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Abstract 
Background: The human biting rate (MBR) and entomological 
inoculation rate (EIR) are common parameters routinely used to 
measure the risk of malaria transmission. Both parameters can be 
estimated using human landing catches (HLC). Although it is 
considered the gold-standard, HLC puts collectors at higher risk of 
infection with mosquito-transmitted pathogens.

Methods: A novel exposure-free host-seeking mosquito electrocution 
trap, the Shockwè trap (SHK), was developed and its efficiency for 
monitoring mosquito community composition and abundance was 
compared with human landing catches (HLC) as the gold-standard. 
Field experiments were performed in Massavasse village, southern 
Mozambique. Simultaneous indoor and outdoor collections of 
nocturnal host-seeking mosquitoes were carried out using the SHK 
and HLC methods. The relative sampling efficiency of SHK was 
estimated as the ratio of the numbers of mosquitoes caught in SHK 
compared HLC. Proportionality and density-dependence between SHK 
and HLC catches were estimated by mean of Bayesian regression 
approaches.

Results: A total of 69,758 and 27,359 host-seeking mosquitoes 
comprising nineteen species and four genera, were collected by HLC 
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and SHK respectively. In general, SHK and HLC sampled similar 
numbers of mosquito species, with the exceptions of the least 
common species Aedes sudanensis, Ae. subargenteus, and Coquillettidia 
versicolor that were caught only by HLC. The relative sampling 
efficiency and proportionality between SHK and matched HLC catches 
varied greatly between species and collection site. However, all 
mosquitoes collected by SHK were unfed, confirming the Shockwè 
trap design’s performance and reliability as a successful mosquito 
exposure free sampling approach.

Conclusions: Results demonstrate that SHK is a safe and reliable 
human-exposure free device for monitoring the occurrence of a wide 
range of mosquito, including major malaria and arboviruses vector 
species. However, improvements are needed to increase its sampling 
efficiency for less abundant mosquito species.

Keywords 
Mosquitoes, traps, host-seeking, Shockwè trap, HLC, trapping 
efficiency, indoor, outdoor
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Introduction
The magnitude of a human host’s exposure to biting by the 
mosquito vector is a key parameter in epidemiological stud-
ies of malaria. This biting exposure is still determined using 
the human landing catch (HLC), a method first introduced in 
the 1930s1, but that continues to be widely used and accepted 
as the gold standard method for measuring biting exposure. 
A simple procedure requiring minimal equipment, HLC also  
provides a reliable method for measuring diurnal patterns of vec-
tor activity, and for identifying body regions most frequently 
contacted or preferentially bitten by a particular species2.  
However, HLC has serious operational drawbacks: it is physically 
demanding and its accuracy greatly depends on the individual 
collector’s stamina, honesty, experience, their inherent attractive-
ness to mosquitoes3–5 and their ability to catch them, especially 
at high biting rates6. Collectors may face a higher risk of disease 
transmission by the mosquitoes being studied or by other spe-
cies, particularly the mosquito vectors of arboviruses against  
which there are no effective vaccines, like dengue, Zika and  
chikungunya. This may not always be true, because, at least in 
some circumstances, there is good evidence that, with malaria, 
there is negligible risk to HLC collectors7,8. Hence, a long-
standing goal for medical entomologists and vector epidemi-
ologists has been the development of a sampling device that 
can accurately reproduce the entomological indicator obtained  
with HLC without posing risk to collectors.

Typically, traps for sampling host-seeking anthropophilic mosquito 
vectors either incorporate a live human bait or are designed 
to incorporate a human host mimic assembled from visual or 
olfactory cues. The yield of traps with synthetic baits can be 
dramatically improved using carbon dioxide, but the expense 
and logistics of using and controlling this highly volatile  
mosquito stimulant/attractant, has severely limited its effective 
use in the majority of routine applications to date. Moreover,  
the physiological effect of several synthetic odour compound 
blends remains poorly defined, as the level of attractiveness can  
dramatically vary depending on the vector species9,10. Moreover, 
some commonly used attractant blends, as well as CO

2
 can  

function as repellents at certain concentrations11.

A wide range of traps exist, and many innovative designs con-
tinue to be developed today12–20. A number of studies have 
evaluated and compared some of the more popular traps21–24, 
and although there is no single trap design that is consist-
ently reported as being an improvement on HLC, the simple, 
compact, and relatively inexpensive CDC light trap is very 
widely used for sampling and surveillance of nocturnally active  
mosquitoes worldwide. A major advantage of light traps is that 
sampling can be conducted across large areas in short time  
periods, with minimal effort. However, light traps also have 
limitations. For example, many species of vector mosquitoes 
routinely sampled by light traps do not naturally orient to 
light, raising questions over what the mosquitoes are respond-
ing to the trap’s light or whether they are simply being captured  
passively as they drift close to the trap’s fan. Moreover, light 
trap collections are greatly compromised by environmental  
conditions, particularly moonlight6,25,26, to an extent where outdoor 

collections are not directly comparable with indoor collections  
performed simultaneously6,27.

Here we report on the development and field testing of a novel 
trap for collecting mosquitoes attracted to a sleeping human 
bait, a device with potential for use indoors and outdoors. 
The trap exploits the knowledge that Anopheles gambiae s.l. 
and other mosquitoes preferentially descend onto a supine 
human host28,29, the sleeping position presented to hungry host  
seeking female anophelines and other nocturnally active mos-
quitoes by the vast majority of humans. The trap can be used 
by a single person (or with another source of attractant), who 
remains free from exposure to mosquito bites for the entire 
sampling period, while the mosquito responds to natural  
olfactory and physical stimulants produced by the host.

Methods
Ethical considerations
The study received ethical approval from the Research Ethics 
Committee at Liverpool School of Tropical Medicine (Research 
Protocol 14.055, Host Location by Exophagic African Malaria 
Vectors) on 28th January 2015 and from the Comité Nacional 
de Bioética para Saúde (CNBS) of the Ministry of Health of  
Mozambique (MISAU), Ref: 208/CNBS/15, on 22nd July 2015.

To minimise the risk of infection, all volunteers (for both 
HLC and SHK) during the field studies were provided with  
anti-malaria prophylaxis, Fansidar® (Sulfadoxine-Pyrimethamine), 
in accordance with the recommendations of the Mozambique 
National Malaria Control Program at the time the study 
was undertaken. A recent study showed that this practice  
reduced risk of malaria infection in HLC volunteers by 96.6% 
compared to a matched control group of individuals not  
involved in the study but living in the same locality7.

Consent
Written informed consent was provided by all volunteers par-
ticipating in the study, by signing a form that was co-signed  
by the senior investigator.

Description of study site
The study was conducted during the wet season February to 
April 2016 in Massavasse village (-24.624839° S; 33.111787° E). 
The village is located in Chókwè district, southwest Gaza 
Province, Mozambique)30 (Figure 1). The mean tempera-
ture in this period typically ranges from 25–34°C, and this 
is also the season experiencing most of the annual rainfall of  
600 mm. Anopheles arabiensis, An. funestus, An. gambiae 
s.s, An. tenebrosus, An. pharoensis and An. ziemanni are the 
most common malaria vectors in the village. Several other  
mosquito species within the genera Culex and Aedes known 
to be vectors of arboviral diseases have been also found in the  
village30,31.

The Shockwè trap
The Shockwè trap (SHK) (Figure 2) comprised a metal frame,  
200 cm in length, 100 cm wide at the base, 70 cm wide at the  
top and 65 cm in height from the trap base to the roof (equivalent 
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Figure 1. Location of Gaza Province, southern Mozambique showing the location of Lionde administrative post where the study 
site at Massavasse is situated.

Figure 2. The Shockwè trap (SHK) prototype showing (A) SHK as deployed outdoors in use in the field; (B) a side view of a volunteer within 
the trap and a top view of the collection sack or bag, which, when in use, is positioned beneath the electrocution grid; (C) the dimensions 
and structure forming the trap frame, and (D) a typical sample of mosquitoes from one SHK trap on one night collection using in Massavasse 
village.
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to the maximum flight height reported for several Anopheles  
species32,33). The base of the trap was 10 cm from the floor,  
compatible with the reported flight height of several mosquito 
species34–36. A modified insect electrocution grid device (Bower 
Products, London;), delivering 3,800 volts at 9 milliamperes 
(input of 230 volts) at the electric grid, was deployed on top of 
the frame. The device was fully compliant with EU safety speci-
fications for use (BS EN 60335F2F59 and the European EMC 
directive). The electrocution grid measured approximately,  
65 × 68 cm (16 cm deep) and the area of the active electric net 
was 493 × 500 mm. A grounded outer aluminium mesh of a 
size that allowed mosquito entry but prevented any human body 
parts from contacting the grid protected the live wires. The 
electric grid was positioned on the frame above the head and 
torso region of a supine adult lying beneath, as this is where the 
majority of both Anopheles (and Culex spp.) approach the host 
at the top surface of the net28,37 (Figure 2). The human bait slept  
below the electrocution grid inside an untreated bed net trap 
which had been modified to function as a mosquito collect-
ing sack (Figure 2). The electricity supply incorporated a circuit 
breaker (a residual current device or RCD), and in the event of 
a short circuit, the circuit would cut out instantly, significantly  
reducing the risk of serious injury. In the field, the trap was 
powered by a 7.5 kW 4-stroke Ryobi™ generator, providing  
an uninterrupted alternate electric current (AC) supply to the  
traps for up to 11.50 hours without refuelling.

Experimental design
The experiments were conducted in five of Massavasse’s six 
neighbourhoods. A series of paired indoor and outdoor collec-
tions were conducted in six selected sentinel sites located at 
the five selected neighbourhoods (Figure 2). In each site, four 
experienced adult collectors were randomly assigned to per-
form paired mosquito collections indoor and outdoor by mean 
of HLC and using SHK trap. All collectors were trained adult 
males, above 18 years old. Indoor collections were made using a  
purpose-built portable experimental hut, described previously30. 
The relative positions of the paired collectors performing 
HLC and SHK were located 12 to 20 metres apart to prevent 
any possible interference between them. Collection was per-
formed from 19:00 to 05:00 hrs, and collectors performed 
hourly rotation between collection methods to minimize the  
effect of different attractiveness of different collectors or  
their catching ability on the quality of collected data.

Sample processing and analysis
Collected mosquito samples were immobilised within paper 
cups inside a refrigerator (approx. 4°C) for 20 to 30 minutes. 
Anopheline mosquito species were identified morphologically 
to species or species complex level (e.g., An. gambiae s.l.) 
using the taxonomic keys of Gillies & De Meillon38 and  
Gillies & Coetzee39. Culicine mosquitoes were identified 
using taxonomic keys of Edwards40, Jupp41, Harbach42, and  
Service43. Members of the major vector species complexes, 
such as An. gambiae s.l or vector species groups (e.g.,  
An. funestus s.l) were identified to species level by molecular  
analysis (PCR). The protocols of Scott et al.44 and Koekemoer  
et al.45 were used to detect species-specific single nucleotide 
polymorphisms (SNPs) in the intergenic spacer region (IGS) 

and internal transcribed spacer region 2 (ITS2) of ribosomal 
DNA (rDNA) genes for identifying members of An. gambiae  
complex and An. funestus group, respectively44,45.

DNA extraction
Whole mosquitoes were transferred into 1.5 ml Eppendorf tubes 
and submerged with 200 µl of Tris-EDTA buffer solution at 
pH 7.8 (Sigma-Aldrich®, USA). The samples were then macer-
ated until homogenize and incubated at 94°C for 12 minutes, 
after which the homogenized were centrifuged at 13,000 rpm 
for 4 minutes for deposition of fragments of exoskeleton  
tissues. Then, 100 µL of the supernatant (solution contain-
ing DNA) were transferred to a new pre-coded Eppendorf tube,  
and store at -20°C for further analysis.

DNA amplification
Amplification of extracted DNA sample was performed by 
mean of conventional PCR. The primers and reagents for 
master mix used are indicated in Table 1. The primers were 
obtained from Bei Resources (https://www.beiresources.org). 
1.2 µL of extracted DNA were added to solutions containing 
the master mix. For identification of members of An. gambiae  
complex, PCR reactions were run with the following condi-
tion: one initial denaturing cycle at 94°C for 2 minutes. Thirty 
denaturing, annealing and extension cycles at 94°C, 50°C 
and 72°C, respectively, all for thirty seconds, a final exten-
sion cycle at 72°C for 5 minutes. Reaction products were hold 
at 4°C inside thermocycle (Biometra®, USA) before visualiza-
tion using electrophorese gel44, mixed with 10ul of SybrSafe  
(ThermoFisherTM, USA). For An. funestus group, the follow-
ing programmer were used: one initial denaturing cycle at 94°C 
for 2 minutes. Thirty denaturing, annealing and extension 
cycles at 94°C, 45°C and 72°C, respectively, all for thirty-six 
seconds, and a final extension cycle at 72°C for 5 minutes, 
and a holding cycle at 4°C for indefinite time until  
visualization45. For An. gambiae s.l members, the reactions 
creates DNA fragments of 464Pb (An. merus, ME), 390Pb 
(An. gambiae, GA), 315Pb (An. arabiensis, AR), 153Pb  
(An. quadrianulatus, QD), 153Pb (An. quadrianulatus, QDA). 
Likewise, for An. funestus group the primers create DNA frag-
ments of 600Pb (An. vaneedine, VAN), 464Pb (An. funestus  
s.s, FUN), 4111Pb (An. rivolurum, RIV), 4111Pb (An. rivolurum 
Like), 252 Pb (An. parensis, PAR) and 146Pb, 166Pb (An. leesoni, 
LEES)44.

Statistical analysis
Estimation of sampling efficiency. Commonly used meth-
ods for analyzing agreement between measures46 are not suit-
able for mosquito count data as counts are usually very skewed 
and highly over dispersed. In addition, the usual approach of 
log transforming counts to reduce the degree of skewness is 
not applicable because of the frequency of counts of zero47.  
However, mosquito counts in candidate sampling devices 
can be ranked, and agreement with matched HLC quantified 
using rank concordance correlation coefficients (CCC). CCC  
statistics quantify the variability in the data but do not give any 
indication of whether the novel method is collecting informa-
tion that is comparable with the standard approach. Estimates 
of the trapping efficiency can be computed by taking the ratios 
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of total numbers of mosquitoes caught by the different methods, 
but these are very sensitive to outliers in the counts, either of  
the novel or the standard methods47.

In view of these constraints, to determine SHK trap sampling 
efficiency relative to HLC, we used a less outlier-sensitive 
regression-based approach, that had been originally proposed 
by Hii et al.,48, and was adopted subsequently by other  
authors17,27,49. Comparisons were made between indoor HLC, 
outdoor HLC, indoor SHK trap and outdoor SHK trap. Strata  
were defined by combinations of sampling locations and days.  
The number of strata included in the analysis varied by  
mosquito species taxon.

The following linear statistical model was used to estimate  
the sampling efficiencies of SHK relative to HLC,

                                    ( ) ( ),α=i,m m i mE y E x                                (1)

where: E(y
i
) is the expected number of mosquitoes of a given 

taxon caught using method m in stratum i; E(x
i
) is the expected 

number of mosquitoes of the same taxon caught using an 
indoor HLC method in the same stratum i; α

m
 is the relative  

sampling efficacy for method m, compared to indoor HLC 
for which the value is set to unity. The underlying mos-
quito density E(x

i
) is assumed to have a log-normal distribu-

tion, i.e. ( )( ) ( )2~ , ,µ σi,m s sIn E x Normal  Poisson errors were  

Table 1. Reagents and primers used for preparation of master mixes for molecular 
identification of member of An. gambiae complex44 and An. funestus group45.

Species Reagents Qty

Anopheles gambiae s.l.

Sterile H20 1.25 μL

Taq 5x PCR Buffer 1.25 μL

dNTP (2.0 mM mix) 0.5 μL

Mgcl2 (25mM) 0.5 μL

UN (F, 25 pmol/μl) [GTG TGC CCC TTC CTC GAT GT]

1 μL

AR (R, 25 pmol/μl) [AAG TGT CCT TCT CCA TCC TA]

GA (R, 25 pmol/μl) [CTG GTT TGG TCG GCA CGT TT]

ME (R, 25 pmol/μl) [TGA CCA ACC CAC TCC CTT GA]

QD (R, 25 pmol/μl) [CAG ACC AAG ATG GTT AGT AT] OR

QDA (R, 25 pmol/µl) [CAT AAT GAG TGC ACA GCA TA] 

GoTaq DNA polymerase (5 U/ul) 0.1 μL

Anopheles funestus s.l.

Sterile H20 1.25 μL

Taq 5x PCR Buffer 1 μL

dNTP (2.0 mM mix) 0.75 μL

Mgcl2 (25mM) 1 μL

UV (F, 33 pmol/μl) [TGT GAA CTG CAG GAC ACA T]

2.9 μL

FUN (R, 33 pmol/μl) [GCA TCG ATG GGT TAA TCA TG]

VAN (R, 33 pmol/μl) [TGT CGA CTT GGT AGC CGA AC]

RIV (R, 33 pmol/μl) [CAA GCC GTT CGA CCC TGA TT]

PAR (R, 33 pmol/μl) [TGC GGT CCC AAG CTA GGT TC]

RIVLIKE (R, 33 pmol/μl)[CCG CCT CCC GTG GAG TGG GGG]

LEES (R, 33 pmol/μl) [TAC ACG GGC GCC ATG TAG TT]

GoTaq DNA polymerase (5 U/ul) 0.1 μL
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assumed in the observed numbers of mosquitoes caught by each 
methods so that: x

i
~Poisson(E(x

i,m
)) and: y

i,m
~Poisson(E(y

i,m
))  

and the model therefore assumes the distribution of the num-
bers of mosquitoes caught by any method to be a log-normal  
mixture of Poisson distributions.

To examine whether the trapping efficiency varied with the 
average mosquito density, the following extended model was  
also fitted:

                                  ( ) ( )( ),

m

i,m m i mE y E x
γ

α= ′                                (2)

where γ
m
 is an exponent corresponding to method m. 

If the different methods are sampling the same fraction of the 
mosquito population, then the fitted line for model (1) should 
be close to that for model (2). Equivalently, the 95% cred-
ible intervals for y

m
 should overlap with unity. A value of y

m
 

that is different from unity indicates a lack of proportionality  
between the mosquito sampling methods. In addition, α’

m
 will 

differ from α
m
 if γ

m
 is different from unity48. The model was  

fitted using a Bayesian Markov chain Monte Carlo algorithm in  
rjags v. 4 -1450.

Results
Abundance and composition of mosquito collections
A total of 35 nights of paired HLC and SHK collections  
yielded a total catch of 97,117 mosquitoes comprising twenty-
three species in five genera (Table 2). Sampling with HLC 
and SHK yielded 69,758 and 27,359 specimens respectively, 
with Culex and Anopheles being the most common genera  
sampled by both methods.

Anopheles species comprised Anopheles gambiae s.l, An. pha-
roensis, An. tenebrosus, An. ziemanni and An. funestus, and 
accounted for 17.8% (12,401 n = 13,853) of the total (indoor 
and outdoor) Anopheles species catches obtained by HLC 
and 5.3% (n = 1,452) sampled by SHK. Culex tritaenioryn-
chus was the predominant species amongst eight Culex species  
sampled by either method (Table 2). These species represented 

Table 2. Relative abundance and composition of mosquito 
collections by each sampling methods: Human landing catch 
(HLC) and Shockwè Trap (SHK); deployed indoors or outdoors 
in Massavasse village.

Species
HLC SHK

Indoor Outdoor Indoor Outdoor

Anopheles funestus s.l 40 29 11 1

Anopheles gambiae s.l 3,403 4,437 725 147

Anopheles pharoensis 28 1,950 126 338

Anopheles tenebrosus 25 1,023 1 38

Anopheles ziemanni 53 1,413 - 65

Aedes fryeri 4 73 14 127

Aedes sudanensis 1 4 - -

Aedes subargenteus - 4 - -

Culex pipiens 1,019 4,971 353 275

Culex poicilipes 1,219 4,444 177 664

Culex tritaeniorhynchus 1,007 7,504 547 1,963

Culex antennatus 229 1,625 91 282

Culex quinquefasciatus 43 9 33 3

Culex bitaeniorhynchus 2 3 1 11

Culex sitiens 1 2 - 1

Coquillettidia aurites 1 8 4 -

Coquillettidia versicolor - 1 - -

Mansonia africana 1,521 2,594 510 857

Mansonia uniformis 11,156 19,912 5,467 14,527
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31.6% (n = 22,078) and 16.1% (n = 4,401) of specimens sam-
pled by HLC and SHK, respectively. The genus Mansonia 
was represented by two species, Ma. africana and Ma.  
uniformis which accounted for 50.4% (n = 35,183) and 78.1%  
(n = 21,361) of all specimens sampled by HLC and SHK,  
respectively.

Two Aedes mosquito species, namely Ae. (Stegomyia) subar-
genteus and Ae (Muscidus) sudanensis, and one Coquillettidia 
species were only collected by HLC (Table 2). The underlying  
human landing catch and Shockwè trap raw data can be found  
here (https://doi.org/10.17605/OSF.IO/U5A4V)51.

Molecular identification of species complex/group 
members
Of 1,052 mosquitoes subjected to molecular analysis, 980 
were identified as members of the An. gambiae complex and 
72 as in the An. funestus group (Table 3). Of the 980 Anoph-
eles gambiae s.l, 850 were collected by HLC and 176 by the 
SHK 701 were identified as Anopheles arabiensis, 20 as An. 
gambiae s.s, 68 as An. merus and 26 as An. quadriannulatus.  
Of 31 Anopheles funestus group processed, 22 were An. funestus 
s.s and 7 were An. parensis. All the members of An. gambiae 
s.l and An. funestus identified by PCR were detected in the 
subsamples from both SHK and HLC, with the exception 

of An. merus and An. parensis, which were collected only  
with HLC (Table 3). A total of 126 and 60 specimens from 
HLC and SHK respectively, initially identified morphologically  
as members of An. gambiae complex did not amplify.

Shockwè trap efficiency
Rank concordance correlation analyses between HLC and 
SHK catches are summarized in Table 3. For most species, 
estimates of CCC suggested moderate association between 
SHK and matched HLC catches (Table 4). Regression model 
analyses indicated that trapping efficiency of SHK varied in  
function of mosquito species. Indoor and outdoor, the result  
indicated that SHK was efficient at sampling Ae. fryeri and  
An. pharoensis (Figure 3A, Table 5). In addition, the trap was 
also efficient in sampling Cx. bitaeniorhynchus, Cx. tritaen-
iorhynchus and Ma. uniformis outdoor (Figure 3B; Table 5). 
The ratio of total caught outdoor to indoor suggests that these  
mosquito species were primarily exophagic (Table 5).

Regression model parameters showing the degree of proportion-
ality between SHK and HLC catches, and density-dependency 
of SHK performance are depicted in Table 6. For most of 
species, regression models indicated that the number of  
mosquitoes collected by SHK were density dependent, the 95% 
credible interval for the exponent (γ

m
) did not overlapped with 

Table 3. Result of PCR analysis on subsamples of Anopheles gambiae s.l and 
Anopheles funestus s.l from human landing catch (HLC) and Shockwè Trap 
(SHK).

Method Species complex/
group Molecular ID

Total

Indoor Outdoor

HLC

Anopheles gambiae s.l

Anopheles gambiae s.s. 2 0

Anopheles arabiensis 334 270

Anopheles merus 40 28

Anopheles quadriannulatus 3 22

Anopheles funestus s.l
Anopheles funestus s.s. 10 13

Anopheles parensis 7 0

Anopheles gambiae s.l
Not amplified

24 83

Anopheles funestus s.l 9 10

SHK

Anopheles gambiae s.l

Anopheles gambiae s.s. 9 9

Anopheles arabiensis 32 65

Anopheles merus 0 0

Anopheles quadriannulatus 1 0

Anopheles funestus s.l
Anopheles funestus s.s. 21 0

Anopheles parensis 0 0

Anopheles gambiae s.l
Not amplified

45 14

Anopheles funestus s.l 1 0
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unity (Table 6). The exception was observed with An. gambiae  
s.l (indoor), Cx pipiens s.l (indoor) and Ma. uniformis (indoor) 
(Table 6, Figure 4). For other species that SHK and HLC col-
lections were at some point proportional, such as An. funestus 
s.l (indoor and outdoor), An. tenebrosus (indoor and outdoor),  
An. ziemanni (indoor and outdoor), Ae. fryeri (indoor), the large 
95% credible interval indicates huge uncertainty (Table 6).

Discussion
While the SHK proved a sensitive device for detection of all 
but the rarest of the full range of species in the study site, it  
collected far fewer mosquitoes than the HLC caught for most 
species. This is not an uncommon feature of many traps, and 
as with the CDC light trap and other traps, does not necessarily 
mean they are unsuitable for use as epidemiological tools48,52,53.  
Mosquito species detected by SHK and HLC included dominant 

malaria and arboviruses vector species. Unfortunately, it has 
yet to be determined how or why the HLC method outperforms 
numerous traps. The skill of the collectors, often considered a 
potential limitation of HLC at high densities, did not appear to 
impair the numbers of individuals captured at the high densities 
recorded in the present study, while variations in the inherent 
attractiveness to mosquitoes of different hosts would have influ-
enced performance of the SHK to a similar extent as the HLC.  
Despite their importance in epidemiological studies, and  
their decades-long use for surveillance of vector mosquito 
populations of public health interest, knowledge of how  
mosquitoes behave at close range to a trap or of how the inte-
gration of visual and olfactory stimuli enable mosquitoes to 
find a stationary host is limited54–57. Uniquely, the SHK is  
designed to capture mosquitoes as they descend onto a supine 
human host in response to the rising body heat and associated 

Table 4. Total mosquitoes caught in Massavasse village, total strata, and 
concordance correlation coefficients. Indoor human landing catch (HLC) 
collections were arbitrarily considered as reference for concordance analysis. SHK: 
Shockwè Trap.

Species Total 
collected

Total 
strata

Rank concordance correlation 
coefficients

HLC SHK SHK

outdoor indoor outdoor

Anopheles funestus 81 20 0.579 0.531 0.486

Anopheles gambiae s.l 8,712 35 0.487 0.488 0.509

Anopheles pharoensis 2,442 34 0.551 0.56 0.497

Anopheles tenebrosus 1,087 31 0.477 0.454 0.595

Anopheles ziemanni 1,531 25 0.534 0.5 0.596

Aedes fryeri 218 12 0.331 0.401 0.613

Aedes sudanensis 5 5 0 0.5 0.5

Aedes subargenteus - 1 4 - -

Culex antennatus 2,227 16 0.503 0.523 0.546

Culex bitaeniorhynchus 17 7 0.746 1 0.5

Culex pipiens 6,618 30 0.587 0.503 0.598

Culex poicilipes 6,504 35 0.517 0.327 0.492

Culex quinquefasciatus 88 14 0.528 0.6 0.595

Culex sitiens 4 3 0.25 0.5 1

Culex tritaeniorhynchus 11,021 34 0.447 0.425 0.453

Coquillettidia aurites 13 7 0.306 0.377 0.5

Coquillettidia versicolor 1 1 1 - -

Mansonia africana 5,482 35 0.665 0.345 0.583

Mansonia uniformis 51,062 35 0.479 0.449 0.587
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Figure 3. The efficiency of the Shockwè trap (SHK) trap deployed indoors (A) and outdoors (B) in Massavasse village. In each case the vertical 
dashed line corresponds to a trapping efficiency of 1.0 (indicating nondifference). The error bars are 95% credible intervals.

Table 5. Estimates of trapping efficiency (α) from linear models (95% credible intervals). Indoor human landing catch 
(HLC) collections were arbitrarily considered as reference in regression models. Only species that occurred on at least ten 
sampling occasions (strata) were included in the models. SHK: Shockwè Trap; DIC: Deviance information criterion.

Species HLC outdoor

SHK
DIC 

linear 
model

DIC 
power 
modelindoor outdoor

Ratio 
(Outdoor:

Indoor)

Anopheles funestus 0.72 (0.44, 1.18) 0.27 (0.13, 0.52) 0.02 (0.00, 0.12) 0.09 182.76 175.26

Anopheles gambiae s.l 1.31 (1.25, 1.37) 0.21 (0.20, 0.23) 0.04 (0.04, 0.05) 0.2 2577.69 2414.28

Anopheles pharoensis 68.28 (49.07, 99.80) 4.40 (3.02, 6.54) 11.82 (8.28, 17.39) 2.69 1734.84 1210.9

Anopheles tenebrosus 40.08 (27.66, 62.22) 0.04 (0.00, 0.18) 1.47 (0.89, 2.47) 39.01 419.11 419.13

Anopheles ziemanni 26.92 (20.62, 35.96) 0.00 (0.00, 0.05) 1.23 (0.85, 1.78) 277.41 403.86 404.81

Aedes fryeri 16.05 (7.35, 37.18) 2.97 (1.14, 7.95) 27.98 (12.85, 65.79) 9.41 202.98 121.1

Culex antennatus 7.08 (6.17, 8.14) 0.39 (0.31, 0.50) 1.23 (1.03, 1.46) 3.12 1602.21 1428.78

Culex pipiens 4.88 (4.57, 5.21) 0.35 (0.30, 0.39) 0.27 (0.23, 0.31) 0.78 3156.33 2689.15

Culex poicilipes 3.65 (3.42, 3.87) 0.15 (0.12, 0.17) 0.54 (0.50, 0.60) 3.75 2158.39 2094.89

Culex quinquefasciatus 0.21 (0.09, 0.41) 0.78 (0.50, 1.20) 0.07 (0.02, 0.19) 0.09 201.9 194.32

Culex tritaeniorhynchus 7.45 (7.01, 7.97) 0.54 (0.49, 0.60) 1.95 (1.81, 2.10) 3.59 4543.6 4403.45

Mansonia africana 1.71 (1.60, 1.83) 0.34 (0.30, 0.37) 0.56 (0.52, 0.62) 1.68 2778.16 2638.87

Mansonia uniformis 1.79 (1.74, 1.83) 0.49 (0.47, 0.51) 1.30 (1.27, 1.33) 2.66 14708.76 13024.37
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attractants, a host-location route previously identified from 
infra-red tracking studies as the most common route taken by 
An. gambiae s.l and An. arabiensis when approaching a human 
host28,58. Assuming the SHK was operating as intended, any 
other species arriving at the host in this way should also have 
struck the electrocution grid and been killed and captured. This  
would include Cx quinquefasciatus37 but the orientation paths 
of the other important vector species, have not been charac-
terised. However, horizontal air movements across the host 
would disperse the plume of attractants and eliminate the focus 
of attractants at the net roof59 and the SHK would become very  
ineffective. As such conditions would be common outdoors 
but rare indoors the SHK would be expected to be more  
suitable for use indoors than outdoors.

SHK sampling efficiency was, in general, density-dependent 
suggesting that SHK trap could fail to detect uncommon 
or rare mosquito species. Several factors, such as trapping  

location, visual contrast, trap configuration and, as well as  
climate and surrounding environment features determine trap 
response of insects during appetitive and attraction flights60,61.  
The extent to which climate factors, notably air temperature, rela-
tive humidity, and wind speed influence the sampling efficiency 
of traps still remains poorly known. These factors may influ-
ence trap performance by affecting vectors appetitive search-
ing for host clues62–65, whilst wind speed may directly affect 
efficiency by reducing or fully discouraging flight activity.  
Mosquitoes typically fly at a cruising velocity less than 1 m/s 
so that, wind speed above normal flight speed may com-
pletely cease flight activity of several vector species66,67. During 
this study air temperature at night was within the optimum 
range for mosquito flight activity (20°C – 30°C), as reported 
in another study also conducted in southern Mozambique68  
and elsewhere63,69. Differently, the average wind speed at  
sunset and, usually at dawn, was around 4.15 m/s, above of  
what is considered optimum speed for mosquito to fly67.

Table 6. Parameter estimates from power models (95% credible intervals) applied to investigate density-dependence in 
sampling performance of Shockwè trap (SHK) compared with human landing catch (HLC). Indoor HLC collections were arbitrarily 
considered as reference in regression models. Only species that occurred on at least ten sampling occasions (strata) were included in the 
models.

Species

HLC SHK

HLC outdoor Indoor Outdoor

α’ γ α’ γ α’ γ

Anopheles funestus 4.71 (0.46, 211.96) 0.23 (0.02, 0.58) 0.25 (0.14, 0.45) 1.37 (0.71, 2.31) 0.01 (0.00, 0.11) 0.89 (0.30, 2.01)

Anopheles gambiae s.l 0.26 (0.20, 0.33) 1.43 (1.31, 1.54) 1.22 (0.54, 4.10) 0.68 (0.53, 0.80) 0.20 (0.06, 2.08) 0.50 (0.28, 0.72)

Anopheles pharoensis * * 0.64 (0.52, 0.83) 17.62 (13.50, 
24.00) 2.14 (1.42, 4.66) 3.31 (2.80, 3.92)

Anopheles tenebrosus 16.23 (8.28, 46.88) 1.14 (0.82, 1.53) 0.03 (0.00, 0.30) 0.98 (0.36, 2.23) 1.33 (0.84, 2.25) 1.27 (0.70, 2.02)

Anopheles ziemanni 10.06 (4.23, 23.90) 1.25 (1.03, 1.45) 0.01 (0.00, 0.08) 1.94 (0.55, 4.98) 0.86 (0.52, 1.61) 1.30 (0.92, 1.75)

Aedes fryeri * * 1.82 (0.69, 5.77) 1.49 (0.81, 2.49) 4.67 (1.61, 12.30) 1.90 (1.30, 2.69)

Culex antennatus 1.42 (0.49, 6.16) 1.44 (1.10, 1.88) 6.59 (0.73, 128.02) 0.44 (0.23, 0.70) * *

Culex pipiens 0.21 (0.18, 0.24) 2.24 (2.12, 2.38) 0.32 (0.21, 0.56) 1.06 (0.89, 1.23) 0.12 (0.09, 0.16) 1.46 (1.24, 1.71)

Culex poicilipes 2.39 (1.41, 4.12) 1.09 (1.04, 1.17) 0.05 (0.04, 0.06) 2.14 (1.83, 2.47) 0.37 (0.25, 0.59) 1.15 (1.01, 1.28)

Culex quinquefasciatus 0.13 (0.00, 4.76) 0.28 (0.01, 0.91) 7.31 (0.47, 607.60) 0.35 (0.11, 1.05) 0.01 (0.00, 0.16) 0.42 (0.10, 1.03)

Culex 
tritaeniorhynchus 0.57 (0.40, 0.72) 1.94 (1.80, 2.27) 0.13 (0.10, 0.17) 1.96 (1.75, 2.39) 0.33 (0.24, 0.43) 1.78 (1.64, 2.05)

Mansonia africana 0.24 (0.18, 0.33) 1.65 (1.43, 1.87) 267.22 (10.53, 
11255.65) 0.29 (0.22, 0.40) 0.48 (0.29, 0.99) 1.00 (0.84, 1.18)

Mansonia uniformis 3.06 (2.36, 4.33) 0.92 (0.89, 0.95) 1.46 (1.03, 2.28) 0.80 (0.76, 0.85) 0.08 (0.07, 0.09) 1.77 (1.70, 1.83)
*Results unreliable due to sparse data
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One of the main advantages of SHK is the fact it is fully human-
baited, and in this first evaluation, all the catches comprised unfed 
malaria and arboviruses vector species, notably An. arabiensis, 
An. gambiae s.s, An. funestus s.s., An. merus, An. parensis, 
Cx. quinquefasciatus, Cx. tritaeniorhynchus and Ma. uniformis, 
attesting to its exposure-free. Here, the SHK provided a reli-
able sample of anthropophilic mosquito species that arrive 
unfed at the host with a genuine intention of blood-feeding  
on the volunteer within the bed net. Furthermore, the trap offers 
an alternative to explore in real time key behavioural compo-
nents concerning host-finding behaviour by disease vectors using 
recently developed image-capturing technology such as those 
reported by Parker et al.,28. However, it is worth noting that, 
although both SHK and HLC employ the same source of odour 
stimuli (natural human host), it is very unlike that they could, 
thereby, collect absolutely the same quantity of mosquitoes  
since both are subjected to imprecisions and analytical errors 
that can generate significant levels of variability46,70,71. How-
ever, as Hii et al.,48 have remarked, the lower numbers of 
mosquitoes caught by an alternative method do not per se  
invalidate the use of the candidate method for estimation of rel-
evant entomological indicators. The crucial criterion is whether 
the new method is collecting mosquitoes that are in propor-
tion to the gold standard. This condition was fulfilled with  
An. gambiae s.l, Cx. pipiens s.l and Ma. uniformis, but not  
with remaining vector species.

One of the key limitations of the SHK trap is dependence 
on a source of alternating electric current (AC) for operat-
ing. However, this limitation could be reduced by installing 
an AC/DC power convertor or by modifying the electrocution 
grids to enable them to work with direct current (DC). It was 
noted that the voltage input would sometimes inflict significant  
burn damage on mosquitoes, particularly on small-sized  

mosquitoes such as An. funestus rendering them difficult or 
even impossible to identify morphologically. However, identi-
fying the ideal settings to eliminate this risk may is not a simple 
or predictable process and finding the optimal level of volt-
age is likely to be a major challenge. Setting the voltage was 
compromised by the need to ensure that the live wires compris-
ing the electrocution grid were spaced at a distance to eliminate  
short-circuiting, but close enough to capture even the smallest 
anophelines and retaining enough voltage to knock them down, 
without damaging them beyond recognition.

Conclusions
In conclusion, the Shockwè trap is a human-baited  
exposure-free mosquito trapping device with high potential 
as a sampling device for the indoor and outdoor entomologi-
cal surveillance of malaria and arbovirus vectors. It also could 
serve as an experimental device designed to capture mosquito  
species as they respond to a supine human host. Despite their 
essential role in elucidation of the mechanism of host loca-
tion by tsetse, electrocution grids have yet to considered as 
tools suitable for use in similar studies on mosquitoes72. Struc-
tural improvements are possible and could improve trapping  
at low densities, a challenge for all similar mosquito traps.

Abbreviations
HLC: Human-landing catch

SHK: Shockwè trap

PCR: Polymerase chain reaction

Consent
Written informed consent for publication of the participants’  
details was obtained from the participants.

Figure 4. Proportionality between Shockwè trap (SHK) and human landing catch (HLC) indoor catches of Anopheles gambiae s.l, 
Culex pipiens and Ma. uniformis. In each case, the dashed diagonal line corresponds to a 1:1 ratio of the two methods (trapping efficiency 
1.0). The green straight lines are the fitted lines from the linear models. The blue curves correspond to the fitted lines from the power model 
and the blue shading to the 95% credible interval around it.
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Data availability
Underlying data
Open Science Framework: Underlying data for ‘The Shockwè 
trap: a human-baited exposure-free device for surveillance and  
behaviour studies of anthropophilic vectors’ https://doi.
org/10.17605/OSF.IO/6K4MT51

This project contains the following underlying data:

•   �Dataset_1: Raw dataset of mosquito species col-
lected using human-landing catch and Shockwè trap in  
Massavasse village from February to April 2016.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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