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ABSTRACT

In this paper we summarize the contributions of partici-
pants to the fifth Sussex-Huawei Locomotion-Transportation
(SHL) Recognition Challenge organized at the HASCA Work-
shop of UbiComp/ISWC 2023. The goal of this machine
learning/data science challenge is to recognize eight locomo-
tion and transportation activities (Still, Walk, Run, Bike,
Bus, Car, Train, Subway) from the motion (accelerometer,
gyroscope, magnetometer) and GPS (GPS location, GPS
reception) sensor data of a smartphone in a user-independent
manner. The training data of a train user is available from
smartphones placed at four body positions (Hand, Torso, Bag
and Hips). The testing data originates from test users with
a smartphone placed at one, but unknown, body position.
We introduce the dataset used in the challenge and the
protocol of the competition. We present a meta-analysis of
the contributions from 15 submissions, their approaches, the
software tools used, computational cost and the achieved
results. The challenge evaluates the recognition performance
by comparing predicted to ground-truth labels at every 10
milliseconds, but puts no constraints on the maximum de-
cision window length. Overall, five submissions achieved F1
scores above 90%, three between 80% and 90%, two between
70% and 80%, three between 50% and 70%, and two be-
low 50%. While the task this year is facing the technical
challenges of sensor unavailability, irregular sampling, and
sensor diversity, the overall performance based on GPS and
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motion sensors is better than the previous four years (e.g. the
best performance reported in SHL 2020, 2021 and 2023 are
88.5%, 75.4% and 96.0%, respectively). The is possibly due
to the complementary between the GPS and motion sensors
and also the removal of constraints on the decision window
length. Finally, we present a baseline implementation to help
understand the contribution of each sensor modality to the
recognition task.
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1 INTRODUCTION

The mode of transportation or locomotion is an important
contextual that enables applications such as route or parking
recommendation, activity and health monitoring, individual
environmental impact monitoring, and intelligent service
adaptation [16–24]. Several prior works looked at recognizing
modes of transportation from smartphone sensors, such as
motion [25, 26], GPS [27–32], sound [33], image [34], GSM
and WiFi [36, 39, 40], and the fusion of multiple sensors [35].
In particular, the combination of motion and GPS sensors
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has been widely exploited for transportation mode recog-
nition [37, 38]. To date, most research groups assess the
performance of their algorithms using their own datasets on
their own recognition tasks. These tasks often differ in the
sensor modalities used or in the allowed recognition latency.
This makes it difficult to compare methodologies and to
systematically advance research in the field.

Following on our successful 2018-2021 challenges [41–44],
which saw 22, 14, 15 and 15 submissions, respectively, we or-
ganized the fifth Sussex-Huawei Locomotion-Transportation
(SHL) recognition challenge in the year 20231. The first three
years (2018-2020) focused on recognition from motion sen-
sors [45, 46], while the fourth year focused on recognition
from GPS and radio signals. Being different from the previous
years, the goal of this challenge is to recognize eight modes of
locomotion and transportation (the activities include: being
still, walking, running, cycling, driving a car, being in a bus,
train or subway) in a user-independent manner based on GPS
(GPS location and GPS reception) and motion (accelerometer,
gyroscope, and magnetometer) sensors. This paper introduces
the dataset used for the challenge and the protocol for the
competition, and summarizes and analyzes the achievements
of the participants contributing to the challenge.

2 DATASET AND TASK

2.1 Dataset

The challenge uses a subset of the complete Sussex-Huawei
Locomotion-Transportation (SHL) dataset [47, 48]. The SHL
dataset was recorded over a period of seven months in 2017 by
three participants (called User1, User2 and User3) engaging
in eight different modes of transportation and locomotion in
real-life setting in the United Kingdom, i.e. Still, Walk, Run,
Bike, Car, Bus, Train, and Subway. Each participant carried
four smartphones at four body positions simultaneously: in
the hand, at the torso, in the hip pocket, in a backpack
or handbag (see Fig. 1). The smartphone logged data from
16 sensor modalities (see Table 1). The complete dataset
contains up to 2812 hours of labeled data, corresponding to
16,732 km travel distance, and is considered as one of the
biggest dataset in the research community.

The SHL Challenge 2023 provides a training, testing and
validation dataset2. The training dataset comprises 59 days of
data collected by a single “Train” user (User1), with all four
smartphone positions available (Hips, Torso, Bags, Hand).
The testing contains 28 days of data collected by a “Test”
user with a smartphone placed at one position3, which is
unknown to the participants during the competition. The
“Test” user is in reality a combination of data of User2 and
User3, as none of these users could engage in all the eight
activities, and this combination allows to obtain a balanced
test dataset. The validation dataset contains six days of data

1
http://www.shl-dataset.org/activity-recognition-challenge-2023/

2
The exact dates for splitting the dataset will be released at the challenge website

http://www.shl-dataset.org/activity-recognition-challenge-2023/.
3
The testing position is “Hand”.

Figure 1: Smartphone positioning during data collection.

Table 1: Sensor modality of the complete SHL dataset.

Modality SHL2018 SHL2019 SHL2020 SHL2021 SHL2023

Accelerometer ✓ ✓ ✓ ✓

Gyroscope ✓ ✓ ✓ ✓

Magnetometer ✓ ✓ ✓ ✓
Linear
accelerometer

✓ ✓ ✓

Orientation ✓ ✓ ✓

Gravity ✓ ✓ ✓

Ambient
pressure

✓ ✓ ✓

GPS location ✓ ✓

WiFi
reception

✓

GSM
reception

✓

GPS
reception

✓ ✓

Battery

Ambient
light

Audio

Video

Google API

from the four locations and from User2 and User34. Fig. 2
depicts the duration of each transportation activity at one
phone position in the training, validation and testing datasets.
In total, we have 272× 4 hours of training data, 40× 4 hours
of validation data and 129 hours of testing data, respectively.
Fig. 3 visualizes the GPS location and trajectory of the user
from the validation set.

The challenge dataset contains the raw data from three
motion sensors (accelerometer, gyroscope, and magnetometer)
and two GPS sensors (GPS reception and GPS location). The
three motion sensors are synchronously sampled at 100 Hz.
The GPS sensors are asynchronously sampled, with a sam-
pling rate of roughly 1 Hz but is time-varying for each sensor.
Depending on the condition of GPS satellite, it may happen
that the GPS sensor receives no signal and thus no data is
recorded. The activity label (class label) of the training and
validation data is provided and synchronized with the motion
sensor, with a sampling rate 100 Hz. The class label for the
testing data is invisible to the participants for evaluation.

4
Note that the validation data is the same as the preview version of the SHL

dataset. http://www.shl-dataset.org/download/#shldataset-preview.
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Figure 2: The duration of each class activity at one
phone position in the training, validation, and testing

datasets. The 8 classes are: 1 - Still; 2 - Walk; 3 - Run; 4

- Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

Figure 3: Visualization of the GPS location and
trajectory in the complete validation dataset from User2

and User3 in 6 days.

2.2 Data Format

Tables 2, 3 and 4 list the data files provided in the training,
validation and testing datasets, respectively5. In each sensor
data file, the first column of the data contains the epoch time
in ms. In addition,

∙ the GPS location file contains the latitude, longitude,
altitude and the accuracy of the location.

∙ the GPS reception file contains the number of available
satellites, and the SNR, the azimuth and elevation of
reception;

The label file contains the class activity information at each
timestamp. The 8 numbers in the label file indicate the 8
activities6: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike; 5 - Car; 6 -
Bus; 7 - Train; 8 - Subway.

5
More details of the data organization and file formate is available at

the challenge website: http://www.shl-dataset.org/activity-recognition-challenge-

2023/.
6
Note that we removed all the ‘null’ class from the raw data.

Table 2: Data files provided in the training dataset (one

phone position, four positions in total).

Filename Size
Format

Column Content

Acc.txt
98052438

× 4

1 Epoch time [𝑚𝑠]

2 Accelerometer X [𝑚2/𝑠]

3 Accelerometer Y [𝑚2/𝑠]

4 Accelerometer Z [𝑚2/𝑠]

Gyr.txt
98052438

× 4

1 Epoch time [𝑚𝑠]

2 Gyroscope X [𝑚2/𝑠]

3 Gyroscope Y [𝑚2/𝑠]

4 Gyroscope Z [𝑚2/𝑠]

Mag.txt
98052438

× 4

1 Epoch time [𝑚𝑠]

2 Magnetometer X [𝑚2/𝑠]

3 Magnetometer Y [𝑚2/𝑠]

4 Magnetometer Z [𝑚2/𝑠]

Location.txt
1088500

× 7

1 Epoch time [ms]

2 Ignore

3 Ignore

4 Accuracy of this location [m]

5 Latitude [degrees]

6 Longitude [degrees]

7 Altitude [𝑚]

GPS.txt
1421690

× 𝑛 var

1 Epoch time [𝑚𝑠]

2 Ignore

3 Ignore

4+

Variable number of entries for GPS
data. If no satellite is visible the
4th column is 0. Otherwise, for each
satellite visible 4 columns are added
to the data file and an additional
last column indicates the number
of satellites. Each of the 4 columns
contain in order: ID, SNR, Azimuth
[degrees], Elevation [degrees]

Label.txt
98052438

× 2

1 Epoch time [𝑚𝑠]

2
Label: Still=1, Walking=2, Run=3,
Bike=4, Car=5, Bus=6, Train=7,
Subway=8

Due to irregular sampling, the data file from each sensor
has a different size. The Label data is sampled exactly at
a frequency of 100 Hz. The label files at each phone posi-
tion contain 98, 052, 438 samples, 14, 395, 941 samples, and
46, 385, 816 samples, respectively for training, validation and
testing. The total size of the sensor data in ASCII format is
54.8 GB, 8.11 GB and 6.42 GB for the training, validation and
testing sets, respectively. The ‘Label idx.txt’ file in the testing
dataset provides the timestamps for which to predict the
transportation mode. The participants would need to submit
a plain text prediction file that contains the timestamps, as
indicated in the ‘Label idx.txt’ file, and the predicted labels.

SHL 2023 evaluates the recognition performance for each
labeled sample, i.e. we compare ground truth to the predicted
label at every sample (100 Hz) indicated in the ‘Label idx.txt’
file. The challenge does not put constraints on the maximum
decision window length, i.e. the sensor data samples are
consecutive in time, with no segmentation and permutation
applied. This is different from SHL 2018-2020, where the
recognition recognition performance was evaluated with a
frequency of 100 Hz, but to constrain the maximum decision
window length of 1 minute (SHL 2018) or 5 seconds (SHL
2019 and 2020). This is also different from SHL 2021, where
he recognition recognition performance was evaluated per
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Table 3: Data files provided in the validation dataset

(one phone position, four positions in total).

Filename Size Format

Acc.txt
14395941
× 4

Identical to the training data.
Gyr.txt

14395941
× 4

Mag.txt
14395941
× 4

Location.txt
138471
× 7

GPS.txt
180377
× 𝑛 var

Label.txt
14395941
× 2

Table 4: Data files provided in the testing dataset.

Filename Size Format

Acc.txt
46385816
× 4

Identical to the training data.
Gyr.txt

46385816
× 4

Mag.txt
46385816
× 4

Location.txt
450932
× 7

GPS.txt
600576
× 𝑛 var

Label idx.txt
46385816
× 1

Epoch time [𝑚𝑠]. The timestamps
for which to predict the transporta-
tion mode.

second and without a constraint on the decision window
length.

2.3 Task and Evaluation

The task is to train a recognition pipeline using the train-
ing/validation dataset and then use this system to recognize
the transportation mode from the sensor data in the testing
set. The recognition performance is evaluated with the F1
score averaged over all the activities.

Let 𝑀𝑖𝑗 be the (𝑖, 𝑗)-th element of the confusion matrix.
It represents the number of samples originally belonging to
class 𝑖 which are recognized as class 𝑗. Let 𝐶 = 8 be the
number of classes. The macro F1 score is defined as below.

recall𝑖 =
𝑀𝑖𝑖∑︀𝐶
𝑗=1 𝑀𝑖𝑗

, precision𝑗 =
𝑀𝑗𝑗∑︀𝐶
𝑖=1 𝑀𝑖𝑗

, (1)

𝐹1 =
1

𝐶

𝐶∑︁
𝑖=1

2 · recall𝑖 · precision𝑖

recall𝑖 + precision𝑖

. (2)

3 RESULTS

Thirty-four teams expressed interest in the initial registra-
tion stage. The teams had 2.2 months (20 April - 25 June
2023) to develop the methods and work on the challenge
task. Eventually, 15 teams contributed 15 submissions in the
final submission stage by the deadline of 05 June7. Table 8
summarizes the technical details of the 15 submissions and

7
Submissions [13] and [15] withdrew their technical paper. But we still include

their results in the analysis.
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Figure 4: The submissions are ranked based on their

F1 scores on the testing set (more details are given in
Table 8).

Table 9 shows the detailed confusion matrices computed on
the testing dataset.

3.1 Ranking

Fig. 4 depicts the F1 score of each submission for the testing
set. The submissions are ranked based on their performance
on the testing set (Table 8). Overall, five submissions achieved
F1 scores above 90%, three between 80% and 90%, two
between 70% and 80%, three between 50% and 70%, and
two below 50%. In this paper, we also provide a baseline
implementation that achieves an F1 score of 88.7% (see
Sec. 6).

Since each team employs a distinct strategy for cross-
validation, we requested each team to predict their perfor-
mance for the testing dataset based on the available dataset
(i.e. training and validation). We report this predicted per-
formance, as well as the actual performance on the test
set in Fig. 4. The predicted result shows that most sub-
missions (except 4, 14 and 15) generalize well between the
training/validation and the testing data, and with a dif-
ference between the actual and predicted F1 score lower
than 10 percentage points. Submission 4 shows under-fitting.
Submissions 14 and 15 suffer from significant over-fitting.
We briefly introduce the approaches used by the top four
contributions, which achieve an F1 score above 92%.

HELP takes the first place with F1 score 96.0% [1]. The
submission computes 106 features in total from the five sen-
sors (accelerometer, gyroscope, magnetometer, GPS location
and GPS receiver) per 5-second data frame, and trains mul-
tiple DL (fully connected DNN) and ML (RF) models at
various decision window length ranging from 5 to 240 seconds,
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and also train specific ML models to distinguish ambiguous
activities, such as Car and Bus, Train and Subway. The
decision at one time point is made by combining an ensemble
of the abovementioned classifiers via majority voting and
further improved by temporal smoothing.

HYU-CSE achieves the second-highest F1 score of 93.7%,
which is 2.3 percentage points lower than the champion [2].
The submission computes 8 GPS location features per 60-
second data frame, and feeds the location feature as well as
the raw data of motion sensors (accelerometer, gyroscope
and magnetometer) to a dense convolutional neural network
(DenseNet) to predict the transportation mode. The DenseNet
receives separate inputs from the motion sensor data and
the GPS feature data, and fuses them in the middle of the
network, and outputs a final decision at the end of the net-
work. The decision window slides the sensor data with a
small skip size of 1 second, resulting in multiple decisions
at each time point. A majority voting is thus employed to
get a joint decision. The submission divides the trajectory
into trips with the same transportation activity in each trip
segment, and further improves the prediction accuracy by
exploiting this property. The precision of trip segmentation
however is not reported.

Juliet takes third place with an F1 score of 92.7% [3]. The
submission divides the sensor data into 5-second windows
and extracts features from the five sensors (accelerometer,
gyroscope, magnetometer and GPS location and reception)
per window. The submission additionally incorporates Open-
StreetMap data (such as road, railway, transport, traffic,
and land use) to augment the geographical information. An
ensemble of ML and DL model are employed for a joint predic-
tion. The ML approach includes XGBoost, LightGBM, and
CatBoost models with hand-crafted features as input. The
DL approach employs a CNN-RNN-Transformer framework
with input consisting of both the raw data and hand-crafted
features. The submission further improves the prediction
accuracy by applying temporal smoothing within a large
segment of 300 seconds.

Fighting zsn takes fourth place with an F1 score of 92.4% [4],
which is very close the third place. The submission extracts
hand-crafted features from the five sensors (accelerometer,
gyroscope, magnetometer and GPS location and reception)
and feeds them to an ensemble of ML classifiers, including
XGBoost, LightGMB and RF for a joint decision. Similarly
to [3], the submission incorporates external knowledge from
OpenStreetMap to enrich geographical context information.
The submission employs data augmentation to address label
distribution imbalance, ensuring a balanced label distribu-
tion for improved training. The submission also improves
the prediction performance by applying temporal smoothing
within a large window of 150 seconds.

3.2 Average Performance

As shown in Fig. 4, eight out of 15 submissions achieve F1
scores above 80%. We analyze the results from the top eight
submissions (with F1 scores larger than 80%).
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Figure 5: Recognition accuracy for each class activity by
the top 8 submissions and the average confusion matrix.

The 8 class activities are: 1 - Still; 2 - Walk; 3 - Run; 4 -
Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

Fig. 5 box-plots the recognition accuracy for each class
activity (i.e. the diagonal elements of the confusion matrix in
Table 9), among the top eight submissions, and also presents
the average confusion matrix of their results. From the box-
plot, most classes can be identified accurately except the class
Run and the class Car. From the average confusion matrix, a
major part of Run activity is misclassified as Walk, which is
possible because of different users’ behaving habits, i.e. the
running speed of the testing user may be close to the walking
speed of the training user. An ambiguity between Car and
Bus is also observed from the confusion matrix, possibly due
to their similar vibration pattern and traveling speed.

4 SUMMARY OF APPROACHES

4.1 Classical machine learning vs Deep
learning

We categorize the 15 submissions into two families: classical
machine learning pipeline (ML) and deep learning pipeline
(DL). There are 6 ML submissions and 9 DL submissions.

Fig. 6(a) box-plots the F1 scores obtained by these t-
wo families. DL has a higher upper bound than DL, while
achieving a much lower lower bound. ML has a smaller dy-
namic range than DL. DL achieves the top three F1 scores
(96.0% [1], 93.7% [2] and 92.7% [3]), while the best ML
approach (92.4% [4]) was ranked the 4th place. Fig. 6(b)-(c)
show in box-plot the training and testing time by ML and
DL approaches, respectively. DL takes much more time for
training than ML, and also takes more time for testing.

Fig. 7 depicts the specific classifiers employed by ML and
DL approaches. ML involves three classifiers: extreme gradi-
ent boost (XGBoost), random forest (RF), and ensembles of
classifiers (XGBoost + RF + LGBM), where LGBM refers
to light gradient-boosting machine. DL involves four types of
classifiers: convolutional neural network (CNN), Long short-
term memory (LSTM), Transformer, and ensembles of deep
leaning and machine learning.

For classical machine learning, XGBoost has three sub-
missions, followed by Ensembles with two submissions, and
RF with one submission. Among these classifiers, Ensemble
achieves the highest F1 score (92.4%), followed by XGBoost
(91.2%), while RF achieves the lowest F1 score (60.2%). For
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Figure 6: Comparison between machine learning and

deep learning approaches. (a) F1 score for the testing

data. (b) Training time. (c) Testing time.

deep learning, Ensembles (ML + DL) is the most popular
classifier with four submissions, followed by CNN with three
submissions, while LSTM and Transformer each have one
submission. Ensembles (ML + DL) achieve the highest F1
score (96.0%), followed by CNN (93.7%) and Transformer
(70.6%), while LSTM achieves the lowest F1 score (19.3%).

All six ML approaches use hand-crafted features as input to
the classifier. Among the nine DL approaches, three use hand-
crafted features as input to the classifier, three use raw data,
and three combine raw data and hand-crafted features as
input. Feature-only approaches achieve the highest F1 score
(96.0%), followed by Feature-raw approaches (93.7%), while
raw-only approaches achieve the lowest F1 score (83.6%).

4.2 Sensor modalities

Most submissions (13 out of 15) employ all five sensors:
accelerometer (A), gyroscope (G), magnetometer (M), GPS
location (L) and GPS reception (R). One submission uses only
the motion data (AGM) and is ranked 8th. One submission
uses only the accelerometer data (A), and is ranked 15th. It
seems that the employment of all five sensors is a sensible
choice.

4.3 Software Implementation

For both ML and DL, Python is the only programming
language used by the submissions. For ML, Scikit-Learn
(Python) is the most used library. For DL, Pytorch is the most
popular library. Keras (based on Tensorflow) and Tensorflow
each only have one submission.

5 DISCUSSION

The overall performance based on GPS and motion sensors
(SHL 2023) is much higher than the one achieved by motion
sensors (SHL 2018-2020) and the one achieved by GPS and
radio sensors (SHL 2021). For instance, for user-independent
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Figure 7: Classical machine learning and deep learning
classifiers used by the submissions. The text on top of

the bar indicates the highest F1 score achieved by each

group of classifiers.
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F1 score achieved by each type of input.

testing, SHL 2023 has 8 (out of 15) submissions with F1
scores above 80%, while SHL 2021 and 2020 only have 1
(out of 15) and 0 (out of 15) submissions, respectively, with
F1 scores above 80%. There are mainly two reasons for the
high performance of SHL 2023. First, the GPS and motion
sensors provide complementary information that is beneficial
to transportation mode recognition [48]. Second, SHL 2023
did not have a constraint on the maximum decision length
(e.g. 5 seconds in SHL 2020), thus allowing a large decision
window that can improve the transportation mode recognition
performance effectively [35].

On the other hand, sensor unavailability, irregular sam-
pling, and sensor diversity impose technical challenges to data
processing. The participant teams have employed various
techniques to tackle these challenges at various stages: pre-
processing, feature extraction and sensor fusion, and post-
processing.

5.1 Pre-processing

The sensor data are captured by independent sensors, leading
to unsynchronized timestamps in each data file, i.e. the epoch-
time columns are not identical in the data files. The data
from the three motion sensors (accelerometer, gyroscope,
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magnetometer) are synchronously sampled with a sample rate
100 Hz. The data from the GPS location and reception sensors
are captured with a time-varying sampling rate around 1 Hz.
Depending on the environment and device, the GPS reception
might not be available (e.g. underground subway) and thus
the GPS sensor does not provide any data.

In SHL 2021 we were facing similar challenges of sensor
unavailability and irregular sampling and the participant
teams have proposed a variety of solutions, such as label
matching and data interpolation to synchronize the data and
fill missing sample [44]. Due to these previous achievements,
most submissions in SHL 2023 are able to deal with these two
challenges successfully with similar strategies. For instance,
the submissions employ label alignment [1, 4, 6, 8, 9, 11, 14]
to synchronize the data and the submissions [2, 3, 7] employ
data interpolation to fill missing samples. One submission [5]
exploits the availability of GPS signals to distinguish indoor
and outdoor scenarios.

5.2 Feature engineering

The data diversity makes it important to extract suitable
features for the classification task.

The motion (accelerometer, gyroscope and magnetometer)
sensor can be exploited in the form of raw data or hand-
crafted features. The raw motion data is typically used as
input to DL classifiers, after being converted to the Euclidean
magnitude [2, 3, 6, 8, 10]. Alternatively, hand-crafted features
can be extracted form the raw motion sensor data and used
as input to either DL or ML classifiers [1, 3–9, 11]. Due to
the large variety of hand-crafted features extracted from the
motion sensors, we did not summarize the details here.

The GPS sensor data is usually exploited in the form of
hand-crafted features. Table 5 summarizes the GPS features
used by the submissions. For GPS reception data, the basic
features include the number of satellites and the SNR of each
satellite.

For GPS location data, three sets of basic features are
considered. One is the raw location data in terms of longitude
and altitude [1–3, 6, 8, 12]. The second set includes distance,
heading, velocity and acceleration derived from longitude and
altitude [1–12]. From the change of distance, velocity and
acceleration can be computed by differentiating the distance
with respect to the time. The third set is GIS information,
e.g. the distance to nearby railways and bus stops in the
city [1, 3, 4, 7, 11, 12]. These submissions utilize the map
information from OpenStreetmap [3, 4] or OverPass [6], an
external geographic database that contains road map data on
earth. Based on the phone position indicated with latitude
and longitude, the closest distance to various types of roads
(e.g. railway, busway, motorway, residential, pedestrian, living
streets) and landmarks (e.g. railway and bus station) can be
calculated.

Most submissions compute the statistical information of
the basic GPS features within a time window, such as the
max, min, mean and median value in a decision window
period.

Table 5: GPS features used by the submissions to the

SHL recognition challenge 2023.

Modality Basic features Submissions 

GPS location 

Velocity, acceleration 
distance, heading 

[1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12] 

Longitude, altitude [1, 2, 3, 6, 8, 12] 
GIS (distance to road 
type and landmarks) 

[3, 4, 6, 7, 9, 11, 
12] 

GPS reception Number of satellites 
and SNR 

[1, 3, 4, 7, 11, 12] 

 

  

Table 6: Multimodal fusion schemes used by the

submissions to the SHL recognition challenge 2023.

Fusion scheme Submissions 
Early fusion [1, 3, 4, 5, 6, 7, 9, 

11, 12, 14] 
Middle fusion [2, 6, 10] 
Late fusion [1, 2, 3, 4, 6, 8, 9] 
 

5.3 Sensor fusion

With different sampling rates, the motion and GPS data can
be fused in different ways for the classification task. Several
multimodal fusion approaches have been used, which can be
categorized as early fusion, middle fusion and later fusion.

The early fusion scheme concatenates the data of all modal-
ities as a single input vector for classification, and thus only
needs a single classification model. The synchronization of
multiple modalities and the handling of different data sizes
and sampling rates remain challenging problems. To address
this issue, the submissions employing the early fusion scheme
extract hand-crafted features from the motion and GPS
sensors, respectively, and concatenate them as a single input
vector to the classifier [1, 3–7, 9, 11, 12, 14]. By doing this,
the classifier does not need to consider inconsistent sampling
rates and data size from multiple sensors.

The middle fusion scheme is typically applied to deep neu-
ral network works. The classifier receives separate input from
multi-modal sensors, merges the multi-modal information
in the middle of the architecture, and outputs a decision at
the final layer. A few submissions employ the middle fusion
scheme, where a deep neural network receives input from
motion sensors and the GPS sensors, separately, and merges
them in the middle of the network [2, 6, 10]. In this way, the
inconsistent sampling rate of the motion and GPS sensors
can be handled naturally.

The late fusion scheme trains a separate classifier for each
modality independently, and draws a final decision by com-
bining the outputs of the classifiers. In the late fusion scheme,
each separate classifier is optimized, which brings additional
benefits of flexibility and scalability. Rather than fusing the
modalities, several submissions fuse multiple classifiers, either
an ensemble of ML classifiers [4, 9], an ensemble of DL classi-
fiers [2, 8], or the combination of ML and DL [1, 3, 6]. Since
each individual classifier is already optimized with an early
fusion or middle fusion scheme, the late fusion scheme tends
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to maximize the classification performance. For instance,
the submissions [1, 3] achieve the first and third place by
combining early fusion and late fusion, the submission [2]
achieves the second place by combining middle fusion and
late fusion.

5.4 Post-processing

Similar to SHL 2021, the challenge this year does not put
constraints on the size of the decision window and the par-
ticipants have the freedom to choose any window length as
appropriate. Most submissions employ a two-step processing,
i.e. perform prediction with a short decision window (ranging
from 1 second, 5 seconds to 60 seconds) followed by a large
temporal smoothing window up to 480 seconds (see details in
Table 8). Since the transportation activity usually remains
for a long period, the temporal smoothing can improve the
prediction accuracy significantly. One submission [2] divides
the sensor data into trips, each having only on transportation
activity, and further improve the prediction performance by
applying major voting within this trip segment. While the
accuracy of trip segmentation is not reported, this submission
achieves second place among all the participants.

5.5 Phone location estimation

In this challenge, the position of the testing phone is unknown
to the participant. It has been proved in SHL 2019 [42] that
the phone position will affect the motion sensor significantly.
Several submissions [5–8] designed a classifier to estimate the
position of the phone so that the validation can be performed
more precisely. They all estimate the phone position correctly
to be “Hand”, which helps them to choose the right validation
dataset. On the other hand, the GPS sensor is robust to phone
placement, and can mitigate the influence on the motion
sensors. The top four submissions [1–4] still achieve the best
performance without knowing the phone position.

6 BASELINE IMPLEMENTATION

To investigate the contribution of each sensor to the recogni-
tion task, we present a baseline solution for SHL 2023. We
use all five sensor modalities for the prediction.

In the pre-processing we handle the synchronization and
missing data problem with the label-matching method pro-
posed in the baseline of SHL 2021 [44]. After synchronization,
the GPS data is aligned with the label with a sampling rate
of 1 Hz. In the classification stage, we proposed two pipelines:
ML and DL, as shown in Fig. 9(a) and (b), respectively. For
both pipelines, we perform recognition per 5-second decision
window, followed by post-processing. In the post-processing
stage, we perform median filtering within a window of length
125 seconds, assuming a transportation activity will continue
for at least 2 minutes.

6.1 ML pipeline

For the ML pipeline as shown in Fig. 9(a), we compute the
hand-crafted features per each sensor modality, and concate-
nate them into a vector before feeding into a random forest
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Figure 9: Baseline recognition pipeline. The recognition

is performed per 5-second decision window, followed by
post-processing. (a). ML pipeline. (b) DL pipeline.

classifier. The hand-crafted features of the motion sensors
are defined in [46], where we compute 147, 150 and 148
features for the accelerometer, gyroscope and magnetometer,
respectively. The hand-crafted features of the GPS sensors is
defined in [44], where we compute 4 and 3 features for the
GPS location and reception sensors, respectively. In total, we
compute 452 hand-crafted features for the recognition task
in each 5-second decision window. This is an early fusion
scheme. We implement the random forest classifier with the
Matlab Machine Learning Toolbox, using 20 trees and setting
‘minleafsize’ to 1000. We use data from the training and
validation set to train the classifier. When using an Intel
i7-1165G7 4-core@2.8GHz CPU with 32G RAM, the training
and testing time are 340 seconds and 3 seconds, respectively.

Table 7(a) gives the confusion matrices and F1 scores
obtained by the ML pipeline combining various sensor modal-
ities for the testing data. It can be observed that, when
using a single modality, the accelerometer contributes most
to the recognition task with F1 score 46.9%, followed by
GPS location (42.5%), gyroscope (41.6%), magnetometer
(38.6%), and GPS reception (26.5%). The combination of
GPS location and reception can only increase the F1 score
from 42.5% (location only) to 44.5% (both). The combination
of accelerometer and gyroscope can increase the F1 score to
57.1%, with additional magnetometer increasing F1 score to
63.8%. The combination of the five sensors further increases
the F1 score to 68.3%, which can be improved to 76.0%
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Table 7: Confusion matrix (F1 score) of the baseline pipeline for the testing dataset, with different combinations of

sensor modalities. (a) ML pipeline. (b) DL baseline. Key: A - accelerometer; G: gyroscope; M - magnetometer; L - GPS

location; R - GPS reception; The 8 class activities are: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train;
8 - Subway.

 

 A (46.9%) G (41.6%) M (38.6%) A+G (57.1%) A+G+M (63.8%) 

1 

2 

3 

4 

5 

6 

7 

8 

    71     1     0     1     8     5     8     8 

     1    78     0     9     5     4     1     1 

     0    19    61    19     0     0     0     0 

     0     0     0    24    64    11     0     0 

     7     3     0     2    12    14    56     7 

     9     1     0     4    24    46    14     2 

    14     0     0     1    12    12    55     5 

 28     0     0     1    19     7    34    11 

    57     5     0     2     7     2    23     4 

     1    74     0    22     2     0     0     0 

     0    45    33    22     0     0     0     0 

     0    45     0    42    11     1     0     0 

     3     4     0     5    77     6     4     0 

    14     3     0     2    39    22    19     2 

    17     2     0     1    22     7    48     4 

    28     2     0     1    19     3    43     4 

    54     8     0    14     7    12     3     1 

     3    42     1    28     2     3    11    12 

     3     8    17    64     0     0     8     0 

    12    18     0    45     5     6     8     6 

     4     7     1     5    38    22    19     5 

    13     7     1    12    31    25    10     2 

     2    10     0     4    13     7    40    24 

     1     7     0     3     5     3    33    48 

    79     3     0     1     5     2     5     6 

     3    82     0    13     2     0     0     0 

     0    31    62     7     0     0     0     0 

     1     1     0    67    30     1     0     0 

     8     5     0     2    66     2    15     2 

     8     1     0     3    28    41    16     3 

    16     1     0     1    12    12    53     5 

    24     1     0     1    18     6    36    15 

    82     2     0     2     3     4     4     2 

     3    79     0    15     1     0     0     0 

     0    36    60     4     0     0     0     0 

     2     1     0    73    22     2     0     1 

     4     4     0     0    55    20    11     4 

     8     1     0     3    30    50     7     2 

     9     1     0     1    10     6    55    18 

     5     1     0     1     8     1    37    48 

 L (42.5%) R (26.5%) L+R (44.5%) A+G+M+L+R (68.3%) Post (76.0%) 

1 

2 

3 

4 

5 

6 

7 

8 

     54     6     0     0     0     2     7    29 

     7    85     2     1     0     2     1     1 

      0    84    12     3     0     1     0     0 

      2    38    40    17     0     3     0     0 

     3     3     0     5    63    17     9     0 

     7     4     1    12    18    56     1     0 

      3     2     1     4    40    15    32     4 

      1     1     0     2    23    16    10    47 

    24    30     0     7    10     2    13    14 

     1    79     0     7     9     2     2     1 

     0    70     0    10    14     6     0     0 

     0    86     0     5     9     1     0     0 

     0    44     0    13    38     5     1     0 

     0    46     0     9    32     9     3     0 

     6    10     0     5    36    15    24     4 

     2     3     0     5    21     9    12    49 

    71     5     0     0     0     1     8    14 

     7    87     2     1     0     1     1     1 

     0    86    11     2     0     0     0     0 

     2    44    36    16     0     1     0     0 

     2     3     0     7    70    14     2     0 

     7     6     1    20    20    46     1     0 

     5     2     0     4    37    15    33     4 

     1     1     0     2    22    16     9    49 

    83     1     0     2     3     5     6     1 

     3    82     0    12     1     0     1     0 

     0    38    59     3     0     0     0     0 

     1     0     0    74    19     5     0     0 

     4     3     0     1    67    11    15     0 

     8     1     0     3    26    55     7     0 

     8     1     0     1    13     4    69     3 

     5     1     0     0     5     1    37    50 

    90     2     0     1     3     2     2     0 

     1    91     0     8     0     0     0     0 

     0    43    57     0     0     0     0     0 

     0     0     0    80    19     1     0     0 

     0     1     0     0    86     9     4     0 

     2     1     0     1    24    72     0     0 

     4     0     0     0     8     6    82     0 

     1     0     0     0     1     0    48    49 

     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8      1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8 
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 DL: A+G+M (73.1%) ML: L+R (44.5%) Fusion: A+G+M+L+R (77.0%) Post (88.7%) 

1 

2 

3 

4 

5 

6 

7 

8 

    82     3     0     1     2     2     8     3 

     4    85     0     8     1     1     1     1 

     0    35    60     5     0     0     0     0 

     6     3     0    73     7    10     1     1 

     5     3     0     1    67    15     6     4 

     4     1     0     1    13    74     5     2 

     6     1     0     0     4     3    70    16 

     4     0     0     0     3     1    29    62 

    71     5     0     0     0     1     8    14 

     7    87     2     1     0     1     1     1 

     0    86    11     2     0     0     0     0 

     2    44    36    16     0     1     0     0 

     2     3     0     7    70    14     2     0 

     7     6     1    20    20    46     1     0 

     5     2     0     4    37    15    33     4 

     1     1     0     2    22    16     9    49 

    88     2     0     0     1     1     5     2 

     4    90     0     5     0     1     0     0 

     0    42    55     3     0     0     0     0 

     2     7     0    77     5     8     0     0 

     3     3     0     1    75    11     5     2 

     3     1     0     1    13    77     4     1 

     4     1     0     0     4     3    77    11 

     3     0     0     0     2     1    26    68 

    94     2     0     0     0     0     2     0 

     1    98     0     1     0     0     0     0 

     0    41    59     0     0     0     0     0 

     0     3     0    90     6     1     0     0 

     0     1     0     0    96     2     0     0 

     1     0     0     0     6    92     0     0 

     2     1     0     0     1     1    94     1 

     1     0     0     0     0     0    23    77 

     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8      1      2      3     4      5      6      7      8 
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through post-processing. The confusion matrix obtained after
post-processing shows certain ambiguities between Walk vs
Run, Car vs Bus and Train vs Subway.

6.2 DL pipeline

For the DL pipeline as shown in Fig. 9(b), we use two classi-
fiers to fuse the multimodal sensor data efficiently. For the
three motion sensors, we concatenate the raw data (Euclidean
magnitude) of each sensor into a vector before fed into a CNN
classifier. The Euclidean magnitude is defined in [46], where
we convert the 500 raw data points in a 5-second decision into
a magnitude vector of length 251. In total we have a vector
of length 753 for the three motion sensors. For the two GPS
sensors, we compute the hand-crafted features as defined
in [44], where we have 4 and 3 features for the GPS location
and reception sensors. The hand-crafted features were fed to
a random forest classifier, with the same parameter as the one
in the ML pipeline. Finally, we use a product-based ensemble
scheme, as defined in [35] to fuse the decision form the CNN
and RF classifiers. This is a late-fusion scheme. The CNN
classifier is implemented with the Matlab Deep Learning
Toolbox. We use data from the training and validation set
to train the classifier. When using a GeForce GTX 1080 Ti

GPU with 3584 CUDA cores@1.58 GHz and 11 GB memory,
the training and testing time are 2.8 hours and 10 seconds,
respectively.

Table 7(a) gives the confusion matrices and F1 scores
obtained by the ML pipeline combining various sensor modal-
ities for the testing data. It can be observed that the CNN
combining three motion sensors achieve an F1 score of 72.3%,
and the RF combining two GPS sensors achieves an F1 score
of 44.5%. The fusion of the two classifiers can increase the
F1 score to 77.0%, which is further improved to 88.7% by
post-processing. The confusion matrix obtained after post-
processing shows certain ambiguities between Walk vs Run
and Train vs Subway. The baseline performance (88.7%)
locates between the fifth (91.2%) and sixth place (85.9%) of
submissions.

Table 7 gives the confusion matrices and F1 scores ob-
tained by combining various sensor modalities for the testing
data. It can be observed that, when using a single modal-
ity, GPS location contributes most to the recognition task
with F1 score 45.4%, followed by GPS reception (27.8%),
WiFi (17.7%) and Cell (15.8%). The combination of WiFi
and Cell only increases the F1 score slightly to 20.0%. The
combination of GPS reception with other sensors can increase
the recognition performance effectively. For instance, the F1
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score increases from 45.4% to 51.3% when combining GPS
reception with GPS location; and increases from 20.0% to
33.6% when combining GPS reception with WiFi and Cell.
The combination of the four sensors leads to the highest F1
score of 54.9%, which is slightly lower than the submission
that ranks in the 7th position (56.6%). The performance can
be further improved by incorporating statistical features and
by exploiting the temporal dependencies in transportation
activities.

7 CONCLUSION

We reported the achievements obtained during the SHL recog-
nition challenge 2023, where five submissions achieved F1
scores above 90%, three between 80% and 90%, two between
70% and 80%, three between 50% and 70%, two below 50%.
We summarized the approaches used by these submissions
and analyzed their performance. Because the approaches
are implemented by different research groups with varying
expertise, the conclusions drawn will be confined to the
submissions of the challenge.

The submissions can be divided into ML and DL pipelines.
DL has a higher upper bound than DL, while achieving
a much lower lower bound. On the other hand, ML has a
smaller dynamic range than DL. DL achieves the top three
F1 scores (96.0%, 93.7% and 92.7%), while the best ML
approach (92.4%) was ranked the 4th place.

While the task this year is facing the technical challenges of
sensor unavailability, irregular sampling, and sensor diversity,
the overall performance based on GPS and motion sensors is
better than the previous four years. The is possibly due to
the complementary between the GPS and motion sensors and
also the removal of constraints on the decision window length.
Various hand-crafted features were extracted from the GPS
and motion sensors. An external GIS dataset has been widely
used to augment geographical information. Three types of
fusion schemes (early, middle and late fusion) were employed
to integrate the information from multimodal sensors. The
late fusion scheme, in the form of an ensemble of ML and
DL classifiers, has shown the best performance.
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Table 8: Summary of the SHL recognition challenge 2023.
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4 Fighting_zsn
XGBoost + RF

+ LGBM
1 s 150 s Features AGMLR early+late 80.0% 92.4%

32-core@2.1GHz

RAM-173G
/ 1.3 / Python Scikit-learn / [4]

5 MUSIC XGBoost 40 s 480 s Features AGMLR early 84.0% 91.2%
10-core@3.70GHz

RAM-128G
/ 2 14 Python Scikit-learn 9.2 [5]

7 WinGPT XGBoost 60 s 300 s Features AGMLR early 90.9% 85.6% / / 0.1 12 Python Scikit-learn 18.7 [7]

9 ZZL
XGBoost + RF 

+ LGBM
1 s 225 s Features AGMLR early+late 80.0% 71.0%

32-core@2.5GHz 
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Table 9: Confusion matrix (F1 score) of each submission for the testing dataset. The 8 class activities are: 1 - Still; 2 -

Walk; 3 - Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

 HELP (95.99%) HYU-CSE (93.68%) Juliet (92.69%) Fighting_zsn (92.43%) 

1 

2 

3 

4 

5 

6 

7 

8 

   100     0     0     0     0     0     0     0 

     0   100     0     0     0     0     0     0 

     0    45    55     0     0     0     0     0 

     0     0     0   100     0     0     0     0 

     0     0     0     0   100     0     0     0 

     0     0     0     0     0   100     0     0 

     0     0     0     0     0     0   100     0 

     0     0     0     0     0     0     0   100 

    90     0     0     0     0     0     0     9 

     0    96     0     4     0     0     0     0 

     0    45    55     0     0     0     0     0 

     0     0     0   100     0     0     0     0 

     0     0     0     0    99     1     0     0 

     0     0     0     0     0   100     0     0 

     0     0     0     0     0     0   100     0 

     0     0     0     0     0     0     4    96 

    98     0     0     0     0     0     0     2 

     1    99     0     0     0     0     0     0 

     0    58    42     0     0     0     0     0 

     2     0     0    98     0     0     0     0 

     0     1     0     0    92     8     0     0 

     0     0     0     0     1    99     0     0 

     0     0     0     0     0     0    99     1 

     0     0     0     0     0     0     1    99 

    95     1     0     0     0     1     1     1 

     1    98     0     0     0     0     0     0 

     0    16    84     0     0     0     0     0 

     0     4     0    86     2     7     0     0 

     1     1     0     0    84    14     0     0 

     1     1     0     0     8    90     0     0 

     1     0     0     0     0     0    97     2 

     0     0     0     0     0     0     1    99 

 MUSIC (91.21%) TDU_BSA (85.91%) WinGPT (85.63%) Ds (83.61%) 

1 

2 

3 

4 

5 

6 

7 
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     0     4     0    80     0    16     0     0 

     1     1     0     0    93     5     0     0 

     2     0     0     0     6    89     3     0 

     3     0     0     0     0     0    96     1 

     0     0     0     0     0     0     0   100 

    56     1     0     0     0     1     3    40 

     2    98     0     0     0     0     0     0 

     0    26    74     0     0     0     0     0 

     1     7     0    89     0     3     0     0 

     0     1     0     0    77    18     0     4 

     0     0     0     0     4    96     0     0 

     2     0     0     0     0     0    93     5 

     0     0     0     0     0     0     6    94 

    98     0     0     0     0     1     0     1 

     2    98     0     0     0     0     0     0 

     0    57    43     0     0     0     0     0 

     0     3     0    96     1     0     0     0 

     0     1     0     0    77    14     8     0 

     4     0     0     0    16    79     0     0 

     3     0     0     0     3     0    88     5 

     0     0     0     0     3     0     0    96 

    95     1     0     0     0     1     2     1 

     3    89     0     4     0     4     0     0 

     0    36    64     0     0     0     0     0 

     4     1     0    75    15     5     0     0 

     2     0     0     0    52     2    44     0 

     1     0     0     0     5    94     0     0 

     4     0     0     0     0     0    94     2 

     1     0     0     0     0     0     9    90 
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7 

8 
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     1     0     0     0     6    92     0     0 

     5     0     0     0     2     2    91     0 

    29     0     0     0    14     3     4    49 

    80     2     0     3     1     5     6     4 

     5    85     0     7     1     2     0     0 

     0    37    62     1     0     0     0     0 

     2     1     0    90     6     1     0     0 

     2     0     0     1    62    35     1     0 
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     2     1     0     6    33    23    33     1 

     5     1     0     5    33    55     2     0 
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7 
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    14     0     0     0     7     0    35    43 

    34    10     0     2     1     1    15    38 

    10    48     3     6     1     1    20     9 

     3    47    10     7     0     1    28     5 

    11     4     0     0     0     0    38    47 

    15    18     1     5     0     0    12    49 

    10     3     0     0     0     0    17    69 

    22     5     0     1     1     1    18    52 

    13     4     0     0     0     0    14    68 

        94     2     0     0     0     0     2     0 

     1    98     0     1     0     0     0     0 

     0    41    59     0     0     0     0     0 

     0     3     0    90     6     1     0     0 

     0     1     0     0    96     2     0     0 

     1     0     0     0     6    92     0     0 

     2     1     0     0     1     1    94     1 

     1     0     0     0     0     0    23    77 

     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8     1      2      3     4      5      6      7      8      1      2      3     4      5      6      7      8 

 

 

 

 

 

  

Predicted class 

G
r
o

u
n

d
 t

r
u

th
 c

la
s
s
  


	Abstract
	1 Introduction
	2 Dataset and Task
	2.1 Dataset
	2.2 Data Format
	2.3 Task and Evaluation

	3 Results
	3.1 Ranking
	3.2 Average Performance

	4 Summary of Approaches
	4.1 Classical machine learning vs Deep learning
	4.2 Sensor modalities
	4.3 Software Implementation

	5 Discussion
	5.1 Pre-processing
	5.2 Feature engineering
	5.3 Sensor fusion
	5.4 Post-processing
	5.5 Phone location estimation

	6 Baseline implementation
	6.1 ML pipeline
	6.2 DL pipeline

	7 Conclusion
	References

