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Abstract—Most deep learning-based acoustic scene classification
(ASC) approaches identify scenes based on acoustic features con-
verted from audio clips containing mixed information entangled
by polyphonic audio events (AEs). However, these approaches have
difficulties in explaining what cues they use to identify scenes. This
letter conducts the first study on disclosing the relationship between
real-life acoustic scenes and semantic embeddings from the most
relevant AEs. Specifically, we propose an event-relational graph
representation learning (ERGL) framework for ASC to classify
scenes, and simultaneously answer clearly and straightly which
cues are used in classifying. In the event-relational graph, embed-
dings of each event are treated as nodes, while relationship cues
derived from each pair of nodes are described by multi-dimensional
edge features. Experiments on a real-life ASC dataset show that
the proposed ERGL achieves competitive performance on ASC by
learning embeddings of only a limited number of AEs. The results
show the feasibility of recognizing diverse acoustic scenes based on
the audio event-relational graph.

Index Terms—Acoustic scene classification, event-relational
graph, multi-dimensional edge, graph representation learning.

I. INTRODUCTION

ACOUSTIC scene classification (ASC) aims to classify an
audio clip into a pre-defined semantic category, indicat-

ing the acoustic environment where the clip is captured (e.g.,
park, mall, or bus) [1]. ASC provides a broad description of
the acoustic environment, which can assist intelligent agents
in quickly understanding their surrounding environment. As a
result, it is useful for various applications, such as sound source
recognition [2], [3], [4], [5], [6], well-being assistance [7], [8],
[9], and audio-visual scene recognition [10], [11], [12], [13],
[14].
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Typical deep learning-based ASC methods consist of three
steps: 1) Converting a time-domain audio signal to a time-
frequency spectrogram, which is used as input acoustic features;
2) Feeding these features to neural networks to obtain high-level
representations; 3) Recognizing acoustic scenes based on such
high-level representations. For example, Ren et al. [15] utilize
a CNN-based model with mel features, where attention-based
pooling layers are used to reduce the dimension of representa-
tions. The spatial pyramid pooling approach is used by CNN
in [16] to provide various resolutions for ASC. Apart from
mel-based features, wavelet-based deep scattering spectrum [17]
is introduced for ASC. To explore the instance-level information
of audio clips, multiple-instance learning [18] is used in ASC.
The higher-order temporal information of acoustic features is
exploited by convolutional recurrent neural networks (CRNN)
with bidirectional recurrent layers [19] and with spatio-temporal
attention pooling [20]. In addition, attentional graph convo-
lutional networks are used for audio-visual scene classifica-
tion [21]. Given the intrinsic relationship between acoustic
scenes and audio events (AEs), some studies jointly analyze
scenes and events based on multi-task learning (MTL) [22],
[23]. Relation-guided ASC [24] is proposed to exploit the im-
plicit relations between coarse-grained scenes and fine-grained
AEs.

The features used in the methods above often contain poly-
phonic AEs information. These features capture both useful
and irrelevant information, as well as noise, which are then
used for ASC by recognition systems. However, it is difficult
to explain what cues in audio clips are used by these approaches
to recognize acoustic scenes (ASs). In real life, it is natural for
humans to recognize ASs based on the semantically meaningful
AEs contained in them, despite variations in relations among
the occurring AEs in ASs [25]. This letter proposes audio event-
relational graph representation learning (ERGL) to classify
scenes and simultaneously clearly answer which cues are used
in classifying. Inspired by the multi-dimensional edge learning
in graph-based image analysis [26], [27], we introduce it into
the proposed audio-based ERGL to enhance scene-dependent
semantic relationships between non-graph AEs in end-to-end
training. These scene-dependent event-relational graphs (ERGs)
contain not only the activation of AEs (i.e. nodes in the graph)
in the audio clip, but also their relations (represented as edges)
that are relevant to ASC tasks. The graph in ERGs is a single
graph. Thus, spatial-temporal graph neural networks [28], [29],
which aim to capture spatial and temporal dependencies of graph
sequences or multigraphs, are unsuitable for modeling ERGs.
ERGs are fed to a gated graph convolutional network (Gated
GCN) [30] for ASC. Experiments show that graph representa-
tions learned by ERGL, from only several explicit audio event
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Fig. 1. Framework of the proposed scene-dependent event-relational graph learning (ERGL) for ASC.

semantic embeddings, can facilitate the discrimination between
different ASs.

II. AUDIO EVENT-RELATIONAL GRAPH LEARNING

This section discusses the proposed approach for learning the
scene-related event-relational graph (ERG) representation from
non-graph audio clips in an end-to-end manner. First, we learn
a set of AEs embeddings, where each embedding (vi) contains
the i-th audio event-related information, and is treated as the i-th
node in the ERG. Then, we learn a pair of multi-dimensional
edge features (ei,j , ej,i) to describe the relations between each
pair of nodes (vi, vj). Thus, the obtained graph explicitly de-
scribes the occurrence of a set of AEs and their relations relevant
to the given scene. Finally, the obtained ERG with n nodes and
n× n edges is fed into Gated GCN for ASC.

A. Audio Event Node Embedding Learning

We first propose a model derived from PANNs [31] for node
embedding generation, where each describes a specific AE. As
shown in Fig. 1, the spectrogram of the audio clip is fed into a set
of convolutional blocks. Each block contains two convolutional
layers with kernels of size 3× 3, a batch normalization [32], and
a ReLU function [33]. Then, a fully-connected (FC) layer with
2048 units generates joint representations for all AEs. Unlike
PANNs, we employ n independent FC layers with 64 units to
learnn embeddings separately, where each embedding describes
a unique pre-defined audio event.

During training, each event embedding vi is fed into the
following event classification layer to predict the corresponding
event probability pvi, where mean squared error (MSE) loss
is used to measure the distance between the prediction pvi
and the label yvi (i.e., Levent = MSE(pvi, yvi)). To train the
audio event node embedding generation module, we employ
PANNs, which contains 527 classes of AEs, to generate pseudo
labels of AEs. This produces a 527-dimensional soft pseudo
label y = [yv1, yv2, . . ., yv527] for each audio clip, describing the
occurrence probabilities of 527 classes of AEs. Since real-world
acoustic scene datasets rarely have all 527 classes of AEs, i.e.,
the number of occurred AEs would be much smaller than 527, we
rank all AEs by accumulating their probabilities in all training
data, and use a set of top-ranked (Top n) AEs with the highest
overall probability describing each scene. As a result, each graph
contains n nodes and n× n edges.

B. Audio Event-Relational Edge Feature Learning

Once all audio event (node) embeddings are obtained, we pro-
pose a multi-dimensional edge feature learning (MEL) module
to learn scene-related relations between each pair of AEs. Here,

our hypothesis is that the co-occurrence patterns of all event
pairs may include key clues for ASC tasks. The proposed MEL
module in Fig. 1 consists of two sub-modules, the node-context
relation modeling (NCM) and the node-node relation modeling
(NNM). NCM first learns the ASC-task-specific relation cues
between each node (event) and the global context (scene), gen-
erating a scene-aware representation to represent each node.
Then, NNM models the semantic relations between nodes in
each node pair, to generate the final multi-dimensional edge
feature describing the AE-based scene-aware relations between
each pair of nodes.

NCM: For each node vi, NCM conducts cross-attention [34]
between it and the global contextual representation vall consist-
ing of the mean of all node features, where node vi is used as
the query, and vall is employed as the key and value.

NCM(Q,K) = Φ(QWq(KWk)
T /

√
dk)KWv (1)

whereΦ is the softmax function,W{q,k,v} are learnable weights,
and dk is a factor equal to the number of channels in K. As a
result, the obtained representations Si (i = 1, 2, . . . , n) encode
scene-aware cues for each audio event.

Si = NCM(vi, vall), Sj = NCM(vj , vall) (2)

NNM: After extracting all scene-aware event node features,
NNM module then models the semantic relationship between
nodes by capturing multi-dimensional (m-d) edge features. In
particular, NNM consists of cross-attention [34] and global aver-
age pooling (GAP) [19] layer, which takes a pair of scene-aware
event features (Si, Sj) as input, and a pair of m-d edge features
(ei,j , ej,i) as output. In detail, NNM first conducts:

Ri,j = NNM(Sj ,Si), Rj,i = NNM(Si,Sj) (3)

where the edge feature Ri,j encodes Sj-related cues in Si, and
correspondingly, Rj,i encodes Si-related cues in Sj . Next, edge
features Ri,j and Rj,i are fed into the GAP layer to obtain the
multi-dimensional edge feature vectors ei,j and ej,i.

ei,j = GAP(Ri,j), ej,i = GAP(Rj,i) (4)

Consequently, the produced ei,j and ej,i capture multiple ASC-
task-specific cues related to both event nodes vi and vj .

C. Scene-Aware Event-Relational Graph

Once the ERG (denoted as G0) that contains n node em-
beddings v = {v1, v2, . . . , vn} and n× n multi-dimensional
directed edge representations e = {e1,1, . . . , ei,j , . . . , en,n} is
obtained, we feed G0 to the Gated GCN [30], [35] for ASC.

Since the model contains U GCN layers, its output is GU =
(vU , eU ), which is a graph with the same topology as G0. The
i-th node represents the activation state of the i-th event in the
scene. The latent node features in GU are concatenated as the
scene representation and input to the final scene classification
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TABLE I
ACC OF ERGL AT DIFFERENT n VALUES ON THE VALIDATION SET

layer. Cross entropy (CE) [36] is used as the loss function in ASC
between the prediction ps and the scene true label ys, Lscene =
CE(ps, ys). Hence, the final loss of ERGL is L = λ1Levent +
λ2Lscene, where λi (i = 1, 2) default to 1 in this letter. The effect
of U , which defaults to 2, on the model performance will be
explored in the experiments later.

III. EXPERIMENTS AND RESULTS

A. Dataset, Baseline, Experimental Setup, and Metric

This letter uses TUT Urban Acoustic Scenes 2018 dataset
(UAS) [37] with 8640 10-second clips. The UAS contains 10
classes of real-life acoustic scenes, 24 hours in total. However,
UAS does not provide labels for audio events. To obtain the event
labels used in Section III-B, pre-trained model PANNs are used
to annotate audio clips with 527 classes of AEs pseudo labels.
To compare with other methods on the same test set, we follow
the setup of [37], where the test, training, and validation sets
contain 2518, 5509, and 613 samples, respectively.

In addition to a typical CNN-based approach [37] for ASC,
this letter also employs attention-based [15], spatio-temporal
attention [20], multiple-instance learning [18], and scene-event
joint learning [22], [23], [24], [38] as baselines for comparison.

Following [31], the log mel spectrogram with 64 bins is used
as the acoustic feature, which is extracted by the Short-Time
Fourier Transform with a Hamming window of size 1024 and
a hop size of 320 samples. A batch size of 64 and AdamW
optimizer [39] with a learning rate of 1e-4 are used to minimize
the loss. The systems are trained for 400 epochs. The accuracy
(Acc) [1] is used as the performance metric.

B. Results and Analysis

The pseudo labels composed of probability outputs by
PANNs [31] are used as supervision information for training
the audio event model, as shown in Fig. 1. The accuracy of
pseudo labels that do not involve human verification cannot be
evaluated. Since our goal is ASC, we will mainly show ASC
results, rather than the accuracy of pseudo labels on AEs.

The number n of audio events: We first evaluate the impact of
the choice of n, i.e., the number of top AEs used in ERGL, on
the performance of ERGL. The Acc of ERGL does not increase
monotonically as n increases, as shown in Table I. The reason
may be that as the number of events n increases, the number of
nodes in the graph increases linearly, but the number of edges in
the graph grows in the order of n2, which sharply increases the
burden for learning the multi-dimensional edge features with
the MEL module. The increased number of parameters does
not provide more useful information to the model, but may
compromise its performance.

The ERGL works best when n = 25, indicating that only
using 25 classes of AEs can describe the 10 classes of scenes
in the dataset. In preprocessing the distribution of AEs in each
scene, we also found that the 25 classes of AEs automatically

TABLE II
ACC OF ERGL AT DIFFERENT U LAYERS ON THE VALIDATION SET

TABLE III
ABLATION STUDY OF AE RELATION-RELATED MEL IN ERGL

Fig. 2. Confusion matrix of ERGL w/o and w/ AE-based relational edges on
the test set. (X-axis: Predicted label; Y-axis: True label.).

selected by the model cover most of the dominant AEs in each
scene. Therefore, we set n = 25 in the following experiments.

The number (U ) of GCN layers: Table II explores the ERGL
performance under different numbers of GCN layers. The results
in Table II illustrate that increasing U does not lead to better
results. The reason for this may be that the 2-layer Gated GCN
already achieves a good balance between model performance
and computational efficiency on the graph consisting of semantic
embeddings of 25 classes of AEs, and also that adding extra lay-
ers would make the model deeper and harder to train. Subsequent
experiments will set U as 2.

Ablation study of AE-based relations in ERGL: The MEL
module in ERGL aids in capturing multi-dimensional AE-based
semantic relations between nodes. In MEL, NCM learns the
relation between the node and global contextual representation
to represent the node, while NNM uses cross-attention to capture
the semantic relations between nodes. To investigate how well
NNM captures semantic relations, Table III presents the ablation
study to compare the performance of ERGL with (w/) and
without (w/o) AE-based relations.Table III shows that ERGL w/
NNM outperforms ERGL w/ NCM. For graph representation
learning in ERGL, NNM, which aims to capture semantic rela-
tions between nodes, is more valuable than NCM, which focuses
on learning relations between the node and global contextual
representation. This shows that NNM based on cross-attention
capturing AE-based semantic relations is effective. Fig. 2 shows
confusion matrices of ERGL w/o and w/ AE-based relations
to explore where the AE-based relational approach works and
where it does not.

Fig. 2 illustrates that AE-based relational edges effectively
help ERGL improve its accuracy in 6 scenes: “airp. (airport),
bus, metro, park, squa. (public square), traff. (street traffic)”.
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TABLE IV
COMPARISON OF NON-ENSEMBLE SYSTEMS ON THE TEST SET

Fig. 3. Graph structures of test audio samples from different scenes. Green
dots represent 25 classes of AEs used in this letter. A larger dot denotes a higher
probability of the event. A thicker line denotes a larger edge value between nodes
in the graph representation. (For visualization, a node is considered inactive if its
probability is less than 0.1. Edges between two inactive nodes are not displayed.
Multi-dimensional features of the edge are represented by their mean value.)

The accuracy of airp. is improved the most, mainly because
the misclassified samples between stat. (metro station), pedes.
(street pedestrian), and airp. is reduced from 30 and 39 to 8
and 16, respectively. In contrast, introducing MEL increases the
misclassified samples of stat. and metro. Even for humans, it
is challenging to distinguish these similar scenes relying on
audio only. In short, introducing AE-based relational edges
can effectively improve the performance of ERGL in 6 scenes,
increasing its Acc from 73.35% to 78.08% in Table III.

Comparison with non-ensemble ASC methods. Table IV
shows the results of models on the same test set. In the fixed
mode [40], the parameters of PANNs are not updated in training.
The result of fixed-mode PANNs is comparable to Baseline,
implying that PANNs with AEs knowledge, which is learned
from AudioSet [41], have a certain discriminative ability for
scenes. In contrast, ERGL using just audio event embeddings
improves ASC accuracy even though these event embeddings are

TABLE V
ACC OF SCENE-EVENT JOINT ANALYSIS METHODS ON TEST SET

learned from pseudo labels without verification. The proposed
end-to-end EGRL without data augmentations offers competi-
tive results. This illustrates that ERGL can effectively discrim-
inate different scenes by relying only on several scene-aware
events semantic embeddings.

Comparison with scene-event joint methods: The ERGL in-
fers target scenes based on the ERG in the scene, which is
scene-event joint analysis. Table V compares ERGL with other
scene-event joint methods. The model using the same latent
space to classify scenes and events [22] performs the worst.
The reason may be that real-life scenes and AEs differ at the
semantic level and the feature space. Papers [23], [38] use
shared base and separated high-level features to identify scenes
and AEs. RGASC [24] exploits the scene-event relationship
to guide the model to achieve mutually beneficial scene-event
classification. The ERGL relies only on semantic embeddings
of AEs to achieve one-way event-to-scene inference, and rec-
ognizes scenes based on the corresponding explicit semantic
ERG. Notably, ERGL, which only needs 25 classes of AEs’
information, outperforms RGASC with 527 classes of AEs’
information. Overall, the ERGL achieves promising results,
demonstrating the feasibility of ASC based on the ERG.

Analysis of confusion: To further explore the reasons for the
misclassification between scenes for graph representation-based
classification. Fig. 3 presents the structure of graph representa-
tions of audio clips from different scenes. In Fig. 3(a) and (b) , the
dominant AEs in airp. and mall scenes are speech and music, so
the connections in the graph are mainly gathered around speech
and music. This may be the reason that ERGL confuses the
airp. and mall scenes in Fig. 2. In addition to these similarities,
the third focused audio event in Fig. 3(a) is silence, while that
in Fig. 3(b) is animal sounds, which reflects the differences
between the two scenes. In Fig. 3(c) and (d), the dominant AEs
in bus and tram scenes are vehicle, music, speech, train, car
and silence. And the AEs with dominant connections are the
same: vehicle, music and silence. With similar dominant events
and graph structures, the model tends to be confused by these
similar scenes.

IV. CONCLUSION

To perform ASC and simultaneously clearly answer which
cues are used in classifying, we propose a scene-dependent
audio event-relational graph representation learning method for
ASC, which represents acoustic scenes by a set of scene-aware
nodes with explicit AEs semantic embeddings, and specifically
produces scene-task-relevant multi-dimensional edge features
to describe AE-based semantic relations between nodes. Exper-
iments show that ERGL achieves competitive ASC performance
by learning ERGs, which are constructed on semantic embed-
dings of only a limited number of AEs.
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