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Featured Application: A review of Artificial Intelligence-driven approaches to 3D printing of
large-scale architectural structures can provide practitioners and academic researchers with a com-
prehensive understanding of the current state of the field, reinforce innovative design, inform
material and fabrication method choices, support sustainability goals, and provide practical in-
sights through the review of different cases.

Abstract: Artificial Intelligence (AI) and 3D printing (3DP) play considerable roles in what is known
as the Fourth Industrial Revolution, by developing data- and machine-intelligence-based integrated
production technologies. In architecture, this shift was induced by increasingly complex design re-
quirements, posing important challenges for real-world design implementation, large-scale structure
fabrication, and production quality standardization. The study systematically reviews the application
of AI techniques in all stages of creating 3D-printed architectural structures and provides a compre-
hensive image of the development in the field. The research goals are to (1) offer a comprehensive
critical analysis of the body of literature; (2) identify and categorize approaches to integrating AI in
the production of 3D-printed structures; (3) identify and discuss challenges and opportunities of AI
integration in architectural production of 3D-printed structures; and (4) identify research gaps and
provide recommendations for future research. The findings indicate that AI is an emerging addition
to the 3DP process, mainly transforming it through the real-time adjustment of the design or printing
parameters, enhanced printing quality control, or prediction and optimization of key design features.
However, the potential of the application of AI in large-scale architectural 3D printing still needs to
be explored. Lastly, the study emphasizes the necessity of redefining traditional field boundaries,
opening new opportunities for intelligent architectural production.

Keywords: architectural design; digital design; digital fabrication; additive manufacturing; 3D
printing; artificial intelligence; machine learning; deep learning; artificial neural networks;
computer vision

1. Introduction

Similar to other engineering domains, automation is increasingly playing a significant
role in architecture as advancements in Artificial Intelligence (AI) streamline various pro-
cesses and enhance design capabilities [1–5]. AI-based automation is researched in diverse
aspects of architecture design, including Building Information modeling (BIM), generative
design, parametric design, performance analysis and simulation, project management,
documentation generation and evaluation, as well as digital fabrication. As for the latter,
automation is transforming the way various architectural forms and elements are designed
and manufactured. Advanced additive manufacturing (AM) technologies, including 3D
printing (3DP), allow designers to implement rapid prototyping design methodologies
and fabricate complex and customized components directly, reducing material waste and
construction time. Moreover, automation using AI and 3DP is widely explored across
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different fields using different materials and production scales [6,7], including metal 3DP
technology for aerospace and mechanical industries [8,9], parts manufactured in composite
materials using photopolymer 3DP [10], as well as biomedical materials advancement
through AI-assisted 3D and 4D printing technology explorations [11]. In all the mentioned
fields, robotic fabrication systems can automate tasks that are traditionally time- and effort-
consuming, enabling efficient and precise construction processes [12–18]. It is important to
note that, while automation can enhance production speed and creativity in architectural
design, human expertise remains indispensable in the decision-making process.

Exploring the synergetic potential of AI and AM in architecture could advance both
technologies and push the boundaries of what is possible in architectural design and
construction. Studies on this topic are important because they aid technological improve-
ments that support advances in design, optimization, customization and personalization,
performance-driven explorations, and resource allocation towards increased efficiency and
sustainability and facilitate industry applications. The integration of AI in the 3DP process
promises to overcome specific challenges posed by AM technology. For example, reinforced
concrete AM faces challenges regarding the accuracy of material placement during print-
ing, phase transition control and measurements, cold joint formation during the layering
process, reinforcement implementation, and surface finish [19]. Given that production
usually begins after the design process is mostly or fully completed, 3DP might be viewed
as inefficient because multiple iterations of the printing process are needed to produce the
desired structure. Therefore, AI systems have been explored to overcome these challenges
through real-time control of the printing parameters or autonomous adjustment of the
printing process. In line with the previous, the main aim of this research is to overview
previously published studies on AI-driven approaches for 3DP in architecture. The study
focuses on the design and fabrication of large-scale architectural structures.

Such 3DP technologies have been actively researched and used in the construction
industry in recent years because of the geometric complexity and material efficiency they
can facilitate compared to traditional building methods [20]. However, there are still
many challenges and opportunities for improvement regarding this technology [21,22],
such as low print accuracy or unreliable mechanical properties of printed parts. AI tools
were recognized as a prospective method for overcoming these challenges [23]. Previous
state-of-the-art studies have been found in the fields of 3DP for large-scale architectural
structures [22,24] and the adoption of AI technologies in the construction industry [25,26],
yet no review study has been found to explore the application and correlation of the
combined technologies in architectural design and fabrication, apart from several reviews
on Machine Learning (ML) in 3DP [27,28].

ML, specifically, has successfully been used to optimize 3DP processes in engineering
industries, as presented in the study by Goh [29], offering a comprehensive review of ML in
3DP across several engineering disciplines. Other AM challenges have also been addressed
using different AI tools. For example, real-time defect detection is achieved using deep
learning tools [30–32], while several ML methods are used for porosity predictions for 3D-
printed structures [33,34]. The implementation of these tools in the construction industry
is still in the early stages of research; however, several studies have recognized both 3DP
and AI as technologies with a high potential for development and increased use in the next
decade [25,35].

To the best of the authors’ knowledge, no study has provided a comprehensive
overview of the application of several AI techniques used for the design and production
planning of large-scale 3D-printed structures in architecture up to this point. Regarding
the above, the objective of this study is to identify, evaluate, and provide a summary of the
relevant studies. The specific tasks include the systematization of the available knowledge,
including research papers, journal articles, conference proceedings, and other relevant
sources, to establish the scope of the current state of the field. The purpose of the study is to
provide an in-depth understanding of the field, identify research gaps, and assess techno-



Appl. Sci. 2023, 13, 10671 3 of 25

logical advancements. This knowledge can contribute to further research, inform decision
making, and promote the effective integration of AI and 3DP in architectural practice.

Furthermore, the study seeks to understand how AI techniques have enhanced the
design, fabrication, and performance of large-scale 3D-printed architectural structures. This
purpose helps researchers and practitioners stay informed about the latest technological
developments and potential applications. Finally, the study intends to explore the practical
implications of AI in the 3DP of architectural elements.

The systematic literature review (SLR) method was used to identify, categorize, eval-
uate, and report relevant literature on the topic, extract and interpret data, and derive
conclusions about the questions under consideration. Conducting the research included
the following activities: forming a literature sample as the result of a database search
and selection of relevant publications; analyzing the literature sample using quantitative
and qualitative methods; summarizing the evidence; interpreting the findings; and dis-
cussing recognized opportunities and challenges for future research and application of
these structures in the industry.

This study promotes innovative design, informs ways of affecting material- and
fabrication-related decisions through intelligent tools and techniques, supports sustainabil-
ity goals, and provides an insightful review of the cases. By exploring the intersection of AI
and AM, researchers can shape the future of architecture and construction toward creating
a more sustainable environment.

2. Methodology

The SLR methodology was applied in the study to investigate the existing knowledge
scope of the 3D-printed large-scale architectural structures using AI. This methodology
was chosen since it provides a systematic approach that ensures objectivity, meticulousness,
and transparency while providing insight into theoretical knowledge and current trends
and developments related to the research problem [36,37]. The review was carried out in
accordance with the PRISMA statement for systematic reviews and meta-analysis [38,39].
Based on these guidelines, a three-step systematic protocol was implemented to generate
and evaluate a relevant body of research consisting of literature (1) search, (2) selection,
and (3) analysis.

Following the established protocol, the sample was collected and refined [40]. In the
first step, the Web of Science (WoS) database was searched using defined keywords. Initial
search results were then refined to exclude all research fields unrelated to the architecture
and building industry. The remaining papers were then assessed against predefined
exclusion criteria through several iterations to select the most relevant literature sample
for the research topic. In addition to database searches, manual and reference list searches
were undertaken to identify additional papers. After the selection process, the identified
literature sample was then further analyzed using quantitative and qualitative methods to
help answer the main research questions, as presented in Figure 1.

2.1. Forming Literature Sample

The application of AI tools for 3DP structures is wide, encompassing several engineer-
ing disciplines that often overlap; this poses a challenge in searching for the relevant body of
literature on architectural applications. The first exclusion criterion that was implemented
had the goal of limiting the database search results to research categories relevant to this
study. The three main categories were chosen to be (1) Architecture, (2) Engineering, Civil,
and (3) Construction and Building Technology, as they all refer to the built environment;
therefore, relevant topics were expected to be included in them. The second limitation
was the publishing period set to 2013–present, aiming to collect the most current research.
The final literature search was performed on 11 July 2023, following the set search criteria
presented in Table 1.
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Table 1. Search criteria.

Source Search Method Search Criteria

Web of Science Keyword method (a) Research category: Engineering,
Civil, Construction and Building
Technology, or Architecture

(b) Paper type: Journal article,
proceeding papers

(c) Years published: 2013–present
(d) Language: English

Online repositories
Google Scholar

Reference list search
Internet search

2.1.1. Literature Search

The initial search and paper collection were carried out in the WoS database, which
includes leading peer-reviewed publications with bibliometric data. Other databases, such
as Scopus, were also considered for this research, since they also offer a comprehensive
sample pool. However, this review required screening a topic that is growing across
multiple research disciplines and needed to be narrowed down to the ones relevant to the
construction industry. Further, WoS was chosen as the primary literature source for its built-
in categorization of papers by research categories. Meanwhile, the Scopus search engine is
more keyword-oriented with fewer in-depth categorization filters, with Engineering being
the closest category, which proved to be too wide a literature pool for efficient retrieval of
results for this study.

The search was conducted using topic-relevant keywords. As this paper focuses on
the application of AI tools in AM, keywords were divided into two sets, one addressing
the most used AI tools and the other referring to the terms commonly used for AM in
architecture. The AM and design sets mostly consist of synonyms often used to describe
3DP technologies and several architectural design terms to cover the whole design and
fabrication process. On the other hand, the topic of AI tools covers a wide range of different
technologies that need to be included, as they are not used synonymously.

The keyword search string “artificial intelligence” OR “AI” OR “augmented intelli-
gence” OR “machine learning” OR “ML” OR “simulated annealing” OR “computer vision”
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OR “pattern recognition” OR “genetic algorithm*” OR “evolutionary algorithm*” OR
“neural network*” OR “deep learning” OR “reinforced learning” OR “fuzzy logic” OR
“adversarial network*” OR “convolutional network*” OR “supervised learning” OR “un-
supervised learning” AND “material extrusion” OR “large-scale 3d print*” OR “additive
manufacturing*” OR “concrete 3D print*” OR “3D print*” OR “generative design” OR
“structural design” OR “computational design” was used to search paper titles, abstracts,
and keywords. Based on the established search criteria, the search was limited to the
relevant categories and publication date range, as shown in Figure 2. The asterisk sign at
the end of several phrases in Figure 2 is written to include wildcard search results and can
represent any group of characters.
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The initial search yielded 394 results matching the search criteria, which were then
subjected to the literature selection process. Simultaneously, an unstructured search using
the same keywords was performed in the Scopus and Google Scholar databases and
multiple online repositories to uncover additional potentially relevant papers. This method
contributed to an additional 44 papers.

2.1.2. Literature Selection

The identified literature sample was screened following the defined inclusion criteria,
as shown in Table 2. Firstly, as many papers still belonged to multiple research categories,
all categories unrelated to the building industry were excluded. Secondly, only papers
written in English were preserved, resulting in 287 items eligible for screening from the
database search. These documents were then screened based on their titles and abstracts to
include those that belong to the research topic. Following this step, 64 papers remained that
needed to be screened in their entirety. Finally, the full-text assessment took place to verify
the papers’ relevance to this review. In this step, another 37 papers were eliminated, as they
would not directly contribute to research questions, since the focus of the studies was more
centered on other disciplines, such as computer science or material science, exploring in
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detail technological processes relating to AI or 3DP that would not directly contribute to
the topic at hand.

Table 2. Papers inclusion criteria.

Inclusion Criteria Value

Papers belonging to the research categories unrelated to the construction industry Exclude
Papers written in the English language Include

The title includes at least one searched keyword Include
The abstract includes at least one searched keyword from each topic Include

An abstract is relevant to the research question Include
Papers that are not accessible in full text Exclude

Full text is relevant to the research question Include

Another 22 papers were discovered through a reference list search during the full
paper screening. The same full-text screening process was applied to the papers collected
from other sources. After the screening, 17 papers from the database search and 4 papers
collected through other sources were determined to fit the inclusion criteria. Finally,
21 papers were included in this review (Figure 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 26 
 

 

Figure 3. PRISMA flow diagram of literature review. 

2.2. Analyzing Literature Sample 

The selected literature sample, which included 21 papers, was analyzed using quan-

titative and qualitative methods. Quantitative analysis was performed to gain insight into 

the characteristics of the collected sample related to the publication trends and main re-

search topics. The former was achieved using the bibliometric analysis method, which is 

an applied mathematical analysis of bibliographical units [41]. By analyzing the publica-

tion data, citations, and keywords, this method systematically represents citation patterns 

and publication trends within a specific field or across several disciplines [42]. 

Authors of this study performed the described three-step research process. Two re-

searchers were involved in the literature search and collection steps, while the third au-

thor was engaged in overseeing and reviewing the collected sample to ensure the quality 

of the research. The search was performed independently by two researchers to avoid 

bias. Later, combining search parameters and the screening process was performed in two 

steps, with one of the researchers performing the title and abstract screening phase and 

the other author performing full-text screening. Similarly, the data analysis phase was 

performed by two authors, with the third author independently verifying the results. 

2.2.1. Bibliometric Analysis 

The network analysis technique was used for this research. This method relies on the 

analysis of bibliographic data to visualize the connections between different articles based 

on citations, publications, or keyword co-occurrences. By forming these connections, the 

data are systematized, and research trends are uncovered. The analysis was performed 

using the VOSviewer software version 1.6.18 , which is designed to construct and visual-

ize bibliographic networks [43], which application proved to be highly efficient and ben-

eficial in the previously conducted studies [44,45]. The literature data were imported to 

create the network based on the discovered keyword co-occurrences, enabling researchers 

to gain insight into trends in the field. 

2.2.2. Content Analysis 

Figure 3. PRISMA flow diagram of literature review.

2.2. Analyzing Literature Sample

The selected literature sample, which included 21 papers, was analyzed using quan-
titative and qualitative methods. Quantitative analysis was performed to gain insight
into the characteristics of the collected sample related to the publication trends and main
research topics. The former was achieved using the bibliometric analysis method, which is
an applied mathematical analysis of bibliographical units [41]. By analyzing the publication
data, citations, and keywords, this method systematically represents citation patterns and
publication trends within a specific field or across several disciplines [42].

Authors of this study performed the described three-step research process. Two
researchers were involved in the literature search and collection steps, while the third
author was engaged in overseeing and reviewing the collected sample to ensure the quality
of the research. The search was performed independently by two researchers to avoid bias.



Appl. Sci. 2023, 13, 10671 7 of 25

Later, combining search parameters and the screening process was performed in two steps,
with one of the researchers performing the title and abstract screening phase and the other
author performing full-text screening. Similarly, the data analysis phase was performed by
two authors, with the third author independently verifying the results.

2.2.1. Bibliometric Analysis

The network analysis technique was used for this research. This method relies on the
analysis of bibliographic data to visualize the connections between different articles based
on citations, publications, or keyword co-occurrences. By forming these connections, the
data are systematized, and research trends are uncovered. The analysis was performed
using the VOSviewer software version 1.6.18, which is designed to construct and visualize
bibliographic networks [43], which application proved to be highly efficient and beneficial
in the previously conducted studies [44,45]. The literature data were imported to create the
network based on the discovered keyword co-occurrences, enabling researchers to gain
insight into trends in the field.

2.2.2. Content Analysis

The collected sample was qualitatively analyzed to systematize and assess the findings
based on the bibliometric analysis results. This step provided a deeper understanding of the
principal themes uncovered during the quantitative analysis. Furthermore, content analysis
was used to identify and research the principal applications of AI tools for 3D-printed
structures and the main AI tools used in the industry. These tools and applications are
systematized and classified along with the most important findings in the literature review
to assess the state of the art in the field and the main challenges.

3. Results

The key results of the bibliometric and content analyses are reported in this section
under the topics listed below.

3.1. Bibliometric Analysis
3.1.1. Publishing Trends

The development of the researched field is better understood through the observation
of the publishing trends in the collected literature sample. Firstly, it was noted that the
publication period for this study was limited to the last ten years. However, the literature
screening process showed that no topic-relevant papers were found before 2018, as shown
in Figure 4. All the papers collected in the sample were published in the last six years,
showing a growth in the number of relevant articles in the last two years, with 14 (67%)
published papers. This observation confirms the novelty of this research field and shows
the contemporaneity of the research problem. This trend underlines the need for this kind
of study, as all available literature is contemporary and comprehensive reviews in the field
have not been conducted.
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The relevance of the research problem is also shown by analyzing the source jour-
nals for the retrieved sample. In the final sample, only two were conference proceeding
papers [46,47]; the rest were journal articles. This study includes 19 articles published in
13 different journals. Table 3 summarizes the source journals by the number of reviewed
papers and the journals’ impact factors. One journal, Construction and Building Materials,
had a considerably higher occurrence rate than the rest, with four published papers on
the topic [48–51]. The previous shows the existing focus on using AI tools to analyze
materials’ structural properties in construction. Another three journals had more than
one published article, including Cement and Concrete Research, Buildings, and Automation in
Construction. The previous study [52] showed that these journals actively publish research
on the 3DP technology’s application in architecture. However, it can be noted that these
journals showcase the interest in research conducted on using AI tools in 3DP.

Table 3. Source journals for the analyzed literature sample.

Journal No. of Articles IF (2022)

Construction and Building Materials 4 7.4
Cement and Concrete Research 2 11.4

Buildings 2 3.8
Automation in Construction 2 10.3

Additive Manufacturing 1 11.63
Virtual and Physical Prototyping 1 10.96

Journal of Intelligent Manufacturing 1 8.3
Case Studies in Construction Materials 1 6.2

Structures 1 4.1
Materials and Structures 1 3.8

Applied Sciences 1 2.7
International Journal of Architectural Computing 1 1.7

Construction Innovation 1 -

The support trend for research in this field is also sustained by the fact that almost
all reviewed articles were published in leading journals in the field of digital fabrication
and construction with high impact factors. Four of the identified journals, publishing six
(28.5%) of the reviewed papers, had significantly high impact factor values above 10.

3.1.2. Keywords Analysis

A network analysis was performed based on the keyword co-occurrence rates, visual-
izing keyword relations and co-occurrence rates in the analyzed data sample. There are
two possible methods of obtaining data for network visualization: automatically extracting
the most common words by scanning article titles or abstracts or generating a data map
based on the bibliographic metadata keywords [43]. For this study, the second method was
used, since it provides a clear picture of the principal themes discussed in the studies, as
predefined keywords often correspond with the main themes presented in the research. As
the literature sample was collected from multiple sources, bibliographic metadata for this
analysis were obtained from the reference manager software and subsequently imported
into VOSviewer for the analysis.

The two options for counting keyword occurrence rates are full counting and fractional
counting [53]. For this study, the network was generated by the full counting method,
where each link for one co-occurrence has the same strength. Since the collected literature
sample is relatively small, the minimal number of co-occurrences in the network was set
to 2, resulting in 25 keywords repeating more than twice. These words were then used
to generate a visualization network based on the number of occurrences and their link
strength. Table 4 systematizes the top 15 included keywords based on the number of
occurrences and total link strength.
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Table 4. The identified keywords, their co-occurrence rate, and link strength.

Keyword Research Areas No. of Occurrences Link Strength

compressive strength Civil Engineering 6 28
concrete Materials Science 5 22

machine learning Computer Science 6 21
3D printing Manufacturing Engineering 5 18

artificial neural networks Computer Science 4 17
performance Civil Engineering 4 15
construction Civil Engineering 4 14

additive manufacturing Manufacturing Engineering 3 12
cementitious materials Materials Science 3 11

artificial intelligence Computer Science 2 11
design Architecture 4 10

mix design Manufacturing Engineering 2 10
prediction Computer Science 2 10

The identified keywords are strongly related to the main topic, with most of them
referring to AI tools, such as “machine learning” or “artificial neural networks”. In contrast,
others refer to additive manufacturing processes like “3D printing”, “concrete”, or “mix de-
sign”. Two terms with the highest link strength and number of incidences are “compressive
strength” and “concrete”, which indicate a research focus on the material and structural
design optimization for 3DP, with multiple papers focusing on the application of AI tools
in this field [51,54,55]. Another highly present term was “machine learning”, indicating
increased use of ML tools in the field. The previous can be better observed in Figure 5,
which visually presents a keyword network grouping related keywords into four clusters.
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Figure 5. Visualization of the keyword network.

The keywords are divided into clusters based on their interconnections. These ag-
glomerations can help better understand the principal themes in the existing research. The
largest green cluster includes the most reoccurring words and focuses on the design and
predictions in construction using ML tools. The red cluster is more focused on 3D concrete
printing through performance and behavior analysis. The main AI tool in this cluster is
computer vision, which is closely related to the rest of the terms. The blue cluster is formed
around 3DP optimization and digital fabrication processes. This cluster includes artificial
neural networks (ANNs) as a representative AI tool. The smallest yellow cluster is centered
around material design for AM without including the specific AI tools.

The keyword cluster analysis identified three principal categories representing the cen-
tral research topics (Table 5). These topics differentiate the domains of AI tool application in
the production process of 3D-printed large-scale structures in architecture. Representative
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keywords identified in the map and given for each category in Table 5 indicate the AI
methods used most, including ML, ANN, and computer vision.

Table 5. Principal research themes.

No. Topic Representative Keywords

1 AI-driven design
of 3D-printed architectural structures

Design
Construction

Machine learning
Neural networks

Deep learning

2 AI-driven optimization
of 3D-printed architectural structures

Optimization
Digital fabrication

3D printing
Artificial neural networks

Concrete
Performance

3 AI-driven diagnostics
of 3D-printed architectural structures

Computer vision
Quality monitoring

Automation
Prediction
Behavior

3.2. Content Analysis

The scientometric analysis provided insight into the topics most often researched:
AI tools and techniques, their applications, and their correlations. To fully grasp the
relationship between AI and 3DP in the architectural domain, a more in-depth analysis of
the discovered data is given in the following subsections.

3.2.1. Techniques

ML is a computer science field that relates to the algorithms that learn how to solve
complex real-world problems from given datasets. The most common problems met by
ML include classification, clustering, and prediction [56]. The generally accepted types of
ML, distinguished by significant functional differences, include (1) Supervised Learning
(SL), which uses input data for identification and fulfillment of certain tasks, among which
classification and regression are the most well-known; (2) Unsupervised Learning (UL),
which is mostly concerned with identifying groups and organization patterns within
unlabeled datasets, with the common task of clustering; (3) Semi-Supervised Learning
(SSL), which learns from both labeled and unlabeled data, commonly used for classification
and clustering purposes; and (4) Reinforcement Learning (RL), which functionality lies
within a reward–punish system where the algorithm automatically evaluates the best
behavior patterns and takes further actions to optimize the system [57]. Deep learning (DL)
is a subset of ML with key features represented in numerous layers or stages of nonlinear
information processing and supervised (SDL) or unsupervised (UDL) feature representation
at progressively higher, more abstract layers [58]. Defining ANN in the scientific and
practical domains remains challenging [59]. The architecture and functionality of artificial
neurons forming ANNs are based on biological neurons. These networks function by
processing information in their fundamental constituents—artificial neurons—in a non-
linear, distributed, parallel, and local manner [60]. Lastly, computer vision represents
a technical system whose primary goal is to mimic the functional modules of human
vision, which is achieved through tasks including visualization, image formation, control
of irradiance, focusing, irradiance resolution, tracking, and processing and analysis [61].

Out of the twenty-one reviewed studies, ML is found to be the main topic of six stud-
ies, with applications ranging from design, optimization, and diagnostic purposes for 3DP
structures [28,47,55,62–64]. ANN as a category is found to be dominantly present in nine
studies overall, with applications belonging to the diagnostic domain [46,50,51,54,65–69].
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The combined appearance of ML and ANN is dominantly found in a total of four studies,
where the use is focused around optimization and diagnostics [49,70–72]. Lastly, com-
puter vision algorithms are present solely in the diagnostic domain and cover a total of
four papers [47,48,54,73]. Figure 6 displays the identified AI techniques, their domains of
application, and the related references.
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3.2.2. Applications

Topics identified through the bibliometric analysis, including AI-driven (1) design,
(2) optimization, and (3) diagnostics of architectural 3D-printed structures, are analyzed in
depth in this subsection (Figure 7). Within each topic, the following aspects were reviewed:

1. general uses of different AI algorithms in a specific application domain;
2. challenges of large-scale structures 3DP overcomes by integration of AI;
3. modifications of AI algorithms made to suit a specific application domain.
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Topic 1. AI-Driven Design of 3D-Printed Architectural Structures

In the reviewed articles, AI integration in the 3DP design process is mainly focused on
the issues of material design and design optimization of the 3DP mixes. The previous is
confirmed by the fact that 75% of the represented papers deal with these specific topics.
Wang et al. [64] deliver a systematic review of the emerging digital technologies used
for off-site construction leading towards Industry 4.0, where among the fifteen reviewed
technologies, AI and 3DP are elaborated on separately, each representing an important
factor for the future development of the construction sector. On the other hand, Nguyen-
Van et al. [55] review the development of predictive modeling and design optimization
and the current state of the art specifically for concrete 3DP, where four characteristic steps
for the implementation of ML into the 3DP are given, including the problem definition,
development of the model, collection of data, and process settings. Moreover, Geng
et al. [28] deliver a review of the latest research on integrating ML into construction 3DP,
with an extensive discussion of current problems and future trends in the field. In another
study, Tan [47] proposes a framework for AI and 3DP combinations in five specific aspects,
including 3DP materials, automation design, digital construction, 3DP robots, and a 3DP
BIM platform. The overview of the main findings of AI models in 3DP for designing
large-scale structures is given in Table 6.

Table 6. Overview of the specific techniques, applications, and research conclusions of AI-driven
design of 3D-printed architectural structures.

Applications Techniques Main Conclusions Author(s)
References

Design for Additive Manufacturing
(DfAM) of prefabricated

architectural components.
ML

• Benefits: reduced effort and cost
in the design process; components’
segmentation speed is increased.

• Issues: time-consuming topology
analysis preparation process;
limitations in the components’
configuration design.

Wang et al. [64]

Rapid design method development
for product modeling and its

structure selection.
ML

• Future research: exploring
combinations of novel
technologies such as BIM and AI.

Tan [47]

Design problem definition aimed
at AM. ML

• Challenge: handling large
amounts of data with high
computational costs.

• Digital twins of AM structures
could support the ML techniques
in attaining better outcomes.

• ML included in tasks such as
topology optimization,
bio-inspired concept creation, and
geometry creation using
Computer-Aided Design.

Nguyen-Van et al. [55]

AM material design with the
real-time observation and

automatic mixture alterations
during the printing process.

ML

• ML application in the matching
ratios’ selection can improve
production efficiency and reduce
construction costs.

• Future studies: the integration of
different research areas presenting
specific challenges in the
construction 3DP.

Geng et al. [28]

The main challenges found in the studies include the time-consuming process and
handling of large amounts of data in ML models [55,64]. Regarding the ML application in
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3D concrete printing (3DCP), the challenge that may arise relates to data interpretability
(specifically related to correlation-based ML models) and validation, since supervised
regression models are one of the most commonly used in these types of cases. Having
that in mind, for the valid application of ML, it is of utmost importance for the dataset
to be correct, complete, and representative of a large data population, which is, apart
from being time-consuming, also a costly process [55]. In the large-scale 3DP process, the
challenges that could be met by AI include predicting and controlling material anisotropy,
avoiding uneven pore distribution caused by the lack of fusion inside the material, and
improving the warping behavior of the structure due to residual stresses caused by the
rapid cooling characteristics of the 3DP process. In these cases, AI can be trained to learn
certain principles and methods of structural design through ML models, allowing it to
handle complex scenarios in the 3DP process in an efficient, intelligent, and environmentally
conscious way [28].

The functional characteristics of AI models used for 3DP, specifically ML, remain true
to their core logic, as explained in the introductory part of the Content Analysis section. The
difference that arises is seen in the datasets that the ML models are trained on and the roles
they are designed to embody. Specifically, ML is utilized for material design and property
formulation to achieve optimal and desired targets [55]. Further, in the four registered
stages of modeling for digital concrete fabrication, ML is introduced in the last stage, after
the analytical modeling, experiments for the input data creation, and numerical simulations,
contributing to the process with the ability to create a virtual 3DP simulation that could
inform the design process [55]. Concerning different tasks set out for the AI algorithms, the
models may vary, and researchers could select the optimal ML type regarding its future
application in the 3DP process. This relatively subjective course of action could lead to
an increased chance of poor ML training performance. The smoothness of the ML model
training could be enhanced through the existence of a shared platform that contains the
previously gathered experience from different ML models, since it can learn how to avoid
making the same mistakes [28].

Topic 2. AI-Driven Optimization of 3D-Printed Architectural Structures

Among the papers that explore ML applications for the optimization of 3DP, the
study by Parisi et al. [63] delivers an approach towards intelligent AI-controlled tower
crane 3DP with optimization of the extruder toolpath. On the other hand, Wang et al. [64]
explore ML-based optimization targeted at specific construction tasks in off-site construc-
tion applications. Moreover, Nguyen-Van et al. [55] present an overview of the current
state-of-the-art development of modeling and design optimization tools for 3DCP, high-
lighting the possibility of reducing printing time, improving structural performance, or
allowing for the adaptation to printing structures with complicated geometries by using an
intelligent toolpath-generating algorithm. Additionally, this study highlights the intricate
relationships between ML and ANN models, as shown in the analyzed papers. As a result,
both AI categories have been included in multiple articles, particularly in the realm of
optimization problems. The study by Baduge et al. [70] highlights the use of ANN, ML,
and DL algorithms and their applications in various domains of the construction process,
pointing out the advantages of their integration into 3DP, which leads to optimized solu-
tions through the increased level of automation, more advanced robots, and geometrical
flexibility of the structures. Lao et al. [71] explored optimized nozzle shapes for delivering
high-quality surface finishes in varying types of 3DP structures’ geometry. A combination
of ML and ANN is found in material design, specifically in forming the optimal mixture for
the 3DP process depending on the desired outcome, as presented by Fan et al. [49]. Table 7
summarizes the key features of the optimization-related studies.
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Table 7. Overview of specific techniques, applications, and research conclusions of AI-driven opti-
mization of 3D-printed architectural structures.

Applications Techniques Main Conclusions Author(s)
References

Formation of the cloud-based 3DP
system that optimizes and enhances
the printing process and identifies
collision-free tool path; optimum

geometry partitioning and material
distribution optimization.

ML, DL, ANN

• Advantages: the generation of
more optimized AM solutions.

• Future trends: 4D printing.
• AI-enabled collaborative robots

will gain market in the 3DP
industry, allowing the 3DP
process to be configured during
the printing with the
material alterations.

Baduge et al. [70]

Formation of a tower crane (TC)
3DP AI agent which dynamically

activates the TC freedom degrees to
minimize the swing effect,

simultaneously maximizing the
printing speed.

DRL
TD3 architecture

• Deep Reinforcement Learning
(DRL) provides optimal 3DP
control solutions, without strictly
needing any formal and
mathematical systems model.

• DRL is effective in the case of
complex and non-linear systems,
including real-time image
processing-led control.

Parisi et al. [63]

Printing toolpath optimization for
avoiding under and overfilling

issue; printing
mixture optimization.

ML

• Printing time is reduced,
enhanced structural performance,
and optimized complex
shapes-adapted printing.

• ML fixes the issue of the
time-consuming process of the
Finite Element Method (FEM)
approach in the 3DCP, it aids the
printing mix design, as well as
assists in the modeling and
optimization for the
3DCP process.

Nguyen-Van et al. [55]

Improvement of the efficiency and
accuracy of other technologies, one

of them being AM.
ML

• Issues: time-consuming dataset
preparation and the lack of real
practice validation.

Wang et al. [64]

Optimizing the mixture design of
Ultra-High-Performance

Concrete (UHPC).

ML, back-propagation
(BP) ANN, genetic
algorithm BPNN

(GA-BPNN)

• Intelligent optimization has not
been researched in domains such
as UHPC micro-characteristics.

• Future trends: more research
should be done on the design
theory of 3DP-UHPC to build a
relation among material
composition, performance,
and applications.

Fan et al. [49]

Finding a proper nozzle shape for
production of designated

extrudate geometries.
ML, ANN

• The proposed methodology
improves the surface quality of
the structures with
different curvatures.

• The proposed approach has the
potential to improve the surface
quality for other types of
3DP structures.

Lao et al. [71]

Defined as one of the tasks of intelligent systems, optimization is a process executed
using various AI algorithms. Specific challenges presented by the optimization tasks in
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3DP include their application in the practical domain, where AI is still mostly limited to
checking printability and modularization for prefabrication techniques [70]. Challenges
posed include those related to the possibilities of the ML algorithms, such as one described
by Lao et al. [71], which includes the non-invertible relationship between the targeted
extrudate cross-sectional shape in the experiments and the nozzle shape in the ML model.
The authors conclude that this challenge is still not overpowered by the benefits that the
ML integration into the 3DP process creates, such as the enhanced overall efficiency for
achieving extrudate control in practice [71]. The main challenge faced by the DRL method
in the study by Parisi et al. [63] includes the creation of the control system, which produces
an effective extruding toolpath for the 3D printer. Another common challenge in practice
involves the higher geometric complexity that is derived from the optimized topologies.
This issue has the potential to be resolved by generating an innovative toolpath, which
would ensure the optimized concrete structures’ continuous printing [55]. Challenges faced
in the UHPC domain include the inability to utilize common models of AI for the purpose
of mixture design, since they produce low-accuracy results [49].

The algorithms that are used for the optimization tasks vary in their basic functionality
and computational cost. For example, a novel AI framework was given by Parisi et al. [63],
which is the core of the proposed extrusion-based 3DP system. The basic logic of the
approach is an intelligent DRL agent that dynamically activates the tower crane’s degrees
of freedom to minimize the extruder swing effect while maintaining maximum printing
speed. The main inputs for the AI-controlled system contain the dynamic environment
characteristics, the possible actions for the agent to take, the reward function, and the agent
modeling with its learning algorithm. The specific type of algorithm is the twin-delayed
deep deterministic policy gradient (TD3), which is suitable for models characterized by
continuous action spaces [63]. The algorithms used for the optimized AM mixture design
include the ones described by Fan et al. [49], where the back-propagation ANN was used
to model the mixtures (ANN input), as well as the compressive strength and workability
(ANN output) parameters. The algorithm was trained and tested on 53 different concrete
mixtures. Another type of algorithm that was used for the AM-optimized mixture design
is the Genetic Algorithm back-propagation neural network (GA-BPNN). The procedure
involving this AI technique included creating a GA-BPNN prediction model based on
obtained training datasets, determining the initial mixture of the UHPC in accordance
with the ingredients’ boundaries, inputting the initial mixture for property prediction
by the developed network, identifying the predicted results, and redesigning the initial
mixture until the desired requirements are met [49]. The ML model workflow introduced
by Lao et al. [71] included four steps: (1) pre-testing, with the setting up of the experiment
with different nozzle shapes and conducting the experiment; (2) ANN training, which
involved the optimization of the ANN topology, training the model with pre-testing
results, and experimentally validating the ANN model; (3) building up the database, with
the generation of enough volume of random nozzles and predicting the corresponding
extrudate shapes with the ANN; and (4) target printing, which involved analyzing the
target extrudate shape, finding the nozzle shape in the database, and conducting the
printing with the nozzle [71].

Topic 3. AI-Driven Diagnostics of 3D-Printed Architectural Structures

The reviewed articles include several approaches towards the diagnostic tasks for 3DP,
based on (1) ML-driven prediction, simulation, and inspection; (2) ANN-based inspection
and prediction; (3) combined use of ML and ANN for prediction; and (4) computer vision
technology used for inspection and quality-monitoring purposes.

A variety of ML technologies are utilized for predictive and inspection purposes,
ranging from SL, UL, SSL, and RL, with applications explored in the domains of material
design optimization, control printing accuracy, printing defect detection and classification,
state differentiation of the printing process, anisotropic behavior analysis, printing product
classification in relation to the deformations, printing cost estimation, compensation of



Appl. Sci. 2023, 13, 10671 16 of 25

printing material deformation, printing process planning correction, large-scale printing
product customization, and others, as presented by Geng et al. [28]. Additionally, Chen
et al. [62] introduce a deep-learning module of the Dragonfly 3.6 software to extract the
axes of the steel fibers in the X-ray micro-computed tomography (X-CT) images of 3DP
concrete samples and evaluate their 3D orientational distribution statistics.

ANN models used for the inspective tasks in 3DP rely on several algorithm types,
which differ in functionality and purpose. Yao et al. [51] explore the effect of steam curing
conditions on the performance properties of 3DP materials at various ages of curing, using
a specific set of algorithms to predict the performance of the material. Other types of
applications are found, mostly related to the prediction of the tensile and compressive
strengths of the researched materials [65,66,68]. Additionally, Rossi et al. [46] deal with
modeling the curing conditions of cellulose-based 3DP components using a defined set
of ANN models. The relationship between ANN and ML is intertwined, leading many
researchers to employ both terms. Among the papers presented in this subgroup, two
papers represent reviews of the current research status [49,72], whereas one paper presents
an original methodology for finding the proper nozzle shape in the 3DP process [71].

Computer vision algorithms are seen as a promising method for assessing real-time
3DP process tracking, where the data collection usually consists of a camera being installed
on the extruder to capture videos and images during the printing process. Among the four
included papers, two represent frameworks for integrating computer vision technologies
in the 3DP process [47,54], whereas the other two papers develop novel methods for
this purpose. Kazemian et al. [73] develop a vision-based real-time extrusion quality-
monitoring system for robotic construction. In another paper, four techniques for inline
real-time extrusion quality monitoring during construction are given [48].

An overview of the key research aspects is given in Table 8.

Table 8. Overview of the specific techniques, applications, and research conclusions of AI-driven
diagnosis of 3D-printed architectural structures.

Applications Techniques Main Conclusions Author(s)
References

Automatic robotic detection of the
printing defects; printing

parameters reconfiguration
in real-time.

ML
Computer

vision

• AI and BIM provide useful
methods for the issues which arise
in the large-scale 3DP.

Tan [47]

Extraction and 3D analysis of the
centerlines of steel fibers in the

X-ray micro-computed tomography
image sequence.

DL
U-Net module

• U-Net is a newly approved neural
network in the ML field where the
computer is allowed to segment
according to the semantics of
the images.

Chen et al. [62]

The automatic image segmentation
of the 3DP

fiber-reinforced materials.

DCNN
U-Net module

• Data augmentation procedure
eliminates the time-consuming
task of the manual annotation.

• The automated image
segmentation method is suitable
for the efficient identification of
complex micro-structures.

Nefs et al. [50]

Real-time layer extrusion
monitoring during 3DCP.

Computer
vision
DCNN

• The quality control methods
should include easy-to-perform
tests at a high frequency.

Mechtcherine et al. [54]
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Table 8. Cont.

Applications Techniques Main Conclusions Author(s)
References

Detection of bending deformations
in the 3DP layers, during or after

the printing process.
DCNN

• The developed model only defects
bending of the layers. Other
concerns are not addressed.

• The performance of the system
under an actual construction site
environment should be verified.

• The potential of computer vision
and DL for automated inspection,
quality control, and progress
monitoring during 3DP is seen.

Davtalab et al. [67]

Detection of the extruded layer and
measurement of the layer width in
real-time. Automatic adjustment of

the material deposition rate.

Computer
vision

• The proposed method does not
need sample preparation.

• The method is limited to
laboratory environment, without
known outcomes if it were tested
on a real construction site.

• High precision and
responsiveness of the developed
extrusion monitoring system
under the
experimental conditions.

Kazemian et al. [73]

Real-time quality-monitoring
system which detects variations in

the material properties before
the deposition.

Computer
vision

• The vision-based techniques have
the highest precision and
responsiveness to material
variations, compared to
other methods.

Kazemian & Khoshnevis
[48]

Panel performance prediction and
the printing toolpath

predictive generation.
cGAN

• The encoding and result parsing
within Grasshopper makes the
NN work as an immediate design
tool for the user.

• NN trained on digitally compiled
datasets have potential to
integrate analytic and predictive
information into the real-time
design and fabrication processes.

Nicholas et al. [69]

Performance prediction for 3DP
concrete. BAS method is used for

the ANN hyperparameter
adjustment, along with the cross
validation which solves the ANN

overfitting problem.

ANN, ML
Beetle

antennae search
(BAS)
Cross

validation

• The construction of a suitable ML
model with high precision and
dependability is laborious and
time-consuming.

• The hardening performance of the
material under the same printing
parameters is maximized.

Yao et al. [51]

Prediction of the fresh properties of
cementitious materials, such as

yield stress and mini-slump.
ANN

• ANN was successfully trained to
be able to predict the yield stress
as a function of the percentage in
weight of cement of
each admixture.

• Future research: involving the
time factor in the ANN to describe
the evolution of the yield stress
during printing.

Charrier &
Ouellet-Plamondon [66]
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Table 8. Cont.

Applications Techniques Main Conclusions Author(s)
References

Quality control of the fused
deposition modeling (FDM)

printing technology, predicting the
ultimate tensile strength, and
optimizing the printing and

material parameters.

ANN

• The model is a credible guideline
for designers and researchers to
manufacture FDM of optimal
mechanical properties.

• The developed ANN model
accurately predicts the UTS
of FRP.

• Future activities: creation of an
open-source tool for users of FDM
3D printers.

Alhaddad et al. [65]

Prediction of the 3DP concrete
compressive strength. ANN

• Difficulties: the accuracy of the
model depends on the number
of patterns.

• Limited amount of research on
patterns concerning 3DP
concrete’s compressive strength.

• For accurate ANN model creation,
one hidden layer in its structure
is enough.

Izadgoshasb et al. [68]

Properties prediction of the
Ultra-High Performance Concrete

(UHPC) such as mechanical
strength, flowability, filling capacity

and segregation.

ML, ANN

• The complexity of the UHPC
system results in insufficient
predicting accuracy when using
common models of AI.

• There are not enough studies on
the topic of the micro-structures of
the UHPC.

Fan et al. [49]

Statistical modeling of the curing of
cellulose-based 3DP components. ANN

• The dataset size is a constant
constraint for getting good
predictions out of physically
generated datasets.

Rossi et al. [46]

CNN is utilized for optimal
proportions of 3DP products
prediction; SL is utilized for
printing products’ geometric

deviations prediction; UL is utilized
for 3DP material porosity

prediction; RL is utilized for print
trajectory geometry prediction

and planning.

ML

• ML techniques are used for
printing concrete filament
geometrical shapes prediction,
and automatic detection of
layer deformations.

• ML is used for the automatic
detection of surface defects; ANN
is used for predicting crack
patterns and stress-crack width
curves of pore structures in 3DP.

• Future research: interlayer bond
performance, real-time status
monitoring, anisotropic
behavior control.

Geng et al. [28]

DfAM, including geometry
deviation prediction, material
analytics, prediction of defect

and others.

ML, ANN

• Although many ML methods for
DfAM have been researched in
various applications, only several
research programs have been
conducted in the
construction industry.

Tuvayanond &
Prasittisopin [72]

Development of a predictive model
for extrudate geometry in 3DCP. ML, ANN

• A predictive model was
developed to correlate the nozzle
shape and the extrudate shape
counterpart using ANN.

Lao et al. [71]



Appl. Sci. 2023, 13, 10671 19 of 25

The main issue in which DCNN was utilized as an effective solution, as presented
by Nefs et al. [50], is the manual annotation of micro-structural objects in 3DP strain-
hardening cementitious composite (SHCC) materials, which would be an extremely time-
and effort-consuming task because the fibers may be oriented in arbitrary directions and
never positioned in the same plane. This issue would arise if the typical ML algorithm
was used instead of the DCNN. Instead, a new methodology is presented in which the
image segmentation of fiber-reinforced materials is performed with automated annota-
tions of physical sample data [50]. One of the common large-scale 3DP issues that has
been addressed is the fact that in the robotic construction process, which could take as
little as one day to complete, there is not enough time for manual inspections to resolve
problems. The reason for the high-speed construction is seen in the structural benefits
that arise from it, such as enhanced interlayer bonding. Therefore, to monitor the printing
process, these systems should ideally be equipped with an automated process inspection
system that documents all relevant printing parameters [67]. Another set of 3DP-related
issues is the assessment of material characteristics that impact the 3DP process, such as
pumpability, yield stress, viscosity, and cement hydration, for which various scholars have
focused their research on ML and ANN [66]. Specifically regarding UHPC, one of the main
issues involves the integration of fibers, which could impact structures in a positive or
negative manner, depending on their amount and distribution. Therefore, to maximize the
positive role of fibers, a multi-disciplinary approach is necessary, including material science,
mechanics, and intelligent manufacturing [49]. Another common issue in large-scale 3DP
production relates to surface quality problems, such as the jagged surface or staircase effect
on the 3DP object. This issue has been acknowledged and introduced to specific ANN
models to affect the nozzle shape during 3DP [71].

Among the studies in the diagnostic domain, the Deep Convolutional Neural Network
(DCNN) has been explored in three out of six papers [50,54,67], representing the algorithms
that excel in processing organized arrays of data, such as images, as their primary func-
tional characteristic [74]. Another explored type of ANN is the Conditional Generative
Adversarial Network (cGAN) [69], whose main characteristic is the fact that it constitutes a
pair of networks, known as the forger/generator and expert/discriminator, which compete
in the parallel training process [75]. Further, the ANN combined with the Backpropagation
Learning model was used together with the Artificial Bee Colony optimization algorithm,
which creates an effective feed-forward model for the inspection and prediction of the 3DP
printing and material parameters [65]. Similarly, specific types of ANNs are employed to
predict the characteristics of 3DP structures. In the case presented by Nefs et al. [50], the
dataset for the DCNN training was created by scanning a basic specimen composed of a
single, prestressed yarn of fiber surrounded by a cementitious matrix with air voids. Later,
the scan was divided into smaller windows, whose dimensions corresponded to those at
which fibers in real fiber-reinforced materials appear straight. To generalize the algorithm, a
data augmentation procedure was employed, where the windows of the obtained scan were
rotated along the three axes at arbitrary angles, which allowed the DSCNN to train for the
segmentation of arbitrarily oriented fiber samples. The DCNN network was constructed
using Python, with the utilization of the Tensorflow and Keras packages [50].

4. Discussion and Conclusions

The interpretation of the results is presented in a wide context, along with the re-
search’s limitations and suggested directions for future study.

4.1. Results Interpretation and Implications

The review on large-scale 3DP architectural structures produced using AI was per-
formed on a representative literature sample, which included 21 relevant papers examined
using bibliometric and content analyses. The bibliometric analysis shows that the reviewed
papers have been published over the past five years, with a growing trend in the number
of publications in the past two years. Additionally, the bibliometric analysis revealed that
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the journals covering engineering, fields, architecture, and construction are most frequently
published. Moreover, co-occurrence network analysis discovered keywords that were
strongly interrelated within the literature sample. This analysis enabled the identifica-
tion of three principal research thematic frames that coincide with AI tools’ application
domains in the production of large-scale 3DP architectural structures: AI-driven design,
optimization, and diagnostics. Keywords included co-occurrence analysis and isolated AI
techniques (including ML, ANN, and computer vision) commonly applied in the produc-
tion of architectural structures by 3DP. Further, full-text content analysis of the literature
sample deeply reviewed specific AI techniques and their applications. Lastly, the systematic
review on using AI technologies in creating 3D-printed architectural structures enabled
knowledge synthesis, technology assessment, and knowledge gap identification.

The synthesis and summary of existing published research papers related to the ap-
plication of AI technologies in the production of 3D-printed architectural structures were
presented in the study. Consequently, the study helps consolidate the current state of knowl-
edge in the field and provides a comprehensive overview of the subject matter. Moreover,
light was shed on the way that AI techniques, such as ML, ANN, and computer vision, have
enhanced the design, optimization, and diagnostics of 3D-printed architectural structures,
providing information on technological development and prospective use. By synthesizing
the literature, the study offers insights into techniques and integration strategies relevant to
architectural production. The capabilities, limitations, and potential of AI technologies that
support the production of 3D-printed architectural structures were discovered. Reviewing
literature facilitated the assessment of the state of technology, identifying its strengths and
weaknesses, and providing insights into its feasibility and applicability in the architectural
field. Through our examination, we identified literature, methodologies, algorithms, or
frameworks utilizing AI to design or optimize designs for structural integrity, aesthetics,
energy efficiency, or other criteria. The study also inquired how AI can enhance structural
performance, material efficiency, and environmental sustainability. This helped perceive
the benefits and limitations of AI-based approaches in achieving desired outcomes. A gap
analysis and identification of areas for further research within the subject matter domain
were conducted. Analysis of existing literature enabled the identification of topics or
aspects that have yet to be extensively explored, paving the way for future research and
development. In addition, the literature review highlights innovative approaches, novel
applications, and emerging trends, generating new ideas and possibilities.

The findings of this research provide researchers and practitioners with information
on existing research and applications of 3D-printed architectural structures created using
AI. By investigating and developing AI-driven strategies for 3D printing of building
structures, researchers can drive innovation, improve efficiency, and expand the capabilities
of architectural practice. The study can also be valuable for architects and engineers looking
to understand the technical aspects, benefits, and limitations of 3DP and AI technologies
used in architecture. The research gives insights into aspects of design, optimization,
diagnostics, as well as feasibility in real-world applications. Moreover, the review may help
researchers and practitioners to understand how 3DP and AI technologies can contribute
to sustainable design and construction practice. Previous knowledge can assist in making
informed decisions regarding material selection, energy efficiency, and waste reduction
during the design and construction stages, contributing to creating safe and efficient
structures with enhanced functionality and performance. Finally, identified challenges,
barriers, and opportunities for integrating AI into architectural projects could provide
information to industry professionals, policymakers, and stakeholders about the potential
impact of AI on industry and business models.

4.2. Research Limitations

Application of the SLR method in this research allowed the generalizability and
consistency of research findings, following the goal to systematize and comprehend the
scope of application of AI in the creation of 3D-printed architectural structures. To provide
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transparency, clarity, integration, focus, equality, accessibility, and coverage of the study,
the authors strictly followed the PRISMA statement [38,39]. The previous approach aimed
at minimizing bias or chance results and producing reliable findings. However, the paper
has several limitations. Firstly, the analysis was performed on a data sample limited
primarily to the WoS database. Additional papers were included in the sample through
manual and reference list searches to provide a more thoughtful overview and overcome
this limitation. Secondly, the review limitation could be induced by the study retrieval
process and linguistic biases. Thirdly, the keywords applied in the search needed to be
standardized, excluding authors who use distinct keyword variations. Finally, one should
be mindful of the authors’ bias and that no formal risk-of-bias evaluation was carried
out when using the research’s findings. Nevertheless, the author’s expertise in the field
provides context for interpreting bibliometric analyses.

4.3. Future Research Directions

Based on the results of the literature review presented in this study, three specific sets
of challenges (corresponding to identified application domains) could be summarized.

1. Challenges of AI-driven design of 3D-printed architectural structures, including:

• time-consuming and costly data acquiring and labeling process,
• computational costs of handling large amounts of data,
• data interpretability and validation, and
• the prediction and control of the material anisotropy and other characteristics.

2. Challenges of AI-driven optimization of 3D-printed architectural structures, including:

• application of AI in the practical domain, since it is mostly limited to checking
printability and modularization for prefabrication techniques,

• ML models’ non-invertible relationship between the input (targeted extrudate
cross-sectional shape) and output (3DP nozzle shape),

• creation of the control systems for effective extruding toolpath,
• higher geometric complexity of the optimized topologies, and
• inability to utilize common AI models since they give out low accuracy results.

3. Challenges of AI-driven diagnostics of 3D-printed architectural structures, including:

• effort consuming tasks of manual annotation of data,
• short timeframe for 3DP production which allows for a limited number of diag-

nostic and inspective methods on-site,
• 3DP material characteristics such as pumpability, yield stress, viscosity, and

cement hydration assessment, and
• extrudate surface quality issues such as jagged surface finish or the staircase effect.

Future research will presumably address some of listed challenges through advancing
various aspects of AI and 3DP technologies and their integration with architectural practice.
Some other promising research directions are specified in the following.

• Integration of AI tools in the conceptual design stage of 3D-printed architectural structures.

More research on the conceptual design stage of AM in architecture is needed [72].
Also, a more user-centric and inclusive design approach may result from researching
human–computer interaction and investigating technologies that promote cooperation
between architects and AI models. Future research could focus on developing AI tools that
assist designers in the creative design process. However, it is essential to investigate the
overall implications of AI-driven architectural 3DP design for large-scale structures and
ensure the technology aligns with generally acceptable ethical values.

• Advancements of AI algorithms and generative design techniques to optimize the
performance and functionality of 3D-printed architectural structures.

This involves developing AI models that could consider multiple design objectives,
constraints, and user preferences to generate optimized and efficient designs. Another
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interesting area is the advancement of AI-based techniques for structural analysis and
verification of 3DP architectural structures. Developing AI models that can efficiently
analyze the structural performance of complex designs will help architects ensure safety
and make informed decisions. However, further research is needed in the field of data
collection, as the lack of readily available datasets in the construction industry poses
challenges for the wider implementation of AI-driven tools [55,64].

• Exploration of AI-driven algorithms for multi-scale, multi-material 3DP process.

As 3DP often requires novel and unique material mixes, AI tools have proven to be
useful tools for rheology optimization and the design of new printing mixes. To produce
complex and customized architectural structures, researchers could investigate how AI
can be utilized to control printing processes involving numerous materials with different
qualities and scales. Also, the effectiveness and scalability of 3DP in architectural construc-
tion could be increased by studying the integration of AI with construction robotics and
automation. For example, research in this area could consider developing AI-controlled
robotic systems for on-site 3DP and the assembly of large-scale structures.

• Exploration of AI systems that offer real-time feedback and adaptation during the
3DP process.

As addressed in the literature, the effectiveness and quality of printed structures could
be increased by integrating AI systems that offer real-time feedback and adaptation during
the 3DP process. Further research in this area could focus on developing AI models that
monitor and adjust printing parameters based on real-time sensor data, ensuring accurate
fabrication and reducing errors. Also, large-scale AM quality monitoring and inspection
have not been as thoroughly studied [67].

• AI-driven approaches to circular economy concepts and sustainable design of 3D-
printed architectural structures.

This involves exploring how AI may help with material selection, waste reduction,
and life cycle evaluation to create buildings that are more resource- and environmentally
friendly. On the other hand, as 3DP architectural structures become more prevalent, it
is important to study the legal and regulatory implications of their design, fabrication,
and implementation [52]. In this respect, research could focus on understanding intellec-
tual property rights, liability issues, building codes, and safety standards for AI-driven
3DP in architecture. Moreover, future research could examine the policy and industry
implications of adopting AI and AM technologies in the architectural sector. It is neces-
sary to discuss further regulatory challenges, standards, economic issues, and potential
implementation impediments.

In conclusion, future research should emphasize interdisciplinary collaboration be-
tween architects, engineers, material scientists, computer scientists, and other experts.
Such collaborations could facilitate a holistic approach to AI-driven 3DP, leading to more
integrated and innovative architectural solutions. As AI and 3DP technologies continue to
evolve, these research directions will play a crucial role in shaping the future of architectural
design and construction practice.

Author Contributions: Conceptualization, M.Ž. (Milijana Živković), M.Ž. (Maša Žujović) and J.M.;
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