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A B S T R A C T

Video streams are utilised to guide minimally-invasive surgery and diagnosis in a wide range of procedures,
and many computer-assisted techniques have been developed to automatically analyse them. These approaches
can provide additional information to the surgeon such as lesion detection, instrument navigation, or anatomy
3D shape modelling. However, the necessary image features to recognise these patterns are not always reliably
detected due to the presence of irregular light patterns such as specular highlight reflections. In this paper,
we aim at removing specular highlights from endoscopic videos using machine learning. We propose using a
temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities, inferring
its appearance spatially and from neighbouring frames, where they are not present in the same location. This
is achieved using in-vivo data from gastric endoscopy (Hyper Kvasir) in a fully unsupervised manner that
relies on the automatic detection of specular highlights. System evaluations show significant improvements
to other methods through direct comparison and ablation studies that depict the importance of the network’s
temporal and transfer learning components. The generalisability of our system to different surgical setups and
procedures was also evaluated qualitatively on in-vivo data of gastric endoscopy and ex-vivo porcine data
(SERV-CT, SCARED). We also assess the effect of our method in comparison to other methods on computer
vision tasks that underpin 3D reconstruction and camera motion estimation, namely stereo disparity, optical
flow, and sparse point feature matching. These are evaluated quantitatively and qualitatively and results show
a positive effect of our specular inpainting method on these tasks in a novel comprehensive analysis. Our code
and dataset are made available at https://github.com/endomapper/Endo-STTN.
1. Introduction

Specular highlights in digital images commonly occur with dis-
crete light sources. They present a serious problem in applications
that rely on image processing and analysis, such as depth perception,
localisation, and 3D reconstruction (Tao et al., 2015; Ozyoruk et al.,
2021). These highlights not only occlude important colours, textures,
and features but also act as additional features that may be falsely
interpreted as being characteristic of the scene.

The effect of specular highlights can be especially harmful when
dealing with surgical imaging. Some procedures that are affected
by specularities include dermatological imaging (Madooei and Drew,
2015), cervical cancer screening (Kudva et al., 2017), laparoscopy
(Stoyanov and Yang, 2005), endoscopy (Ali et al., 2021), and cardiac
imaging (Alsaleh et al., 2015).

This paper focuses on the removal of specular highlights and its
effect on other image processing algorithms in the context of minimally
invasive surgery (MIS) and diagnostic procedures (MISD).

∗ Corresponding author.
E-mail addresses: rema.daher.20@ucl.ac.uk (R. Daher), f.vasconcelos@ucl.ac.uk (F. Vasconcelos), danail.stoyanov@ucl.ac.uk (D. Stoyanov).

To be able to diagnose, treat, or take biopsies during MISD, a clear
understanding of the surgical scene and the ability to analyse it is of
great importance, whether the analysis is done solely visually by the
surgeon or with the assistance of computer vision (Chadebecq et al.,
2023). However, specular highlights highly obscure the visibility of the
scene. Specifically, the occlusions caused by specular highlights have
a detrimental effect on the surgeons’ ability to detect anomalies and
treat them. According to the study done by Vogt et al. (2002), surgeons
selected images with inpainted specular highlights as higher or better
quality.

These highlights also negatively affect the success of numerous
MISD computer vision tasks. These tasks include providing a bet-
ter depth perception, object recognition, motion tracking, 3D recon-
struction, localisation, etc. For instance, Oh et al. (2007) show how
specular highlights interfere negatively in uninformative frame classi-
fication and thus remove specular pixels from consideration. In addi-
tion, Hegenbart et al. (2011) show that specularities have a negative
vailable online 4 October 2023
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Fig. 1. Specular highlight inpainting results with our proposed method. Our model is
trained on a portion of the Hyper Kvasir dataset (upper and lower gastric endoscopy).
Provided results are for unseen Hyper Kvasir images and other datasets without any
additional fine-tuning, including in-vivo colonoscopy (EndoMapper) and ex-vivo porcine
laparoscopy (SERV-CT, SCARED). The yellow circles highlight important inpainted
areas where the spatial and temporal components were utilised to recover occluded
textures. Red circles show areas where some details were lost with inpainting. For
more inpainting examples on both in-vivo endoscopy and ex-vivo porcine laparoscopy
refer to supplementary material and Figs. 5–7.

impact on celiac disease classification. As for polyp analysis, specular
highlights degrade the performance of polyp detection, segmentation,
and histology estimation (Prasath, 2016; Zhang et al., 2018; Urban
et al., 2018; Sánchez et al., 2017).

Unlike physical object occlusions (e.g. caused by surgical instru-
ments), specular highlights have irregular motions and shape patterns,
since they change position, disappear, and appear according to tissue
properties, light incidence, and camera position. Therefore, several
approaches have been developed to specifically target the detection,
modelling, and removal of specular highlights. One approach is to
segment image regions where specularities are present and remove
them from further analysis (Oh et al., 2007), however, this may discard
useful information from the images. Another approach is to mathe-
matically model the physical properties of these highlights (Hao et al.,
2020), which can help in estimating the 3D shape and deformation of
visualised anatomy. This, however, is a very complex task that involves
accurately modelling light reflection and scattering from the visualised
tissue and properties of the camera light source. Others have worked
on improving computer vision tasks such as depth estimation to be less
susceptible to specularities (Mathew et al., 2020). Finally, the solution
that we will focus on is to inpaint these highlights and fill in the missing
information.

The positive effect of inpainting on various computer vision tasks in
endoscopy is utilised in the literature. For instance, when Stoyanov and
Yang (2005) inpainted specularities, 3D reconstruction generated more
stable results. Ozyoruk et al. (2021) also use inpainting before estimat-
ing depth for their 3D reconstruction pipeline. Heart surface tracking is
also improved with inpainted specularities (Gröger et al., 2005). More-
over, a substantial improvement is detected with the realignment of
colour channels when using inpainted specular highlights (Arnold et al.,
2010). Furthermore, specular highlight inpainting also improves tool
segmentation (Saint-Pierre et al., 2011) and polyp localisation (Bernal
et al., 2013, 2015).

There are two classic approaches to inpainting specular highlights:
spatial–temporal patch searching, and diffusion methods. The first one
attempts at finding image patches containing the occluded regions in
neighbouring video frames where the specularities are not present in
the same location (Zeng et al., 2019; Guo et al., 2016; Newson et al.,
2014; Stehle, 2006). Whereas diffusion methods propagate information
from the neighbourhood of specular regions within the frame using
interpolation (Arnold et al., 2010). However, both these classic ap-
proaches heavily rely on manually tuned parameters, give low-quality
results, and fall for local minima. Therefore, learning-based approaches
2

have recently been proposed as a more reliable solution (Ali et al.,
2021; Siavelis et al., 2020; Funke et al., 2018).

In this paper, a machine learning approach is used to inpaint
specular highlights in gastrointestinal tract (GI) endoscopy videos by
training a temporal generative network. Endoscopy is a very impor-
tant procedure under the umbrella of MIS and MISD. Endoscopy has
been used to diagnose GI tract cancers, perform surgery to treat such
problems or carry out biopsies. The human GI tract cancer has a 63%
mortality rate, which accounts for 2.2 million deaths per year (Borgli
et al., 2020). Being able to diagnose such cancers early on would save
many by reducing these numbers significantly. These characteristics
make endoscopy an important routine procedure.

Endoscopic scenes are challenging in computer vision due to their
few distinctive texture and geometry features. Another challenge is
the uniqueness of endoscopic specular highlights in terms of shape,
movement along frames, and conditions for appearance. This makes
it hard to learn and model such artefacts, which leads to a lack of
ground truth data. Since data is a key component of any learning-
based approach, synthetic data has been developed but is still not very
realistic (Ozyoruk et al., 2021). In addition to that, with the limited
real data in general in the medical field, a clear data shortage arises.
All these challenges make this problem different from the usual video
inpainting problem.

The available learning-based endoscopic specularity inpainting
methods have so far only been focused on single-frame inpainting.
In this paper, a learning-based approach with a temporal component
will be adapted from general video inpainting and used for the task
at hand. This method can take into consideration the relation between
consecutive frames as well as neighbouring pixel relations. Specifically,
an attention-based temporal generative adversarial network (GAN) is
used to inpaint specular highlights, which in turn enhances endoscopic
video streams.

In addition, to deal with the limited training data and the absence
of ground truth to the occluded textures behind specular highlights,
a ‘‘pseudo’’ ground truth was generated. The pseudo ground truth is
achieved by translating the specular mask within the same frame and
then removing any overlaps with the original mask as can be seen in
Fig. 3. These generated pseudo masks dictate the regions the model
will inpaint. This way, the translated and processed masks now cover
regions that have known textures. The paired data that is obtained at
this point is called ‘‘the pseudo ground truth dataset’’ since the known
textures used are not the original ones that the specular highlights
occlude.

Even though our method is trained on GI endoscopy data, exper-
imental evaluation is also extended to laparoscopic ex-vivo porcine
data. This is performed to assess the model’s effect on datasets with
available 3D reconstruction ground truth. The tested datasets include
in-vivo GI endoscopic data from the publicly available Hyper Kvasir
dataset (Borgli et al., 2020), colonoscopic data from the EndoMapper
dataset (Azagra et al., 2022), and laparoscopic ex-vivo porcine data
(SERV-CT Edwards et al., 2022, SCARED Allan et al., 2021). Some
results on the tested datasets are shown in Fig. 1. It is worth mentioning
that the system was trained only on Hyper Kvasir data and tested on
all 4 datasets.

To the best of our knowledge, this is the first work in endoscopic
highlight removal that employs a deep learning-based solution with
a temporal component, which effectively exploits occluded texture
information from different frames within the video. Another contribu-
tion lies in an in-depth, comprehensive analysis of the effect of the
specular highlight processing pipeline on a diverse range of tasks that
are typically used in vision-based localisation, mapping, and recon-
struction. The considered tasks in this paper include sparse feature
matching, optical flow, camera motion estimation, and stereo disparity
calculation. While previous works have studied some of these tasks
in isolation (Ali et al., 2021; Kaçmaz et al., 2020; Stoyanov et al.,

2005), we assess the specular highlight processing pipeline for all tasks.
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Furthermore, the existing evaluation of feature matching and optical
flow relies on synthetic image warping that ignores the characteristic
effects of specular highlights in continuous videos such as shape change
and disappearance/appearance. To overcome this we use datasets with
available geometry ground truth (SCARED, SERV-CT). We also use this
analysis for further comparisons with other methods.

The contributions of the proposed system can be summarised as
follows:

• A novel solution to specular highlight removal in endoscopic
videos. This is achieved with a temporal learning-based method
as opposed to previous approaches that either ignore the temporal
component or rely on parameter-heavy patch-based approaches.
Our model was adapted from the general-purpose object inpaint-
ing approach of Zeng et al. (2020).

• The generation of pseudo ground truth data for the Hyper Kvasir
dataset that enables effective unsupervised training of our model,
as well as quantitative evaluation in unseen images without rely-
ing on synthetic image warping.

• A quantitative and qualitative comparison of our approach
against both learning-based and classic inpainting approaches,
demonstrating the positive effect of temporal learning.

• Analysing qualitatively and quantitatively the effect of inpainting
specular highlights, using various methods, on the estimation
of stereo disparity, optical flow, feature matching, and camera
motion.

The rest of the paper is divided into Section 2, which includes
discussion of the related work, Section 3, which details the pro-

osed system, followed by Section 4, which describes the experiments
erformed to achieve the results, that are presented and analysed in
ection 5.

. Related work

This section will depict the work related to handling specular high-
ights in endoscopy, general-purpose video inpainting methods, and
lso the effect of specular highlight removal on computer vision tasks
n endoscopy.

.1. Endoscopic specular highlight processing

Four different approaches have been used to handle specular high-
ights in endoscopy. The first one and the most simple is to perform
ighlight detection or segmentation and exclude either image regions
r entire frames from further processing. To remove entire frames, var-
ous quality metrics could be used, such as those presented in Oh et al.
2007), Menor et al. (2016) and Chikkerur et al. (2011). However, such
n approach results in data loss where occluded texture information is
iscarded.

Another approach is to represent specular highlights using a math-
matical parametric model. After modelling these highlights, depth,
s well as motion estimation, can be performed from the specular
ighlight characteristics (Hao et al., 2020). However, this does not
liminate the problem of data loss and occluded information which
s very important in applications such as polyp detection and feature
atching. Additionally, these can be complex models that require
riors on the properties of the camera, light source, and visualised
issue, which can be difficult to obtain in a dynamic environment.

The third approach is making computer vision tasks in endoscopy
ore robust and less susceptible to specular highlights. For learning-

ased tasks, this is done by modifying their training, architecture, or
oss functions. For instance, Mathew et al. (2020) use augmentation
n training, which improves depth estimation. Another example is the
ystem proposed by Barbed et al. (2022), where a loss function is
dded to encourage the model to ignore specularity regions in feature
3

xtraction.
The fourth way of handling specular highlights is to inpaint the
affected regions with the underlying texture. Some methods rely on
an optimisation formulation that searches for well-matching patches
or pixels to the occluded ones in the rest of the image or previous
frames and uses it as a replacement (Guo et al., 2016; Shen et al.,
2020; Chao et al., 2021; Qian et al., 2022; Nie et al., 2023). In
these methods, motion fields are assumed to be homogeneous and
thus do not perform well with complex motions. These methods are
also considered computationally expensive. An alternative technique is
based on diffusion, which smoothly propagates the information in the
neighbouring image regions to highlights through interpolation (Arnold
et al., 2010; Zhang et al., 2022; Bidokh and Hassanpour, 2023). Both
these approaches are limited to local structures and do not capture
the global environment. They also produce low-quality results as the
missing regions increase in size and have manually tuned parameters.
Automated tuning of these parameters has been proposed in Yousaf and
Qin (2014) using a two-layer feed-forward neural network. However,
the ground truth data is manually chosen based on visual analysis,
which adds some inaccuracies. A third inpainting technique relies
on data-driven machine learning to automatically generate inpainted
specularities such as in Ali et al. (2021), Siavelis et al. (2020), Funke
et al. (2018), García-Vega et al. (2022a), Monkam et al. (2021) and
García-Vega et al. (2023).

Most learning-based approaches to inpainting rely on generative
model architectures. Endoscopic videos of the colon, liver, and stom-
ach have been inpainted with an end-to-end cycle GAN with a self-
regularisation loss (Funke et al., 2018). Siavelis et al. (2020) use GANs
to inpaint laparoscopic cholecystectomy images. Cycle GANs have been
proposed to restore gastro-oesophagal endoscopic specular highlights
with an L1 and edge-aware losses (Ali et al., 2021). The model is
initialised with the weights of the pre-trained model on the Places 2
dataset (Zhou et al., 2017). It is then retrained using a bottleneck ap-
proach and tested on endoscopic videos of the oesophagus and pyloric
region of the stomach. Finally, Rodríguez-Sánchez et al. (2017) use a
Convolutional Encoder-Decoder network to segment and then inpaint
GI tract endoscopic specular highlights by relying on limited spatial
information segmented by the encoder. However, all these approaches
rely on spatial information and do not take advantage of the temporal
relation between the video frames.

Reliable ground truth for highlight removal in real surgical videos
does not exist for any of the analysed procedures, and therefore the
evaluation of the above methods has some limitations. Some works
only provide visual results for qualitative interpretation (Siavelis et al.,
2020) and others perform quantitative evaluations on non-surgical
data (Rodríguez-Sánchez et al., 2017). To perform a quantitative eval-
uation on the targeted surgical domain, one could rely on self-training
approaches (Funke et al., 2018) to generate artificial paired data, but
this may produce unrealistic images. Alternatively, Ali et al. (2021)
add randomly placed masks to non-occluded image regions so that
inpainting can be compared against a known tissue pattern. However,
random masks do not capture realistic temporal information in contin-
uous videos. In this paper, we generate a non-random pseudo ground
truth for endoscopic specular highlight masks that is appropriate for
continuous video analysis, both during training and evaluation of our
model.

2.2. Temporal video inpainting

Temporal video inpainting has been applied to applications such as
re-targeting videos (Kim et al., 2019), restoring saturated areas (Lee
et al., 2019), and removing objects from videos (Tukra et al., 2021).
In fact, all the other state-of-the-art temporal video inpainting methods
that will be discussed in this section focus on object or synthetic random
shape removal from diverse videos including people, faces, animals,
vehicles, and other common objects. The aim of these methods is to

create an inpainting technique that works on any application. However,
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in our application domain, more challenges need to be addressed and
taken into consideration. These include the discontinuous movement
of specular highlights throughout the videos due to the composition of
the surfaces of the GI environment and the angle of the incident light.
Another challenge is related to the few distinctive features, colours, and
textures, as well as the absence of geometric structures in endoscopic
videos. Most importantly, video inpainting methods have benchmark
annotated ground truth datasets that can be used for training and
testing, whereas, this is far from the case in the endoscopic field, where
data is limited and the ground truth is hard to obtain.

The proposed architectures for temporal inpainting that mostly
focus on object or synthetic random shape removal from diverse videos
include 3D and 2D CNNs with a temporal component (Wang et al.,
2019), which are improved on in Xu et al. (2019) and Zhang et al.
(2019) by estimating appearance simultaneously with optical flow. For
coherency in the temporal domain, Kim et al. (2019) use Recurrent
Neural Networks and Chang et al. (2019) inpaint free-form videos
using temporal shift modules (Lin et al., 2019) and temporal SN-
PatchGAN (Yu et al., 2019). However, all these methods do not use
information from distant frames (Zeng et al., 2020). And even with
the extension of Gao et al. (2020) on the method in Xu et al. (2019),
where they use edge information for flow estimation and add three
distant frames, there are still very limited distant frames taken into
consideration.

To address this issue, attention models have been used. Lee et al.
(2019) and Oh et al. (2019) assume homogeneous motions and per-
form frame-wise processing of videos without any temporal coherency
optimisation; only post-processing is used, which is time-consuming
and unreliable with a high number of artefacts. Zeng et al. (2020) ad-
dress these problems by learning a joint Spatial-Temporal Transformer
Network (STTN) using a multiscale attention module with a similar
logic as the traditional method that searches for patches spatially and
temporally to fill in the specified occlusions.

There are a few recent methods that build on STTN to generate
higher resolution inpainted textures. These include introducing an
Aggregated Contextual-Transformation GAN (AOT-GAN) (Zeng et al.,
2022), combining 3D CNNs with a temporal shift and align mod-
ule (Zou et al., 2021), and introducing a Deformable Alignment and
Pyramid Context Completion Network with temporal attention (Wu
et al., 2021). Additionally, more complex occlusions can be handled
with a Decoupled Spatial-Temporal Transformer with a hierarchical
encoder (Liu et al., 2021).

2.3. Specular highlight removal effect on computer vision tasks in endoscopy

Kaçmaz et al. (2020) analyse the effect of specular highlight in-
painting on the classification and detection of polyps in colonoscopy.
Other works evaluate tasks related to localisation and reconstruction
and are more closely aligned with the work in this paper. For ex-
ample, Stoyanov et al. (2005) perform a qualitative analysis of the
effect of specular highlights on depth estimation and 3D reconstruction.
In addition, Ali et al. (2021) evaluate the effect of inpainting on
optical flow and feature matching, providing a quantitative analysis
of the results on synthetically generated data. Known geometric and
photometric transformations as well as scaling and Gaussian blur were
applied to frames to generate a pseudo ground truth. However, this
ignores the innate characteristics of specular highlight patterns, such
as discontinuity, sudden appearance and disappearance, and change in
size and shape. Finally, the above-proposed methods do not use any
temporal component.

In this paper, we analyse the effect of specularity inpainting both
qualitatively and quantitatively on stereo disparity, optical flow, fea-
ture matching, and camera motion estimation. The disparity evalua-
tion uses the ex-vivo porcine data with depth ground truth (SERV-CT
dataset Edwards et al., 2022). Effects on optical flow and feature
matching are evaluated by using them for relative camera motion
estimation, which can be compared against robot kinematics ground
truth on the SCARED dataset (Allan et al., 2021).
4

Fig. 2. The flowchart of the network architecture of the proposed system with our
pseudo ground truth training. The architecture is a multi-head multi-layer transformer
with embedding, matching and attending steps.

3. Proposed method

At the time of creating the proposed system, the system presented
by Zeng et al. (2020) was the state-of-the-art method in temporal video
inpainting. In parallel to STTN, Tukra et al. (2021) developed another
generative network to fuse spatial and temporal information.

In this paper, the openly available system presented by Zeng et al.
(2020) is adapted to fit the endoscopic specularity application. The
adaptation was performed by training STTN on specularity masks with
pseudo ground truth instead of object occlusions with temporal random
masks that can be very different in terms of temporal coherency and
continuity. These temporal random masks are generated by creating a
random shape for every video sequence and moving its location along
the frames using cubic Bezier curves to ensure a smooth movement
along frames (Zeng et al., 2020). The pseudo ground truth dataset had
to be generated and processed to create an end-to-end solution. Finally,
transfer learning was utilised to generate better results.

Since the proposed model relies heavily on STTN (Zeng et al., 2020),
a summary of its architecture is provided, followed by an explanation
and description of the modifications made.

3.1. STTN summary

First, masked video frames 𝑋𝑇
1 ∶= {𝑋1, 𝑋2,… , 𝑋𝑇 }, their corre-

sponding masks 𝑀𝑇
1 ∶= {𝑀1,𝑀2,… ,𝑀𝑇 }, along with the target frames

𝑌 𝑇
1 ∶= {𝑌1, 𝑌2,… , 𝑌𝑇 } are used to train the network, where T is the

frame length and (H, W) is the frame size. This method follows a
similar intuition to traditional methods that search for spatial–temporal
patches that require inpainting. This model learns to inpaint missing
regions by searching spatially and temporally through neighbouring
𝑋𝑡+𝑛

𝑡−𝑛 and distant uniformly sampled frames 𝑋𝑇
1,𝑠 at a rate of 𝑠. The

problem can be formulated as a ‘‘Multi-to-Multi’’ problem, and using
the Markov assumption, (Hausman and Woodward, 1999), the real data
distribution 𝑝(𝑌 𝑇

1 ∣ 𝑋𝑇
1 ) can be estimated from the output 𝑌 𝑇

1 of the
learnt mapping function:

𝑝(𝑌 𝑇
1 ∣ 𝑋𝑇

1 ) =
𝑇
∏

𝑡=1
𝑝(𝑌 𝑡+𝑛

𝑡−𝑛 ∣ 𝑋𝑡+𝑛
𝑡−𝑛 , 𝑋

𝑇
1,𝑠) (1)

A learning-based model is needed here to ensure temporal con-
sistency and coherency between all frames. STTN includes a spatial–
temporal transformer with multiple layers and multiple heads, sand-
wiched by a frame-level encoder from the left side and a decoder from
the right. The encoder and decoder are made up of 2D convolution
layers and are used to encode features from frames and back again.

The spatial–temporal transformer as shown in Fig. 2 has multiple
heads responsible for running the transformer across different scales
to handle complex motions. For example, large patches that are found
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in previous frames or in the same frame can be used to inpaint back-
grounds and smaller ones can be used to find detailed correspondences
in the foregrounds. As for the multiple layers, they help in improving
the attention output by taking advantage of updated region features.
Empirical studies showed that a number of 8 layers is optimal.

The transformer is made up of three steps, which are embedding,
matching and attending. In the embedding stage, the features outputted
by the frame level encoder are mapped into query 𝑞𝑖 and key–value pair
(𝑘𝑖, 𝑣𝑖) embedding using 1 × 1 2D convolutions 𝑀𝑞(𝑓𝑖), (𝑀𝑘(𝑓𝑖),𝑀𝑣(𝑓𝑖)),
where 𝑓𝑖 are the encoded features and 1 ≤ 𝑖 ≤ 𝑇 .

In the matching stage, which is carried out in every head, spatial
patches that will be used to inpaint the specular region are extracted
from each frame’s 𝑞𝑖 and (𝑘𝑖, 𝑣𝑖), as 𝑝𝑞𝑖 and (𝑝𝑘𝑖 , 𝑝

𝑣
𝑖 ), respectively. With

the patch size being 𝑟1 × 𝑟2 × 𝑐, the similarity between the 𝑖th and 𝑗th
patches becomes (1 ≤ 𝑖, 𝑗 ≤ 𝑁):

𝑠𝑖,𝑗 =
𝑝𝑞𝑖 ⋅ (𝑝

𝑘
𝑗 )

𝑇

√

𝑟1 × 𝑟2 × 𝑐
(2)

The attention weights are then produced for every found patch using
the normalised 𝑠𝑖,𝑗 and a softmax function, where 𝑁 = 𝑇 ×ℎ∕𝑟1×𝑤∕𝑟2:

𝛼𝑖,𝑗 =

{

exp(𝑠𝑖,𝑗 )∕
∑𝑁

𝑛=1 exp(𝑠𝑖,𝑗 ), 𝑝𝑗 ∈ 𝛺
0, 𝑝𝑗 ∈ �̄�

(3)

where 𝛺 and �̄� are the unoccluded and missing regions, respectively.
In the attending stage, we can get the output from the query using

the attention weights:

𝑜𝑖 =
𝑁
∑

𝑗=1
𝛼𝑖,𝑗𝑝

𝑣
𝑗 (4)

Subsequently, the output from all found patches is pieced together.
The results from the various heads get concatenated and inputted into
a residual block to maintain frame-wise context.

The optimisation objective function used is:

𝐿 = 𝜆ℎ𝑜𝑙𝑒 ⋅ 𝐿ℎ𝑜𝑙𝑒 + 𝜆𝑣𝑎𝑙𝑖𝑑 ⋅ 𝐿𝑣𝑎𝑙𝑖𝑑 + 𝜆𝑎𝑑𝑣 ⋅ 𝐿𝑎𝑑𝑣 (5)

such that L1 losses between generated and original frames are used for
holes and valid regions with ⊙ being the element-wise multiplication,
which gives the following functions:

𝐿ℎ𝑜𝑙𝑒 =
‖𝑀𝑇

1 ⊙ (𝑌 𝑇
1 − 𝑌 𝑇

1 )‖1
‖𝑀𝑇

1 ‖1
(6)

𝐿𝑣𝑎𝑙𝑖𝑑 =
‖(1 −𝑀𝑇

1 )⊙ (𝑌 𝑇
1 − 𝑌 𝑇

1 )‖1
‖(1 −𝑀𝑇

1 )‖1
(7)

With D as the discriminator, the adversarial loss is also represented
as follows:

𝐿𝑎𝑑𝑣 = −𝐸𝑧∼𝑃𝑌 𝑇1
(𝑧)[𝐷(𝑧)] (8)

Empirically, constant values in these functions have been suggested
in Zeng et al. (2020): 𝜆ℎ𝑜𝑙𝑒 = 1, 𝜆𝑣𝑎𝑙𝑖𝑑 = 1, and 𝜆𝑎𝑑𝑣 = 0.01.

Adopted from T-PatchGAN (Chang et al., 2019), the discriminator
loss is as follows:

𝐿𝐷 = 𝐸𝑥∼𝑃𝑌 𝑇1
(𝑥)[𝑅𝑒𝐿𝑈 (1 −𝐷(𝑥))] + 𝐸𝑧∼𝑃𝑌 𝑇1

(𝑧)[𝑅𝑒𝐿𝑈 (1 +𝐷(𝑧))] (9)

3.2. Modifications

To adapt STTN to specularity removal in endoscopic videos, some
modifications had to be made. First, their model is trained on inpainting
temporal random masks in diverse videos, thus the input to the training
is the diverse videos and randomly generated masks with frame-ensured
continuity. However, for specularity removal in endoscopy, endoscopic
videos are used along with specularity masks that were pre-processed to
create a pseudo ground truth for the occluded regions. A pseudo ground
5

Fig. 3. The original video frame (a) is inpainted (b) using a pseudo mask. To create
this pseudo mask the original video frame is first segmented generating a specularity
mask (c), which is then processed (d). From this pseudo mask we can also define a
pseudo ground truth (e).

truth generated in an unsupervised manner is needed given that manual
ground truth in high volumes is not available and very challenging to
obtain.

To generate a pseudo ground truth dataset, the input video streams
should be accompanied by specularity masks as well as a pseudo
ground truth texture behind these masks. Frames are first extracted
from endoscopic videos (24 frames per second). After that, the spec-
ularity masks are generated from the frames using the segmentation
method proposed by El Meslouhi et al. (2011). This segmentation
technique is based on the Dichromatic Reflection Model (DRM) and
makes use of the chromatic characteristics of the specular highlights.
Using an unofficial implementation of this technique (https://github.
com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_
endoscope_image), the masks are dilated after segmentation using
a diamond morphological structure (Fig. 3-(c)). Other segmentation
methods could potentially be applied, but alternatives either have
similar performance or are not yet open source such as learning-based
methods.

After segmentation, the masks were additionally dilated using an
elliptical morphological structure to cover the dark rings that usually
occur around specularities as shown in Fig. 3-(d). An elliptical mor-
phological operator was used instead of a rectangular or a cross-based
one since, experimentally, we found that the elliptical operator was
the most realistic, whereas others were found to change the shape of
specularities by making them resemble structures with perpendicular
lines such as rectangles.

The masks are then processed by translating them within the same
frame in a way that would make them cover up visible/unoccluded
texture that would act as a pseudo ground truth. The resulting masks
are denoted as 𝑀𝑎𝑠𝑘𝑠𝑇 𝑟𝑎𝑛𝑠. To do that, the specularities were translated
to the right within the same frame and any overlap between their
current and old specularity locations was not taken into consideration.

After the masks are translated and processed, they move to a posi-
tion that was originally without specularity and thus the texture behind
the generated masked regions would be known. That way paired data
is achieved, but since it is not the real occluded textures of the original
specularities, we call these textures ‘‘pseudo ground truth’’ making the
name of the dataset ‘‘the pseudo ground truth dataset’’. As can be seen
in Fig. 3, to generate the pseudo ground truth, whole frame specular
masks are used, with a fixed translation for an entire sequence. Thus,
mask changes over time are realistic, but they are offset within the same
frame from the real mucosa shape that generated them.

https://github.com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_endoscope_image
https://github.com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_endoscope_image
https://github.com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_endoscope_image
https://github.com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_endoscope_image
https://github.com/jiemojiemo/some_specular_detection_and_inpainting_methods_for_endoscope_image
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Fig. 4. The flowchart of the proposed system is comprised of a specularity segmenta-
tion step, where specularity masks are generated from the input video dataset. After
that, the masks are processed (moved to new unoccupied locations) to create a pseudo
ground truth dataset. The pseudo ground truth along with the original video of the
Hyper Kvasir dataset are used to train a temporal GAN, which is initialised by a model
trained on temporal random masks.

Note that Fig. 3 uses the pseudo mask for evaluation and thus
slightly differs from the training mask. The difference comes from
switching the order of translation and dilation. The mask in Fig. 3-
(c) is translated first, and then the overlap with the original image
dilated using a ball structuring element is removed. After that the mask
is dilated to generate Fig. 3-(d).

In summary, input training masks were modified from temporal
random masks of the STTN baseline method to segmented and pro-
cessed specularity masks, 𝑀𝑎𝑠𝑘𝑠𝑇 𝑟𝑎𝑛𝑠. Moreover, training on temporal
random masks with endoscopic videos was used as an initialisation
phase followed by fine-tuning on 𝑀𝑎𝑠𝑘𝑠𝑇 𝑟𝑎𝑛𝑠. This transfer learning
technique was performed to help the model obtain a more accurate
initial guess. Input frames were also cropped and resized to 288 × 288
as opposed to 432 × 240 (used by STTN) since having a uniform square
size for the different video frames in our pseudo ground truth dataset
made it more efficient to deal with the data. Thus, a change also had to
be made to the sizes list of the patches to be searched for, which in turn
affected feature sizes. The proposed system then becomes as shown in
Figs. 2 and 4.

4. Experiments

For training and testing, an NVIDIA V100-DGXS was used. The
endoscopic videos used for data generation are the videos of the Hyper
Kvasir dataset (Borgli et al., 2020). The Hyper Kvasir videos are raw
videos of routine clinical examinations of the GI tract using endoscopy.
This dataset is made up of 373 videos with 889,372 frames. 343 of those
were used for training and 30 (8.7%) were used for testing, which is
close to the split used by STTN (Zeng et al., 2020). Note that in testing a
limit of 927 frames was set for each video. Even though STTN uses 4603
videos, their frames only reach 681,450 making our pseudo ground
truth dataset of a similar and even larger size. In addition, our task of
specular highlight inpainting has very narrow video content and similar
features as opposed to the various video stream content in the datasets
STTN used such as Youtube-VOS (Xu et al., 2018) and DAVIS (Caelles
et al., 2018).

To evaluate results and since paired data is available (data with
pseudo ground truth), Peak Signal to Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Mean Square Error (MSE) are generated
at cropped specularity regions of the pseudo masks 𝑀𝑎𝑠𝑘𝑠𝑇 𝑟𝑎𝑛𝑠. Then,
the average of the metrics along all the frames in a video is calculated.
Since SSIM takes into consideration the relations within windows in a
frame using a Gaussian distribution, we first compute the overall frame
SSIM and then take the average for the pixels only inside the region of
interest. This evaluation process is applied to all testing videos. After
that, another averaging step is performed between the values generated
from all testing videos in order to get one value for our model.
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To assess the generalisability of our system, various datasets were
qualitatively evaluated including in-vivo data of gastric endoscopy
(Hyper Kvasir and EndoMapper) and ex-vivo porcine data (SERV-CT,
SCARED). It is worth mentioning that the model was not fine-tuned on
these datasets because they are limited in size.

In addition to that, further analysis is performed on the effect of
inpainting endoscopic specular highlights on disparity and optical flow
estimation along with feature matching. For the disparity estimation
analysis, the ex-vivo porcine SERV-CT dataset is used, which includes
accurate ground truth disparities and an evaluation system. The dis-
parity estimation method used is a recent open-source learning-based
method called Stereo Transformer proposed by Li et al. (2021).

As for the feature matching analysis, the ORB detector proposed
by Rublee et al. (2011) was used to generate keypoints and descrip-
tors. After that, a brute force matcher was utilised. The ratio test as
per (Lowe, 1999) was then used to remove low-quality matches. From
this, a visual analysis was performed using our dataset, but with the
original specularity masks. It is worth mentioning that these computer
vision blocks are used in this procedure to illustrate the importance of
inpainting in feature matching; however, they can be replaced by any
other detector, matcher, and outlier removal methods.

Moving on to the optical flow analysis, the optical flow estimation
network Flownet2.0 was used; it was proposed by Ilg et al. (2017)
and implemented by Reda et al. (2017). This method can also be
replaced by any other optical flow estimation technique to illustrate
the importance of inpainting. For the visual assessment, our dataset
was also used with the original specularity masks as well as the ex-vivo
porcine data with 3D scene ground truth (SCARED dataset).

Along with the visual evaluation, a quantitative assessment was
performed to analyse the effect of inpainting specular highlights in
endoscopy on sparse feature matching and optical flow. A direct evalu-
ation of optical flow and feature matching was not possible due to the
lack of ground truth data. Thus, the matching results, from sparse fea-
ture matching or optical flow, were used to generate pose data, which
was evaluated with the ground truth pose provided by the SCARED
dataset. The SCARED dataset consists of ex-vivo porcine data with 3D
scene ground truth. Ex-vivo data was used since available endoscopic
data does not have any ground truth information for evaluation; that
way, we also assess the extension of our model to other types of surgical
data.

To generate and evaluate pose data from the matches, the essential
matrix was generated based on the five-point algorithm solver (Nistér,
2004), which relies on the RANSAC algorithm (Fischler and Bolles,
1981). After that, the pose was recovered by decomposing the essential
matrix and then verifying possible pose hypotheses using the Chirality
check (Nistér, 2004). For this pipeline, an implementation by Gyanesh
Malhotra was used (https://github.com/gyanesh-m/Monocular-visual-
odometry). After that, relative poses were evaluated with the ground
truths and compared between original and inpainted frames. Due to the
noise in the ground truth pose information of the SCARED datasets that
can appear more dominant with small movements, enough movement
between frame pairs had to be ensured. To do that, a moving 20-
frame window was used along the sequence to collect frame pairs and
evaluate them. This resulted in 715 frame pairs to test on.

It is worth mentioning that the effect of inpainting on feature
matching or optical flow and consequently pose estimation might be
more visible with endoscopic datasets since the SCARED dataset has
very steady and continuous motion and much fewer artefacts that
might degrade flow estimation or feature matching. In addition, our
model was trained on endoscopy and would naturally perform better
on similar testing data. It is also important to note that even though
pose estimation is used to assess feature matching and optical flow
estimation, it will not be as affected by inpainting as feature matching
and optical flow. This is because the RANSAC method used to estimate
pose removes outliers, which can make it somewhat robust to some of

the artefacts in surgical video streams.

https://github.com/gyanesh-m/Monocular-visual-odometry
https://github.com/gyanesh-m/Monocular-visual-odometry
https://github.com/gyanesh-m/Monocular-visual-odometry
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Fig. 5. Four consecutive frames are shown on the left. The yellow boxes highlight a
region where specularities increase in size. These regions are zoomed in and shown
in the second column. Only Frame 4 is inpainted with various methods and results of
the zoomed-in region are shown. The blue arrow points towards a prominent occluded
vein and how it was inpainted with different methods. It is shown that 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶
outperformed other models and was able to temporally recover occluded regions that
were not occluded in frames 1 and 2.

Table 1
The 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛, 𝑀𝑆𝐸𝑚𝑒𝑎𝑛, and 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛 values for 𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 and 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 at different
iterations. 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 and 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛 values are better as they increase, which is shown
by the ▴ and the opposite can be said about the 𝑀𝑆𝐸𝑚𝑒𝑎𝑛 values.

Models Iterations ▴𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 ▾𝑀𝑆𝐸𝑚𝑒𝑎𝑛 ▴𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛

𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 (From scratch) 20,000 27.138 164.542 0.748
𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 (From scratch) 110,000 28.896 120.613 0.768
𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 (Proposed) 50,000 29.200 115.181 0.781
𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 (Proposed) 90,000 29.542 104.719 0.785

5. Results and discussions

In this section, training results are first evaluated and discussed,
followed by an ablation study for the importance of the temporal com-
ponent of our system in the application of specular highlight removal
in endoscopy.

The applications of our system are numerous and include the im-
provement of 3D reconstruction, feature matching, and the estimation
of disparity and optical flow. To show our system’s effect on some
of these applications, we first started with an analysis for disparity
estimation, followed by feature matching, and ended with optical flow.

5.1. Model training

In our experiments, several models were generated and compared
to reach the best outcome. The models included 𝑀𝑜𝑑𝑒𝑙𝑆,𝑅, which is
trained from scratch (𝑆) on Hyper Kvasir with temporal random masks
(𝑅). This training is similar to that of the baseline method, STTN, where
diverse videos with temporal random masks are used for training. This
model was used to initialise 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , which relies on transfer learning
(𝑇 ) and is trained on our pseudo ground truth dataset with pseudo
masks 𝑀𝑎𝑠𝑘𝑠𝑇 𝑟𝑎𝑛𝑠. In 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , (𝐶) refers to correct pseudo masks as
opposed to temporal random masks. To show the importance of transfer
learning, another model was generated, 𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 , that was trained
from scratch on our pseudo ground truth dataset.

Given that in GANs losses are a trade-off and the optimal loss
is reached somewhere between 0 and 1, it cannot be assumed that
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the model with lower losses is better. Thus, a quantitative and visual
analysis is carried out in Fig. 5 and Table 1.

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 was saved at 90,000 iterations, which was decided on
the basis of the inflexion point where the loss plots plateau as well as
on visual and quantitative analysis. A similar logic was carried out for
𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 , which was used at iteration 110,000 and even though that
was not the inflexion point, it did give slightly better results than the
results at 20,000 iterations visually and quantitatively.

The quantitative analysis for various iterations of the models can
be seen in Table 1. From Table 1, it can be seen in red that the best-
performing model according to 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛, 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛, and 𝑀𝑆𝐸𝑚𝑒𝑎𝑛
is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 at 90,000 iterations, indicating the advantage of transfer
learning in this application. In addition, in Fig. 5, frame 4 is inpainted
by both 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 and 𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 . From these figures, it can be seen that
the 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 learns better temporal inpainting; the red veins are much
more prominent and fine-grained for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , which means they have
been learnt from previous frames 1 and 2. These images also suggest
that even if the quantitative analysis does not show a huge increase in
𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛, 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛, and 𝑀𝑆𝐸𝑚𝑒𝑎𝑛 values, it can make a difference
in terms of accurate vein depiction. This is due to the fact that the
textures in endoscopic frames are very close to each other making any
small change count in showing the details better.

Having chosen 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 for this system, a comparison between this
model and other methods is important. At the time of creating this sys-
tem, the only available learning-based methods for endoscopic specu-
larities were (Rodríguez-Sánchez et al., 2017) (open source) and Funke
et al. (2018) (closed source).

In Funke et al. (2018), specular highlights are inpainted using an
end-to-end cycle GAN, however, since the model does not take masks
as input, but directly repairs the whole image so as to not have any
specularities, we were unable to evaluate it with our pseudo ground
truth. That is because the overlaid pseudo masks on the image were
not being detected by the network as specularities and thus left without
inpainting. That is why, apart from visual comparisons, we have limited
the quantitative analysis of this approach (denoted as 𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒) to
the downstream computer vision tasks in the upcoming sections.

As for (Rodríguez-Sánchez et al., 2017), specular highlight regions
are segmented and then the segmented pixels are fed alone to be
inpainted in another network. In other words, their inpainting network
only uses limited spatial information only present within specular re-
gions. Thus, this method as well cannot be evaluated using our pseudo
ground truth, since no texture information will be present within the
overlaid mask to use for inpainting. That is why, we will limit our
comparison to only (Funke et al., 2018), which is more relevant to our
work since it uses more spatial information.

That is why, using our pseudo ground truth, a comparison is made
between our method and non-learning-based approaches. These include
a diffusion-based method proposed by Arnold et al. (2010) and a
temporal patch-based method proposed by Newson et al. (2014). The
models corresponding to these methods will be denoted by 𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓
and 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, respectively.

The visual results of 𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓 compared to ours can be seen in
Fig. 5, where the inpainted regions are blurry. Thus, it can be seen that
no veins were generated with mostly one colour dominating the region.
This can also be seen in the quantitative results in Table 2, where our
system gives much better results. These results are reasonable since the
diffusion method smooths pixel values into the empty regions instead
of accurately depicting the missing features as can be done using other
methods.

As for 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, it performed better than 𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓 , visually and
quantitatively, but still not as good as the compared learning-based
approaches (Fig. 5, Table 2).

𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒 was not compared quantitatively, but as can be seen in a
visual example it does not inpaint as successfully as our method (Fig. 5).
It is worth mentioning that results were obtained with the model that

was trained on laparoscopic images and ideally, the model should be
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Table 2
The 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛, 𝑀𝑆𝐸𝑚𝑒𝑎𝑛, and 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛 values for the various trained models.
𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 and 𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛 values are better as they increase, which is shown by the ▴
and the opposite can be said about the 𝑀𝑆𝐸𝑚𝑒𝑎𝑛 values.

Models ▴𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 ▾𝑀𝑆𝐸𝑚𝑒𝑎𝑛 ▴𝑆𝑆𝐼𝑀𝑚𝑒𝑎𝑛

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 (Proposed) 29.542 104.719 0.785
𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 (No temporal comp.) 29.284 112.717 0.783
𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 (Zeng et al., 2020) 28.683 119.541 0.793
𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ (Newson et al., 2014) 22.270 543.636 0.650
𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓 (Arnold et al., 2010) 19.909 895.222 0.559

retrained with appropriate data and adjusted to fit our data domain.
However, this was not done, since the data training procedure is very
different than ours requiring creating a new dataset. Their training
data is made up of cropped patches with and without specularities.
Nonetheless, we do compare further on downstream tasks by using
ex-vivo porcine laparoscopic data.

In summary, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 gave the best performance among the var-
ious methods according to our quantitative and visual evaluations; it
was followed by 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ then 𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓 .

5.2. Ablation study

An ablation study is performed to observe the effect of the temporal
component on the output. We compare our proposed model in its
original form against the same model but only considering a single
frame input (i.e. it does not consider a temporal component). This
experiment is denoted as 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 (𝑇 -Transfer learning, 𝐶-Correct
seudo Masks, 𝑁𝑇 -No temporal). The visual and quantitative results
an be seen in Fig. 5 and Table 2, respectively. It is shown that exclud-
ng the temporal component not only gives worse quantitative results
ut also misses details that can be obtained from previous frames.
o elaborate, if one follows the yellow boxes throughout the original
rames in Fig. 5, it is clear that the region gets more occluded with
very frame, meaning that a temporal component should be able to take
dvantage of unoccluded regions from previous frames and exploit it
uring inpainting. This advantage can be seen when one also compares
he output for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 and 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , where a prominent vein is

blurred in 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 while its details are visible in 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .
The original STTN model (Zeng et al., 2020), trained on Youtube-

VOS, 𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 , was also tested on our pseudo ground truth dataset
to see the effect of our training methodology. The visual and quan-
titative results of these models can be seen in Fig. 5 and Table 2,
respectively. The results show a visual improvement of our method in
Fig. 5 and in Table 2 with PSNR and MSE. However, the SSIM value for
this method shows a better score than our temporal and non-temporal
methods, which is not aligned with PSNR, MSE, and visual evaluations.
This difference in values could be because specular regions can be quite
small and SSIM results on a very small amount of pixels should be
interpreted with extreme caution and thus might not be appropriate
to our case (Nilsson and Akenine-Möller, 2020).

In summary, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 gave the best performance among the var-
ious methods according to our quantitative and visual evaluations; it
was followed by 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 , 𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 , 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, then
𝑀𝑜𝑑𝑒𝑙𝑑𝑖𝑓𝑓 .

5.3. Generalisability

We performed an analysis of the generalisability of our system,
without any additional fine-tuning. Our system trained on Hyper Kvasir
data was tested on 3 additional datasets with different characteristics.
The results of sampled frames can be visualised in Fig. 1 (additional re-
sults are provided in the supplementary material). EndoMapper dataset
was also used, which is similar to Hyper Kvasir, however, it was
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acquired on a different site and with different equipment. This data
was collected in Clinico Lozano Blesa Hospital using Olympus Europe
endoscopic system, whereas Hyper Kvasir was performed in Bærum
Hospital using standard equipment from Olympus Europe and Pentax
Medical Europe. In general, the results of this data were satisfactory,
where veins were uncovered under specularities as seen in yellow in
Fig. 1. However, sometimes smaller specularities are inpainted without
much detail as seen in red in Fig. 1. This means that the model was able
to generalise to other hospitals and equipment, however, the results are
not as good as the dataset used in training.

The other two datasets (SERV-CT, SCARED) are of ex-vivo porcine
data acquired with a laparoscope. SERV-CT only has keyframes, which
makes the temporal component of our system not utilised fully. How-
ever, it still gave good results as can be seen in yellow in Fig. 1. The red
circles show an error that occurs due to the detection system’s inability
to detect saturation. As for the SCARED dataset, the frames are closer,
but since it is also ex-vivo data, the colours and textures are different
than the trained dataset, which makes the results not detailed as seen in
red. However, we can still see some successful inpaintings in the yellow
circles. To conclude, our model can be generalised to ex-vivo data with
lower-quality results, especially in regions where colours are different
than those in in-vivo endoscopy.

5.4. Stereo disparity

In this section, we evaluate the effect of inpainting endoscopic spec-
ular highlights on stereo disparity calculation. The SERV-CT evaluation
system and dataset, which includes ground truth disparities, are used.
As shown in Fig. 6, the disparity generated is closer to the ground
truth after inpainting the SERV-CT data using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . Some spurious
artefacts in the disparity maps are visibly removed if inpainting is
applied. Additionally, the overall disparity values are closer to the
ground truth with inpainting.

These disparity results were confirmed by the quantitative eval-
uation in Table 3 for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . We measure the root mean square
error (RMS), the endpoint error (EPE), and the percentage of the
disparity image with more than a three-pixel disparity error (bad3%
error). The errors are relative to ground truth disparities obtained from
CT scanning and Creaform RGB scanning, as indicated in the table.
These metrics were only evaluated on the region of the disparity map
containing specularities. The evaluations were also done for stereo
occlusions 𝑆𝑂, where stereo-occluded and non-occluded pixels were
evaluated separately. These stereo occlusions are not to be confused
with specularity occlusions. Stereo occlusions refer to occlusions oc-
curring due to different viewpoints of the left and right stereo images.
The difference between the RMS and EPE of the original versus the
inpainted-based disparity estimations were all positive meaning that
there was an improvement in the disparity estimation due to inpainting
using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .

In particular, some of the highest scoring results, according to our
quantitative analysis, can be seen in the last two rows of Fig. 6, where
the inpainted results using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 are closer to the original and do
not have artefacts due to specularities. Quantitatively, the RMS and EPE
are improved by 9.36% and 9.36%, respectively, for the first row and
11.17% and 10.85% for the second row.

Even though SERV-CT frames are keyframes, making the temporal
component of the model not used to its full potential, the disparity from
inpainted frames shows improvement over that from original frames
visually and quantitatively.

This disparity evaluation was also performed on other methods
and according to the quantitative results (RMS, EPE) in Table 3, the
order from best performing method to least is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 ,
𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒, then 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ.

For all disparity estimations, including all inpainting methods and
the original without inpainting, the Bad3% error ranges between
99.46% and 100%, which indicates that almost all disparity values

estimated in specularity regions even after inpainting are more than
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Fig. 6. The difference map between ground truth and estimated disparity based
on original as well as inpainted frames of 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . The last two rows are the
highest-scoring frames according to our quantitative results.

Table 3
The difference (in %) between quantitative evaluations of disparity generation from
original frames, 𝐷𝑖𝑠𝑝𝑜𝑟𝑖𝑔 , and that from inpainted frames using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝐷𝑖𝑠𝑝𝑖𝑛𝑝. Two
experiments (Exp.) are used with different ground truth modes (Modality) and with
and without stereo-occluded pixels (SO).

Exp. Modality SO ▴ Bad3 ▴ RMS ▴ EPE

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶
(Proposed)

1 CT 0 0 1.95 1.39
1 CT 1 0 1.94 1.38
2 CT 0 0.09 4.39 4.37
2 CT 1 −0.02 3.97 3.84
2 RGB 0 −0.14 4.22 4.04
2 RGB 1 −0.12 4.03 3.84

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇
(No temporal comp.)

1 CT 0 0 1.79 1.27
1 CT 1 0 1.79 1.26
2 CT 0 0 2.28 2.33
2 CT 1 −0.11 1.55 1.56
2 RGB 0 −0.23 2.21 2.04
2 RGB 1 −0.21 1.68 1.57

𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒
(Funke et al., 2018)

1 CT 0 0 1.36 0.82
1 CT 1 0 1.36 0.82
2 CT 0 0 1.20 1.03
2 CT 1 −0.11 0.60 0.36
2 RGB 0 −0.23 1.30 0.90
2 RGB 1 −0.21 0.75 0.42

𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ
(Newson et al.,
2014)

1 CT 0 0 −3.92 −3.51
1 CT 1 0 −3.90 −3.48
2 CT 0 0.51 −3.55 −3.47
2 CT 1 0.40 −4.16 −4.16
2 RGB 0 0.32 −3.48 −3.62
2 RGB 1 0.33 −3.96 −4.06

3 pixels apart from the ground truth disparity. The numbers shown in
Table 3 are the per cent difference between Bad3% of each inpainting
method and the original disparity estimation without inpainting. Since
these Bad3% values range between 99.46% and 100%, the per cent
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difference in the table ranges between 0.51%–0.23%, which is not
indicative of any performance conclusion, other than that even after
inpainting almost all pixels are still more than 3 pixels apart from the
GT disparity.

5.5. Sparse feature matching

To assess the effect of our method 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 on sparse feature
matching, we detect and match ORB features (Rublee et al., 2011)
on our test dataset. Qualitative results can be visualised in Fig. 7 on
the left. By averaging out the number of matches with and without
inpainting we can see that inpainting reduces the number of detected
features in image pairs by 28.4% on average, but these could be
features located on specular highlights that have high gradients but are
generally outliers. After outlier filtering using a ratio test, the number
of detected matches remains lower for inpainted pairs by 30.8% on
average. Since this analysis does not give us any information about the
type of features being removed, no conclusions can be made.

To assess the accuracy of these matches, we use them for estimating
relative poses between pairs of camera views. Ground truth of camera
relative poses is available via the captured robot kinematics as part of
the SCARED dataset. The relative pose is estimated with the 5-point
algorithm solver within the RANSAC robust estimator (Nistér, 2004).
The relative translation and rotation errors (RTE and RRE in degrees)
as well as the number of inliers detected by RANSAC were calculated
with respect to the ground truth.

A statistical summary of the RTE, RRE, and number of inliers for
𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 with respect to the baseline is shown in Table 4. For RTE,
the interquartile range ([−16.45, 24.63]◦) is larger on the positive region
and the median (1.35◦) and mean (% 8.47) fall completely in the
positive region. The positive numbers mean that the RTEs for the
original sequence are higher than those for the inpainted sequence,
which shows that inpainting can help in increasing the accuracy of
relative translation estimation, which can be useful for reconstruction
and visual SLAM methods.

One can also notice that the mean RTE values are very high in
general. After investigating and plotting the effect of the relative trans-
lation and rotation norms on the RTE as shown in Fig. 8-(a)(b), a clear
effect can be seen between the relative translation and rotation norms
and the RTE. This is a well-known problem in relative pose estimation
with monocular cameras, where errors of small translations and high
rotations are difficult to assess and may be under the precision of robot
kinematics used to generate ground truth.

To further visualise these numbers, looking at Fig. 9-(a), we can
see that the inpainted sequence has more lower errors (0–50) than the
original and less higher errors (100–175).

When comparing RTE values with other methods (Table 4) we can
see that according to the mean values the order of best-performing
method to least is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 , then
𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒. When removing the specular pixels completely from con-
sideration before performing pose estimation, we get the lowest results,
showing that for translation estimation using optical flow, inpainting
improves the outcome, with the best inpainting method being that
proposed in this paper, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .

A similar analysis can be done for the relative rotation error (RRE)
of 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . However, the RREs are reasonably small with a few out-
liers. We can see the skewness of the interquartile range ([−0.55, 0.74]◦),
median (0.01◦), and mean (% 16.53) to the positive region in Table 4,
which indicates an improvement in relative rotation estimation from
feature matching after inpainting using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .

This improvement is also shown in Fig. 9-(b), where the inpainted
sequence has lower errors (0−5◦) than the original. Note that for clarity
in Fig. 9-(b), all bars with heights less or equal to 1 are removed.

When comparing RRE values with other methods (Table 4) we can
see that according to the mean values the order of best-performing
method to least is 𝑀𝑜𝑑𝑒𝑙 , 𝑀𝑜𝑑𝑒𝑙 , 𝑀𝑜𝑑𝑒𝑙 then 𝑀𝑜𝑑𝑒𝑙
𝑇 ,𝐶 𝑇 ,𝐶,𝑁𝑇 𝑝𝑎𝑡𝑐ℎ 𝐹𝑢𝑛𝑘𝑒
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Fig. 7. Feature matching comparison between original and inpainted frames using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . Row 1 shows the frames, Row 2 shows the feature matching, and Row 3 shows the
matching after filtering outliers. Matches between features are shown in green and the removed low-quality features are shown in blue.
Table 4
Feature-based pose estimation metrics: Minimum, Maximum, Mean, 25th percentile, Median, 75th percentile, and Interquartile Range (IQR). Metrics with the 𝛥 symbol denote the
variation with respect to the baseline.

Statistics Mean ▴ Mean(𝛥) ▴ Min(𝛥) ▴ Max(𝛥) ▴ 25th(𝛥) ▴ Median(𝛥) ▴ 75th(𝛥) ▾ IQR(𝛥)

Original
RTE (◦) 61.86 – – – – – – –
RRE (◦) 4.84 – – – – – – –
Inliers (px) 91.55 – – – – – – –

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶
(Proposed)

RTE (◦) 56.62 5.24 (% 8.47) −141.05 151.11 −16.45 1.35 24.63 41.08
RRE (◦) 4.04 0.80 (% 16.53) −170.05 167.60 −0.55 0.01 0.74 1.29
Inliers (px) 67.45 −24.11 (−% 26.34) −224.00 232.00 −55.00 −25.00 3.00 58.00

𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ
(Newson et al.,
2014)

RTE (◦) 57.91 3.96 (% 6.40) −145.30 162.73 −18.25 1.23 25.79 44.04
RRE (◦) 4.92 −0.08 (−% 1.65) −171.53 169.18 −0.56 0.03 0.72 1.28
Inliers (px) 70.57 −20.98 (−% 22.91) −223.00 186.00 −51.00 −24.00 7.50 58.50

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇
(No temporal comp.)

RTE (◦) 58.05 3.81 (% 6.16) −159.64 157.56 −18.05 1.05 25.87 43.92
RRE (◦) 4.33 0.51 (% 10.54) −171.68 167.74 −0.46 0.08 0.87 1.33
Inliers (px) 64.66 −26.89 (−% 29.37) −229.00 174.00 −56.50 −27.00 2.00 58.50

𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒
(Funke et al., 2018)

RTE (◦) 60.12 1.74 (% 2.81) −148.39 140.30 −19.68 0.66 21.49 41.17
RRE (◦) 5.57 −0.73 (−% 15.08) −173.00 167.48 −0.50 0.01 0.66 1.16
Inliers (px) 47.08 −44.48 (−% 48.59) −232.00 138.00 −71.00 −42.00 −14.50 56.50

Original
with no specular
pixels

RTE (◦) 61.70 0.16 (% 0.26) −150.21 151.78 −15.17 −0.72 13.82 28.99
RRE (◦) 4.68 0.16 (% 3.31) −156.27 174.79 −0.49 0.01 0.48 0.97
Inliers (px) 92.06 0.50 (% 0.55) −209.00 237.00 −15.00 −2.00 12.00 27.00
Fig. 8. Feature matching analysis: Effect of the ground truth translation and rotation norms on RTE. Low translation norms result in high errors or noise.
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Fig. 9. Feature matching analysis: Histograms of RTE, RRE, and RANSAC Inliers for both original and inpainted sequences using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .
with the last two methods having negative results. Unlike translation, it
seems that for rotation, when removing the specular pixels completely
from consideration before performing pose estimation, the results are
better than those of 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ and 𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒; This shows that for
rotation not all inpainting methods improved the outcome. The best
inpainting method was that proposed in this paper, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .

Finally, the numbers in Table 4 show that the original sequence
has a higher number of inliers than the inpainted one (with 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 )
with an interquartile range ([−55.00, 3.00] pixels), which is much larger
on the negative region, and a median (−25.0 pixels) and mean (–%
26.34) falling completely in the negative region. This means that the
original sequence has more inliers. This can indicate that fewer pixels
are wrongly identified as inliers.

This is also shown in Fig. 9-(c), where the inpainted sequence has
more lower number of inliers (0–125) and less of the higher number of
inliers (125–250) than the original.

When comparing inliers with other methods (Table 4) we can see
that according to the mean values, all inpainting methods have a
lower number of inliers than the original sequence. When removing the
specular pixels completely from consideration before performing pose
estimation, we get the highest number of inliers (highest Mean(𝛥)).
However, this method did not perform as high on the RRE and RTE
metrics, this can be due to an increase in outliers in the face of inliers
or that the inliers filtered by RANSAC might have been false positives.

To conclude, feature matching was improved the most using our
inpainting method 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 . This was evaluated visually as well as
quantitatively through pose estimation and the assessment of RTE, RRE,
and RANSAC inliers. According to this assessment, the highest scoring
results that improved pose estimation by 92.4% can be shown in Fig. 7
on the right. It can be seen that the original frame pair matches are
much more reliant on specular highlights than the inpainted frame pair
matches.

5.6. Optical flow

The effect of our method 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 on optical flow, using
FLOWNET2.0, can be qualitatively visualised in Fig. 10 for Hyper
Kvasir and SCARED datasets. It can be seen that the optical flow gen-
erated from the inpainted frames is smoother, and has fewer spurious
artefacts. More results are provided in the supplementary material.

Similar to the previous section, we evaluate the optical flow results
quantitatively via relative pose estimation between pairs of frames,
using the same algorithmic and validation pipeline.

The RTE, RRE, and number of inliers were statistically summarised
in Table 5 for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 with respect to the baseline. The RTE interquar-
tile range ([−7.20, 10.80]◦) is skewed to the positive region. In addition,
the median (1.65◦) and mean % 3.64 are positive, meaning that in-
painting using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 increased translation estimation accuracy by
% 3.64 on average.

To further visualise these numbers, looking at Fig. 11-(a), we can
see that the inpainted sequence has more lower errors (0–20) than
11
the original and no apparent increase or decrease in the higher errors
(20–175).

From Table 5, the RTE and RRE improvements due to inpainting are
not as high as those with feature matching. Similar to feature matching,
the relationship between translation errors and translation and rotation
norms shows a high correlation in Fig. 12.

When comparing RTE values with other methods (Table 5) we
can see that according to the mean values the order of best per-
forming method to least is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 , then
𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ. The mean RTE value is negative for 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, which
means that for translation estimation using optical flow, learning-
based inpainting improves the outcome, whereas temporal patch-based
methods do not. The best inpainting method is that proposed in this
paper, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .

For relative rotation errors, we look at the 𝛥 RRE statistics in
Table 5 for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , where the interquartile range ([−0.61, 0.75]◦),
mean (%3.03), and median (0.07◦) with respect to the baseline are all
skewed to the positive region. This can also be seen in Fig. 11-(b).

When comparing RRE values with other methods (Table 5) we can
see that according to the mean values the order of best-performing
method to least is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, 𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒, then
𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 . Only the proposed method improved results, whereas all
the others had higher RRE errors when compared to using optical flow
without inpainting.

Finally, the numbers in Table 5 for 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 show that the original
sequence has a lower number of inliers than the inpainted one with
an interquartile range ([−1778, 7464] pixels), which is larger on the
positive region, and a median (485 pixels) and mean (% 6.61) falling
completely in the positive region. This can also be seen in Fig. 11-(c).
According to the mean values, the order of best performing method
to least is 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ, 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇 , then 𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒. This
means that 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 was able to generate the highest number of
inliers. This is notoriously different from sparse feature matching. This
can be due to the dense nature of optical flow, where more pixels, such
as the inpainted pixels, are included as inliers. This does not happen
with sparse feature matching, since only sparse important features are
detected and inpainting makes the specular regions less significant.

To conclude, the overall motion estimation accuracy with optical
flow was improved the most using our inpainting method 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .
However, the improvement with optical flow is not as high as that
with sparse feature matching. This can be due to optical flow providing
dense correspondences and offering a surplus of information when
compared to sparse features; this surplus makes RANSAC more effective
at removing outliers caused by spurious artefacts. We also note that
our method has not been fine-tuned on laparoscopic data (SCARED
dataset), and therefore further improvements could be obtained with
additional surgery-specific training data. This is consistent with the
more visible qualitative improvements in the Hyper Kvasir data, which
is in the same domain as our training data.

According to the quantitative analysis, the highest scoring results

that improved pose estimation by 93.8% using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 can be shown
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Fig. 10. (a) From four consecutive frames of the Hyper Kvasir dataset (First Row), optical flow is estimated directly (Second Row) and after inpainting the frames using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶
(Third Row). Inpainting improved the flow estimation results by making it smoother and more homogeneous. (b) From four consecutive frames of the SCARED dataset (First Row),
optical flow is estimated directly (Second Row) and after inpainting the frames using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 (Third Row). It is not clear if inpainting improved the flow estimation results. The
SCARED dataset used differs from the training dataset (Hyper Kvasir) in its surgical procedure performed. (c) Optical flow colour wheel. (d) The estimated optical flow gave the
highest improvement with inpainting (Third Row) according to our quantitative assessment. A removed artefact can be seen in the yellow circle. The colour map was changed in
this example for visual clarity.
Table 5
Optical-flow-based pose estimation metrics: Minimum, Maximum, Mean, 25th percentile, Median, 75th percentile, and Interquartile Range (IQR). Metrics with the 𝛥 symbol denote
the variation with respect to the baseline.

Statistics Mean ▴ Mean(𝛥) ▴ Min(𝛥) ▴ Max(𝛥) ▴ 25th(𝛥) ▴ Median(𝛥) ▴ 75th(𝛥) ▾ IQR(𝛥)

Original
RTE (◦) 37.06 – – – – – – –
RRE (◦) 2.64 – – – – – – –
Inliers (px) 49 733 – – – – – – –

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶
(Proposed)

RTE (◦) 35.71 1.35 (% 3.64) −141.39 114.12 −7.20 1.65 10.80 18.00
RRE (◦) 2.56 0.08 (% 3.03) −7.76 7.53 −0.61 0.07 0.75 1.36
Inliers (px) 53 020 3287 (% 6.61) −58 325 64 483 −1778 485 7464 9242

𝑀𝑜𝑑𝑒𝑙𝑝𝑎𝑡𝑐ℎ
(Newson et al.,
2014)

RTE (◦) 38.18 −1.12 (−% 3.02) −106.04 104.04 −9.27 0.17 8.59 17.86
RRE (◦) 2.74 −0.10 (−% 3.79) −10.49 6.68 −0.69 0.00 0.63 1.32
Inliers (px) 52 437 2704 (% 5.44) −57 842 65 057 −1280 914 6412 7692

𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶,𝑁𝑇
(No temporal comp.)

RTE (◦) 36.60 0.46 (% 1.24) −135.50 126.20 −8.91 0.13 9.16 18.07
RRE (◦) 3.10 −0.46 (−% 17.40) −178.65 6.51 −0.65 0.01 0.68 1.33
Inliers (px) 52 274 2541 (% 5.11) −60 642 64 527 −1172 650 4725 5897

𝑀𝑜𝑑𝑒𝑙𝐹𝑢𝑛𝑘𝑒
(Funke et al., 2018)

RTE (◦) 36.55 0.51 (% 1.38) −111.52 137.90 −9.01 0.45 10.37 19.38
RRE (◦) 3.02 −0.38 (−% 14.39) −178.66 6.58 −0.75 0.03 0.64 1.39
Inliers (px) 51 009 1276 (% 2.57) −57 516 59 753 −2259 1011 5066 7324
Fig. 11. Optical flow analysis: Histograms of RTE, RRE, and RANSAC Inliers for both original and inpainted sequences using 𝑀𝑜𝑑𝑒𝑙𝑇 ,𝐶 .
in Fig. 10-(d). Even though quantitatively these are the highest scoring
results, since the frames used are 20 frames apart, visually it is not very
clear, however, a removed artefact can be seen in the yellow circle.

6. Limitations

The main limitation of the proposed system is its reliance on the
detection method. This can sometimes miss some specularities and be
12
thrown off by text and diagram information overlaid by endoscopic
camera interfaces. This can be seen for example in Fig. 3-(a)(c), where
the text and green square are detected as specularities and are later on
inpainted. This can affect the learning process of the model and limit its
ability to find similarities between occluded regions of different frames.
In the future, the system can be expanded to include a detection system
of static screen objects and remove them from consideration.
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Fig. 12. Optical flow analysis: Effect of the ground truth translation and rotation norms on RTE. Low translation norms result in high errors or noise.
7. Conclusion

In this paper, a system was proposed to inpaint specular highlights
in MISD videos. An endoscopic pseudo ground truth dataset was gener-
ated after which a model was trained using temporal GANs and transfer
learning to produce inpainted frames based on spatial–temporal infor-
mation. The qualitative and quantitative results of the system showed
improvement over other methods. An ablation study was also carried
out to show the importance of the temporal component and transfer
learning in generating enhanced frames. In addition, the effect of this
system on various applications including feature matching, disparity
estimation, and optical flow prediction was shown to be significant.
This effect was also used to show that the performance of our method
supersedes other methods.
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