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Inorganic polyphosphate (polyP), the polymeric form of phosphate, is attracting ever-
growing attention due to the many functions it appears to perform within mammalian
cells. This essay does not aim to systematically review the copious mammalian polyP lit-
erature. Instead, we examined polyP synthesis and functions in various microorganisms
and used an evolutionary perspective to theorise key issues of this field and propose
solutions. By highlighting the presence of VTC4 in distinct species of very divergent
eucaryote clades (Opisthokonta, Viridiplantae, Discoba, and the SAR), we propose that
whilst polyP synthesising machinery was present in the ancestral eukaryote, most
lineages subsequently lost it during evolution. The analysis of the bacteria-acquired
amoeba PPK1 and its unique polyP physiology suggests that eukaryote cells must have
developed mechanisms to limit cytosolic polyP accumulation. We reviewed the literature
on polyP in the mitochondria from the perspective of its endosymbiotic origin from bac-
teria, highlighting how mitochondria could possess a polyP physiology reminiscent of
their ‘bacterial’ beginning that is not yet investigated. Finally, we emphasised the similar-
ities that the anionic polyP shares with the better-understood negatively charged poly-
mers DNA and RNA, postulating that the nucleus offers an ideal environment where
polyP physiology might thrive.

Introduction
Inorganic polyphosphate (polyP) is defined as a chain of phosphate residues linked by high-energy
phosphoanhydride bonds (PO₄³−, hereafter simplified as Pi). Chain lengths vary widely, from three
phosphate residues (excluding pyrophosphate) to several thousand, and they can be found in many
different species and under different growth conditions performing diverse functions (we recommend
the interested readers the following reviews [1–3]. Research into polyP began in the early 19th
century, initially focusing on polyP in microorganisms where the polymer is abundant. In the 20th
century, Igor Kulaev and Arthur Kornberg made several significant discoveries that formed a basic
understanding of the enzymes involved in polyP synthesis, an important milestone in the history of
interdisciplinary chemistry and biochemistry [4,5]. This work enabled many subsequent researchers to
further study this polymer which ultimately led to the discovery of polyP in many model organisms
across the tree of life. The combined endeavours of these researchers have not only enhanced our
comprehension of polyP biosynthesis mechanisms but have also expanded our knowledge of the
diverse functions that polyP serves in different species.
The first insights into polyP biology in mammals were reported in the 1960s [6,7]. However, it is

relatively recently from the 1990s [8] that mammalian polyP research generated excitement, linking
this molecule with several biological processes. Prior to embarking on an evolutionary evaluation of
these new findings, it is necessary to highlight two prominent challenges that complicate the study of
polyP in mammalian cells. First, polyP levels are significantly lower in mammalian cells than bacteria
or yeast [8,9]. As a result, accurate and robust measurements of polyP in mammalian cells demand
highly sensitive and reliable analytical techniques. The limited availability of standardised polyP
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techniques has led to challenges in replicating many of the findings documented in literature. Second, the lack
of knowledge of the biosynthetic mechanisms of polyP in mammalian cells has greatly hampered meaningful
investigations into the physiological roles it may play. Despite these difficulties, polyP has been shown to play
regulatory roles in various cellular processes such as cell growth, differentiation, apoptosis, and immune
responses [10–12]. It has also been seen to interact with proteins, nucleic acids and other cellular components,
modulating their functions and influencing signal transduction pathways [13–15]. Moreover, polyP has been
associated with a wide range of physiological functions in mammals such as blood clotting, bone mineralisa-
tion, vascular homeostasis and energy metabolism [12,16,17]. Dysregulation in the metabolism of polyP can
also be observed alongside several pathological conditions including thrombosis, inflammation, and neurode-
generative disorders such as Alzheimer’s disease [15,18,19].
Due to the technical challenges in measuring polyP levels and the lack of knowledge of polyP synthesis,

those involved in mammalian polyP studies mostly resorted to two approaches to study this polymer. The first
relies on the chemical-physical nature of polyP as a negatively charged polymer. The other approach is to
examine the known roles of polyP in bacteria or single-cell eukaryotes and attempt to determine whether there
are equivalencies in mammals. So far, the bulk of mammalian polyP studies have focussed on its role in the
mitochondria or in the blood coagulation cascade meaning its potential role in other fundamental areas of
biology and disease remains largely unexamined. In this assay, we aim to review the synthesis, chemical proper-
ties and functions of polyP in microorganisms and use an evolutionary perspective to theoretically address
some of the questions surrounding polyP in mammalians. Within, we suggest that a highly negatively charged
molecule such as polyP, is potentially a key player in many fundamental aspects of mammalian biology and it
is thus worthy of continuous exploration beyond mitochondrial activity and blood coagulation.

VTC-complex phylogenetic distribution and its vesicular
association
In fungi and several protists such as Chlamydomonas, Trypanosoma, and Leishmania, polyP is synthesised by a
membrane-associated protein complex named the vacuolar transporter chaperone (VTC) complex [15,20]. The
VTC complex synthesises polyP from ATP on the cytosolic side of vesicular organelles and translocates it into
the luminal side, a process requiring the proton gradient generated by the V-ATPase [15]. In budding yeast
Saccharomyces cerevisiae, the VTC complex consists of four subunits: Vtc1, the mutually exclusive Vtc2 or
Vtc3, the catalytic subunit Vtc4 and Vtc5. While Vtc4 is the enzymatic subunit, all four subunits are required
for polyP accumulation [20]. Innovative cryo-electron microscopy studies have revealed that the transmembrane
domains of all four VTC-complex subunits integrate into the vesicular membrane by forming a channel-like
structure. It has been hypothesised that newly synthesised polyP translocates into the vesicular lumen through
this channel [21,22]. As a result, polyP is compartmentalised in acidocalcisomes or acidocalcisome-like orga-
nelles such as the yeast vacuole or mammalian lysosome.
Our analysis of the distribution of Vtc4 throughout the eukaryotic spectrum (Figure 1) reveals that Vtc4 is

encoded in the genomes of highly divergent species. It is found in Dikarya, a group that includes yeast and
fungi and belongs to the Opisthokonta clade. This clade includes all the metazoan however within
Opisthokonta, Vtc4 is only present in fungi which means it is not present in mammals. Vtc4 is also largely
absent from the plant clade Viridiplantae although it is present in the Chlamydomonadales order of microal-
gae. Additionally, Vtc4 is present in Trypanosomatida belonging to the Discoba clade, in Plasmodium species
that are Alveolates and classified within the variegated SAR (Stramenopiles, Alveolates, and Rhizaria) super-
group. These very divergent eukaryotes clades (Opisthokonta, Viridiplantae, Discoba) and the SAR supergroup
separated early during the evolution of eukaryotes, probably soon after the formation of the first eukaryotic
common ancestor (FECA). It is therefore highly likely that Vtc4 was encoded by the FECA genome but was
then lost from most of the eukaryotic lineages through subsequent evolution. What are the characteristics
shared by yeast, Chlamydomonas, Trypanosoma and Plasmodium that led to these genomes retaining Vtc4 to
synthesise mainly vesicular-enclosed polyP? Conversely, why was Vtc4 lost from most eukaryote lineages
including metazoan/mammals? Given that polyP accumulates in a vesicular compartment such as the human
platelet dense granule [23], why have mammals lost the VTC-complex which so efficiently synthesises and
transfers polyP through membrane? These are experimentally difficult questions to address as we do not yet
fully understand the biology of polyP in these highly divergent organisms. In the meantime, speculation from
an evolutionary perspective might help shine a light.
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We start by looking at VTC4’s vesicular association. Vesicles play crucial roles in transporting molecules,
sorting cargo, and maintaining cellular homeostasis [24]. The compartmentalisation of polyP in vacuoles or
acidocalcisomes allows it to accumulate while preventing undesired increases in cytosolic polyP levels. This is
of vital importance as excessive cytosolic polyP could sequester essential cations and potentially interact with
positively charged proteins. Indeed, outside of the vacuole overexpression of bacterial polyphosphate kinase
PPK1 is toxic to the yeast [25,26]. Additionally, the vesicular compartments contain specialised enzymes and
transporters that facilitate the breakdown of polyP which in turn controls the release of Pi into the cytoplasm.
The yeast S. cerevisiae is the experimental organism that currently offers the most insight into polyP catabolism.
S. cerevisiae encodes four enzymes responsible for polyP degradation: the cytosolic exopolyphosphatase Ppx1,
the cytosolic endopolyphosphatase Ddp1 and the vacuolar endopolyphosphatases Ppn1 and Ppn2 [15,27].
Organisms such as yeast and Chlamydomonas live in environments where Pi levels fluctuate. Vesicular produc-
tion and storage of polyP allow them to accumulate polyP when Pi is abundant and to break it down into Pi
for essential cellular metabolisms when Pi is scarce. Why parasites Plasmodium, Trypanosoma, and Leishmania
encode the VTC complex is less obvious and a potential answer requires detailed consideration of their differ-
ent life stages. Pi concentration is extremely stable in mammals, as mammalian Pi homeostasis is strictly con-
trolled by the three hormones fibroblast growth factor-23 (FGF-23), calcitriol, and parathormone (PTH) [28].
These hormones modulate intestinal Pi uptake, renal Pi excretion and reabsorption, and the absorption or
release of Pi by bones [29]. It is therefore unlikely that polyP is required for buffering Pi while parasites live in
human hosts. Plasmodium, Trypanosoma, and Leishmania have insects as an intermediary host. However how
Pi homeostasis is controlled in insect, if at all, remains elusive. Their exoskeleton — which provides structural
support to their organism, as bones do in higher animals — is made of long-chain polymers of
N-acetylglucosamine instead of calcium-phosphate deposits of hydroxyapatite. This means that exoskeletons
cannot function as Pi reservoirs as bones do. A recent study showed that in Drosophila, Pi homeostasis is con-
trolled through specialised gut cells which use a special membranous organelle known as PXo bodies which
carry a Pi-sensitive XPR1 Orthologue (PXo) [30]. The peculiarity of Pi homeostatic mechanisms in insects is
likely to mean that inside the insect body Pi levels fluctuate widely. These fluctuations would in turn suggest
that retaining the VTC complex — which enables the storage of free Pi as polyP — is a critical necessity for
parasites such as Plasmodium, Trypanosoma, and Leishmania, so they can have a steady source of polyP during
the lifecycle period where their host is an insect.

Figure 1. Phylogenetic tree showing the presence of the VTC domain containing proteins.

This phylogenetic tree simplified chart was constructed using as reference the Lifemap NCBI version (https://lifemap-ncbi.

univ-lyon1.fr). Our analysis of VTC domain distribution across the eukaryotic spectrum shows that the evolutionary presence of

the VTC protein (indicated by red circle) is present in the genomes of widely diverse species. Each supergroup is colour-coded

for easy identification (Opisthokonta in yellow, Viridiplantae in green, Sar in blue and Discoba in pink). The red number

represent the number of reference eukaryote proteomes possessing VTC domain containing protein. These numbers were

obtained by screening the InterPro database (https://www.ebi.ac.uk/interpro/) accessed in July 2023 using the VTC domain

signature (IPR018966).
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VTC4’s involvement in the vesicular accumulation of polyP may have provided selective advantages through-
out the evolution of lineages facing high levels of Pi fluctuation. Although cordate/mammalian lineages have
lost the VTC complex — potentially because of the tightly regulated Pi homeostasis previously discussed —
they still generate polyP and store it in vesicles the best known are platelet dense granules (Figure 2). We specu-
late that mammals evolved a different multiprotein complex that substitutes the VTC complex function. Like
the VTC complex, this hypothetical multiprotein complex could couple synthesis and membrane translocation
or alternatively, it could transport/translocate polyP synthesised in the cytoplasm to the vesicles. In either scen-
ario, the membrane translocation of polyP, a long and highly charged polymer, is likely to require the forma-
tion of a membrane-associated channel like the one formed by the VTC subunits. Numerous proteomic studies
have been performed on platelets and on the platelet dense granules [31–34]. It is thus likely that these proteins
have already been identified but have not yet been associated with the synthesis and/or translocation of polyP.
Careful re-analysis of this proteomic data could therefore be instrumental to our understanding of polyP
biology in mammalian cells.

Bacterial polyP synthesis by PPK1, its toxicity and
secretion in amoebae
The main enzyme involved in the metabolism of polyP in bacteria is the polyphosphate kinase 1 (PPK1) which
reversibly catalyses the polymerisation of the gamma-phosphate in ATP into the polyP chain [35]. Some bac-
teria encode a second enzyme, PPK2, which synthesises polyP in vitro but carries out the reverse reaction in
vivo, where polyP is used to phosphorylate nucleoside diphosphates [36]. PolyP is synthesised by PPK1 either
during the stationary phase of bacterial growth or under stress conditions such as nutrient limitation and oxi-
dative stress [37,38]. PPK1 is absent from all eukaryotes except Dictyosteliida and interestingly, as mentioned
earlier, the cytosolic expression of E. coli PPK1 has to led to toxicity in yeast [25] and mammalian cell alike
[9]. The social amoeba Dictyostelium discoideum encodes a homologue of the bacterial PPK1 gene named
DdPPK1 [15,39]. These amoeba feed on bacteria and they thus acquire PPK1 through horizontal gene transfer
rather than through having a direct shared ancestry [15,36]. Vegetative logarithmic growing D. discoideum pos-
sesses far lower polyP than budding yeast [40] and intracellular levels of polyP increase during starvation
induced development [39]. Unique to D. discoideum however is its ability to accumulate extracellular polyP
likely secreted by the amoeba itself. This allows the amoeba to sense the local cell density and it may enable it
to anticipate when it will overgrow its food source [41]. The exact function played by the secreted polyP is
understudied, however it has been proposed that extracellular polyP binds to G protein-coupled polyP receptor

Figure 2. Intracellular distribution of polyphosphate (polyP) within a mammalian cell.

It is likely that polyP (red) is not restricted to a singular organelle. To regulate the blood coagulation cascade, polyP must

accumulate in a vesicle compartment such lysosome and the platelet specific dense granules. Additionally, evidence supports

polyP presence within the mitochondria, and emerging studies suggest its presence within the nucleus. Consequently, the

cytosol of mammalian cells is likely to maintain non-toxic levels of polyP (pale red), at the very least, to transit between

synthesis site and the various compartments where polyP tends to accumulate.
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(GrlD) [42]. Conversely, during starvation induced development, a significant portion of an amoeba’s ATP is
dedicated to the synthesis of polyP which is then secreted. This higher energy expenditure indicates that polyP
is crucial to the function of the amoeba. DdPPK1 does not contain any transmembrane or intraorganellar
localisation signals and therefore the synthesis of polyP in the amoeba occurs in the cytosol. The toxicity of
high levels of cytosolic polyP is most likely circumvented by its efficient secretion, however the secretory
mechanisms have not yet been characterised. We speculate that this secretion of polyP may be achieved using a
plasma-membrane associated channel or, alternatively, through vesicular intermediates that carry a polyP mem-
brane translocation channel in similar fashion to the structure that must exist on the membrane of platelet
dense granules.
Thus far our analysis of the two characterised eukaryotic polyP synthetic mechanisms, the VTC-complex

and the amoeba’s DdPPK1, has highlighted how eukaryote cells must possess a dedicated organelle to accumu-
late large amounts of polyP or have a polyP secretory pathway, both of which are likely to have evolved to
prevent polyP toxicity in the cytosol.

Mitochondria polyP: more than a plain phosphate/energy
storage molecule
The defining event in the evolution of eukaryotes was the acquisition of a bacterial endosymbiont that gave
origin to the mitochondria [43,44]. It is reasonable to imagine that the endosymbiont alpha-proteobacterium
was carrying the PPK1 and/or PPK2 gene. During the early phase of the endosymbiont, the PPKs’ coding
sequence was not retained by the FECA. PolyP metabolism is prevalent in bacteria [45] therefore its presence
in today’s mitochondria could be related to its bacterial origin. These considerations suggest first, that mito-
chondria may have acquired the ability to import polyP from the cytosol or developed an alternative polyP syn-
thetic pathway to compensate for the loss of PPK1. Second, that mitochondria could possess a polyP
physiology reminiscent of their ‘bacterial’ origins. Bacterial polyP’s functions in biofilm formation, stringent
response and stationary phase survival [46] cannot be found in mitochondria. However, polyP also enables bac-
terial endurance against many environmental stressors such as metals, changes in pH, osmotic stress, heat, and
oxidants [2,47]. Mitochondria play a pivotal role in eukaryotic cell pH regulation through inner membrane
proton translocation as well as in maintaining metal homeostasis such as iron [48,49]. Additionally, this organ-
elle is the primary source of redox signalling molecules [49,50]. These functions might have evolved from the
similar roles played by polyP in bacteria. Indeed, a recent article linked mitochondrial polyP with the gener-
ation of reactive oxygen species (ROS) [51] demonstrating that the function of bacterial polyP in the response
to oxidants might have been retained by mitochondria. This reflection should stimulate further investigation on
the role of mitochondrial polyP in regulating eukaryote pH and cation homeostasis. It should not come as a
surprise however that research into polyP mitochondria is already an active investigative area (Figure 2), mainly
due to the intrinsic property of polyP as an energy and Pi reserve [52]. Studies have shown that polyP can
influence the ratio at which a cell uses oxidative phosphorylation or glycolysis to generate ATP [53] as well as
mitochondrial membrane potential and calcium homeostasis [54], both of which are critical for maintaining
mitochondrial integrity and functionality. Through being present in the mitochondria, polyP may directly
modulate these processes and contribute to cellular homeostasis as well as energy metabolism overall [55,56].
This said, a direct role of polyP as an energy source is unlikely. Mitochondria are known as the cell’s power-

house, responsible for generating energy in the form of adenosine triphosphate (ATP) through oxidative phos-
phorylation [49]. PolyP, with its high-energy phosphoanhydride bonds, could serve as a readily available source
of energy in a situation where ATP synthesis becomes hampered. However, we should consider that cell metab-
olism demands an exceptionally rapid turnover of ATP. Therefore, based on the concentrations of polyP
reported in literature, polyP as energy donor would be able to sustain life for a fraction of a second in the case
of mammalian cells and a few seconds in the case of bacteria [57]. It is therefore unlikely that the high energetic
phosphonamidite bonds of the mitochondrial polyP pool meaningfully function as chemical energy storage.
PolyP presence in mitochondria might instead be involved in the Pi storage process of this organelle. The

stored polyP can be rapidly hydrolysed, releasing Pi groups utilised by the ATP-synthase to produce ATP. This
localised pool of polyP can serve as a dynamic and efficient Pi buffer, perhaps regulated independently from
the tightly regulated mitochondrial Pi importer mechanism [58,59]. Mitochondrial polyP could enable a rapid
response to the energy demands of the cell by providing Pi when the cytosolic Pi supply is reduced. The mito-
chondrial location of polyP further highlights the importance of compartmentalisation in cellular biochemistry.
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By sequestering polyP within mitochondria, the cell can regulate this polyP pool independently from other
pools (for example polyP vesicular accumulation) and prevent its potentially toxic accumulation in the cytosol.
It is extremely unlikely albeit still unknown, that mammalian cells possess three different polyP synthesising
mechanisms: one for the vesicle, another for the mitochondria, and a third for the nucleus (see below).
Mammalian cell cytosol must possess small non-toxic levels of polyP (Figure 2) which can, as a minimum, be
shuttled between the site of synthesis and the different compartments where polyP appears to accumulate.

The polyanion polyP: exploring its nuclear localisation
One important aspect of polyP is its polyanionic nature. The negative charges of the more famed nuclear poly-
mers, the nucleic acids DNA and RNA, have significant implications for chromatin packaging, gene expression
regulation, RNA processing and nuclear transport. The electrostatic interactions between negatively and posi-
tively charged molecules such as histones are vital for various processes and contribute to the overall function-
ality of the nucleus. PolyP, whilst not as famous as DNA and RNA, also exhibits a negatively charged
polymeric structure with a high degree of flexibility, enabling it to encapsulate positive charged proteins [60].
The nuclear environment which adapted to store, metabolise and process the anionic DNA and RNA could
therefore also be the ideal environment where the physiology of polyP can prosper. The presence of polyP
within the nucleus of mammalian cells is still being explored (Figure 2), however several recent studies dis-
cussed henceforth have provided emerging evidence supporting its presence and potential functional roles
within the nucleus.
The Ruiz lab [61] described that intracellular polyP in myeloma cells — a malignant transformation of

plasma cells — is mostly accumulated within the nucleolus and exhibits co-localisation with nucleolar markers
through confocal microscopy. The authors suggest that the presence of polyP within the nucleolus could be
dependent on ribosome subunit synthesis given that the inhibition of transcription by actinomycin D — a well-
known inhibitor of nucleolar RNA synthesis — induces polyP to move from the nucleoli to the cytoplasm in
these cells. Cisplatin treatment is known for its ability to induce DNA damage [62] and other cancer cell lines
besides myeloma respond to this treatment with a robust up-regulation and cellular redistribution of endogen-
ous polyP which leads to the formation of distinct nucleolar polyP foci [63]. These findings indicate that polyP
may play a role in the regulation and/or processing of ribosomal RNA synthesis due to the co-localisation of
RNA Pol I and polyP upon cisplatin stress. This data aligns with a study by Bru et al. [64] which suggests that
polyP may play a crucial role in the process of DNA damage recovery by acting as a protective factor in sup-
porting the synthesis of triphosphate deoxynucleotides (dNTPs). These are essential for DNA replication,
repair, and other DNA-dependent processes [65]. This emerging evidence suggests that nuclear polyP might
play a significant role in chromatin dynamics, gene expression and other processes, especially those localised in
the nucleolus such as rRNA transcription/processing and/or ribosome assembly.
Interestingly, recent studies have revealed that many nucleolar proteins undergo a unique post-translational

modification (PTM) called lysine-polyphosphorylation [66,67]. This modification involves the covalent attach-
ment of polyP chains to lysine (Lys) residues, providing a novel mechanism for protein regulation and function
[14,66]. The addition of polyP chains can alter the charge of the target’s proteins which can have significant
implications for their interactions with other proteins and nucleic acids. This charge modification may also lead
to substantial changes in protein conformation and binding affinity. Polyphosphorylation itself has the potential
to directly compete with other well-known lysine modifications such as acetylation, methylation, ubiquitylation,
SUMOylation, and glycation [68,69]. This competitive relationship between lysine-polyphosphorylation and
other modifications could influence the overall functional status of the protein, affecting its stability, location or
interaction with other cellular components. Furthermore, lysine residues, along with arginine (Arg) residues,
have long been recognised as crucial components of the nucleolar localisation sequence [70], lending further
support to the notion that lysine-polyphosphorylation could play an important role in the nucleolus.
It should be noted that the same pool of nucleolar proteins targeted by lysine-polyphosphorylation is also

targeted by serine-pyrophosphorylation [71,72] and other non-canonical PTM driven by inositol pyropho-
sphates (PP-IPs) such as diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakispho-
sphate (IP8) [73,74]. Inositol pyrophosphates regulate rRNA transcription [75,76] and nucleolar architecture
[77]. Nucleolar physiology therefore appears to be another research area, besides the PP-IPs regulating polyP
synthesis by the yeast VTC complex [78], where these two negatively charged PP-IPs and polyP molecules
functionally cross-talk. The mammalian polyP endopolyphosphatase has been recently identified as Nudt3 [79]
— a phosphatase also active towards PP-IPs [27,80] — further stressing the functional interaction between
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these two classes of molecules. Further effort is urgently required to evaluate the cross-talk between lysine-
polyphosphorylation and serine-pyrophosphorylation and its physiological significance within the nucleolus in
an environment enriched by hyper-phosphorylated proteins. Such an environment appears to welcome the
negatively charged polyP and PP-IPs and their presence might contribute to the formation of the nucleolus
itself. The phase separation nature of the nucleolus [81,82] could be modulated by enhancing or reducing the
charge of nucleolar proteins and thus the nucleolar localisation of polyP, which has been recently shown to
induce phase separation [83] similar to DNA and RNA [84], could modulate the nucleolus’ organisational
nature. Understanding the precise location and functional significance of polyP within the nucleus is an emer-
ging area of investigation and further research is needed to establish the precise mechanisms and functional
implications of this polymer within nuclear/nucleolus.
Could the polyP polymer mirror the nucleus’s ultimate function and contain biological information? The

recent discovery that ultra-phosphates, branched polyP chains, could exist in water [85] theoretically permits
the existence in cells of branched polyP. Diverse branching patterns might generate different polyP carrying
diverse functions. It might appear too far-fetched to hypothesise that polyP, a single-letter ‘thought linear’
polymer, could hold some sort of code/information. However, original discoveries and innovative ideas, that
are the foundation of breakthroughs, are needed for the young polyP research field to mature. With the current
essay, we hope to have stimulated useful thoughts to propel the already thrilling polyP research to an even
more exciting future.

Perspectives
• The past 20 years have witnessed a steady growth in mammalian polyP interest.

Unquestionably, polyP is associated with a wide range of physiological functions and patho-
logical states.

• Not knowing how the different pools (Figure 2) of polyP are synthesised and metabolically
interconnected is hampering decisive progress. The unique evolutionary perspectives pre-
sented in this assay might guide future research.

• The polyP research field requires the development of reliable detection methods to allow the
full characterisation of mammalian polyP enzymology. Thinking outside the box might also
benefit the still-young mammalian polyP research fields.
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