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1. Introduction

This paper is motivated by the following group-theoretic conjecture, which has arisen 
both in Hopf-Galois theory [5, end of §1] and in the theory of skew braces [17, Problem 
2.46].

Conjecture 1.1. If N is a finite soluble group then any regular subgroup G in the holo-
morph Hol(N) of N is also soluble.

Tsang and Qin [16] showed computationally that there are no counterexamples with 
|N | ≤ 2000, and showed theoretically that there are no counterexamples with |N |
cube-free or of the form 2r|S| for certain non-abelian simple groups S. Gorshkov and 
Nasybullov [9] proved that, in a counterexample of minimal order, the insoluble sub-
group G cannot be a simple group. (This can also be deduced from [4].) Nasybullov [13]
has also shown that the analogue of Conjecture 1.1 for infinite groups is false. Reversing 
the roles of G and N in Conjecture 1.1, the holomorph of a finite insoluble group may 
contain a soluble regular subgroup [5].

In this paper, we provide further evidence in support of Conjecture 1.1. We consider 
minimal counterexamples to Conjecture 1.1 in a sense made precise in Definition 3.1. We 
show in Theorem 3.2 that if the pair of groups (G, N) is a minimal counterexample then 
G has a very special form: it contains a soluble normal subgroup K such that, for some 
r ≥ 1 and some soluble transitive subgroup H of the symmetric group Sr, the quotient 
group G/K is isomorphic to the wreath product GL3(2) � H of the non-abelian simple 
group GL3(2) = PSL3(2) ∼= PSL2(7) of order 168 by H. Thus GL3(2) is the unique 
non-abelian composition factor of G, and it occurs with multiplicity r.

Since transitive subgroups of Hol(N) exhibit better behaviour under quotients than 
regular subgroups (see Proposition 2.6 below), we approach Conjecture 1.1 by relaxing 
the requirement for regularity. We therefore ask:

Question 1.2. What are the pairs (G, N) of finite groups such that N is soluble, G is an 
insoluble transitive subgroup of Hol(N), and the stabiliser in G of any element of N is 
also soluble?

It is perhaps surprising that such pairs (G, N) do exist. In the smallest example, N
is the elementary abelian group of order 8 and G ∼= GL3(2). We will define a notion 
of irreducibility for a solution (G, N) of Question 1.2, and then classify all irreducible 
solutions. More precisely, in Theorem 3.6 we describe a family of irreducible solutions, 
and in Theorem 3.7 we show that there are no others. Theorem 3.2 is then a consequence 
of Theorem 3.7.

For the reader’s convenience, we now briefly review the topics of Hopf-Galois theory 
and skew braces which form the background to this work.

We first discuss Hopf-Galois theory. A more detailed exposition can be found in [6, 
Chapter 2]. If L/K is a finite Galois extension of fields with Galois group G then there 



N.P. Byott / Journal of Algebra 638 (2024) 1–31 3
may be many K-Hopf algebras H which act on L to make L into an H-Galois exten-
sion. Greither and Pareigis [10] showed that these Hopf-Galois structures correspond to 
subgroups N in the symmetric group on G which act regularly on G and are normalised 
by left translations. The Hopf-Galois structures can therefore be classified according to 
the isomorphism type of N , which is called the type of the Hopf-Galois structure. The 
extension L/K admits a Hopf-Galois structure of type N if and only if Hol(N) contains 
a regular subgroup isomorphic to G. Thus Conjecture 1.1 is equivalent to the assertion 
that a finite Galois extension with insoluble Galois group cannot admit a Hopf-Galois 
structure of soluble type. More generally, a solution (G, N) to Question 1.2 corresponds 
to a Hopf-Galois structure of soluble type N on a separable (but not necessarily normal) 
field extension L/K with normal closure E/K such that G = Gal(E/K) is insoluble but 
Gal(E/L) is soluble.

We now turn to skew braces. Braces were introduced by Rump [15] in order to 
study non-degenerate involutive set-theoretical solutions of the Yang-Baxter equation. 
Guarnieri and Vendramin [12] defined the more general concept of skew braces to study 
non-degenerate solutions of the Yang-Baxter equation which are not necessarily involu-
tive. A skew brace (B, +, ◦) consists of a set B and two operations, each making B into a 
group, and satisfying a certain compatibility condition by virtue of which the multiplica-
tive group (B, ◦) has an action on the additive group (B, +). A skew brace is a brace 
if (B, +) is abelian. As explained in the introduction to [1], if (B, +, ◦) is a finite brace 
then (B, ◦) is soluble. In any skew brace, (B, ◦) can be viewed as a regular subgroup of 
the holomorph of (B, +), and conversely a regular subgroup G in the holomorph of a 
group (B, +) gives rise to a skew brace (B, +, ◦) with (B, ◦) ∼= G. Thus Conjecture 1.1 is 
equivalent to the assertion that any finite skew brace with soluble additive group must 
also have soluble multiplicative group.

We end this introduction with an outline of the contents of the paper. In §2, we de-
scribe how our problem behaves under passing to subgroups and quotient groups of N . In 
§3 we formulate our main results Theorems 3.2, 3.6 and 3.7, and we deduce Theorem 3.2
from Theorem 3.7. In §4, we construct some irreducible solutions to Question 1.2, thereby 
proving Theorem 3.6. The remainder of the paper is devoted to the proof of Theorem 3.7. 
In any irreducible solution of Question 1.2, N is an elementary abelian group. Thus N
may be identified with a vector space V = Fn

p for some prime p and some n ≥ 1, and 
Hol(N) then becomes the affine group Aff(V ) of V . In §5 we give some general results 
on affine groups of finite vector spaces. We then deduce some information about the 
structure of the group G in §6, in particular showing that each composition factor of G
contains a soluble subgroup of p-power index. In §7 we decompose V as a module over 
the socle S of G. This leads to an inequality (7.5) relating the orders of the non-abelian 
composition factors of S and their automorphism groups to various numerical parame-
ters describing the structure of G and N . Our conclusions up to this point are collected 
together in Theorem 7.5. To proceed further, we apply the Classification of Finite Simple 
Groups. This is done in §8 via Guralnick’s determination [11] of the non-abelian simple 
groups with a subgroup of prime-power index. We obtain in Corollary 8.2 a list of the 
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possible non-abelian composition factors of S and the corresponding primes p. Combin-
ing this with (7.5), we prove Theorem 8.3, which eliminates all potential non-abelian 
composition factors except the simple group of order 168. Theorem 8.3 also shows that 
p must be 2. Finally, we show in §9 that G/S is soluble and the pair (G, N) can only be 
one of those described in Theorem 3.6.

2. G-admissible and G-invariant subgroups

The holomorph of a group N is by definition the semidirect product Hol(N) = N �

Aut(N). We write its elements as (α, θ) with α ∈ N and θ ∈ Aut(N), so the group 
operation on Hol(N) is given by

(α, θ)(β, φ) = (αθ(β), θφ), (2.1)

and Hol(N) acts as permutations of N by

(α, θ) · η = αθ(η). (2.2)

We say that a subgroup G of Hol(N) is transitive (respectively, regular) if, for all η, 
μ ∈ N , there is a g ∈ G (respectively, a unique g ∈ G) with g · η = μ.

Now let N be an arbitrary finite group, and let G be a transitive subgroup of Hol(N). 
We describe conditions under which G gives rise to a transitive subgroup of the holo-
morph of a subgroup or quotient group of N . We frequently write g ∈ G as (αg, θg) with 
αg ∈ N and θg ∈ Aut(N). Then αg = g · e, where e is the identity element of N .

Definition 2.1. Let M be a subgroup of N .

(i) M is G-admissible if the subset

M∗ = {g ∈ G : αg ∈ M}

of G is a subgroup of G.
(ii) M is G-invariant if θg(m) ∈ M for all g ∈ G and m ∈ M .

Proposition 2.2. Let G be a transitive subgroup of Hol(N). For a subgroup M of N , the 
following are equivalent:

(i) M is G-admissible;
(ii) g ·m ∈ M for all g ∈ M∗ and all m ∈ M ;
(iii) θg(m) ∈ M for all g ∈ M∗ and all m ∈ M .

Proof. If g ∈ M∗ and m ∈ M then g ·m = αgθg(m) with αg ∈ M , so (ii) and (iii) are 
equivalent. Assume that these conditions hold. Then, for g, h ∈ M∗ we have (gh) · e =
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g · (h · e) = g · αh ∈ M since αh ∈ M . Thus M∗ is closed under multiplication. Since 
M∗ is finite and contains the identity element (e, id) of Hol(N), it follows that M∗ is a 
subgroup of G. Hence (i) holds.

Conversely, assume (i) and let g ∈ M∗ and m ∈ M . As G is transitive, there is some 
h ∈ G with h · e = m. Then h ∈ M∗ and αh = m. Since M is G-admissible, we have 
gh ∈ M∗ and so g ·m = g · (h · e) = (gh) · e ∈ M since gh ∈ M∗. Thus (ii) holds. �
Remark 2.3. It follows from Proposition 2.2 that if M is G-invariant then M is G-
admissible. In the other direction, if M is G-admissible and H = M∗ then M is H-
invariant (but not necessarily G-invariant).

Lemma 2.4. Let G be a transitive subgroup of Hol(N), let M be a G-admissible subgroup 
of N , and let H = M∗. Then the action of G on N restricts to an action of H on M . In 
particular, if G is a regular subgroup of Hol(N) then H is a regular subgroup of Hol(M). 
Conversely, suppose that G is a regular subgroup of Hol(N) and H is a subgroup of G
acting regularly on some subgroup M of N . Then M is G-admissible and H = M∗.

Proof. For the first statement, if h = (αh, θh) ∈ H then αh ∈ M , and θh restricts to an 
automorphism of M by Proposition 2.2. Thus for m ∈ M we have h ·m = αhθh(m) ∈ M . 
We may therefore view h as an element of Hol(M). Since G is transitive on N , it is clear 
that H is transitive on M . If G is regular on N then the stabiliser of e in H is trivial, 
so H is regular on M .

For the converse, if G is regular on N and H acts regularly on some subgroup M
then we must have H = {g ∈ G : g · e ∈ M} = M∗. Hence M∗ is a group and M is 
G-admissible. �
Remark 2.5. In the language of braces, Lemma 2.4 says that if G is regular on N (so that 
N is a skew brace) then M is a sub-skew brace of N if and only if M is a G-admissible 
subgroup of N .

We next consider quotients of N .

Proposition 2.6. Let G be a transitive subgroup of Hol(N), and let M be a normal sub-
group of N . Then the action of G on N induces an action of G on N/M if and only if 
M is a G-invariant subgroup of N . In this case, M is G-admissible. Moreover, there is a 
normal subgroup K of G such that G/K embeds as a transitive subgroup of Hol(N/M).

Proof. The action of G on N induces a well-defined action on N/M if and only if 
g ·(nm) ∈ (g ·n)M for all g ∈ G, n ∈ N and m ∈ M . This is equivalent to αgθg(n)θg(m) ∈
αgθg(n)M for all g, n, m, and thus to the G-invariance of M . If M is a G-invariant normal 
subgroup, then M is G-admissible by Remark 2.3, and the stabiliser of the trivial coset 
eM is {g ∈ G : g · e ∈ M} = M∗. Now let K be the core of M∗ in G:
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K = coreG(M∗) =
⋂
g∈G

gM∗g−1.

Then K�G, and G/K embeds as a subgroup of Hol(N/M). Moreover G/K is transitive 
on N/M since G is transitive on N . �
3. Statement of the main results

In this section, we use the ideas developed above to formulate our main results on 
Conjecture 1.1 and Question 1.2.

Definition 3.1. We call a pair of groups (G, N) a counterexample to Conjecture 1.1 if 
N is a finite soluble group and G is an insoluble regular subgroup of Hol(N). The pair 
(G, N) is a minimal counterexample to Conjecture 1.1 if, in addition, for every proper 
G-admissible subgroup M of N , the subgroup M∗ of G is soluble.

Our main result on Conjecture 1.1 is the following.

Theorem 3.2. Let (G, N) be a minimal counterexample to Conjecture 1.1. Then every 
maximal normal subgroup of N has index 2, and G has a soluble normal subgroup K
such that, for some r ≥ 1 and some transitive soluble subgroup H of the symmetric 
group Sr, we have

G/K ∼= GL3(2) �H = GL3(2)r �H,

the wreath product of GL3(2) by H.

Theorem 3.2 will be deduced from Theorem 3.7 below at the end of this section.

Corollary 3.3. If (G, N) is any counterexample to Conjecture 1.1 then the simple group 
GL3(2) of order 168 occurs as a subquotient of G.

Proof. If (G, N) is not a minimal counterexample, we may replace it by a pair (H, M)
where M is a proper G-admissible subgroup of N and H = M∗ is insoluble. Repeating 
this construction, we eventually reach a minimal counterexample (G1, N1) in which G1
is a subgroup of G. By Theorem 3.2, GL3(2) occurs as a composition factor of G1, and 
therefore as a subquotient of G. �
Definition 3.4. For a pair of finite groups (G, N) with G ≤ Hol(N), we will say that 
(G, N) is irreducible if N has no non-trivial proper G-invariant normal subgroup.

Lemma 3.5. Let (G, N) be irreducible, with N soluble. If G acts transitively on N then 
N is an elementary abelian p-group for some prime p.
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Proof. Since N has no non-trivial proper G-invariant normal subgroup, it has no non-
trivial proper characteristic subgroup. Thus N is characteristically simple, so N is the 
direct product of isomorphic simple groups by [14, 3.3.15]. Since N is soluble, the con-
clusion follows. �

Perhaps surprisingly, irreducible solutions of Question 1.2 do exist.

Theorem 3.6. Let r ≥ 1, and let H be a transitive soluble subgroup of the symmetric 
group Sr of degree r. Let N be an elementary abelian group of order 23r. Then Hol(N)
contains a transitive subgroup G such that G ∼= GL3(2) � H, and N contains no non-
trivial proper G-admissible subgroup. In particular, (G, N) is an irreducible solution of 
Question 1.2.

An explicit construction for the group G in Theorem 3.6 will be given in §4.
The central result of this paper is that Theorem 3.6 gives all the irreducible solutions.

Theorem 3.7. If (G, N) is any irreducible solution to Question 1.2 then (G, N) is as 
described in Theorem 3.6. In particular, N is an elementary abelian 2-group, any non-
abelian composition factor of G is isomorphic to the simple group GL3(2) of order 168, 
and N contains no non-trivial proper G-admissible subgroup. Moreover, given r and H
as in Theorem 3.6, the corresponding subgroup G of Hol(N) is unique up to conjugation 
by Aut(N).

Proof of Theorem 3.2 assuming Theorem 3.7. Let (G, N) be a minimal counterexample 
to Conjecture 1.1. Let p be a prime such that N has a maximal normal subgroup of 
index p, and let L be the intersection of all such subgroups. Then L is a proper char-
acteristic subgroup of N , and N/L is an elementary abelian p-group. In particular, L is 
a G-invariant normal subgroup of N . Let M be a maximal proper G-invariant normal 
subgroup of N containing L, and let N = N/M . By Proposition 2.6 there is a normal 
subgroup K of G so that G = G/K is a transitive subgroup of Hol(N). The stabiliser in 
G of the identity in N is M∗/K where M∗ is soluble because (G, N) is minimal. Hence 
K is soluble. Since G is insoluble, it follows that G is insoluble. Thus (G, N) is a solution 
to Question 1.2, and it is irreducible by the maximality of M . By Theorem 3.7, (G, N) is 
then as described in Theorem 3.6. In particular, |N | = 23r for some r ≥ 1, so p = 2. �
4. Some solutions to Question 1.2

Our main goal in this section is to prove Theorem 3.6. First we give an alternative 
description of Hol(N) when N is an elementary abelian group, say of order pn for some 
prime p and some n ≥ 1. By Lemma 3.5, this situation arises for any irreducible solution 
(G, N) to Question 1.2. We identify N with the vector space V = Fn

p of column vectors 
over the field Fp of p elements. We write V additively and denote its identity element e
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by 0V . The group Aut(N) is then identified with the group GLn(p) of invertible n × n

matrices over Fp, and Hol(N) = N�Aut(N) is identified with the affine group Aff(V ) =
V � GLn(p) of V .

For any subgroup G of Aff(V ), the natural homomorphism G → Aut(V ) = GLn(p)
then makes V into an Fp[G]-module. We shall refer to the corresponding action of G
as the linear action, and the original action of G as a subgroup of Aff(V ) as the affine 
action. Thus, in a solution to Question 1.2, G is transitive on V in the affine action by 
hypothesis, but is not transitive in the linear action since {0V } is an orbit of cardinal-
ity 1.

Changing terminology, we will refer to subspaces W of V rather than to subgroups 
M of N . Then M is a G-invariant subgroup if and only if the corresponding subspace 
W is an Fp[G]-submodule of V in the linear action. Moreover, (G, V ) is irreducible in 
the sense of Definition 3.4 if and only if V is an irreducible Fp[G]-module.

We next describe a convenient notational device for working with Aff(V ). An element 
of Aff(V ) has the form (v, A) for v ∈ V and A ∈ GLn(p). We write this element as a 
block matrix of size n + 1:

(
A v

0 1
,

)
,

where the lower left entry is a row vector. Then matrix multiplication coincides with the 
multiplication

(v,A)(w,B) = (v + Aw,AB)

in Hol(V ) as specified in (2.1).
We now turn to the proof of Theorem 3.6. Let T = GL3(2), the non-abelian simple 

group of order 168. We begin by constructing a pair (G, V ) as in Question 1.2 with 
G ∼= T and V = F3

2 . Thus we seek a transitive embedding of T = Aut(V ) into Aff(V ), 
say taking each M ∈ T to

M̂ =
(
M ψ(M)
0 1

)
, (4.1)

for some function ψ : T → F3
2 . Then ψ must satisfy the cocycle condition ψ(M1M2) =

ψ(M1) + M1ψ(M2) for all M1, M2 ∈ T . We require ψ to be surjective, so the stabiliser 
G′ of 0V will be the image of a subgroup T ′ of T of index 8. The image of any Sylow 
2-subgroup P of T will therefore be a complement to G′ in G, and so will act regularly 
on V . Now T contains 8 subgroups of index 8, namely the normalisers of the 8 Sylow 
7-subgroups. We arbitrarily choose T ′ to be generated by the matrices
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A =

⎛⎜⎝ 0 0 1
1 0 1
0 1 0

⎞⎟⎠ , B =

⎛⎜⎝ 1 0 0
0 0 1
0 1 1

⎞⎟⎠ (4.2)

and P to be generated by the matrices

C =

⎛⎜⎝ 1 1 0
0 1 1
0 0 1

⎞⎟⎠ , D =

⎛⎜⎝ 1 0 0
0 1 1
0 0 1

⎞⎟⎠ .

Then A, B, C, D satisfy the relations

A7 = B3 = I, BA = A2 B, (4.3)

C4 = D2 = I 	= C2, DCD−1 = C3, (4.4)

and also

CA = A3C2D, CB = B2C2D, DA = AC3D, DB = B2D. (4.5)

The image of T in Aff(V ) is then generated by

Â =

⎛⎜⎜⎜⎝
0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ , B̂ =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (4.6)

and

Ĉ =

⎛⎜⎜⎜⎝
1 1 0 c1
0 1 1 c2
0 0 1 c3
0 0 0 1

⎞⎟⎟⎟⎠ , D̂ =

⎛⎜⎜⎜⎝
1 0 0 d1
0 1 1 d2
0 0 1 d3

0 0 0 1

⎞⎟⎟⎟⎠
for some c1, c2, c3, d1, d2, d3 ∈ F2. These must be chosen so that the subgroup G =
〈Â, B̂, Ĉ, D̂〉 of Aff(V ) acts transitively on V and has order no larger than 168. Thus 
(4.3), (4.4) and (4.5) must remain valid when A, B, C, D are replaced by Â, B̂, Ĉ, D̂. 
The relation D̂B̂ = B̂2D̂ gives d2 = d3 = 0. Then d1 = 1 since D̂ is not in the stabiliser 
of 0V . The relation D̂Â = ÂĈ3D̂ then gives c1 = 0, c2 = c3 = 1. Thus we have

Ĉ =

⎛⎜⎜⎜⎝
1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 1

⎞⎟⎟⎟⎠ , D̂ =

⎛⎜⎜⎜⎝
1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ .
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One can verify by direct calculation that these matrices Â, B̂, Ĉ, D̂ do indeed satisfy 
the analogues of (4.3), (4.4) and (4.5). In particular, the groups G′ = 〈Â, B̂〉 and P̂ =
〈Ĉ, D̂〉 have orders 21 and 8 respectively, and G = G′P̂ = P̂G′. Thus |G| = 168 and 
G ∼= T . Moreover, the stabiliser of 0V contains the maximal subgroup G′ of G, but does 
not contain Ĉ, so G acts transitively on V .

We summarise what we have just shown.

Lemma 4.1. Let V = F3
2 . Then Aff(V ) contains a unique transitive subgroup G ∼= T in 

which the stabiliser of 0V is generated by the matrices Â, B̂ in (4.6). Equivalently, there 
is a unique surjection ψ : T → F3

2 such that (4.1) embeds T as a transitive subgroup of 
Aff(V ) and ψ(A) = ψ(B) = 0V for the matrices A, B in (4.2). In total, there are exactly 
8 transitive subgroups of Aff(V ) isomorphic to T .

Proof. Everything except the last sentence follows from the previous discussion. If G1 ∼=
T is a transitive subgroup of Aff(V ), then conjugation by a suitable element of Aut(V )
takes the stabiliser of 0V in G1 to G′ = 〈Â, B̂〉, and hence takes G1 to G. Since G′ has 
8 conjugates in Aut(V ), there are 8 possible groups G1. �
Remark 4.2. We interpret Lemma 4.1 in terms of Hopf-Galois structures. If E/K is 
a Galois extension with Gal(E/K) = G ∼= T , and L = EG′ where G′ is a subgroup 
of G of index 8, then the existence of a transitive embedding T ↪→ Aff(V ) = Hol(V )
shows that L/K admits at least one Hopf-Galois structure of elementary abelian type 
V . Since there are 8 transitive subgroups of Aff(V ) isomorphic to T , [3, Proposition 
1] tells us that the number of these Hopf-Galois structures is 8|Aut(G, G′)|/|Aut(V )|, 
where Aut(G, G′) consists of the automorphisms of G which fix G′. Now |Out(G)| = 2, 
the non-trivial element being represented by the automorphism taking each matrix in 
GL3(2) to the transpose of its inverse. Thus |Aut(G)| = 2|G| = 336. The automorphisms 
of G permute the 8 subgroups of index 8 transitively, so |Aut(G, G′)| = |Aut(G)|/8 = 42. 
Since Aut(V ) ∼= G, we find that L/K admits 2 Hopf-Galois structures of type V .

Remark 4.3. Crespo and Salguero [8] have computed all Hopf-Galois structures on sep-
arable field extensions of degree up to 11. The case in Remark 4.2 can be found in 
their paper, although no comment is made there about the appearance of an insol-
uble Galois group. To explain this in more detail, we adopt the notation 8Ti used 
by Crespo and Salguero for the degree 8 permutation group denoted in Magma by
TransitiveGroup(8,i). Then T = GL3(2) is labelled 8T37, and [8, Table 2] shows 
that there are 2 Hopf-Galois structures for this permutation group, as calculated in Re-
mark 4.2. Altogether, there are 5 insoluble transitive permutation groups of degree 8: 
8T37 ∼= GL3(2) ∼= PSL2(7), 8T43 ∼= SL2(7), 8T48 ∼= Aff(F3

2 ), 8T49 ∼= A8 and 8T50 ∼= S8. 
Of these, only 8T37 and 8T48 occur in [8]. For the group 8T48, the stabiliser of a point 
is PSL2(7), which is not soluble.
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In Lemma 4.1, any non-trivial G-admissible subgroup W of V must be invariant under 
the stabiliser G′ = 〈Â, B̂〉 of 0V . Since G′ is transitive on V \{0V }, we have W = V . 
Hence Lemma 4.1 proves Theorem 3.6 when r = 1. We now prove the general case.

Proof of Theorem 3.6. Let r ≥ 1 and let H be a transitive soluble subgroup of Sr. We 
will construct a transitive subgroup G ∼= T �H of Aff(V ) where V = F3r

2 , and we will show 
that the resulting pair of groups (G, V ) is a solution to Question 1.2 such that V contains 
no non-trivial proper G-admissible subgroup. We view elements of Aut(V ) = GL3r(2)
as block matrices, where each block is a 3 × 3 matrix over F2. Thus the elements of 
Aff(V ) < GL3r+1(2) become block matrices in which each row (except the last) consists 
of r blocks followed by a vector in F3

2 . The final row of course consists of 3r zeros, followed 
by 1.

Let J ≤ Aff(V ) be the group of such block matrices of the form⎛⎜⎜⎜⎜⎜⎜⎝
M1 0 · · · 0 ψ(M1)
0 M2 · · · 0 ψ(M2)
...

...
...

...
0 0 · · · Mr ψ(Mr)
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.7)

where M1, M2, . . . , Mr ∈ T = GL3(2) and ψ is as in Lemma 4.1. Then J ∼= T r. We 
write J = T1 × T2 × · · · × Tr, where Ti consists of the elements of J with Mk = I for 
all k 	= i. We also write Ai (respectively, Bi) for the matrix in Ti whose ith component 
is the matrix A (respectively, B) of (4.2), and T ′

i for the subgroup generated by Ai and 
Bi. Then the stabiliser of 0V in J is the group J ′ = T ′

1 × T ′
2 × · · · × T ′

r. Thus J ′ is a 
soluble group of order 21r, and the pair (J, V ) is a solution of Question 1.2. Writing 
V = V1⊕· · ·⊕Vr where Vi is the 3-dimensional subspace corresponding to the ith block, 
we see that each Vi is an F2[J ]-submodule of V . Thus (J, V ) is not irreducible if r ≥ 2.

For each permutation π ∈ Sr, let P (π) ∈ Aff(V ) be the block matrix whose block 
in position (i, j) is the identity matrix if i = π(j), and the zero matrix otherwise, with 
the final column of P (π) consisting of zero vectors except for a 1 in the final entry. We 
have then embedded Sr as a subgroup of Aut(V ) within Aff(V ). Clearly this subgroup 
normalises J . Explicitly, if X ∈ J is the element in (4.7) and π ∈ Sr, we have

P (π)XP (π)−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
Mπ−1(1) 0 · · · 0 ψ(Mπ−1(1))

0 Mπ−1(2) · · · 0 ψ(Mπ−1(2))
...

...
...

...
0 0 · · · Mπ−1(r) ψ(Mπ−1(r))
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We identify the given subgroup H of Sr with its image P (H), and define G to be the 
subgroup J �H ∼= T �H in Aff(V ). Then G is a transitive subgroup of Aff(V ) in which 
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the stabiliser of 0V is the soluble group G′ = J ′ � H. Thus (G, V ) is a solution of 
Question 1.2.

Finally, we verify that V contains no non-trivial proper G-admissible subspace. In 
particular, this means that V contains no non-trivial proper G-invariant subspace, so 
the pair (G, V ) is irreducible. Let W 	= {0V } be a G-admissible subspace of V . Then W∗
properly contains G′. Thus W∗ contains an element (t1, . . . , tr) ∈ J with tj /∈ T ′

j for at 
least one index j. Let v = (v1, . . . , vr) be any element of V satisfying the condition that, 
for 1 ≤ i ≤ r, we have vi = 0 if and only if ti ∈ T ′

i . Since T ′ is transitive on F3
2\{0V }, 

there exists (s1, . . . , sr) ∈ J ′ so that (s1, . . . , sr)(t1, . . . , tr) · 0V = v. Since W∗ is a group 
containing J ′, it follows that v ∈ W . Thus W contains the subspace of V generated by 
all such v, which is 

⊕
ti /∈T ′

i
Vi. In particular, Vj ⊆ W . Since H ≤ W∗ and H is transitive 

on the r components, it follows that W contains Vi for every i. Hence W = V . �
5. Generalities on subgroups of affine groups

The remainder of the paper is devoted to the proof of Theorem 3.7.
In this section, we give some preliminary results on the affine group Aff(V ) for V = Fn

p . 
Propositions 5.3 and 5.4 will be used in Section 9.

5.1. Translations

Definition 5.1. For any G ≤ Aff(V ), the subgroup of translations in G is

Trans(G) = G ∩ {(v, I) : v ∈ V }.

Proposition 5.2. Trans(G) is a normal subgroup of G and is isomorphic to the subgroup

U = {u ∈ V : (u, I) ∈ G}

of V . In particular, Trans(G) is an elementary abelian p-group. Moreover, U is a G-
invariant subspace of V , and if U = V then G/Trans(G) is isomorphic to the stabiliser 
G′ of 0V in G.

Proof. Trans(G) is normal in G since it is the kernel of the composite homomorphism 
G ↪→ Aff(V ) � Aut(V ). Clearly U is a subspace of V , and the map (v, I) �→ v gives 
an isomorphism of groups Trans(G) → U . Moreover, for u ∈ U and g = (v, A) ∈ G, we 
calculate

(v,A)(u, I)(v,A)−1 = (v + Au,A)(−A−1v,A−1)

= (v + Au− v, I)

= (Au, I).
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Thus Au ∈ U , so U is a G-invariant subspace. Finally, if U = V then for each g =
(v, A) ∈ G we have (v, I) ∈ G and so (0V , A) = (v, I)−1g ∈ G′, and the homomorphism 
G → Aut(V ) has image G′. �
5.2. Direct sums

Proposition 5.3. Suppose that G ≤ Aff(V ) admits a direct product decomposition G =
A × B, and V decomposes as a direct sum V = U ⊕ W of Fp[G]-modules where U is 
an Fp[A]-module on which B acts trivially, and W is an Fp[B]-module on which A acts 
trivially. Moreover suppose that the Fp[A]-module U is fixed-point free in the sense that 
if u ∈ U and θα(u) = u for all α = (vα, θα) ∈ A then u = 0, and suppose similarly 
that W is a fixed-point free Fp[B]-module. Then A · 0V ⊆ U and B · 0V ⊆ W , so that 
G ⊆ Aff(U) × Aff(W ).

Proof. Choosing bases of U and W , we may write elements α of A and β of B as block 
matrices

α =

⎛⎜⎝M 0 u

0 I w

0 0 1

⎞⎟⎠ , β =

⎛⎜⎝ I 0 u′

0 N w′

0 0 1

⎞⎟⎠
where u, u′ ∈ U and w, w′ ∈ W and the matrices M , N correspond to θα, θβ . We 
need to show that w = 0 and u′ = 0. Now as αβ = βα, we have Mu′ + u = u + u′, 
w′ +w = Nw+w′. The first of these simplifies to Mu′ = u′. Keeping β fixed and letting 
α ∈ A vary, we have θα(u′) = u′ for all α in A. Thus u′ = 0 since U is fixed-point free. 
Similarly, w = 0. �
5.3. Tensor products

Proposition 5.4. Suppose that G ≤ Aff(V ) admits a direct product decomposition G =
A ×B, and that the Fp[G]-module V decomposes as a tensor product V = U ⊗Fp

W for 
some Fp[A]-module U and some Fp[B]-module W . Suppose further that A contains an 
element α = (0V , θα) fixing 0V such that the endomorphism θα − id of U is invertible. 
Then B · 0V = {0V }.

Proof. Let (ej)1≤j≤k and (fs)1≤s≤t be bases for U and W . Then an arbitrary element 
α ∈ A acts on the Fp[A]-module U via a matrix M = (mij), so that α(ej) = Mej =∑

i mijei. Similarly, β ∈ B acts on W via a matrix N = (nrs). Then V = U ⊗W has 
basis (ej ⊗fs)1≤j≤k,1≤s≤t and the element (α, β) ∈ A ×B = G acts on the Fp[G]-module 
V via the matrix M⊗N : we have (α, β)(ej⊗fs) = (M⊗N)(ej⊗fs) =

∑
i,r mijnrsei⊗fr.

Now write α · 0V = x =
∑

j,s xjsej ⊗ fs and β · 0V = y =
∑

j,s yjsej ⊗ fs, so that 
α = (x, M ⊗ I) and β = (y, I ⊗N) in Aff(V ) = V � Aut(V ). Since these two elements 
must commute, we have
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x + (M ⊗ I)y = y + (I ⊗N)x.

Thus

∑
j,s

xj,sej ⊗ fs +
∑
j,s

yjs
∑
i

mijei ⊗ fs =
∑
j,s

yj,sej ⊗ fs +
∑
j,s

xjs

∑
r

nrsej ⊗ fr.

It follows that, for each pair j, s, we have

xjs +
∑
h

mjhyhs = yjs +
∑
q

xjqnsq.

Rearranging the coefficients of the vectors x and y into matrices X = (xjs) and Y = (yjs), 
this gives the matrix equation

(M − I)Y = X(N t − I),

where N t is the transpose of N . If we now choose α as in the statement, so x = 0V
and θα − id is invertible, then X = 0 and the matrix M − I is invertible. It follows that 
Y = 0. Thus β · 0V = 0V . As β ∈ B was arbitrary, B · 0V = {0V }. �
6. Subgroups with soluble stabilisers of p-power index

We continue to work in the affine group of V = Fn
p , and now consider subgroups G

of Aff(V ) satisfying the following hypothesis:

Hypothesis 6.1. For each v ∈ V , the stabiliser of v in G is a soluble subgroup of p-power 
index.

Hypothesis 6.1 means that each orbit of G on V has p-power cardinality. These orbits 
need not all have the same cardinality. If (G, V ) is a solution to Question 1.2 then 
Hypothesis 6.1 holds since G is transitive on V and each point stabiliser is a soluble 
subgroup of index |V | = pn.

6.1. A restriction on composition factors

We will use the following simple observation about permutation groups.

Proposition 6.2. Let H be a group acting faithfully and transitively on a set X of prime-
power cardinality pr > 1. Let {1} 	= J � H. Then there exist s ≥ 0 and t ≥ 1 such that 
J has ps orbits on X, each of these orbits has cardinality pt, and H/J permutes these 
orbits transitively.
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Proof. Let Hx be the stabiliser in H of x ∈ X. For any h ∈ H, the stabiliser of h · x in 
J is hHxh

−1 ∩ J = h(Hx ∩ J)h−1. The order of this stabiliser is independent of h, so 
the J-orbits on X all have the same cardinality. Since these orbits form a partition of 
X, the number of orbits divides |X|. Thus, for some s ≥ 0, there are ps orbits, and each 
has cardinality pt where t = r− s. As |J | > 1 and J acts faithfully on X, we have t ≥ 1. 
Also H/J has a well-defined action on the ps orbits J · x since h · (J · x) = J · (h · x) as 
J � H. This action is transitive since H is transitive on X. �
Lemma 6.3. Let (G, V ) satisfy Hypothesis 6.1, and let

{1} = G0 
 G1 
 · · · 
 Gm = G (6.1)

be any composition series for G. Then the following hold for 1 ≤ i ≤ m:

(i) the pair (Gi, V ) also satisfies Hypothesis 6.1;
(ii) the simple group Gi/Gi−1 has a soluble subgroup of index ps for some s ≥ 0.

Proof. We show (i) by descending induction on i. If i = m then Hypothesis 6.1 holds 
by assumption. Suppose that i > 1 and (Gi, V ) satisfies Hypothesis 6.1, and let v ∈ V . 
Then the stabiliser G′

i(v) of v in Gi is soluble of p-power index, so the orbit Gi · v has 
p-power cardinality. Then Gi−1 · v also has p-power cardinality by Proposition 6.2 with 
X = Gi · v, H = Gi, J = Gi−1. Moreover the stabiliser G′

i−1(v) of v in Gi−1 is soluble, 
being a subgroup of G′

i(v). Hence (Gi−1, V ) also satisfies Hypothesis 6.1. This completes 
the induction.

For (ii), we apply Proposition 6.2 with X = Gi · 0V , H = Gi, J = Gi−1. Let G′ be 
the stabiliser of 0V in G. For some s ≥ 0, the set X decomposes into ps orbits under 
Gi−1, and Gi/Gi−1 acts transitively on these orbits. The stabiliser of the orbit Gi−1 · 0V
in this action is Gi−1G

′
i/Gi−1, where G′

i = G′ ∩ Gi is the stabiliser of 0V in Gi. Since 
G′ is soluble by hypothesis, the groups G′

i and Gi−1G
′
i/Gi−1 ∼= G′

i/(G′
i ∩Gi−1) are also 

soluble. Thus Gi/Gi−1 contains the soluble subgroup Gi−1G
′
i/Gi−1 of index ps. �

6.2. Subnormal subgroups in the insoluble irreducible case

Lemma 6.4. Let H be a finite group, and let P be a normal p-subgroup of H. Then the 
kernel N of the canonical ring homomorphism Fp[H] → Fp[H/P ] is a nilpotent ideal of 
Fp[H].

Proof. Let F be the Frattini subgroup of P . Then F � H, and P/F is an elementary 
abelian p-group. Moreover, F � P unless P is trivial.

Let M be the kernel of the canonical homomorphism Fp[H] → Fp[H/F ]. It suffices 
by induction to show that N k ⊆ M for some k > 0. Replacing H and P by H/F and 
P/F , we may therefore assume that P is elementary abelian.
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Now N is the subspace of Fp[H] spanned by all elements of the form h(π − 1) for 
h ∈ H and π ∈ P ; this subspace is visibly a left ideal, and it is a right ideal since

h1(π − 1)h2 = h1h2(π′ − 1) with π′ = h−1
2 πh2 ∈ P. (6.2)

For k > 0, we can use (6.2) repeatedly to write the product of any k elements of the 
form h(π − 1) as

h∗(π1 − 1)(π2 − 1) · · · (πk − 1) (6.3)

with h∗ ∈ H and π1, . . . , πk ∈ P . Moreover, since P is abelian, we may reorder the 
factors πi − 1. Taking k = (p − 1)|P | + 1, the product can therefore be rewritten to 
contain (π − 1)p for some π ∈ P . Since

(π − 1)p = πp − 1 = 0,

this shows that N k = {0}. �
Lemma 6.5. Suppose that G is insoluble and satisfies Hypothesis 6.1, and that the pair 
(G, V ) is irreducible. Then G has no non-trivial normal p-subgroup.

Proof. Let P be a non-trivial normal p-subgroup of G, let J be the Jacobson radical of 
Fp[G], and let N be the kernel of the canonical ring homomorphism Fp[G] → Fp[G/P ]. 
Then N ⊆ J since N is nilpotent by Lemma 6.4. Let W be the subspace NV of V . 
Then W is a G-invariant subspace since N is an ideal. Now if W = V we have

V = W = NV ⊆ J V,

so by Nakayama’s Lemma (applied to the finitely generated Fp[G]-module V ), we have 
V = {0V }, contradicting the hypotheses. Since V is irreducible, we therefore have W =
{0V } 	= V .

For each π = (uπ, Aπ) ∈ P we have π−1 ∈ N , so (Aπ−I)v = 0V for all v ∈ V . Hence 
P consists of translations. Then Trans(G) is non-trivial, and by Proposition 5.2, U =
{u ∈ V : (u, I) ∈ G} is a non-trivial G-invariant subspace of V . Using the irreducibility 
of V again, it follows that U = V . By Proposition 5.2 again, G/Trans(G) is isomorphic to 
the stabiliser G′ of 0V . This is a contradiction since G is insoluble but G′ and Trans(G)
are soluble. �
Corollary 6.6. If (G, V ) is as in Lemma 6.5, then G has no non-trivial soluble subnormal 
subgroup.

Proof. Let H be such a subgroup. Then there is a composition series (6.1) of G with 
Gi = H for some i ≥ 1. By Lemma 6.3(i), the group G1 in this series acts faithfully 
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on V with orbits of p-power cardinality. Since G1 is a soluble simple group, we have 
|G1| = p. By [14, 9.1.1], G contains a unique maximal normal p-subgroup Op(G), and 
G1 ⊆ Op(G). Thus Op(G) 	= {1}, contradicting Lemma 6.5. �
6.3. The socle of G

Recall that for a finite group H, the socle soc(H) of H is the subgroup generated by 
all the minimal normal subgroups. Then soc(G) can be written as the direct product of 
some of these minimal normal subgroups [14, p. 87]. The next result describes a situation 
when all the minimal normal subgroups are needed.

Proposition 6.7. Let H be a finite group such that every minimal normal subgroup of H
has trivial centre. Then soc(H) is the direct product of all the minimal normal subgroups 
of H.

Proof. Let J1, . . . , Js be the distinct minimal normal subgroups of H. We will show 
by induction that, for 1 ≤ i ≤ s, the subgroup Ki of H generated by J1, . . . , Ji is 
the direct product J1 × · · · × Ji. This is clear for i = 1. Assume that i > 1 and that 
Ki−1 = J1×· · ·×Ji−1. We claim that Ji∩Ki−1 = {1}. If 1 	= a ∈ Ji∩Ki−1 we may write 
a = (a1, . . . , ai−1) with each ah ∈ Jh, and, without loss of generality, a1 	= 1. Taking 
the commutator with (b, 1, . . . , 1) for arbitrary b ∈ J1, we have (b−1a−1

1 ba1, 1, . . . , 1) ∈
Ji ∩ Ki−1. Thus b−1a−1

1 ba1 ∈ J1 ∩ Ji for all b ∈ J1. As a1 is not in the centre of J1, 
we have J1 ∩ Ji 	= {1}. This is impossible since J1 and Ji are distinct minimal normal 
subgroups. Hence Ji ∩Ki−1 = {1} as claimed, and in particular Ji centralises Ki−1. It 
follows that the subgroup of H generated by the normal subgroups Ki−1 and Ji is their 
direct product, that is, Ki = J1 × · · · × Ji. �
Proposition 6.8. Let H = J1 × · · ·Jr be a finite group which is the direct product of 
nonabelian simple subgroups Ji, 1 ≤ i ≤ r. Then the normal subgroups of H are precisely 
the direct products of subsets of {J1, . . . , Jr}.

Proof. Clearly the direct product of a subset of {J1, . . . , Jr} is a normal subgroup of H. 
For the converse, let K � H and let Ki be the projection of K to the direct factor Ji in 
H. It suffices to show that, for each i, either Ki = {1} or K contains Ji. Suppose that 
Ki 	= {1}. Since Ki � Ji and J is simple, we have Ki = Ji. Let a, b ∈ Ji be arbitrary. As 
a ∈ Ki, there is some α = (a1, . . . , ar) ∈ K with ai = a. Let β = (1, . . . , b, 1, . . .) ∈ K, 
with b in the ith factor. Then

β−1α−1βα = (1, . . . , b−1a−1ba, 1, . . .) ∈ K.

Since a, b are arbitrary elements of Ji, it follows that the derived subgroup [Ji, Ji] of Ji
is contained in K. But [Ji, Ji] = Ji since Ji is a non-abelian simple group. Hence Ji ⊆ K

as required. �
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Lemma 6.9. Let G be an insoluble subgroup of Aff(V ) satisfying Hypothesis 6.1, and 
suppose that (G, V ) is irreducible. Let S = soc(G). Then S is a direct product of non-
abelian simple groups:

S = T1 × · · · × Tr. (6.4)

Conjugation by G permutes {T1, . . . , Tr}, and each minimal normal subgroup of G is the 
direct product of all the Ti lying in a single orbit.

Proof. Let J be a minimal normal subgroup of G. Then J � K for some minimal char-
acteristic subgroup K of G. As K is characteristically simple, it is the direct product of 
isomorphic simple groups [14, 3.3.15], say K = T1 × · · · × Tm. By Corollary 6.6, these 
simple groups are non-abelian. By Proposition 6.8, a normal subgroup of K is just the 
direct product of some of the groups Tk, 1 ≤ k ≤ m. In particular, J has trivial centre. 
Thus, by Proposition 6.7, S is the direct product of all the minimal normal subgroups 
of G, each of which is itself a direct product of non-abelian simple groups. Hence S is a 
direct product of non-abelian simple groups as in (6.4).

The minimal normal subgroups of S are the groups Tk for 1 ≤ k ≤ r. For any g ∈ G, 
the group gTkg

−1 is also a minimal normal subgroup of S, so coincides with some Tj . 
Hence conjugation by G permutes the Tk. Any minimal normal subgroup J of G is also 
a normal subgroup of S, so, by Proposition 6.8, it must be the direct product of some 
of the Tk. If it contains Tk it must also contain gTkg

−1 for all g ∈ G. Thus J contains 
the direct product of all the conjugates of Tk. As this direct product is itself a normal 
subgroup of G, it coincides with J . Thus the minimal normal subgroups of G correspond 
to the G-orbits on {T1, . . . , Tr} as described. �
Corollary 6.10. Let G be as in Lemma 6.9. Then G embeds in Aut(soc(G)).

Proof. Again let S = soc(G). As S�G, conjugation gives a homomorphism G → Aut(S)
whose kernel is the centraliser C of S in G. Thus it suffices to show that C is trivial. 
Now C is a characteristic subgroup of G. If C 	= {1} then C contains a minimal normal 
subgroup D of G. But then D ≤ S, so D is contained in the centre of S. This is a 
contradiction since S has trivial centre by Lemma 6.9. �
7. Clifford theory

In this section, (G, V ) is again an irreducible solution to Question 1.2 with V = Fn
p . 

By Proposition 5.2 and Lemma 6.5, the subgroup of translations in G is trivial, so G
acts faithfully on the irreducible Fp[G]-module V .

Let S = soc(G). It follows from Lemma 6.9 and Proposition 6.7 that S is the direct 
product of the minimal normal subgroups of G, each of which is in turn the direct product 
of isomorphic non-abelian simple groups permuted transitively by G. We now consider 
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the representation of the normal subgroup S of G afforded by V . In other words, we 
apply Clifford theory to our situation.

It is convenient to extend scalars to a finite extension E of Fp which splits G. Then 
E also splits every subgroup H of G, so every irreducible E[H]-module is absolutely 
irreducible. We write VE = E ⊗Fp

V .

Proposition 7.1. VE is a direct sum of irreducible E[G]-modules and G acts faithfully on 
each of these submodules.

Proof. By [7, (7.11)], VE is a direct sum of irreducible E[G]-modules. Moreover, these 
modules are all conjugate under the action of Ω = Gal(E/Fp). This follows from the 
proof of [7, (7.11)]) since, if k is a subfield of E of degree d over Fp, then we have an 
isomorphism E ⊗Fp

k → Ed of E-algebras given by x ⊗ y �→ (xσ(y))σ∈Gal(k/Fp).
Let W be an irreducible E[G]-submodule of VE . If g ∈ G acts trivially on W , then 

it also acts trivially on all Galois conjugates of W . Thus g acts trivially on VE . Since G
acts faithfully on V , this forces g = 1. Hence G acts faithfully on W . �

We will also need the following fact.

Proposition 7.2. Let H be any subgroup of G which decomposes as a direct product H =
A ×B. Then any irreducible E[H]-module has the form X ⊗E Y where X (respectively, 
Y ) is an irreducible E[A]-module (respectively, E[B]-module).

Proof. As E splits A and B, the semisimple algebras E[A]/rad(E[A]) and E[B]/rad(E[B])
are split. The result now follows from [7, (10.38)(iii)]. �

Let W be any of the irreducible E[G]-modules in Proposition 7.1. Clearly we have

dimE W ≤ dimE VE = dimFp
V. (7.1)

Next let U be an irreducible E[S]-submodule of W . For each g ∈ G, the subspace gU of 
W is an irreducible E[S]-module since S � G. Then W is the sum of these modules. It 
follows that W is a semisimple E[S]-module, and hence W is the direct sum of some of 
the gU :

W =
m⊕
i=1

giU, (7.2)

with g1, . . . , gm ∈ G. Without loss of generality, we take g1 = 1.
Now let J be a minimal normal subgroup of G, so by Lemma 6.9

J = T1 × · · · × Tr(J), (7.3)
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for some r(J) ≥ 1, where conjugation by G permutes T1, . . . , Tr(J) transitively. Thus 
there is a non-abelian simple group TJ such that Tk

∼= TJ for 1 ≤ k ≤ r(J). Each 
summand giU in (7.2) is an E[Tk]-module for each of the groups Tk. Choosing i = 1, we 
define y(J) to be the number of groups Tk which act non-trivially on U = g1U . Similarly, 
choosing k = 1, we define z(J) to be the number of summands giU on which T1 acts 
non-trivially. (We shall see that y(J) and z(J) are in fact independent of these choices.)

Proposition 7.3. For each minimal normal subgroup J of G, we have

my(J) = r(J)z(J). (7.4)

Moreover, y(J) ≥ 1 and z(J) ≥ 1.

Proof. We count in two ways the number of pairs (i, k) such that Tk acts non-trivially 
on giU . Firstly, for each i, the group Tk acts non-trivially on giU if and only if g−1

i Tkgi
acts non-trivially on U . Since conjugation by g−1

i permutes the groups Tk, and y(J) of 
the groups Tk act non-trivially on U , it follows that there are y(J) groups Tk which act 
non-trivially on giU . (This shows that y(J) does not depend on the initial choice i = 1.) 
Thus the number of pairs (i, k) as above is my(J). Secondly, for 1 ≤ k ≤ r(J) we have 
Tk = gT1g

−1 for some g ∈ G, so that Tk acts non-trivially on giU if and only if T1 acts 
non-trivially on g−1giU . There are z(J) values of i for which T1 acts non-trivially on 
g−1giU since the two decompositions of W into irreducible E[S]-modules,

W =
m⊕
i=1

giU =
m⊕
i=1

g−1 giU,

must contain isomorphic summands. Thus there are z(J) values of i for which Tk acts 
non-trivially on giU . (This shows that z(J) does not depend on the initial choice k = 1.) 
There are therefore r(J)z(J) pairs (i, k) such that Tk acts non-trivially on giU . Hence 
(7.4) holds. Moreover, as the non-abelian group T1 cannot be contained in Trans(G), its 
linear action on W is non-trivial. Thus z(J) ≥ 1. Hence by (7.4) we also have y(J) ≥
1. �

For a non-abelian simple group T , let dp(T ) denote the minimal degree of a non-trivial 
irreducible F [T ]-module, where F is any splitting field for T in characteristic p. Then 
dp(T ) ≥ 2.

In the following, we write vp(x) for the p-adic valuation of an integer x 	= 0: vp(x) = a

if pa divides x but pa+1 does not.

Lemma 7.4. With the above notation,

m
∏

dp(TJ)y(J) <
∑

r(J)
(
vp(|Aut(TJ)|) + 1

p− 1

)
, (7.5)
J J
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the product and sum being over all minimal normal subgroups J of G.

Proof. Using Proposition 7.2 repeatedly, we find that the irreducible E[S]-module U
decomposes as a tensor product over E:

U =
⊗
J

UJ , (7.6)

where each factor UJ is an irreducible E[J ]-module. Moreover, from Proposition 7.2
again and (7.3), we have

UJ = UJ,1 ⊗E · · · ⊗E UJ,r(J)

where UJ,k is an irreducible E[Tk]-module. There are precisely y(J) values of k such that 
UJ,k is a non-trivial E[Tk]-module. (For the remaining values of k, we have that UJ,k is 
the 1-dimensional trivial E[Tk]-module.) Hence we have dimE(UJ ) ≥ dp(TJ)y(J) for each 
minimal normal subgroup J . It then follows from (7.2) and (7.6) that

dimE W = m dimE U ≥ m
∏
J

dp(TJ)y(J). (7.7)

Let r =
∑

J r(J). Then S is the direct product of r non-abelian simple groups:

S =
∏
J

J ∼=
∏
J

T
r(J)
J .

Since any automorphism of S must permute the r simple groups in this product, it 
follows that 

∏
J Aut(TJ)r(J) is a normal subgroup of Aut(S) with quotient isomorphic 

some subgroup of Sr. (This subgroup cannot be transitive if G has more than one minimal 
normal subgroup.) Now G embeds in Aut(S) by Corollary 6.10, so

vp(|G|) ≤ vp(|Aut(S)|)

≤ vp

(∣∣∣∣∣∏
J

Aut(TJ)r(J)

∣∣∣∣∣
)

+ vp (|Sr|)

<

(∑
J

r(J)vp(|Aut(TJ)|)
)

+ r

p− 1

=
∑
J

r(J)
(
vp(|Aut(TJ)|) + 1

p− 1

)
.

On the other hand, since G acts transitively on V , we have

vp(|V |) = dimFp
V ≤ vp(|G|). (7.8)

Using (7.1) and (7.7), we then have (7.5). �
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We summarise our conclusions so far.

Theorem 7.5. Let (G, V ) be an irreducible solution to Question 1.2: V is a finite soluble 
group, G is an insoluble transitive subgroup of Hol(V ) such that V has no non-trivial 
proper G-invariant normal subgroup, and the stabiliser in G of any element of V is 
soluble. Then

(i) V is an elementary abelian group: V ∼= Fn
p for some prime p and some n ≥ 1, and, 

viewed as a subgroup of Aff(V ), the group G contains no non-trivial translations;
(ii) soc(G) is the direct product of all the minimal normal subgroups J of G, each of 

which is in turn a direct product J ∼= T
r(J)
J for some non-abelian simple group TJ

and some r(J) ≥ 1;
(iii) G embeds in Aut(soc(G));
(iv) each of the non-abelian simple groups TJ has a soluble subgroup of p-power index;
(v) there is an integer m, and integers y(J), z(J) for each J , such that 1 ≤ y(J) ≤ r(J), 

1 ≤ z(J) ≤ m, and (7.4) and (7.5) hold.

Proof. (i) follows from Lemma 3.5, Proposition 5.2 and Lemma 6.5; (ii) from Lemma 6.9; 
(iii) from Corollary 6.10; (iv) from Lemma 6.3(ii); and (v) recapitulates Proposition 7.3
and Lemma 7.4. �

Theorem 7.5 gives very stringent conditions on (G, V ) since, on the one hand, it is 
rare for a non-abelian simple group to have a soluble subgroup of prime-power index 
and, on the other hand, most choices of the numerical parameters will make the product 
on the left of (7.5) exceed the sum on the right. We know from Theorem 3.6, however, 
that these conditions can be satisfied.

8. Applying the classification of finite simple groups

As a consequence of the Classification of Finite Simple Groups, Guralnick [11] proved 
the following result:

Theorem 8.1 (Guralnick). If T is a non-abelian finite simple group with a proper subgroup 
R of prime-power index pa, then one of the following holds.

(i) T = An and R = An−1 with n = pa;
(ii) T = PSLn(q), pa = (qn−1)/(q−1) and R is the stabiliser of a line or a hyperplane 

in Fn
q ;

(iii) T = PSL2(11) and R = A5 of index 11;
(iv) T = M23, R = M22 or T = M11, R = M10;
(v) T = PSU4(2) ∼= PSp4(3) and R has index 27.
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We deduce from this a list of candidates for the simple groups TJ and primes p in 
Theorem 7.5.

Corollary 8.2. If T is a non-abelian finite simple group with a soluble subgroup of prime-
power index pa, then the triple (T, p, a) is one of the following:

(i) (PSL3(2), 7, 1);
(ii) (PSL3(3), 13, 1);
(iii) (PSL2(2s), p, 1) where p = 2s + 1 is a Fermat prime with p ≥ 5;
(iv) (PSL2(8), 3, 2);
(v) (PSL2(q), 2, a) where q = 2a − 1 is a Mersenne prime with q ≥ 7.

Proof. We check the cases of Theorem 8.1. The only instance of Theorem 8.1(i) with 
R soluble is n = 5, and the exceptional isomorphism A5 ∼= PSL2(4) means that this 
is included in case (iii) of the Corollary. In cases (iii) and (iv) of Theorem 8.1, R is 
insoluble. The same holds in case (v) since R has a quotient isomorphic to A5 (see the 
proof of [11, (3.9)]).

This leaves only case (ii) of Theorem 8.1. We first consider n ≥ 3. Then the stabiliser 
of a line or a hyperplane contains PSLn−1(q) as a subquotient, and this is a non-abelian 
simple group unless n = 3 and q = 2 or 3. If n = 3 and q = 2, we have T = PSL3(2)
with a subgroup of index 7, giving (i) of the Corollary. If n = 3 and q = 3, we have 
T = PSL3(3) with a subgroup of index 13, giving (ii).

Now let n = 2, so T = PSL2(q) where q = �s ≥ 4 is a power of some prime �, and 
q + 1 = pa is also a prime power. Either � = 2 or p = 2.

If � = 2, we have q = 2s = pa − 1 for an odd prime p and some a ≥ 1. If a = 1 then p
is a Fermat prime and we have (iii). The case p = 3 is omitted as PSL2(2) ∼= S3 is not a 
simple group. If a > 1 then (p − 1)(pa−1 + · · ·+ 1) = pa − 1 = 2s so that p − 1 = 2u and 
pa−1 + · · ·+ 1 = 2v with 1 ≤ u < v. Then p ≡ 1 (mod 2u) and so a ≡ pa−1 + · · ·+ 1 ≡ 0
(mod 2u). Thus a is even, say a = 2b. But then (pb − 1)(pb + 1) = 2s. As both factors 
must be powers of 2, we have pb = 3. This gives (iv).

Finally, if p = 2 then �s = 2a − 1 for some a ≥ 2. Thus �s ≡ −1 (mod 4), so s and �
are odd. If s > 1 we have

(� + 1)(�s−1 − �s−2 + · · · + 1) = 2a.

Then 2a has an odd factor �s−1 − �s−2 + · · · − � + 1 > 1, giving a contradiction. Hence 
s = 1 and q = � is prime with q = 2a − 1. This says that q is a Mersenne prime, giving 
(v). We have q ≥ 7 since q = 3 gives PSL2(3) ∼= A4 which is not a simple group. �

In fact, only the simple group of order 168 is relevant.

Theorem 8.3. Let (G, V ) be an irreducible solution to Question 1.2. Then, in the notation 
of Theorem 7.5, p = 2 and for each minimal normal subgroup J of G, the simple group 
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TJ is the group T = PSL2(7) ∼= GL3(2) of order 168. Moreover, one of the following 
holds:

(i) G contains exactly two minimal normal subgroups J1 ∼= J2 ∼= T r with r = m, 
y(J1) = y(J2) = z(J1) = z(J2) = 1;

(ii) G contains a unique minimal normal subgroup J = soc(G) ∼= T r with r = 2m, 
y(J) = 2, z(J) = 1;

(iii) G contains a unique minimal normal subgroup J = soc(G) ∼= T r with r = m, 
y(J) = z(J) = 1.

Proof. By Theorem 7.5(iv), each TJ has a soluble subgroup of index pa for some a ≥ 1. 
The triple (TJ , p, a) must therefore be one of those listed in Corollary 8.2. In the sequel, 
we will use the fact that, for q prime and s ≥ 1,

|Out(PSLn(qs))| =
{
s gcd(2, qs − 1) if n = 2,
2s gcd(2, qs − 1) if n ≥ 3.

We first consider the cases where p > 2. Since dp(TJ)y(J) ≥ 2 for each J , we may 
replace the product in (7.5) by a sum. Using (7.4), we then have

∑
J

r(J)
(
z(J)
y(J)dp(TJ)y(J) − vp(|Aut(TJ)|) − 1

p− 1

)
< 0.

As z(J) ≥ 1, it follows that there must be at least one J for which

1
y(J)dp(TJ)y(J) < vp(|Aut(TJ)|) + 1

p− 1 . (8.1)

In cases (i)–(iii) of Corollary 8.2 we have vp(|Out(TJ)|) = 0 and vp(|Aut(TJ)|) =
vp(|TJ |) = 1. As dp(TJ) ≥ 2, (8.1) cannot be satisfied for any integer y(J) ≥ 1. In case 
(iv), p = 3 and we have v3(|TJ |) = 2 and v3(|Out(TJ)|) = 1, so that v3(|Aut(TJ)|) = 3, 
but from [18] we have d3(TJ) = 7 and again (8.1) cannot hold. Thus at least one of the 
TJ must be as in Corollary 8.2(v). Hence p = 2, and, for each J , the group T = TJ

has the form T = PSL2(q) for some Mersenne prime q = 2a − 1 with a ≥ 3. Then 
|T | = q(q+1)(q−1)/2, so v2(|T |) = a and v2(|Aut(T )|) = a +1. From [2, §VIII] we have 
d2(T ) = (q − 1)/2 = 2a−1 − 1. Writing TJ = PSL2(q(J)) with q(J) = 2a(J) − 1, we find 
from (8.1) that

(2a(J)−1 − 1)y(J)

y(J) < a(J) + 2.

This holds only for a(J) = 3 and y(J) = 1 or 2.
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We have now shown that, for at least one of the minimal normal subgroups J of 
G, we have a(J) = 3 and thus TJ

∼= PSL2(7) ∼= GL3(2). We next show that in fact 
TJ

∼= PSL2(7) for all J . To do so, we return to (7.5), which now becomes

m
∏
J

d2(TJ)y(J) <
∑
J

r(J)(a(J) + 2).

Dividing by m and using (7.4), we then have

∏
J

d2(TJ)y(J) <
∑
J

y(J)(a(J) + 2)
z(J) . (8.2)

Since each z(J) ≥ 1, it follows that∏
J

d2(TJ)y(J) <
∑
J

y(J)(a(J) + 2).

To proceed further, we collect together the minimal normal subgroups J with isomorphic 
simple components TJ . Let a1 = 3, . . . , ah be the distinct values occurring among the 
a(J). For 1 ≤ f ≤ h, let T (f) = PSL2(2af − 1) and let yf =

∑
J:a(J)=af

y(J). Then the 
previous inequality becomes

h∏
f=1

d2(T (f))yf <
h∑

f=1

yf (af + 2).

Since yf (af + 2) ≥ 5 for each f , we may replace the sum by a product. We then have

h∏
f=1

bf (yf ) < 1, (8.3)

where

bf (yf ) = (2af−1 − 1)yf

yf (af + 2) .

For f = 1, we calculate b1(1) = 3
5 , b1(2) = 9

10 and b1(k) ≥ 9
5 for k ≥ 3. Moreover, for 

f > 1 we have af ≥ 5 and bf (k) ≥ 15
7 for all k ≥ 1. Thus (8.3) can only hold if h = 1 and 

y1 = 1 or 2. Hence TJ
∼= PSL2(7) for every J . Moreover, as y(J) ≥ 1 for each J , there 

can be at most two minimal normal subgroups J of G: either there are two minimal 
normal subgroups J1, J2 with y(J1) = y(J2) = 1, or there is a unique minimal normal 
subgroup J and y(J) ≤ 2. As (8.2) now becomes

∏
3y(J) <

∑ 5y(J)
z(J) ,
J J
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we must have z(J) = 1 in each of these cases. Using (7.4) to find r(J) in terms of m, we 
obtain (i)–(iii) as in the statement. �
9. Conclusion of the proof of Theorem 3.7

To complete the proof of Theorem 3.7, we analyse the three cases listed in Theorem 8.3. 
We will show that cases (i) and (ii) do not give any solutions to Question 1.2, and that 
any solution given by case (iii) is one of those constructed in Theorem 3.6. We keep the 
previous notation, so (G, V ) is an irreducible solution to Question 1.2, and V = Fn

p .
From [18], we know that the absolutely irreducible representations in characteristic 

2 of the group T ∼= PSL2(7) ∼= GL3(2) have degrees 1, 3, 3 and 8, and that all these 
representations are realised over F2. Thus, in the notation of §7, we may take E = F2
and W = V . Then, again writing S = soc(G), (7.2) becomes

V =
m⊕
i=1

giU (9.1)

with g1 = 1, where U is an irreducible F2[S]-module.

Lemma 9.1. Cases (i) and (ii) of Theorem 8.3 do not give any irreducible solutions to 
Question 1.2.

Proof. In case (i) we have S = J1 × J2. Noting that r = m, we write J1 = T1 × · · · × Tm

and J2 = Tm+1 × · · · × T2m, where each Tk
∼= T . Using Proposition 7.2 to decompose 

U as in the proof of Lemma 7.4, we have U = UJ1 ⊗F2 UJ2 , where UJh
is an irreducible 

F2[Jh]-module for h = 1, 2. Taking first h = 1, we can further decompose UJ1 as

UJ1 = UJ1,1 ⊗ · · · ⊗ UJ1,m

where UJ1,k is an irreducible Fp[Tk]-module for 1 ≤ k ≤ m. Recall that, for each i, 
there are y(J1) indices k such that the linear action of Tk on giU is not trivial. Since 
y(J1) = 1, we may choose the numbering of the factors Tk in J1 so that only Ti acts 
non-trivially on giU . In particular, taking i = 1 and recalling that U = g1U , it follows 
that UJ1,1 is a non-trivial irreducible F2[T1]-module, and, for 2 ≤ j ≤ m, that UJ1,j = F2
(the irreducible F2[Tj ]-module with trivial action). Hence dimUJ1 = dimUJ1,1 = 3 or 8. 
Similarly, for h = 2 we decompose UJ2 as

UJ2 = UJ2,1 ⊗ · · · ⊗ UJ2,m

where UJ2,k is an irreducible F2[Tm+k]-module for 1 ≤ k ≤ m. We choose the numbering 
of the factors in J2 so that Tm+i acts non-trivially on giU for each i. Then dimUJ2 =
dimUJ2,1 = 3 or 8. We therefore have dimU = 9 or 24 or 64.
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In case (ii) we have S = J = T1 × · · · × T2m and, applying Proposition 7.2 again, we 
have

U = U1 ⊗ · · · ⊗ U2m

where exactly two of the groups Tk act non-trivially on each summand giU of V . We 
choose the numbering of the factors in J so that again these are Ti and Tm+i. As before 
dimUj = 1 if j 	= 1, m + 1, and dimU = 9 or 24 or 64.

For the rest of the proof, we treat (i) and (ii) simultaneously. Since S ∼= T 2m and G
embeds in Aut(S) ∼= Aut(T )2m � S2m by Theorem 7.5(iii), we have

m dimU = dimV ≤ v2(|G|) ≤ 2mv2(|Aut(T )|) + v2
(
(2m)!

)
< 10m,

so dimU = 9. Hence U = U1⊗F2 Um+1 where U1 and Um+1 are 3-dimensional irreducible 
modules over F2[T1] and F2[Tm+1] respectively. In particular, T1 = Aut(U1) and Tm+1 =
Aut(Um+1).

We claim that U is a fixed-point free F2[T1 × Tm+1]-module in the sense of Proposi-
tion 5.3. Take bases e1, e2, e3 for U1 and f1, f2, f3 for Um+1. If x =

∑
j,s xjsej ⊗ fs is a 

fixed point, then applying the element of T1 which permutes e1, e2, e3 cyclically, we see 
that 

∑
j,s xjsej+1 ⊗ fs =

∑
j,s xjsej ⊗ fs, so xjs is independent of j for each s. Similarly, 

xjs is independent of s, so x = x11
∑

j,s ej ⊗fs. However, this element must also be fixed 
by the element of T1 with e1 �→ e1 + e2, e2 �→ e2, e3 �→ e3, so that x11 = 0. Thus x = 0, 
proving the claim. Similarly, giU is a fixed-point free F2[Ti × Ti+m]-module for each i.

Applying Proposition 5.3 repeatedly, we may view T1×Tm+1 as a subgroup of Aff(U). 
As T1 × Tm+1 is subnormal in G, it follows from Lemma 6.3(i) that the stabiliser of 
0U = 0V in T1 × Tm+1 is a soluble subgroup of 2-power index. Any such subgroup has 
the form T ′

1×T ′
m+1, where T ′

1, T ′
m+1 are subgroups of order 21 in T1, Tm+1. In particular, 

T ′
1 contains an element conjugate to the matrix A in (4.2), and, since A − I is invertible, 

we may apply Proposition 5.4 to conclude that Tm+1 ·0V = {0V }. This is a contradiction 
since Tm+1 is insoluble. �
Lemma 9.2. If (G, V ) is an irreducible solution of Question 1.2 satisfying (iii) of The-
orem 8.3 then, up to conjugation by Aut(V ), G is as constructed in Theorem 3.6. 
Moreover, up to conjugation by Aut(V ), G is uniquely determined by the integer r and 
the subgroup H of Sr in Theorem 3.6.

Proof. In this case we have r = m and S = J = T1 × · · · × Tm. Since y(J) = 1, we 
may assume that the Ti are numbered so that Tk acts non-trivially on giU if and only if 
k = i. Arguing as in the proof of Lemma 9.1, we have dimU = 3 or 8. Moreover,

m dimU ≤ v2(|G|) ≤ mv2(|Aut(T )|) + v2(m!) < 5m,
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so dimU = 3. By Lemma 6.3(i), the stabiliser J ′ of 0V in J is a soluble subgroup of 
2-power index, so J ′ = T ′

1 × · · · × T ′
r where each T ′

i has index 8 in Ti. It follows that the 
orbit of 0V under J has cardinality 8r = |V |, so that J acts transitively on V .

Since any irreducible F2[Ti]-module of dimension 3 is fixed-point free, it follows from 
Proposition 5.3 that

G ≤ Aff(g1U) × · · · × Aff(grU).

Conjugating G by an element of Aut(V ), we may assume the standard basis of V is 
obtained by concatenating bases of g1U, . . . , grU . Thus J consists of block matrices in 
GL3r+1(2) of the form ⎛⎜⎜⎜⎜⎜⎜⎝

M1 0 · · · 0 v1
0 M2 · · · 0 v2
...

...
...

...
0 0 · · · Mr vr
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (9.2)

with vi ∈ giU . Moreover, we may suppose that the basis of each giU is chosen so that 
the stabiliser T ′

i of 0V in Ti is generated by the matrices in Ti with Mi = A and Mi = B, 
where A and B are as in (4.2). Then, by Lemma 4.1, vi = ψ(Mi), so the elements of J
are as in (4.7).

We embed the symmetric group Sr into Aut(V ) by taking each π ∈ Sr to the block 
permutation matrix P (π) as in the proof of Theorem 3.6 in §4. Then Sr normalises J , 
and we can form the semidirect product J ′ � Sr inside Aff(V ).

Since J acts transitively on V , we have JG′ = G and G/J ∼= G′/J ′, where G′ is 
the stabiliser of 0V in G. As G′ · 0V = {0V } and G′ normalises J , it follows from 
Proposition 9.3 below that G′ ≤ J ′ � Sr. Thus G′ = J ′ � H for some subgroup H of 
Sr. This subgroup is uniquely determined by G once we have fixed the basis of V and 
therefore fixed the embedding of Sr into Aut(V ). Then G = JG′ = J �H. Also, H must 
be soluble since G′ is soluble. As G acts transitively on {T1, . . . , Tr}, but J acts trivially 
on this set, it follows that H is transitive as a subgroup of Sr. Hence H satisfies the 
conditions in Theorem 3.6, and G is exactly the subgroup T r �H of Aff(V ) constructed 
from H there. In particular, the group G in the statement of Theorem 3.6 is uniquely 
determined, up to conjugation by Aut(V ), by the given subgroup H of Sr. �
Proposition 9.3. With the above notation,

{X ∈ Aff(V ) : X · 0V = 0V and XJX−1 = J} = J ′ � Sr.

Proof. We first claim that the linear span of the invertible block diagonal matrices in 
GL3r(2) is the full algebra of block diagonal matrices. Let E(1), E(2), E(3) be three 
(invertible) matrices in GL3(2) whose sum is the zero matrix. One possible choice is
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E(1) =

⎛⎜⎝ 1 1 0
0 1 1
1 0 0

⎞⎟⎠ , E(2) =

⎛⎜⎝ 0 1 0
0 0 1
1 0 1

⎞⎟⎠ , E(3) =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠ .

Given 1 ≤ i ≤ r and M ∈ GL3(2), let K(1), K(2), K(3) be the invertible block diagonal 
matrices in GL3r(2) such that K(j) has M in the ith block and E(j) in each of the other 
blocks. Then K(1) +K(2) +K(3) has 3M = M in the ith block and 0 in all other blocks. 
It therefore suffices to observe that the full ring of 3 × 3 matrices over F2 is spanned by 
its unit group T = GL3(2). Indeed, it is easy to see that the 6 elementary matrices and 
the 6 permutation matrices in T span the matrix ring. This proves the claim.

Clearly J ′ � Sr fixes 0V and normalises J . Conversely, suppose that X · 0V = 0V and 
XJX−1 = J . Write X as a block matrix

X =

⎛⎜⎜⎜⎜⎜⎜⎝
P11 P12 · · · P1r 0
P21 P22 · · · P2r 0
...

...
...

...
Pr1 Pr2 · · · Prr 0
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Similarly, let X−1 be written as a block matrix with the matrix Qij in row i and column 
j. Thus we have the equalities of 3 × 3 matrices

r∑
j=1

PijQjk = δikI =
r∑

j=1
QijPjk for 1 ≤ i, k ≤ r.

Now let Y ∈ J have diagonal blocks M1, . . .Mr as in (4.7). As XYX−1 ∈ J , we have

XYX−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
N1 0 · · · 0 ψ(N1)
0 N2 · · · 0 ψ(N2)
...

...
...

...
0 0 · · · Nr ψ(Nr)
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
for some N1, . . . , Nr ∈ GL3(2). It follows that

r∑
j=1

PijMjQjk = Niδik (9.3)

and

r∑
Pijψ(Mj) = ψ(Ni). (9.4)
j=1
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Let us write X for the projection of X into Aut(V ) = GL3r(2). Then (9.3) shows that 
conjugating an invertible block diagonal matrix in GL3r(2) by X gives another invertible 
block diagonal matrix. It then follows from the claim at the start of the proof that 
conjugating any block diagonal matrix (not necessarily invertible) by X gives a block 
diagonal matrix. Thus, given any 3 ×3 matrices M1, . . . , Mr over F2, there exist matrices 
N1, . . . , Nr so that (9.3) holds.

Let i ∈ {1, 2, . . . , r}. Since X is invertible, there must be some h with Pih 	= 0. Consider 
the block diagonal matrix M with an arbitrary matrix Mh in the h-th position, and all 
other blocks 0. Then the ij-th block of PMQ is PihMhQhj . This must be 0 if j 	= i. Since 
this holds for arbitrary Mh, it follows that Qhj = 0 for all j 	= i. Since 

∑
j QhjPjh = I, 

we find that QhiPih = I, so Qhi and Pih are invertible. As Qhi 	= 0, a similar argument 
shows that Pij = 0 for all j 	= h. Thus for each i, there is a unique h with Pih 	= 0. 
Similarly, for each h, there is a unique i with Phi 	= 0. Thus there is a permutation π ∈ Sr

such that Pij 	= 0 if and only if i = π(j). Setting Zj = Pπ(j)j ∈ GL3(2), we find that

Pij =
{
Zj if i = π(j),
0 otherwise.

Thus

Qjk =
{
Z−1
j if k = π(j),

0 otherwise.

Then (9.3) and (9.4) simplify to

ZjMjZ
−1
j = Nπ(j), Zjψ(Mj) = ψ(Nπ(j).

If we now take M to be in J ′, so Mj ∈ T ′ and ψ(Mj) = 0 for all j, then we have 
ψ(Ni) = 0 and Ni ∈ T ′ for all i. Hence each Zj lies in the normaliser of T ′ in T . Since 
T ′ is itself the normaliser of a Sylow 7-subgroup of T , this gives Zj ∈ T ′. The block 
diagonal matrix Z with blocks Zj then lies in J ′, so X = Z−1P (π) ∈ J ′ � Sr. �
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