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Abstract: Microfluidics is a highly interdisciplinary field where the integration of deep-learning
models has the potential to streamline processes and increase precision and reliability. This study
investigates the use of deep-learning methods for the accurate detection and measurement of droplet
diameters and the image restoration of low-resolution images. This study demonstrates that the
Segment Anything Model (SAM) provides superior detection and reduced droplet diameter error
measurement compared to the Circular Hough Transform, which is widely implemented and used
in microfluidic imaging. SAM droplet detections prove to be more robust to image quality and
microfluidic images with low contrast between the fluid phases. In addition, this work proves that
a deep-learning super-resolution network MSRN-BAM can be trained on a dataset comprising of
droplets in a flow-focusing microchannel to super-resolve images for scales ×2, ×4, ×6, ×8. Super-
resolved images obtain comparable detection and segmentation results to those obtained using
high-resolution images. Finally, the potential of deep learning in other computer vision tasks, such as
denoising for microfluidic imaging, is shown. The results show that a DnCNN model can denoise
effectively microfluidic images with additive Gaussian noise up to σ = 4. This study highlights the
potential of employing deep-learning methods for the analysis of microfluidic images.

Keywords: microdroplets; microfluidics; deep learning; computer vision; image processing

1. Introduction

Droplet-based microfluidics is an emerging interdisciplinary field with great potential
across a wide range of scientific disciplines. It has shown great promise in biomedical
applications by enabling targeted drug delivery and portable point-of-care diagnostics [1].
It is also widely used in microreactors [2] within biochemistry as well as in industrial
applications such as inkjet printing [3]. Microfluidics allows easy and accurate manipulation
of complex systems such as genes, molecules, and cells even for high flow rates [4], which
shows great potential for the development of new technologies.

In labs, even if many techniques have been developed [5], bright-field imaging remains
the most common method of monitoring droplet generation in microfluidic devices [6].
Due to the ultra-fast process of microdroplet formation, it becomes imperative to employ
high-speed imaging to visualize them. However, high-speed cameras often have limited
resolution or contrast, which can lead to low-resolution or noisy images and can be an issue
in defining the droplet interface. Moreover, classic droplet identification methods such as
manual measurements or the popular Circle Hough Transform (CHT), massively used in
popular toolboxes of image processing (MATLAB 2023b, Python 3.7, or ImageJ 1.54f), need
a distinct contrast at the droplet interface to show good performances. This forces the users
to mismatch the refractive indices of the inner and outer phases of the droplet to thicken
the interface by creating a shadow. However, it comes with a loss of precision in the exact
interface location, adding a new error source in the droplet size estimation.
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Therefore, there is a need for novel techniques to decrease the errors caused by the
physical limitations of these microfluidic setups. Deep learning presents a promising
solution to overcome these challenges by improving droplet detection and/or image
quality when the resolution is too low or noisy.

For example, the open-source SAM (Segment Anything Model) released in 2023 by
Meta AI can be a good alternative to CHT for droplet detection. Indeed, trained on an
extensive dataset comprising over 1 billion masks from 11 million images, SAM is built on
transformer-based vision models with zero-shot generalization and, therefore, does not
require additional training [7]. SAM redefines image segmentation potential by achieving
remarkable generalization, in contrast to single-field-focused methods. Following the
recent release of SAM, various other fields promptly acknowledged its potential and began
assessing the model’s suitability for their own image datasets. Notably, the medical field
stands out as a prime example, with multiple studies already demonstrating the value of
SAM in enhancing image segmentation tasks [8,9]. SAM’s automatic recognition of objects
in complex scenarios holds promise for microfluidics applications.

Another solution is to use single-image super-resolution (SISR) methodologies to help
with the lack of spatial resolution by restoring high-resolution images (HR) images from
low-resolution (LR) inputs and giving access to a precise identification of tenuous details [6]
(e.g., interfaces). It offers a cost-effective solution to reconstruct the visual quality of images
by improving computer vision tasks such as segmentation [10] and object detection [11]
without upgrading the hardware for the data collection. SISR can be represented by the
following degradation model:

ILR = (IHR ⊗ K)↓ S + N, (1)

where IHR is the unknown HR image, ILR is the LR image, ⊗ is the convolution operator, K
is the blurry kernel, and ↓ is the downsampling operator with a scale factor of S and N is a
noise term [12]. SISR methods can be classified into three primary approaches: interpolation-
based, reconstruction-based, and learning-based techniques [12]. By its inherent nature,
SISR belongs to the category of ill-posed problems, which implies there exists no single
solution but rather multiple potential solutions, and its performance depends on the quality
of the input data. In this context, deep-learning-based methodologies demonstrate the
ability to adapt and learn from diverse data and can be effectively trained to learn from the
characteristics of images across varying domains, tailoring their performance to the unique
characteristics of each domain [12].

Although deep-learning methods for SISR are vast, two main types of networks
are commonly used: convolutional neural networks (CNNs) and generative adversarial
networks (GANs).

The Super-Resolution Convolutional Neural Network (SRCNN) [13] was one of the
first benchmark SISR learning methods. It was characterized by its simplicity (being a
relatively shallow network) and low computational requirements. The SRCNN proved
successful and has been extensively used over the years in a wide range of fields and
applications, including in medicine [14] and remote sensing [15]. With the improvement of
GPU capabilities and hardware systems, deeper convolutional networks have gained much
attention. In this sense, the Multiscale Residual Network (MSRN) [16] employs convolution
kernels of different sizes to leverage image features at different scales in the recovery of HR
images. MSRN uses residual learning, which employs connections between the outputs of
different layers to reduce the vanishing gradient problems of very deep network structures
and lower the computational complexity of the model [16].

In recent years, GANs [17] have gained much popularity. GANs mainly work with
two components: a generator trying to create fake data and a discriminator telling apart
fake from real data. But even though the Super-Resolution Generative Adversarial Network
(SRGAN) has shown good performance in SISR [18], GANs are notoriously known to be
difficult to train and suffer from difficulty converging and instability [19].
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In addition, the promising outcome in SISR can come from the Balanced Attention
Mechanism (BAM) [20]. Indeed, BAM is based on a deep-learning paradigm. Attention,
which is much like human vision, allows a model to focus on certain features of images
during training, reducing the complexity and speeding up training. BAM resolves one of
the challenges of SISR, where noise suppression by the SISR networks often leads to loss of
textural information. Wang et al. [20] highlighted that the use of BAM in several scenarios,
including MSRN, can improve the performance of SISR.

Finally, noise is a recurrent issue in scientific imaging, and it poses a notable obstacle
to successful SISR techniques. Employing image-denoising techniques holds the potential
to enable the use of images corrupted with noise while ensuring precise droplet diameter
measurement. This could potentially decrease the reliance on high-quality cameras and
optimal imaging conditions when capturing images. Image-denoising techniques have
been extensively studied in the field of deep learning to restore clarity in noisy image
data sets [21]. For example, DnCNN (denoising convolution neural network) [22] adopts
a residual learning framework whereby the model learns the mapping from the noisy
image to the noise in the image, the predicted noise in the image can then be removed to
produce the clean image. Another notable denoising technique is the fast and flexible image-
denoising network (FFDNet), which reduced the computational complexity of DnCNN and
increased the flexibility of the model to different noise levels [23]. However, DnCNN has
been seen to have improved performance compared to FFDNet in white image-denoising
tasks such as Gaussian denoising at low noise levels (σ ≤ 15), closer the noise levels present
in most of the experimental microfluidic images [24].

The main objectives of this paper are to assess the performance of deep-learning
methods for the accurate detection and measurement of droplets and the image restoration
of LR microfluidic images. This study investigates the use of SAM as an alternative to CHT
for the detection and accurate measurement of droplet diameter in images taken in a flow-
focusing microchannel. In addition, the applications of three SISR methods for microfluidic
images are compared. The three methods are the most prevalent interpolation technique,
namely bicubic interpolation, a relatively simple learning-based method, SRCNN, and a
more complex learning-based method, MSRN, with a Balanced Attention Mechanism. The
study focuses on evaluating the adaptability and effectiveness of SISR in enhancing the
resolution of microfluidic images. Finally, the potential of a denoising deep-learning model,
DnCNN, is evaluated in denoising microfluidic images.

2. Materials and Methods
2.1. Droplet Generation and Image Acquisition

A large dataset of 20,262 images were collected at the ThAMeS-microfluidics labo-
ratory at University College London (UCL). The experiments focused exclusively on the
dripping regime and were performed in a glass flow-focusing microchannel (Dolomite
Microfluidics) [25–28]. The main channel has an oval cross-section, and the dimensions are
390 µm × 190 µm (width × depth).

The side channels were filled with silicone oil (viscosity: µc = 4.6 mPa and density:
ρc = 920 kg m−3 at 20 ◦C) while the central channel was filled with a mixture of 52% w/w
glycerol and 48% w/w water (viscosity: µc = 6.8 mPa and density: ρc = 1132 kg m−3 at
20 ◦C). To avoid optical distortion and minimize the shadow effect at the droplet interface,
the fluids were selected to have the same refractive index ni (here ni = 1.39 at 20 ◦C). KDS
Scientific syringe pumps were used to control accurately the flow rates of continuous and
disperse phases (Qc and Qd), and allowed to diversify the dataset acting on the droplet size
(d) using different flow rate combinations with Qc ∈ [0.10 mL min−1, 0.35 mL min−1] and
Qd ∈ [0.05 mL min−1, 0.10 mL min−1] (see Table 1).
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All images were taken with a Phantom VEO 1310 high-speed camera (12-bit depth
and 1280× 800 pixels resolution) equipped with a Nivatar 24× lens using an acquisition
frequency of 1000 Hz and an exposure time of 10 µm. An LED backlight was used to
illuminate the microchannel homogeneously. To focus on the droplet generated in the main
channel, the study targeted a zone of interest of 928× 288 pixels just after the microchannel
inlet (see Figure 1).

Figure 1. (a) Sketch of the experimental setup. (b) Sketch of the microchannel during the dripping
regime. The red dashed line shows the zone of interest (928× 288 pixels) used for this study.

Table 1. Table of the 10,000 experiments randomly selected for the 20,262 initial experiments. Qc

and Qd are the continuous and dispersed flow rates, and d is the mean droplet diameter with its
standard deviation.

Qc Qd d Number of Images
mL min−1 mL min−1 µm -

0.10 0.05 211.74 ± 3.49 972
0.10 0.07 225.71 ± 2.39 967
0.10 0.10 298.71 ± 15.03 973
0.20 0.05 177.03 ± 3.18 1061
0.20 0.10 190.10 ± 4.98 1009
0.25 0.07 170.18 ± 3.55 999
0.30 0.05 153.72 ± 2.86 1020
0.30 0.07 156.58 ± 2.33 1038
0.35 0.05 145.15 ± 2.48 970
0.35 0.07 140.18 ± 2.40 991

2.2. Dataset Preparation

A random sample of 10,000 images from the collected dataset was selected and split
into training, validation, and test data sets using a split of 80:10:10. Images within the
selected dataset were cropped to focus on the zone of interest.

In this work, supervised deep-learning methods are used to reconstruct a super-
resolved image (ISR) from a low-resolution image (ILR). Deep-learning models require
paired input and corresponding expected output for effective training. As such, the in-
clusion of both HR and LR image pairs becomes imperative, allowing the model to learn
the LR-to-HR mapping. During the image acquisition phase, HR images were gathered,
subsequently serving as the basis for generating matching LR pairs. Bicubic interpolation
was employed to produce LR counterparts across varying downsampling scales (×2, ×4,
×6, ×8). A comparison of the scale size of the HR image and the downsampled images can
be seen in Figure 2.
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Figure 2. Width in pixels of high-resolution (HR) image and corresponding downscaled images at
scales ×2, ×4. ×6 and ×8.

2.3. Evaluation Metrics
2.3.1. Droplet Segmentation and Diameter Measurement

For droplet segmentation, the Dice Similarity Coefficient (Dice) and the Jaccard Index
(IoU) are employed. Both Dice and IoU are standard metrics for segmentation tasks in
computer vision [29] and are defined as:

Dice(SHR, SSR) =
2|SHR ∩ SSR|
|SHR|+ |SSR|

(2)

and

IoU(SHR, SSR) =
|SHR ∩ SSR|
|SHR ∪ SSR|

, (3)

where SHR is the segmentation mask produced in the high-resolution image and SSR is the
segmentation mask produced in the super-resolved (i.e., predicted) images.

To evaluate the detection capabilities of the droplet detection and diameter measure-
ment methods, the percentage of droplet detection achieved in the super-resolved images
is compared to the detection achieved in the HR images. Therefore, percentage detection is
calculated per image by dividing the number of droplets detected in the ISR by the number
of droplets detected in the IHR.

In addition, since the main focus is to produce an accurate measurement of droplet
diameter d, the absolute error (=|dHR− dSR|) and the relative error (=|dHR− dSR|/|dHR|) are
computed from IHR and ISR. To take into account misses in the detection of droplets, two
absolute errors are presented in Section 3. The Droplets Absolute Error takes into account
droplets that were not detected (which will have a diameter of 0 µm). The Detections
Absolute Error only takes into account droplets that were detected in both the IHR and ISR.
The relative error is only calculated based on the detections present in both the IHR and ISR.

2.3.2. Image Quality

Peak signal-to-noise ratio (PSNR) is the most commonly used metric to evaluate image
restoration. PSNR has been used widely as it is simple to calculate; mathematically, it
can be used for optimization, and its physical meaning is interpretable [30]. Given a
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high-resolution image IHR and a super-resolved ISR both with height (H), width (W), and
channel (C) the PSNR can be defined by:

PSNR = 10 · log10

(
L2

MSE

)
, (4)

with
MSE =

1
HWC

‖X− X̂‖2
2, (5)

where L is the maximum pixel value, X ∈ IHR and X̂ ∈ ISR [6].
As can be seen from Equations (4) and (5), PSNR depends on the pixel magnitude

difference between corresponding X and X̂. Hence, a lower PSNR value does not necessarily
indicate worse perceptual image quality compared to a higher PSNR value. This limitation
has led to substantial criticism regarding the accuracy of PSNR as an evaluation metric in
SISR [6].

Structure similarity index (SSIM) was created as an alternative image quality metric to
PSNR and MSE. The SSIM takes into account the properties of the human visual system
and is based on the assumption that the human visual system is naturally inclined to
extract structural details from an image. The SSIM is based on the comparison of three
measurements: luminance l, contrast c, and structure s [30]. The importance of these three
components can be adjusted accordingly:

SSIM = [l(X, X̂)]α · [c(X, X̂)]β · [s(X, X̂)]γ, (6)

A simplified version where all the components have the same importance is given by:

SSIM =
(2µXµX̂ + C1) + (2σXX̂ + C2)

(µ2
X + µ2

X̂
+ C1)(σ

2
X + σ2

X̂
+ C2)

, (7)

where C1 and C2 are constants, µ and σ are the mean and standard deviation of X and X̂,
respectively, and σXX̂ is the covariance between X and X̂. SSIM has been shown to provide a
more accurate representation of visual quality compared to PSNR [30]. In this work, PSNR
and SSIM are used together to assess image quality (see Section 3). It should be noted that
SSIM and PSNR by themselves may not always be accurate indicators of visual resolution,
and human perception can also help assess image quality.

2.4. Microdroplet Detection

Circle Hough Transform (CHT) is a well-known and commonly used method for circle
detection [31,32]. It employs the Canny edge detector, which identifies the edges within
an image. Following the edge detection, the equation of a circle is used to perform voting
for possible positions of the circle given a range of possible radii. From the outcomes of
the voting, it is possible to identify the most likely circles in the image [33]. In this study,
Canny edge detection with σ = 1 for noise removal before edge detection and the possible
diameter of the circles detected is limited to 130 µm up to 390 µm (the depth of the channel).

The performance of CHT is compared to an adapted version of SAM. SAM performs
pixel-wise segmentation masks and thus has no prior knowledge that the object of focus of
the segmentation is a droplet. Since the dataset collected in this study is of the dripping
regime where spherical droplets are formed, the segmentation of SAM is guided to extract
the most likely circle diameter in the segmentation. Thus, SAM is employed with an
additional CHT post-processing of the SAM segmentation masks and can be seen in
Figure 3. In this case, since the segmentation masks can produce clear edges, CHT is used
to extract the most likely droplet diameter of the detected droplets.

The performance of CHT and SAM+CHT is compared on super-resolved images
using bicubic interpolation, the most common and simple method of SISR studied in this
work for scales ×2, ×4, ×6 and ×8. To compare the performance of CHT and SAM+CHT,
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the segmentation performance is assessed using Dice and IoU, the error in the diameter
measurement using absolute errors and relative errors, and the percentage of droplets
detected. The best droplet detection and diameter measurement method is identified and
is employed in the rest of the study.

image 
encoder

image 
embedding

input image

points

masks

mask decoder

prompt encoder
classification

CHT on droplets

Figure 3. Architecture of the Segment Anything Model followed by Circular Hough Transform
(SAM+CHT) for droplet detection. Automatic segmentation of the whole image was performed using
evenly sampled points as the prompt for the prompt encoder.

2.5. Deep-Learning Super-Resolution Models

In this section, two learning-based super-resolution models are studied: an SRCNN
model and an MSRN model enhanced with a Balanced Attention Mechanism (BAM). In
this work, the image restoration and segmentation performances are compared using
both learning-based models against the baseline: super-resolved images using bicubic
interpolation. The architecture and implementation of both learning-based super-resolution
models are described and compared below.

2.5.1. SRCNN

Initially, a simple SRCNN was implemented for the SISR task. Following the original
implementation by [13], the SRCNN model created was a three-layer network with filter
sizes: (64 × 1 × 9 × 9), (32 × 64 × 5 × 5), (1 × 32 × 5 × 5). The input images to the
network are upscaled LR images using bicubic interpolation. The SRCNN aims to perform
an end-to-end mapping of ILR to ISR. Thus, a different model needs to be trained for every
upscaling factor (×2, ×4, ×6, ×8).

The network performs three main operations. First, patches from the image are
extracted and represented as a feature map. Next, non-linear mapping is performed by
mapping each of the patches into a lower-dimensional space. Finally, reconstruction of the
HR image is achieved through a final convolutional layer [13].

The SRCNN model was trained for 300 epochs, a batch size of 32 images with MSE
loss, and using Adam optimizer. MSE loss is employed as it has been seen to favor a high
PSNR. The best-performing set of model parameters was selected according to the highest
PSNR achieved on the validation dataset. The model was then evaluated on the unseen
test dataset using image quality metrics (PSNR and SSIM) and the droplet detection and
segmentation metrics outlined in Section 2.3.1.

2.5.2. MSRN-BAM

The MSRN model is a benchmark in image super-resolution. To improve the perfor-
mance of MSRN, a Balanced Attention Mechanism (BAM) was incorporated into the model.
BAM is composed of two attention mechanisms: ACAM and MSAM. The ACAM module
is responsible for suppressing noise in the upsampled feature maps, and MSAM attention
is focused on capturing high-frequency texture details. The parallelization of ACAM and
MSAM allows the BAM module to self-optimize during the backpropagation process to
achieve a balance between noise suppression and texture restoration [20].
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The model architecture comprises two main segments: the feature extraction module
and the image reconstruction module. The feature extraction module incorporates the
multiscale residual block (MSRB) and hierarchical feature fusion structure (HFFS). Figure 4
shows the architecture of the MSRN model with the BAM employed.
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Figure 4. Architecture of the super-resolution model MSRN-BAM. The input of the model is the
low-resolution (LR) image; layers employed include convolutional layers (conv) of kernel sizes 3 × 3
and 5 × 5, rectified linear unit (ReLU) layers, Pixel Shuffle layer and concatenation operation. The
main unit of the network is the MSDRB-BAM block; the model has 8 MSDRB-BAM blocks. The
output of the model is the super-resolved image (SR).

The MSDRB-BAM is designed to detect image features across various scales, consisting
of multiscale feature fusion and local residual learning components. Each MSDRB-BAM
module consists of 2 sets of convolutional layers with ReLU activation and kernel sizes
(3 × 3 and 5× 5). Between the two sets of layers, the intermediate outputs are concatenated.
This is followed by the BAM layer for improved feature selection. Finally, the MSRN-BAM
uses a residual connection that combines the attention-modulated output with the original
input. The overall architecture of the MSRN-BAM has 8 blocks of MSDRB-BAM.

The HFFS then takes the feature outputs from each MSRB and effectively fuses them
as the network progresses toward generating the final output. This fusion occurs in
the tail of the network architecture, where the concatenated features from MSDRB-BAM
blocks undergo transformations through convolutional layers, activations, and upsampling.
The goal of HFFS is to blend information from various layers together so that important
details are not lost, resulting in a precise image reconstruction. This strategy addresses
the difficulty of maintaining useful information throughout deep networks, resulting in a
high-quality result.

The training data are enhanced through random cropping, random horizontal and
vertical flips, and random 90-degree rotations. Each training batch consists of 16 randomly
extracted LR patches with size 32 × 32. The model is trained for 400 epochs. The model
undergoes training using the Adam optimizer with the learning rate of 1 × 10−4 and
employs L1 as the loss function.

In comparison with SRCNN, where the LR images are upsampled to the dimension
of the HR image via bicubic interpolation, MSRN-BAM uses an unamplified LR image as
the input of the network, which is upsampled to the HR dimensions by the network. In
addition, MSRN-BAM is a considerably deeper network with separate modules to combine
multiscale information and capture the most relevant features of the super-resolution task.
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2.6. Image Denoising with DnCNN

The DnCNN is a deep neural network designed for image denoising. The input to the
DnCNN is a noisy image, which can be represented by Inoisy = Iclean + N. DnCNN employs
a residual approach where R(Inoisy) ≈ N, and as such, the clean image can be obtained
from Iclean = Inoisy − R(Inoisy). Therefore, the model tries to learn the mapping from the
noisy image to the noise present in the image, and the loss function calculates the difference
between the predicted noise in the input image R(Inoisy) and the actual noise present in the
input image R(Inoisy)− Iclean. The DnCNN architecture can be seen in Figure 5.
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Figure 5. Architecture of the image-denoising DnCNN model. I The input to the model is the noisy
image. The layers employed include convolutional layers (conv) of kernel sizes 3 × 3, rectified linear
unit (ReLU) layers, and batch normalization (BN) layers. The main body of the model predicts
the residual image (noise present in the noisy image). The final output of the model is the clean
denoised image.

The DnCNN consists of three main types of layers. The first layer is a Conv+ReLU
layer using a kernel size of 3 to generate feature maps. The second type of layer is a
Conv+BN+ReLU layer, which forms the main body of the network. A total of 17 of these
layers are employed. The final layer is a Conv layer, which reconstructs the residual image.
The model follows residual learning where the predicted residual image corresponds to
the noise present in the noisy image. Thus, the final clean output image is generated by
subtracting the residual image from the input image.

To train and test the DnCNN, the dataset is corrupted with additive Gaussian noise.
DnCNN networks are trained using a range of Gaussian noise levels (σ = 2, σ = 3, σ = 4,
σ = 6). The DnCNN is trained using patches of size 40 × 40. The batch size employed is of
size 32 and a learning rate of 1 × 10−4 was employed. DnCNN uses Adam optimizer and
L1 loss, similar to MSRN-BAM. Throughout the training process, the model is evaluated on
the validation set, and the model is trained for 1200 epochs. The performance of the model
is then evaluated on the unseen test dataset. The improvement in image quality and the
performance of the denoised dataset using MSRN-BAM and SAM+CHT is compared to the
clean dataset.

3. Results
3.1. Droplet Detection

In this section, the droplet detection and segmentation performance of CHT and
SAM+CHT are compared across the scale of super-resolved images using bicubic inter-
polation. Table 2 shows that the performance of detection and segmentation is superior
for SAM+CHT compared to CHT for all scales. With increasing scale, the performance
of CHT deteriorates rapidly. The results show that using CHT for droplet detection will
produce large absolute errors in the detection and will struggle to detect droplets when
the images are beyond an ×2 scale using bicubic interpolation (e.g., 39% detection for ×4).
This is because, as part of CHT, the Canny edge detector is used to detect edges. When
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these edges are too fine, as is the case with the droplets of this study, it is difficult for the
next stage (voting stage) of the CHT to identify the curves in the image and thus accurately
predict the position and the diameter of the droplet. From ×4, CHT has a poor Dice and
IoU performance with increasing scale. SAM+CHT performs consistently across almost all
scales with high Dice/IoU, percentage detection, and low absolute and relative errors in
the detected droplets. For ×4, CHT shows Dice and IoU of, respectively, 49% and 37% with
a 39% droplet detection, while SAM+CHT has a droplet detection of 92% with Dice = 94%
and IoU = 90%. It is only for ×8 that SAM+CHT shows a drop in performance with 57%
droplet detection and Dice = 68% and IoU = 55%.

An example of the detections produced by CHT and SAM+CHT with a bicubic inter-
polated image at the ×4 scale can be seen in Figure 6. Figure 6 shows that CHT struggles to
detect the droplets even in the HR image in comparison to SAM+CHT, which successfully
detects and segments all the droplets in the image. Although SAM+CHT misses a droplet
in the bicubic image, its performance is considerably superior to CHT.

Table 2. Detection and segmentation results of Circular Hough Transform (CHT) and Segment
Anything with Circular Hough Transform (SAM+CHT). The table shows the results using bicubic
interpolation as the single-image super-resolution method at different scales. The absolute error is
reported for all droplets (Droplets Absolute Error) and detected droplets (Detections Absolute Error
and Detections Relative Error).

Method Scale Dice IoU
Droplets

Absolute Error
(µm)

Detections
Absolute

Error (µm)

Detections
Relative

Error

Percentage
Detection

CHT

×2 0.84 ± 0.19 0.77 ± 0.24 42.98 ± 77.57 2.30 ± 4.09 0.01 ± 0.02 0.79 ± 0.27
×4 0.49 ± 0.30 0.37 ± 0.27 115.25 ± 89.63 6.25 ± 7.80 0.03 ± 0.03 0.39 ± 0.30
×6 0.21 ± 0.22 0.14 ± 0.17 163.40 ± 71.21 11.27 ± 20.49 0.05 ± 0.06 0.11 ± 0.21
×8 0.12 ± 0.13 0.07 ± 0.09 183.39 ± 49.20 95.92 ± 83.73 0.28 ± 0.24 0.01 ± 0.06

SAM+CHT

×2 0.96 ± 0.10 0.93 ± 0.10 11.45 ± 45.76 2.01 ± 3.63 0.01 ± 0.02 0.95 ± 0.16
×4 0.94 ± 0.10 0.90 ± 0.10 18.10 ± 56.20 3.70 ± 4.80 0.03 ± 0.02 0.92 ± 0.20
×6 0.84 ± 0.20 0.77 ± 0.20 42.05 ± 81.40 4.46 ± 5.22 0.02 ± 0.03 0.78 ± 0.28
×8 0.68 ± 0.20 0.55 ± 0.20 81.60 ± 97.20 5.39 ± 5.74 0.03 ± 0.03 0.57 ± 0.27

Best performance indicated in bold.

CHT

HR

Bicubic

SAM + CHT

Figure 6. Comparison of Circular Hough Transform (CHT) and Segment Anything with Circular
Hough Transform (SAM+CHT) on a high-resolution image (HR) and bicubic interpolated SISR
method for ×4 scale.

3.2. Super-Resolution Models

The SRCNN and MSRN-BAM models were trained as specified in Section 2.5. The
performance of the models was evaluated on an unseen test dataset of 1000 images. To
measure the super-resolution capabilities of the models, the PSNR and SSIM of the super-
resolved images with respect to the HR images were calculated and are shown in Table 3.
The performance of the SRCNN and MSRN-BAM is compared to standard bicubic inter-
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polation. Based on the PSNR and SSIM, both SRCNN and MSRN-BAM produce slightly
higher-quality images, based on the PSNR and SSIM, compared to the standard bicubic
interpolation. Out of the two learning-based methods, Table 3 shows systematically that
MSRN-BAM outperforms SRCNN at every scale according to the image quality metrics.

Figure 7 shows the improvement of PSNR and SSIM for the MSRN-BAM network
during training for the different scales. Notably, the PSNR computed on the validation
dataset fluctuates during training, reaching a more stable behavior after epoch 310. The
fluctuations in the PSNR during training observed in Figure 7 are common in neural
network training. As such, drops in the PSNR during training, such as in epoch 80 for
×4 scale and epoch 190 in ×8, could be attributed to an update in model parameters that
deviated from the optimal configuration, leading to a temporary decline in performance.
This unstable behavior during training can be attributed to several factors, such as the
stochastic nature of gradient descent. The model training was stopped at 400 epochs since
the PSNR did not improve by more than 0.03 in the last 50 epochs.

Table 3. Image quality metrics for three SISR methods: bicubic interpolation, super-resolution
convolutional neural network (SRCNN), and Multiscale Residual Network with Balanced Attention
Mechanism (MSRN-BAM). Image quality metrics include peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM).

Method Scale PSNR SSIM

Bicubic

×2 35.38 ± 0.10 0.75 ± 0.01
×4 36.20 ± 0.10 0.76 ± 0.01
×6 34.81 ± 0.20 0.70 ± 0.02
×8 34.90 ± 0.40 0.72 ± 0.02

SRCNN

×2 35.57 ± 0.10 0.77 ± 0.01
×4 36.50 ± 0.10 0.78 ± 0.02
×6 35.24 ± 0.10 0.71 ± 0.02
×8 35.86 ± 0.20 0.74 ± 0.02

MSRN-BAM

×2 35.65 ± 0.10 0.77 ± 0.01
×4 36.51 ± 0.10 0.79 ± 0.01
×6 35.40 ± 0.10 0.74 ± 0.02
×8 36.16 ± 0.10 0.77 ± 0.02

Best performance indicated in bold.
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Figure 7. Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of the MSRN-
BAM model on the validation dataset during training for networks trained at different super-
resolution scales.

Segmentation performance for the learning methods and bicubic interpolation are also
assessed using the SAM+CHT segmentation model outlined in Section 2.5. As shown in
Table 2, SAM+CHT can cope with high levels of image degradation where high Dice/IoU
and Percentage detections can be obtained in ×2 and ×4 scale. Notably, the absolute
error for the detected droplets is consistent and low across all scales, showing that the
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droplets detected are accurate to detections in the HR images. However, even if SRCNN
and the bicubic interpolation method show similar PSNR and SSIM than MSRN-BAM,
a degradation of the performance can be observed in downsampling scales (×6 and ×8)
showing the production of lower quality images for both methods. Indeed, for SRCNN
and the bicubic interpolation method, the detection drops below 80% for ×6 and their IoU
below 60% for ×8. On its side, MSRN-BAM gives constant high performance from ×2 to
×8 with an IoU ∼ 90% and a droplet detection > 90% which confirms the higher image
quality produced already suggested by the PSNR and the SSIM.

Figure 8 shows that MSRN-BAM super-resolved images SAM+CHT achieves excellent
detection and low absolute error for droplets of size <250 µm at all scales. Although
percentage detections >80% can still be achieved for scales ×2 and ×4 for droplets of size
>250 µm, the performance worsens for scales ×6 and ×8 for these droplet sizes. This drop
in performance could be attributed to the challenge of discerning the droplet interface from
the channel wall when the droplet size is similar to the channel depth (390 µm).

The performance of SAM+CHT can be compared with the work of Vo et al. [31], who
employed CHT for their image-based feedback system to control droplet generation. They
observed poor detection for diameter d > 100 pixels and no successful droplet detections
for d > 180 pixels. Here, the super-resolved images using MSRN-BAM and SAM+CHT
show that a good detection (more than 70% of droplets detected) can be achieved for all
scales for droplets diameter from 96 pixels to 230 pixels (125 µm to 275 µm).
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Figure 8. Percentage droplet detection and absolute error for the MSRN-BAM model at different
resolution scales on the test dataset grouped by droplet diameter. Error bars show standard deviation.

3.3. Image Denoising

The DnCNN network was trained and tested on downsampled images by a ×4 scale
with additive Gaussian noise (2 ≤ σ ≤ 6), see Table 4. Due to the low contrast between the
phases (with refractive index matching) in the dataset of microfluidic images employed
in this study, only noise levels 6 ≤ σ were employed. Figure 9 shows the improvement in
PSNR and SSIM during the DnCNN training on the validation dataset. Notably, while σ > 2
shows an improvement in the PSNR and SSIM during training, σ = 2 remains stable with
high PSNR and SSIM. This could be attributed to the low level of noise at σ = 2. After the
first optimization of the model parameters, the model may have found its optima. Table 4
shows the improvement in PSNR and SSIM of the test set for the noisy images and the
denoised images after applying the DnCNN model. Notably, the standard deviation of the
PSNR increases with increasing noise levels, showing that for the DnCNN model, a wider
range of image quality in the predicted clean images is produced at higher noise levels.
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Figure 9. Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of DnCNN model
on the validation dataset during training for networks trained using additive Gaussian noise with a
range of noise levels.

Table 4. Comparison of image quality metrics for noise corrupted images and denoised images using
DnCNN for different noise levels. Image quality metrics include peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM).

Sigma PSNR Noisy PSNR DnCNN SSIM Noisy SSIM DnCNN

2 41.84 ± 0.00 47.03 ± 0.08 0.93 ± 0.01 0.98 ± 0.00
3 38.52 ± 0.00 46.27 ± 0.12 0.87 ± 0.01 0.98 ± 0.00
4 36.09 ± 0.00 45.74 ± 0.16 0.79 ± 0.02 0.98 ± 0.00
6 32.94 ± 0.00 45.23 ± 0.22 0.67 ± 0.02 0.97 ± 0.00

Following the denoising of the test images, the super-resolution model MSRN-BAM
and segmentation using SAM+CHT was applied to test the segmentation performance on
denoised images (see Table 5). High Dice and percentage detections were achieved until
σ ≤ 4. The detection performance decreases notably for σ = 6. However, the absolute
error of the detected images remained low (<6 µm), showing that detected droplets were
accurate to the detections made in the HR images. Figure 10 shows the improvement in
image quality after the denoising model and the super-resolution model. The denoising
model removes the additive Gaussian noise while preserving the structural components
of the image. The super-resolution model shows an improvement in the high-frequency
detail of the image, which can be appreciated from the fine droplet borders.

Table 5. Detection and segmentation of Segment Anything with Circular Hough Transform
(SAM+CHT) on denoised images of the test set super-resolved using the Multiscale Residual Net-
work with Balanced Attention Mechanism (MSRN-BAM) for a ×4 scale. The error is reported for all
droplets (Droplets Absolute Error) and detected droplets (Detections Absolute Error and Detections
Relative Error).

Method Sigma Dice IoU
Droplets
Absolute

Error (µm)

Detections
Absolute

Error (µm)

Detections
Relative

Error

Percentage
Detection

DNCNN +
MSRN-BAM

Clean 0.94 ± 0.10 0.90 ± 0.10 16.90 ± 54.52 3.01 ± 4.30 0.02 ± 0.03 0.93 ± 0.19
2 0.94 ± 0.12 0.90 ± 0.15 18.62 ± 58.52 3.35 ± 4.44 0.02 ± 0.03 0.92 ± 0.20
3 0.91 ± 0.13 0.86 ± 0.17 29.10 ± 71.00 4.06 ± 4.94 0.02 ± 0.03 0.86 ± 0.25
4 0.86 ± 0.17 0.78 ± 0.21 42.62 ± 80.63 4.45 ± 5.31 0.03 ± 0.03 0.78 ± 0.27
6 0.66 ± 0.24 0.53 ± 0.24 93.79 ± 98.42 5.68 ± 5.85 0.03 ± 0.03 0.53 ± 0.26
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(d) HR

(e) σ = 2

(f) σ = 3

(g) σ = 4

(h) σ = 6

(a) Noisy (σ = 4)

(b) DnCNN

(c) DnCNN + MSRN-BAM

Figure 10. (a,b) Performance of DnCNN on denoising an image corrupted with Gaussian additive
noise. (c) Improvement in resolution using a Multiscale Residual Network with Balanced Attention
Mechanism (MSRN-BAM) at a ×4 scale. Comparison of the performance of Segment Anything
with Circular Hough Transform (SAM+CHT) on (d) high-resolution (HR) image and (e–h) denoised
super-resolved images.

4. Discussion

CHT has been employed intensively in microfluidic applications for droplet detec-
tion [31,32]. However, the results of this study show that CHT is a poor droplet detection
algorithm for microfluidic systems where the droplet interface is fine and the contrast is
small due to good index matching. Moreover, the results show that CHT is challenged by
low-resolution images where the droplet interface may become more pixelated and less
defined, worsening the contrast between the droplet and the background.

In contrast, SAM+CHT achieves high performance across all scales, only seeing a
significant drop in the segmentation Dice score and percentage detection for the ×8 scale.
In addition, SAM+CHT is shown to be an accurate detection method as detections made
have a small absolute and relative error.

An alternative droplet detection method suggested by Mudugamuwa et al. [34] is
thresholding. In their work, they obtain RGB images and select the color band, which
produces the largest contrast between the background and the droplets to use for thresh-
olding and follow this process by morphological operations such as erosion and dilation
to obtain a smooth droplet interface. However, for their thresholding system to be able
to differentiate between the water droplets and the coconut oil flow, it required coloring
the water with a green pigment. As with CHT, thresholding requires a high contrast be-
tween the droplets and the background. In addition, thresholding needs post-processing
morphological operations, which may modify the shape of the droplet interface.

Thus, this work shows that SAM+CHT is a robust and accurate detection and diameter
measurement tool for droplets in a microfluidic system. SAM+CHT can be used to detect
droplets with fine interfaces without needing to change the properties of the water or
oil phases.

For low-resolution images, the potential of learning methods was proved compared
to the classic bicubic interpolation method. However, MSRN-BAM shows a better perfor-
mance compared to SRCNN, which can be attributed to several factors. First, SRCNN uses
the upsampled bicubic interpolated image as the input to the network. In comparison,
MSRN-BAM learns the upsampling operation in the feature space. Bicubic interpolation in-
troduces smoothing effects, which may result in poor predictions of the image composition
in the SRCNN model [12]. In addition, SRCNN is a relatively shallow network compared
to MSRN-BAM. Shallow networks tend only to capture low-level features (contour, edges,
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angles) and miss high-frequency features [35]. In the case of the microfluidic images used
in this study, the edges of the microdroplets were very fine and became more distorted with
increasing scale. As the input to the SRCNN was the bicubic interpolated image, the loss in
the definition of the edges of the droplet may have made it challenging for the network to
produce high-resolution images with increasing scale. Furthermore, the SRCNN network
uses MSE loss in comparison with the L1 loss employed by MSRN-BAM. MSE loss has been
extensively used since it is known to favor high PSNR; however, Zhao et al. [36] showed
networks trained with L1 loss achieved improved image restoration compared to those
trained with MSE loss, which produced smoother textures. As can be seen in Figure 7,
the L1 loss is able to guide the model optimization towards improved PSNR and SSIM
during the training on the validation dataset. MSRN-BAM proves to be an effective SISR
method for resolving images of up to an ×8 scale to a high standard of quality. Together
with SAM+HCT, the results show it is possible to super-resolve and detect droplets with a
high level of accuracy and detection.

Similarly, Rutkowski et al. [37] employed YOLO, a well-known object detection algo-
rithm, to detect and measure droplets in a range of microfluidic experiments. The authors
test YOLO on a range of experiments using a water-continuous phase with varying contrast
of the dispersed oil phase. Their analysis shows YOLO provides improved detection,
especially in low-contrast media, to those obtained using CHT methods applied in ImageJ.
Nevertheless, the authors do not test the robustness of YOLO to image resolution, and
their weakest contrast between the phases was still greater than the one proposed in this
study. In addition, YOLO requires training on annotated droplet images, a process that
demands substantial human effort for annotation. In comparison, SAM+CHT requires no
previous training.

Finally, denoising models can be used to restore the quality of blurry or spatially unre-
solved images. DnCNN model combined with MSRN-BAM applied to ×4 downsampled
images showed remarkable performances for noise levels of σ ≤ 4 using a Gaussian noise.
The low Dice score, absolute error, and percentage may be due to the loss of the structural
features of the image during the denoising process in the presence of large amounts of
Gaussian noise.

In other vision-based droplet detection systems, little notice has been given to the
effect of noise on droplet detection. Rutkowski et al. [37] employs ImageJ’s non-local
means-denoising plugin (smoothing factor = 2, σ = 15); however, they do not experiment
with adding noise to their images. Although inbuilt image-denoising libraries may provide
acceptable image quality in images that do not contain much noise, they may alter the struc-
ture of the droplets since they have no prior knowledge of similar image transformations.
In this aspect, deep-learning denoising networks such as DnCNN trained on microfluidic
images may hold an advantage, allowing for larger amounts of noise in images while being
able to accurately predict the denoised images without ’guessing’ the image structure but
rather informed on learned transformations on similar microfluidic images.

In conclusion, this work shows the potential of deep-learning methods for accurate
detection and measurement of droplets in microchannels using low-resolution images. The
proposed SAM+CHT method for droplet detection and diameter measurement proves
to provide an accurate measurement of droplet diameter and is more robust to image
quality than the most commonly used method, CHT. SISR deep-learning models also
show improvement in image quality and droplet detection and measurement using low-
resolution images. Notably, the deepest network studied MSRN-BAM achieves consistent
segmentation performance across all resolution scales (×2, ×4, ×6, ×8). This study finds
detections for droplets within diameter 125 µm to 250 µm achieve the highest percentage
detection and smallest absolute error for the dataset collected. In addition, this work shows
the potential of deep learning denoising models in microfluidic imaging. DnCNN can
improve image quality and obtain comparable segmentation performance to clean images
for σ < 6. Lastly, this study effectively establishes the promising capabilities of deep learning
in accurate droplet diameter detection and image restoration, current challenges within the
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context of microfluidics imaging. Indeed, for simple microfluidic systems, as shown in this
study, deep learning methods are already apt to enhance image processing significantly. For
low-spatial-resolution images, we recommend using MSRN-BAM to improve the image
quality before the droplet detection. Moreover, if the images show a Gaussian noise below
σ ≤ 4, then DnCNN can be used along MSRN-BAM. For droplet detection, SAM+CHT
should be preferred to CHT to increase the detection rate and decrease the uncertainty on
the droplet diameter, especially for low-contrast images.

Although the methodologies used here aim to be extended to more complex systems, as
densely packed droplets are often discussed in the literature [38], some potential limitations
can be raised. For example, future work should focus on the segmentation and detection
of such complex configurations where the droplets may overlap or be deformed by the
confinement. One strategy could be to develop hybrid models that merge classical image
processing techniques with advanced ML approaches. Given the added complexity where
droplets overlap or deform due to confinement, a promising strategy might involve the
utilization of a specific U-Net architecture, which can be tweaked to accommodate the
distinction between closely packed droplets or discerning the boundaries of deformed
droplets. Furthermore, active learning can be incorporated, enabling the model to improve
its predictive performance continuously over time. With active learning, the model could
identify the most informative samples and then effectively learn to recognize other complex
examples with fewer annotated examples.

Author Contributions: S.H.G.: Methodology, Software, Data curation, Writing—Original draft
preparation/Reviewing and Editing, Investigation, Formal analysis C.Q.-C.: Conceptualization,
Writing—Original draft preparation/Reviewing and Editing, Investigation, Project administration.
L.C.: Conceptualization, Data curation, Writing—Original draft preparation/Reviewing and Editing,
Investigation, Project administration. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to acknowledge support from the UK Engineering and Physical
Sciences Research Council (EPSRC) Programme Grant PREMIERE (EP/T000414/1).

Data Availability Statement: The code and models employed for this study are publicly available at:
https://github.com/SoFia2401/ImageAnalysis_Microfluidics (accessed on 19 October 2023). The
project repository contains the trained models from this study as well as the code to train and test the
models using a new dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HR High Resolution
LR Low Resolution
SISR Single-Image Super-Resolution
SRCNN Super-Resolution Convolutional Neural Network
MSRN Multiscale Residual Network
BAM Balanced Attention Mechanism
DnCNN Denoising Convolutional Neural Network

References
1. Li, W.; Zhang, L.Y.; Ge, X.H.; Xu, B.Y.; Zhang, W.X.; Qu, L.L.; Choi, C.H.; Xu, J.H.; Zhang, A.; Lee, H.M.; et al. Microfluidic

fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 2018, 47, 5646–5683. [CrossRef] [PubMed]
2. Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [CrossRef] [PubMed]
3. Martin, G.D.; Hoath, S.D.; Hutchings, I.M. Inkjet printing-the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser.

2008, 105, 012001. [CrossRef]
4. Baret, J.C. Surfactants in droplet-based microfluidics. Lab Chip 2012, 12, 422–433. [CrossRef]
5. Huang, C.; Jiang, Y.; Li, Y.; Zhang, H. Droplet Detection and Sorting System in Microfluidics: A Review. Micromachines 2022,

14, 103. [CrossRef]

https://github.com/SoFia2401/ImageAnalysis_Microfluidics
http://doi.org/10.1039/C7CS00263G
http://www.ncbi.nlm.nih.gov/pubmed/29999050
http://dx.doi.org/10.1039/b715524g
http://www.ncbi.nlm.nih.gov/pubmed/18231657
http://dx.doi.org/10.1088/1742-6596/105/1/012001
http://dx.doi.org/10.1039/C1LC20582J
http://dx.doi.org/10.3390/mi14010103


Micromachines 2023, 14, 1964 17 of 18

6. Chen, H.G.; He, X.H.; Qing, L.B.; Wu, Y.Y.; Ren, C.; Sheriff, R.E.; Zhu, C. Real-world single image super-resolution: A brief review.
Inf. Fusion 2022, 79, 124–145. [CrossRef]

7. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
Anything. arXiv 2023, arXiv:2304.02643. [CrossRef].

8. Shi, P.L.; Qiu, J.N.; Abaxi, S.M.D.; Wei, H.; Lo, F.P.W.; Yuan, W. Generalist Vision Foundation Models for Medical Imaging: A
Case Study of Segment Anything Model on Zero-Shot Medical Segmentation. Diagnostics 2023, 13, 1947. [CrossRef]

9. Ning, G.C.; Liang, H.Y.; Jiang, Z.L.; Zhang, H.; Liao, H.E. The potential of ‘Segment Anything’ (SAM) for universal intelligent
ultrasound image guidance. Biosci. Trends 2023, 17, 230–233. [CrossRef] [PubMed]

10. Mahapatra, D.; Bozorgtabar, B.; Garnavi, R. Image super-resolution using progressive generative adversarial networks for
medical image analysis. Comput. Med. Imaging Graph. 2019, 71, 30–39. [CrossRef]

11. Haris, M.; Shakhnarovich, G.; Ukita, N. Task-Driven Super Resolution: Object Detection in Low-Resolution Images. In Neural
Information Processing; Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N., Eds.; Springer: Cham, Switzerland, 2021;
pp. 387–395.

12. Yang, W.M.; Zhang, X.C.; Tian, Y.P.; Wang, W.; Xue, J.H.; Liao, Q.M. Deep Learning for Single Image Super-Resolution: A Brief
Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [CrossRef]

13. Dong, C.; Loy, C.C.; He, K.M.; Tang, X.O. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 295–307. [CrossRef] [PubMed]

14. Tas, M.; Yilmaz, B. Super resolution convolutional neural network based pre-processing for automatic polyp detection in
colonoscopy images. Comput. Electron. Eng. 2021, 90, 11. [CrossRef]

15. Jiang, Z.J.; Mallants, D.; Peeters, L.; Gao, L.; Soerensen, C.; Mariethoz, G. High-resolution paleovalley classification from airborne
electromagnetic imaging and deep neural network training using digital elevation model data. Hydrol. Earth Syst. Sci. 2019,
23, 2561–2580. [CrossRef]

16. Li, J.C.; Fang, F.M.; Mei, K.F.; Zhang, G.X. Multi-scale Residual Network for Image Super-Resolution. Comput. Vis.-ECCV 2018,
11212 Pt Viii, 527–542. [CrossRef]

17. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

18. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.H.; et al.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 30th IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 21–26 July 2017; pp. 105–114. [CrossRef]

19. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 2, 2672–2680.

20. Wang, F.Y.; Hu, H.T.; Shen, C.; Feng, T.P.; Guo, Y.D. BAM: A balanced attention mechanism to optimize single image super-
resolution. J. Real-Time Image Process. 2022, 19, 941–955. [CrossRef]

21. Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration
without Clean Data. arXiv 2018, arXiv:1803.04189. https://doi.org/10.48550/arXiv.1803.04189.

22. Zhang, K.; Zuo, W.M.; Chen, Y.J.; Meng, D.Y.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

23. Zhang, K.; Zuo, W.M.; Zhang, L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Trans.
Image Process. 2018, 27, 4608–4622. [CrossRef] [PubMed]

24. Tian, C.W.; Fei, L.K.; Zheng, W.X.; Xu, Y.; Zuo, W.M.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw.
2020, 131, 251–275. [CrossRef] [PubMed]

25. Roumpea, E.; Kovalchuk, N.M.; Chinaud, M.; Nowak, E.; Simmons, M.J.; Angeli, P. Experimental studies on droplet formation in
a flow-focusing microchannel in the presence of surfactants. Chem. Eng. Sci. 2019, 195, 507–518. [CrossRef]

26. Kalli, M.; Chagot, L.; Angeli, P. Comparison of surfactant mass transfer with drop formation times from dynamic interfacial
tension measurements in microchannels. J. Colloid Interface Sci. 2022, 605, 204–213. [CrossRef] [PubMed]

27. Chagot, L.; Quilodrán-Casas, C.; Kalli, M.; Kovalchuk, N.; Simmons, M.J.; Matar, O.; Arcucci, R.; Angeli, P. Surfactant-laden
droplet size prediction in a flow-focusing microchannel: A data-driven approach. Lab Chip 2022, 22, 3848–3859. [CrossRef]

28. Kalli, M.; Pico, P.; Chagot, L.; Kahouadji, L.; Shin, S.; Chergui, J.; Juric, D.; Matar, O.; Angeli, P. Effect of surfactants during drop
formation in a microfluidic channel: A combined experimental and computational fluid dynamics approach. J. Fluid Mech. 2023,
961, A15. [CrossRef]

29. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. arXiv 2020, arXiv:2001.05566. [CrossRef]

30. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

31. Vo, P.Q.N.; Husser, M.C.; Ahmadi, F.; Sinha, H.; Shih, S.C.C. Image-based feedback and analysis system for digital microfluidics.
Lab Chip 2017, 17, 3437–3446. [CrossRef]

32. Zantow, M.; Dendere, R.; Douglas, T.S. Image-based Analysis of Droplets in Microfluidics. In Proceedings of the 35th
Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Osaka, Japan, 3–7 July 2013;
pp. 1776–1779.

http://dx.doi.org/10.1016/j.inffus.2021.09.005
https://doi.org/10.48550/arXiv.2304.02643
http://dx.doi.org/10.3390/diagnostics13111947
http://dx.doi.org/10.5582/bst.2023.01119
http://www.ncbi.nlm.nih.gov/pubmed/37344394
http://dx.doi.org/10.1016/j.compmedimag.2018.10.005
http://dx.doi.org/10.1109/TMM.2019.2919431
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
http://dx.doi.org/10.1016/j.compeleceng.2020.106959
http://dx.doi.org/10.5194/hess-23-2561-2019
http://dx.doi.org/10.1007/978-3-030-01237-3_32
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/cvpr.2017.19
http://dx.doi.org/10.1007/s11554-022-01235-x
https://doi.org/10.48550/arXiv.1803.04189
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1109/TIP.2018.2839891
http://www.ncbi.nlm.nih.gov/pubmed/29993717
http://dx.doi.org/10.1016/j.neunet.2020.07.025
http://www.ncbi.nlm.nih.gov/pubmed/32829002
http://dx.doi.org/10.1016/j.ces.2018.09.049
http://dx.doi.org/10.1016/j.jcis.2021.06.178
http://www.ncbi.nlm.nih.gov/pubmed/34329974
http://dx.doi.org/10.1039/D2LC00416J
http://dx.doi.org/10.1017/jfm.2023.213
https://doi.org/10.48550/arXiv.2001.05566
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1039/C7LC00826K


Micromachines 2023, 14, 1964 18 of 18

33. Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. Comparative-study of Hough Transform Methods for circle finding. Image Vis.
Comput. 1990, 8, 71–77. [CrossRef]

34. Mudugamuwa, A.; Hettiarachchi, S.; Melroy, G.; Dodampegama, S.; Konara, M.; Roshan, U.; Amarasinghe, R.; Jayathilaka, D.;
Wang, P.H. Vision-Based Performance Analysis of an Active Microfluidic Droplet Generation System Using Droplet Images.
Sensors 2022, 22, 16. [CrossRef] [PubMed]

35. Wang, Y.F.; Wang, L.J.; Wang, H.Y.; Li, P.H. End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks.
IEEE Access 2019, 7, 31959–31970. [CrossRef]

36. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration With Neural Networks. IEEE Trans. Comput. Imaging
2017, 3, 47–57. [CrossRef]

37. Rutkowski, G.P.; Azizov, I.; Unmann, E.; Dudek, M.; Grimes, B.A. Microfluidic droplet detection via region-based and single-pass
convolutional neural networks with comparison to conventional image analysis methodologies. Mach. Learn. Appl. 2022,
7, 100222. [CrossRef]

38. Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012,
12, 2146–2155. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0262-8856(90)90059-E
http://dx.doi.org/10.3390/s22186900
http://www.ncbi.nlm.nih.gov/pubmed/36146247
http://dx.doi.org/10.1109/ACCESS.2019.2903582
http://dx.doi.org/10.1109/TCI.2016.2644865
http://dx.doi.org/10.1016/j.mlwa.2021.100222
http://dx.doi.org/10.1039/c2lc21147e

	Introduction
	Materials and Methods
	Droplet Generation and Image Acquisition
	Dataset Preparation
	Evaluation Metrics
	Droplet Segmentation and Diameter Measurement
	Image Quality

	Microdroplet Detection
	Deep-Learning Super-Resolution Models
	SRCNN
	MSRN-BAM

	Image Denoising with DnCNN

	Results
	Droplet Detection
	Super-Resolution Models
	Image Denoising

	Discussion
	References

