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Abstract

This paper aims to explore the potential of carbon nanotubes (CNTs) in

enhancing the structural capability and multifunctionality of carbon fiber com-

posites in aerospace applications, primarily by focusing on interfacial applica-

tions. The conventional method of dispersing CNTs in a matrix is not fully

efficient in exploiting the mechanical and multifunctional performance of

CNTs. Hence, the use of CNTs at the interface or as a coating on the surface of

carbon fibers has been suggested as a means of achieving multifunctionality,

in addition to enhanced mechanical performance. The paper presents an over-

view of the various processes for growing CNTs on carbon fiber surfaces and

examines the effects of CNT geometry and growth parameters on the proper-

ties of grafted fibers and their composites. Furthermore, it discusses the poten-

tial improvements in thermal and electrical conductivity achievable by

incorporating CNTs at the interface, as well as the benefits of using CNTs as a

sizing layer for carbon fibers, including enhanced fracture toughness and resis-

tance to delamination.

Highlights

• Comprehensive study of interface engineering in carbon fibers and Carbon

Fibre Reinforced Plastic (CFRPs) using carbon nanotubes (CNTs).

• Improved transverse mechanical properties and overall thermal and electri-

cal properties.

• Multifunctional applications possible with the use of CNT.

• Both experimental and numerical studies reviewed.
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1 | INTRODUCTION

Carbon nanotubes (CNTs) have recently become one of
the most sought-after materials due to their superior
mechanical,1–4 electrical,5,6 electronic,4,7 and thermal
properties,3,4,8 as well as their lightweight9–11 and structural
superiority.12 CNTs are versatile enough to be used in a vari-
ety of industries, including electronics,11,13 medicine,14–16

aerospace,13,17,18 defense,19 chemical industry, and waste
treatment.20,21 CNTs and their nanostructures have seen a
lot of development and scientific exploration since their dis-
covery in 1991. The order of all three dimensions, length,
radius, and thickness, differ due to the size, shape, and
inherent unique geometry of CNT. The elastic properties of
CNT are found to be dependent on its geometrical parame-
ters, particularly thickness.22,23 Additionally, it has been
hypothesized that the CNT's length affects its thermal char-
acteristics.24 Numerous studies have been conducted on
double and multi-walled CNTs (DWCNTs and MWCNTs
respectively) where interatomic interaction come into play.25

Researchers have employed various approaches, such as
molecular dynamics (MD), molecular structural mechanics
(MSM), atomistic finite element methods (FEM), and even
continuum approaches that utilize non-local theories, to
study the interatomic effects influencing the overall behavior
of CNTs.26–30

Experimental studies have shown that CNT has a
Young's modulus of up to 1.2 TPa.31 Shen and Li32 deter-
mined the Young's modulus, shear modulus, transverse
elastic modulus, and Poisson's ratio by examining the
transversely isotropic properties of CNT. Due to these
superior property values, the use of CNT as reinforce-
ment, nanostructures, and other chemical components is
of great interest. One application of CNT is in composites.
There are two methods for adding CNTs to a composite:
direct reinforcement, in which CNTs are dispersed
throughout the matrix,33–36 and grafting onto the fiber, in
which CNTs are grown on the outer surface of the fiber.
Such fibers are known as fuzzy fibers, and a matrix is
used to cure them37 to obtain fuzzy fiber reinforced com-
posites (FFRC). Aligned CNT composites have also been
studied, and it has been found that experimentally con-
trolled aligned CNT reinforcement provides greater prop-
erty enhancement than random CNT dispersion and
orientation in an epoxy matrix.38 Marconnet et al.39

examined aligned CNT-reinforced epoxy nanocomposites
to determine the impact of CNT volume fraction on the
thermal conductivity of the whole nanocomposite. They
found that at a volume fraction of 16.7%, the axial ther-
mal conductivity increases by a factor of 18.5. The wavi-
ness of CNTs was also considered in a different study on
aligned polymer nanocomposites.40,41 For a system of
aligned CNTs composed of MWCNTs with an outer

diameter of around 8 nm, the waviness ratio significantly
affected the elastic modulus with an increasing waviness
ratio causing up to three-fold decrease in the elastic mod-
ulus. The reduction of effective elastic moduli up to
100 times has been observed due to CNT waviness.42

Several works investigate growing CNTs onto the fibers,
be it metal fibers like aluminium43–45 or ceramic,46 carbon47

or glass fibers.48 Some work also studied growing nanofiber
on carbon fibers.44,49 In the case of metal fibers, a significant
improvement has been observed in the mechanical proper-
ties of the reinforced fiber and the composite. Whereas for
glass and carbon fibers, a decrease in the tensile strength
has been noted when treated with CNT. This reduction in
tensile strength has been attributed to the creation of surface
voids and defects upon removing the protective fiber sizing,
which is done in order to graft CNTs efficiently onto the
fiber surface. However, this reduction is not significant, and
in many cases, using certain processing techniques like elec-
trophoretic deposition (EPD) or electrospray technique do
not cause reduction in carbon fiber tensile strength. For
glass fibers as well, when CNTs were grafted onto the outer
surface, the electrical properties of the composite along with
the fracture toughness were significantly improved.50

Grafting CNT onto the surface of carbon fibers poses
significant challenges,51 with the primary concern being
achieving the required CNT growth density and type on the
carbon fiber surface. Several promising methods, including
chemical vapor deposition (CVD), EPD, and in-situ CNT
growth52 have been investigated. However, scaling these
techniques for industrial purposes presents challenges since
the goal is to develop fuzzy fibers for commercial applica-
tions. To achieve this, an industry-level preparation meth-
odology is necessary. Some cases have been discussed in
subsequent sections to shed light on this issue.

It has been shown in literature that interface engi-
neering of conventional fiber matrix composites also
helps to enhance the failure strength, debonding and
changing the fracture mode of the composite. Delamina-
tion can be avoided by using FFRCs. Studies also suggest
the use of CNTs between the laminates to get better inter-
laminar shear strength (ILSS) and strength properties of
the laminated composites.52,53 Villoria et al.54 used CNTs
at the laminate interface to increase interlaminar tough-
ness. There has been evidence of changes in fiber-
reinforced composites' failure behavior going from
debonding to changing to fiber failure upon the integra-
tion of CNTs at interface of composite laminae. Thakre
et al.55 introduced SWCNTs in the interlaminar region of
3-D woven carbon fiber epoxy composite to improve the
interlaminar fracture behavior. Mode-I delamination
behavior was investigated. It helped in understanding the
differences in mechanism of delamination when functio-
nalized and unfunctionalized (pristine) nanotubes are
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added to the woven carbon fiber-epoxy matrix composite
laminates. Jakubinek et al.17 investigated the use of CNT
as structural and conductive adhesives for aerospace
applications. These works add only to the support of the
argument of using CNTs in the interface of the compos-
ites. The effect of grafting strength and density on the
mechanical properties of the composite lamina developed
was also studied.56,57

The current review paper discusses various characteri-
zation techniques, experimental and computational, to esti-
mate the mechanical, thermal, and electrical properties of
FFRCs. The paper is organized as follows: Section 1 gives
the introduction. Section 2 highlights the various methods
used for developing fuzzy fibers. Experimental studies
focusing on FFRCs are discussed in Section 3. Section 4
gives insights into the numerical modeling techniques used
for the property determination of FFRCs. Finally, Section 5
gives the gap analysis and Section 6 the conclusion.

2 | METHODS TO DEVELOP
FUZZY FIBERS

The most challenging aspect of utilizing CNTs is their
synthesis, as the dimensions of CNTs lie close to the

atomic scale, the processing is highly demanding. Develop-
ing CNTs requires strict control and monitoring of proces-
sing parameters, which are also capital-intensive. These
factors have been major obstacles to the commercial growth
of CNT-based products and technologies. Unfortunately,
there has been no significant development in large-scale,
industry-based production of bulk CNTs. Although there
have been some suggestions for production-level adoption
based on laboratory-developed methods,58–60 these are still
being studied. Current processing methods used in litera-
ture to develop fuzzy fibers can be broadly summarized as
follows.

2.1 | Chemical vapor deposition

Chemical vapor deposition (CVD) is the most widely
used processing technique to synthesize individual CNTs
or grow CNT forest onto a substrate61–64 (Figure 1). It is a
chemical reaction-based process of material deposition/
generation in the form of crystals, film or powder and
works by modifying the bonding between the chemical
constituents. The bond developed in a CVD process is
due to physical adsorption and is of weak type that is,
van der Waals (vdW) bond.65 In CVD, acetylene gas or

FIGURE 1 Graphical representation of distribution of various production techniques used in literature along with schematic

representation of each technique.65,69,73,85,89

SAHU ET AL. 3
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any other hydrocarbon is usually used, and the decomposi-
tion reaction occurs in the presence of a heated substrate
and catalysts (usually iron or nickel) inside a pressurized
chamber. Silicon wafer is used as a substrate onto which
individual carbon starts depositing. Reaction parameters
such as temperature, reactive gases used, and type of catalyst
influence the material type and distribution.66 It has been
shown that the size of catalysts affects the size of CNTs
deposited onto the substrate.61,63 Smaller catalyst sizes give
uniform, finer CNT deposition with fewer CNT walls. It is
also possible to go for selective deposition, localized treat-
ment, and deposition onto substrates with different geome-
try using CVD. The CVD processes are carried out at a
temperature range of 80–1020�C.64,67–69 Modifying carbon
fiber surface using treatments like modification with carbox-
ylic acid groups for better adhesion of CNT onto the surface
can also be done.70 CVD is known to produce uniform and
dense CNT growth in the range 2–6 � 109 cm2,62 length
�10–30 μm to few mm, width �50–120 nm63 and diameter
ranging from 5 to 30 nm. CVD offers the advantage of
highly pure, uniform, and conformal coatings on a wide
range and size of materials. However, there are certain dis-
advantages associated such as complex equipment and setup
and slower deposition rates. Moreover, higher temperature
associated with the process can lead to damage/diminishing
of inherent properties of the substrate.

2.2 | Pulsed laser deposition

Pulsed laser deposition (PLD) is a physical vapor deposition
process wherein a high-power laser source is used to pro-
duce vapors of the material to be deposited as opposed to
the chemical reaction in the CVD process (Figure 1). This
technique has been used to synthesize nanotubes71 and
nanopowders.72 PLD gives the advantage of producing
fuzzy fibers at lower temperatures compared to CVD. PLD
temperature range is about 25–600�C,73 which helps pre-
vent thermal damage to carbon fibers. In addition, there is
minimal damage to the quality of CNTs produced.74

MWCNTs with around 5–10 tube walls and an inner diam-
eter in a range of 2.5–4 nm have been developed using
PLD. The length of these MWCNTs was about 100 nm.75

Since no additional catalysts are needed, the deposition
done using PLD is high quality, and the chances of contam-
ination are less. However, they have the disadvantage of
huge equipment size and energy consumption.76

2.3 | Electrophoretic deposition

Electrophoretic deposition (EPD) process is based on the
movement and deposition of charged particles under an

electric field onto a conductive electrode to develop thin
or thick films and coatings (Figure 1). EPD process can
be considered to comprise of two steps: one involving the
movement of charged particles upon application of elec-
tric field and the other the deposition of the particles onto
the electrode.69 Due to CNT's electrical responsiveness,
EPD is the easiest and most effective process to produce
fuzzy fibers. The advantages of the EPD process are the
short formation time, simple apparatus, and the ability to
produce uniform coatings on complex geometries. Fur-
thermore, EPD offers easy control over film thickness
and morphology by simply adjusting depositing time and
applied potential.77 It is useful and convenient method
for the generation of ‘multi-scale’ coating on carbon fiber
such as MWCNTs.78 The use of an annular electrode is
also suggested to improve the deposition of CNTs.79 High
purity CNTs of around 95%–99% can be obtained via
EPD.80 However, the choice of substrate is limited in it to
be electrically conductive. Also, there is drawback of poor
adhesion and post processing is needed to improve
adhesion.

2.4 | Electrospray technique

The electrospray method also uses an electric field to
achieve a suspension of materials to be deposited onto
any surface/substrate (Figure 1). It produces particles of
uniform size and has no problem with agglomeration.69

As with EPD, the electrospray technique is also very cost-
effective and could be used to mass produce fuzzy fibers
and their composites. Applied voltage, spray nozzle size
and distance between the spray nozzle and depositing
surface are some parameters affecting the CNT deposi-
tion.69 The electrospray method has produced carbon
nanofibre-based electrodes for supercapacitors.81 It is also
possible to develop a forest of MWCNTs using coaxial
electrospray to achieve a material with very high electri-
cal conductivity.82 The tensile strength of carbon fiber is
preserved in this process as opposed to CVD.83 Highly
graphitized CNT of diameter �10–20 nm could be pro-
duced without any unnecessary oxidation via the electro-
spray process.84 The electrospray technique is limited by
the low efficiency of the material deposited to material
used and sensitivity to operating parameters such as noz-
zle geometry, voltage and flow rate.

2.5 | Sizing method

The sizing method is used to prominently deposit a thin
film on filaments such as carbon or glass fiber to protect
the filament surface from damage during manufacturing.

4 SAHU ET AL.
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Sizing materials provide adhesion between the fiber and
matrix and ensure better processibility.78 The sizing
method has been adopted for CNTs as well to create
fuzzy fibers. Fuzzy fibers can be produced by using
mechanical roller-based tows of carbon fiber and immers-
ing them into the liquid suspension containing dispersed
CNTs85 (Figure 1). The sizing process is simple and does
not require higher temperatures or heavy equipment.86

Deposited CNTs have been found to have a length of 0.2–
2 μm and a diameter of 20–40 nm.87 Functionalization of
CNT is important for the sizing process as it enhances
the binding between the carbon fiber and CNT.87,88 The
process is susceptible to varying deposition with change
in environmental parameters. Also, the bonding between
CNT and carbon fiber might not be as strong as that
achieved using CVD or other methods.

2.6 | Simple dipping

The simple dipping or dip coating process uses a coupling
agent to bridge the bond between CNTs and carbon fiber
or any other material to be coated. Alcohol suspension of
CNTs which has been ultrasonicated to achieve good
CNT dispersion, is then used as the dipping medium onto
which carbon fibers are immersed89 (Figure 1). Dip coat-
ing techniques have also been used to deposit CNT onto
glass fiber90 and carbon fabric for wearable applica-
tions.91 This is the simplest process for creating fuzzy
fibers making it cost effective and a relatively faster
method. However, there are problems with uniform
deposition and proper attachment of CNT to the fiber
surface.

2.7 | Chemical grafting

Chemical grafting uses chemical methods such as radical
polymerization or condensation reactions to modify the
surface by functional groups or polymers onto a substrate
surface, chemically bonded to the surface through cova-
lent bonds. It is used to improve the surface properties of
materials, such as adhesion, wettability, biocompatibility,
and chemical reactivity. It is evident that with this
method, functionalized CNTs are grafted onto the carbon
fiber surface,92 with functional groups such as carboxylic
acid93 and polymeric groups.65 The usual procedure
involves desizing carbon fibers and then dipping them in
a polymer functional group solution. Further, functiona-
lized CNTs are introduced in a modified carbon fiber
solution to complete the grafting process.94 Usually,
MWCNTs are grafted using this method, and the specifi-
cations of CNTs are 30–100 nm in diameter and length

around 0.5–20 μm.94,95 The use of coupling agents to
obtain high-density grafting of CNTs is also seen.96

Chemical grafting provides stronger interactions than
physical bonds formed in sizing or other processes and
allows precise controllability. However, it can be cost
extensive, and only a limited thickness of grafted layers
can be achieved, with incomplete homogenous coverage
in some cases.97 Also, the CNT-grafted is not pure and is
functionalized.

3 | EXPERIMENTAL TECHNIQUES

This section discusses the various experiments performed
on fuzzy fibers and FFRCs to study their behavior when
subjected to different external stimuli. The section is subdi-
vided into three parts: mechanical, thermal, and electrical,
to showcase effectively the broad range of functionality
exhibited by fuzzy fibers.

3.1 | Mechanical properties

Zhi-hui et al.64 used a modified CVD technique for syn-
thesizing CNT growth on carbon fiber to reduce interdif-
fusion between the carbon fiber and transition metal
catalyst, thereby increasing the catalyst's lifetime. It was
also found to give a better mechanical characterization of
grafted carbon fibers than normal thermal CVD. The
fracture load was reduced by 35% compared to raw fibers
for the modified thermal CVD grafted carbon fibers. This
reduction was 79% for the case of carbon fibers grafted
using a normal thermal CVD process. Peng et al.65 used a
newer way of grafting CNTs onto carbon fiber surface
wherein a chemical bond was created between the two
materials as opposed to vdW bonding obtained with
CVD. Firstly, the carbon surface was coated with Poly
(amido amine) (PAMAM) dendrimer, and CNT was fur-
ther deposited. The FFRCs produced this way had a 111%
increase in the interfacial shear strength (IFSS) compared
to acid-treated carbon fiber composites.

Zhao et al.98 compared the mechanical behavior of
two kinds of CNT reinforced nanocomposites: composite
with randomly dispersed CNT and FFRCs. The fuzzy
fiber was developed using EPD, whereas the dispersion of
CNT in the matrix was carried out using the ultrasonic
dispersion technique. The advantage of using EPD was
that there was no significant reduction of the tensile
modulus of carbon fibers after grafting CNTs (as in
Figure 2). It was also found that compared to carbon fiber
composite, the FFRC showed an increase of 24.42% in
tensile strength, whereas, for CNT dispersed composite,
this increase was only 10.41% (Figure 2). Similarly, the
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flexural strength was improved by 18.43% for the FFRC,
and 10.22% for CNT dispersed composite. The ILSS was
also the highest (80 MPa) for the FFRC. Zhang et al.99

grafted CNTs onto carbon fiber surface to improve
strength, toughness, and the interfacial interaction in the
CFRP. CNTs acted as a transition layer to moderate
the large difference between the elastic modulus. It was
shown that the composites containing these modified car-
bon fibers showed an increase of 66.3% in the Young's
modulus from the normal CFRP. Also, tensile strength
and elongation at break improved by 40.5% and 41.9%
respectively. Qian et al.100 used the CVD method to gen-
erate CNT-grafted carbon fiber. The importance of wet-
ting the fibers with polymer matrix and the effect of CNT
in the wetting behavior were considered. Grafting with
CNT increased Brunauer–Emmett–Teller (BET) surface
area (which is used to characterize the porosity of mate-
rial/ physical adsorption capability) by three times, but
there was a reduction in tensile strength of carbon fibers
by 15%. In the presence of CNT, the wettability of carbon
fiber was moderately improved, indicating better adhe-
sion and bonding with the matrix. A single fiber fragmen-
tation test was performed to determine the IFSS, and it

was found that CNT-grafted carbon fiber has higher IFSS
by about 1.264 times the as-received carbon fibers
(Figure 2.) Also, there are changes in the tensile modulus
of the carbon fiber after undergoing desizing, oxidation
treatment and grafting of CNTs. The tensile modulus of
CNT-grafted carbon fibers is found to be slightly reduced
compared to commercial carbon fibers as used in Refer-
ence [98] (T700S carbon fiber) and Reference [100] (IM7
carbon fiber). The chemical procedure used to create
fuzzy fibers was EPD in Reference [98] and CVD in Ref-
erence [100] showing that there is higher reduction in
tensile modulus for CVD process. Figure 3. shows the
fracture surface for the case of normal carbon fiber com-
posite and CNT-grafted carbon fiber composite.

Bedi et al.101 examined the fiber wettability for CNT-
grafted and unsized carbon fibers. They used experimen-
tal characterization for contact angle measurement and
for single fiber pull out tests. The significant contribution
for their work was emphasizing the impact of choice of
polymer matrix in improving the IFSS, wettability, and
mechanical properties of the carbon fiber/polymer com-
posites. It was found that the improvement in composite's
properties was significant with the use of epoxy matrix

FIGURE 2 Mechanical properties of different composites using normal and carbon nanotube (CNT)-grafted carbon fiber (CF stands for

carbon fiber).

6 SAHU ET AL.
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but not for the case of polyester matrix. Zhang et al.102

found that for CNT-grafted carbon fiber composite with
Polyphthalazinone ether ketone (PEEK), the IFSS
improved by 55.52%. Li et al.103 generated CNT-reinforced
FFRCs and using the polymeric functional coating,
poly(styrene-alt-dipotassium maleate) (K-PSMA) could
retain the tensile properties of the carbon fibers. This coat-
ing adsorbs on the surface of carbon fiber and helps in the
ion exchange process with the iron catalyst used in fabri-
cation. This is possible because of potassium ions on the
surface of carbon fiber. Hence, the fiber was not desized,
and the interfacial fiber matrix properties remained intact
even after grafting with CNT. CVD was used for CNT
grafting, and vacuum-assisted resin transfer molding
(VARTM) was the fabrication method for FFRC genera-
tion. It was found that the IFSS of FFRC was in the range
of the IFSS of normal carbon fiber composite. Aziz
et al.104 used floating CVD method for growing CNTs onto
carbon fiber and studied the characterizing factors such as
growth temperature time and growth conditions in CVD
chamber for their effect on the surface morphology of the
modified carbon fiber. It was found that for a reaction
temperature of 700�C and reaction time of 30 min, the
resulting growth of CNT coating showed 45% increase in
IFSS over the untreated carbon fiber.

Liu et al.105 used the sizing method to grow MWCNTs
onto the surface of carbon fibers, for which the CNTs
were hybridized using an amine monomer. A uniform
CNT distribution and a 69.6% increase in the IFSS for
FFRC were achieved. Similarly, Laachachi et al.97 used
oxidation treatment to grow CNTs onto carbon fiber
using the chemical processing method. Both CNTs and
carbon fibers were functionalized separately to grow car-
boxylic acid groups and amine functions onto them.
These functional groups then interact among themselves
to form anchoring bonds which lead to the adhesion of
CNTs onto the carbon fiber surface. Moise et al.73 used
PLD for grafting SWCNT grown on the carbon fiber sur-
face. PLD technique was unique in that it helps prevent
the mechanical characteristics of the carbon fiber by
allowing the use of lower temperatures for CNT growth.
The effect of temperature on the SWCNT growth was
prominent, where lower temperatures showed fine and
even deposition of SWCNT with smaller lengths
and higher temperatures led to deposition of longer CNTs
and formation of nodules and clusters. Micro-droplet
pull-out test was used to evaluate the effect of SWCNTs
on interfacial properties of carbon-epoxy composite. Also,
IFSS improvement by 20% was registered when CNTs
were deposited at a temperature of 290�C.

FIGURE 3 Fracture surface images of carbon fiber/Epoxy composite (top two images) and carbon fiber grafted with carbon nanotube

(CNT) (bottom two images).100
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Zhang et al.106 utilized thermal CVD to grow high-
density MWCNTs directly on two different polyacryloni-
trile (PAN)-based carbon fibers (T650 and IM-7). The
influence of different atmospheric conditions under the
CVD growth process on the tensile properties of single
fiber was studied. They registered that under high tem-
perature and vacuum conditions, the tensile property of
fuzzy fiber degraded significantly. This reduction was less
when the CVD process occurred in the presence of argon.
Also, with an increase in temperature, the growth density
of CNTs was increased. Further increasing feed rate and
temperature (from 750 to 800�C), the uniform and
aligned deposition changed to non-uniform and random.
Li et al.107 used a simple electrospray technique to
deposit short MWCNTs onto the carbon fiber surface. No
degradation in carbon fiber tensile properties and
improvement in fiber-matrix wettability and BET surface
area was found. A significant increase in surface rough-
ness, which leads to better fiber matrix bonding, and
increased friction, was also registered. Fractographic
analysis showed that adding CNT led to a decrease in
crack size and fiber pull-out length. Thus, concluding
that CNT grafting gave better interfacial properties to the
carbon fiber-polymer matrix composite. Shan et al.108

used a modified spraying technique assisted with spray-
ing E20 epoxy resin in surface of carbon fiber to graft
MWCNTS onto the carbon fiber. It was found that depos-
iting CNTs with E20 increases the mode I fracture tough-
ness by 24% in the average propagation and mode II
fracture toughness by 11% in the propagation and ILSS
by 12%, while it preserves the in-plane mechanical prop-
erties. It can be emphasized that spraying E20 is effective
for fixing the CNTs on the carbon fiber surface under
resin flushing, and has no negative effect on the proces-
sing quality of laminates, including thickness and
defects.

Using thermal CVD with catalytic decomposition of
acetylene, Sharma et al.109 showed that CNT-grafted car-
bon fiber composite had 69% higher tensile strength than
composites made of normal carbon fiber. Two mecha-
nisms to explain the effect on tensile strength of carbon
fiber by CNT were suggested. One was that CNTs
improved the bonding at the interfacial level. The other
was that aligning CNT along fiber axis direction contrib-
uted to surface roughness, thereby increasing it, and
resulting in mechanical anchoring of CNTs with the poly-
mer matrix. Kamae et al.110 used a novel method of pro-
ducing fuzzy fibers where CNTs are treated with cationic
polymers and are then coated onto carbon fibers by
immersion into a CNT/water suspension. Good disper-
sion is achieved by repulsive force between positively
charged CNTs, and uniform coating of the CNTs is
achieved by attractive forces between positively charged

CNTs and negatively charged carbon fibers. CNT used in
this study were MWCNTs with a purity of 90%, and an
average diameter of 10 nm. Significant improvement in
the IFSS was found. For unsized fiber, IFSS increased
from 30 to 35 MPa for MWNT-coated carbon fiber,
whereas for sized fiber, IFSS increased from 78 to 81 MPa.

Zhang et al.111 summarized various methods for
growing CNTs onto carbon fiber surfaces and highlighted
effect of CNT type, distribution and growing technique
on the failure and delamination behavior of the compos-
ite laminates. It was found that CNTs deposited using the
CVD method, surface assembly and interlayer insertion
techniques led to enhancement of the Mode I fracture
toughness of the laminates. CNTs incorporated with pre-
preg modification and resin mixing improved Mode II
fracture toughness. Also, the vertically oriented CNT
along the thickness direction was suggested to be the best
among all different orientations to cause a significant
improvement in composite mechanical properties. Feng
et al.112 used injection CVD (ICVD) for CNT grafting as it
is known to cause less damage to carbon fiber surface
and suggested that it can be used for large-scale produc-
tion of CNT-grafted carbon fibers. The microstructure of
the pyrocarbon (PyC) matrix and compression and shear-
ing tests on the laminate composite were studied. It was
found that the presence of CNTs led to an increase in the
in-plane and out-of-plane compressive strength by 115%
and 32%, respectively. Similarly, the in-plane and
out-of-plane compressive modulus was increased by 46%
and 11%, respectively and ILSS was enhanced by 108%.
CNTs could also change the damage initiation and propa-
gation behavior pertaining to reducing the stress concen-
tration at the fiber/matrix interface.113 Fiber/matrix
debonding was avoided using CNT, but IFSS was also
reduced in the presence of CNT. The reduction of 35.7%
in IFSS was attributed to the stress concentration at the
CNT/matrix interface, poor wettability of grafted fibers
and degradation of carbon fiber in the process of CNT
grafting. This showed that fracture phenomena and redis-
tribution of stresses need to be analyzed at a microscopic
level to understand the CNT/fiber/matrix bonding phe-
nomena fully. A way to determine and develop the opti-
mum CNT distribution and grafting is needed to develop
high-performing fuzzy fibers. Figure 4. shows the detailed
fracture surface and failure mechanism for CNT-grafted
carbon fiber composite.

Yao et al.114 used the CVD grafting technique and ana-
lyzed the out-of-plane and dielectric properties of the
FFRC. An increase of 30.73% in the IFSS and 32.29% in
the ILSS of the fuzzy fiber compared to the desized carbon
fiber composite was found. The dielectric permittivity was
improved upon grafting CNT as they help create nanoca-
pacitor structures, improving electrical conductivity by

8 SAHU ET AL.
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reducing the mutual contact between different carbon
fibers. The out-of-plane conductivity was found to increase
significantly.

Wang et al.115 studied the grafting force between CNT
and carbon fiber and investigated the effect of wettability
on the IFSS using the microdroplet and contact angle
tests. Pull-out tests were carried out for various fuzzy
fiber samples revealing two main modes of failure: either
detaching of CNT from the fiber surface or fracture of
CNT. A strong grafting force of 5 N was found, and the
IFSS was improved by 30%. Jin et al.116 coated SWCNT
onto a carbon fiber surface using a simple surface coating
technique and generated their composite. Two carbon
fiber types were used; high modulus and low modulus.
The study suggested an increase of 70.66% in the IFSS for
composites having high modulus carbon fiber. Using
Raman spectroscopy, the IFSS for low modulus carbon
fiber composite was determined for the first time and was
found to be 51.1 MPa in the presence of SWCNTs. Qian
et al.,117 using the CVD method of CNT grafting, found
that the IFSS increased by 60% during the fiber pull-out
test. The dependence of IFSS on the CNT embedded
length was also studied, showing that IFSS remains prac-
tically unchanged with length indicating ductile type fail-
ure. Push-out tests were also performed, but there was no
significant improvement in the IFSS for the fiber push-
out test. Qin et al.118 developed a scalable process to grow

CNTs in situ on the surface of continuous carbon fibers
and achieve their uniform distribution. Open CVD appa-
ratus with pre-treatment devices were used to achieve
continuous growth of CNT. For the catalyst precursor
concentration of 0.05 mol/L, CNTs/carbon fiber rein-
forcements with the best growth state and the highest
tensile strength were obtained. An improvement of
95.43% more than the original carbon fibers was obtained
for the IFSS of the composite. Li et al.119 registered an
increase of 29.7% for the IFSS of CNT-grafted epoxy com-
posite and suggested use of chemical treatment for better
adhesion of CNT to carbon fiber. They also studied the
torsional strength and torsional modulus of normal car-
bon fiber and CNT-grafted carbon fibers with various sur-
face treatments. Figure 5. shows the range of IFSS values
obtained in literature for various composites of CNT-
grafted carbon fibers.

Khan et al.120 grew CNT onto a carbon fiber fabric
surface using CVD. Two different growth types were
used; in Type 1, the CNTs were grown only on the top
surface of the lamina, whereas in Type 2, both the
top and bottom surface of the lamina were covered with
CNTs. Results from the short beam shear test, mode II
fracture test, three-point bend test and flexural test to
characterize the composites manufactured using grafted
CNT and ungrafted carbon fiber fabric indicated that
ILSS increased by 32% for Type 1 composite lamina and
102% for Type 2. The mode II fracture toughness was
enhanced by 53% with the use of CNTs. Wu et al.121 used
polydopamine (PDA)-based carbon coating to achieve a
uniform distribution and growth of CNT onto the carbon
fiber surface. PDA coating was found to help keep the
fiber surface damage free. The failure mechanism of
the composite, ILSS and flexural strength was deter-
mined. It was found that for CNT-grafted fiber without
PDA, crack propagation occurs along with the CNT/resin
interface and the interface between carbon fiber and
resin due to the uneven distribution of CNT. However,
using PDA leads to CNT's stronger and uniform attach-
ment to carbon fiber, and hence crack propagation occurs
only at CNT/resin interface.

Boroujeni et al.122 investigated the impact of using
MWCNTs on the interlaminar fracture toughness of
hybrid carbon fiber reinforced composites. For this, gra-
phitic structure by design (GSD), which is a low tempera-
ture synthesis technique was adopted and MWCNTs, in
two different morphologies-uniform and patterned, were
grown on carbon fabrics. It was found that composites
interlaminar fracture toughness was enhanced by 22%
and 32% for uniform and patterned growth morphologies,
respectively. Fractography analysis revealed that the
MWCNTs played a role in interlaminar crack stoppage
and deflection, leading to improved interlaminar fracture

FIGURE 4 Fracture surface for different composites. (A,B)

Fiber-matrix debonding in normal carbon fiber epoxy matrix

composite, (C–F) Surface image of carbon nanotube (CNT)-grafted

carbon fiber epoxy matrix composite showing the different failure

phenomena of crack bridging, micro cracks and CNT pull-out.113
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toughness. Impact testing was done on carbon fiber com-
posites developed using six different types of carbon fiber
surface treatment.123 Uniformly and patterned grafted
CNTs were grown on the carbon fiber surface with pat-
terned grafted fibers showing greater improvement on
the in-plane performance and impact energy dissipation,
with minimal delamination area. Nasirmanesh et al.124

used CNT interleave sheets in between CFRP plies and
found that for low velocity impact tests, the planar dam-
age area was higher for laminates with CNT sheet
whereas the external dent area and depth were higher for
normal laminates without CNT sheet. Bedi et al.125 exam-
ined the tailoring of CFRP composite by grafting CNT
onto carbon fibers. They observed that microstructure of
the interface plays an important role and effect the IFSS
and fracture toughness. Moreover, the IFSS and fracture
toughness were also shown to have power-law type rate
dependence on the applied loading and are not constants.
Table 1. gives a highlight of various property enhance-
ment recorded in literature particularly in the elastic
properties of fuzzy fibers and FFRCs. Further, the non-
linear mechanical behavior of fracture, failure and
delamination is summarized in Table 2. The arrows in
the tables indicate the overall increase/decrease in the

fuzzy fiber/FFRC properties when compared to carbon
fiber and CFRP respectively.

3.2 | Thermal properties

Gong et al.126 used chemical vapor infiltration to produce
aligned CNT-grafted CFRP laminates and investigated
the thermal properties. The thermal diffusivity improves
by 3–5 times with the use of aligned CNTs, and even for
a lower density growth of CNTs, the thermal conductivity
of the composite was 72.24 W/m K, which is around
12.31% higher than that for normal carbon fiber compos-
ites. Jie et al.127 deposited CNTs onto pyrolytic carbon,
developed on carbon fiber's surface after heat treatment
using the CVD process. Analyzing the composites of
these fuzzy fibers, the transverse thermal conductivity
was five times higher than for conventional composites.
This improvement was only 2.5 times the original com-
posite for the axial direction. Naito et al.128 grafted CNTs
onto PAN and pitch-based fibers and studied their respec-
tive thermal behavior. The grating was carried out using
the CVD process, and improvement was observed for
both fiber types. For PAN-based carbon fiber (T1000GB),
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the increase was from 12.6 to 18.6 W/mK and for pitch-
based fibers (K13D), it was from 745.5 to 956.6 W/mK.
Hu et al.129 developed CNT growth on the carbon fiber/
silicon carbide matrix composite using pyrolysis and
polymer impregnation. The CNT growth was developed
in the inner part of the carbon preform, and space
between carbon fiber bundles of 1–2 μm was filled with
CNT. Analyzing the thermal properties of the composite,
an increment of 24% for parallel thermal conductivity
and 52% for perpendicular thermal conductivity was
found for a 4% CNT volume fraction.

Zakaria et al.84 employed the EPD method for woven
carbon fiber composites. MWCNTs of length 10–30 μm
and diameter of 5–30 nm were deposited on the woven
carbon fiber and later treated with epoxy using the
VARTM process. Different electro spraying modes such
as micro dripping, cone jet, multi-jet and rim jet were
studied for different voltages ranging from 2 to 20 kV.
The optimal CNT deposition voltage was found to be
15 kV. The thermal conductivity of the resulting compos-
ite was 1 W/mK demonstrating a 35% increase compared
to normal composite. Also, the ILSS was improved by
25% and tensile modulus by 37%. Li et al.130 could

achieve a coefficient of thermal expansion (CTE) of in
range 3.2 � 10�6 to 4.2 � 10�6 K�1 upon reinforcing the
carbon fiber felt with CNT using EPD process. Apart
from this, PyC was also infiltrated into the composite.
The different microstructure of these materials, helped
reduce the CTE from that of normal composite and
enhanced the compressive strength and modulus by 37%
and 19% respectively. Shin et al.131 deposited different
CNT types: CNT mat, CNT buckypaper and direct CNT
growth. For each of these reinforcement types, the out-
of-plane thermal and electrical conductivity of carbon
fiber composites was found out. CNT weight fractions in
range 1–3.7 wt% were used. The out-of-plane thermal
conductivity for the composite increased from 0.5131 to
0.6293 W/mK, whereas for the case of CNT deposition on
fabric, this increase was more going from 0.5034 to
1.3864 W/mK. Vertically aligned CNTs were used
to improve the thermal conductivity in the through thick-
ness direction of carbon fiber/SiC composites.132 CNTs of
length 13–60 μm and high density were perfectly bonded
in presence of SiO2 coating. Hence a thermal conductivity
increases from 7.94 to 16.8 W/mK was seen for the com-
posite with improved heat transfer in through thickness

TABLE 1 Elastic properties of fuzzy fiber and fuzzy fiber reinforced composites (FFRCs) from experimental studies.

Ref. CNT Production Properties (Fuzzy Fiber) Properties (FFRC)

[98] MW EPD Tensile Modulus: 262.6 GPa " Tensile strength: 1200 MPa "
Flexural strength: 1078.84 MPa "
Flexural modulus: 57.47 GPa "

[100] – CVD Tensile strength: 1450–1840 MPa # –

Tensile modulus: 240–246 GPa

[103] – CVD Tensile modulus: 200–203 GPa Tensile modulus: 128–130 GPa

[106] MW CVD Tensile strength: 1000–3500 MPa # –

Tensile modulus: 150–220 GPa

[107] MW Electrospray Tensile strength: 4–4.3 GPa –

Fiber Wettability

[109] MW CVD – Tensile strength: 280–580 MPa "
[110] MW Dipping – Shear modulus "
[112] – CVD – In-plane compressive modulus: 6.92–9.22 GPa "

In-plane compressive strength: 110–122 MPa "
Out-of-plane compressive modulus: 3.37–3.67 GPa "
Out-of-plane compressive strength: 200–210 MPa "

[114] – CVD Tensile strength: 3.7–4.1 GPa

[118] – CVD – Tensile strength: 3.8–4.1 GPa

[121] – CVD – Tensile strength: 3.1–3.4 GPa

[68] – CVD – Tensile strength: 4000–4100 MPa

[141] MW CVD – Flexural strength: 360–520 MPa "
Flexural modulus: 210–590 MPa "

SAHU ET AL. 11
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direction. Similar trends in increase of composite thermal
conductivity in the range of 12%–21% was observed133,134

upon grafting with CNTs. Figure 6. shows the thermal
conductivity of various CNT-grafted carbon fiber compos-
ites along with the normal carbon fiber composites. The
percentage increment has also been plotted.

3.3 | Electrical properties

Yao et al.135 investigated the effect of orientation and dis-
tribution patterns onto the electrical properties of the

CNT reinforced composite laminates. Using CVD synthe-
sized vertically aligned CNT forest, which was grown
onto iron substrate, the web of horizontally oriented
CNTs was generated and was then embedded between
two layers of glass fiber prepregs (serving as insulators)
and their electrical characteristics were studied. The
results demonstrate that the conductivity of the speci-
mens was influenced by their aspect ratio, with the varia-
tion in web orientation. This relationship was bounded
by two theoretical curves, representing aspect ratios
approaching zero and infinity. Yang et al.136 developed
fibers based of the renewable biodegradable polylactide

TABLE 2 Fracture, damage, and failure properties of fuzzy fiber and fuzzy fiber reinforced composites (FFRCs) from experimental

studies.

Ref. CNT Production Properties (fuzzy fiber) Properties (FFRC)

[64] – CVD Fracture Load: 32–156 N # –

[65] – Grafting – IFSS: 90 MPa "
[73] SW PLD IFSS: 14.6–49.3 MPa " –

[98] MW EPD – ILSS: 80 MPa "
[100] – CVD – IFSS: 110–120 MPa "
[103] – CVD Interfacial Strength: 33–41 MPa Interfacial strength: 25–70 MPa

[105] MW Sizing – IFSS: 50–80 MPa "
[107] MW Electrospray – IFSS: 40–60 MPa "

Fracture/crack size #
[109] MW CVD – Debonding

[110] MW Dipping – IFSS: 31–78 MPa "
[111] – CVD – ILSS: 22–80 MPa

Fracture toughness: 0.5–2.4 kJ/m2 "
[112] – CVD – ILSS: 17.8–21.4 MPa "
[113] – CVD – IFSS: 50 MPa "

Damage

[114] – CVD – IFSS: 55–68 MPa "
ILSS: 70–82 MPa "

[115] – CVD Breakage Strength: 46–76 GPa IFSS: 55 MPa "
Fracture Fracture

[116] SW Coating – IFSS: 38.3–58.3 MPa "
[118] – CVD – IFSS: 90 MPa "
[120] – CVD – Fracture toughness: 2200 J/m2 "

ILSS: 14 MPa "
[121] – CVD – IFSS: 48–78 MPa "

ILSS: 80–90 MPa "
Failure

[125] CVD IFSS IFSS

Fracture toughness

[68] – CVD ILSS: 50 MPa IFSS: 55–67 MPa "
ILSS: 51–54 MPa
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and further reinforced CNTs using electrospun technique
and identified the electrical conductivity behavior based
on the variation in loading of the CNT. It was found that
at high loading levels CNTs are distributed along the
fiber axis in huge bundles, thereby giving a nine-fold
increase in conductivity from 0 to 1 wt%.

Pozegic et al.137 developed fuzzy fiber networks that
enhanced the electrical conductivity of the composite
overall. They used a low-temperature growth technique
for grafting CNT, the photo thermal chemical vapor
deposition (PTCVD), which uses optical radiation for
heating and includes a water-cooled substrate. Further,
VARTM was used to manufacture the FFRC with better
wettability than conventionally sized carbon fiber com-
posites. A reduction of only 9.7% in the tensile properties
was registered. Moreover, the electrical conductivity of
the FFRC was enhanced by 330% in the in-plane direc-
tion and 510% in the out-of-plane direction, indicating
the multifunctionality of FFRCs.

Lee et al.68 grafted two different length types of
CNT- short & thin and long & thick to determine the
effect on the FFRC's mechanical, thermal, and electrical

properties. Unidirectional and woven composites were
considered. A difference in tensile strength of short CNT-
grafted composite, and long CNT-grafted composite was
observed for both unidirectional and woven composites.
The long CNT composite exhibited higher tensile strength,
which was 15.38% higher than the shorter CNT composite
for the unidirectional case and 18.11% for the woven case.
It was also found that the long CNTs suppressed the split-
ting crack initiation. The electrical and thermal conductiv-
ities were also improved in the presence of long CNT. Yue
et al.58 grafted continuously grown CNT onto carbon fiber
using CVD, the composite of which can be used for elec-
tromagnetic wave absorption. Not much difference in the
tensile strength of the desized, electrolyzed, and fuzzy car-
bon fiber was seen. Reflection loss for different thickness
values of CNT-grafted carbon fiber was calculated using the
transmission line theory. The CNT-grafted carbon fiber
composite was found to have outstanding electromagnetic
wave absorption capabilities, particularly in the Ku band.
Such behavior in Ku band frequency range has also been
demonstrated for CNT-based vinyl ester composites.138 The
3-D structure developed in the presence of CNT on carbon
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fiber surface leads to creating an electrically conductive net-
work with strong attenuation capability. This work supports
the argument of replacing currently used polymeric sizing
with CNTs to get electrically advanced, multifunctionally
applicable composite structures. Figure 7. shows a represen-
tation of mechanism of electromagnetic wave interaction
with CNTs.

Duongthipthewa et al.139 investigated the electrical
conductivity of CNT-grafted carbon fiber composites.
They used the floating catalyst CVD method on carbon
fiber coated with Nickel catalyst to develop fuzzy
carbon fiber. Further, FFRCs were manufactured using
the autoclave curing, wet lay-up technique. Also, gra-
phene nano-platelets (GNPs) were dispersed on the fuzzy
fiber surface to form synergistic physical interactions
between two different low-dimensional carbon-based
nanostructures. It was found that both mechanical prop-
erties and functional conductivity have a synergistic
enhancement. By including GNPs in the composite, the
electrical conductivity was increased by approximately
40%, 300%, and 190% along the fiber, surface and
through-thickness direction compared to the FFRCs.
Mechanical properties, including flexural strength, work
of fracture, impact, and ILSS were also enhanced. Patton
et al.140 investigated using FFRCs for sensor applications

by studying the FFRC's electromechanical response. Very
small localized compressive loads were applied, and resis-
tance displacement was applied. It was found that hyster-
esis in resistance was observed for CNT/SiO2/carbon
fiber. This hysteresis loss was attributed to the CNT
entanglement and vdW forces between CNTs, leading to
a reduction in conduction paths.

Gurkan et al.50 grafted CNT onto glass fibers using
the thermal CVD method. Further, the glass fuzzy fiber
composite was developed using a vacuum infusion pro-
cess. For these glass fuzzy fiber composites also, the
CNTs led to an enhancement in the fracture toughness
by about 119%. Performing electrical conductivity tests, it
was estimated that grafting of CNT led to an improve-
ment in electrical conductivity of the composite by 7–8
times. Samsur et al.141 studied woven composite made up
of CNT-grafted carbon fibers. They also investigated the
electrical and flexural mechanical properties of the com-
posite. The significant finding was the reduction of elec-
trical resistivity of composite from 25 to 0.2 Ω m when a
CNT weight fraction of 3.3% was used. An increase in
flexural strength by 34% for a CNT weight fraction of
1.65% and an increase in flexural modulus by 126% for
the same weight fraction were also found. Singh et al.142

studied composite materials' electromagnetic interference
shielding effectiveness upon grafting carbon fibers with
CNT. The multiscale composite prepared was found to be
effective for the absorption of microwaves in the X band.
They also studied the electrical conductivity of the
FFRCs. By increasing the MWCNT volume fraction from
0.5% to 3%, the electrical conductivity increased by about
46%. ILSS of the composite was also investigated, show-
ing an increase of 117%.

Pozegic et al.59 suggested CNT reinforced carbon
fiber as an alternative to polymer fiber sizings used in
the aerospace industry. They used high-quality CNTs
grown at a high density in the presence of an alumin-
ium interlayer, which reduces the diffusion of catalyst
and has previously been shown to minimize diffusion of
the catalyst in the carbon fiber substrate. The FFRC was
fabricated using VARTM. The mechanical properties of
the carbon fiber were found to remain intact irrespective
of CNT growth. Electrical conductivity tests were carried
out on FFRCs, and it was shown that a maximum
increase in electrical conductivity was registered along
the thickness direction, which was about 450%. There
was a 300% increase along the surface direction, and
along the volume direction, it was 230% (Figure 8).
Apart from this, the thermal conductivity was improved
by 107% along the thickness direction after fiber normal-
ization. Electrical property analysis of CFRP laminates
with aligned nanotubes grown directly at interfaces was
carried out by Russello et al.143 The direct synthesis of

FIGURE 7 Schematic representation of electromagnetic wave

absorption and reflection by carbon nanotube (CNT).58
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CNTs was done using CVD process, achieving a CNT
content in the range of 10–30 wt%. The transverse con-
ductance of the laminates was improved by about 2800%
depending upon the reaction time and type of CNT
growth. For inhomogeneous CNT deposition, the
increase was from 6 to 50 mS, whereas upon increasing
the reaction time, the conductance further improves to
110 mS (for 10 min) and 220 mS (for 12 min). The trans-
verse conductivity improvement is however not reflected

for longitudinal case thereby reducing the electrical
anisotropy of the material.

Gong et al.144 deposited CNTs onto carbon fiber
prepregs using by dry spray deposition and used these
composites for electromagnetic shielding. It was found
that electromagnetic interference shielding effectiveness
was dependent on CNT loading and varied linearly with
it. Moreover, the prime mode of shielding was adsorption
whereas reflection mode remained independent of CNT
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FIGURE 8 Electrical conductivity plot for various composites along with percentage increase for the case of carbon nanotube (CNT)-

grafted fiber composites.

TABLE 3 Experimental studies on

the electrical and thermal properties of

fuzzy fiber reinforced composites

(FFRCs).

Ref. CNT Production Properties (FFRC)

[114] – – Electrical conductivity "
Dielectric properties

[68] – – Electrical conductivity: 38–150 S/m "
Thermal conductivity: 0.945–2.78 W/m K "

[140] MW CVD Electrical resistance

[141] MW CVD Electrical resistivity: 0.2 Ω m

[59] MW CVD Thermal conductivity: 0.9–1.5 W/m K "
Electrical conductivity: 0.9–2500 S/m "

[143] – CVD Electrical Conductance: 50–220 mS "
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content. Table 3. summarizes the findings of experimental
studies on the thermal and electrical properties of FFRCs.

4 | MODELING METHODS

There have also been a lot of numerical studies focusing
on the modeling of fuzzy fiber and its composites. The
modeling methods face a major challenge in effectively
capturing the geometry of the fuzzy fiber. Many different
techniques such as FEM, MD, micromechanics, and
homogenization theories have been used to characterize
FFRCs.

4.1 | Mechanical properties

Romanov et al.145 performed a multiscale modeling anal-
ysis using a finite element approach to determine the
effect of CNTs grown on fiber surface on the interfacial
stress at the fiber/matrix interface. They generated a
square 3-D unit cell consisting of carbon fiber, and each
CNT was modeled individually as wavy objects. The wav-
iness of CNT was achieved by describing the centreline
using a four-point spline. Carbon fiber volume fraction
was taken as 60%, and CNT forests with 0.27% weight of
CNT compared to carbon fibers and 1.33% weight per
cent was grown. Subjecting the unit cell to transverse ten-
sile loading, the principal stress at the matrix fiber inter-
face was determined. It was found that the presence of
CNT growth on the carbon fiber surface reduced the
stress concentrations at the interface significantly. This is
shown in Figure 9.

Kundalwal et al.146 studied the effective elastic prop-
erties of FFRCs using analytical that is, mechanics of
materials (MOM) and Mori-Tanaka (MT) models. They
considered radially grown CNTs on the carbon fiber sur-
face and divided the model into two parts wherein the
CNT and polymer part of the FFRC were taken as

polymer nanocomposite (PMNC). The carbon fiber was
then taken to be reinforced in this PMNC to create the
FFRC. The transverse elastic properties were found to be
significantly improved in the presence of CNTs. In
another work, they used the finite element (FE) model
and Method of Cells (MOC) to determine the effective
elastic properties of the FFRCs.147 The comparisons of
both the work and all the methods used are as given in
Figure 10.

As evident from the above works, and the popularity
of the FEM method, use of representative volume ele-
ments (RVEs) seems to be an efficient method of model-
ing the FFRCs.148 The use of laminate theories and
natural element methods (NEM) have also been charac-
terized to help simulate the 3-D FFRCs.149 Rafiee et al.150

considered radially aligned CNT on carbon fiber surface
to develop fuzzy fiber. They developed an analytical
model for studying Young's modulus of the polymer
matrix reinforced with unidirectional fuzzy fiber, which
is the matrix impregnated CNT coated fiber. Further,
with the use of stochastic modeling, the effect of volume
fraction and curvature of CNT was considered. The over-
all modeling was done at four scales: nano, micro, meso
and macro. At nano and micro-scale, FEM was used to
characterize individual CNT and vdW interactions. Fur-
ther, micromechanical theories of MT and Halpin-Tsai
(HT) were used for mechanical characterization at meso
and macro scales. An improvement of 65.3% in transverse
modulus of the composite compared to normal carbon
fiber composite was found at a CNT volume fraction of
2% only.

Analyzing the importance of the off-axis angle of car-
bon fiber in FFRCs, simplified unit cell (SUC) micromecha-
nical model was used for mechanical characterization.151 It
was found that in the presence of CNT, the elastic proper-
ties decreased first for off-axis angle increase from 0� to 45�,
but on increasing from 45� to 90�, the elastic properties
increased, which is not the case for normal CFRC. There
the elastic properties decrease continuously. Also, the

FIGURE 9 Depiction of reduced stress concentration at carbon fiber/polymer matrix interface on using carbon nanotubes (CNTs).145
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transversely elastic properties of the FFRC were found to
be in excellent agreement with the experimental results.
The effect of the CNT volume fraction on the off-axis elastic
modulus was positive, showing an increase in modulus
when the CNT volume fraction is increased. Also, the Pois-
son's ratio was increased with increasing CNT volume
fraction.

Subramanian et al.152 used MD simulations to investi-
gate the mechanical properties of the interface of FFRCs.
They modeled the surface of carbon fiber as stacks of gra-
phene layers that had voids. Atomic modeling of PSMA
(polymeric coating) was introduced for the first time and
was carried out in PACKMOL software using Merck
Molecular Force Field. Subjecting the FFRC unit cell to
virtual deformation along the x, y and z directions, the
tensile and transverse stress–strain deformation curves
were obtained. They found out that the longitudinal mod-
ulus of the fuzzy fiber/matrix interface was 17.32 GPa,
whereas the out-of-plane modulus was 10.4 GPa.

Almousa et al.153 used MD simulations to develop the
microstructure of carbon fiber, polypropylene matrix and
SWCNTs. They also used the PACKMOL software pack-
age to construct the fuzzy fiber nanoengineered polymer
composite. A uniaxial tensile test was applied to get the

stress–strain diagram and evaluate the mechanical prop-
erties of the composite. Also, the interface strength that
is, the strength to peel off the polypropylene from carbon
fiber, was calculated in the presence of CNT and without
CNT. The results indicated that peeling strength
increased to 7.59 MPa from 7.14 MPa in the presence of
1% CNTs, and for 3% CNTs, this value was 8.20 MPa.

Pawlik et al.154 used computational micromechanics
to study and predict the elastic properties of FFRCs. They
generated RVEs with radially grown CNTs on the surface
of the carbon fiber having hexagonal fiber arrays. The
interface between CNT and matrix was thus taken to be
transversely isotropic. The CNT modeled were considered
to be straight and defect-free. Taking perfect bonding
assumption, the element orientation command in ANSYS
was used for analysis. Results revealed that there was two
times increase in the transverse modulus for a carbon
fiber volume fraction of 25%. This increment is depen-
dent on the CNT volume fraction and the type of
manufacturing process used. Longitudinal modulus for
same carbon fiber volume fraction showed moderate dif-
ference with only a 5% increase. Thus, showing that CNT
has more effect on the transverse modulus than the longi-
tudinal modulus.
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FIGURE 10 Comparison of axial and transverse elastic modulus obtained from various computational models.
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Malekimoghdam et al.155 used the multiscale modeling
approach and studied the bending of sandwich and lami-
nated composite composed of CNT coated carbon fibers.
The effective properties of the fuzzy fiber and the subse-
quent interface scale containing CNT, coating and matrix
was obtained using Eshelby MT method and equivalent
continuum fiber theory. Both random and aligned orienta-
tions of CNT around the carbon fiber was considered here.
CCA was then used to get the equivalent elastic properties
of the composite. Further, refined zigzag theory was used
for stress analysis of simply supported composite lami-
nates. The results revealed significant reduction in maxi-
mum transverse displacements and the transverse shear
stresses in the core medium in the FFRC laminate beam
compared to normal CFRP beam. Rao et al.156 used the
bridging mechanics model by Huang to estimate the effec-
tive elastic properties of CNT-grafted carbon fiber compos-
ites. They carried out two-step homogenization where
micro scale involved modeling of CNT/polymer interface,
and mesoscale modeling was composed of three phases
that is, fiber, fuzzy interface, and matrix. Using a three-
phase bridging model, the effective properties were deter-
mined. The effect of change in CNT waviness, length, and

density on the composite's properties was studied. CNT's
waviness directly impacted the longitudinal modulus,
whereas increasing waviness decreased the transverse
modulus. Similarly, for a constant CNT volume fraction,
increasing CNT length causes an increase in shear and
transverse moduli but a decrease in longitudinal moduli.
Figure 11. highlights the elastic modulus obtained from
different computational methods. Also, a brief summary
of elastic properties of fuzzy fibers and FFRCs studied
using various computational methods as described above
can be found in Table 4.

4.2 | Thermal properties

Ray et al.157 developed a micromechanical model to ana-
lyze the thermomechanical shear lag behavior of FFRCS.
They considered wavy CNTs radially grafted along the
outer surface of carbon fiber and the temperature depen-
dence of the thermoelastic properties of the CNTs was
considered. The MT method was used to estimate the
effective thermoelastic properties. It was seen that
the load transfer characteristic for the FFRC containing
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wavy CNTs significantly improved for lower values of
temperature variation. Kundalwal et al.158 also analyzed
the effective thermoelastic properties of the FFRCs with
radially grown CNTs. The approach used here was the
generalized MOC and the MT method. They found that
the axial CTE of the FFRCs slightly increases for the
lower values of the carbon fiber volume fraction. In con-
trast, the transverse CTE of the FFRCs significantly
decreases over those of the composite without CNTs
(see Figure 12). In another approach by the same author,
the effective thermal conductivities of an FFRC have been
determined by using the effective medium approach (EMA)

along with the composite cylinder assemblage (CCA)
approach.159 They found out that for CNT volume fractions
6.88% and 4.27% in the FFRC, the transverse thermal con-
ductivities of the composite were improved by approxi-
mately 1040% and 400% respectively, compared to those of
the composite without CNTs. It was also found that effec-
tive thermal conductivities of the FFRC increase with
increase in carbon fiber volume fraction and the tempera-
ture. Moreover, the effective thermal conductivities of the
FFRC are unaffected by the CNT/polymer matrix interfa-
cial thermal resistance. In yet another work by Kundalwal
and Ray,160 the effect of CNT waviness on the thermal

TABLE 4 Mechanical properties of fuzzy fiber and fuzzy fiber reinforced composites (FFRCs) from computational studies.

Ref. CNT Method Properties (fuzzy fiber) Properties (FFRC)

[146] SW Micromechanics Elastic properties Elastic properties

C11: 30–220 GPa " C11: 9–12 GPa "
C22: 10–27.5 GPa " C22: 28–52 GPa "
C23: 6–14 GPa " C23: 14–22 GPa "

[147] SW FEA, MOC – Elastic properties

C11: 30–220 GPa "
C23: 6–14 GPa "
C55: 4–14 GPa "

[150] SW FEA, Stochastic multiscale modeling Tensile modulus: 649.37 GPa Transverse Modulus: 11.2 GPa "
Shear modulus: 5.13 GPa

Transverse modulus: 11.27 GPa "
[151] SW Micromechanics – Elastic modulus: 8–80 GPa "

Poisson's ratio: 0.01–0.75

[152] – MD – Longitudinal modulus

Transverse modulus "
[153] SW MD Elastic moduli: 129.6–277 GPa Interfacial energy: 2.5–23 eV "

Tensile strength: 9.9–26.7 GPa

[154] – FEA, micromechanics – Longitudinal modulus: 10–65 GPa

Transverse modulus: 1.2–3.5 GPa "
Shear modulus (out-of-plane): 3–11 GPa "
Shear Modulus (in-plane): 1.1–3.4 GPa "

[156] – Bridging model, multiscale modeling – Longitudinal modulus: 50–200 GPa

Transverse Modulus: 3–26 GPa

Shear Modulus: 2–15 GPa

[167] – FEA – Young's modulus: 3.3–47.25 GPa "
Poisson's ratio: 0.25–0.3

[169] – FEA, multiscale modeling – Longitudinal modulus: 6–18 GPa

In-plane bulk modulus: 3.220–3.238 GPa

In-plane shear modulus: 1.29–1.335 GPa

[175] MW FEA – Longitudinal modulus: 104–105.6 GPa

Transverse modulus: 7.4–8.4 GPa
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properties of FFRCs was studied. Using MOC, the CNT's
waviness was characterized using sinusoidal functions. A
unique feature adopted in this study was that they consid-
ered the sinusoidal CNT wave amplitude to be either paral-
lel or transverse to the carbon fiber axis. The main finding
was that having the amplitude of sinusoidal CNTs parallel
to the axis of carbon fiber increased the effective CTE in
both radial and axial directions (see Figure 12. for CTE
values for different waviness factor, w).

Tian et al.161 used a semi-analytical approach and
locally exact homogenization theory (LEHT) to predict
the thermal behavior of FFRCs. They studied two differ-
ent RVEs: square array and hexagonal array. Lower-level
unit cells were modeled, taking the unit cell depth to be
equal to CNT length. The CNTs grown on carbon fiber
that is embedded in the matrix were treated as an ortho-
tropic interlayer. The unit cell at the upper level consisted
of fiber, matrix and interlayer, the properties of which
were generated from the lower-level unit cells. Validation
of the model with FEA was done using DC2D4 elements.
Their work suggested significant findings that the trans-
verse thermal conductivity also increased on increasing

the length of CNT. Moreover, there is little effect on axial
thermal conductivity with the addition of CNTs. It was
also found that fluctuation of heat flux between inter-
layer and fiber interface may lead to damage and micro-
scopic cracks along the transverse direction.

Using multiscale micromechanics, Hassanzadeh-
Aghdam et al.162 modeled polymer nanocomposites with
randomly grown CNT on carbon fiber for their thermal
properties. Using a modified semi-empirical HT model
and further coupled it with an analytical micromechanical
extended simplified unit cell (ESUC) model, the overall
thermal conductivity of CNT grown carbon fiber composite
was determined. The influences of random dispersion, wav-
iness, length, diameter, volume fraction of CNTs and the
CNT/polymer interfacial thermal resistance and the carbon
fiber cross-section shape parameters were also investigated.
It was found that CNT coating has no effect on the longitu-
dinal thermal conductivity of carbon fiber reinforced hybrid
nanocomposites but the transverse thermal conductivities
are significantly enhanced compared to the conventional
fibrous composites without the CNTs coating. An improve-
ment in the nanocomposite transverse thermal conducting
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behavior can be observed by (i) increasing the CNTs vol-
ume fraction and length, (ii) using straight CNTs and
(iii) forming a perfect bonding interface. Figure 13. high-
light the improvement in axial and transverse thermal
conductivities.

In another work by Kundalwal,163 micromechanics
theory was used for thermal analysis. They investigated
the effect of CNT waviness and the existence of interface
between polymer and CNT, and its effect on the compos-
ite's thermal behavior. The results reveal that (i) the
interface between a CNT and the surrounding polymer
matrix plays a crucial role in the modeling of the thermo-
elastic properties of the CNT-based composite, (ii) planar
orientation of CNT waviness has a significant influence
on the effective CTEs of the hybrid nano-tailored com-
posite, and (iii) for the particular planar orientation of
CNT waviness and the value of CNT wave frequency, the
effective CTEs of the hybrid nano-tailored composite
become zero, making the nanocomposite a “super-
insulator”.

Kundalwal et al.164 also did a case study on a heat
exchanger made up of fuzzy carbon fiber made by

grafting CNT. The model consisted of sinusoidal wavy
CNTs grown radially onto a hollow carbon fiber surface.
EMA and MOC approach were used for determining the
effective thermal conductivity of the fuzzy fiber heat
exchanger. It was found that the effective thermal con-
ductivity was unaffected by the interfacial thermal resis-
tance. Also, the transverse thermal conductivity
decreases with an increase in temperature, irrespective of
the CNT volume fraction and plane of waviness. For a
CNT volume fraction of 0.1 and fiber diameter 60 μm,
and temperature 300 K increment of 650% in transverse
thermal conductivity was found. At a temperature of
400 K, this increment was 300%. Table 5 summarizes the
thermal properties of FFRCs evaluated using different
modeling techniques.

4.3 | Electrical properties

Park et al.165 used EPD method to develop MWCNT-
grafted carbon fibers. These fuzzy fibers were then used
to develop FFRCs and micromechanical models were
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FIGURE 13 Axial and transverse thermal conductivity variation with carbon nanotube (CNT) volume fraction in fuzzy fiber reinforced

composites (FFRCs) estimated using different computational methods.
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used to estimate the effective electrical properties of the
FFRC. It was shown that the FFRC had 78% higher elec-
trical conductivity at 60% weight fraction of the MWCNT
than the normal composite without CNT-grafted fibers.
These micromechanical results were well validated with
the experimental observations. Sha et al.166 grafted verti-
cal graphene on carbon fibers and improvement in elec-
trical conductivity of such composites was seen. Apart
from graphene, silver nanowires were also reinforced in
the matrix. The through-thickness electrical conductivity
of the composite was increased by 38 times and the in-
plane conductivity was enhanced by 39%. FE models
showcasing the current flow in the modified carbon fiber
composite and normal composites was developed. Gar-
ouge et al.167 used the FE model and micromechanics
theories (MT, Self-Consistent theories) to determine and
validate the electrical, thermal, and mechanical behavior
of FFRC nanosensors. The behavior of composite mate-
rial was evaluated by three models: full model (FM), half-
model (DM) and quarter model (QM). They recorded a
significant increase in electrical conductivity and the
hardness of the composite with increasing CNT volume
fraction. Heat dissipation of composite was also increased

in the presence of CNTs. However, a decrease in thermal
conductivity was observed with a higher volume fraction,
which may be due to the agglomeration of CNTs. Thus,

TABLE 5 Thermal properties of fuzzy fiber reinforced composites (FFRCs) from computational studies.

Ref. CNT Modeling method Properties (FFRC) Range

[158] – MOC, MT CTE (Longitudinal) 0.02–1.1 � 10�5 K�1

CTE (Transverse) 0.1–7.1 � 10�5 K�1

[159] – CCA Effective thermal conductivity

Axial " 50–800 W/m K

Transverse " 0.2–4.2 W/m K

[160] – MOC CTE (Axial) " 1.2–5.8 � 10�6 K�1

CTE (Transverse) " 2–3.7 � 10�5 K�1

CNT waviness effect Negative values for coefficient of thermal
expansion for some waviness factor

[161] – LEHT, FEA, micromechanics Effective thermal conductivity

Axial " 0.5–4.1 W/m K

Transverse " 0.22–0.38 W/m K

[162] – Semi-empirical HT model Effective thermal conductivity

Axial 30–300 W/m K

Transverse " 0.5–2.2 W/m K

[163] – Micromechanics CTE (Axial) " 1.0–4.3 � 10�6 K�1

CTE (Transverse) " 0.1–1.2 � 10�6 K�1

[164] – MOC, EMA Thermal conductivity

Axial " 10–220 W/m K

Transverse " 100–1400 W/m K

[167] – FEA Thermal Conductivity " 5–37 mW/mm K

[168] MW FEA Thermal lightning protection –

FIGURE 14 Variation of equivalent circulating density (ECD)

with carbon nanotube (CNT) volume fraction of fuzzy fiber

reinforced composite (FFRC).167
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interface interaction and agglomeration must also be con-
sidered while modeling FFRCs. Figure 14. shows the
electrical parameter that is, equivalent circulating density
(ECD) variation with CNT volume fraction. The equiva-
lent circulating density gives the electric current per unit
area, leaving the considered surface. It is highlighted by
Figure 14. the improvement in the ECD with increasing
CNT volume fraction, indicating higher current in the
system.

Duongthipthewa et al.168 developed a system for pro-
tecting carbon fiber reinforced composites from lightning
strikes using FFRC as the outer ply. They developed a
numerical model and varied the composite parameters to
understand how various thermal and electrical properties
affect lightning damage. By integrating a highly conduc-
tive fuzzy fiber carbon-based protection layer into the
topmost composite layer, the depth and area of damage
caused by lightning can be limited by reducing thermal
damage penetration through the underlying composites
(Figure 15). This work opens the possibility of using a
lightweight and effective anti-lightning strike layer made
of fuzzy fibers to protect underlying composites. The use
of CNTs helps increase thermal conductivity along both
the in-plane and out-of-plane directions, which in turn
helps reduce the area of thermal damage and delamina-
tion damage in the thickness direction compared to com-
posites without a lightning protection system. This
approach has significant potential for future aerospace
applications.

Ren et al.169 characterized the piezoresistive
response of FFRC using the 3-D multiscale piezoresis-
tive model and was validated with the single tow piezo-
resistive fragmentation. For randomly oriented and
densely packed CNT, an approximately linear piezore-
sistive effect is observed within the fuzzy fiber tow
region, with gauge factors on an average of 0.14. It was
also shown that keeping the CNT volume fraction con-
stant and increasing the interface thickness reduced
the effective axial piezoresistivity of the composite. It
was also reported that only for CNT volume fraction of
90%, in the case of cylindrically orthotropic interface,

is a significant influence on overall piezoresistivity
with the addition of CNT seen.

Suresh Kumar et al.170 used an FFRC facing over a
doubly curved sandwich shell for vibration control of the
composite shell. The geometrically nonlinear vibration of
these sandwich shells was analyzed. The waviness plane
CNTs were taken to be coplanar with the carbon fiber
plane. The smart doubly curved sandwich shells model
was developed using 3-D FE with active constrained layer
damping (ACLD) patches. Material properties of the base
composite and CNT-reinforced fuzzy fiber composites
were determined for different CNT volume fractions indi-
cating improvement with CNTs. Wavy CNTs were found
to help more with piezoresistive performance than straight
CNTs. 45� alignment of piezoelectric fiber with ACLD
patches causes maximum performance of the patches.
Chaurasia et al.171 developed a multiscale computational
micromechanics-based approach to study the effect of
applied strains on the effective macroscale piezoresistivity
of CNT-polymer and fuzzy fiber-polymer nanocomposites.
They used FE modeling and electromechanical cohesive
zones to model the CNT-polymer interface. The electro-
mechanical cohesive zones allowed for the consideration
of interfacial damage in the application of strains.

4.4 | Failure

Gogoi et al.172 used MD to model the CNT-grafted carbon
fiber composite. Two types of CNT grafting were consid-
ered: pristine and amine functionalized CNT. Also, effect
of defect of CNT on the failure properties of the fiber
matrix interface was analyzed. Pull out simulations were
generated and it was shown that a 106%increase in IFSS
was observed for carbon fibers coated with defect induced
amine functionalized CNTs. Such studies involving func-
tionalization and defect in CNTs provide further insight
into the parameters of grafted CNT affecting the overall
composite behavior at macroscale. MD simulations were
also used to analyze the effect of pull-out speed for deter-
mining the dynamic fracture toughness of

FIGURE 15 Thermal damage depth due to lightning strike modeled in (A) CFRP and (B) fuzzy fiber reinforced composite ply.168
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nanocomposites.173 The pull-out speed was found to
inversely affect the maximum pull-out force. Xu et al.174

developed an analytical model to determine the different
modes of interlaminar failure of FFRCs. The CNTs were
modeled as unidirectional, straight and without defects.
The CNT pullout was modeled, and it was found that
debonding is initiated when the interfacial shear stress
exceeds the IFSS and interface failure occurs, causing

increasing displacement. Further, CNT gets completely
pulled out of the matrix, and debonding is completed. It
was found that the CNT pullout length was half the
length of the CNT at its debonding from the carbon fiber
surface.

Malekimoghadam et al.175 modeled a 3-D concurrent
multiscale FE model considering debonding damage in
FFRCs, covering from nano-to macro-scale. Using mixed-

FIGURE 16 FE model of carbon nanotube (CNT)-grafted carbon fiber with (A) axially aligned, (B) randomly oriented, and (C) radially

aligned CNTs.175
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mode traction-separation law, CZM was modeled to ana-
lyze the debonding damage between CNTs and the
surrounding matrix. MWCNTs were modeled as a trans-
versely isotropic shell structure. Three different
configurations of grown CNTs on the fiber surface,
encompassing radially, axially, and randomly oriented
CNTs, were considered (Figure 16). It was found that the
addition of even 2% of CNTs caused a reduction in radial
stress by 21.3% and interfacial shear stress by 19.2%. CZM
has also been utilized to study interactive properties
between CNT and polymer matrix, wherein the interface
is modeled using CZM and vdW interaction is modeled
using bilinear constitutive law.176 FE based multiscale
model has also been used to model fracture mechanical
properties of polymer in presence of CNT. The interface
region was simulated considering non bonded interac-
tions and importance on considering CNT lattice struc-
ture while modeling was highlighted.177 Significance of
interface modeling has been highlighted for fracture
behavior for various other cases as well and FEM has
been used to model the interface between matrix and
reinforcement.178,179 Impact behavior has also been
shown to be improved upon incorporating CNTs.180

Using FEM based multi-scale model, non-bonded inter-
actions at CNT matrix interface were captured and it was
found that due to presence of CNT the deflection post
impact was reduced by 2.5 times when compared to neat
resin.180

Zhou et al.181 used the FE model to simulate the
FFRC. Also, short beam shearing tests were carried out,
and SEM was used to observe the damage evolution. The
delamination cracks were propagated along the fiber axes

in the fiber interfaces for normal composites. Whereas
upon the addition of CNTs, the fiber/matrix interface
debonding is improved. The delamination was initiated
at the interface between matrix and fiber sizing. An
increase in fracture toughness of 36–53% was registered
with the use of CNTs in fiber sizing. Thus, showcasing
that not only the linear elastic properties are improved,
but nonlinear composite behavior such as fracture,
delamination and debonding are also significantly
affected with the addition of CNTs. Moreover, they pro-
vide the multifunctional advantage of improved electrical
and thermal properties. All these are summarized in
Table 6.

4.5 | Stochastic modeling

Stochastic modeling is an essential methodology used to esti-
mate the impact of random parameters associated with the
composite and its constituents through probabilistic analy-
sis. Numerous studies have delved into stochastic modeling
of CNT-based composites, wherein a multiscale model was
developed to consider various random parameters. These
parameters include the length of CNTs,182,183 random dis-
persion within the matrix, volume fraction,182–184 and even
factors such as CNT curvature,183,185 which accounts for the
waviness of CNTs and their effects on the properties of the
composite material. Rafiee et al.186 employed a full-range
multiscale stochastic modeling approach to graphene-
reinforced polymers accounting for all length scales from
nano to macro and incorporating randomness due to gra-
phene size, volume fraction, orientation, wrinkle, and

TABLE 6 Electrical and failure characterization of fuzzy fiber reinforced composites (FFRCs) from computational studies.

Ref. CNT Modeling Method Properties (FFRC)

[145] – FEA, multiscale modeling Interface stress: 15–20 MPa, % "
Stress concentration at fiber/matrix interface#

[167] – FEA ECD: 0.0085–85 S/mm

[169] – FEA, multiscale modeling Piezoresistivity "
[171] MW FEA, MD, CZM Piezoresistivity

Axial resistivity

[174] – Analytical modeling Interlaminar fracture

Toughness: 500–950 J/m2

[175] MW FEA IFSS: 53 MPa

Interfacial radial stress

Debonding

[181] MW FEA ILSS: 50–65 MPa

Fracture

Delamination
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formation of agglomerated particles, which are the process-
induced uncertainties. In another work, nanoclay polymer
composites were studied using stochastic modeling account-
ing for random parameters such as volume fraction of nano-
clay morphologies, number of clay platelets, size and
location of inclusions, spatial orientations of particles, and
non-uniform dispersion of nanoclay.187 Rafiee and Mah-
davi188 extended stochastic modeling to explore CNT-
polymer interactions, considering random parameters such
as the positions and covalent bonding between the polymer
and CNTs. Rafiee and Eskandariyun189 also introduced a
novel approach that combines concurrent and hierarchical
multiscale modeling, providing an alternative to computa-
tionally intensive stochastic modeling methods. Their
results exhibited higher accuracy compared to stochastic
approaches, suggesting the potential utility of this method
as an alternative. While a handful of research articles
include results from stochastic modeling of CNT-grafted car-
bon fibers, there remains a significant gap in this field, espe-
cially concerning fuzzy fibers and their composites. Rafiee
et al.190 claim their work is pioneering in addressing stochas-
tic modeling of fuzzy fibers where CNTs are randomly
grown on carbon fibers. They also predicted the mechanical
properties of isolated fuzzy fibers through a top-down scan-
ning approach, implementing a multiscale stochastic
approach that factors in the inhomogeneous dispersion and
non-straight shape of CNTs as random parameters.

Stein et al.40,41 underscored the significance of stochas-
tic modeling of aligned CNTs, incorporating CNT wavi-
ness as a random parameter. Meanwhile, Na et al.191

employed statistical methods to predict multiple fracture
number which represents the probability of fiber breakage
propagation due to stress concentrations in the presence
of broken neighboring fibers in a CNT-grafted carbon fiber
composite. Additionally, they estimated IFSS, tensile stres-
ses, and stress concentration factors. The IFSS in the
CNT-grafted composite exhibited a remarkable 36.2%
increase compared to conventional CFRP, leading to an
enhanced stress concentration factor due to improved load
transfer at the fiber-matrix interface. Moreover, the multi-
ple fracture number decreased from 18 in CFRP to 12 in
the CNT-grafted composite, indicating a reduced likeli-
hood of fiber breakage propagation with the presence of
CNT grafting on the carbon fiber.

In another study by Rafiee and Ghorbanhosseini,192 a
hierarchical multiscale modeling procedure was developed
to predict the mechanical properties of carbon fibers coated
with CNTs. This procedure considered both radially aligned
and randomly oriented CNT-reinforced polymers around
the carbon fiber, accounting for vdW interactions between
CNTs and the polymer matrix. CNT curvature and volume
fractions were treated as random parameters in both cases,
with an additional consideration for the random variable of

CNT orientation in randomly oriented CNT grafted carbon
fiber reinforced polymer composites. Mechanical properties
of composite laminates composed of these fuzzy fibers were
estimated at the macroscale, showing a strong correlation
with experimental results, especially for the randomly ori-
ented CNT configuration. Addressing the non-uniformity
of CNT volume fractions and non-straight shapes, Rafiee
et al.150 developed a stochastic model based on microme-
chanical theories such as the MT, CCA, and HT approaches
for multiscale modeling of fuzzy fiber-reinforced compos-
ites. Neglecting the influence of random parameters in the
model was found to lead to an overestimation of effective
mechanical properties.

5 | GAP ANALYSIS

The incorporation of CNTs through grafting or coating
onto fibers presents an enticing opportunity to augment
the functionalities of existing materials, thereby reducing
structural redundancy, and leading to benefits such as
weight reduction, lower energy consumption, and
increased production efficiency across diverse applica-
tions. Nonetheless, the manufacturing and processing of
CNTs, fuzzy fibers, and their composites involve energy-
intensive procedures necessitating heavy machinery oper-
ating at high temperatures resulting in environmental
concerns and substantial costs. Furthermore, apprehen-
sions persist over the release of harmful gas emissions,
toxic byproducts, and solid nano waste into the environ-
ment.193 Developing mechanisms for the repair and recy-
cling of CNTs and their structures is imperative for the
commercialization of CNT-based products. Currently, a
comprehensive technological model for this purpose is
lacking, demanding innovative solutions for production,
handling, standardization, repair, and recycling of CNT-
based structures. Established conventional procedures
must give way to more inclusive approaches. With the
amplifying global environmental concerns, it is crucial to
ensure that the production and utilization of CNTs and
their derivatives align with sustainability goals, rather
than contributing to environmental burdens.

Realizing practical applications for CNTs necessitates
substantial scientific progress. Particularly, the efficiency
of property enhancement from the nanoscale to the
micro/macro scale must be practically achievable. Despite
theoretical predictions of significant property enhance-
ments, practical outcomes have yet to match these projec-
tions. Bridging this research gap is a pivotal step for
further advancement. There also exists substantial scope
to enhance the bonding between CNTs and carbon fibers
by refining deposition parameters, encompassing factors
such as deposition density, uniformity, and controlling
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CNT agglomeration, length, and diameter. Enhanced con-
trollability is pivotal in grafting and growing CNTs to
attain tailored properties. The evolution from single-
material-based technologies to multifunctional materials
necessitates adaptation and innovation. Modeling FFRCs
presents a multifaceted challenge particularly in analyzing
geometries across four different length scales. The intri-
cate geometry models, material behaviors, and involve-
ment of multiphysics phenomena amplify the complexity
of modeling and analyzing CNT-grafted carbon fiber com-
posites. Despite attempts to simplify interfaces, employ ad
hoc assumptions, and estimate property ranges, the pur-
suit of accurate and consistent results remains ongoing.
This underscores that the spectrum of mechanical, electri-
cal, or thermal properties displays considerable variance
and altering even a single processing parameter at any
scale (nano, micro, meso, macro) can result in a distinctly
divergent set of parameters and behaviors in CNT-grafted/
modified materials. Consequently, specialized outcomes
only relevant to specific material and process parameters
emerge. Furthermore, stochastic modeling approaches for
fuzzy fibers and FFRCs are still in the process of establish-
ment. Pioneering work has focused primarily on the
mechanical properties of these multifunctional materials.
Achieving a comprehensive, all-encompassing multiphy-
sics coupled model across all scales remains a distant goal.
However, the field is rapidly evolving with an increasing
focus on pertinent research.

6 | CONCLUSION

This comprehensive review article offers an extensive over-
view of fuzzy fibers and their applications in composites,
encompassing both their experimental and modeling char-
acterizations. The article delves into diverse techniques
employed for modeling and characterizing these fibers, as
well as the various production and experimental methods
utilized. The integration of CNTs into conventional com-
posites at the fiber matrix interface has demonstrated
remarkable potential in enhancing their elastic, thermal,
and electrical properties. Additionally, CNT incorporation
imparts multifunctional attributes like electromagnetic
shielding and piezoresistivity. While advancements are
evident in the longitudinal aspects, the transverse proper-
ties exhibit even more substantial enhancements. CNTs
also contribute to improvements in the IFSS, delamination
behavior, debonding resistance, and fracture toughness of
composites. This is primarily attributed to their radial
growth pattern, which imparts superior performance in
off-axis directions and improves fiber-matrix bond by
improved wettability and contact area. Notably, the modi-
fication of interfaces emerges as a pivotal factor

contributing to the overall advantages of CNT integration.
The review concludes by emphasizing that despite the bur-
geoning interest in employing CNTs in fuzzy fibers, chal-
lenges still exist and warrant further exploration. The
article briefly touches upon the prospective scope of future
research and life cycle assessment of CNT-grafted carbon
fibers.
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