & F28B8 & AQ010984* \\
\hline F28P16 & AQ011538* and B25713* & F20B1 & B22488* and B22487* \\
\hline F12E11 & AL086267* and AL086266* & F26F14 & None \\
\hline F28G8 & B23344* and B23343* & F18C13 & B28362* \\
\hline F22L3 & B22875* and B22874* & F20K13 & AQ011116* \({ }^{\text {and B24519*}}\) \\
\hline F25C2 & B23063* & F10K7 & AL085379* \\
\hline F22B13 & B29456* and B28433* & F5A13 & AC008046 \\
\hline F13114 & AL086945* and AL086944* & \begin{tabular}{l}
F12B23 \\
F9121
\end{tabular} & \begin{tabular}{l}
AL086177* \\
AL084816* and AL084815*
\end{tabular} \\
\hline F11L16 & AL085969* and AL085968* & F17I20 & B23850* and B23849* \\
\hline F25B1 & B23057* and B23056* & CENTROMERE 2 & \\
\hline F26H18 & AQ010880* and AQ010879* & & \\
\hline F20P4 & B22672* & T13E11 & AC006217 \\
\hline F11K13 & AL085923* and AL085922* & F27C21 & AC006527 \\
\hline F19G5 & AQ251104* & F9A16 & AC007662 \\
\hline F15F7 & B22200* and B22199* & T5M2 & AC007730 \\
\hline F16C4 & B98549* and B98548* and B23399* & T17H1 & AC007143 \\
\hline
\end{tabular}

TABLE 5-continued
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} & \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} \\
\hline \multicolumn{2}{|r|}{GENBANK ACCESSION \#} & \multicolumn{2}{|r|}{GENBANK ACCESSION \#} \\
\hline T18C6 & AC007729 & T2419 & B67385* and B67384* and B20450* and B20419* \\
\hline T5E7 & AC006225 & T2405 & B67422* and B20454* \\
\hline T12J2 & AC004483 & T25C15 & AQ225286* and B67937* and B20460* \\
\hline \multirow[t]{2}{*}{GAP} & & T25F15 & AC009529 \(\dagger\) \\
\hline & & F23H6 & AC011621 \\
\hline T14C8 & AC006219 & T26J6 & B76816* and B76815* \\
\hline F7B19 & AC006586 & T28G19 & AC009328 \(\dagger\) \\
\hline T15D9 & AC007120 & GAP & \\
\hline \multicolumn{4}{|l|}{CENTROMERE 3} \\
\hline & & F6K8 & AL083310* and AL083309* \\
\hline F6H5 & AL083229* and AL083228* & F25M24 & B25253* \\
\hline F6G13 & AL083215* and AL083214* & F25F9 & B23085* \\
\hline F21G23 & B97922* and B24664* & F28F20 & B25620* \\
\hline F3J24 & B19129* and B12732* & F16C22 & B97681* and B23646* \\
\hline F2517 & AQ010570* and B23104* & F24M20 & B25096* \\
\hline F14O12 & B22064* and B22004* & F27B5 & B23236** and B23235* \\
\hline F1O10 & AL080869* and AL080868* & F21A14 & AC016828 \(\dagger\) \\
\hline F11N16 & AL086039* and AL086038* & T4P3 & AC009992 \\
\hline F19M19 & none & T14A11 & AC012327 \\
\hline F3O1 & AL081890* and AL081889* & T26P13 & AC009261 \\
\hline \multirow[t]{2}{*}{F1D9} & B21602* and B21631* and AQ248831* and & T18B3 & AC011624 \(\dagger\) \\
\hline & AL080449* and AL080450* & F12P5 & AL086610* and AL086609* \\
\hline F8F8 & none & F22N7 & AQ251226* \\
\hline F23A15 & none & F21N12 & B24707* \\
\hline F2O1 & AL081375* and AL081374* & F7N6 & none \\
\hline F711 & AL083741* and AL083740* & F12E16 & none \\
\hline F25D24 & B25156* and B25155* & F21J13 & AQ251199* and AQ011170* \\
\hline F10L19 & AL085429* and AL085428* & F25M18 & B25251* \\
\hline F28J14 & B25860* and B25859* & F9B18 & AL084600* and AL084599* \\
\hline F17D19 & B23796* and B23795* & F20J23 & AQ011113* and B24515* \\
\hline F27011 & B25508* & F1G6 & AL080561* and AL080560* and AQ251107* \\
\hline F27P23 & AQ011498* and B25537* & F7O4 & AL083940* and AL083939* \\
\hline F11N11 & B28323* and B28322* & F1D4 & AL080441* and AL080440* and B22163* \\
\hline F16I17 & B97693* & F19P10 & AQ251376* and AQ251268* \\
\hline \multirow[t]{2}{*}{GAP} & & F4P10 & AL082481* and AL082480* \\
\hline & & F9123 & AL084818* and AL084817* \\
\hline F1L15 & AL080750* and AL080749* & F3118 & AL081711* and AL081710* \\
\hline F2A9 & AL080941* and AL080940* & F13K14 & AL087018* and AL087017* \\
\hline F2D1 & AL081028* and AL081027* & F13K8 & AL087008* and AL087007* \\
\hline F2D22 & AL081046* and AL081045* & F13J3 & AL086965* and AL086964* \\
\hline F2O8 & AL081387* and AL081386* & F20F5 & B22533* \\
\hline F2014 & AL081393* and AL081392* & F1K22 & AL080723* and AL080722* \\
\hline F3G24 & none & F3H19 & AL081679* and AL081678* \\
\hline F9A7 & AL084546* and AL084545* & F23M13 & B98039** \\
\hline F10N9 & AL085473* and AL085472* & F23N10 & B98054* and B98053* \\
\hline \multirow[t]{2}{*}{T1115} & AL088212* and AL088211* and & F8M14 & AL084410* and AL084409* \\
\hline & B19832* and B19707* & F7C16 & AL083567* and AL083566* \\
\hline \multirow[t]{2}{*}{T1J6} & AL088233* and AL088232* \({ }^{\text {and }}\) & F26D5 & none \\
\hline & B19834* and B19709* & F10J2 & AL085340* \\
\hline T2G13 & AL088663* \({ }^{\text {and AL088662* }}\) & F16L6 & B23418* \\
\hline \multirow[t]{3}{*}{T6D10} & AL090573* and AL090572* and & F26P16 & B25396* and B25395* \\
\hline & B27383* and B27382* & GAP & \\
\hline & and B19977* and B19790* & & \\
\hline \multirow[t]{2}{*}{T7K14} & AL091315* \({ }^{\text {and B27422* }}\) and & F28D17 & none \\
\hline & B27421* and B20115* and B19895* & F27E12 & AQ251248* and AQ251142* and AQ011376* and AQ011375* \\
\hline T8012 & B21405* and B21348* & F4M19 & AL082399* and AL082398* \\
\hline \multirow[t]{2}{*}{T9J24} & AL092268* and AL092267* and & T27B3 & AL137079 \\
\hline & B20132* and B19911* & F26B15 & AL138645 \\
\hline T9K2 & AL092269* \({ }^{\text {and B20133* }}\) and B19912* & T14K23 & AL132909 \\
\hline \multirow[t]{2}{*}{T10F10} & AL092618* and AL092617* and & T32A11 & AL138653 \\
\hline & B20076* and B19918* & F3O21 & AL081924* and AL081923* \\
\hline \multirow[t]{2}{*}{T15N4} & AL095818* and AL095817* and & F3114 & AL081705* and AL081704* \\
\hline & B20044* and B19856* & F20C5 & AQ251382* and AQ251273* \\
\hline T16C1 & AL095981* and AL095980* & F14B7 & AL087267* and AL087266* \\
\hline T16F22 & AL096108* & F14K13 & AL087604* and AL087603* \\
\hline \multirow[t]{2}{*}{T16M9} & AL096289* and AL096288* and & F21L14 & B97938* and B24690* \\
\hline & B20053* and B19865* & F23O12 & B98080* and B98079* \\
\hline T18P7 & B60875* and B60874* & F14G1 & AL087450* and AL087449* \\
\hline T21124 & B62398* and B20320* and B20288* & F19I17 & AQ225333* \\
\hline T22E7 & B61351* and B20426* and B20394* & F7C3 & AL083548* and AL083547* \\
\hline
\end{tabular}

TABLE 5-continued
TABLE 5-continued
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} & \multicolumn{2}{|r|}{BAC clones residing within A. thaliana centromeres and associated Genbank accession numbers} \\
\hline & GENBANK ACCESSION \# & & GENBANK ACCESSION \# \\
\hline F4111 & AL082258* and AL082257* & F25E10 & none \\
\hline F7J17 & AL083789* and AL083788* & F24I23 & B25815* and B25066* \\
\hline F18L6 & B22332* and B22331* & T3D5 & AL089085* and AL089084* \\
\hline F16N18 & B25775* & T17G5 & AL096632* and AL096631* \\
\hline F28J6 & B23358* & F20C16 & B24433* \\
\hline F7C6 & AL083554* and AL083553* & F27M22 & none \\
\hline F28C1 & B23304* and B23303* & F27K1 & B23257* \\
\hline F18117 & B24063* & F21N24 & B61479* and B24716* \\
\hline F10P16 & AL085555* and AL085554* & F11F13 & AL085745* and AL085744* \\
\hline F24G17 & none & F5O15 & AL082980* and AL082979* \\
\hline F4K4 & AL082320* and AL082319* & F8G15 & AL084218* and AL084217* \\
\hline F26B15 & B25309* and B25308* & F9A17 & B12265* and B10646* \\
\hline F12P9 & AL086614* and AL086613* & F25E19 & none \\
\hline F8C3 & AL084070* and AL084069* & F24C5 & AQ010525* and AQ010524* \\
\hline F25D21 & B25153* and B25152* & F27L2 & AQ010708* and B96166* \\
\hline F27C7 & AQ010648* and AQ010647* and B23240* & F10A6 & AL085056* and AL085055* \\
\hline F23G13 & none & F23B23 & AQ011184* \\
\hline F15B16 & AL087857* and AL087856* & F1E3 & AL0804828* and AL080481* and B22171* and \\
\hline CENTROMERE 4 & & & B22170* \\
\hline & & GAP & \\
\hline T27D20 & AF076274 & & \\
\hline T19B17 & AF069441 & F20J17 & AQ011108* and B24510* \\
\hline T26N6 & AF076243 & F21022 & B24736* and B24735* \\
\hline F4H6 & AF074021 & F26021 & none \\
\hline T19J18 & AF149414 & F25M11 & B25245* and B25244* \\
\hline T4B21 & AF118223 & F18F8 & B26318* and B22290* \\
\hline T1J1 & AF128393 & F17M12 & B23910* \\
\hline T32N4 & AF162444 & F22M20 & B96430* \\
\hline C17L7 & none & F9K6 & AL084860* \\
\hline C6L9 & none & F13J20 & AL086992* and AL086991* \\
\hline T1J24 & AF147263 & F12E24 & AL086282* and AL086281 \\
\hline F6H8 & AF178045 & F26K6 & AQ010623* and AQ010622* \\
\hline F2112 & AF147261 & F12L5 & AL086477* and AL086476* \\
\hline GAP & & F11B6 & AL085606* and AL085605* \\
\hline F14G16 & AF147260 & F21M19 & B24701 \\
\hline F28D6 & AF147262 & F3N7 & AL081864* and AL081863* \\
\hline \multirow[t]{2}{*}{CENTROMERE 5} & & F10J11 & none \\
\hline & & F11F9 & AL085739* and AL085738* \\
\hline F3F24 & AC018632 & F3G22 & AL081647* and AL081646* \\
\hline F13K20 & AL087030* and AL087029* & F15E15 & B23535* \\
\hline F6L19 & none & F10K18 & AL085397* and AL085396* \\
\hline F23C8 & AC018928 & F5B20 & AL082559* and AL082558* \\
\hline F18F14 & B10562* & F1F13 & AL080535 \\
\hline F22D5 & AQ251214* & F26M13 & none \\
\hline F12P18 & none & F18D9 & B26307* and B22283* \\
\hline F6C14 & \multirow[t]{3}{*}{none} & F28D1 & B23312* \\
\hline \multirow[t]{2}{*}{GAP} & & F13C19 & AL086736* and AL086735* \\
\hline & & F28I1 & none \\
\hline F28N5 & B23377* & F26D1 & B23180* \\
\hline F2C13 & none & F16.J19 & B97706* and B25740* \\
\hline F12P1 & AL086602* & F2D20 & AL081042* \\
\hline F9K2 & AL084855* & F22N6 & B98712* and B98711* \\
\hline F23F23 & AL086757 & F27K3 & AQ010703* \\
\hline F13D7 & AL086757* and AL086756* & F19124 & AQ011005* \\
\hline F4C11 & AL082053* and AL082052* & F19J19 & none \\
\hline F28G24 & none & F24E18 & AQ011661* and AQ011660* and B25052* \\
\hline F7C4 & AL083550* and AL083549* & F27K6 & AQ010706* and AQ010705* and B96164* and \\
\hline F4B15 & AL082023* and AL082022* & & B23259* \\
\hline F19111 & AQ010999* & F25L7 & AQ010583* \\
\hline F3M22 & AL081848* and AL081847* & F28M5 & B23516* and B23371* \\
\hline F1M22 & AL080803* and AL080802* & F18L3 & none \\
\hline F21A22 & B24614* and B24613* & F14C23 & AL087326* and AL087325* \\
\hline F8P23 & AL084535* and AL084534* & F11C6 & AL085640* and AL085639* \\
\hline F17M7 & B22216* and B22215* & F6024 & AL083442* and AL083441* \\
\hline F21B21 & B24632* & F1M8 & AL080782* and AL080781* \\
\hline F17G22 & B23828* and B23827* & F16J23 & B97710* and B23709* \\
\hline F11P4 & AL086088* and AL086087* & F1809 & B98639* and B98638* and B98691* and B22349* \\
\hline F14J11 & AL087566* and AL087565* & F26L23 & AQ011321* and AQ011320* \\
\hline F7J19 & AL083792* and AL083791* & F3B13 & AL081491* and AL081490* \\
\hline F20G20 & none & F22D12 & B24795* \\
\hline F27H14 & AQ251251* and AQ251145* & F1G16 & none \\
\hline
\end{tabular}

TABLE 5-continued
\begin{tabular}{ll}
\hline & \begin{tabular}{c}
BAC clones residing within A. thaliana centromeres \\
and associated Genbank accession numbers
\end{tabular} \\
\cline { 2 - 2 } & \multicolumn{1}{c}{ GENBANK ACCESSION \# }
\end{tabular}

TABLE 5-continued
\begin{tabular}{ll}
\hline & \begin{tabular}{c}
BAC clones residing within A. thaliana centromeres \\
and associated Genbank accession numbers
\end{tabular} \\
\cline { 2 - 2 } & \multicolumn{1}{c}{ GENBANK ACCESSION \# }
\end{tabular}
* \(=\) partial (BAC end) sequence
\(\dagger=\) full sequence in more than one part

TABLE 6
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Clone \({ }^{\dagger}\)} & \multicolumn{2}{|l|}{Fully sequenced BAC clones containing A. thaliana centromere sequences*} & \multirow[b]{2}{*}{Comment} \\
\hline & \begin{tabular}{l}
Genbank \\
Accession No.
\end{tabular} & Date Of Availability \({ }^{*}\) & \\
\hline \multicolumn{4}{|l|}{CENTROMERE 1} \\
\hline F28L22 & AC007505 & Feb. 7, 2000; May 6, 1999 & \\
\hline T32E20 & AC020646 & \[
\begin{aligned}
& 10 \text { Feb. 2000; Jan. } 8 \text {, } \\
& 2000
\end{aligned}
\] & \\
\hline F12G6 & AC007781 & Jun. 11, 1999 & 3 unordererd pieces \\
\hline F9D18 & AC007183 & Mar. 30, 1999 & 6 unordererd pieces \\
\hline T4I21 & AC022456 & Feb. 28, 2000; Feb. 3, 2000 & \\
\hline F5A13 & AC008046 & Feb. 8, 2000; Jul. 14, 1999 & \\
\hline \multicolumn{4}{|l|}{CENTROMERE 2} \\
\hline T13E11 & AC006217 & Dec. 17, 1999; Dec. 24, 1998 & \\
\hline F27C21 & AC006527 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Feb. 5, } \\
& 1999
\end{aligned}
\] & \\
\hline F9A16 & AC007662 & Dec. 17, 1999; May
\[
27,1999
\] & \\
\hline T5M2 & AC007730 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Jun. 5, } \\
& 1999
\end{aligned}
\] & \\
\hline T17H1 & AC007143 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Mar. } 17 \text {, } \\
& 1999
\end{aligned}
\] & \\
\hline T18C6 & AC007729 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Jun. 5, } \\
& 1999
\end{aligned}
\] & \\
\hline T5E7 & AC006225 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Jun. 5, } \\
& 1999
\end{aligned}
\] & \\
\hline
\end{tabular}

TABLE 6-continued
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Clone \({ }^{\dagger}\)} & \multicolumn{2}{|l|}{Fully sequenced BAC clones containing A. thaliana centromere sequences*} & \multirow[b]{2}{*}{Comment} \\
\hline & Genbank Accession No. & Date Of Availability \({ }^{\text {\# }}\) & \\
\hline T12J2 & AC004483 & Dec. 17, 1999; Jul. 17,
\[
1999
\] & \\
\hline \multicolumn{4}{|l|}{GAP} \\
\hline T6C20 & AC005898 & \[
\begin{aligned}
& \text { Mar. 20, 1999; Dec. 7, } \\
& 1998
\end{aligned}
\] & 10 unordererd pieces \\
\hline T14C8 & AC006219 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Feb. 9, } \\
& 1999
\end{aligned}
\] & \\
\hline F7B19 & AC006586 & Dec. 17, 1999; Feb. 19, 1999 & \\
\hline T15D9 & AC007120 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Mar. 19, } \\
& 1999
\end{aligned}
\] & \\
\hline entire chromosome II & AE002093 & \[
\begin{aligned}
& \text { Dec. 17, 1999; Dec. 16, } \\
& 1999
\end{aligned}
\] & \\
\hline \multicolumn{4}{|l|}{CENTROMERE 3} \\
\hline T25F15 & AC009529 & \[
\begin{aligned}
& \text { Dec. 3, 1999; Aug. 16, } \\
& 1999
\end{aligned}
\] & 2 unordererd pieces \\
\hline F23H6 & AC011621 & \[
\begin{aligned}
& \text { Nov. 24, 1999; Oct. 8, } \\
& 1999
\end{aligned}
\] & \\
\hline T28G19 & AC009328 & Oct. 26, 1999; Aug. 16, 1999 & 16 unordererd pieces \\
\hline T18B3 & AC011624 & \[
\begin{aligned}
& \text { Nov. 18, 1999; Oct. } 8 \text {, } \\
& 1999
\end{aligned}
\] & 14 unordererd pieces \\
\hline T26P13 & AC009261 & \[
\begin{aligned}
& \text { Nov. 3, 1999; Aug. 10, } \\
& 1999
\end{aligned}
\] & \\
\hline T14A11 & AC012327 & \[
\begin{aligned}
& \text { Nov. 20, 1999; Oct. } 23 \text {, } \\
& 1999
\end{aligned}
\] & \\
\hline T4P3 & AC009992 & Oct. 21, 1999; Sep. 9 , 1999 & \\
\hline F21A14 & AC016828 & Jan. 13, 2000; Dec. 3,
\[
1999
\] & 6 unordererd pieces \\
\hline T27B3 & AL137079 & Jan. 21, 2000 & \\
\hline F26B15 & AL138645 & Feb. 2, 2000 & \\
\hline T14K23 & AL132909 & Nov. 12, 1999 & \\
\hline T32A11 & AL138653 & Feb. 2, 2000 & \\
\hline \multicolumn{4}{|l|}{CHROMOSOME 4} \\
\hline T27D20 & AF076274 & Aug. 3, 1998 & \\
\hline T19B17 & AF069441 & Jun. 3, 1999 & \\
\hline T26N6 & AF076243 & May 11, 1999 & \\
\hline F4H6 & AF074021 & May 11, 1999 & \\
\hline T19J18 & AF149414 & Aug. 13, 1999 & \\
\hline T4B21 & AF118223 & \[
\begin{aligned}
& \text { Aug. 10, 1999; Jan. 7, } \\
& 1999
\end{aligned}
\] & \\
\hline T1J1 & AF128393 & Nov. 12, 1999 & \\
\hline T32N4 & AF162444 & Aug. 13, 1999 & \\
\hline C17L7 & AC012392 & Oct. 27, 1999 & \\
\hline C6L9 & AC012477 & Nov. 6, 1999 & \\
\hline T1J24 & AF147263 & Aug. 13, 1999 & \\
\hline F6H8 & AF178045 & Aug. 19, 1999 & \\
\hline F21I2 & AF147261 & May 11, 1999 & \\
\hline \multicolumn{4}{|l|}{GAP} \\
\hline F14G16 & AF147260 & Aug. 13, 1999 & \\
\hline F28D6 & AF147262 & Aug. 13, 1999 & \\
\hline entire chromosome IV & http://websvr.mips. biochem.mpg.de/proj/ thal/chr4_announcement/ & Dec. 17, 1999 & \\
\hline \multicolumn{4}{|l|}{CENTROMERE 5} \\
\hline F3F24 & AC018632 & Dec. 15, 1999 & \\
\hline F23C8 & AC018928 & Dec. 24, 1999 & \\
\hline
\end{tabular}
*The sequences for clones from centromeres 1, 3 and 5 are given in SEQ ID NOS: 184-208. Sequences for contigs including the centromere 2 and 4 clones are given by SEQ ID NOS: 209-212.
\({ }^{\dagger}\) BAC clone number designations are given. The centromere number origin of the clone is as indicated. "Where a second date is given, the second date indicates the date for the revised sequence.

\author{
Example 7 \\ Constructing BAC Vectors for Testing Centromere Function
}
[0404] A BAC clone may be retrofitting with one or more plant telomeres and selectable markers together with the DNA elements necessary for Agrobacterium transformation (FIG. 9). This method will provide a means to deliver any BAC clone into plant cells and to test it for centromere function.
[0405] The method works in the following way. The conversion vector contains a retrofitting cassette. The retrofitting cassette is flanked by \(\mathrm{Tn} 10, \mathrm{Tn} 5, \mathrm{Tn} 7, \mathrm{Mu}\) or other transposable elements and contains an origin of replication and a selectable marker for Agrobacterium, a plant telomere array followed by T-DNA right and left borders followed by a second plant telomere array and a plant selectable marker (FIG. 9). The conversion vector is transformed into an \(E\). coli strain carrying the target BAC. The transposable elements flanking the retrofitting cassette then mediate transposition of the cassette randomly into the BAC clone. The retrofitted BAC clone can now be transformed into an appropriate strain of Agrobacterium and then into plant cells where it can be tested for high fidelity meiotic and mitotic transmission which would indicate that the clone contained a complete functional plant centromere.

\section*{Example 8}

\section*{Construction of Plant Minichromosomes}
[0406] Minichromosomes are constructed by combining the previously isolated essential chromosomal elements. Exemplary minichromosome vectors include those designed to be "shuttle vectors"; i.e., they can be maintained in a convenient host (such as E. coli, Agrobacterium or yeast) as well as plant cells.
[0407] A. General Techniques for Minichromosome Construction
[0408] A minichromosome can be maintained in E. coli or other bacterial cells as a circular molecule by placing a removable stuffer fragment between the telomeric sequence blocks. The stuffer fragment is a dispensable DNA sequence, bordered by unique restriction sites, which can be removed by restriction digestion of the circular DNAs to create linear molecules with telomeric ends. The linear minichromosome can then be isolated by, for example, gel electrophoresis. In addition to the stuffer fragment and the plant telomeres, the minichromosome contains a replication origin and selectable marker that can function in plants to allow the circular molecules to be maintained in bacterial cells. The minichromosomes also include a plant selectable marker, a plant centromere, and a plant ARS to allow replication and maintenance of the DNA molecules in plant cells. Finally, the minichromosome includes several unique restriction sites where additional DNA sequence inserts can be cloned. The most expeditious method of physically constructing such a minichromosome, i.e., ligating the various essential elements together for example, will be apparent to those of ordinary skill in this art.
[0409] A number of minichromosome vectors have been designed by the current inventors and are disclosed herein for the purpose of illustration (FIGS. 7A-7H). These vectors are not limiting however, as it will be apparent to those of skill in the art that many changes and alterations may be made and still obtain a functional vector.
[0410] B. Modified Technique for Minichromosome Construction
[0411] A two step method was developed for construction of minichromosomes, which allows adding essential elements to BAC clones containing centromeric DNA. These procedures can take place in vivo, eliminating problems of chromosome breakage that often happen in the test tube. The details and advantages of the techniques are as follows:
[0412] 1.) One plasmid can be created that contains markers, origins and border sequences for Agrobacterium transfer, markers for selection and screening in plants, plant telomeres, and a loxP site or other site useful for site-specific recombination in vivo or in vitro. The second plasmid can be an existing BAC clone, isolated from the available genomic libraries (FIG. 11A).
[0413] 2.) The two plasmids are mixed, either within a single \(E\). coli cell, or in a test tube, and the site-specific recombinase cre is introduced. This will cause the two plasmids to fuse at the loxP sites (FIG. 11B).
[0414] 3.) If deemed necessary, useful restriction sites (AseI/PacI or Not I) are included to remove excess material. (for example other selectable markers or replication origins)
[0415] 4.) Variations include vectors with or without a Kan® gene (FIGS. 11B, 1 IC), with or without a LAT52 GUS gene, with a LAT52 GFP gene, and with a GUS gene under the control of other plant promoters. (FIGS. 11C, 11D and 11E).
[0416] C. Method for Preparation of Stable Non-Integrated Minichromosomes
[0417] A technique has been developed to ensure that minichromosomes do no integrate into the host genome (FIG. 11F). In particular, minichromosomes must be maintained as distinct elements separate from the host chromosomes. To ensure that the introduced minichromosome does not integrate, the inventors envision a variety that would encode a lethal plant gene (such as diptheria toxin or any other gene product that, when expressed, causes lethality in plants). This gene could be located between the right Agrobacterium border and the telomere. Minichromosomes that enter a plant nucleus and integrate into a host chromosome would result in lethality. However, if the minichromosome remains separate, and further, if the ends of this construct are degraded up to the telomeres, then the lethal gene would be removed and the cells would survive.

\section*{Example 9}

\section*{In Vivo Screen of Centromere Activity by the Analysis of Dicentric Chromosomes}
[0418] A method was designed for the screening of centromere activity (FIG. 10). In the method, plants are first transformed with binary BAC clones that contain DNA from the genetically-defined centromeric regions. By allowing the DNA to integrate into the host chromosomes, it is expected
that this integration will result in a chromosome with two centromeres. This is an unstable situation which often leads to chromosome breakage, as single chromosomes harboring two or more functional centromeres will often times break at junctions between the two centromeres when pulled towards opposite poles during mitotic and meiotic events. This can lead to severe growth defects and inviable progeny when genes important or essentially for cellular and developmental processes are disrupted by the breakage event. Therefore, regions having centromere function could be identified by looking for clones that exhibit, upon introduction into a host plant, any of the following predicted properties: reduced efficiencies of transformation; causation of genetic instability when integrated into natural chromosomes such that the transformed plants show aberrant sectors and increased lethality; a difficulty to maintain, particularly when the transformed plants are grown under conditions that do not select for maintenance of the transgenes; a tendency to integrate into the genome at the distal tips of chromosomes or at the centromeric regions. In contrast, clones comprising non-centromeric DNA will be expected to integrate in a more random pattern. Confirmation of a resulting distribution and pattern of integration can be determined by sequencing the ends of the inserted DNA.

BiBAC constructs containing non-centromeric DNA also are used for transformation. BiBACs harboring sequences with centromere function will result in forming dicentric chromosomes. Progeny from transformed plants will be analyzed for nonviability and gross morphological differences that can be attributed to chromosomal breaks due to the formation of dicentric chromosomes (FIG. 10, step 3). Non-centromere sequences are expected to show little phenotypic differences from wildtype plants

\section*{Example 10}

\section*{Refined Centromere Mapping with Treatment for Increased Recombination}
[0420] In order to achieve a more refined map position for the centromeres in Arabidopsis thaliana, various chemical and environmental treatments were used to stimulate recombination. The treatments were used on pollen donors in crosses performed to create the tetrad sets of plants (see EXAMPLE 2). Pollen donor plants were planted individually in 1 inch square pots and grown under 24 hr light in a growth room until flowering. Flowering plants were then dipped in one of the following solutions and watered with 50 ml of the same solution.

TABLE 7
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{COMPOUND} & \multicolumn{2}{|r|}{Chemical Treatment Agents.} \\
\hline & SOURCE & CONCENTRATION RANGE \\
\hline Mitomycin C: & Sigma & from about 0.1 to about \(30 \mathrm{mg} / \mathrm{L}\), and preferably, about \(10 \mathrm{mg} / \mathrm{L}\) \\
\hline 5-aza-2'-deoxycytidine: & Sigma & from about \(0.1 \mathrm{mg} / \mathrm{L}\) to about \(50 \mathrm{mg} / \mathrm{L}\), and preferably, about \(25 \mathrm{mg} / \mathrm{L}\) \\
\hline n-butyric acid (a.k.a. sodium butyrate): & Sigma & from about 0.1 mM to about 40 mM , and preferably, about 20 mM \\
\hline Trichostatin A: & Sigma & from about \(0.1 \mu \mathrm{M}\) to about \(30 \mu \mathrm{M}\), and preferably, about \(10 \mu \mathrm{M}\) \\
\hline Methanesulfonic acid methyl ester: & Sigma & from about 0.1 ppm to about 200 ppm , and preferably, about 75 ppm \\
\hline Methanesulfonic acid ethyl ester: & Sigma & from about \(0.01 \%\) to about \(0.2 \%\), and preferably, about \(0.05 \%\) \\
\hline 3-methoxybenzamide: & Aldrich Chemical Co. & from about 0.1 mM to about 10 mM , and preferably, about 2 mM \\
\hline Zeocin: & Invitrogen & from about \(0.1 \mu \mathrm{~g} / \mathrm{ml}\) to about \(5 \mu \mathrm{~g} / \mathrm{ml}\), and preferably, about \(1 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline n -nitroso-n-ethylurea: & Sigma & from about \(1 \mu \mathrm{M}\) to about \(200 \mu \mathrm{M}\), and preferably, about \(100 \mu \mathrm{M}\) \\
\hline cis-diamminedichloro-platinum (II): & Aldrich Chemical Co. & from about \(0.1 \mu \mathrm{~g} / \mathrm{ml}\) to about \(60 \mu \mathrm{~g} / \mathrm{ml}\), and preferably, about \(20 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline Dimethylnitrosamine & Sigma & from about \(1 \mu \mathrm{M}\) to about 1 mM \\
\hline Bleomycin & Sigma & from about \(0.1 \mathrm{mg} / \mathrm{L}\) to about \(30 \mathrm{mg} / \mathrm{L}\) \\
\hline Aflotoxin B1 & Sigma & from about \(8 \mu \mathrm{~g} / \mathrm{mL}\) to about \(800 \mu \mathrm{~g} / \mathrm{mL}\) \\
\hline 8-methoxypsoralen & Sigma & From about 0.01 mM to about 50 mM \\
\hline Cyclophosphamide & Sigma & from about \(.001 \mathrm{mg} / \mathrm{L}\) to about \(500 \mathrm{mg} / \mathrm{L}\) \\
\hline Hydroxyurea & Sigma & from about 1 mM to about 0.01 mM \\
\hline Actinomycin D & Sigma & from about \(0.0001 \%\) to about \(0.1 \%\) solution \\
\hline Diepoxybutane & Sigma & from about \(0.001 \%\) to about \(1.0 \%\) solution \\
\hline Caffeine & Sigma & from about \(0.01 \%\) to about \(5.0 \%\) solution \\
\hline
\end{tabular}
[0419] The screen is performed by identifying clones of greater than 100 kb that encode centromere DNA in a BiBAC library (binary bacterial artificial chromosomes) (Hamilton, 1997). This is done by screening filters comprising a BiBAC genomic library for clones that encode DNA from the centromeres (FIG. 10, step 1). The BiBAC vector is used because it can contain large inserts of Arabidopsis genomic material and also encodes the binary sequences needed for Agrobacterium-mediated transformation. The centromere sequence containing BiBAC vectors are then directly integrated into chromosomes by Agrobacteriummediated transformation (FIG. 10, step 2). As a control,
[0421] Following treatment, plants were then returned to the growth room and grown under standard conditions for \(2-5\) days. Pollen was then collected from newly opened flowers and used to pollinate receptive stigmas as described in Example 2. Then the pollen donor plants were again treated as described above and used in another round of pollination. Pollen donor plants were typically subjected to 5-10 rounds of treatment and pollen collection.
[0422] Treatments were also performed using non-chemical agents. As above, the treatments were used to achieve more refined map positions for the centromeres in Arabidopsis by stimulating recombination in additional pollen donor plants. The treatments were as follows:

TABLE 8
\begin{tabular}{ll}
\hline & \begin{tabular}{l}
Non-Chemical Treatment Agents. \\
\cline { 2 - 2 } TREATMENT
\end{tabular} \\
\hline TREATMENT PARAMETERS
\end{tabular}
[0423] Heat shock treatments were performed by placing the pot containing the pollen donor plants in shallow dishes filled with water (to prevent desiccation), and placing the plant-containing dishes in incubators of the appropriate temperature. UV exposure was performed by placing the pollen donor plants in a BioRad UV chamber and illuminating the plants at the appropriate wave length for varying amounts of time. Both the UV and heat shock plants were subjected to several rounds of treatment and pollen collection. Plants exposed to a gamma radiation source (Cobalt60) were treated only once and then discarded to prevent the accumulation of deleterious chromosomal rearrangements.
[0424] Following treatment, plants were then returned to the growth room and grown under standard conditions for 2-5 days. Pollen was then collected from newly opened flowers and used to pollinate receptive stigmas as described in Example 2. Then the pollen donor plants were again treated as described above and used in another round of pollination. Pollen donor plants were typically subjected to \(5-10\) rounds of treatment and pollen collection. The results are shown at Table 9 below.

TABLE 9
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{l}{ Results of Recombination After Treatments } \\
\cline { 2 - 4 } & & \\
Treatment & Tetrads & Obs & \(\operatorname{Exp}\) & \((\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}=\mathrm{X}^{2}\) \\
\hline n-butyric acid & 43 & 11 & 2.5 & \(28.9^{* *}\) \\
UV exposure 350 nm & 57 & 12 & 3.2 & \(24.2^{* *}\) \\
Methanesulfonic acid ethyl & 10 & \(5^{*}\) & 0.6 & \(32.2^{* *}\) \\
ester & & & & \\
5-aza-2'-deoxycytidine & 68 & 16 & 3.9 & \(37.5^{* *}\) \\
heat shock & 23 & 7 & 1.3 & \(25.0^{* *}\) \\
3-methoxybenzamide & 44 & 8 & 2.5 & \(12.1^{* *}\) \\
Zeocin & 106 & 14 & 6.0 & \(10.6^{* *}\) \\
Untreated & 384 & 22 & \(\mathrm{~N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
**indicates significant by \(\mathrm{X}^{2}(\mathrm{df}=1)\)

\section*{Example 11}

\section*{Facilitation of Genetic Introgression}
[0425] It is also contemplated by the inventors that one could employ techniques or treatments which stimulate recombination to facilitate introgression. Introgression describes a breeding technique whereby one or more desired traits is transferred into one strain (A) from another (B), the trait is then isolated in the genetic background of the desired strain (A) by a series of backcrosses to the same strain (A). The number of backcrosses required to isolate the desired trait in the desired genetic background is dependent on the frequency of recombination in each backcross.
[0426] Backcrossing transfers a specific desirable trait from one source to an inbred or other plant that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (A) (recurrent parent) to a donor inbred (non-recurrent parent), which carries the appropriate gene(s) for the trait in question, for example, a construct prepared in accordance with the current invention. The progeny of this cross first are selected in the resultant progeny for the desired trait to be transferred from the non-recurrent parent, then the selected progeny are mated back to the superior recurrent parent (A). After five or more backcross generations with selection for the desired trait, the progeny are hemizygous for loci controlling the characteristic being transferred, but are like the superior parent for most or almost all other genes. The last backcross generation would be selfed to give progeny which are pure breeding for the gene(s) being transferred, i.e. one or more transformation events.
[0427] Therefore, through a series a breeding manipulations, a selected transgene may be moved from one line into an entirely different line without the need for further recombinant manipulation. Transgenes are valuable in that they typically behave genetically as any other gene and can be manipulated by breeding techniques in a manner identical to any other corn gene. Therefore, one may produce inbred plants which are true lj breeding for one or more transgenes. By crossing different inbred plants, one may produce a large number of different hybrids with different combinations of transgenes. In this way, plants may be produced which have the desirable agronomic properties frequently associated with hybrids ("hybrid vigor"), as well as the desirable characteristics imparted by one or more transgene(s).
[0428] Breeding also can be used to transfer an entire minichromosome from one plant to another plant. For example, by crossing a first plant having a minichromosome to a second plant lacking the minichromosome, progeny of any generation of this cross may be obtained having the minichromosome, or any additional number of desired minichromosomes. Through a series of backcrosses, a plant may be obtained that has the genetic background of the second plant but has the minichromosome from the first plant.
[0429] All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

\section*{REFERENCES}
[0430] The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
[0431] Abdullah et al., Biotechnology, 4:1087, 1986.
[0432] Abel et al., Science, 232:738-743, 1986.
[0433] Alfenito et al., "Molecular characterization of a maize B chromosome centric sequence,"Genetics, 135:589-597, 1993.
[0434] Araki et al., "Site-specific recombinase, R, encoded by yeast plasmid pSR1,"J. Mol. Biol. 225:2537, 1992.
[0435] Barkai-Golan et al., Arch. Microbiol., 116:119124, 1978.
[0436] Baum et al., "The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere, "Mol. Bio. Cell., 5:747-761, 1994.
[0437] Bell et al., "Assignment of 30 microsatellite loci to the linkage map of Arabidopsis, "Genomics, 19:137144, 1994.
[0438] Bernal-Lugo and Leopold, Plant Physiol., 98:1207-1210, 1992.
[0439] Berzal-Herranz et al., Genes and Devel., 6:129134, 1992.
[0440] Bevan et al., Nucleic Acids Research, 11 (2):369385, 1983.
[0441] Bevan et al., BioEssays 21:110, 1999.
[0442] Blackman et al., Plant Physiol., 100:225-230, 1992.
[0443] Bloom, "The centromere frontier Kinetochore components, microtubule-based motility, and the CENvalue paradox,"Cell, 73:621-624, 1993.
[0444] Bol et al., Annu. Rev. Phytopath., 28:113-138, 1990.
[0445] Bowler et al., Ann Rev. Plant Physiol., 43:83116, 1992.
[0446] Brandes et al., Chrom Res., 5:238, 1997.
[0447] Branson and Guss, Proceedings North Central Branch Entomological Society of America, 27:91-95, 1972.
[0448] Brisson et al., Nature, 310:511, 1984.
[0449] Broach et al., Gene, 8:121-133, 1979.
[0450] Broakaert et al., Science, 245:1100-1102, 1989.
[0451] Burke et al., Science, 236:806-812, 1987.
[0452] Bytebier et al., Proc. Natl Acad. Sci. USA, 84:5345, 1987.
[0453] Callis et al., Genes and Development, 1:1183, 1987.
[0454] Cambareri et al., Mol. Cell. Biol., 18:5465, 1998.
[0455] Campbell (ed.), In: Avermectin and Abamectin, 1989.
[0456] Campbell, "Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology," Vol. 13, Burden and Von Knippenberg, Eds. pp. 75-83, Elsevier, Amsterdam, 1984.
[0457] Capecchi, "High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,"Cell 22(2):479488, 1980.
[0458] Carbon et al, In: Recombinant Molecules: Impact on Science and Society (Raven Press), 335-378, 1977.
[0459] Carbon et al., "Centromere structure and function in budding and fission yeasts,"New Biologist, 2:10-19, 1990.
[0460] Carpenter et al., "The control of the distribution of meiotic exchange in Drosophilla melanogaster," Genetics, 101:81-90, 1982.
[0461] Cech et a1., "In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence,"Cell, 27:487496, 1981.
[0462] Chandler et a1., The Plant Cell, 1:1175-1183, 1989.
[0463] Chang et al, "Restriction fragment length polymorphism linkage map for Arabidopsis thaliana," Proc. Natl. Acad. Sci., USA, 85:6856-6860, 1988.
[0464] Charlesworth et al., Nature, 371:215, 1994.
[0465] Charlesworth, C. H. Langley, W. Stephan, 112:947, 1986
[0466] Chepko, Cell, 37:1053, 1984.
[0467] Choi et al., Plant Mol Biol Rep, 13:124-29, 1995.
[0468] Choo, K. H. A. Genome Res. 8:81, 1998.
[0469] Chowrira et al., "In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus selfprocessing fibozyme cassetyes,"J. Biol. Chem, 269:25856-25864, 1994.
[0470] Chu et al., "Separation of large DNA molecules by contour-clamped homogeneous electric fields"Science, 234, 1582-1585, 1986.
[0471] Chye et al., Plant Mol. Biol., 35:893, 1997.
[0472] Clapp, "Somatic gene therapy into hematopoietic cells. Current status and future implications,"Clin Perinatol. 20(1):155-168, 1993.
[0473] Clark, L. Curr. Op. Gen. \& Dev., 8:212, 1998
[0474] Clarke et al., "Isolation of a yeast centromere and construction of functional small circular chromosomes,"Nature, 287:504-509, 1980.
[0475] Cohen et al., Proc. Nat'l Acad. Sci. USA, 70:3240, 1973.
[0476] Conkling et al., Plant Physiol., 93:1203-1211, 1990.
[0477] Copenhaver and Pikaard, "RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4,"Plant J., 9:259-276, 1996.
[0478] Copenhaver et al., "Use of RFLPs larger than 100 kbp to map position and internal organization of
the nucleolus organizer region on chromosome 2 in Arabidopsis thaliana," Plant J. 7,273-286, 1995.
[0479] Copenhaver et al., Proc. Natl. Acad Sci. 95:247, 1998.
[0480] Copenhaver et al., Science. 286:2468-2474, 1999.
[0481] Copenhaver and Preuss, Plant Biology, 2:104108, 1999.
[0482] Coxson et al., Biotropica, 24:121-133, 1992.
[0483] Creusot et al., Plant Journal, 8:763-70, 1995
[0484] Cristou et al., Plant Physiol, 87:671-674, 1988.
[0485] Cuozzo et al., Bio/Technology, 6:549-553, 1988.
[0486] Curiel et al., "Adenovirus enhancement of trans-ferrin-polylysine-mediated gene delivery,"Proc. Natl. Acad. Sci. USA 88(19):8850-8854, 1991.
[0487] Curiel et al., high-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes,"Hum. Gen. Ther. 3(2):147-154, 1992.
[0488] Cutler et al., J. Plant Physiol., 135:351-354, 1989.
[0489] Czapla and Lang, J. Econ. Entomol., 83:24802485, 1990.
[0490] Davies et al., Plant Physiol, 93:588-595, 1990.
[0491] Dellaporta et al., In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988.
[0492] Depicker et a1., Plant Cell Reports, 7:63-66, 1988.
[0493] DiLaurenzio et al., Cell, 86:423-33, 1996
[0494] Dillon et al., Recombinant DNA Methodology, 1985.
[0495] Donahue et al., "The nucleotide sequence of the HIS4 region of yeast,"Gene April, 18(1):47-59, 1982.
[0496] Dure et al., Plant Molecular Biology, 12:475486, 1989.
[0497] Earnshaw et al., "Proteins of the inner and outer centromere of mitotic chromosomes,"Genome, 31:541552, 1989.
[0498] Earnshaw, "When is a centromere not a kinetochore?,"J. Cell Sci., 99:1-4, 1991.
[0499] Ebert et al., 84:5745-5749, Proc. Nat'lAcad. Sci USA, 1987
[0500] Ecker, J R, Genomics, 19:137-144
[0501] Ecker, Methods, 1:18694, 1990.
[0502] Eglitis et al., "Retroviral vectors for introduction of genes into mammalian cells,"Biotechniques 6(7):608614, 1988.
[0503] Eglitis et al., "Retroviral-mediated gene transfer into hemopoietic cells,"Avd Exp. Med Biol. 241:19-27, 1988.
[0504] Enomoto et al., "Mapping of the pin locus coding for a site-specific recombinase that causes flagellarphase variation in Escherichia coli K-12,"J. Bacteriol., 156:663-668, 1983.
[0505] Erdmann et al., J. Gen. Microbiology, 138:363368, 1992.
[0506] Ferrin et al., "Selective cleavage of human DNA: RecA-Assited Restriction Endonuclease (RARE) cleavage,"Science, 254:1494-1497, 1991.
[0507] Fitzpatrick, Gen. Engineering News, 22:7, 1993.
[0508] Fleig, U. et al., "Functional selection for the centromere DNA from yeast chromosome VIII,"Nuc. Acids. Res. 23:922-924, 1995.
[0509] Forster and Symons, "Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites,"Cell, 49:211-220, 1987.
[0510] Fraley et al., Biotechnology, 3:629, 1985.
[0511] Franz et al., Plant J., 13:867, 1998.
[0512] Fromm et al., Nature, 312:791-793, 1986.
[0513] Fromm et al., "Expression of genes transferred into monocot and dicot plant cells by electroporation, "Proc. Natl Acad. Sci. USA 82(17):5824-5828, 1985.
[0514] Fujimura et al., Plant Tissue Culture Leners, 2:74, 1985.
[0515] Fynan et al., "DNA vaccines: protective immunizations by parenteral, mucosal, and gene gun inoculations,"Proc. Nat'l Acad. Sci. USA 90(24):1147811482, 1993
[0516] Gatehouse et al., J. Sci. Food Agric., 35:373380, 1984.
[0517] Gefter et al., Somatic Cell Genet. 3:231-236, 1977.
[0518] Gerlach et al., "Construction of a plant disease resistance gene from the satellite RNA of tobacco rinspot virus,"Nature (London), 328:802-805, 1987.
[0519] Goding, "Monoclonal Antibodies: Principles and Practice," pp. 60-74. 2nd Edition,
[0520] w Academic Press, Orlando, Fla., 1986.
[0521] Golic and Lindquist, "The FLP recombinase of yeast catalyses site-specific recombination in the Drosophila genome," Cell, 59:499-509, 1989.
[0522] Goring et al., Proc. Nail. Acad. Sci. USA, 88:1770-1774, 1991.
[0523] Graham et al., "Transformation of rat cells by DNA of human adenovirnus 5," Virology 54(2):536539, 1973.
[0524] Grill and Somerville, Mol Gen Genet, 226:48490, 1991
[0525] Guerrero et al., Plant Molecular Biology, 15:1126, 1990.
[0526] Gupta et al., Proc. Nail. Acad ScE USA, 90:1629-1633, 1993.
[0527] Gutierrez-Marcos et al., Proc. Natl. Acad. Sci., USA, 93:13377, 1996.
[0528] Haaf et al., "Integration of human \(\alpha\)-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation,"Cell, 70:681-696, 1992.
[0529] Hadlaczky et al., "Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene,"Proc. Natl Acad. Sci. USA, 88:8106-8110, 1991.
[0530] Hamilton et al., "Stable transfer of intact high molecular weight DNA into plant chromosomes, "Proc Natl Acad Sci USA 93(18):9975-9, 1996
[0531] Hamilton," A binary-BAC system for plant transformation with high-molecular-weight DNA, "Gene, 4; 200(1-2): 107-16, 1997.
[0532] Hammock et al., Nature, 344:458-461, 1990.
[0533] Haseloff et al., Proc. Nat'l Acad. Sci. USA 94(6):2122-2127, 1997.
[0534] Hauge et al., Symp Soc Exp Biol, 45:45-56, 1991
[0535] Hegemann et al., "The centromere of budding yeast,"Bioassays, 15(7):451-460, 1993.
[0536] Hemenway et al., The EMBO J., 7:1273-1280, 1988.
[0537] Heslop-Harrison et al., Plant Cell, 11:31, 1999.
[0538] Hilder et al., Nature, 330:160-163, 1987.
[0539] Hinchee et al., Bio/technol., 6:915-922, 1988.
[0540] Hoess et al., Proc Natl Acad Sci, 79:3398-402, 1982
[0541] Hsiao et al., J. Proc. Nat'l Acad. Sci. USA, 76:3829-3833, 1979.
[0542] Hudspeth and Grula, Plant Mol. Biol., 12:579589, 1989.
[0543] Hwang et al., "Identification and map position of YAC clones comprising one-third of the Arabidopsis genome, The Plant Journal, 1:367-374, 1991.
[0544] Ikeda et al., J. Bacteriol., 169:5615-5621, 1987.
[0545] Ikuta et al., Bio/technol., 8:241-242, 1990.
[0546] Inohara et al., J. Biol. Chem., 266, 7333, 1991.
[0547] Johnston et al., "Gene gun transfection of animal cells and genetic immunization,"Methods Cell. Biol. 43(A):353-365, 1994.
[0548] Jones, Embo J., 4:2411-2418, 1985.
[0549] Jones, Mol Gen. Genet., 207:478, 1987.
[0550] Jorgensen et al., Mol. Gen. Genet., 207:471, 1987.
[0551] Jouanin et al., Mot Gene Genet, 201:3704, 1985
[0552] Joyce, "RNA evolution and the origins of life, "Nature, 338:217-244, 1989.
[0553] Kaasen et al., J. Bacteriology, 174:889-898, 1992.
[0554] Karpen, Curr. Op. Gen. \& Dev., 4:281, 1994.
[0555] Karsten et al., Botanica Marina, 35:11-19, 1992.
[0556] Katz et al., J. Gen. Microbiol., 129:2703-2714, 1983.
[0557] Kim and Cech, "Three dimensional model of the active site of the self-splicing rRNA precursor of Tetrahymena,'Proc. Natl. Acad. Sci. USA, 84:8788-8792, 1987.
[0558] Klee el al., Bio/Technology 3:637-642, 1985.
[0559] Klein el al., Nature, 327:70-73, 1987.
[0560] Klein et al., Proc. Nat'l Acad. Sci. USA, 85:8502-8505, 1988.
[0561] Kohler et al., Eur. J. Immunol. 6:511-519, 1976.
[0562] Kohler et al., Nature 256:495-497, 1975.
[0563] Konieczny et al., "A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers,"The Plant Journal, 4:403410, 1993.
[0564] Konieczny et al., Genetics, 127:801, 1991.
[0565] Koorneef et al., Genetica, 61:41-46, 1983.
[0566] Koorneef, "Linkage map of Arabidopsis thaliana \((2 \mathrm{n}=10)\) : In S J O'Brien, ed, Genetic Maps 1987: A compilation of linkage and restriction maps of genetically studied organisms, 724-745, 1987.
[0567] Koorneef, "The use of telotrisomics for centromere mapping in Arabidopsis thaliana (L.) Heynh, Genetica, 62:33-40, 1983.
[0568] Koster and Leopold, Plant Physiol., 88:829-832, 1988.
[0569] Kuby, J., Immunology 2nd Edition, W.H. Freeman \& Company, NY, 1994
[0570] Kuhn et al., Proc. Natl. Acad. Sci., 88:1306, 1991.
[0571] Kyte et al., A simple method for displaying the hydropathic character of a protein,"J. Mol. Biol. 157(1):105-132, 1982.
[0572] Lawton et al., Plant Mol. Biol. 9:315-324, 1987.
[0573] Lechner et al., "A 240 kd multisubunit protein complex, CBF3 is a major component of the budding yeast centromere,"Cell, 64:717-725, 1991.
[0574] Lee and Saier, J. of Bacteriol., 153685, 1983.
[0575] Levings, Science, 250:942-947, 1990.
[0576] Lewin, Genes II, John Wiley \& Sons, Publishers, N.Y., 1985.
[0577] Li et al., Plant Cell, 7:1599, 1995.
[0578] Li et al., Proc. Natl. Acad. Sci., 87:4580-4584, 1990.
[0579] Lieber and Strauss, "Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library."Mol. Cell Biol., 15: 540-551, 1995.
[0580] Lin, S., Kaul, S. Rounsley, T. P. Shea, M-I. Benito, C. D. Town, C. Y. Fujii, T. Mason, C.
[0581] L. Bowman, M. Barnstead, T. Feldblyum, C. R. Buell, K. A. Ketchum, C. M. Ronning, H. Koo, K. Moffat, L. Cronin, M. Shen, G. Pai, S. Van Aken, L., Umayarn L. Tallon, J. Gill, M. D. Adams, A. J. Carrera, T. H. Creasy, H. M. Goodman, C. R. Somerville, G. P. Copenhaver, D. Preuss, W. C. Nierman, O. White, J. A. Eisen, S. Salzberg, C. M. Fraser, and J. C. Venter, "Sequence and Analysis of Chromosome 2 of Arabidopsis thaliana," Nature 402: 761-768, 1999.
[0582] Liu, Y G., Shirano, Y., Fukaki, H., Yanai, Y., Tasaka, M., Tabata, S., Shibata, D, Proc. Natl Acad Sci USA 96: 653540, 1999.
[0583] Lohe and Hilliker, Curr. Op. Gen. \& Dev., 5:746, 1995.
[0584] Loomis et al, J. Expt. Zoology, 252:9-15, 1989.
[0585] Lorz et al., Mol. Gen Genet. 199:178, 1985.
[0586] Louis, E J, "Corrected sequence for the right telomere of Saccharomyces cerevisiae chromosome III," Yeast, 10(2):271-4, 1994.
[0587] Lu et al., "High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood,"J. Exp. Med. 178(6):2089-2096, 1993.
[0588] Maeser and Kahmann, "The GIN recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts,"Mol. Gen. Genet., 230:170-176, 1991.
[0589] Mahtani, M. M. and Willard, H. F. Genome Res. 8: 100, 1998.
[0590] Maloy, S. R., "Experimental Techniques in Bacterial Genetics" Jones and Bartlett Prokop, A., and Bajpai, R. K. "Recombinant DNA Technology I."Ann. N.Y. Acad Sci. vol. 646, 1991.
[0591] Maluszynaska et al., "Molecular cytogenetics of the genus Arabidopsis: In situ localization of rDNA sites, chromosome numbers and diversity in centromeric heterochromatin,"Annals Botany, 71:479-484, 1993.
[0592] Maluszynska et al., "Localization of tandemly repeated DNA sequences in Arabidopsis thaliana," Plant Jour., 1(2):159-166, 1991.
[0593] Maniatis et al., "Molecular Cloning: a Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982.
[0594] Marcotte et al., Nature, 335:454, 1988.
[0595] Mariani et al., Nature, 347:737-741, 1990
[0596] Marra et al., Nature Genet. 22:265, 1999.
[0597] Martinez-Zapater et al., Mol. Gen. Genet., 204:417423, 1986.
[0598] Matsuura et al., Journal of Bacteriology, 178:3374-6. 1996
[0599] McCabe et al., Biotechnology, 6:923, 1988.
[0600] Michel and Westhof, "Modeling of the threedimensional architecture of group I catalytic introns based on comparative sequence analysis,"J. Mol. Biol., 216:585-610, 1990.
[0601] Mortimer et al., "Genetic mapping in Saccharomyces cerevisiae," Life Cycle and Inheritance, In: The Molecular Biology of the Yeast Saccharomyces, 11-26, 1981.
[0602] Mozo et al., Mol Gen Genet, 258:562-70, 1998.
[0603] Mozo et al., Nature Genet. 22:271, 1999.
[0604] Mundy and Chua, The EMBO J., 7:2279-2286, 1988.
[0605] Murakami et al., Mol. Gen Genet., 205:42-50, 1986.
[0606] Murata et al., Plant J., 12:31, 1997.
[0607] Murdock et al., Phytochemistry, 29:85-89, 1990.
[0608] Murray et al., Nature, 305:189-193, 1983.
[0609] Mysore et al., "An arabidopsis histone H2A mutant is deficient in agrobacterium T-DNA integration,"Proc Natl Acad Sci USA 18; 97(2):948-53, 2000a
[0610] Mysore et al., "Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21(1):9-16, 2000 b.
[0611] Napoli, Lemieux, Jorgensen, "Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans,"Plant Cell, 2:279-289, 1990.
[0612] Negrutiu, I., Hinnisdaels, S., Cammaerts, D., Cherdshewasart, W., Gharti-Chhetri, G., and Jacobs, M. "Plant protoplasts as genetic tool: selectable markers for developmental studies,"Int. J. Dev. Biol. 36: 73-84, 1992.
[0613] Nester, Ann. Rev. Plant Phys., 35:387413, 1984.
[0614] Nicklas, "The forces that move chromosomes in mitosis,"Annu. Rev. Biophys. Biophys. Chem., 17:43139, 1988
[0615] Nussbaum et al., Proc. Nat'l Acad Sci USA, 73:1068, 1976.
[0616] Odell et al., Nature, 313:810-812, 1985.
[0617] Ohmori and Tomizawa, "Nucleotide sequence of the region required for maintenance of colicin E1 plasmid,"Mol Gen Genet, October 3; 176(2): 161-70, 1979.
[0618] Omirulleh et al., Plant Molecular Biology, 21:415428, 1993.
[0619] Ow et al., Science, 234:856-859, 1986.
[0620] Palukaitis et al., "Characterization of a viroid associated with avacado sunblotch disease,"Virology, 99:145-151, 1979.
[0621] Pelissier et al., Genetica, 97:141, 1996.
[0622] Pelissier et al., Plant Mol. Biol., 26:441, 1995.
[0623] Perkins, "The detection of linkage in tetrad analysis,"Genetics, 38, 187-197, 1953.
[0624] Perlak et al., Proc. Natl. Acad. Sci. USA, 88:3324-3328, 1991.
[0625] Perriman et al., "Extended target-site specificity for a hammerhead ribozyme,"Gene, 113:157-163, 1992.
[0626] Peterson et al., "Production of transgenic mice with yeast artificial chromosomes,"Trends Genet. 13: 61-66, 1997.
[0627] Phi-Van et al., Mol. Cell. Biol., 10:2302-2307. 1990.
[0628] Piatkowski et al., Plant Physiol., 94:1682-1688, 1990.
[0629] Potrykus et al., Mol. Gen. Genet., 199:183-188, 1985.
[0630] Prasher et al., Biochem. Biophys. Res. Commun., 126(3):1259-1268, 1985.
[0631] Preuss et al., "Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes, "Science, 264:1458, 1994.
[0632] Price et al., "Systematic relationships of Arabidopsis: a molecular and morpoholical perspective", in: Somerville, C. and Meyerowitz, E. (eds.) Arabidopsis, Cold Sping Harbor Press, NY, 1995.
[0633] Prody et al., "Autolytic processing of dimeric plant virus satellite RNA."Science, 231:1577-1580, 1986.
[0634] Prokop et al., Ann. N.Y. Acad. Sci. 646, 1991
[0635] Puechberty, J. Genomics 56:247, 1999
[0636] Rathore et al., Plant Mol Biol, 21:871-84, 1993
[0637] Rattner, "The structure of the mammalian centromere,'Bioassays, 13(2):51-56, 1991.
[0638] Ravatn et al.,Journal of Bacteriology, 180:550514, 1998.
[0639] Reed et al.,J. Gen. Microbiology, 130:1-4, 1984.
[0640] Reichel et al., Proc. Nat'l Acad. Sci. USA, 93 (12) p. 5888-5893. 1996
[0641] Reinhold-Hurek and Shub, "Self-splicing introns in tRNA genes of widely divergent bacteria," Nature, 357:173-176, 1992.
[0642] Rensburg et al, J. Plant Physiol., 141:188-194, 1993.
[0643] Richards and Ausubel, "Isolation of a higher eukaryotic telomere from Arabidopsis thaliana," Cell, 8:53(1):127-36, 1988.
[0644] Richards et al., "The centromere region of Arabidopsis thaliana chromosome 1 contains telomeresimilar sequences,"Nucleic Acids Research, 19(12):3351-3357, 1991.
[0645] Rieder, "The formation, structure and composition of the mammalian kinetochore and kinetochore fiber,"Int. Rev. Cytol, 79:1-58, 1982.
[0646] Rogers et al., Meth in Enzymol., 153:253-277, 1987.
[0647] Rosenberg et al, "RFLP subtraction: A method for making libraries of polymorphic markers,"Proc. Natl Acad Sci. USA, 91:6113-6117, 1994.
[0648] Round et al., Genome Res, 7, 1053, 1997.
[0649] Sauer, "Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae," Mol. and Cell. Biol., 7: 20872096, 1987.
[0650] Schmidt et al., Plant Journal, 5:73544, 1994
[0651] Schwartz et al., Cold Spring Harbor Symp. Quant. Biol., 47, 195-198, 1982.
[0652] Sears et al., "Cytogenetic studies in Arabidopsis thaliana," Can. J. Genet. Cytol., 12:217-233, 1970.
[0653] Segal, "Biochemical Calculations" 2nd Edition. John Wiley \& Sons, New York, 1976.
[0654] Setlow et al., Genetic Engineering: Principles and Methods, 1979.
[0655] Shagan and Bar-Zvi, Plant Physiol., 101:13971398, 1993.
[0656] Shapiro, In: Mobile Genetic Elements, 1983.
[0657] Sheen et al., Plant Journal, 8(5):777-784, 1995.
[0658] Shingo et al., Mol. Cell. Biol., 6:1787, 1986.
[0659] Simoens et al., Nuc. Acids Res., 16:6753, 1988.
[0660] Smith, Watson, Bird, Ray, Schuch, Grierson, "Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants,"Mol. Gen. Genet., 224:447481, 1990.
[0661] Smithies et al., Nature, 317:230-234, 1985.
[0662] Smythe, "Pollen clusters,"Current Biology, 4:851-853, 1994.
[0663] Somerville, C. and Somerville, S., Science 285:380, 1999
[0664] Spielmann et al., Mol. Gen. Genet., 205:34, 1986.
[0665] Stalker et al., Science, 242:419422, 1988.
[0666] Stiefel et al., Nature, 341:343, 1989.
[0667] Stinchcomb et al., Nature, 282:3943, 1979.
[0668] Stougaard, The Plant Journal, 3:755-761, 1993.
[0669] Sullivan, Christensen, Quail, Mol. Gen. Genet., 215(3):431440, 1989.
[0670] Sun et al., Cell, 91:1007, 1997.
[0671] Sutcliffe, Proc. Nat'l Acad Sci. USA, 75:37373741, 1978.
[0672] Symington et al., Cell, 52:237-240, 1988.
[0673] Symons, "Avacado sunblotch viroid: primary sequence and proposed secondary structure." Nucl. Acids Res., 9:6527-6537, 1981.
[0674] Symons, "Small catalytic RNAs."Annu. Rev. Biochem., 61:641-671, 1992.
[0675] Tarczynski et a1., "Expression of a bacterial milD gene in transgenic tobacco leads to production and accumulation of mannitol,"Proc. Natl. Acad. Sci. USA, 89:1-5, 1992.
[0676] Tarczynski et al., "Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol,"Science, 259:508-510, 1993.
[0677] Thillet et al., J. Biol. Chem, 263:12500-12508, 1988.
[0678] Thomas et al., Cell, 44:419-428, 1986.
[0679] Thomas et al., Proc. Nail Acad. Sci USA, 71:4579, 1974
[0680] Thompson et al., "Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression,"Nature Genet, 9:444-450, 1995.
[0681] Thompson et al., Nuc. Acids Res., 24:3017, 1996.
[0682] Tian, Sequin, Charest, Plant Cell Rep., 16:267271, 1997.
[0683] Tominaga, Microbiology, 143:2057-63, 1997
[0684] Toriyama et al., Theor Appl. Genet., 73:16, 1986.
[0685] Tsay et al., Science, 260:342, 1993.
[0686] Tugal et al., Plant Physiol., 120:309, 1999
[0687] Twell et al., Genes Dev 5:496-507, 1991
[0688] Twell et al., Plant Physiol 91:1270-1274, 1989.
[0689] Tyler-Smith et al., "Mammalian chromosome structure,"Current Biology, 3:390-397, 1993.
[0690] Uchimiya et al., Mol. Gen. Genet., 204:204, 1986.
[0691] Van der Krol, Mur, Beld, Mol, Stuitje, "Flavonoid genes in petunia: addition of a limiting number of copies may lead to a suppression of gene expression, "Plant Cell, 2:291-99, 1990.
[0692] Van't Hof, Kuniyuki, Bjerkens, "The size and number of replicon families of chromosomal DNA of Arabidopsis thaliana," Chromosoma, 68: 269-285, 1978.
[0693] Vasil et al., "Herbicide-resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus,"Biotechnology, 10:667-674, 1992.
[0694] Vasil, Biotechnology, 6:397, 1988.
[0695] Vernon and Bohnert, The EMBO J., 11:20772085, 1992.
[0696] Voytas and Ausubel, Nature, 336:242, 1988.
[0697] Wagner et al., "Coupling of adenovirus to trans-ferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes,"Proc. Nat'l Acad. Sci. USA 89 (13):6099-6103, 1992.
[0698] Walker et al., Proc. Nat'l Acad. Sci. USA, 84:6624-6628, 1987.
[0699] Wang et al., Molecular and Cellular Biology, 12(8):3399-3406, 1992.
[0700] Watrud et al., In: Engineered Organisms and the Environment, 1985.
[0701] Watson et al., Recombinant DNA: A Short Course, 1983.
[0702] Weinsink et al., Cell, 3:315-325, 1974.
[0703] Wevrick et al., "Partial deletion of alpha satellite DNA association with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement," Mol Cell Biol., 10:63746380, 1990. Whitehouse, Nature, No. 4205: 893, 1950.
[0704] Wigler et al., Cell, 11:223, 1977.
[0705] Willard, H., Nature Genetics 15:345-354, 1997
[0706] Willard, H., "Centromeres of mammalian chromosomes"Trends Genet., 6:410-416, 1990.
[0707] Wolter et al., The EMBO J., 46854692, 1992.
[0708] Wong et al., "Electric field mediated gene transfer,"Biochim Biophys. Res. Commun. 107(2):584-587, 1982.
[0709] Wright et al., Genetics, 142:569, 1996.
[0710] Xiang and Guerra, Plant Physiol., 102:287-293, 1993.
[0711] Xu et al., Plant Physiol., 110:249-257, 1996.
[0712] Yamada et al., Plant Cell Rep., 4:85, 1986.
[0713] Yamaguchi-Shinozaki et al., Plant Cell Physiol., 33:217-224, 1992.
[0714] Yang and Russell, Proc. Nat'l Acad. Sci. USA, 87:4144-4148, 1990.
[0715] Yen, Embo J. 10(5), 1245-1254, 1991.
[0716] Young et al., In: Eukaryotic Genetic Systems ICN-UCLA Symposia on Molecular and Cellular Biology, VII, 315-331, 1977.
[0717] Yuan and Altman, "Selection of guide sequences that direct efficient cleavage of mRNA by human ribonuclease P,"Science, 263:1269-1273, 1994.
[0718] Yuan et al., "Targeted cleavage of mRNA by human RNase P,'Proc. Natl. Acad. Sci. USA, 89:80068010, 1992.
[0719] Zatloukal et al., "Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells,"Ann. N.Y. Acad. Sci., 660:136-153, 1992.
[0720] Zhang et al., Gene, 202: 13946, 1997
[0721] Zukowsky et al., Proc. Nat'l Acad. Sci USA, 80:1101-1105, 1983.

\section*{SEQUENCE LISTING}

The patent application contains a lengthy "Sequence Listing" section. A copy of the "Sequence Listing" is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/sequence.html?DocID=20050266560). An electronic copy of the "Sequence Listing" will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).
1. A recombinant DNA construct comprising a plant centromere.

2-8. (canceled)
9. The recombinant DNA construct of claim 1, which additionally comprises a structural gene.
10. The recombinant DNA construct of claim 9, wherein the structural gene comprises a selectable or screenable marker gene.

11-38. (canceled)
39. The recombinant DNA construct of claim 1, which is capable of being maintained as a chromosome, wherein said chromosome is transmitted in dividing cells.

40-91. (canceled)
92. The recombinant DNA construct of claim 1, comprising n copies of a repeated nucleotide sequence, wherein n is at least 2 .

93-102. (canceled)
103. A minichromosome vector comprising a plant centromere and a telomere sequence.
104. The minichromosome vector of claim 103 , comprising an autonomous replicating sequence.
105. The minichromosome vector of claim 103, comprising a second telomere sequence.
106. The minichromosome vector of claim 103, comprising a structural gene.
107. The minichromosome vector of claim 103 , further defined as comprising a second structural gene.
108. (canceled)
109. A cell transformed with a recombinant DNA construct of claim 1 .

110-127. (canceled)
128. A plant comprising the cell of claim 109.
129. A method of preparing a transgenic plant cell comprising contacting a starting plant cell with a recombinant DNA construct of claim 1, whereby said starting plant cell is transformed with said recombinant DNA construct.
130. The method of claim 129 , wherein said recombinant DNA construct comprises a structural gene.
131. The method of claim 130 , wherein the recombinant DNA construct comprises a second structural gene.

132-133. (canceled)
134. A transgenic plant comprising a minichromosome vector of claim 103.

135-146. (canceled)
147. A method of producing a minichromosome vector of claim 103 comprising
(a) obtaining a first vector and a second vector, wherein said first vector or said second vector comprises a selectable or screenable marker, an origin of replication, a telomere, and a plant centromere, and wherein said first vector and said second vector comprises a site for site-specific recombination; and
(b) contacting said first vector with said second vector to allow site-specific recombination to occur between said site for site-specific recombination on said first vector and said site for site-specific recombination on said second vector to create a minichromosome vector comprising said selectable or screenable marker, said origin of replication, said telomere and said plant centromere.
148-163. (canceled)
164. A method of screening a candidate centromere sequence for plant centromere activity, said method comprising the steps of
(a) obtaining an isolated nucleic acid sequence comprising a candidate centromere sequence;
(b) integratively transforming plant cells with said isolated nucleic acid; and
(c) screening for centromere activity of said candidate centromere sequence.
165-231. (canceled)```

