
294

A Deductive Verification Infrastructure for

Probabilistic Programs

PHILIPP SCHRÖER, RWTH Aachen University, Germany

KEVIN BATZ, RWTH Aachen University, Germany

BENJAMIN LUCIEN KAMINSKI, Saarland University, Germany and University College London, United

Kingdom

JOOST-PIETER KATOEN, RWTH Aachen University, Germany

CHRISTOPH MATHEJA, Technical University of Denmark, Denmark

This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our

infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate

verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style

for expressing verification conditions whose validity implies the correctness of a program under investigation.

As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times,

or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a

paradigm shift from the standard Boolean to a real-valued domain is required.

Our IVL features quantitative generalizations of standard verification constructs such as assume- and

assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based

on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous

verification techniques from the literature. With our SMT-based implementation, we automatically verify

a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification

infrastructure for expectation-based reasoning about probabilistic programs.

CCS Concepts: • Theory of computation → Logic and verification; Automated reasoning; Hoare

logic; Axiomatic semantics; Denotational semantics; Invariants; Program specifications; Pre- and

post-conditions; Program verification; Assertions.

Additional Key Words and Phrases: deductive verification, quantitative verification, probabilistic programs,

weakest preexpectations, real-valued logics, automated reasoning

ACM Reference Format:

Philipp Schröer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2023.

A Deductive Verification Infrastructure for Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA2,

Article 294 (October 2023), 31 pages. https://doi.org/10.1145/3622870

1 INTRODUCTION AND OVERVIEW

Probabilistic programs differ from ordinary programs by the ability to base decision on samples
from probability distributions. They are found in randomized algorithms, communication protocols,
models of physical and biological processes, and –more recently – statistical models used inmachine

Authors’ addresses: Philipp Schröer, phisch@cs.rwth-aachen.de, RWTH Aachen University, Germany; Kevin Batz, kevin.

batz@cs.rwth-aachen.de, RWTH Aachen University, Germany; Benjamin Lucien Kaminski, kaminski@cs.uni-saarland.de,

Saarland University, Germany and University College London, United Kingdom; Joost-Pieter Katoen, katoen@cs.rwth-

aachen.de, RWTH Aachen University, Germany; Christoph Matheja, chmat@dtu.dk, Technical University of Denmark,

Denmark.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART294

https://doi.org/10.1145/3622870

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-4329-530X
HTTPS://ORCID.ORG/0000-0001-8705-2564
HTTPS://ORCID.ORG/0000-0001-5185-2324
HTTPS://ORCID.ORG/0000-0002-6143-1926
HTTPS://ORCID.ORG/0000-0001-9151-0441
https://doi.org/10.1145/3622870
https://orcid.org/0000-0002-4329-530X
https://orcid.org/0000-0001-8705-2564
https://orcid.org/0000-0001-5185-2324
https://orcid.org/0000-0002-6143-1926
https://orcid.org/0000-0001-9151-0441
https://doi.org/10.1145/3622870
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622870&domain=pdf&date_stamp=2023-10-16

294:2 Schröer, Batz, Kaminski, Katoen, Matheja

expected run-times partial correctness expected resource consumption

martingales positive almost-sure termination almost-sure termination

Park inductionamortised analysis conditional expected values

total correctness k-induction probabilistic sensitivity

Quantitative Intermediate Verification Language (HeyVL)

VC Generator Real-Valued Logic (HeyLo) SMT Solver

Fig. 1. Architecture of our verification infrastructure.

learning and artificial intelligence (cf. [Barthe et al. 2020; Gordon et al. 2014]). Typical questions in
the design and analysis of probabilistic programs are concerned with quantifying aspects of their
expected – or average – behavior, e.g. the expected runtime of a randomized algorithm, the expected
number of retransmissions in a protocol, or the probability that a particle reaches its destination.

Writing correct probabilistic programs is notoriously hard. They may contain subtle bugs occur-
ring with low probability or undesirably favor certain results in the long run. In fact, reasoning
about the expected behavior of probabilistic programs is known to be strictly harder than for
ordinary programs [Kaminski et al. 2019].

There exists a plethora of research on verification techniques for probabilistic programs, ranging
from program logics (cf. [Kaminski et al. 2018; McIver and Morgan 2005]) to highly specialized proof
rules [Hark et al. 2019; McIver et al. 2018], often with little (if any) automation. These techniques are
based on different branches of mathematics – e.g. domain theory or martingale analysis – and their
relationships are non-trivial (cf. Takisaka et al. [2021]). This poses major challenges for comparing
– let alone combining – such different approaches.

In this paper, we build a verification infrastructure for reasoning about the expected behavior of
(discrete) probabilistic programs; Figure 1 gives an overview. Modern program verifiers for non-
probabilistic programs often have a front-end that translates a given program and its specification
into an intermediate language, such as Boogie [Leino 2008],Why3 [Filliâtre and Paskevich 2013], or
Viper [Müller et al. 2016b]. Such intermediate languages enable the encoding of complex verification
techniques, while allowing for the separate development of efficient back-ends, e.g. verification
condition generators. In this very spirit, we introduce a novel quantitative intermediate verification

language that enables researchers to (i) prototype and automate new verification techniques, (ii)
combine proof rules, and (iii) benefit from back-end improvements. Before we dive into details, we
discuss five examples of probabilistic programs from the literature that have been verified with five
different techniques – all of them have been encoded in our language and verified with our tool.

Example 1.1 (Rabin’s Mutual Exclusion Protocol [Kushilevitz and Rabin 1992]). This protocol
controls processes competing for access to a critical section. To determine which process gets
access, every process will repeatedly toss a fair coin until it sees heads; the process that needed the
largest number of tosses is then granted access. Figure 2 shows a probabilistic program modeling
Rabin’s protocol: 8 is the number of remaining processes competing for access. While more than
1 competitor remains, each competitor tosses one coin (inner loop). If the coin shows heads (i.e.
if flip(0.5) samples a 1), that competitor is removed from the pool of remaining competitors
(by subtracting 3 = 1 from 8). One can verify with the weakest liberal preexpectation calculus by

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:3

while (1 < 8) {
= ≔ 8;

while (0 < =) {
3 ≔ flip(0.5);
8 ≔ 8 − 3;
= ≔ = − 1
}
}

Fig. 2. Model of Rabin’s Protocol

while (0 < G) {
8 ≔ # + 1;
while (0 < G < 8) {
8 unif(1, #)
}
G ≔ G − 1
}

Fig. 3. The Coupon Collector’s Problem

fn lossy(;: List) {
if (len(;) > 0) {
{ lossy(tail(;)) } [0.5] { diverge }
}
}

Fig. 4. Lossy list traversal

while (G > 0) {
@ ≔ G/(2 · G + 1);
{G ≔ G − 1} [@] {G ≔ G + 1}
}
Fig. 5. Variant of a random walk

while (G ≠ 0) {
{G ≔ 0} [0.5] {~ ≔ ~ + 1}
= ≔ = + 1
}

Fig. 6. Counterexample from [Hark et al. 2019]

McIver and Morgan [2005] that the probability to select exactly one process (plus the probability of

nontermination) is at least 2/3 if there are initially at least 2 processes.

Example 1.2 (The Coupon Collector [Wikipedia 2023a]). Figure 3 models the coupon collector
problem – a well-known problem in probability theory: Suppose any box of cereals contains one
of # different coupons. What is the average number of boxes one needs to buy to collect at least
one of all # different coupons, assuming that each coupon type occurs with the same probability?
Our formulation is taken from [Kaminski et al. 2018]; the authors develop an expected runtime

calculus and use invariant-based arguments to show that the expected number of loop iterations,
which coincides with the average number of boxes one needs to buy, is bounded from above by

· �# , where �# is the # -th harmonic number.

Example 1.3 (Lossy List Traversal [Batz et al. 2019]). Figure 4 depicts a recursive function imple-
menting a lossy list traversal; it flips a fair coin (using the probabilistic choice { . . . } [0.5] { . . . })
and, depending on the outcome, either calls itself with the list’s tail or diverges, i.e. enters an
infinite loop. Using the weakest preexpectation calculus [Kozen 1983; McIver and Morgan 2005], one
can prove that this program terminates with probability at most 0.5len(;) . Analyzing the lossy list
traversal is intuitive – for every non-empty list, there is exactly one execution that does not diverge;
its probability is 0.5len(;) . What is noteworthy, however, is that even for such a simple program,
we need to reason about an exponential function. This is common when verifying probabilistic
programs: proving non-trivial bounds often requires non-linear arithmetic.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:4 Schröer, Batz, Kaminski, Katoen, Matheja

Example 1.4 (Fair RandomWalk [Wikipedia 2023b]). Figure 5 depicts a variant of a one-dimensional
random walk of a particle with position G – a well-studied model in physics. Analyzing the pro-
gram’s termination behavior is hard because the probability @ of moving to the left or right changes
in every loop iteration depending on the previous position G . McIver et al. [2018] propose a proof
rule based on quasi-variants that allows proving that this program terminates almost-surely, i.e. with
probability one. Fair random walks, i.e. if @ = 1/2, are well-known to terminate almost-surely but
still have infinite expected runtime.

Example 1.5 (Lower Bounds on Expected Values [Hark et al. 2019]). Figure 6 shows an another loop
whose control flow depends on the outcome of coin flips. Hark et al. [2019] studied this example
to demonstrate that induction-based proof rules for lower bounds1, which are sound for classical
verification, may become unsound when reasoning about probabilistic programs. The authors used
martingale analysis and the optional stopping theorem to develop a sound proof rule capable of
proving that, whenever G ≠ 0 initially holds, then the expected value of ~ after the program’s
termination is at least 1 + ~.

Challenges. We summarize the challenges of developing an infrastructure for automated verifica-
tion of probabilistic programs unvealed by the examples in Figures 2 to 6:

First, there are many different verification techniques for probabilistic programs that are based
on different concepts, e.g. quantitative invariants, quasi-variants, different notions of martingales,
or stopping times of stochastic processes. Developing a language that is sufficiently expressive to
encode these techniques while keeping it amenable to automation is a major challenge.
Second, verification of probabilistic programs involves reasoning about both lower- and upper

bounds on expected values. This is different from classical program verification, which can be
understood as proving that a given precondition implies a program’s weakest precondition, i.e.
pre⇒ wpJ�K(post). In other words, pre is a lower bound (in the Boolean lattice) on wpJ�K(post).
Proving upper bounds, i.e. wpJ�K(post) ⇒ pre, has received scarce attention.2

Third, in Figures 3 to 5, we noticed that verification of probabilistic programs often involves
reasoning about unbounded random variables and non-linear arithmetic involving exponentials,
harmonic numbers, limits, and possibly infinite sums.

Our approach. We address the first challenge by developing a quantitative IVL and a real-valued
logic tailored to verification of probabilistic programs. The IVL features quantitative generalizations
of standard verification constructs such as assume- and assert-statements. Our quantitative
constructs are inspired by Gödel logics [Baaz 1996; Preining 2010]. In particular, they have dual
co-constructs for verifying upper- instead of lower bounds, thereby addressing the second challenge.
These dual constructs are not only interesting for quantitative reasoning, but indeed also for
Boolean reasoning à la wpJ�K(post) ⇒ pre. To address the third challenge, we rely on modern
SMT solvers’ abilities to deal with custom theories, standard techniques for limiting the number of
user-defined function applications, and custom optimizations.
Figure 7 shows a program written in our quantitative IVL; it encodes the verification of Exam-

ple 1.3. We use a coprocedure to prove that the quantitative precondition exp(0.5, len(;)) = 0.5len(;)

is an upper bound on the procedure’s termination probability3 given by the quantitative postcon-
dition 1. We establish the above bound for the procedure body while assuming that it holds for
recursive calls (cf. [Olmedo et al. 2016]). Our dual quantitative assert- and assume-statements
encode the call in the usual way: we assert the procedure’s pre and assume its post.

1Specifically: lower bound on partial correctness plus proof of termination gives lower bound on total correctness.
2Notable exceptions are Cousot’s necessary preconditions [Cousot et al. 2013] and recent works on (partial) incorrectness

logic [O’Hearn 2020; Zhang and Kaminski 2022].
3Technically, exp (0.5, len(;)) upper-bounds the expected value of the random variable 1 after the procedure’s termination.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:5

coproc lossy (;: List) -> ()

pre exp(0.5, len(;))
post 1

{
if (len(;) > 0) {

var 2>8= : B flip(0.5) // coin flip

if (2>8=) {
coassert exp(0.5, len(tail(;))); covalidate; coassume 1 // call of lossy(tail(;))
} else {assert ?(false) } // diverge
}

}

Fig. 7. Encoding of the lossy list traversal (see Figure 4) in our intermediate language.

Contributions. The main contributions of our work are:

(1) A novel intermediate verification language (→ Section 3) for automating probabilistic program
verification techniques featuring quantitative generalizations of standard verification constructs,
e.g. assert and assume, and a formalization of its semantics based on a real-valued logic
(→ Section 2) with constructs inspired by Gödel logics.

(2) Encodings of verification techniques and proof rules with different theoretical underpinnings
(e.g. domain theory, martingales, and the optional stopping theorem) taken from the proba-
bilistic program verification literature into our intermediate language (→ Section 4).

(3) An SMT-backed verification infrastructure that enables researchers to prototype and automate
verification techniques for probabilistic programs by encoding to our intermediate language,
an experimental evaluation of its feasibility, and a prototypical frontend for verifying programs
written in the probabilistic guarded command language (→ Section 5).

Proofs and further details about our encodings are available online in a technical report.

2 HEYLO: A QUANTITATIVE ASSERTION LANGUAGE

When analyzing quantitative program properties such as runtimes, failure probabilities, or space
usage, it is often more direct, more intuitive, and more practical to reason directly about values like
the runtime =2, the probability 1/2G , or a list’s length, instead of predicates like rt = =2, prob ≤ 1/2G ,
or length(;B) > 0 (cf., [Kaminski et al. 2018; Ngo et al. 2018]).

This section introduces HeyLo – a real-valued logic for quantitative verification of probabilistic
programs, which aims to take the role that predicate logic has for classical verification. By syntacti-
fying real-valued functions, HeyLo serves as (1) a language for specifying quantitative properties –
in particular those that McIver and Morgan [2005] (and many other authors) call expectations4 –,
and (2) a foundation for automation by reducing many verification problems to a decision problem
for HeyLo, e.g. validity or entailment checking. To ensure that HeyLo is expressive enough for (1),
we design it reminiscently of the language by Batz et al. [2021b], which is relatively complete for
the verification of probabilistic programs.
To ensure that HeyLo is suitable for (2), HeyLo is first-order, so as to simplify automation.

Moreover, verification problems can often be stated as inequalities between to functions. To ensure

4For historical reasons, the term expectations refers to random variables on a program’s state space.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:6 Schröer, Batz, Kaminski, Katoen, Matheja

that such inequalities can, in principle, be encoded into a single decision problem for HeyLo, we
introduce quantitative (co)implications – which provide a syntax for comparing HeyLo formulae
– and prove an analogue to the classical deduction theorem for predicate logic [Kleene 1952].
Supporting comparisons between expectations via (co)implications is essential for encoding proof
rules for probabilistic programs. The (co)implications are inspired by intuitionistic Gödel logics
[Baaz 1996; Preining 2010] and form Heyting algebras (cf. Theorem 2.1), hence the name HeyLo.

2.1 Program States and Expectations

Let Vars = {G,~, . . .} be a countably infinite set of typed variables. We write G : g to indicate that G
is of type g , i.e. g is the set of values G can take. We assume the built-in types B = {true, false}, N,
Z, Q, Q≥0, R, R≥0, and R∞≥0 = R≥0 ∪ {∞}; our verification infrastructure also supports user-defined
mathematical types (cf. Section 5.1). We collect all types in Types and all values in Vals =

⋃

g∈Types g .
A (program) state f maps every variable G : g to a value in g . The set of states is thus

States = {f : Vars→ Vals | for all G ∈ Vars : G : g implies f (G) ∈ g } .

Expectations are the quantitative analogue to logical predicates: they map program states to R∞≥0
instead of truth values. The complete lattice (E, ⪯) of expectations is given by

E =

{

-
�
� - : States→ R∞≥0

}

with - ⪯ . iff for all f ∈ States : - (f) ≤ . (f) .

2.2 Syntax of HeyLo

We start with the construction of HeyLo’s atoms. The set T of terms is given by the grammar

C F 2 | G | 5 (C, . . . , C) ,

where 2 is a constant in Q∪B, G is a variable in Vars, and 5 is either one of the built-in function sym-
bols +, ·,−, ¤−, <,=,∧,∨,¬ (¤− is subtraction truncated at 0) or a typed user-defined function symbol
5 : g1 × . . . × g= → g for some = ≥ 0 and types g1, . . . , g=, g (cf. Section 5.1). Function symbols in-
clude, for example, the length of lists len : Lists→ N and the exponential function exp : R × Z→ R
mapping (A, =) to A= .
We write C : g to indicate that term C is of type g . Typing and subtyping of terms is standard. In

particular, if C : g1 and g1 ⊆ g2, then C : g2. We only consider well-typed terms.
We denote terms of type Q≥0 (resp. B) by 0 (resp. 1) and call them arithmetic expressions (resp.

Boolean expressions). The set of HeyLo formulae is given by the following grammar:

i F 0 (arithmetic expressions)

| i + i (addition)

| i ⊓ i (minimum)

| JG : g . i (infimum over G : g)

| i → i (implication)

| ?(1) (Boolean embedding)

| i · i (multiplication)

| i ⊔ i (maximum)

| SG : g . i (supremum over G : g)

| i f i (coimplication)

We explain the meaning of HeyLo formulae in the next subsection. Free- and bound (by Sor

Jquantifiers) variables of a HeyLo formula i are defined as usual. The order of precedence for
arithmetic- and Boolean expressions is standard. For HeyLo formulae, the order of precedence is,

J, S < →,f < ⊔ < ⊓ < + < · ,

i.e. Jand Sare least binding and · is most binding. We use parentheses to resolve ambiguities.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:7

d JdK(f)

0 J0K(f)

i +k JiK(f) + JkK(f)

i ⊓k min
{

JiK(f), JkK(f)
}

JG : g . i inf
{

JiK(f [G ↦→ E])
�
� E ∈ g

}

i → k

{

∞, if JiK(f) ≤ JkK(f)
JkK(f), otherwise

d JdK(f)

?(1)
{

∞, if J1K(f) = true

0, otherwise

i ·k JiK(f) · JkK(f)

i ⊔k max
{

JiK(f), JkK(f)
}

SG : g . i sup
{

JiK(f [G ↦→ E])
�
� E ∈ g

}

i f k

{

0, if JiK(f) ≥ JkK(f)
JkK(f), otherwise

Fig. 8. Semantics of HeyLo. inf and sup are taken over R∞≥0. Here f [G ↦→ E] (~) =
{

E, if G = ~

f (~), otherwise .

2.3 Semantics and Properties of HeyLo

A term C : g evaluates to value JCK(f) ∈ g on state f . We assume the standard semantics for constants
and built-in functions and that J5 K is given for all user-defined functions.

The semantics of a HeyLo formula i is an expectation JiK : States→ R∞≥0 defined by induction
on the structure of i in Figure 8, where we define 0 · ∞ = ∞ · 0 = 0 as is common in measure theory.
Two HeyLo formulae i andk are equivalent, denoted i ≡ k , iff JiK = JkK. A HeyLo formula

i is valid iff i ≡ ∞ and i is covalid iff i ≡ 0 .

For i,k ∈ HeyLo, we define

i ⊑ k
︸ ︷︷ ︸

read: i lower-boundsk

iff JiK ⪯ JkK
︸ ︷︷ ︸

pointwise inequality

and i ⊒ k
︸ ︷︷ ︸

read: i upper-boundsk

iff JiK ⪰ JkK.

These notions are central since we will encode verification problems as inequalities between
HeyLo formulae. In contrast to classical IVLs, HeyLo contains constructs for both reasoning about
lower-bounds and for reasoning about upper bounds. We briefly go over each construct in Figure 8.

Arithmetic- and Boolean Expressions. These expressions form the atoms of HeyLo. Consider, e.g.
the arithmetic expressions G + 1 for some numeric variable G and 2 · len(~) for a variable ~ : Lists.
On state f , G + 1 evaluates to f (G) + 1, and 2 · len(~) evaluates to 2 times the length of list f (~).

Boolean expressions 1 are embedded in HeyLo using the embedding operator ?(·): On state f , ?(1)
evaluates to∞ (think: true, since∞ is the top element in the lattice of expectations) if f satisfies
1, and to 0 otherwise. For instance, ?(G + 1 = 2 · len(~)) evaluates to∞ if f (G) + 1 is equal to two
times the length of the list f (~), and to 0 otherwise.

Addition, Multiplication, Minimum, and Maximum. HeyLo formulae can be composed by standard
binary arithmetic operations for sums (+), products (·), minimum (⊓), and maximum (⊔). Each
of these operations are understood pointwise (with the assumption that∞ · 0 = 0). For instance,
Jlen(~1) ⊓ len(~2)K(f) is the minimum length of lists f (~1) and f (~2).

Quantifiers. The infimum quantifier Jand the supremum quantifier Sfrom [Batz et al. 2021b] are
the quantitative analogues of the universal ∀ and the existential ∃ quantifier from predicate logic.
Intuitively, the Jquantifier minimizes a quantity, just like the ∀ quantifier minimizes a predicate’s
truth value. Dually, the Squantifier maximizes a quantity just like ∃ maximizes a predicate’s truth

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:8 Schröer, Batz, Kaminski, Katoen, Matheja

0 5 10

0

5

10

∞

f (G)

J5
→

G
K(
f
)

Fig. 9. J5→ GK(f) for f (G) ∈ [0, 10].

0 5 10

0

5

10

∞

f (G)

J5
f

G
K(
f
)

Fig. 10. J5f GK(f) for f (G) ∈ [0, 10].

value. The quantitative quantifiers embed ∀ and ∃ in HeyLo, i.e. for 1 : B and f ∈ States,

J JG : g . ?(1)K(f) =
{

∞, if f |= ∀G : g . 1
0, otherwise

and J SG : g . ?(1)K(f) =
{

∞, if f |= ∃G : g . 1
0, otherwise

Here, |= denotes the standard satisfaction relation of first-order logic. The above construction
extends canonically to nested quantifiers, e.g. ∃G : g . ∀~ : g ′ . 1 corresponds to SG : g . J~ : g ′ . ?(1).

For a quantitative example, consider the formula i = SG : Q≥0. ?(G · G < 2) ⊓ G . On state f , the
subformula ?(G · G < 2) ⊓ G evaluates to f (G) if f (G) · f (G) < 2, and to 0 otherwise. Consequently,

JiK(f) = sup { A ∈ Q≥0 | A · A < 2 } =

√
2 .

Notice that JiK(f) is irrational even though all constituents of i are rational-valued. It has been

shown in [Batz et al. 2021b] that — similar to our above construction of
√
2 — the quantitative

quantifiers combined with arithmetic- and (embedded) Boolean expressions over Q≥0 enable the
construction of all expected values emerging from discrete probabilistic programs.

(Co)implication. → andf generalize Boolean implication and converse nonimplication.5 For
state f , the implication i → k evaluates to∞ if JiK(f) ≤ JkK(f), and to JkK(f) otherwise. Dually,
the coimplication i f k evaluates to 0 if JiK(f) ≥ JkK(f), and to JkK(f) otherwise.
To gain some intuition, we first note that the top element ∞ of our quantitative domain R∞≥0

can be viewed as “entirely true” (i.e. as true as it can possibly get) and 0 can be viewed as “entirely
false” (i.e. as false as it can possibly get). The implication i → k makesk more true by lowering the
threshold above whichk is considered entirely true – and thus∞ – to i . In other words: Anything
that is at least as true as i is considered entirely true. Anything less true than i remains as true as
k . Figure 9 illustrates this for the formula 5→ G .

As another example, G2 → G evaluates to∞ for states f with f (G) ∈ [0, 1]; otherwise, G is below
the threshold G2 at which G is considered entirely true and thus the implication evaluates to G .
The intuition underlying the coimplication is dual: i f k makes k less true by raising the

threshold below whichk is considered entirely false – and thus 0 – to i . In other words: Anything
that is not more true than i is considered entirely false. Anything that is more true than i remains
as true ask . Figure 10 illustrates this for the formula 5f G .
Chained implications can also be understood in terms of lowering thresholds: i → (k → d)

lowers the threshold at which d is considered entirely true to i and k , whichever is lower. Formally,
i → (k → d) is equivalent to (i ⊓k) → d . More generally, (co)implications are the adjoints of
the minimum ⊓ and maximum ⊔:

5The converse nonimplication of propositions % and& is defined as ¬(% ← &) and is to be read as “& does not imply %”.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:9

Theorem 2.1 (Adjointness Properties). For all HeyLo formulae i ,k , and d , we have

i ⊓k ⊑ d iff i ⊑ k → d and k ⊔ d ⊒ i iff d ⊒ k f i .

Both→ andf are backward compatible to Boolean implication and converse nonimplication:

J?(11) → ?(12)K(f) =
{

∞, if f |= 11 → 12

0, otherwise
J?(11) f ?(12)K(f) =

{

∞, if f |= ¬(11 ← 12)
0, otherwise

We will primarily use (co)implications to (1) incorporate the capability of comparing expectations
syntactically in HeyLo and to (2) express assumptions. Application (1) is justified by the following
quantitative version of the well-known deduction theorem6 from first-order logic [Kleene 1952]:

Theorem 2.2 (HeyLo Deduction Theorem). For all HeyLo formulae i andk , we have

i ⊑ k iff i → k is valid and i ⊒ k iff i f k is covalid .

For application (2), consider the implication ?(1) → k ; it evaluates tok whenever 1 holds, and to∞
otherwise. As in predicate logic, the implication can be read as assuming 1 holds before evaluating
k . Formally,

J?(1) → kK(f) =

{

JkK(f), if f |= 1

∞, otherwise .

Now, consider the inequality i ⊑ ?(1) → k . For all states f not satisfying 1 (i.e. the set of states
that we do not assume), the inequality vacuously holds. For all other states (i.e. those states that we
actually assume), i must lower-boundk in order for the inequality to hold.

Example 2.3. Let i, k ∈ HeyLo and 1 : B. We construct a HeyLo formula d that, on state f , evalu-
ates to i if f |= 1, and tok otherwise. For that, we use the Boolean embedding and the implication:

d = (?(1) → i)
︸ ︷︷ ︸

if 1 holds, evaluate to i

⊓
︸︷︷︸

and

(?(¬1) → k)
︸ ︷︷ ︸

if ¬1 holds, evaluate tok

To encode assumptions using the coimplicationf, we first introduce Boolean co-embeddings

Jco?(1)K = J?(¬1)K = _f.

{

0, if J1K(f) = true

∞, otherwise .

We then obtain a dual construction usingf for encoding assumptions: By Theorem 2.1, we have

i ⊒ co?(1) f k iff for all f ∈ States : J1K(f) = true implies JiK(f) ≥ JkK(f) ,
i.e. the coimplication co?(1) f k ensures that it suffices to reason about states satisfying 1.

2.4 �alitative Reasoning in HeyLo

The verification of probabilistic programs comprises both quantitative and qualitative reasoning.
Whereas questions like “what is the expected value of program variable G upon termination” are
inherently quantitative, questions like “does G increase in expectation after one loop iteration?” are
qualitative.HeyLomarries quantitative and qualitative reasoning. To shift to a qualitative statement,
we first consider the negation ¬i and conegation ∼i of i obtained from our (co)implications:

J¬iK = Ji → 0K = _f.

{

∞, if JiK(f) = 0

0, otherwise
J∼iK = Ji f ∞K = _f.

{

0, if JiK(f) = ∞
∞, otherwise .

6We mean the deduction theorem that relates semantical entailment |= with the material conditional→. Another theorem

also known as deduction theorem relates syntactical entailment (i.e. provability) ⊢ with the material conditional→.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:10 Schröer, Batz, Kaminski, Katoen, Matheja

The (co)negation always evaluates to either ∞, the top element of R∞≥0 (entirely true), or 0, the
bottom element of R∞≥0 (entirely false). By applying a (co)negation twice, we turn an arbitrary
expectation into a qualitative statement. Formally, we define the (pointwise) validation △(i) and
(pointwise) covalidation ▽(i) by7

J△(i)K = J∼∼iK = _f.

{

∞, if JiK(f) = ∞
0, otherwise

and J▽(i)K = J¬¬iK = _f.

{

0, if JiK(f) = 0

∞, otherwise .

In words, the validation △(i) is (pointwise) entirely true whenever i is entirely true, and entirely
false otherwise. Dually,▽(i) is entirely false wheneveri is entirely false, and entirely true otherwise.
Thus, both validations and covalidations “boolify”HeyLo formulae. The difference is that validations
pull intermediate truth values down to entire falsehood whereas covalidations lift intermediate
truth values up to entire truth.

Turning expectations into qualitative statements has an important application, which often arises
when encoding verification problems: Suppose we are given two formulae i,k with free variables
~1, . . . , ~= . Moreover, our goal is to construct a HeyLo formula d that evaluates to G of type Q≥0
if i ⊑ k , and to 0 otherwise. For that, we first construct the formula J~1, . . . , ~= . △(i → k). Due
to the infimum quantifier over all free variables, this formula is equivalent to ∞ if i ⊑ k , and
equivalent to 0 otherwise. Hence, we construct d as

(

J~1:g1, . . . , ~=:gn . △(i → k)
)

︸ ︷︷ ︸

evaluate to 0 if i ̸⊑ k

⊓
︸︷︷︸

and

G
︸︷︷︸

evaluate to G otherwise

.

Moreover, we obtain a dual construction usingf and the supremum quantifier:
(

S~1:g1, . . . , ~=:gn. ▽(i f k)
)

︸ ︷︷ ︸

evaluate to∞ if i ̸⊒ k

⊔
︸︷︷︸

and

G
︸︷︷︸

evaluate to G otherwise

3 HeyVL: A QUANTITATIVE INTERMEDIATE VERIFICATION LANGUAGE

Many verification problems for probabilistic programs reduce naturally to checking inequalities
between HeyLo formulae.8 Consider, for instance, the program

~ 1/2 · ⟨G⟩ + 1/2 · ⟨G + 1⟩ ,
which sets ~ either to G or to G + 1, depending on the outcome of a fair coin flip. Suppose we want
to verify that G + 1

2
is a lower bound on the expected value of ~ after executing above program.

According to McIver and Morgan [2005], verifying this bound amounts to proving the inequality

G + 1
2

︸︷︷︸

proposed lower bound

⊑ 1
2
· G + 1

2
· (G + 1) ≜ wpJ~ 1/2 · ⟨G⟩ + 1/2 · ⟨G + 1⟩K(~)

︸ ︷︷ ︸

expected outcome of G + fair coin flip stored in ~

, (ex)

where the weakest preexpectation wpJ�K(5) is a function (which we can represent as a HeyLo
formula) that maps every initial state f to the expected value of 5 after executing the program� on
input f . Our goal is to simplify writing, composing, and reasoning modularly about such expected
values and similar quantities. To this end, we propose HeyVL, a novel intermediate verification
language for modeling quantitative verification problems.
HeyVL programs are organized as a collection of procedures. Each procedure % is equipped with

a body (and a specification. The body (is a HeyVL statement and can for now be thought of

7In Gödel logics, these are also called projection modalities [Baaz 1996].
8Or equivalently by Theorem 2.2: Checking (co)validity, i.e. whether a HeyLo formula is equivalent to∞ (resp. 0).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:11

proc ex (G:UInt) -> (~:UInt) // procedure that takes G as input and returns the value of ~

pre G + 1/2 // lower bound on the expected value of ~ after termination of the body

post ~ // quantity of interest evaluated in final states

{
~ 1/2 · ⟨G⟩ + 1/2 · ⟨G + 1⟩ // returns the sum of G plus outcome of a fair coin flip

}

Fig. 11. A HeyVL procedure whose verification condition is equation (ex).

as a more or less ordinary probabilistic program.9 The specification of a procedure comprises a
pre i and a post k , both HeyLo formulae. Intuitively, a procedure % verifies if its body (adheres
to % ’s specification, meaning essentially that the inequality i ⊑ wpJ(K(k) holds, i.e. the expected
value ofk after executing (is lower-bounded by i . This inequality will be called the verification
condition of % . An entire HeyVL program verifies if all of its procedures verify.

How do we describe the verification problem (ex) in HeyVL? As shown in Figure 11, we write a
single procedure % with body ~ 1/2 · ⟨G⟩ + 1/2 · ⟨G + 1⟩, pre G + 1

2
, and post ~. This gives rise to the

verification condition G + 1
2
⊑ wpJ~ 1/2 · ⟨G⟩ + 1/2 · ⟨G + 1⟩K(~), which is precisely the inequality

(ex) we aim to verify. The HeyLo program (i.e. the single procedure %) verifies if and only if we
have positively answered the verification problem (ex).

To encode more complex verification problems or proof rules, one may need to write more than
one HeyVL procedure. For example, in Section 4.1, we will encode a proof rule for conditional
expected values that requires establishing a lower and a different upper bound. The latter can be
described using a secondHeyVL procedure, see Section 3.1. Furthermore, it is natural to break down
large programs and/or complex proof rules into smaller (possibly mutually recursive) procedures,
which can be verified modularly based on the truth of their verification conditions.

3.1 HeyVL Procedures

A HeyVL procedure consists of a name, a list of (typed) input and output variables, a body, and a
quantitative specification. Syntactically, a HeyVL procedure is of the form

proc P (in:g) -> (out:g) // procedure name % with read-only inputs in and outputs out

pre i // pre: HeyLo formula over inputs

postk // post: HeyLo formula over inputs or outputs

{ (} // procedure body

where % is the procedure’s name, in and out are (possibly empty and pairwise distinct) lists of typed
program variables called the inputs and outputs of % . The specification is given by a pre i which is

a HeyLo formula over variables in in and a post k which is also a HeyLo formula but ranging over

variables in in or out. The procedure body (is a HeyVL statement, whose syntax and semantics will
be formalized in Sections 3.2 and 3.3.

As mentioned above, the procedure % gives rise to a verification condition, namely i ⊑ wpJ(K(k).
However, this is only accurate if (is an ordinary probabilistic program. As our statements (may
also contain non-executable10 verification-specific assume and assert commands, the verification

9There are verification-specific statements which can be part of the procedure body which we will describe later.
10But expected value changing.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:12 Schröer, Batz, Kaminski, Katoen, Matheja

proc n_dice (=:UInt) -> (A:UReal)

pre 3.5 · =
post A

{ (}

Fig. 12. Expected sum of rolling = fair dice.

proc rabin (8:UInt) -> (>::Bool)

pre 2/3 ⊓ ?(1 < 8)
post 1 ⊓ ?(>:)

{ (}

Fig. 13. Rabin’s mututal exclusion property.

condition generated by % is actually

i ⊑ vpJ(K(k) ,

where vp is the verification preexpectation transformer that extends the aforementioned weakest
preexpectation wp by semantics for the verification-specific statements, see Section 3.3. For proce-
dure calls, we approximate the weakest preexpectation based on the callee’s specification to enable
modular verification, see Section 3.5.
Readers familiar with classical Boolean deductive verification may think of the verification

condition i ⊑ vpJ(K(k) as a quantitative Hoare triple ⟨i⟩ (⟨k ⟩, where ⊑ takes the quantitative role
of the Boolean =⇒, i.e. we have

⟨i⟩ (⟨k ⟩ is valid iff i ⊑ vpJ(K(k).

Indeed, if i and k are ordinary Boolean predicates and (is a non-recursive non-probabilistic
program, then ⟨i⟩ (⟨k ⟩ is a standard Hoare triple: whenever state f satisfies precondition i , then
procedure body (must successfully terminate on f in a state satisfying postconditionk .
Phrased differently: for every initial state f , the truth value i (f) lower-bounds the anticipated

truth value (evaluated in f) of postcondition k after termination of (on f . For arbitrary HeyLo
formulae i,k and probabilistic procedure bodies (, the second view generalizes to quantitative
reasoning à la McIver and Morgan [2005]: The quantitative triple ⟨i⟩ (⟨k ⟩ is valid iff the pre i
lower-bounds the expected value (evaluated in initial states) of the postk after termination of (. In
Section 3.5, we will describe how calling a (verified) procedure % can be thought of as “invoking”
the validity of the quantitative Hoare triple that is given by % ’s specification.

Notice that the above inequality is our definition of validity of a quantitative Hoare triple and we
do not provide an operational definition of validity. This is due to a lack of an intuitive operational
semantics for quantitative assume and assert statements (cf. also Section 7).

Examples. Besides Figure 11, Figures 12 and 13 further illustrate how HeyVL procedures specify
quantitative program properties; we omit concrete procedure bodies (to focus on the specification.
The procedure in Figure 12 specifies that the expected value of output A must be at least 3.5 · = – a
property satisfied by any statement (that rolls = fair dice. The procedure in Figure 13 specifies
that the expected value of output >: being true after termination of (, i.e. the probability that the
returned value >: will be true, is at least 2/3 whenever input 8 is greater than one – a key property
of Rabin’s randomized mutual exclusion algorithm [Kushilevitz and Rabin 1992] from Figure 2 and
discussed in the introduction. Since we aim to reason about probabilities, we ensure that the post is
one-bounded by considering 1 ⊓ ?(>:) instead of ?(>:).

Coprocedures – Duals to Procedures. Proving upper bounds is often relevant for quantitative
verification, e.g. when analyzing expected runtimes of randomized algorithms (cf. [Kaminski
et al. 2018]). HeyVL also supports coprocedures which give rise to the dual verification condition

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:13

i ⊒ vpJ(K(k).11 The syntax of coprocedures is analogous to HeyVL procedures; the only difference
is the keyword coproc instead of proc. For example, a coprocedure which was defined as in
Figure 12 (except for replacing proc by coproc) would specify that the expected value of output
A must be at most 3.5 · =. We demonstrate in Section 4 that intricate verification techniques for
probabilistic programs may require lower and upper bound reasoning, i.e. HeyVL programs that
are collections of both procedures and coprocedures.

HeyVL Programs. To summarize, a HeyVL program is a list of procedures and coprocedures that
each give rise to a verification condition, i.e. a HeyLo inequality. We say that a HeyVL program
verifies iff all verification conditions of its (co)procedures hold.

Design Decisions. SinceHeyVL is an intermediate language, we favor simplicity over convenience.
In particular, we require procedure inputs to be read-only, i.e. evaluate to the same values in initial
and final states. Moreover, HeyVL has no loops and no global variables. All variables that can
possibly be modified by a procedure call are given by its outputs. All of the above restrictions can
be lifted by high-level languages that encode to HeyVL.

3.2 Syntax of HeyVL Statements

HeyVL statements, which appear in procedure bodies, provide a programming-language-style
to express and approximate expected values arising in the verification of probabilistic programs,
including expected outcomes of program variables, reachability probabilities such as the probability
of termination, and expected rewards. HeyVL statements consist of (a) standard constructs such as
assignments, sampling from discrete probability distributions, sequencing, and nondeterministic
branching, and (b) verification-specific constructs for modeling rewards such as runtime, quantitative
assertions and assumptions, and for forgetting values of program variables in the current state.
The syntax of HeyVL statements (is given by the grammar

(F var G : g `

| G1, . . . , G= ≔ % (41, . . . , 4<)
| reward 0
| (; (

| if (⊓) {(} else {(}
| assertk
| assumek
| havoc G
| validate

| if (⊔) {(} else {(}
| coassertk
| coassumek
| cohavoc G
| covalidate ,

where G ∈ Vars is of type g , 0 is an arithmetic expression, andk is a HeyLo formula. Moreover, ` is
a distribution expression of type g12

` = ?1 · ⟨C1⟩ + . . . + ?= · ⟨C=⟩
with = ≥ 1, where each ?8 is a term of type [0, 1], each C8 is a term of type g , and

∑=
8=1J?8K(f) = 1

for every state f . A distribution expression ` represents finite-support probability distributions,
which assign probability ?8 to each C8 . We often write flip(?) instead of ? · ⟨true⟩ + (1−?) · ⟨false⟩.

We briefly go over the above constructs. var G : g ` is a probabilistic assignment which
assigns to variable G a value sampled from the probability distribution described by `. The state-
ment G1, . . . , G= ≔ % (41, . . . , 4<) is a (co)procedure call. We can think of it as passing the pa-
rameters 41, . . . , 4< to (co)procedure % , executing % ’s body, and assigning the return values to
variables G1, . . . , G= . The statement reward 0 collects/accumulates/adds a reward of 0, modeling
e.g. progression in (run)time or resource consumption. (1; (2 puts HeyVL statements in sequence.

11Notice ⊒ for coprocedures as opposed to ⊑ for procedures.
12` can be instantiated with more general distribution expressions as long as the vp semantics (cf. Section 3.3) is computable.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:14 Schröer, Batz, Kaminski, Katoen, Matheja

(vpJ(K(i)

var G : g `
?1 · i [G ↦→ C1]

+ . . . + ?= · i [G ↦→ C=]

if (⊓) {(1} else {(2} vpJ(1K(i) ⊓ vpJ(2K(i)

assertk k ⊓ i

assumek k → i

havoc G JG . i

validate △(i)

(vpJ(K(i)

reward 0 i + 0

(1; (2 vpJ(1K
(

vpJ(2K(i)
)

if (⊔) {(1} else {(2} vpJ(1K(i) ⊔ vpJ(2K(i)

coassertk k ⊔ i

coassumek k f i

cohavoc G SG . i

covalidate ▽(i)

Fig. 14. Semantics of HeyVL statements. Here ` = ?1 · ⟨C1⟩ + . . . + ?= · ⟨C=⟩ and i [G ↦→ C8] is the formula
obtained from substituting every occurrence of G in i by C8 in a capture-avoiding manner. For procedure calls,
see Section 3.5.

if (·) {(1} else {(2} is a nondeterministic choice between (1 and (2, where · determines whether the
nondeterminisim is resolved in a minimizing (⊓) or maximizing (⊔) manner. assertk and assumek
are quantitative generalizations of assertions and assumptions from classical IVLs. coassert k
and coassumek are novel statements that enable reasoning about upper bounds; there is yet no
analogue in classical verification infrastructures.
havoc G and cohavoc G forget the current value of G by branching nondeterministically over all

possible values of G either in a minimizing (havoc G) or maximizing (cohavoc G) manner. Finally,
validate and covalidate turn quantitative expectations into qualitative expressions, much in the
flavor of validation and covalidation described earlier (see Section 2.4).

Declarations and Types. We assume that all local variables (those that are neither inputs nor
outputs) are initialized by an assignment before they are used; those assignments also declare the
variables’ types. If we assign to an already initialized variable, we often write G ` instead of
var G : g `. Moreover, if ` is a Dirac distribution, i.e. if ?1 = 1, we often write G ≔ C1 instead of
G `. Finally, we assume that all programs and associated HeyLo formulae are well-typed.

3.3 Semantics of HeyVL Statements

Inspired by weakest preexpectations [Kaminski 2019; McIver and Morgan 2005], we give semantics
to HeyVL statements as a backward-moving continuation-passing style HeyLo transformer

vpJ(K : HeyLo→ HeyLo

by induction on (in Figure 14. (Co)procedure calls are treated separately in Section 3.5. We call
vpJ(K(i) the verification preexpectation of (with respect to post i . Intuitively, JvpJ(K(i)K(f) is
the expected value of i w.r.t. the distribution of final states obtained from “executing”13 (on f .
The post i is either given by the surrounding procedure declaration or can be thought of as the
verification preexpectation described by the remaining HeyVL statement: for (= (1; (2, we first
obtain the intermediate verification preexpectation vpJ(2K(i) — the expected value of what remains
after executing (1 — and pass this into vpJ(1K.

Random Assignments. The expected value of i after executing var G : g ` is the weighted sum
?1 · i [G ↦→ C1] + . . . + ?= · i [G ↦→ C=], where each ?8 is the probability that G is assigned C8 .

13Some verification-specific statements are not really executable but serve the purpose of manipulating expected values.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:15

Rewards. Suppose that the post i captures the expected reward collected in an execution that
follows after executing reward 0. Then the entire expected reward is given by i + 0.

Nondeterministic Choices. vpJif (·) {(1} else {(2}K(i) is the pointwise minimum (· = ⊓) or
maximum (· = ⊔) of the expected values obtained from (1 and (2, respectively.

(Co)assertions. In classical intermediate verification languages, the statement assert � for some
predicate � models a proof obligation: All states reaching assert � on some execution must
satisfy �. In terms of classical weakest preconditions, assert � transforms a postcondition � to

wpJassert �K(�) = � ∧ � .

In words, assert � caps the truth of postcondition � at �: all lower-bounds on the above weakest
precondition (in terms of the Boolean lattice (States→ B, ⇒)) must not exceed �.
This perspective generalizes well to our quantitative assertions: Given a HeyLo formulak , the

statement assertk caps the post atk . Thus, analogously to classical assertions, all lower bounds
on the verification preexpectation vpJassertkK(i) (in terms of ⊑) must not exceedk .
Coassertions are dual to assertions: coassertk raises the post i to at leastk . Hence, all upper

bounds on vpJcoassertkK(i) must not subceedk .

(Co)assumptions. In the classical setting, the statement assume � for some predicate � weakens

the verification condition: verification succeeds vacuously for all states not satisfying �. In terms
of classical weakest preconditions, assume � transforms a postcondition � to

wpJassume �K(�) = �→ �

i.e. assume � lowers the threshold at which the post � is considered true (the top element of the
Boolean lattice) to �. Indeed, if we identify true = 1 and false = 0, then

JwpJassume �K(�)K(f) =

{

1, if J�K(f) ≤ J�K(f)
J�K(f), otherwise .

The above perspective on classical assumptions generalizes to our quantitative assumptions.
Given a HeyLo formula k , assume k lowers the threshold above which the post i is considered
entirely true (i.e.∞ – the top element of the lattice of expectations) tok . Formally,

JvpJassumekK(i)K(f) =

{

∞, if JkK(f) ≤ JiK(f)
JiK(f), otherwise .

Reconsider Figure 9 on page 8, which illustrates vpJassume 5K(G): assume 5 lowers the threshold at
which the post G is considered entirely true to 5, i.e. whenever the post-expectation G evaluates at
least to 5, then vpJassume 5K(G) evaluates to∞. Notice furthermore that our quantitative assume
is backward compatible to the classical one in the sense that vpJassume ?(1)K(i) evaluates to i for
every state satisfying 1, and to∞ otherwise.
Coassumptions are dual to assumptions. coassume k raises the threshold at which the post

i is considered entirely false (i.e. 0 – the bottom element of the lattice of expectations) to k .
Reconsider Figure 10 on page 8 illustrating vpJcoassume 5K(G): coassume 5 raises the threshold
below which the post G is considered entirely false to 5, i.e. if the post G evaluates at most to 5, then
vpJcoassume 5K(G) evaluates to 0.

Example 3.1 (Modeling Conditionals). We did not include if (1) {(1} else {(2} for conditional
branching in HeyVL’s grammar. We can encode it as follows (and will use it from now on):

if (⊓) {assume ?(1); (1} else {assume ?(¬1); (2}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:16 Schröer, Batz, Kaminski, Katoen, Matheja

proc P (G1:g1, . . . , G=:gn) -> (~1:g
′
1, . . . , ~

′
<:gm)

pre d

postk

{ (}

Fig. 15. A procedure % . We encode calls I1, . . . , I= ≔ % (C1, . . . , C=) for arbitrary probabilistic statements (.

The vp semantics of this statement is analogous to the formula described in Example 2.3 and
complies with our above description of assumptions: Depending on the satisfaction of 1 by the
current state f , the vp of (either evaluates to the vp of (1 or (2, respectively.

(Co)havocs. In the classical setting, havoc G forgets the current value of G by universally quanti-
fying over all possible initial values of G . In terms of classical weakest preconditions, we have

wpJhavoc GK(�) = ∀G : g . � ,

i.e. havoc G minimizes the post � under all possible values for G , thus requiring � to hold for all G .
This perspective generalizes to our quantitative setting: In terms of vp, havoc G forgets the current
value of G by minimizing the post-expectation under all possible values of G . Dually, cohavoc G
forgets the value of G but this time maximizes the post-expectation under all possible values for G .

(Co)validations. These statements convert quantitative statements into qualitative ones by casting
expectations into the {0,∞}-valued realm, thus eradicating intermediate truth values strictly
between 0 and∞. Their classical analogues would be effectless, as the Boolean setting features no
intermediate truth values. We briefly explained in Section 2.4 how such a conversion to a qualitative
statement works in HeyLo. An example will be discussed in Section 4.2.

3.4 Properties of HeyVL Statements

We study two properties of HeyVL. First, our vp semantics is monotonic — a crucial property for
encoding proof rules (cf. Section 3.5).

Theorem 3.2 (Monotonicity of vp). For all HeyVL statements (and HeyLo formulae i, i ′,

i ⊑ i ′ implies vpJ(K(i) ⊑ vpJ(K(i ′) .
Furthermore, HeyVL conservatively extends an existing IVL for non-probabilistic programs due to
Müller [2019] in the following sense:

Theorem 3.3 (Conservativity of HeyVL). Let � be a program in the programming language of

Müller [2019] and let � be a postcondition. Moreover, let� be obtained by replacing every assert� and

every assume� occurring in� by assert ?(�) and assume ?(�), respectively (cf. Boolean embeddings,

Section 2.3). Then

?(wpJ�K(�)
︸ ︷︷ ︸

verification condition obtained from [Müller 2019]

) ≡

HeyVL
︷ ︸︸ ︷

vpJ�K(?(�)) .

3.5 Procedure Calls

We conclude this section with a treatment of (co)procedure calls. Consider a callee procedure %
as shown in Figure 15. Intuitively, the effect of a call I1, . . . , I< ≔ % (C1, . . . , C=) corresponds to
(1) initializing % ’s formal input parameters G1, . . . , G= with the arguments C1, . . . , C= , (2) inlining

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:17

% ’s body (, and (3) assigning to I1, . . . , I< the values of outputs ~1, . . . , ~< . The semantics of
I1, . . . , I< ≔ % (C1, . . . , C=) can be thought of as the statement14

G1 ≔ C1; . . . ; G= ≔ C=
︸ ︷︷ ︸

≕ init (initialize procedure inputs)

;

inlining of the procedure body
︷︸︸︷

(; I1 ≔ ~1; . . . ; I< ≔ ~<
︸ ︷︷ ︸

≕ return (assign procedure outputs)

.

There are two main issues that arise when we would actually inline (at every call-site: (1) For
recursive procedure calls [Olmedo et al. 2016], we would need to define a (non-computable) fixed
point semantics for the vp transformer. Our goal, however, is to render verification feasible in
practice, so we would like to avoid fixed point computations. (2) Even without recursive calls, we
would have to re-verify (at every call-site, which would not scale.

We thus do not inline the procedure body but use an encoding (encoding which underapproxi-

mates the effect of (in the sense that vpJ(encodingK(i) ⊑ vpJ(K(i) for all HeyLo formulae i . By
monotonicity of vp, we can then verify lower bounds for calls: for all i,W ∈ HeyLo,

W ⊑ vpJinit; (encoding; return
︸ ︷︷ ︸

modular encoding of calls

K(i) implies W ⊑ vpJinit; (; return
︸ ︷︷ ︸

actual inlining of calls

K(i) ,

so whenever we can verify a HeyVL program using the modular encoding, we could have also
verified it using inlining. The advantage of the modular encoding is that (encoding does not contain
the procedure body – it could be changed without requiring re-verification of call sites, so long as
the updated procedure body still adheres to the procedure’s specification. To construct (encoding , we
leverage only % ’s specification pre d and post k , cf. Figure 15: Assuming that % verifies, we can
safely assume that % ’s verification condition – namely d ⊑ vpJ(K(k) – holds.15 By monotonicity
of vp, we have d ⊑ vpJ(K(k) ⊑ vpJ(K(i) wheneverk ⊑ i holds. To underapproximate vpJ(K(i),
we construct (encoding such that vpJ(encodingK(i) is the known lower bound d ifk ⊑ i ; otherwise, it
is the trivial lower bound 0. So how do we construct (encoding concretely?

In classical verification infrastructures (cf. [Müller 2019]), (encoding corresponds to the statement

assert d; havoc I1; . . . ; havoc I<; assumek .

That is, we assert the procedure’s pre d before the call, forget the values of all outputs, i.e. variables
that are potentially modified by the call, and assume the procedure’s postk after the call. Phrased
in terms of underapproximations: We assert that we have at most d before the call and, while
minimising over all possible outputs (using the havoc statements), lower the threshold at which
the post is considered entirely true (i.e.∞) tok , i.e. wheneverk lower-bounds the post.
The intuition underlying the above HeyVL statement works for encoding procedure calls of

non-probabilistic programs. However, there is a subtle unsoundness that arises when reasoning
about expected behaviors. Figure 16 shows two procedures, foo and bar . Intuitively, foo flips a fair
coin and aborts execution if the result is heads (false). Read backwards, the expected value of the
post will be at most G after executing foo – exactly as stated in foo’s specification. Procedure bar
encodes the call foo(G) in its body16 and requires in its specification that the expected value of G
does not decrease, i.e. is at least G . Both procedures verify. However, when inlining foo, i.e. using
its body instead of the encoding assert G; assume 2 · G , bar does not verify. Hence, the above
encoding does, in general, not model a sound underapproximation of a procedure’s inlining.

14For the sake of simplicity, we ignore potential scoping issues arising if (uses variables that are declared in the calling

context; these issues can be resolved by a straightforward yet tedious variable renaming.
15Otherwise, procedure % in Figure 15 does not verify and verification of the whole HeyVL program fails anyway.
16There are no havoc statements because foo has no outputs; we also omitted init and return for simplicity.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:18 Schröer, Batz, Kaminski, Katoen, Matheja

proc foo (G:N) -> ()

pre G

post 2 · G
{ // verifies: G ⊑ 2 · G ⊓ 0.5 · ∞

var 1 : B 0.5 · ⟨true⟩ + 0.5 · ⟨false⟩;
assert ?(1) }

proc bar (G:N) -> ()

pre G

post G

{ // verifies: G ⊑ G ⊓ (2 · G → G)
// encoding of foo(G)
assert G; assume 2 · G }

Fig. 16. Unsound encoding of a procedure call foo(G) in bar . Both procedures verify but inlining the body of
foo in bar does not as it produces the (wrong) inequality G ⊑ G ⊓ (0.5 · ∞).

Taking a closer look, recall from above that assume 2 · G is used to encode a monotonicity
check,17 which is an inherently qualitative property. However, verifying bar involves proving
G ⊑ G ⊓ (2 · G → G), where the quantitative implication 2 · G → G evaluates to G for G > 0; the
expectation G does not reflect the inherently qualitative nature of the monotonicity check. To fix
this issue, we add a validate statement that turns quantitative results into qualitative ones: it
reduces any value less than ∞, which indicates a failed monotonicity check, to 0. An encoding
underapproximating the inlining of foo(G) – and thus correctly failing verification of bar – is
assert G; validate; assume 2 · G . Similarly to Section 2.4, verifying bar for the fixed encoding
involves proving G ⊑ G ⊓ △(2 · G → G), which does not hold for G > 0.

More generally, a sound construction of (encoding (wrt. underapproximating procedure body () is

(encoding : assert d; havoc I1; . . . ; havoc I<; validate; assumek .

Formally, we obtain an underapproximating HeyVL encoding of procedure calls of the form
I1, . . . , I< ≔ % (C1, . . . , C=) for arbitrary probabilistic procedures as in Figure 15:

Theorem 3.4. Let (be the body of the procedure % in Figure 15. Then, for every HeyLo formula i ,

vpJ(encodingK(i) ⊑ vpJ(K(i) and vpJinit; (encoding; returnK(i) ⊑ vpJinit; (; returnK(i).

A HeyVL encoding that overapproximates calls of coprocedures is analogous – it suffices to use
the dual costatements in (encoding . The presented under- and overapproximations are useful when
encoding proof rules in HeyVL. Whether they are meaningful does, however, depend on the
verification technique at hand that should be encoded.

4 ENCODING CASE STUDIES

To evaluate the expressiveness of our verification language, we encoded various existing calculi
and proof rules targeting verification problems for probabilistic programs in HeyVL. We will first
focus on programs without while loops (Section 4.1) and then consider loops (Section 4.2). The
practicality of our automated verification infrastructure will be evaluated separately in Section 5. A
summary of all encodings is given at the end of this section.

4.1 Reasoning about While-Loop-Free pGCL Dialects

Pioneered by Kozen [1983], expectation-based techniques have been successfully applied to analyze
various probabilistic program properties. McIver and Morgan [2005] incorporated nondeterminism

17More precisely: a check whether monotonicity of vp can be applied, namely whetherk ⊑ i holds wherek is the callee’s

specified post and i is the actual post at the call-site.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:19

� 4=2wp⌊�⌋
skip reward 0

diverge assert 0

G := C G C

�1;�2 4=2wp⌊�1⌋; 4=2wp⌊�2⌋
if (1) { �1 } if (⊓) { assume ?(1); 4=2wp⌊�1⌋ }

else { �2} else { assume ?(¬1); 4=2wp⌊�2⌋}
{�1 } [?] {�2 } var tmp : B flip(?);

4=2wp⌊if (tmp) {�1} else {�2}⌋
{�1 } [] {�2 } if (⊓) {�1} else {�2}

Fig. 17. Encoding of weakest preexpectation for pGCL,
where tmp is a fresh variable.

proc lower (in) -> (out)

prek // in: variables ink
post i { // out: var. in i but notk

// declare local variables, i.e.
// those not in i ork , using

// var G : g default; havoc G

4=2wp⌊�⌋
}

Fig. 18. Encoding ofk ⊑ wp(�,i).

and introduced the probabilistic Guarded Command Language (pGCL), which is convenient for
modelling probabilistic systems. The syntax of while-loop-free pGCL programs � is18

� F skip | diverge | G := C | �1;�2 | if (1) {�1} else {�2} | {�1 } [?] {�2 } | {�1 } [] {�2 } ,

where skip has no effect, diverge never terminates, G := C assigns the value of term C to G , �1;�2

executes �2 after �1, if (1) {�1} else {�2} executes �1 if Boolean expression 1 holds and �2

otherwise, {�1 } [?] {�2 } executes �1 with probability ? ∈ [0, 1] and �2 with probability (1 − ?),
and {�1 } [] {�2 } nondeterministically executes either �1 or �2.
We now outline encodings of several reasoning techniques targeting pGCL and extensions

thereof. We will only consider expectations that can be expressed as HeyLo formulae. To improve
readability, we identify every HeyLo formula i with its expectation JiK ∈ E.

Weakest Preexpectations (wp). The weakest preexpectation calculus of McIver and Morgan [2005]
maps every pGCL command � and postexpectation i to the minimal (to resolve nondeterminism)
expected value wp(�,i) of i after termination of � – the same intuition underlying HeyVL’s vp
transformer. Figure 17 shows a sound and complete HeyVL encoding 4=2wp⌊�⌋ of the weakest
preexpectation calculus, i.e. vpJ4=2wp⌊�⌋K(i) = wp(�,i). Most pGCL commands have HeyVL
equivalents; conditionals are encoded as in Example 3.1. diverge is encoded as assert 0 as it never
terminates, i.e. wp(diverge, i) = 0. The program in Figure 18 then verifies iff k lower bounds
wp(�,i), i.e.k ⊑ wp(�,i). To reason about upper bounds, it suffices to use a coprocedure instead.

Weakest Liberal Preexpectations (wlp). McIver and Morgan [2005] also proposed a liberal weakest
preexpectation calculus, a partial correctness variant of weakest preexpectations. More precisely, if
i ⊑ 1, then the weakest liberal preexpectationwlp(�,i) is the expected value of i after termination
of � plus the probability of non-termination of � (on a given initial state). We denote by 4=2

wlp
⌊�⌋

the HeyVL encoding of the weakest liberal preexpectation calculus; it is defined analogously to
Figure 17 except for diverge. Since diverge never terminates, the probability of non-termination
is one, i.e. wlp(diverge, . . .) = 1. The updated encoding of diverge is

4=2wlp⌊diverge⌋ = assert 1; assume 0 ,

18pGCL usually supports only one type, e.g. integers, rationals, or reals. We are more liberal and admit arbitrary terms C but

assume a sufficiently strong type inference system and consider only well-typed programs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:20 Schröer, Batz, Kaminski, Katoen, Matheja

{ 0 := 0 } [0.5] { 0 := 1 };
{1 := 0 } [0.5] {1 := 1 };
{ 2 := 0 } [0.5] { 2 := 1 };
A := 4 · 0 + 2 · 1 + 2 + 1;
observe A ≤ 6

Fig. 19. pGCL program �die .

coproc die_wp () -> (A:UInt)

pre 2.625

post A

{ (die }

var 0 : N 0.5 · ⟨1⟩ + 0.5 · ⟨0⟩;
var 1 : N 0.5 · ⟨1⟩ + 0.5 · ⟨0⟩;
var 2 : N 0.5 · ⟨1⟩ + 0.5 · ⟨0⟩;
A 4 · 0 + 2 · 1 + 2 + 1;
assert ?(A ≤ 6)
Fig. 20. HeyVL encoding (die of �die .

proc die_wlp () -> (A:UInt)

pre 6/8
post 1

{ (die }
Fig. 21. HeyVL encoding of the proof obligations wpJ�dieK(A) ⊑ 2.625 and 0.75 ⊑ wlpJ�dieK(1).

where assert 1 ensures one-boundedness and assume 0 lowers the threshold at which the post
is considered entirely true to 0. Put together, we have vpJ4=2

wlp
⌊diverge⌋K(i) = 1 ⊓ ∞ = 1 =

wlp(diverge, i).

Conditional Preexpectations (cwp). Conditioning on observed events (in the sense of conditional
probabilities) is a key feature of modern probabilistic programming languages [Gordon et al. 2014].
Intuitively, the statement observe 1 discards an execution whenever Boolean expression 1 does not
hold. Moreover, it re-normalizes such that the accumulated probability of all executions violating
no observation equals one. Olmedo et al. [2018] showed that reasoning about observe 1 requires a
combination ofwp andwlp reasoning. They extended both calculi such that violating an observation
is interpreted as a failure resulting in pre-expectation zero; we can encode it with an assertion:

w(l)p(observe 1, i) = ?(1) ⊓ i = vpJassert ?(1)K(i).

For every pGCL program� with observe statements, initial state f and expectationi , the conditional
expected value cwp(�,i) (f) of i after termination of � is then given by the expected value
wp(�,i) (f) normalized by the probability wlp(�, 1) (f) of violating no observation:

cwp(�,i) (f) =
wp(�,i) (f)
wlp(�, 1) (f) (undefined if wlp(�, 1) (f) = 0)

We can re-use our existing HeyVL encodings to reason about conditional expected values. Notice
that proving bounds on cwp requires establishing both lower and upper bounds. For example, the
pGCL program �die in Figure 19 assigns to A the result of a six-sided die roll, which is simulated
using three fair coin flips and an observation. To show that the expected value of A is at most
3.5 – the expected value of a six-sided die roll – we prove the upper bound wp(�die, A) ⊑ 2.625

and the lower bound 0.75 ⊑ wlp(�die, 1). Then, cwp(�die, A) ⊑ 2.625
0.75

= 3.5. Figure 20 shows the
HeyVL encoding of �die (cleaned up for readability). As shown in Figure 21, the proof obligations
wp(�die, A) ⊑ 2.625 and 0.75 ⊑ wlp(�die, 1) are then encoded using a coprocedure for the upper
bound and a procedure for the lower bound, respectively.
There exist alternative interpretations of conditioning. For instance, Nori et al. [2014] use

wp(�, 1) (f) in the denominator in the above fraction. A benefit of HeyVL is that such alternative
interpretations can be realized by a straightforward adaptation of our encoding.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:21

assert �;

havoc variables;

validate;

assume �;

if (1) {
4=2wlp⌊�⌋;
assert �;

assume ?(false)
} else { } // i

Fig. 22. Encoding of Park Induction rule for
underapproximatingwlp(while (1) {�}, i).

coassert exp(0.5, len(;));
cohavoc ;; cohavoc tmp;

covalidate;

coassume len(;);
if (len(;) > 0) {
var tmp : B flip(0.5)
if (tmp) { ; ≔ tail(;) } else { assert 0 }
coassert exp(0.5, len(;)); coassume co?(false)
} else { } // 1

Fig. 23. Exemplary HeyVL encoding overapproximat-
ing the wp of a loop.

4.2 Reasoning about Expected Values of Loops

We encoded various proof rules for loops while (1) {�} in HeyVL. As an example, we consider the
Park induction rule [Kaminski 2019; Park 1969] for lower bounds on weakest liberal preexpectations:
for all i, � ⊑ 1,

� ⊑ (?(1) → wlp(�, �)) ⊓ (?(¬1) → i)
︸ ︷︷ ︸

� is an inductive invariant

implies � ⊑ wlp(while (1) {�}, i)
︸ ︷︷ ︸

� underapproximates the loop’s wlp

.

The rule can be viewed as a quantitative version of the loop rule from Hoare [1969] logic, where �
is an inductive invariant underapproximating the expected value of any loop iteration. Figure 22
depicts an encoding 4=2

wlp
⌊while (1) {�}⌋ that underapproximates wlp(while (1) {�}, i), i.e.

vpJ4=2wlp⌊while (1) {�}⌋K(i) =
{

� , if � ⊑ (?(1) → wlp(�, �)) ⊓ (?(¬1) → i)
0, otherwise

⊑ wlp(. . . , i).

Before we go into details, we remark for readers familiar with classical deductive verification that
our encoding is almost identical to standard loop encodings (cf. [Müller 2019]). Apart from the
quantitative interpretation of statements, the only exception is the validate in line 3.

It is instructive to go over the encoding in Figure 22 step by step for a given initial state f . The
following expanded version of the above equation’s right-hand side serves as a roadmap:

� (f) ⊓ inf
f ′∈States

{

∞, if � (f ′) ≤ (?(1) (f ′) → wlp(�, �) (f ′)) ⊓ (?(¬1) (f ′) → i (f ′))
0, otherwise,

Reading the HeyVL code in Figure 22 top-down then corresponds to reading the equation from left
to right as indicated by the colors. We first assert that our underapproximation of the loop’s wlp is
at most � . The remaining code will ensure that said underapproximation is exactly � whenever � is
an inductive loop invariant; it will be 0 otherwise. Proving that � is an inductive loop invariant
requires checking an inequality ⊑, wherek ⊑ d holds iffk (f ′) ≤ d (f ′) for all states f ′. We havoc
the values of all program variables such that the invariant check encoded afterward is performed
for every evaluation of the program variables, i.e. for every state f ′.19 Moreover, havoc picks the

19An optimized encoding may only havoc those variables that are modified in the loop body. However, we opted to encode

the rule as it is typically presented in the literature.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:22 Schröer, Batz, Kaminski, Katoen, Matheja

minimal result of all those invariant checks. The statement “� is an inductive loop invariant” is
inherently qualitative. We thus validate that the invariant check encoded next is a qualitative
statement that can only have two results: ∞ if � is an inductive invariant and 0 if it is not. To
check if � is an inductive invariant for a fixed state f ′, we need to prove an inequality, namely that
� (f ′) lower bounds wlp(�, �) (f ′) if loop guard 1 holds and i (f ′) if 1 does not hold. We first use
assume � to lower the threshold for the expected value of the remaining code to be considered
∞ to � (f ′). Hence, we obtain∞ if the invariant check succeeds for f ′. The conditional choice is
the invariant check’s right-hand side. If state f ′ satisfies 1, we use our existing wlp encoding to
computewlp(�, �) (f ′), where assert �; assume ?(false) ensures thatwlp is computed with respect
to postexpectation � . If state f ′ satisfies ¬1, we do nothing and just take the postexpectation i .

Upper bounds. Consider an iterative version of the lossy list traversal from Figure 4 on page 3:

while (len(;) > 0) { { ; ≔ pop(;) } [0.5] { foo(l) } }

The Park induction rule can also be used to overapproximate weakest preexpectations. The encoding
is dual, i.e. it suffices to use the co-versions of the involved statements. For example, Figure 23
encodes the above loop with exp(0.5, len(;)) as inductive invariant overapproximating the loop’s
termination probability. The list type and the exponential function exp(0.5, len(;)) are represented
in HeyLo by custom domain declarations (cf. Section 5.1).

Recursion. We can encode verification ofwlp-lower bounds for recursive procedure calls of pGCL
programs as discussed in Section 3.5 and justified by Olmedo et al. [2016] and Matheja [2020] – it is
another application of Park induction. For wp-upper bounds, the encoding is dual. Hence, Figure 7
on page 5 encodes that the termination probability of the program in Figure 4 is at most 0.5len(;) .

4.3 Overview of Encodings

Table 1 summarizes all verification techniques – program logics and proof rules – that have been
encoded in HeyVL. While a detailed discussion is beyond the scope of this paper, we briefly go
over Table 1. The main takeaway is that HeyVL enables the encoding – and thus automation – of
advanced verification methods based on diverse theoretical foundations and targeting different
verification problems. The practicality of our encodings will be evaluated in Section 5.

Expected Values. We encoded McIver and Morgan [2005]’s weakest (liberal) preexpectation
calculus for analyzing expected values of probabilistic programs (cf. Section 4.1). To analyze
conditional expected values, we combined the two calculi as suggested by Olmedo et al. [2018]. For
loops, we encoded three proof rules based on domain theory:
First, Park Induction generalizes the standard loop rule from Hoare logic [Hoare 1969] to a

quantitative setting; it can be applied to lower bound weakest liberal preexpectations and upper
bound weakest preexpectations (cf. Section 4.2). However, it is unsound for the converse directions.
Second, l-Invariants are sound and complete for proving lower and upper bounds. However,

they are arguably more complex because users must provide a family of invariants and compute
limits. We modeled families of invariants as HeyLo formulas with additional free variables and
used havoc G and cohavoc G to represent limits.
Third, we encoded a quantitative version of :-induction (for proving upper bounds) – an es-

tablished verification technique (cf. [Sheeran et al. 2000]). The encodings are based on latticed
:-induction [Batz et al. 2021a], a generalization of :-induction to arbitrary complete lattices. After
encoding :-induction for upper bounds on wp, we benefited from the duality of HeyVL statements:
we obtained a dual encoding for lower bounds on wlp that has, to our knowledge, not been imple-
mented before. Furthermore, we encoded an advanced proof rule for lower bounds on expected

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:23

Table 1. Verification techniques encoded in HeyVL sorted by verification problem: lower- and upper bounds
on probability of events (LPROB and UPROB), upper- and lower bounds on expected values (UEXP and LEXP),
conditional expected values (CEXP), almost-sure termination (AST), positive almost-sure termination (PAST),
upper bounds on expected runtimes (UERT), and lower bounds on expected runtimes (LERT).

Problem Verification Technique Source

LPROB
wlp + Park induction McIver and Morgan [2005]
wlp + latticed :-induction (new?)

UPROB wlp + l-invariants Kaminski [2019]

UEXP
wp + Park induction McIver and Morgan [2005]
wp + latticed :-induction Batz et al. [2021a]

LEXP
wp + l-invariants Kaminski [2019]
wp + Optional Stopping Theorem Hark et al. [2019]

CEXP conditional wp Olmedo et al. [2018]
UERT ert calculus + UEXP rules Kaminski et al. [2016]
LERT ert calculus + l-invariants Kaminski et al. [2016]
AST parametric super-martingale rule McIver et al. [2018]
PAST program analysis with martingales Chakarov and Sankaranarayanan [2013]

values by Hark et al. [2019]. In contrast to the above rules, this rule is based on stochastic processes,
particularly the Optional Stopping Theorem. Using our encoding, we automated the main examples
in [Hark et al. 2019].

Expected Runtimes. To analyze the performance of randomized algorithms, we encoded the
expected runtime calculus by Kaminski et al. [2016, 2018] and its recent extension to amortized
analysis [Batz et al. 2023b]. Although reasoning about expected runtimes of loops involves some
subtleties, we could adapt ourHeyVL encodings for expected values by inserting reward statements.
We encoded and automated examples from [Kaminski et al. 2016, 2018] and [Ngo et al. 2018].

Almost-Sure Termination (AST). McIver et al. [2018] proposed a proof rule for almost-sure ter-
mination – does a probabilistic program terminate with probability one? The rule is based on a
parametric martingale that must satisfy four conditions, which we encoded in separate HeyVL
(co)procedures. We automated the verification of their examples, including the one in Figure 5.

Positive Almost-Sure Termination (PAST). PAST is a stronger notion than almost-sure termination,
which requires a program’s expected runtime to be finite. We can apply our HeyVL encodings for
upper bounding expected runtimes to prove PAST. Moreover, we encoded a dedicated proof rule for
PAST by Chakarov and Sankaranarayanan [2013] based on martingales and concentration bounds.

5 IMPLEMENTATION

We first describe user-defined types and functions by means of domain declarations in Section 5.1.
We then describe our tool Caesar alongside with empirical results validating the feasibility of our
deductive verification infrastructure for the automated verification of probabilistic programs.

5.1 Domain Declarations

Recall from Section 2 that we assume all type- and function symbols to be interpreted. In practice,
we support custom first-order theories via domain declarations as is standard in classical deductive

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:24 Schröer, Batz, Kaminski, Katoen, Matheja

verification infrastructures [Müller et al. 2016b]. A domain declaration introduces a new type
symbol alongside with a set of typed function symbols and first-order formulae (called axioms)
characterizing feasible interpretations of the type- and function symbols.
Consider the harmonic numbers — often required for, e.g., expected runtime analysis — as an

example. The=-th harmonic number is given by�= =
∑=

:=1
1
:
. To enable reasoning about verification

problems involving the harmonic numbers, we introduce the following domain declaration:

domain �0A<>=82#D<B { func � (=:N): R≥0
axiom ℎ0 � (0) = 0

axiom ℎ= ∀= : N. � (= + 1) = � (=) + 1/=+1 }

�0A<>=82#D<B introduces a new function symbol � : N→ R≥0 and two axioms ℎ0 and ℎ= char-
acterizing feasible interpretations of � recursively. Other non-linear functions such as exponential
functions (e.g., exp(0.5, =) from Section 4.2) as well as algebraic data types can be defined in a similar
way (see, e.g., [Müller et al. 2016a]). In our implementation, validity of verification conditions —
inequalities between HeyLo formulae — is defined modulo validity of all user-provided axioms.

5.2 The Verifier Caesar

We have implemented HeyVL in our tool Caesar20 which consists of approximately 10k lines
of Rust code. Caesar takes as input a HeyVL program � and a set of domain declarations (cf.
Section 5.1). It then generates all verification conditions described by � , i.e, inequalities between
HeyLo formulae of the form i ⊑ vpJ(K(k) or i ⊒ vpJ(K(k), and translates these verification
conditions to a Satisfiability Modulo Theories (SMT) query. Our SMT back end is z3 [de Moura
and Bjørner 2008]. Since the translation to SMT can involve undecidable theories, Caesar might
return unknown. Otherwise, Caesar either returns verified or not verified. In the latter case, z3
often reports a counterexample state witnessing the violation of one of the verification conditions,
which helps, e.g., debugging loop invariants.

Moreover, we have implemented a prototypical front-end that translates (numeric) pGCL programs
and their specifications to HeyVL, and invokes Caesar for automated verification. Currently, it
supports all techniques from Table 1 targeting loops.
SMT Encodings and Optimizations. We translate validity of inequalities between HeyLo to SMT

following the semantics of formulae from Figure 8.
To encode the sort R∞≥0, we evaluated to two options, which are both supported by our imple-

mentation. The first option represents every number of sort R∞≥0 as a pair (A, isInfty), where A is
a real number and isInfty is a Boolean flag that is true if and only if the represented number is
equal to∞. We add constraints A ≥ 0 to ensure that A is non-negative. All operations on R∞≥0 are
then defined over such pairs. For example, the addition (A1, isInfty1) + (A2, isInfty2) is defined as
(A1 + A2, isInfty1 ∨ isInfty2). For multiplication, we ensure that 0 · ∞ = ∞ – a common assumption
in probability theory. The second option leverages Z3-specific data type declarations to specify
values that are either infinite or non-negative reals. We observed that the first option performs
better overall and thus use it by default.
The J- and Squantifiers are translated using the textbook definition of infima and suprema

over R∞≥0, but are eliminated whenever possible using that for � ⊆ R∞≥0 and A ∈ R∞≥0, we have

sup� ≤ A iff ∀0 ∈ � : 0 ≤ A and dually A ≤ inf � iff ∀0 ∈ � : A ≤ 0 .

Finally, we simplify sub-formulae by, e.g., rewriting ?(1) ⊓k to 0 if 1 is unsatisfiable.

20All tools and benchmarks are available as open-source software at https://github.com/moves-rwth/caesar.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://github.com/moves-rwth/caesar

A Deductive Verification Infrastructure for Probabilistic Programs 294:25

Benchmarks. To validate whether our implementation is capable of verifying interesting quan-
titative properties of probabilistic programs, we have considered various verification problems
taken from the literature. These benchmarks involve unbounded probabilistic loops or recursion
and include quantitative correctness properties of communication protocols [D’Argenio et al. 1997;
Helmink et al. 1993] and randomised algorithms [Hurd et al. 2005; Kushilevitz and Rabin 1992;
Lumbroso 2013], bounds on expected runtimes of stochastic processes [Kaminski et al. 2020, 2018;
Ngo et al. 2018], proofs of positive almost-sure termination [Chakarov and Sankaranarayanan 2013]
and proofs of almost-sure termination for the case studies provided in [McIver et al. 2018]. For each
of these benchmarks, we wrote HeyVL encodings, including the ones in Section 4, and cover all
verification techniques from Table 1.

Table 2 summarizes the results of our benchmarks. For each benchmark, it provides the benchmark
name, the verification problem, the encoded techniques (cf. Table 1), the lines of HeyVL code
(without comments), notable features, and running time. For the running time, we also provide the
shares of pruning. i.e. simplification of sub-formulae, and the final SAT check. Details about each
benchmark’s source and encoding are found in the technical report. For latticed :-induction, we
indicate the value of : that was used for the encoding. Benchmarks that use exponential functions
(e.g. rabin, zeroconf) or harmonic numbers (e.g. ast) are marked with F1. Benchmarks that use
multiple possibly mixed (co)procedures are marked with F2. One example encodes verification of
nested loops (feature F3).

The size of our benchmarks ranges from 19-224 lines of HeyVL code. 85% of our benchmarks (those
shaded in gray) have been verified with our front-end; the remaining encodings are handcrafted.
All benchmark files are available as part of our artifact.

Evaluation. On average, Caesar needs 0.2 seconds to verify a HeyVL program, with a maximum
of 2.3 seconds. Most benchmarks verify within less than a second. The brp3 benchmark times
out because of the large nested branching resulting from the exponential size of the :-induction
encoding with : = 23.

We conclude that Caesar is capable of verifying interesting quantitative verification problems of
probabilistic programs taken from the literature. Moreover, we conclude that modern SMT solvers
are a suitable back-end besides the fact that our benchmarks often require reasoning about highly
non-linear functions. This is due to the fact that it often suffices to (un)fold recursive definitions of,
e.g., the harmonic numbers, finitely many times. Finally, our benchmarks demonstrate that our
verification infrastructure provides a unifying interface for encoding and solving various kinds of
probabilistic verification problems in an automated manner.

6 RELATED WORK

We focus on automated verification techniques for probabilistic programs and deductive verification
infrastructures for non-probabilistic programs; encoded proof rules have been discussed in Section 4.

Probabilistic Program Verification. Expectation-based probabilistic program verification has been
pioneered by Kozen [1983, 1985] and McIver & Morgan [McIver and Morgan 2005]. Hurd et al.
[2005] formalised thew(l)p calculus in Isabelle/HOL [Nipkow et al. 2002]. They focus on the calculus’
meta theory and provide a verification-condition generator for proving partial correctness. Hölzl
[2016] implemented the meta theory of Kaminski et al. [2016]’s ert calculus in Isabelle/HOL and
verified bounds on expected runtimes of randomised algorithms. We focus on unifying verification
techniques in a single infrastructure.
Easycrypt [Barthe et al. 2013, 2011] is a theorem prover for verifying cryptographic protocols,

featuring libraries for data structures and algebraic reasoning. Ellora [Barthe et al. 2018] is an
assertion-based program logic for probabilistic programs implemented in Easycrypt, taking benefit

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

294:26 Schröer, Batz, Kaminski, Katoen, Matheja

Table 2. Benchmarks. Rows shaded in gray indicate HeyVL examples automatically generated from pGCL
code with annotations using our frontend. Timeout (TO) was set to 10 seconds. Verification techniques
correspond to those presented in Table 1. Lines of HeyVL code (LOC) are counted without comments.
Features: user-defined uninterpreted functions (F1), multiple (co)procedures (F2), nested loops (F3).

Name Problem Verification Technique LOC Features Total (s) Pruning SAT

rabin LPROB wlp + Park induction 43 F1, F3 0.33 3% 96%

unif_gen1 LPROB wlp + Latticed :-induction (: = 2) 61 0.02 52% 35%

unif_gen2 LPROB wlp + Latticed :-induction (: = 3) 82 0.05 68% 25%

unif_gen3 LPROB wlp + Latticed :-induction (: = 3) 82 0.05 71% 22%

unif_gen4 LPROB wlp + Latticed :-induction (: = 5) 124 0.86 90% 7%

rabin1 LPROB wlp + Park induction 36 0.01 45% 40%

rabin2 LPROB wlp + Latticed :-induction (: = 5) 116 0.08 27% 67%

chain UEXP wp + Park induction 28 F1 0.03 24% 66%

ohfive UEXP wp + Park induction 34 F1, F3 0.02 33% 56%

brp1 UEXP wp + Latticed :-induction (: = 5) 72 0.03 45% 42%

brp2 UEXP wp + Latticed :-induction (: = 11) 138 0.46 70% 16%

brp3 UEXP wp + Latticed :-induction (: = 23) 270 TO
geo1 UEXP wp + Latticed :-induction (: = 2) 32 0.02 44% 41%

geo (recursive) UEXP wp + Park induction 19 0.02 43% 42%

rabin1 UEXP wp + Park induction 36 0.02 44% 73%

rabin2 UEXP wp + Latticed :-induction (: = 5) 116 0.12 22% 46%

unif_gen1 UEXP wp + Latticed :-induction (: = 2) 61 0.03 44% 46%

unif_gen2 UEXP wp + Latticed :-induction (: = 3) 82 0.11 41% 53%

unif_gen3 UEXP wp + Latticed :-induction (: = 3) 82 0.10 41% 53%

unif_gen4 UEXP wp + Latticed :-induction (: = 5) 124 2.26 47% 49%

zeroconf UEXP wp + Park induction 43 F1, F2 0.03 36% 49%

ost LEXP wp + Optional Stopping Theorem 93 F2 0.07 33% 51%

die CEXP conditional wp 22 F2 0.02 17% 63%

2drwalk UERT ert + Park induction 224 0.02 41% 44%

bayesian_network UERT ert + Park induction 107 0.02 45% 40%

C4b_t303 UERT ert + Latticed :-induction (: = 3) 73 0.03 29% 58%

condand UERT ert + Park induction 24 0.02 42% 42%

fcall UERT ert + Park induction 26 0.02 52% 44%

hyper UERT ert + Park induction 31 0.02 41% 44%

linear01 UERT ert + Park induction 23 0.02 42% 43%

prdwalk UERT ert + Park induction 62 0.02 56% 31%

prspeed UERT ert + Park induction 45 0.02 41% 45%

rdspeed UERT ert + Park induction 48 0.02 38% 47%

rdwalk UERT ert + Park induction 24 0.02 42% 43%

sprdwalk UERT ert + Park induction 26 0.02 42% 43%

omega LERT ert + l-invariants 33 F2 0.02 42% 47%

ast1 AST parametric super-martingale rule 67 F2 0.06 33% 49%

ast2 AST parametric super-martingale rule 79 F2 0.05 38% 50%

ast3 AST parametric super-martingale rule 65 F1, F2 1.94 1% 99%

ast4 AST parametric super-martingale rule 55 F2 0.05 33% 52%

past PAST program analysis with martingales 26 F2 0.04 40% 46%

from Easycrypt’s features. Their specifications are predicates over (sub)distributions instead of
expectations. While Ellora employs specialised proof rules for loops and does not support non-
determinism or recursion, thus being more restrictive than HeyVL in this regard, Ellora embeds, e.g.,
logics for reasoning about probabilistic independence. As stated in [Barthe et al. 2018], an in-depth
comparison of assertion- and expectation-based approaches is difficult. Pardo et al. [2022] propose a

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

A Deductive Verification Infrastructure for Probabilistic Programs 294:27

propositional dynamic logic for pGCL featuring reasoning about convergence of estimators. Their
logic is not automated yet.

Fully automatic analyses of probabilistic programs are limited to specific properties, e.g. bounding
expected runtimes or proving (positive) almost-sure termination [Abate et al. 2021; Avanzini et al.
2020; Batz et al. 2023a, 2018; Chatterjee et al. 2016, 2017; Fioriti and Hermanns 2015; Fu and
Chatterjee 2019; Leutgeb et al. 2022; Meyer et al. 2021; Moosbrugger et al. 2021a,b; Ngo et al. 2018].
We might also benefit from invariant synthesis approaches [Agrawal et al. 2018; Amrollahi et al.
2022; Bao et al. 2022; Barthe et al. 2016; Bartocci et al. 2020; Batz et al. 2023a, 2020; Chakarov and
Sankaranarayanan 2013; Chen et al. 2015; Feng et al. 2017; Katoen et al. 2010; Susag et al. 2022].
Deductive Verification Infrastructures. Boogie [Leino 2008] andWhy3 [Filliâtre and Paskevich

2013] are prominent examples of IVLs for non-probabilistic programs that lie at the foundation of
various modern verifiers, such as Dafny [Leino 2010] and Frama-C [Kirchner et al. 2015]. Neither
of these IVLs targets reasoning about expectations or upper bounds (aka necessary precondi-
tions [Cousot et al. 2011]). For example, Boogie’s statements are specific to verifying lower bounds
on Boolean predicates. Evaluating whether our implementation could benefit from encoding HeyLo
formulae into Why3 is interesting future work.

7 CONCLUSION AND FUTURE WORK

We have presented a verification infrastructure for probabilistic programs based on a novel quanti-
tative intermediate verification language that aids researchers with prototyping and automating
their proof rules. As future work, we plan to automate more rules and explore the relationship be-
tween our language, particularly its dual operators, and (partial) incorrectness logic [O’Hearn 2020;
Zhang and Kaminski 2022]. A further promising direction is to generalize our infrastructure for the
verification of probabilistic pointer programs [Batz et al. 2022a, 2019] and weighted programs [Batz
et al. 2022b].

Furthermore, establishing a formal “ground truth” for our intermediate language HeyVL in terms
of an operational semantics that assigns precise meaning to quantitative Hoare triples, which we
admittedly introduced ad-hoc, is important future work. However, defining an operational semantics
that yields a pleasant forward-reading intuition for all statements in our intermediate language
HeyVL appears non-trivial. In particular, we are unaware of a semantics for (co)assume statements
that is independent of the semantics of the remaining program. We believe that stochastic games
might be an adequate formalism but the details have not been worked out yet.

DATA-AVAILABILITY STATEMENT

The tool Caesar, our prototypical front-end for pGCL programs, as well as our benchmarks that
we submitted for the artifact evaluation are available [Schroer et al. 2023]. We also develop our
tools as open-source software at https://github.com/moves-rwth/caesar.

ACKNOWLEDGMENTS

This work was partially supported by the Digital Research Centre Denmark (DIREC), the ERC
Advanced Research Grant FRAPPANT (grant no. 787914), and the 2022 WhatsApp Privacy Aware
Program Analysis Research Award.

REFERENCES

Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. 2021. Learning Probabilistic Termination Proofs. In Computer Aided

Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture Notes in

Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 3–26. https://doi.org/10.1007/978-

3-030-81688-9_1

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://github.com/moves-rwth/caesar
https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1

294:28 Schröer, Batz, Kaminski, Katoen, Matheja

Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic ranking supermartingales: an efficient

approach to termination of probabilistic programs. Proc. ACM Program. Lang. 2, POPL (2018), 34:1–34:32. https:

//doi.org/10.1145/3158122

Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, and Miroslav Stankovic. 2022.

Solving Invariant Generation for Unsolvable Loops. In Static Analysis - 29th International Symposium, SAS 2022, Auckland,

New Zealand, December 5-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13790), Gagandeep Singh and

Caterina Urban (Eds.). Springer, 19–43. https://doi.org/10.1007/978-3-031-22308-2_3

Martin Avanzini, Georg Moser, and Michael Schaper. 2020. A modular cost analysis for probabilistic programs. Proc. ACM

Program. Lang. 4, OOPSLA (2020), 172:1–172:30. https://doi.org/10.1145/3428240

M. Baaz. 1996. Infinite-Valued Gödel Logics with 0-1-Projections and Relativizations. In Proc. Gödel’96, Logic Foundations

of Mathematics, Computer Science and Physics – Kurt Gödel’s Legacy (Lecture Notes in Logic 6), P. Hájek (Ed.). Springer,

Brno, Czech Republic.

Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for Probabilistic

Programs. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,

Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 33–54.

https://doi.org/10.1007/978-3-031-13185-1_3

Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt:

A Tutorial. In Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes in

Computer Science, Vol. 8604), Alessandro Aldini, Javier López, and Fabio Martinelli (Eds.). Springer, 146–166. https:

//doi.org/10.1007/978-3-319-10082-1_6

Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via

Doob’s Decomposition. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,

July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan

(Eds.). Springer, 43–61. https://doi.org/10.1007/978-3-319-41528-4_3

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-

Based Program Logic for Probabilistic Programs. In Programming Languages and Systems (Lecture Notes in Computer

Science), Amal Ahmed (Ed.). Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-89884-1_5

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs

for the Working Cryptographer. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa

Barbara, CA, USA, August 14-18, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6841), Phillip Rogaway (Ed.).

Springer, 71–90. https://doi.org/10.1007/978-3-642-22792-9_5

Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). 2020. Foundations of Probabilistic Programming. Cambridge

University Press, Cambridge. https://doi.org/10.1017/9781108770750

Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Mora - Automatic Generation of Moment-Based Invariants.

12078 (2020), 492–498. https://doi.org/10.1007/978-3-030-45190-5_28

Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.

2023a. Probabilistic Program Verification via Inductive Synthesis of Inductive Invariants. In TACAS (2) (Lecture Notes in

Computer Science, Vol. 13994). Springer, 410–429. https://doi.org/10.1007/978-3-031-30820-8_25

Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer.

2021a. Latticed k-Induction with an Application to Probabilistic Programs. In CAV (2) (Lecture Notes in Computer Science,

Vol. 12760). Springer, 524–549. https://doi.org/10.1007/978-3-030-81688-9_25

Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen, Florian Keßler, Christoph Matheja, and Thomas Noll. 2022a.

Foundations for Entailment Checking in Quantitative Separation Logic. 13240 (2022), 57–84. https://doi.org/10.1007/978-

3-030-99336-8_3

Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Tobias Winkler. 2022b. Weighted Pro-

gramming: A Programming Paradigm for Specifying Mathematical Models. Proceedings of the ACM on Programming

Languages 6, OOPSLA1 (April 2022). https://doi.org/10.1145/3527310

Kevin Batz, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer. 2020.

PrIC3: Property Directed Reachability for MDPs. 12225 (2020), 512–538. https://doi.org/10.1007/978-3-030-53291-8_27

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2018. How long, O Bayesian network,

will I sample thee? - A program analysis perspective on expected sampling times. 10801 (2018), 186–213. https:

//doi.org/10.1007/978-3-319-89884-1_7

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021b. Relatively complete verification

of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang. 5, POPL

(2021), 1–30. https://doi.org/10.1145/3434320

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2023b. A Calculus for

Amortized Expected Runtimes. Proc. ACM Program. Lang. 7, POPL (2023), 1957–1986. https://doi.org/10.1145/3571260

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1145/3428240
https://doi.org/10.1007/978-3-031-13185-1_3
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1007/978-3-030-99336-8_3
https://doi.org/10.1007/978-3-030-99336-8_3
https://doi.org/10.1145/3527310
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-319-89884-1_7
https://doi.org/10.1007/978-3-319-89884-1_7
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3571260

A Deductive Verification Infrastructure for Probabilistic Programs 294:29

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proceedings of the ACM on Programming

Languages 3, POPL (Jan. 2019). https://doi.org/10.1145/3290347

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer

Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 511–526. https:

//doi.org/10.1007/978-3-642-39799-8_34

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic Programs

Through Positivstellensatz’s. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON,

Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh

Farzan (Eds.). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 145–160. https://doi.org/10.1145/3009837.

3009873

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop

Invariant Generation by Lagrange Interpolation. In Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel

Kroening and Corina S. Pasareanu (Eds.). Springer, 658–674. https://doi.org/10.1007/978-3-319-21690-4_44

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary

Preconditions. In Verification, Model Checking, and Abstract Interpretation (Lecture Notes in Computer Science), Roberto

Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

35873-9_10

Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. Precondition Inference from Intermittent Assertions and

Application to Contracts on Collections. In Verification, Model Checking, and Abstract Interpretation, Ranjit Jhala and David

Schmidt (Eds.). Vol. 6538. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18275-4_12

Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans. 1997. The Bounded Retransmission Protocol

Must Be on Time!. In Tools and Algorithms for Construction and Analysis of Systems, Third International Workshop, TACAS

’97, Enschede, The Netherlands, April 2-4, 1997, Proceedings (Lecture Notes in Computer Science, Vol. 1217), Ed Brinksma

(Ed.). Springer, 416–431. https://doi.org/10.1007/BFb0035403

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems (Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-78800-3_24

Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for

Probabilistic Programs. In Automated Technology for Verification and Analysis - 15th International Symposium, ATVA 2017,

Pune, India, October 3-6, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10482), Deepak D’Souza and K. Narayan

Kumar (Eds.). Springer, 400–416. https://doi.org/10.1007/978-3-319-68167-2_26

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In ESOP (Lecture Notes in

Computer Science, Vol. 7792). Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Com-

positionality. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 489–501.

https://doi.org/10.1145/2676726.2677001

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification, Model

Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019,

Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.). Springer, 468–490.

https://doi.org/10.1007/978-3-030-11245-5_22

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming. In

Proceedings of the on Future of Software Engineering (FOSE 2014). ACM, New York, NY, USA. https://doi.org/10.1145/

2593882.2593900

Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming Low Is Harder: Induction for

Lower Bounds in Probabilistic Program Verification. Proceedings of the ACM on Programming Languages 4, POPL (Dec.

2019). https://doi.org/10.1145/3371105

Leen Helmink, M. P. A. Sellink, and Frits W. Vaandrager. 1993. Proof-Checking a Data Link Protocol. In Types for Proofs and

Programs, International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected Papers (Lecture Notes in

Computer Science, Vol. 806), Henk Barendregt and Tobias Nipkow (Eds.). Springer, 127–165. https://doi.org/10.1007/3-

540-58085-9_75

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://doi.org/10.1145/3290347
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-18275-4_12
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/3371105
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-58085-9_75

294:30 Schröer, Batz, Kaminski, Katoen, Matheja

C A R Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969). https://doi.org/10.1145/

363235.363259

Johannes Hölzl. 2016. Formalising Semantics for Expected Running Time of Probabilistic Programs. In Interactive Theorem

Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings (Lecture Notes in Computer

Science, Vol. 9807), Jasmin Christian Blanchette and Stephan Merz (Eds.). Springer, 475–482. https://doi.org/10.1007/978-

3-319-43144-4_30

J. Hurd, Annabelle McIver, and Carroll Morgan. 2005. Probabilistic Guarded Commands Mechanized in HOL. Electron. Notes

Theor. Comput. Sci. (2005). https://doi.org/10.1016/j.tcs.2005.08.005

Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph.D. Dissertation.

RWTH Aachen University. https://doi.org/10.18154/RWTH-2019-01829

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the Hardness of Analyzing Probabilistic

Programs. Acta Informatica 56, 3 (April 2019). https://doi.org/10.1007/s00236-018-0321-1

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2020. Expected Runtime Analysis by Program

Verification. In Foundations of Probabilistic Programming, Alexandra Silva, Gilles Barthe, and Joost-Pieter Katoen (Eds.).

Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108770750

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run–Times of Probabilistic Programs. In Programming Languages and Systems (Lecture Notes in

Computer Science), Peter Thiemann (Ed.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49498-1_15

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (Aug. 2018). https://doi.org/10.1145/3208102

Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for

Probabilistic Programs: - Automated Support for Proof-Based Methods. In Static Analysis - 17th International Symposium,

SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6337), Radhia

Cousot and Matthieu Martel (Eds.). Springer, 390–406. https://doi.org/10.1007/978-3-642-15769-1_24

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal Aspects Comput. 27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

Stephen Cole Kleene. 1952. Introduction to Metamathematics. North Holland. https://doi.org/10.2307/2268620

Dexter Kozen. 1983. A Probabilistic PDL. In STOC. ACM, 291–297. https://doi.org/10.1145/800061.808758

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (1985), 162–178. https://doi.org/10.1016/0022-

0000(85)90012-1

Eyal Kushilevitz and Michael O. Rabin. 1992. Randomized Mutual Exclusion Algorithms Revisited. In Proceedings of the

Eleventh Annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, August

10-12, 1992, Norman C. Hutchinson (Ed.). ACM, 275–283. https://doi.org/10.1145/135419.135468

K. Rustan M. Leino. 2008. This Is Boogie 2.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,

Artificial Intelligence, and Reasoning (Lecture Notes in Computer Science), Edmund M. Clarke and Andrei Voronkov (Eds.).

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_20

Lorenz Leutgeb, Georg Moser, and Florian Zuleger. 2022. Automated Expected Amortised Cost Analysis of Probabilistic

Data Structures. , 70–91 pages. https://doi.org/10.1007/978-3-031-13188-2_4

Jérémie O. Lumbroso. 2013. Optimal Discrete Uniform Generation from Coin Flips, and Applications. CoRR abs/1304.1916

(2013). arXiv:1304.1916 http://arxiv.org/abs/1304.1916

Christoph Matheja. 2020. Automated reasoning and randomization in separation logic. Ph.D. Dissertation. RWTH Aachen

University, Germany. https://doi.org/10.18154/RWTH-2020-00940

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A New Proof Rule for Almost-

Sure Termination. Proceedings of the ACM on Programming Languages 2, POPL (Jan. 2018). https://doi.org/10.1145/3158121

Annabelle McIver and Charles Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer-

Verlag, New York. https://doi.org/10.1007/b138392

Fabian Meyer, Marcel Hark, and Jürgen Giesl. 2021. Inferring Expected Runtimes of Probabilistic Integer Programs Using

Expected Sizes. In Tools and Algorithms for the Construction and Analysis of Systems - 27th International Conference,

TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg

City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12651), Jan Friso

Groote and Kim Guldstrand Larsen (Eds.). Springer, 250–269. https://doi.org/10.1007/978-3-030-72016-2_14

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021a. Automated Termination Analysis of

Polynomial Probabilistic Programs. In Programming Languages and Systems - 30th European Symposium on Programming,

ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg

City, Luxembourg, March 27 - April 1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12648), Nobuko Yoshida

(Ed.). Springer, 491–518. https://doi.org/10.1007/978-3-030-72019-3_18

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1016/j.tcs.2005.08.005
https://doi.org/10.18154/RWTH-2019-01829
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.2307/2268620
https://doi.org/10.1145/800061.808758
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1145/135419.135468
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-031-13188-2_4
https://arxiv.org/abs/1304.1916
http://arxiv.org/abs/1304.1916
https://doi.org/10.18154/RWTH-2020-00940
https://doi.org/10.1145/3158121
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18

A Deductive Verification Infrastructure for Probabilistic Programs 294:31

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021b. The Probabilistic Termination Tool

Amber. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings

(Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.). Springer,

667–675. https://doi.org/10.1007/978-3-030-90870-6_36

Peter Müller. 2019. Building Deductive Program Verifiers - Lecture Notes. Engineering Secure and Dependable Software

Systems (2019).

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016a. Online appendix to Viper: A Verification Infrastructure for

Permission-Based Reasoning. http://viper.ethz.ch/examples/vmcai16/index.html

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016b. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.

Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann

and K. Rustan M. Leino (Eds.). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI 2018). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3192366.3192394

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.

Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. 2014. R2: An Efficient MCMC Sampler for Probabilistic

Programs. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,

Québec, Canada, Carla E. Brodley and Peter Stone (Eds.). AAAI Press, 2476–2482. https://doi.org/10.1609/aaai.v28i1.9060

Peter W. O’Hearn. 2020. Incorrectness Logic. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020).

https://doi.org/10.1145/3371078

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle Mciver. 2018.

Conditioning in Probabilistic Programming. ACM Transactions on Programming Languages and Systems 40, 1 (Jan. 2018).

https://doi.org/10.1145/3156018

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).

Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2933575.2935317

Raúl Pardo, Einar Broch Johnsen, Ina Schaefer, and Andrzej Wasowski. 2022. A Specification Logic for Programs in the

Probabilistic Guarded Command Language. In ICTAC (Lecture Notes in Computer Science, Vol. 13572). Springer, 369–387.

https://doi.org/10.1007/978-3-031-17715-6_24

David Park. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969).

Norbert Preining. 2010. Gödel Logics – A Survey. In Logic for Programming, Artificial Intelligence, and Reasoning (Lecture

Notes in Computer Science), Christian G. Fermüller and Andrei Voronkov (Eds.). Springer, Berlin, Heidelberg. https:

//doi.org/10.1007/978-3-642-16242-8_4

Philipp Schroer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2023. A Deductive

Verification Infrastructure for Probabilistic Programs - Artifact Evaluation. https://doi.org/10.5281/zenodo.8146987

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-Solver.

In Formal Methods in Computer-Aided Design, Third International Conference, FMCAD 2000, Austin, Texas, USA, November

1-3, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1954), Warren A. Hunt Jr. and Steven D. Johnson (Eds.).

Springer, 108–125. https://doi.org/10.1007/3-540-40922-X_8

Zachary Susag, Sumit Lahiri, Justin Hsu, and Subhajit Roy. 2022. Symbolic execution for randomized programs. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 1583–1612. https://doi.org/10.1145/3563344

Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartingales for

Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1–5:46. https://doi.org/10.1145/

3450967

Wikipedia. 2023a. Coupon Collector’s Problem. https://en.wikipedia.org/wiki/Coupon_collector%27s_problem. [Online;

accessed 4-September-2023].

Wikipedia. 2023b. Random Walk. https://en.wikipedia.org/wiki/Random_walk#One-dimensional_random_walk. [Online;

accessed 4-September-2023].

Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative strongest post: a calculus for reasoning about the flow

of quantitative information. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–29. https://doi.org/10.1145/3527331

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 294. Publication date: October 2023.

https://doi.org/10.1007/978-3-030-90870-6_36
http://viper.ethz.ch/examples/vmcai16/index.html
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1609/aaai.v28i1.9060
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1007/978-3-031-17715-6_24
https://doi.org/10.1007/978-3-642-16242-8_4
https://doi.org/10.1007/978-3-642-16242-8_4
https://doi.org/10.5281/zenodo.8146987
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1145/3563344
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
https://en.wikipedia.org/wiki/Random_walk#One-dimensional_random_walk
https://doi.org/10.1145/3527331

	Abstract
	1 Introduction and Overview
	2 HeyLo: A Quantitative Assertion Language
	2.1 Program States and Expectations
	2.2 Syntax of HeyLo
	2.3 Semantics and Properties of HeyLo
	2.4 Qualitative Reasoning in HeyLo

	3 HeyVL: A Quantitative Intermediate Verification Language
	3.1 HeyVL Procedures
	3.2 Syntax of HeyVL Statements
	3.3 Semantics of HeyVL Statements
	3.4 Properties of HeyVL Statements
	3.5 Procedure Calls

	4 Encoding Case Studies
	4.1 Reasoning about While-Loop-Free pGCL Dialects
	4.2 Reasoning about Expected Values of Loops
	4.3 Overview of Encodings

	5 Implementation
	5.1 Domain Declarations
	5.2 The Verifier Caesar

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

