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ABSTRACT: Alchemical relative binding free energy calculations
have recently found important applications in drug optimization. A
series of congeneric compounds are generated from a preidentified
lead compound, and their relative binding affinities to a protein are
assessed in order to optimize candidate drugs. While methods
based on equilibrium thermodynamics have been extensively
studied, an approach based on nonequilibrium methods has
recently been reported together with claims of its superiority.
However, these claims pay insufficient attention to the basis and
reliability of both methods. Here we report a comparative study of
the two approaches across a large data set, comprising more than
500 ligand transformations spanning in excess of 300 ligands
binding to a set of 14 diverse protein targets. Ensemble methods
are essential to quantify the uncertainty in these calculations, not only for the reasons already established in the equilibrium approach
but also to ensure that the nonequilibrium calculations reside within their domain of validity. If and only if ensemble methods are
applied, we find that the nonequilibrium method can achieve accuracy and precision comparable to those of the equilibrium
approach. Compared to the equilibrium method, the nonequilibrium approach can reduce computational costs but introduces higher
computational complexity and longer wall clock times. There are, however, cases where the standard length of a nonequilibrium
transition is not sufficient, necessitating a complete rerun of the entire set of transitions. This significantly increases the
computational cost and proves to be highly inconvenient during large-scale applications. Our findings provide a key set of
recommendations that should be adopted for the reliable implementation of nonequilibrium approaches to relative binding free
energy calculations in ligand-protein systems.

■ INTRODUCTION
Free energy calculations are an essential tool by means of
which to evaluate the binding affinity of drugs to their target
proteins, and their applications are becoming increasingly
widespread in the pharmaceutical industry as well as in clinical
settings.1−3 This approach is by now well known, at least in
principle. Unfortunately, aside from the case of very few
research groups, insufficient attention has been paid to the
reliability, reproducibility, and uncertainty quantification of the
methods used. In the past few years, ensemble approaches have
been found to be successful in generating reproducible and
reliable predictions in conjunction with statistically robust
uncertainty quantification.4−6 We have shown recently that the
ensemble-based alchemical approach TIES (thermodynamic
integration with enhanced sampling)7 generates relative
binding free energies with chemical accuracy in all cases for
a large demonstration data set.8 Such ensemble approaches are
the only reliable way to compute statistically robust relative
binding free energies and are equally applicable to other free
energy methods. Ensemble-based free energy perturbation
(FEP), for example, produces free energy predictions as
reliably as TIES does.9 An essential corollary is that we cannot

rely on approaches based on one-off simulations despite the
fact that many authors continue to report them. Enhanced
sampling methods, such as REST2 (replica exchange with
solute scaling) as implemented in the free energy perturbation
approach FEP+ by Schrödinger Inc., have been shown to be
unreliable.10−12 While the oft-vaunted FEP+ method continues
to be reported in the context of one-off simulations and,
indeed, one still reads many papers in which one or a small
number of “repeats” are performed,13 a growing number of
authors now recognize that ensembles are, in fact, essential.5,14

Alchemical free energy methods make use of a thermody-
namic cycle (Figure 1a) that involves transforming one
molecule into another through a series of intermediate
alchemical states. The alchemical process can be performed
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using equilibrium or nonequilibrium methods (Figure 1b,c),
from which the free energy difference between the initial and
final states can be calculated. Equilibrium methods rely on the
assumption that the system is at equilibrium for all
intermediate states linking the two end point states. The free
energy change associated with the gradual transformation of
one state into another can then be calculated using methods
such as FEP15 and thermodynamic integration (TI).16

Nonequilibrium methods carry out fast transitions driving
the system irreversibly from one state into another and versa
vice. The amount of work needed for these rapid alchemical
transformations can be used to derive the free energy
difference between the initial and final states using estimators
based on Jarzynski’s equality,17 Crooks’ fluctuation theorem,18

and Bennett’s acceptance ratio (BAR)19 (which exploits
Crooks’ nonequilibrium work theorem).
To carry out nonequilibrium free energy calculations, one

first needs to perform independent equilibrium simulations at
the two end point states. The end-state conformations need to
be well sampled, as the accuracy of the free energy prediction
depends on the convergence of the equilibrium sampling.
While many studies in the literature use what are termed
“long” simulations for this step, we recommend the use of

ensemble simulations as we have established repeatedly that it
is much more efficient for the sampling of conformational
space than a single long simulation.6 Indeed, our recent study
on long-time-scale simulations has shown that individual
trajectories, with temporal durations up to 10 μs, do not allow
for accurate or reproducible elucidation of macroscopic
expectation values.20 In addition, using supercomputers, the
ensemble members can all be executed concurrently in the wall
clock time of a single short run. From the trajectories of
equilibrium simulations at each end state, snapshots are
extracted to initiate fast alchemical transitions in order to drive
the system to the other end state. Such fast transitions force
the system out of equilibrium and hence are termed
“nonequilibrium transitions” hereafter. These nonequilibrium
transitions are executed in both directions (λ: 0→1 and 1→0),
and the work required to perform them is obtained to
determine the free energy difference between the two end
states (Figure 1c). The nonequilibrium method is significantly
more complicated to implement than the equilibrium method
because there are more “moving parts” in the approach (that is,
there are additional settings and accompanying parameters to
select). Indeed, one could be forgiven for asking why one
should use nonequilibrium methods to compute an equili-
brium quantity such as free energy. Clearly, it can only be
justified if it proves easier and cheaper to implement and/or
generates results that are more accurate and precise.
The nonequilibrium approach has been used as a general

methodology for large-scale conformational sampling, usually
with biasing forces added to the equations of motion. The
approach has been recognized as a powerful tool for sampling
rare events and providing fruitful insights into both equilibrium
and nonequilibrium processes. Such rare events involve high-
energy barriers or long-time-scale phenomena, making
sampling challenging with equilibrium methods. In a non-
equilibrium simulation, a system is driven away from
thermodynamic equilibrium by a perturbation�a deviation
arising from an external environment�which boosts a physical
process of interest. Nonequilibrium ensemble methods have
been used to identify the changing forces from the bound to
the partially dissociated state of ligands from their target G
protein-coupled receptor and to predict ligand-protein relative
residence times.21 We ourselves won the first HPC Analytics
Challenge Award at the Supercomputing Conference 2005 for
our study of free energy estimation for the translocation of
polynucleotides through α-hemolysin nanopores.22,23 The
work received recognition precisely because it sought to take
advantage of such nonequilibrium methods in order to
parallelize the calculation of a free energy profile along the
pore. Had we sought to determine this using a single
equilibrium simulation, the runs might still be executing
now. It was one of the first times that we used replicas and
ensembles to determine free energies.
In the past few years, nonequilibrium methods have been

increasingly used in alchemical simulations, where intermediate
alchemical states are introduced to bridge high-probability
regions of configuration space (Figure 1c). The free energy
differences between the two regions can then be calculated.
The approach can be used for a relative binding free energy
(RBFE) between two compounds to the same target protein
when the two regions represent the bound states for the two
compounds; it can also be used for an absolute binding free
energy (ABFE), where one region represents a bound state
while another is an apo state of the protein.

Figure 1. Free energy calculations. (a) Thermodynamic cycle for the
calculation of relative binding free energy (ΔΔGbind). The horizontal
arrows correspond to the binding free energy of two ligands, L1 and
L2, to the binding site of a protein. The vertical arrows correspond to
the alchemical transitions of L1 to L2 in bulk solvent (solvent leg)
and in the bound state (complex leg). The free energy changes in the
alchemical process can be calculated using (b) an equilibrium or (c) a
nonequilibrium method. In (b), intermediate states are introduced
with 0 < λ < 1. Ensemble simulations are performed for each
intermediate state, with individual simulations represented by an
arrow symbol. In (c), two ensemble equilibrium simulations are run at
the end point states (λ = 0 and λ = 1). Fast alchemical transitions are
then performed to switch between the two end point states.
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Although many studies assert that the nonequilibrium
approach attains comparable levels of accuracy and con-
vergence to the equilibrium method, it is also often touted for
its claimed advantage in terms of computational efficiency.24

However, the gain in computational efficiency depends on the
computational protocols used in such studies, including the
duration of the switching process25,26 and the switching
method applied27 (including the use of different soft-core
potentials9). Unfortunately, a rather bewildering set of differing
if not wholly inconsistent recommendations has been provided
for nonequilibrium simulations.13,28,29 For the number of
snapshots to be extracted from the equilibrium trajectories at
each end state to initiate nonequilibrium alchemical
transitions, it has been suggested that 50−100 snapshots are
generally sufficient for RBFE calculations;28 yet one and the
same group has variously used 150 and 80 snapshots.13,29

While authors frequently mention that caution is needed
concerning the possibility of insufficient sampling due to short
simulations, most of these nonequilibrium transitions simply
invoke short simulation times (usually less than 100 ps) on
grounds of expediency alone. While several authors have begun
to recognize the necessity of using ensembles, the number of
replicas in such ensembles has not been satisfactorily
addressed. Indeed, the term “ensemble” is not used in many
cases. Although ensemble methods are increasingly being
recognized as the only sure-fire way of reporting reproducible
results in the context of molecular dynamics, it is common to
see the word “repeats” (as used experimentally) instead of
ensembles or replicas in published papers. In the literature,
various different ensemble sizes have been used, from one (i.e.,
“one-off” simulations) to 313 or 5.29 The primary motivation
for these choices is based on minimizing the associated
computational cost rather than on the accuracy and reliability
of the ensuing predictions. Moreover, it has been reported30

that short transition times lead to a heavily biased estimate for
predictions of binding free energy changes in protein−protein
complexes. These predictions do not converge until the
nonequilibrium simulation time reaches 5 to 8 ns for the two
complexes studied. Compounding this, the equilibrium
simulations at the end points are relatively long (40 ns), and
they are performed as one-off simulations,30 an approach
commonly used in many similar studies. As we have repeatedly
explained over the past several years, the need for ensembles is
intrinsic to molecular dynamics methods since the dynamics is
chaotic and mixing in the hierarchy of ergodic theory:
trajectories and quantities of interest extracted from these
display extreme sensitivity to the initial conditions.4,6,20 This
applies irrespective of the duration of the simulation under
investigation20 and renders one-off simulations not reprodu-
cible.
The purpose of the present paper is to assess the

performance of nonequilibrium alchemical methods for relative
free energy predictions and to examine the impact of
simulation parameter settings on their predictions. Here we
use the reference data set from previous publications8 to look
at the predictions from the nonequilibrium method and
compare them with prior results obtained from equilibrium
calculations. The paper is structured as follows: in the next
section, we lay out the methods used, while in the following
one, we present the results and our recommendations for the
nonequilibrium simulation settings. The article ends with our
conclusions from the study.

■ METHODS
Data Set. We evaluate the nonequilibrium method

described above by applying it to the aforementioned data
set, comprising 503 ligand pairs bound to a diverse set of 14
pharmaceutically relevant protein targets (Table S1). The
ligand perturbations include a wide range of chemical
modifications typically seen in medicinal chemistry research.
The set of proteins and compounds has become a benchmark
for free energy predictions, being used recently, wholly or
partially, in large-scale RBFE studies using TIES,8 the original
and subsequent FEP+ studies,31,32 and the comparison of
equilibrium and nonequilibrium simulations with FEP+ and
pmx (a python library used to set up and analyze MD
simulations with GROMACS),13 and in alchemical ABFE
studies.24,33

Nonequilibrium Approach. We adapt TIES,7,34 the
equilibrium method we have developed, to perform non-
equilibrium simulations for the calculation of binding free
energy changes corresponding to an alchemical transformation.
A thermodynamic cycle approach (Figure 1a) is invoked for
both the equilibrium and nonequilibrium methods, in which
the compound pair is transferred from one to another
alchemically, both in an aqueous solvent and when bound to
a protein. The physical bound states are linked through a series
of nonphysical intermediate states; this entire alchemical
transformation is controlled using a parameter, λ, such that λ =
0 and 1 denote the two physical end states, whereas 0 < λ < 1
correspond to the intermediate states. For the equilibrium
TIES approach (Figure 1b), equilibrium simulations are
performed at each intermediate state. We have established a
standard protocol in which an ensemble of 5 replicas is
performed at each λ window.7 It should be noted that, in
practice, this standard setting may need to be adjusted in some
cases to control uncertainties and their computational cost.35

For the nonequilibrium approach (Figure 1c), fast transitions
are performed to drive the system in the forward (λ 0→1) and
reverse (λ 1→0) directions without requiring the system to
reach equilibrium throughout the transition. The Crooks’
fluctuation theorem, Jarzynski’s equality, or BAR estimators
can then be employed to obtain free energy differences
between the two physical states. The physical end point
simulations may be reused in cases when the equilibrium
conformations are generated for a common end point state
without a hybrid topology.36 It is, however, more common that
the “physical” end point states in alchemical studies retain
dummy atoms that are covalently attached to the system but
have no nonbonded interactions with their environment. The
dummy atoms are different for a given compound, L0, pairing
with different compounds, Lx (x = 1, 2, 3, ...). For these
compound pairs L0−Lx, the “physical” L0-end points are
therefore different, and the equilibrium simulation of the L0-
end point for one of the L0−Lx pairs cannot be used for others
directly.
While we use the standard TIES protocol7 for the

equilibrium method, the choices of parameters in non-
equilibrium simulations are informed by our extensive
systematic analysis for a subset of the molecular systems
(Table S2) which serves as an evaluation for the computational
efficiency of the method together with the convergence and the
accuracy of the predictions. We have systematically varied
several key parameters specific to the nonequilibrium
approach, including the ensemble size and simulation length
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of the equilibrium simulations at the end points, the duration
of the nonequilibrium transition, and the number of snapshots
used per ligand pair. For the entire set of molecular systems,
we used 5 replicas for the ensemble equilibrium simulations at
the physical bound states, followed by nonequilibrium
transitions from one physical state to another (Figure 1c).
The choice of the ensemble size is determined by the extensive
analysis of the subset and also informed by extensive
applications of TIES,7−9,11,34,37−39 which have demonstrated
that its size ensures a robust sampling of the equilibrium state
corresponding to the initial structure. The nonequilibrium
transitions are initiated from snapshots extracted from the
equilibrium trajectories at the two physical states. We have
performed 10 ns production runs for each equilibrium replica
at the two end points, from which snapshots are extracted to
initiate nonequilibrium transitions of lengths varying from 50
ps to 2 ns in protein and solvent environments (Table S1).
Nonequilibrium transitions are run in both forward and reverse
directions using 100 snapshots each for a single ligand pair.
The snapshots are extracted evenly from the equilibrium
simulations at the end points.
Computational efficiency is frequently asserted to be one of

the most important advantages of the nonequilibrium method,
which is achieved by short simulation times for the fast
transitions of one state into another. The equilibrium method
with the TIES protocol uses 5 replicas, 13 λ-windows, and a 4
ns production run for each window, amounting to a total
production simulation runtime of 260 ns8 (Table 1). Based on
our extensive analysis and resulting recommendations for the
various parameters, each free energy calculation using the
nonequilibrium method requires a simulation time of 150 ns.
However, there are cases where this proves insufficient, as
longer nonequilibrium transitions are needed. When the
duration of the transitions increases from 250 ps (generally
recommended; see details in the Results section) to 2 ns, the
total production run increases to 500 ns for each ligand pair. It
should be noted that the computational efficiency for the
equilibrium method can be enhanced by optimizing the λ
distribution in the [0,1] interval, where the number and
location of the λ windows may be determined adaptively.40 On
a modern supercomputer, all production runs in the
equilibrium method can be executed concurrently, i.e. the
wall clock time required is that of a single 4 ns run, which is
about 6−8 h using CPUs and <1 h using a single GPU for
proteins of typical size (250−350 residues). For the non-
equilibrium approach, however, the equilibrium simulations at
the end points need to be completed before the non-
equilibrium transitions can be executed. This means that the

completion time for one nonequilibrium calculation is no less
than a single 10.25 ns run (10 ns equilibrium followed by a 250
ps nonequilibrium run, assuming zero waiting time in
between), which is no less than two and a half times the
wall clock time of the equilibrium method (Table 1). It should
be noted that, unlike the equilibrium approach, the non-
equilibrium approach also has a severe practical limitation. If
the conformational sampling is found insufficient, in the
equilibrium method, more simulations can be readily added by
inserting more intermediate λ-windows and/or extending
simulations at selected λ-windows; in the nonequilibrium
method, however, the entire sequence of alchemical transitions
from one end point to the other needs to be rerun if their
current duration is found insufficient. This is a major
bottleneck in large-scale applications of the nonequilibrium
method where a “one-size fits all” approach is not feasible and
flexibility in the protocol is paramount.
All of the molecules were prepared in our previous study8

where details can be found on the molecular systems and the
equilibrium simulations. We provide a brief summary of these
systems below. The general Amber force field 2 (GAFF2) was
used for drug parametrizations with the assignment of AM1-
BCC partial charges using the Antechamber component of the
AmberTools package.41 The Amber ff14SB force field was used
for the proteins and TIP3P for the water molecules. All
systems were solvated in orthorhombic water boxes with a
minimum extension from the protein of 14 Å. To avoid the
well-known “end-point catastrophe”, a soft-core potential was
used for pairwise van der Waals interactions involving the
perturbed atoms. No soft-core potential was applied to the
electrostatic interactions, which (de)couple at a faster pace
than the vdW interactions so that the partial charges on
perturbed atoms were removed before they were fully
annihilated and the charges on the growing atoms were
introduced after they appeared.42 For the current study, the
majority of the simulations were performed with NAMD3
using one GPU for each individual MD simulation on Polaris
at Argonne Leadership Computing Facility; some simulations
were performed with NAMD2.14 using up to 96 CPUs per
MD simulation on SuperMUC-NG at the Leibniz Super-
computing Centre. Langevin dynamics was used to maintain
the temperature at 300 K with a friction coefficient of 5 fs−1. A
Langevin piston was used as the barostat, with a piston period
of 200 fs and a piston decay of 100 fs. A nonbonded cutoff of
12 Å was used with a switching distance of 10 Å. The PME
algorithm was used to calculate the electrostatic contribution
to the potential. A 2 fs time step was used for all of the MD
simulations.

Table 1. Computational Cost and Wall Clock Time for Simulations of Ligand-Protein Complex Using Equilibrium and
Nonequilibrium Methods

method protocol total simulation wall clock timea

equilibrium 5 replicas 260 ns ∼45 min
13 λ-windows
4 ns production run for each window

nonequilibrium equilibrium runs: nonequilibrium transition: 500 ns (150 ns)b ∼135 min(∼115 min)b

2 end points 2 directions
5 replicas 100 runs each direction
10 ns per replica 2 ns (250 ps)b each run

aAll individual runs are executed concurrently wherever possible. Wall clock time is shown as the execution time on ALCF’s Polaris, an HPE Apollo
6500 Gen10+ system equipped with NVIDIA A100 GPU accelerators. bSimulation protocol recommended from current study (see Results
section).
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In the case of the equilibrium simulations, the systems were
first minimized with all heavy protein atoms restrained at their
initial positions and restraining force constants related to their
β-factors in X-ray structures. A 2 ns equilibration run was

performed within an NPT ensemble during which the
restraints on heavy atoms were gradually removed. Finally,
10 ns production simulations were executed, with snapshots
saved every 20 ps. One hundred snapshots were then extracted

Table 2. Statistical Metrics of the Predicted Binding Free Energies (kcal/mol) When the Length of the Nonequilibrium
Transition Is Varieda

simulation length MUE MSE RMSE r length per λ (ps) failure (%)b

2 ns (Δλ = 0.002) 0.87(0.09) 0.08(0.09) 1.12(0.11) 0.51(0.09) 4 0
1 ns (Δλ = 0.002) 0.84(0.09) 0.07(0.09) 1.09(0.11) 0.51(0.09) 2 0.1
500 ps (Δλ = 0.004) 0.85(0.09) 0.11(0.09) 1.11(0.10) 0.51(0.09) 2 0.1
250 ps (Δλ = 0.02) 0.94(0.11) 0.06(0.11) 1.24(0.14) 0.48(0.09) 5 0
250 ps (Δλ = 0.01) 0.85(0.09) 0.07(0.09) 1.08(0.11) 0.51(0.09) 2.5 0
100 ps (Δλ = 0.02) 0.86(0.09) 0.11(0.09) 1.12(0.12) 0.52(0.08) 2 0.1
50 ps (Δλ = 0.04) 0.83(0.09) 0.13(0.09) 1.09(0.11) 0.55(0.08) 2 0.5
500 ps (Δλ = 0.002) 0.95(0.11) 0.07(0.11) 1.24(0.12) 0.48(0.08) 1 8.3
250 ps (Δλ = 0.004) 1.30(0.16) 0.03(0.16) 1.78(0.23) 0.36(0.11) 1 20.9

aThe 58 ligand pairs for BACE are used. bThe simulation ended prematurely without reaching the final (λ = 0 or λ = 1) state.

Figure 2. Performance of equilibrium (EQ) and nonequilibrium (NEQ) methods in free energy predictions. The NEQ results are generated from
alchemical transitions with durations of 2 ns (NEQ 2 ns) and 250 ps (NEQ 250 ps). Four different metrics are used to assess the performance for
each molecular system, including (a) mean unsigned error (MUE), (b) mean signed error (MSE), (c) root-mean-square error (RMSE), and d)
Pearson correlation coefficient (R) between predicted binding affinities and experimental results. The metrics are also shown for all pairs of
perturbations (dashed lines). The green and blue dashed lines from NEQ methods overlap with each other for MUE, MSE, and RMSE (Table S1).
It is clear that the equilibrium method is more accurate and precise than the nonequilibrium one. All energies are in kcal/mol.
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evenly from the ensemble of five replicas, from which
nonequilibrium transitions with different simulation lengths
were initiated. For the 2 ns nonequilibrium transitions, the
alchemical parameter λ was changed by 0.002 every 4 ps, with
501 energy derivatives (including both end points) stored for
further analyses. The variation in parameter λ and the
simulation length at each λ vary when the total length of
nonequilibrium transitions changes (Table 2), with different
numbers of energy derivatives stored. For a 250 ps non-
equilibrium transition (see Table 2), for example, we can use
different combinations of λ interval (0.02, 0.01, 0.004) and
simulation length (5, 2.5, and 1 ps) at each λ value, with 51,
101, and 251 energy derivatives stored, respectively. The pmx
script analyze_dhdl.py28 with BAR estimator was used to
obtain the free energy difference estimations.

■ RESULTS
To assess the accuracy and precision of the nonequilibrium
method, we evaluated the binding affinities of the 503 ligand
pairs to their target proteins and compared the nonequilibrium
results with those from the equilibrium simulations.8 The
comparison was made for the full set of ligand pairs, while a
much more extended study was performed for the 14 proteins
with one randomly selected ligand pair each (Table S2).
There are many simulation parameters in nonequilibrium

free energy calculations, of which some are general for any
simulation, such as those within the chosen force field, the
choice of protein/ligand/water models, and the settings for the

simulations, while some others are specific to the non-
equilibrium free energy method. Here we focus our
investigation on the latter: they are key for the sufficiency of
conformational sampling, including the number of replicas per
ensemble (increased from 5 to 20), the length of each
equilibrium simulation at the end points (1−10 ns), the length
of each nonequilibrium transition (varying between 50 ps and
2 ns), and the number of snapshots used in each
nonequilibrium calculation (increased from 100 to up to
2500). The total simulation time for a single fully extended
nonequilibrium free energy calculation then reaches up to 40.4
μs, resulting from ensembles of 20 equilibrium replicas at each
end point of 10 ns duration and 10,000 nonequilibrium
transitions of 2 ns duration in each direction, there being two
end points and two directions for the nonequilibrium
transitions.
Based on our findings from these studies, we critically

evaluate the relative performance of equilibrium and non-
equilibrium RBFE with respect to the accuracy of the
predictions and the computational cost. We formulate a set
of recommendations for the optimal execution of non-
equilibrium RBFE calculations. Finally, we investigate the
nature of the distributions of the predicted binding free
energies, which are generated from ensembles composed of a
sufficiently large number of members.
Comparison of Equilibrium and Nonequilibrium

Methods. The predicted RBFEs, from equilibrium simulations
in our previous study8 and from nonequilibrium simulations in

Figure 3. Comparison of predicted binding free energies with experimental measurements using equilibrium (black) and nonequilibrium (red)
simulations. The comparison for the entire data set is presented in the upper left panel, while individual protein systems are depicted in separate
panels. The dotted lines represent the line of perfect agreement (y = x).
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the current study, are compared with one another and against
available experimental data. The nonequilibrium results are
generated with durations of 2 ns, 250, 100, and 50 ps (Tables
S1 and S2) for the nonequilibrium transitions to study the
effect of transition time on the accuracy and precision of the
predictions. In general, the difference in the length of
nonequilibrium transitions does not produce statistically
significant differences in the statistical metrics (Tables S1
and S2). However, certain cases, such as BACE_scaff in Table
S1 and BACE_scaff and MCL1 in Table S2, do exhibit
significant differences between nonequilibrium runs with
durations of 250 and 100 ps. Not surprisingly, longer
nonequilibrium transitions yield results that more closely
align with those from equilibrium simulations (Table S2). As
we recommend a duration of 250 ps for the nonequilibrium
transition (see details in the Results section), we focus here on
the comparison of nonequilibrium approach with this setting
and the equilibrium method (Figure 2 and Table S1) for each
protein target, and for all ligand pairs. For the entire data set,
the nonequilibrium method generates larger mean unsigned
errors (MUEs), larger mean signed errors (MSEs), larger root-
mean-square errors (RMSEs), and a lower Pearson correlation
coefficient than the equilibrium method (Figure 2 and Table
S1). For individual protein targets, however, the differences
between the two methods are difficult to discern visually
(Figures 2 and 3) and are not statistically significant (Table
S1) for all systems but BACE_scaff. BACE_scaff performs
significantly worse using the nonequilibrium method in terms
of the metrics MUE, MSE, and RMSE (discussed below). Even
excluding this molecular system, the comparison between the
two methods still reveals slightly lower overall MUE, MSE, and
RMSE values, as well as a slightly higher Pearson correlation
coefficient for the equilibrium method, although the differ-
ences are no longer statistically significant.
The nonequilibrium results for BACE_scaff are significantly

worse than those from the equilibrium simulations, with MUE,
MSE, and RMSE of 3.34, 3.34, and 3.80 kcal/mol from the
nonequilibrium method (using 250 ps nonequilibrium
transitions) and 0.87, 0.10, and 1.05 kcal/mol from the
equilibrium method, respectively (Figure 2 and Table S1). The
results from the nonequilibrium method do not improve much
on increasing the duration of transitions to 2 ns, with the
statistical metrics only slightly improving to 3.03, 2.90, and
3.50 kcal/mol (Table S1). The predictions from the complex
leg (Figure 1a) are primarily responsible for this degradation
(Figures S1 and S2). The BACE_scaff system was designed to
investigate free energy predictions for more challenging
scaffold modifications43 where the compound pairs have
heterocycles of varying sizes. Compared to R-group
modifications, scaffold hopping is more challenging in
alchemical free energy calculations, especially for single-
topology alchemical implementation where a soft bond stretch
potential is needed.44

The TIES protocol45 uses a modified dual topology
approach within which hybrid compounds are much more
straightforward to construct. The dual topology method does
not introduce geometrical strain from redundant degrees of
freedom of dummy atoms, while the single topology method
does and hence may bias the free energy results.46 In the dual
topology, the rings of varying sizes in the compound pair can
be easily represented as the appearing and disappearing groups
in the alchemical region, along with any adjacent R-groups, of
which the conformation may differ in the two compounds. The

strategy generates more atoms in the alchemical region than
when a single topology is used. Because of the modifications at
the scaffold, the BACE_scaff systems have significantly more
atoms in the alchemical region, with an average of 42 atoms,
while other systems have only about half the number of atoms
on average (Figure S3).
The number of atoms in the alchemical region, referred to as

the size of the alchemical region, plays an important role in the
convergence of the free energy predictions. Our previous
studies have shown that the precision of TIES predictions is
inversely proportional to the size of the alchemical region.8,45

The interaction of the atoms in the alchemical region with the
environment is scaled down in the intermediate λ states,
making them more flexible and thus prone to high fluctuations
in their energy derivatives, leading in turn to lower precision.
The large size of the alchemical region for BACE_scaff requires
a longer simulation time for the mixture to converge. In
addition, the charged or polar groups in the BACE_scaff
compounds also present a challenge for the convergence of
conformational sampling.8

To examine the convergence of nonequilibrium transitions
for this molecular system, we further increased their duration
from 2 to 4 ns for each individual run. Significant
improvements can be observed from the extended transitions,
with MUE, MSE, and RMSE reducing from 3.03, 2.90, and
3.50 kcal/mol at 2 ns to 2.01, 1.96, and 2.24 kcal/mol when
the simulation length is doubled (Figure S4). Even with the
extension, the statistical metrics remain much worse than those
from the equilibrium simulations (Table S1 and Figure S4),
albeit the total computational cost for each nonequilibrium
calculation is significantly higher than that for each equilibrium
calculation. A single nonequilibrium calculation using a
transition length of 2 and 4 ns amounts to 500 and 900 ns
of total production runs, respectively, compared with 260 ns
required for a single equilibrium calculation. Long durations of
nonequilibrium transition were also found to be required for
some cases in a study of binding affinity changes of protein−
protein complex due to mutations,30 being up to 8 ns, while 1−
2 ns was sufficient for most mutations. The improvement in
accuracy can be attributed to the increased closeness of the
forward and reverse work distributions in the case of longer
nonequilibrium transitions (Figure S5), resulting from smaller
work dissipation along the alchemical path as compared to
shorter transitions. The overlap between the two distributions,
however, does not manifest a significant increase. The lack of
convergence of the predictions for this molecular system
highlights a problem with the commonly used “fast transitions”
approach in nonequilibrium simulations, which must be
approached with considerable caution when the alchemical
region is large.
Effect of Overlap between Work Distributions on

Accuracy and Precision. We have used different durations
for the nonequilibrium transitions in the complex leg (Figure
1a) for the entire data set. The simulations that conform to our
recommendation (see below) − an ensemble of 5 equilibrium
runs at the end points with 10 ns each, and 100
nonequilibrium transitions for 250 ps − generate binding
free energy differences which are comparable to, or slightly
better than, those from 2 ns long nonequilibrium transitions,
although the differences are not statistically significant (Figure
2 and Table S1). This is counterintuitive, and certainly
fortuitous, as shorter simulations usually lead to degraded
accuracy. To locate the reasons for this, we investigate the
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overlaps of the forward and reverse work distributions from
250 ps and 2 ns nonequilibrium transitions, and their effects on
the accuracy and uncertainty of the predicted binding free
energies.
Although it has been widely acknowledged that the

calculated free energies from nonequilibrium methods are
affected by the lack of overlap between the forward and reverse
work distributions,28 no comprehensive analysis has been
conducted to establish a quantitative or even a qualitative
correlation between the accuracy and precision of predictions
and the degree of overlap. To quantify the degree of overlap,
we define an overlap coefficient as the area of intersection of
the two probability density functions; it offers a simple way to
evaluate the similarity or difference among samples collected
from the forward and reverse transitions. In our current data
set, we observe significant variations in the ease of achieving
substantial overlap among different molecular targets (Figure
S7) or ligand pairs. Specifically, the BACE_scaff systems within
the data set exhibit no overlap in most cases using 250 ps or 2
ns transition lengths in a protein environment, while TYK2
complexes generally display substantial overlap in the same
setting. Moreover, the overlap coefficient varies significantly
across different ligand pairs binding to the same protein. For
instance, in the case of JNK1, the overlap coefficient
demonstrates the largest range, varying from 0.03 to 0.94
across 31 ligand pairs for 250 ps transitions and from 0.01 to
0.96 for 2 ns ones.
Our findings demonstrate that both the accuracy and

precision of the calculations exhibit an inverse relationship
with the overlap coefficients (as depicted in Figure 4a,b).
When little to no overlap is present, the predictions become
noticeably less accurate and are accompanied by significantly
larger uncertainties. When using 250 ps transitions, there are

30 ligand pairs with zero overlap, 19 of them (63.3%) having
an accuracy (|ΔΔGcal − ΔΔGexp|) worse than 2 kcal/mol;
those with overlap between 0 and 0.5, 53 out of 279 pairs
(19.0%) have an accuracy worse than 2 kcal/mol; when the
overlap >0.5, only 5 out of 194 pairs (2.6%) have an accuracy
worse than 2 kcal/mol. Some apparently “accurate” predictions
with zero overlap are doubtless purely a matter of chance. The
BAR implementation of CHARMM employs a ≥1% overlap as
a guideline for generating free energy predictions.47 However,
our analysis in Figure 4a indicates that the absence of overlap
does not lead to an abrupt increase in the inaccuracy of
predicted binding free energy differences. Therefore, we would
recommend that a warning message be issued instead of
rejecting the free energy estimate47 when the overlap is low or
absent.
The work distributions have a wider spread from short

simulations, resulting in a larger range of work values (Figures
S5 and S6) and consequently a larger uncertainty from
bootstrap analysis (Figure 4e). In long nonequilibrium
simulations, work dissipation is lowered, resulting in narrow
work distributions from both the forward and backward
transitions, usually with the peaks getting closer and the tails
shrinking at both sides. When there is little or no overlap in the
250 ps simulations, the shrinking of the adjacent tails renders
the overlap even less in the 2 ns simulations (Figure 4c and
Figure S6). In situations where there is already sufficient
overlap in the short simulations, the coalescence of the peaks
that arise in longer simulations counters the effect from the
shrinking of the adjacent tails (Figure S6), typically resulting in
lower degrees of overlap (Figure 4c). The numbers of ligand
pairs with zero overlap and overlap between 0 and 0.5 increase
to 43 and 313, respectively, in the 2 ns transitions. However,
the decrease in the overlap does not necessarily degrade the

Figure 4. Impact of work distribution overlap on the accuracy and precision of the predicted free energy changes. The overlap is calculated as the
intersection of the areas under the probability distribution functions of the forward and reverse work values from the complex simulations. The
accuracy (a), measured by unsigned error |ΔΔGcal − ΔΔGexp|, and the precision (b), quantified by the errors from the bootstrap approach, are both
inversely related to the overlap for predictions from 2 ns (black dots) and 250 ps nonequilibrium transitions. LOESS (locally estimated scatterplot
smoothing) regression (black and red lines) is used to display the trends clearly. While 2 ns transitions generally reduce the overlap (c), they do not
evidently affect the accuracy (d); however, they typically lead to a reduction in bootstrap errors (e). The red dots in (d) indicate the predictions in
which the differences between the 2 ns and 250 ps durations are larger than 1 kcal/mol. All energies are in kcal/mol.
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accuracy or precision of the predictions (Figure 4d,e), as the
low overlap from the 2 ns simulations generally generates less
inaccurate and less imprecise results than that from 250 ps
simulations with the same level of overlap (Figure 4a,b). Based
on the above analysis, we recommend against extending the
duration of nonequilibrium transitions beyond 250 ps for cases
with significant overlaps between forward and reverse work
distributions. If sampling issues persist for such cases, one
should consider adjusting other nonequilibrium parameters
(see our recommendations below). Having said that, there are
certainly cases (mostly with zero or negligible overlaps) where
longer transitions may be beneficial, as we have shown above
for the BACE_scaff system.
Simulation Parameter Settings in the Nonequili-

brium Method. There are a few simulation parameters that
affect the accuracy and precision of the predictions and the
computational cost of the nonequilibrium free energy
calculations. These quantities are

(i) The number of replicas of the equilibrium simulations at
the two end points.

(ii) The length of each equilibrium simulation at the end
points.

(iii) The number of nonequilibrium transitions.
(iv) The length of each nonequilibrium transition.
The first two parameters determine the quality of conforma-

tional sampling at the end points, which is critical for the
accuracy of the predictions from the nonequilibrium method.

The last two parameters concern the nonequilibrium
transitions, which are important for the precision as well as
the accuracy of free energy predictions. To investigate the
settings for these parameters, we extended the simulations
substantially for a subset of the molecular systems (Table S2)
and performed a thorough analysis of their impact on the
predictions. In the two legs of the alchemical process in the
thermodynamic cycle (Figure 1a), the simulations of the
compound pairs in the protein environment (complex leg) are
extremely demanding in computational terms. We therefore
focus only on this step for the extended studies. Aldeghi et al.
have also evaluated different nonequilibrium protocols for the
prediction of binding affinity changes upon protein mutations
using GROMACS.29 We will compare our evaluations to theirs
whenever possible.

Number of Replicas at the End Points. We investigate the
impact of using different numbers of replicas at the end points
on the computed ΔG using the nonequilibrium approach. For
this, a data set with 20 predicted free energies is used, each
computed using a single equilibrium replica at both end points
and one hundred individual nonequilibrium transitions in each
direction starting from frames extracted from the equilibrium
replica at the corresponding end points. We measure the
magnitude of change in ΔG values with each added replica
going from ensemble size 1 to 20. The results are displayed in
Figure 5. The absolute change in ΔG is calculated by using
bootstrapping. This method involves resampling with replace-
ment N (1 ≤ N ≤ 19) and N + 1 input data points to calculate

Figure 5. Average impact of an extra replica on the computed ΔG. For each ligand-protein system, 20 free energies are calculated with the
nonequilibrium approach using only a single equilibrium replica at each end point. ΔGN and ΔGN+1 are averages of N and N + 1 free energies
randomly selected from the data set. The bootstrapped average absolute differences of ΔGN and ΔGN+1 are shown as black dots and lines with the
95% confidence intervals shown as shaded regions. The bottom-right panel shows the relative changes of ⟨|ΔGN − ΔGN+1|⟩ for all complexes,
normalized by ⟨|ΔG1 − ΔG2|⟩; the apparent single line is the result of highly overlapped lines from all systems. All y-axes are energies in kcal/mol,
except the one in the bottom-right panel, which is unitless.
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one value of |ΔGN − ΔGN+1|. This process is repeated many
times (in our case, 100,000 times) and the statistics of interest
for each bootstrap population is calculated. The 95%
confidence intervals, or 2.5 and 97.5% percentiles, are used
to provide an estimate of the uncertainty associated with the
bootstrapped averages (Figure 5). We select this metric
because the bootstrap sample distributions are not normal, as
indicated in Figure 5 by the asymmetrical positioning of the
upper and lower limits relative to the mean.
A single replica is shown to be unreliable. Introducing a

second replica results in an average ΔG change of
approximately 0.38 kcal/mol, with variations ranging from
0.07 kcal/mol for JNK1 and 1.31 kcal/mol for BACE_scaff
(Figure 5). The impact is system-dependent: when proteins
are structurally stable and the size of the alchemical regions is
minimal, adding more replicas has a negligible impact on the
final value, while in other cases, adding the second replica can
have a significant impact on the computed values, by a change
up to 1.31 kcal/mol for the BACE_scaff case. When using five
replicas, adding a sixth achieves only limited gains, with an
average change of 0.19 kcal/mol; 10 out of 14 molecular
systems investigated have changes less than 0.19 kcal/mol,
while all but one have changes less than 0.42 kcal/mol.
Importantly, all molecular systems demonstrate consistent
relative changes when an additional replica is added, although
the absolute changes may vary significantly (Figure 5). This
characteristic allows for the estimation of the relative impact
that an extra replica can have before conducting additional
simulations. One can then set a threshold for the error bars and
estimate how many replicas will be required for the threshold
to be achieved. The BACE_scaff system, for example, requires
an ensemble of 12 replicas to reach a change of less than 0.42
kcal/mol when an extra replica is added. For general practice,
we recommend a choice of five replicas for the equilibrium
simulations at the end points, which is a good trade-off
between the computational cost and the uncertainties in the
predictions. This is consistent with the equilibrium approach,
where an ensemble of five replicas is found to be an optimal
choice at all λ values.7 Aldeghi et al.29 did not evaluate the
ensemble size in their study, but coincidentally used 5
“repeated” equilibrium simulations as we suggested here.
Duration of Equilibrium Runs at the End Points.While the

ensemble approach is the only reliable way to sample
conformations, a sufficient duration is evidently also required
for the equilibrium runs at the end points to ensure that the
end point states of the molecular systems have been sufficiently

sampled. To examine the dependence of the predictions on the
length of equilibrium simulations, we calculated the time-
dependent ensemble average of the predicted free energy
changes ⟨ΔG(t)⟩ for compound pairs in the protein environ-
ment (Figure 6). Each ⟨ΔG(t)⟩ is calculated from the
nonequilibrium runs with 100 snapshots evenly extracted
from equilibrium simulations from 0 to t. Almost all of the
molecular systems exhibit relatively large changes when using
trajectories from the first 5 ns, which either plateau or diminish
when the trajectories extend beyond 5 ns. There are, however,
cases indicating that longer equilibrium simulations are
required. The BACE_scaff system, which we have discussed
above, needs longer equilibrium runs at the end points.
Thrombin is another protein that also needs longer
equilibrium simulations. Slow convergence has been reported
previously for this system,48 since ligands may occupy multiple
conformations due to a ring flip in the S1 pocket of the protein,
and owing to the populations of two conformations of another
ring which moves in and out of the S3 pocket. There may be
large energy barriers separating the different conformations,
requiring long equilibrium simulations at the end points for the
ligands to sample other conformations than the starting one.
The nonequilibrium transitions, however, converge relatively
fast due to the small and rigid alchemical region (a fluorine
atom being replaced by an ethyl group); the small error bars in
the predicted free energy changes (Figure 6) indicate that the
nonequilibrium runs are well behaved. Because of the crucial
importance of the equilibrium sampling on the accuracy of the
free energy prediction, we recommend the use of a 10 ns
equilibrium run as a practical rule of thumb to start, followed
by a stepwise increase in the simulation length only for those
molecular systems for which convergence is not achieved.
Longer simulation times should only be required for systems
where slow convergence is encountered due to sluggish
conformational interconversions. Such a progressive increase
in simulation length would ensure the optimal use of
computational resources while achieving the desired level of
accuracy. This is quite different from what has been indicated
by Aldeghi et al.29 who did not find strong associations
between the length of the equilibrium simulations and the
accuracy or precision of the free energy calculations (probably
because they were only studying protein mutations which are
relatively less complex than ligand transformations), and
sequentially used 3 ns each for the five equilibrium simulations
they performed. A study on protein−protein binding free
energy calculations, however, has used 40 ns for the

Figure 6. Predicted free energy changes from nonequilibrium simulation for compound pairs in the ligand-protein complex. Each data point at
simulation time t is calculated using 100 individual nonequilibrium runs for each direction, with snapshots extracted evenly from the equilibrium
simulations from 0 to t. LOESS (locally estimated scatterplot smoothing) regression (blue lines) is used to display the trends clearly.
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equilibrium simulations at the end points, and concluded that
the accuracy of the nonequilibrium predictions could be
improved via longer equilibrium simulations.30 It should be
noted that, while enhanced sampling techniques such as replica
exchange with solute tempering (REST2)49 have been used to
accelerate conformational sampling, these techniques offer no
guarantee of improving the accuracy of binding free energy
predictions.8 We therefore do not recommend the use of such
an enhanced sampling technique for the equilibrium
simulations at the end points.
Number of Simulations for Each Nonequilibrium

Transition. To investigate the convergence of free energy
predictions on the number of nonequilibrium transitions in
each nonequilibrium calculation, we selected different numbers
of nonequilibrium transitions going up to 2500 from an
ensemble of 5 end point replicas. The choice of 5 instead of all
20 replicas is based on our recommendation above on the
number of replicas at the end points. As recommended above,
a duration of 10 ns is used for each equilibrium run. A length
of 250 ps, as recommended below, is used for each
nonequilibrium transition. Free energy changes ΔGN are
calculated using N transitions uniformly selected from 2500,
and compared with that using all 2500 transitions, ΔG2500
(Figure 7). The predicted free energy changes and their
uncertainties converge after using 100 transitions in a single
nonequilibrium calculation for all but one molecular system
investigated (Figure 7). The exception is BACE_scaff, which,
as we have discussed above, has the largest number of atoms
growing in or growing out during the alchemical trans-
formation (Table S2). We discuss this exception in more detail
below, but in general, we recommend using at least 100
nonequilibrium transitions for each calculation. This is
consistent with what Aldeghi et al.29 have recommended,
who found that the precision and accuracy of the predictions
improved quickly from 10 to 100 nonequilibrium transitions,
after which further improvements came at a higher cost.
Simulation Duration of Nonequilibrium Transitions. We

have performed nonequilibrium transitions with different
simulation lengths, from 50 ps to 2 ns, for the 58 ligand
pairs of the BACE system. During alchemical transitions,
particularly those involving a large number of atoms growing in
the sample, simulations may necessitate a considerable amount

of time to reach equilibrium. Consequently, when the
nonequilibrium transition is very brief, it is not unexpected
that some simulations become unstable and terminate
prematurely. The choice of soft-core potentials9 also affects
the stability of the integrators used and is likely to contribute
to the failure rate of the simulations when the duration of
nonequilibrium transition is very short. Our simulations with
different lengths show that the nonequilibrium transition with
NAMD requires no less than 2 ps at each λ value to render the
molecular system stable; otherwise, a significant number of
simulations typically fail (last two rows in Table 2), resulting in
less than 100 successful nonequilibrium transitions and hence
large RMSE and MAE values (Table 2 and Figure 7).
When the total length for the nonequilibrium transition

simulation is fixed and the simulation length for each λ value is
no less than 2 ps, the accuracy of the simulations is
independent of the choice of the λ interval (Δλ), as evident
from Table 2. There is no clear dependence of the accuracy on
the nonequilibrium simulation length: as long as the
simulations at each λ value are no shorter than 2 ps, the
predicted binding free energy differences are comparable and
the differences in the statistical metric are not statistically
significant (Table 2). To ensure the conclusion is applicable to
the entire data set, we have performed nonequilibrium
transitions with different simulation lengths (50 ps, 100 ps,
250 ps, and 2 ns) for all ligand pairs in the data set and
calculated the statistical metrics for the predicted binding free
energies (Table S1). Although the differences are again not
statistically significant for all proteins but BACE_scaff, the
averages of these statistical metrics from 250 ps are
consistently better than those from 100 and 50 ps for the
entire data set. The extension of simulations from 250 ps to 2
ns does not yield substantial improvements based on the
comparison (Figure 2 and Table S1). In addition, more
nonequilibrium transitions fail when the duration of these
simulations is less than 250 ps, with failure rates of 0.8, 1.8, and
5.5% for 250, 100, and 50 ps runs, respectively. The failure rate
is also system dependent: for the 50 ps runs, for example, some
protein systems have failure rates up to 20.5%, while others
have no failures at all. Taking into account all of these
observations, we recommend 250 ps for the nonequilibrium
transitions. This is much longer than the 80 ps length Aldeghi

Figure 7. Convergence of the predicted binding free energy change ΔGN from nonequilibrium runs consisting of N individual simulations. In line
with our recommendation for the nonequilibrium method, an ensemble of 5 replicas is used at each end point, with 10 ns equilibrium simulation
each; the duration of the nonequilibrium transition is 250 ps. The N simulations are uniformly selected from the total 2500 nonequilibrium
transition runs. The numbers in parentheses after the protein names are the numbers of atoms in the alchemical region. The vertical dashed line is
N = 100.
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et al.29 have recommended, who evaluated the lengths of the
nonequilibrium transitions only up to 100 ps, and concluded
that there are no more benefits in terms of accuracy when
increasing the lengths beyond 80 ps.
The guidelines we have outlined above should facilitate

large-scale applications of the nonequilibrium method for
relative binding free energy calculations. However, there are
always cases in which care has to be taken. The large size of the
alchemical region, for example, requires a longer non-
equilibrium transition time to obtain converged results. A
poor overlap between the work distributions from the two
directions (Figures S5−7) can be due to the short transition
time and/or the large differences in the appearing and
disappearing regions of the ligand (Figure 7 and Table S2).
Such differences come not only from the number of atoms but
also from the lack of mapping between atoms in the appearing
and disappearing groups where the scaffold is modified. When
the changing atoms in the two end points have a good one-to-
one mapping, the conformational space will overlap substan-
tially. Even when the number of atoms is not small, this may
not lead to large uncertainties. This is the case for the
compound pair of MCL1. Although there are 17 and 18 atoms
disappearing and appearing (Table S2), respectively, they have
a good one-to-one mapping between the two groups of atoms.
The calculated free energy changes therefore converge quickly
without a large number of nonequilibrium transitions (Figure
7).
Distribution of the Free Energy Changes from

Nonequilibrium Method. Our previous studies have
shown that non-Gaussian distributions are present in binding
free energies for a considerable percentage of ligand-protein
systems, from both MD simulations and experimental
measurements.39 Significantly more “outliers” can be produced
from these non-Gaussian distributions than one would
anticipate were the statistics to conform to a normal
distribution. Ensemble simulations with a sufficiently large
number of replicas are required to extract reliable statistics in
such cases. The extension of the number of replicas to 20
enables us to investigate the distributions of the RBFE free
energy predictions in the case of the nonequilibrium method.
The extension has been done for the step where the ligand
interactions are turned on or off in the protein environment
(Figure 1), as the main contribution to the uncertainty comes
from this step.

The probability plots (Figure 8) show clearly that some
distributions are skewed and asymmetric, with fat tails or small
peaks on one or both side(s). The existence of multiple modes
in the calculated free energy changes indicates the presence of
multiple conformations for one or both ligand(s). The
nonequilibrium work values are also skewed and asymmetric
(Figures S5 and S6). While the BAR estimation routine itself
makes no assumptions about the shape of the work
distributions,28 the Crooks’ fluctuation theorem and Jarzynski’s
equality make use of an exponential average, which is highly
sensitive to the tails of the work distribution. Sufficient
sampling is needed to ensure robust statistics for work
distributions.
The distributions of free energy changes show that, for the

same molecular system, the predictions obtained from two
independent nonequilibrium simulations (independent equili-
brium simulations at the end points and nonequilibrium
transitions from each equilibrium run) can vary by up to 10
kcal/mol, a range similar to that reported from equilibrium
methods6 for binding of small molecules to proteins. Such
variations are much larger than the experimentally observed
maximum binding free energy difference of the inhibitors
under investigation. Only ensemble-based studies can
effectively explore the relevant parts of phase space, namely,
the conformations at the two end points in the case of
nonequilibrium simulations. The magnitude of the estimated
error decreases by increasing the number of replicas in an
ensemble simulation, directly providing information on the
convergence of the results (Figure 5).

■ CONCLUSIONS
We have presented a systematic investigation of the non-
equilibrium method for relative binding free energy predic-
tions. We have used ensemble simulations as they are essential
owing to the chaotic mixing properties of MD systems.6 With a
large data set of over 500 compound pairs binding to a diverse
set of 14 different protein targets, we have demonstrated that
the nonequilibrium method generates results comparable to
the equilibrium method. The computational cost for the
former can be less if the protocol is carefully designed, but the
wall clock time is usually longer than the latter. For the
equilibrium approach with TIES, employing an ensemble size
of 5, a production run of 4 ns and 13 λ windows, one requires a
total of 260 ns production simulations, while the non-

Figure 8. Distributions of free energy changes in the complex leg of the thermodynamic cycle. Twenty sets of nonequilibrium simulations are
performed, with snapshots extracted from individual equilibrium runs at the end points.
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equilibrium approach, with 5 replicas at the end points for 10
ns runs and 100 nonequilibrium runs for 250 ps in each
direction, needs 150 ns in total (Table 1). There are, however,
cases that require a much longer duration for the non-
equilibrium transition, such as the BACE_scaff system studied
here and certain mutations reported in the literature.30 All
simulations in the equilibrium approach can be carried out
concurrently while, in the nonequilibrium approach, the
nonequilibrium runs for transferring one state to another
depending on a pre-existing equilibrium state having been
established at the end points. The two sets of runs were
performed sequentially. The equilibrium approach therefore
produces results within a shorter wall clock time on modern
supercomputers, an important consideration if we wish to
produce actionable results from such simulations.
Compared with the equilibrium method, the nonequilibrium

approach may require less computational cost, but it certainly
entails greater computational complexity. There are more
“moving parts”�including additional simulation parameters to
be selected�in the method, which affect both the accuracy of
its predictions and the computational cost, as enumerated in
the following. (1) The conformations at the end points need to
be sufficiently sampled. (2) The work values from non-
equilibrium runs are non-normally distributed, affecting the
overlap of work distributions from the nonequilibrium runs in
the forward and reverse directions. (3) Insufficient overlap
between the work distributions from the two directions makes
the calculations less accurate. (4) The overlap criteria, which
indicate whether the nonequilibrium method is reliable,
themselves demand the use of ensembles. (5) When the
difference between the two physical end points is large, the
conformations at the end points need to be sufficiently well
sampled, and the nonequilibrium transitions need to be of
sufficient duration to ensure that the predicted free energy
changes are converged. (6) Just as for the equilibrium
approach, we recommend using a flexible protocol with the
nonequilibrium approach too by adapting all or some of these
parameters depending on the system using our guidelines. (7)
One significant practical limitation specific to the non-
equilibrium approach is that the length of the nonequilibrium
transitions invoked cannot be simply extended; if one wishes to
increase it, the entire set of transitions needs to be rerun, which
hampers its flexibility and is highly inconvenient during large-
scale applications.
We have confirmed that the distribution of free energies

obtained from independent replica simulations exhibits
deviations from the Gaussian behavior usually assumed. Just
as we have demonstrated numerous times with the equilibrium
method, performing ensemble simulations is also crucial for
the nonequilibrium method. One implication of the non-
normal statistics observed here is that the mean of the
quantities of interest does not coincide with the peak in the
distribution of that quantity. An important consequence of
such non-normality is that the ensemble size cannot be
arbitrarily small. We investigated these distributions for the
calculated free energy changes by extending the number of
replicas at the end points to 20. In practice, however, we find
that 5 membered ensembles are usually sufficient.
The detailed and systematic analysis of the settings of the

simulation parameters enables us to make definitive recom-
mendations for the implementation of the method to minimize
the loss of accuracy and precision of the results obtained while
keeping computational costs minimized. We recommend that

ensembles be used with a minimum ensemble size of five for
the equilibrium simulations at the end points for 10 ns. This is
the same ensemble size that we have consistently and
repeatedly recommended for the equilibrium method. For
the step involving a nonequilibrium transition from one end
point to the other, we recommend the use of 100 simulations
with snapshots uniformly extracted from the five-replica
trajectories at each end point for no less than 250 ps, which
exceeds the typical temporal durations employed in many
publications by two or three times. In cases where convergence
is slow, such as for the BACE and BACE_scaff systems in the
current study, prediction accuracy can be improved by
increasing the ensemble size, extending the simulation time,
and reducing the size of the alchemical region8 or a
combination of these routes.
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