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Malaria is a common and serious disease that primarily a�ects developing

countries and its spread is influenced by a variety of environmental and human

behavioral factors; therefore, accurate prevalence prediction has been identified

as a critical component of the Global Technical Strategy for Malaria from 2016 to

2030. While traditional di�erential equationmodels can perform basic forecasting,

supervised machine learning algorithms provide more accurate predictions, as

demonstrated by a recent study using an elastic net model (REMPS). Nevertheless,

current short-term prediction systems do not achieve the required accuracy

levels for routine clinical practice. To improve in this direction, stacked hybrid

models have been proposed, in which the outputs of several machine learning

models are aggregated by using ameta-learner predictive model. In this paper, we

propose an alternative specialist hybrid approach that combines a linear predictive

model that specializes in the linear component of the malaria prevalence signal

and a recurrent neural network predictive model that specializes in the non-

linear residuals of the linear prediction, trained with a novel asymmetric loss.

Our findings show that the specialist hybrid approach outperforms the current

state-of-the-art stackedmodels on an open-source dataset containing 22 years of

malaria prevalence data from the city of Ibadan in southwest Nigeria. The specialist

hybrid approach is a promising alternative to current prediction methods, as well

as a tool to improve decision-making and resource allocation for malaria control

in high-risk countries.

KEYWORDS

malaria prevalence prediction, ML hybrid models, recurrent network models,

asymmetrical loss, machine learning

1. Introduction

Malaria is a severe and widespread disease that affects millions of people worldwide.

It is a major public health issue in many developing countries, particularly in sub-Saharan

Africa, where the disease burden is highest. Accurate and affordable prediction of malaria

prevalence is critical for effective prevention and control measures, as it has been outlined in

the 2016–2030 Global Technical Strategy for Malaria (3). Low-cost predictive systems that

can provide accurate short-term predictions of malaria prevalence are needed to facilitate

informed decision-making and efficient allocation of limited anti-malarial resources in

countries at higher risk.
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A wide variety of approaches have been employed by

researchers to forecast the prevalence of malaria. These methods

can be broadly classified into three main categories: mathematical

models such as the Susceptible-Infected-Recovered (SIR) model

(4), classical data-driven models like Autoregressive Integrated

Moving Average (ARIMA), and, more recently, Machine Learning

models (ML) such as Elastic Net and Neural Networks.

Prediction systems have traditionally relied on classical

differential equation models (e.g., SIR) of transmission dynamics.

Such models can predict basic forecasts based on explicit biological

assumptions about disease communication. Malaria prevalence,

however, is a complex variable influenced by a variety of

environmental and human behavioral factors and as a result, data-

driven ML techniques that incorporate these and other clinical

factors can outperform explicit models in terms of accuracy.

Supervised ML algorithms, in particular, can predict future

prevalence levels without relying on predefined assumptions, which

are often too simplistic to capture the complexity of real-world

phenomena. Hence, data-driven ML techniques have emerged

recently as a more reliable approach for malaria prevalence

prediction (5).

For instance, Brown et al. (5) conducted an investigation

utilizing a regional dataset of malarial occurrence in over 90,000

individuals from the city of Ibadan in southwest Nigeria, across

22 years. Employing an Elastic Net Model, dubbed REMPS

(Region-specific Elastic-net based Malaria Prediction System),

the authors were able to predict malaria prevalence 1-month in

advance. This particular ML approach was found to outperform

alternative methods such as LASSO, Ridge Regression, Least

Angles Regression, Random Forest, and Support Vector Regression

approaches. By demonstrating adequate predictive performance

within a specified problem-specific error tolerance, that study

highlighted the potential advantages ofML approaches inmodeling

malarial prevalence time series data.

Furthermore, stacked hybrid methods (6, 7), involve the

aggregation of predictions generated by various machine learning

and classical models via a meta-learner, such as a weighted

voting, to produce a final output prediction. This combination

of diverse models is an extension of the ensemble method (10).

The stacked hybrid of neural networks and exponential smoothing

models, proposed by (6), was highly successful in the M4 time

series forecasting competition (8), which included 10,000 different

datasets from a variety of sources. Atiya (9) carried out a thorough

examination of the stacked hybrid model, which outperformed

many other complex methods and Zhang (11) demonstrated the

power of specialist hybrid models which are outperform the more

complex model components on a range of real-world datasets. This

clearly demonstrates the potential of hybrid models for timeseries

forecasting problems.

In the existing literature on malaria prevalence prediction, we

came across only one study that utilized a stacked hybrid model (2).

This approach employed gradient boosted regression trees (GBRTs)

as meta-learners to enhance predictive performance by combining

autoregressive, neural network, and Long-Short Term Memory

(LSTM) predictors. However, specialist hybrid models tailored to

address the malaria prevalence prediction problem have not been

explored in prior works. Thus, our contribution in this paper is

to bridge this gap in the literature by introducing and deploying

TABLE 1 Description of monthly variables available in our working

dataset. MPs/µl stands for malaria parasites per microliter.

Notation Variable Description

t month Number of months from the start of the

observation period

It intervention Anti-malarial interventions in place

(categorical)

Xt Median-age-

neg

Median age (months) of children who

tested malaria-negative

median-age-

pos

Median age (months) of children who

tested malaria-positive

iqr-age-neg IQR of the age (months) of children

who tested malaria-negative

iqr-age-pos IQR of the age (months) of children

who tested malaria-positive

x-pd Mean blood-parasite density (MPs/µl)

sd-pd Standard deviation of blood-parasite

density (MPs/µl)

mm-rf Rainfall (mm)

min-temp Minimum temperature (◦C)

max-temp Maximum temperature (◦C)

x-temp Mean temperature (◦C )

yt prevalence Proportion of those screened with

confirmed malaria

specialist hybrid models to this domain. Our results highlight the

effectiveness of these models compared to other ensembling and

stacked hybrid approaches, offering valuable insights for improved

predictive performance.

2. Materials and methods

2.1. Dataset and preprocessing

The dataset employed in this study (1), was previously

introduced by (5). It comprises monthly observations of the

variables described in Table 1 and spans the period from

January 1996 to December 2017, inclusive, gathered from

Ibadan, Nigeria.

Our target variable is the malarial prevalence which represents

the proportion of the population that tests positive for malaria

during a given month. We denote this variable as yt , where

t represents the month. In addition to historical prevalence

values, our models incorporate environmental and clinical

observation values as predictor variables. We represent

the vector of these observations as Xt . Moreover, the anti-

malarial intervention category in place during month t is

denoted as It . Table 1 summarizes the notation and description

for these variables.

Regarding the categorical variable It , Table 2 summarizes

the intervention categories during the observation period.

The “+” symbol indicates interventions deployed on top

of preceding ones. For instance, months corresponding to

intervention category +IRS-Rec have ITN-Free, IPT-Preg, and
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TABLE 2 Intervention categories used for variable It.

It Intervention Explanation

0 None No interventions in place

1 ITN-Free Free insecticide-treated bed nets are

given to children

2 +IPT-Preg Intermittent preventative therapy is

given for free to pregnant women

3 +IRS-Rec Indoor residual spraying is

recommended

4 +ITN-All and

ACT-Free

ree insecticide-treated bed nets are given

to everyone and free artemisinin-based

combination therapy is available

5 +Larval-Cont Larval control measures in mosquito

breeding grounds

IRS-Rec interventions in place. Note that both ITN-All and

ACT-Free interventions were introduced simultaneously, so we

grouped them together due to the lack of data from separate

deployment periods.

2.2. Forecasting lead length and forecasting
window

We focus on short-term predictions for a 1-month

horizon as the forecasting lead length. Such an approach

is pervasive in the literature on forecasting. We adopt a

forecasting window of 3 months, which enables models to

access information from a local (temporal) neighborhood.

This feature is particularly relevant for sequential models

such as Long Short-Term Memory (LSTM) networks to

facilitate effective learning. Furthermore, we purposefully

omitted the calendar month information from our training

procedures to enable the system to respond to variations

in the malaria season that may arise due to changes in the

global climate.

2.3. Train-test split and cross validation

The dataset contains 264 months’ worth of recorded

observations. We split the dataset into two parts: a training

set with the first 190 months of data and a test set with the

remaining 74 months of data. The test set was held-out as unseen

data to assess our models’ ability to generalize to future forecasts.

We used five-fold cross-validation during the training stage of

our models.

2.4. Measures of performance

We will initially train our models using MSE (Mean

Squared Error) minimization, but we will also evaluate

their quality using the MPET (Malarial Prevalence Error

Tolerance) measure introduced in (5). The MPET is calculated as

follows:

MPET : =
100

n

n∑

k=1

1[−0.05 ≤ (ŷk − yk) ≤ 0.1] (1)

where 1[·] is an indicator function that maps to either 0 or 1 if

the prediction falls within the specified condition interval, n refers

to the size of the test set being evaluated, and yk and ŷk represent

the true observed and predicted values at time k, respectively. The

MPET ranges between 0 and 100%, and both the MPET and MSE

are valuable metrics for ranking the predictive performance of our

models. More accurate models will exhibit smaller MSE and larger

MPET scores compared to weaker models.

It should be noted that the MPET is a metric that is

more tailored to specific applications due to its preference

for overprediction. This preference stems from the fact that

decision-makers often choose to base their decisions on more

pessimistic estimates rather than optimistic ones. In this context,

it is preferable to overestimate rather than underestimate the

prevalence of malaria.

2.5. Preprocessing

To prevent large error gradients from causing instability in the

learning process, we scaled each continuous variable’s observations

between the minimum and maximum observed values. This helps

ensure that weight values do not fluctuate wildly during training,

particularly for gradient-based methods used in this investigation.

Our findings indicate that superior predictive performance

can be achieved by training models on the transformed dataset

described in the Supplementary material. Specifically, we observed

that when models were trained on the transformed data, their MSE

values were roughly halved and their MPET values increased by

around 10% on average, compared to training regimes using the

original data.

2.6. Baseline models

We applied a variety of classical and machine learning time

series forecasting methods to the dataset. Full implementation

details can be found in the Supplementary material. The classical

models used were Holt-Winters (also known as Triple Exponential

Smoothing) and SARIMAX (Seasonal Auto-Regressive Integrated

Moving Average with Exogenous variables). To train the classical

models, we utilized an autoregressive approach with a 3-

month forecasting window, using the malaria prevalence signal

{yt−3, yt−2, yt−1}. The SARIMAX model included the malaria

prevalence signal as well as the intervention used during those

months {It−3, It−2, It−1} as an exogenous variable.

The ML models we implemented were EN (Elastic Net), RF

(Random Forest), SVR (Support Vector Regression), NN (Neural

Network), and BiLSTM (Bidirectional Long Short-TermMemory).

In addition to the malaria prevalence signal and the intervention,

the ML models were also trained on the past three months of
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environmental and clinical observations {Xt−3,Xt−2,Xt−1}. To

ensure more reliable estimates, we trained 10 different instances of

the best-performing deep network models (i.e., NN and BiLSTM)

based on validation loss, and report the average results.

Details regarding the hyperparameter selection for these

baseline models can be found in the Supplementary material.

2.6.1. SARIMAX
Using the Akaike Information Criterion (AIC) (12), we

identified the optimal parameter set for our SARIMAX model

to be (p, d, q, P,D,Q, S) = (2, 0, 3, 2, 0, 3, 12). This resulted in

an AIC of −330.842 when the intervention was considered as a

categorical exogenous variable. The seasonality order S was set to

12 since we know that the data has a seasonal period of 12 months

due to the mosquito lifecycle. This was the only way in which

temporal information from outside of the 3-month forecasting lead

window was provided to the autoregressive models. The remaining

order parameters were selected from a range of 0, ..., 6, and a

grid search was conducted to determine their optimal values. For

more information about the SARIMAX model, please refer to the

Supplementary material.

2.6.2. BiLSTM
Regarding hyper-parameter tuning of our models, we chose

a 24-unit Bidirectional Long Short-Term Memory (BiLSTM)

architecture based on its superior performance, as demonstrated

in Figures 1, 2, showing the lowest validation set MSE loss and

highest MPET scores, respectively.We utilized the Adam optimizer

(13) and conducted training for 100 epochs with a batch size of

30. For further information on LSTM models, please refer to the

Supplementary material.

2.7. Weighted ensemble methods

We created ensembles by training 20 separately initialized

models and weighting them based on their performance on the

validation set. Validation sets were chosen randomly as held-out

subsets of the training data of size 20%. We calculated the weights

according to Equation (2):

wi =
e−si

∑
i e

−si
(2)

Here, si = vi∑
i vi

represents a normalized score obtained

from validation set MSE vi achieved by model i. In this way,

higher weights are assigned to models with better validation scores,

making them more influential in the ensemble.

This means that the output prediction N̂E
t from a weighted

ensemble E of K non-linear models Nk,t for k ∈ 1, ...,K, at time t

is

N̂E
t : =

K∑

k= 1

wkN̂k,t (3)

2.8. Stacked hybrid models

As an alternative to ensembles, Wang et al. (2) trained a variety

of classical and neural forecasters and then combined them with

Gradient Boosted Regression Trees (GBRT) as meta-learners. We

implemented their method, but provided the neural forecasters

with both environmental and clinical data, rather than just the

environmental data that they used. For our stack of models, we

chose our best performing classical and neural models: SARIMAX

and BiLSTM, respectively. We implemented the GBRT technique

using the Python sklearn library with default hyperparameters

(MSE loss, learning_rate=0.1, and n_estimators=100), as the study

(2) did not specify on this regard.

2.9. Asymmetric quadratic loss (AQL)

The previous methods applied to this dataset (5) utilized the

MPET metric to evaluate the success of a monthly prediction.

However, in order to use this metric in training through

backpropagation, a differentiable loss function is required. When

training with a differentiable version of the MPET loss, the model’s

performance is adversely affected due to the “bucket” shape of the

loss function, which causes gradients to become very small unless

evaluated at the specific values which are the “walls” of the bucket.

We have found that using a symmetric quadratic loss

QL(y, ŷ) = (y − ŷ)2 during training is much more advantageous

as it consistently reduces both the MSE and MPET metrics

simultaneously. However, since MPET is an asymmetric metric

that penalizes models more heavily for underestimating the true

value than for overestimating it, it is inappropriate for our purpose

to use a symmetric quadratic loss that penalizes both over and

underestimation equally. We need a loss function that improves

both MSE and MPET metrics while maintaining a preference for

overestimation. To address this issue, we explore the use of an

asymmetric quadratic loss AQL which is defined as follows:

AQL(y, ŷ; τ ) : =

{
τ (y− ŷ)2, if y ≤ ŷ

(1− τ )(y− ŷ)2, if y > ŷ
(4)

The MPET metric penalizes underestimation twice as severely

as overestimation, with 0.05 (the size of the lower error tolerance

band in Equation 1) being half the size of 0.1 (the size of the

upper error tolerance band in Equation 1). To maintain this 2:1

weighting ratio, we select τ = 1
3 , resulting in twice the penalty for

underestimation compared to overestimation.

2.10. Specialist hybrid models

The idea of specialist hybrid models (11) is to decompose the

true signal yt into a linear autocorrelation component yLt and a

non-linear component yNt , i.e., yt = yLt + yNt . A linear estimator

ŷLt is fit on yt to estimate yLt , and then the non-linear residuals

et = yt − ŷLt are assumed to be modeled from past observations

et = f (et−1, et−2, . . . , et−n) + ǫt , where ǫt is the random process

noise. A non-linear estimator ŷNt is then fit on et to estimate yNt . The
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FIGURE 1

Mean MSE scores with standard deviation as shaded area for 20 randomly initialized BiLSTM models of di�ering sizes trained with symmetric and

asymmetric quadratic losses.

FIGURE 2

Mean MPET scores with standard deviation as shaded area for 20 randomly initialized BiLSTM models of di�ering sizes trained with symmetric and

asymmetric quadratic losses.

final prediction is obtained by summing the linear and non-linear

components:

ŷt = ŷLt + ŷNt (5)

This approach allows each component model to specialize in

modeling the type of data on which it performs best. By using a

non-linear specialist model, the hybrid approach can improve on

classical methods that may have difficulty capturing non-linearities

in the data.

In this study, we propose to use a SARIMAX model as the

linear estimator and a bidirectional long short-term memory

(BiLSTM) recurrent neural network as the non-linear estimator.

The different models are fitted using distinct data sources. The

SARIMAX model uses the prevalence values from the previous

3 months {yt−3, yt−2, yt−1} and the corresponding intervention

measures {It−3, It−2, It−1}, as the exogenous variable, to generate

the linear model prediction ŷLt for the prevalence in month t.

The BiLSTM model is fitted using environmental and

clinical data {Xt−3,Xt−2,Xt−1} from the prior three months

as inputs to predict ŷNt , the non-linear residuals of the

linear model. The approach trains the non-linear model

using residuals from the linear prevalence predictions only,

whereas our approach uses clinical and environmental

data {X} instead of residuals (11). Furthermore, we trained

the BiLSTM using AQL to encourage a preference for

overprediction. The final predictions are obtained by

adding the forecasts from the two specialist models, using

Equation (5).

The motivation behind our method is that it leverages

the unique strengths of the individual models rather than

forcing them to perform the same task. We fit our best linear

and non-linear models to capture the linear and non-linear

components of the signal, respectively. Specifically, our SARIMAX

model is trained to predict the linear component, while an

ensemble of asymmetrically trained 24-unit BiLSTMs is used to

predict the non-linear component. The algorithm for training
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Data: Training data: prevalence {yt}
T
t=1, clinical

{Xt}
T
t=1, interventions {It}

T
t=1

Output: Fitted SARIMAX and BiLSTM specialist

models

1 Fit SARIMAX parameters with prevalence data {yt}
T
t=1

and interventions {It}
T
t=1 as exogenous data

2 For every month t, make prediction ŷLt using

SARIMAX model from past prevalence {yt−3, yt−2, yt−1}

and interventions {It−3, It−2, It−1, It}

3 Obtain residuals et = yt − ŷLt

4 Fit BiLSTM parameters with {et}
T
t=1 and

environmental and hospital data {Xt}
T
t=1

(a) Training stage

Data: Three past observations of τ:

{yτ−3, yτ−2, yτ−1}, {Xτ−3,Xτ−2,Xτ−1}, {Iτ−3, Iτ−2, Iτ−1}

Output: Prediction for ŷτ

1 Use SARIMAX model to predict ŷL
τ
from {yτ−3, yτ−2, yτ−1}

and {Iτ−3, Iτ−2, Iτ−1}

2 Use ensemble of BiLSTMs to predict ŷNt from

{Xτ−3,Xτ−2,Xτ−1}

3 Obtain Specialist Hybrid prediction ŷτ = ŷL
τ
+ ŷN

τ

(b) Prediction stage

Algorithm 1. Forecasting malaria prevalence with our proposed specialist

hybrid model.

and prediction of our specialist hybrid model is presented in

Algorithm 1.

2.11. Model predictive variance

In addition to comparing model performance on held-out

test sets using MSE and MPET, we are also interested in how

much variance there is in the predictions made by the different

models. This gives us some idea of certainty of the models in their

predictions.

Below we show calculations to estimate the variance made by

an ensemble of K specialist hybrid models upon presentation of

point-wise inputs x. Each predictor k in the ensemble consists of

linear and non-linear component models, denoted by Lk and Nk,

respectively, k ∈ 1, . . . ,K. The prediction of the kth specialist

model in the ensemble is given by L̂k(x) + N̂k(x), where ŷL
k
: =

L̂k(x) and ŷN
k
: = N̂k(x) are the linear and non-linear components’

predictions, respectively (here subscripts refer to elements in the

ensemble, not to the samples in the data series). The weight given to

the kth specialist couple in the ensemble is denoted by wk, and the

empirical mean over all the predictions in the ensemble is denoted

by an overbar. Hence, the variance in overall prediction for input

variable x, denoted by ν(x), is given by the following equation:

ν(x) : =

K∑

k=1

wk

(
L̂k(x)+ N̂k(x)−

[
L̂k(x)+ N̂k(x)

])2

(6)

=

K∑

k=1

wk

(
N̂k(x)− N̂k(x)

)2

The reason for this result is that a single linear component is

trained and shared among all specialist models in the ensemble. As

a result, the linear prediction L̂k(x) is the same for all models in

the ensemble, and therefore it cancels out when subtracted from

the average ensemble linear component prediction. Therefore, the

variance calculation only takes into account the differences between

the non-linear component predictions across the ensemble and its

average non-linear prediction.

To estimate the total variance across the entire feature space, we

integrate the sum of variances for each point-wise prediction:

∫
dp(x)

K∑

k=1

wk

(
N̂k(x)− N̂k(x)

)2
(7)

≈
1

N

N∑

n=1

K∑

k=1

wk

(
N̂k(xn)− N̂k(xn)

)2

= : νX

where p(x) is the theoretical underlying probability distribution

associated with the feature space. To approximate the integral,

the sum of variances is averaged over a representative sample

of the feature space. This sample is a test dataset X = xn
N
n=1

with N points. The resulting average measure is denoted by νX ,

which is an estimation of the variance of the models’ predictions.

This estimation assumes that the test data is a valid representative

sample of the prevalence signal.

3. Results

3.1. Performance of baseline models in
malaria prevalence prediction

Table 3 presents the average results for prevalence prediction

using the MSE and MPET measures of performance with the

transformed dataset. It can be observed that the SARIMAX model

performs the best among classical models, as it significantly

outperforms the Holt-Winters (HW) model with an average of

14.7% lower MSE score and 22.1% higher MPET score.

Furthermore, Table 3 clearly demonstrates that the BiLSTM

model (without ensembling) outperforms the other machine

learning models, achieving the lowest MSE of 0.0024 and the

highest MPET of 85.3%. The Neural Network (NN) model obtains

the second-best performance, with superior MSE andMPET scores

compared to the Elastic Net (EN), Random Forest (RF), and

Support Vector Regression (SVR) models.

Our findings are in line with those of (2), who proposed

that LSTM models are appropriate for this domain. However, we
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TABLE 3 Test set performance of models trained on the transformed

dataset.

Model MSE MPET(%)

HW 0.0068 54.3

SARIMAX 0.0058 76.4

EN 0.0028 77.1

RF 0.0034 80.0

SVR 0.0032 71.4

NN 0.0027 84.7

BiLSTM 0.0024 85.3

Wang et al. (2): GBRT meta-learned

SARIMAX BiLSTM stack

0.0022 87.6

validated this on a much larger dataset than the one used in

that study. Moreover, while (2) only investigated standard LSTMs,

we discovered that better performance can be obtained by using

BiLSTMs, as shown in the Supplementary material. These results

confirm our choice to utilize BiLSTM as our base MLmodel for our

specialist hybrid models.

Figure 1 shows that training BiLSTM models of various sizes

using the asymmetric AQL instead of the symmetric QL does not

have a significant impact on the mean and standard deviation of the

MSE performance. However, it also demonstrates that training with

AQL instead of QL consistently reduces the mean and standard

deviation of the MPET measure of performance across BiLSTM

models of various sizes.

The results of using a weighted ensemble of BiLSTM models

are presented in Table 4. We can observe that compared to

the results obtained using single BiLSTM models in Table 3,

there is a 0.0002 and 2.3% improvement in MSE and MPET,

respectively, when training with the symmetric MSE loss, which is

expected as ensembling typically improves single-based predictive

performance. Moreover, we found that using AQL can further

improveMPET scores by 5.9% relative to the single BiLSTMmodel.

3.2. Specialist hybrid models outperform
stacked hybrid model in malaria prevalence
prediction

We found that our implementation of the stacked hybridmodel

proposed by Wang et al. (2) achieves remarkable performance, as

shown in Table 4. The model obtains an MSE score of 0.0022 and

an MPET score of 87.6%, outperforming any of the other baseline

models in Table 3 as well as the BiLSTM ensemble in Table 3.

Besides, note that this model was trained without asymmetric loss.

Based on these results, we establish that the stacked hybrid model

is the current state-of-the-art in malaria prevalence prediction

with our transformed dataset (2). Therefore, we will use it as a

benchmark to evaluate the specialist hybrid model, trained with the

alternative AQL loss, that we propose in this study.

Table 4 shows that our specialist hybrid model achieves a lower

MSE of 0.0018 and a higher MPET of 97.1% when the BiLSTM

component is trained using the proposed AQL loss. These values

TABLE 4 Test set performance of models trained using symmetric (QL)

and asymmetric (AQL) quadratic losses. Note that pure SARIMAX method

is independent of loss and so the values in both columns are duplicated.

Model QL AQL

MSE MPET (%) MSE MPET (%)

SARIMAX 0.0057 76.3 0.0057 76.3

BiLSTM

Ensemble

0.0022 88.6 0.0022 91.2

Our

implementation

of (2):

Stacked Hybrid

of SARIMAX

and

BiLSTMs with

GBRT

Meta-Learner

0.0022 87.6 0.0021 89.4

Our Specialist

Hybrid of

SARIMAX and

BiLSTMs

0.0019 91.4 0.0018 97.1

TABLE 5 Model variance comparison for ensemble and specialist hybrid

models.

Model νX

BiLSTM 5.5× 10−5

Specialist hybrid

SARIMAX-BiLSTM

2.3× 10−5

demonstrate better performance than the MSE and MPET scores

of the (2) stacked hybrid approach, which were 0.0021 and 89.4%,

respectively, and were also trained with the AQL loss this time.

Table 4 also demonstrates the improvement in performance

resulting from training the models using AQL. As expected from

our investigation in Figures 1, 2, the MSE values are not noticeably

affected by using this loss. However, the MPET scores demonstrate

an average improvement of 4% compared to the models trained

with the symmetric loss. It is worth noting that these results

confirm the effectiveness of the proposed AQL loss in enhancing

the predictive performance of the specialist hybrid model.

3.3. Model predictive variance comparison

Table 5 presents the values of the total model variance νX as

computed by Equation (7). The results indicate that the specialist

hybrid model has a significantly lower prediction variance than

the non-hybrid BiLSTM ensemble. In both approaches, we used

ensembles of size 50.

4. Discussion

Combining the SARIMAX and BiLSTM together in a specialist

hybrid model leverages the available data effectively by allowing

each component to specialize in modeling the type of data on

which it performs best. The SARIMAX model operates on only

the prevalence and intervention data as an exogenous variable,
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whilst the neural system models the non-linear component, the

residuals from the SARIMAX model, as a function of the clinical

and environmental data.

Machine learning models can effectively predict malaria

prevalence by using clinical and environmental data, although they

require a larger amount of data for parameter tuning and training,

which makes the process computationally expensive. In contrast,

the traditional linear component of the specialist hybrid model

is more robust and has fewer parameters to tune, reducing the

risk of overfitting to training data. By using the specialist hybrid

model, the high-variance non-linear BiLSTMmodel can predict on

a smaller portion of the total prevalence while the SARIMAXmodel

can handle the linear or autoregressive component of the signal.

The neural non-linear model can be interpreted as fine-tuning the

classical model, resulting in consistently higher accuracy, as other

studies have also found (11).

In terms of the bias-variance tradeoff, specialist hybrid models

do not significantly increase the bias as the non-linear neural

model can still model a substantial part of the signal, and the

linear component has fewer parameters to tune. The hybrid

model provides a way to effectively combine the strengths of both

linear and non-linear models while mitigating their weaknesses.

Therefore, specialist hybrid models can be applied to other real-

world applications with little disadvantage, and we advocate for

their more widespread deployment.

Real-world datasets are often small, making it challenging to

train neural systems that typically require larger sample sizes to

generalize well. By reducing the total model variance νX to less than

half of that of the non-hybrid model as shown in Table 5, the hybrid

approach more effectively addresses overfitting issues.

Our specialized hybrid approach is novel in the malaria

prevalence prediction literature and advantageous to the other

hybrid approaches taken in this area. Compared to (2), who actually

work on the same problem, we achieve comprehensively better

performance and from a theoretical standpoint our approach only

uses the neural models (which have higher predictive variance) on a

smaller (non-linear) part of the signal, meaning that the total hybrid

model predictive variance is lower. The approach by (11) has not

been applied to this area but is less useful for malarial prevalence

prediction as it only uses residuals from the linear model as input

to the non-linear model, whereas in this application we have access

to clinical and environmental covariates which we know impact the

signal and which we use in our approach to model the non-linear

deviation from the overall linear autoregressive trend.

As an additional remark, the use of the newly proposed

asymmetric training approach with AQL yielded improved

performance across all models. Notably, the MPET scores specific

to and very important for malaria prevalence prediction problem,

in particular, exhibited a noticeable improvement with the use of

this loss function.

5. Conclusion

In this paper, we introduced new methodology to the malaria

prevalence prediction problem in the form of asymmetric training

and specialist hybrid model approaches. Our findings suggest that

both the specialist hybrid approach and the use of the asymmetric

quadratic loss are promising methodologies individually for

malaria prevalence prediction. Combining the two into an

asymmetrically trained specialist hybrid model outperformed the

other methods in the literature, including state-of-the-art stacked

hybrid models. The specialist hybrid approach is therefore a

promising alternative to current prediction methods, and should

be deployed by local stakeholders to improve decision-making and

resource allocation for malaria control in high-risk regions.

We recognize a limitation in our research pertaining to

the dataset’s geographical origin, which is confined to the Ibadan

region in Nigeria. Consequently, the generalizability of our findings

might be limited. To address this concern, we intend to extend our

model’s application to diverse regions worldwide, where malaria

displays varying seasonality patterns influenced by distinct weather

conditions (15).

Expanding our deployment to different regions will enable us

to assess the model’s stability, explore variations in optimal

hyperparameters, and provide valuable insights for the model

retraining pipeline in clinical practice. Furthermore, incorporating

a broader range of variables that account for regional mechanisms

(14), including a wider range of environmental factors,

demographic characteristics such as age groups, and clinical

information such as comorbidities, may enhance the accuracy and

robustness of our specialist hybrid approach.
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