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An Improved Hazard Rate Twisting Approach for

the Statistic of the Sum of Subexponential Variates
Nadhir Ben Rached, Abla Kammoun, Mohamed-Slim Alouini, and Raul Tempone

Abstract—In this letter, we present an improved hazard rate
twisting technique for the estimation of the probability that a
sum of independent but not necessarily identically distributed
subexponential Random Variables (RVs) exceeds a given thresh-
old. Instead of twisting all the components in the summation, we
propose to twist only the RVs which have the biggest impact
on the right-tail of the sum distribution and keep the other
RVs unchanged. A minmax approach is performed to determine
the optimal twisting parameter which leads to an asymptotic
optimality criterion. Moreover, we show through some selected
simulation results that our proposed approach results in a
variance reduction compared to the technique where all the
components are twisted.

Index Terms—Hazard rate twisting, subexponential, minmax
approach, twisting parameter, asymptotic optimality, variance
reduction.

I. INTRODUCTION

The problem of analyzing the statistic of the sum of

RVs is often encountered in many applications of wireless

communication systems. The most relevant example is that of

estimating the probability that the total interference power [1],

often modeled as a sum of RVs, exceeds a certain threshold.

Addressing this issue can essentially serve to shed the light

on the behavior of the outage probability of the signal-to-

interference-plus-noise (SINR) ratio, which is among the most

important performance metrics in practice. This question is

receiving an increasing interest, mostly spurred by the emer-

gence of cognitive radio systems, in which the control of the

interference is of paramount importance [2]. However, closed-

form expressions for many well-known challenging sum dis-

tributions are generally intractable and unknown, which makes

this problem far from being trivial. In particular, we are

interested in estimating the sum distribution of RVs with

subexponential decay which includes for example the Log-

normal and the Weibull (with shape parameter less than 1)

RVs. The sum distribution of these two RVs has received a

lot of interests [3]–[11]. A crude Monte Carlo (MC) simulation

is of course the standard technique to estimate the probability

of interest. However, it is widely known that this technique

becomes computationally expensive when rare events are

considered, i.e. events with very small probabilities.

Importance Sampling (IS) is a well-known variance re-

duction technique which aims to improve the computational

efficiency of naive MC simulations [12]. The idea behind this

technique is to consider a suitable change of the underlying

sampling distribution in a way to achieve a substantial variance
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reduction of the IS estimator. Many research efforts were

carried out to propose efficient IS simulation approaches. For

instance, an interesting hazard rate twisting technique was

derived that deals with the sum of independent and identically

distributed (i.i.d) subexponential RVs [13]. In [14], this tech-

nique was further extended to handle the sum of independent

and not necessarily identically distributed subexponential RVs.

The idea behind this technique was to twist the hazard rate of

each component in the summation by a twisting parameter θ

between 0 and 1. In this letter, we propose an improved version

of the work in [14] by twisting only the heaviest components

which have the biggest impact on the right-tail of the sum

distribution.

II. IMPORTANCE SAMPLING

Let us consider a sequence X1, X2, ..., XN of independent

and not necessarily identically distributed positive RVs. We

denote the Probability Density Function (PDF) of Xi by fi(·),
i = 1, 2, ..., N . Our goal is to efficiently estimate:

α = P

(

SN =

N
∑

i=1

Xi > γth

)

, (1)

for a sufficiently large threshold γth. We focus on the case

where the RVs Xi, i = 1, 2..., N , belong to the class of heavy-

tailed distributions, i.e distributions which decay slower than

any exponential distribution. In particular, we are interested in

a subclass called subexponential distributions which contains

some of the most commonly used heavy-tailed distributions

such as the Log-normal distribution and the Weibull distribu-

tion with shape parameter less than 1.

Obviously, a naive MC simulation technique can be used

to estimate α. In the framework of small threshold values,

this naive MC simulation is actually efficient and no further

computational improvement is worthy to try. However, it is

well known that this approach is computationally expensive

when we consider the estimation of rare events, i.e. events

with very small probabilities. IS is an alternative approach

which can improve the computational efficiency of naive MC

simulations [12]. The idea behind this variance reduction

technique is to construct an unbiased estimator α̂IS of α with

much smaller variance than the naive MC estimator. In fact, the

IS approach is based on performing a change of the sampling

distribution as follows:

α = E
[

1(SN>γth)

]

=

∫

RN

1(SN>γth)

N
∏

i=1

fi(xi)dx1dx2...dxN

=

∫

RN

1(SN>γth)L(x1, x2, ..., xN )
N
∏

i=1

gi(xi)dx1dx2...dxN

= Ep∗

[

1(SN>γth)L(X1, X2, ..., XN )
]

, (2)



2

where the expectation Ep∗ [·] is taken with respect to the new

probability measure p∗ under which the PDF of each Xi is

gi(·), i = 1, 2, ..., N . The likelihood ratio L is defined as:

L(X1, X2, ..., XN ) =

N
∏

i=1

fi(Xi)

gi(Xi)
. (3)

The IS estimator is then given by:

α̂IS =
1

M

M
∑

i=1

1(SN (ωi)>γth)L(X1(ωi), ..., XN (ωi)), (4)

where M is the number of simulation runs and 1(·) is the

indicator function. The fundamental issue in importance sam-

pling lies in the choice of the new sampling distribution gi(·),
i = 1, 2, ..., N , that results in substantial computational gains.

In fact, the new sampling distribution should emphasize the

generation of values that have more impact on the desired

probability α (in our setting, important samples are the ones

which satisfy SN > γth). Thus, by sampling these important

values frequently, the estimator’s variance can be reduced.

The asymptotic optimality is an interesting criterion that

can be used to quantify the pertinence of the probability

measure change [13]. This criterion is often achieved through

a clever choice of the sampling distribution. Let us define the

sequence of RVs Tγth
as:

Tγth
= 1(SN>γth)L(X1, X2, ..., XN ). (5)

From the non-negativity of the variance of Tγth
, it follows

that:

log
(

Ep∗

[

T 2
γth

])

log (α)
≤ 2, (6)

for any probability measure p∗. We say that the asymptotic

optimality criterion is achieved if the previous inequality holds

with equality as γth → +∞, that is:

lim
γth→+∞

log
(

Ep∗

[

T 2
γth

])

log (α)
= 2. (7)

For instance, the naive MC simulation is not asymptotically

optimal since the limit in (7) is equal to 1. A lot of research

efforts were carried out to propose interesting changes of

the sampling distribution. The exponential twisting technique,

derived from the large deviation theory, is the most used tech-

nique in the setting where the underlying distribution is light-

tailed [15]. In the heavy-tailed case, the exponential twisting

technique is no more feasible and an alternative approach is

needed. In [13], an interesting hazard rate twisting technique

(we call it conventional hazard rate-based IS technique in

the rest of this work) was derived to deal with heavy-tailed

distributions. In that work, an i.i.d sum of distributions with

subexponential decay were considered and the asymptotic

optimality of the hazard rate twisting approach was verified.

In [14], an extension of [13] to the case of independent and

not necessarily identically distributed sum of subexponential

variates is developed and the asymptotic optimality criterion

was again shown to be satisfied. Let us define the hazard rate

of Xi, i = 1, 2, ..., N , as

λi(x) =
fi(x)

1− Fi(x)
, x > 0, (8)

where Fi(·) is the cumulative distribution function of Xi, i =
1, 2, ..., N . We also define the hazard function as

Λi(x) =

∫ x

0

λi(t)dt = − log(1− Fi(x)), x > 0.

The PDF of Xi, i = 1, 2, ..., N , is related to the hazard rate

and the hazard function as follows

fi(x) = λi (x) exp (−Λi(x)) , x > 0. (9)

The conventional hazard rate twisting technique [14] considers

a new sampling distribution which is obtained by twisting the

hazard rate of the underlying distribution (9) of each compo-

nent in the summation SN by the same quantity 0 ≤ θ < 1

gi(x) , fi,θ(x) = (1− θ)λi(x) exp (−(1− θ)Λi(x)) . (10)

III. IMPROVED APPROACH

A. Proposed Approach

Similar to [14], we consider a sequence X1, X2, ..., XN

of independent and not necessarily identically distributed

subexponential positive RVs, belonging to the same family

of distribution, i.e., for example a sum of independent Log-

normal variates with different means and variances. From

this sequence, we extract a sub-sequence containing the RVs

with the heaviest right-tail which are naturally i.i.d RVs. Let

us denote by s the number of RVs contained in this sub-

sequence. It is important to note that the particular i.i.d case

occurs when s = N . For instance, for the particular Weibull

distributions with scale parameters βi and shape parameters

ki, i = 1, 2, ..., N , the number s is defined as:

s = #{i ∈ {1, 2, ..., N} such that ki = kmin and βi = βmax},
(11)

where # denotes the cardinality of the set, kmin = mini ki
and βmax = maxi;ki=kmin

βi. For Log-normal RVs with mean

µi and standard deviation σi, i = 1, 2, ..., N , the number s is

s = #{i ∈ {1, 2, ..., N} such that σi = σmax and µi = µmax},
(12)

where σmax = maxi σi, and µmax = maxi;σ=σmax
µi. The

adopted methodology in the present work is to twist only

these s heaviest i.i.d RVs and keep the others untwisted.

The intuition behind this methodology is that the remain-

ing untwisted RVs have a negligible effect on the right-

tail of the sum distribution. Moreover, by only twisting the

dominating RVs, the new sum distribution is less heavier

than the one obtained by the conventional approach (since

the hazard rate twisting of a RV results in a more heavier

distribution). Furthermore, our improved technique remains

able to generate important samples, i.e realizations that exceed

the given threshold. Therefore, one could expect a variance

reduction using our improved approach. In order to validate

our expectation, we represent in Fig. 1 the second moment of

the RV Tγth
, given by the conventional and the improved IS

approaches, as function of the twisting parameter θ for the sum

of four independent but not identically distributed Log-normal

RVs and for a fixed threshold γth. It is clear from this figure

that the idea of considering only the dominating RVs, instead
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Fig. 1. Second moment of Tγth
for the sum of four independent Log-normal

RVs with mean µi = 0 dB, i = 1, 2, 3, 4, standard deviations σ1 = σ2 = 4

dB, σ3 = σ4 = 6 dB, and γth = 25 dB.

of treating all the components similarly, reduces the second

moment Ep∗

[

T 2
γth

]

for all values of θ and hence decreases the

variance of Tγth
. In the following subsection, we will describe

a procedure to determine the optimal (in a sense that will be

explained later) twisting parameter which ensures the largest

amount of variance reduction. Without loss of generality, we

assume that the s heaviest i.i.d RVs which will be twisted are

X1, X2, ..., Xs. From (3) and (10), the likelihood ratio of the

improved approach is then:

L(X1, X2, ..., Xs) =
1

(1− θ)
s exp

(

−θ

s
∑

i=1

Λ1(Xi)

)

, (13)

where Λ1(·) is the hazard function of the RVs X1, X2, ..., Xs.

B. Determination of the Twisting Parameter

The determination of the parameter θ is performed

following the steps of the minmax approach derived in

[14]. It is important to note that applying the minmax

technique to Ep∗

[

T 2
γth

]

as in [14] is not attractive in

our setting since it results in a zero twisting parameter.

We propose instead to apply the minmax approach to the

term Ep∗

[

L2(X1, X2, ..., Xs)1(Ss>γth)

]

. In the first step, the

sharpest upper bound of this term is derived through the

resolution of the following maximization problem (P )

max
X1,...,Xs

L(X1, X2, ..., Xs) (14)

Subject to

s
∑

i=1

Xi ≥ γth, Xi > 0, i = 1, ..., s.

Let X∗

1 , X
∗

2 , ..., Xs
∗ be the solution of (P ). From (13), it

follows that

Ep∗

[

L2(X1, X2, ..., Xs)1(Ss>γth)

]

≤
1

(1− θ)
2s exp

(

−2θ

s
∑

i=1

Λ1(X
∗

i )

)

, h (θ) . (15)

The second step in the minmax approach is to minimize the

previous upper bound with respect to θ. Equivalently, we

minimize the function log (h (θ)). Equating The first derivative

of log(f(θ)) with respect to θ to zero yields

−2

s
∑

i=1

Λ1 (X
∗

i ) +
2s

1− θ∗
= 0.

This leads to the minmax optimal parameter given by

θ∗ = 1−
s

∑s
i=1 Λ1(X∗

i )
. (16)

Through a simple computation, we prove that the function

log (h (θ)) is actually convex and hence θ∗ is a minimizer.

C. Asymptotic Optimality

The asymptotic optimality criterion (7) of our proposed IS

technique is stated in the the following theorem:

Theorem 1. For a sum of independent subexponential vari-

ates, the quantity α is asymptotically optimally estimated using

the improved hazard rate twisting approach with the twisting

parameter given in (16) and provided that P (Xi > γth) =
o(P (X1 > γth)

2
), i = s+ 1, ..., N , as γth → +∞.

Proof. Due to page limitation, the proof is given with details

in our companion technical report in [16].

IV. SIMULATION RESULTS AND CONCLUDING REMARKS

In this section, we will present some selected simula-

tion results to show the computational gain achieved by our

new proposed approach compared to the naive Monte Carlo

simulation technique and the conventional hazard rate-based

technique [14] where all the components in the summation

are twisted. In Fig. 2, our objective is to quantify the amount

of variance reduction reached by our proposed IS technique.

For this purpose, we plot in this figure the second moment
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Fig. 2. Second moment of Tγth
for the sum of N independent Weibull RVs.

First case N = 2: the scale parameters are βi = 1, i = 1, 2. and the shape
parameters are k1 = 0.4 and k2 = 0.8. Second case N = 4: the scale
parameters are βi = 1, i = 1, 2, 3, 4, and the shape parameters are k1 = 0.4
and k2 = k3 = k4 = 0.8.

of Tγth
given by both the improved and the conventional

techniques as function of the threshold. The minmax optimal

parameter (16) is used for the improved IS technique while

for the conventional IS technique the corresponding minmax

parameter is given in [14]. We deduce from Fig. 2 that, for

both cases N = 2 and N = 4, the variance is reduced for all
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the range of considered thresholds. Moreover, it is worthy to

point out that the variance reduction of the improved method

is much more important when N = 4 than when N = 2.

This result is expected since in the case of N = 4, the two

additional components are lighter than the dominating RV

and hence they do not affect considerably the right-tail of

the sum distribution. Consequently, twisting these two RVs

by the conventional IS approach will obviously worsen the

second moment of Tγth
. We also deduce from Fig. 2 that

for N = 4, the second moment obtained by the improved

IS approach remains approximately the same as for N = 2.

The argument is that the variance given by the improved IS

technique depends strongly on the number of dominating RVs.

Hence, adding the two non-dominating RVs, which are not

twisted, to the sum does not affect considerably the variance

of the proposed IS method.

In a second step, we evaluate the computational gain of

the proposed method. For that, we define, for a fixed accuracy

requirement, the efficiency measure ξ1 between the improved

IS technique and the naive MC simulation approach as:

ξ1 =
MMC

MI

=
α (1− α)

varI [Tγth
]

(17)

Similarly, we define the efficiency ξ2 between the conventional

IS technique and the naive MC simulation technique as:

ξ2 =
MMC

MC

=
α (1− α)

varC [Tγth
]

(18)

where MMC , MI , MC , are the number of simulation runs for

respectively, the naive MC simulation technique, the improved

IS and the conventional IS techniques, whereas α (1− α),
varI [Tγth

] and varC [Tγth
] refer to their corresponding vari-

ances. The efficiency ξ1 (respectively ξ2) measures the gain

achieved by the improved IS technique (respectively the

conventional IS technique) over the naive MC simulation

technique in terms of necessary number of simulation runs to

meet a fixed accuracy requirement. In Fig. 3, the two efficiency
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N = 4
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Fig. 3. Efficiency measures ξ1 and ξ2 for the sum of N independent Weibull
RVs. First case N = 2: the scale parameters are βi = 1, i = 1, 2. and the
shape parameters are k1 = 0.4 and k2 = 0.8. Second case N = 4: the scale
parameters are βi = 1, i = 1, 2, 3, 4, and the shape parameters are k1 = 0.4
and k2 = k3 = k4 = 0.8.

measures ξ1 and ξ2 are plotted as function of the threshold for

both cases N = 2 and N = 4. We note from this figure that in

both cases ξ1 and ξ2 are much more bigger than 1 and hence

the improved and the conventional IS techniques are more

efficient than the naive MC simulation technique. Moreover,

it is important to point out that the larger is γth, the more

efficient are the two IS techniques compared to the naive MC

simulation. For instance, for a fixed requirement, the naive

MC simulation needs approximately MMC = 105 × MC =
107 × MI simulations runs when γth = 32 dB and N = 4,

(see Fig. 3). Furthermore, the most interesting result is that our

improved IS technique is more efficient than the conventional

one for both scenarios N = 2 and N = 4. For instance, for

N = 4 and γth=32 dB, the conventional IS approach requires

approximately MC = ξ1
ξ2
×MI = 100×MI simulation runs to

achieve the same variance (accuracy) given by our improved IS

technique. In addition, the efficiency of our improved approach

compared to the conventional one ξ1
ξ2

is clearly higher in the

case N = 4 than the one obtained when N = 2. This is

actually expected from the analysis of the variance in Fig. 2.
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