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Aims Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. 
Our aims were to identify cytosine–phosphate–guanine (CpG) dinucleotides associated with diet quality by conducting an 
epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related 
CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure 
(SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD).  

Methods 
and results 

Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores 
(exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to 
Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and 
MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and 
technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the 
potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated 
CpGs associated with dietary scores (P < 1.08 × 10−7; Bonferroni correction), of which 12 were previously associated with 
cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in in-
flammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methyla-
tion levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 
(SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels 
associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 
(AHRR) with lower CHD risk.  

Conclusion Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic 
health. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Lay summary We conducted a study to investigate the connection between diet quality, epigenetic changes, and cardiovascular health in 
adults.  

* Corresponding author. Tel: +34 93 214 73 30, Email: camille.lassale@isglobal.org 
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

European Journal of Preventive Cardiology (2023) 00, 1–12 
https://doi.org/10.1093/eurjpc/zwad317 

FULL RESEARCH PAPER 
Nutrition/obesity (diet, alcohol) 

D
ow

nloaded from
 https://academ

ic.oup.com
/eurjpc/advance-article/doi/10.1093/eurjpc/zw

ad317/7289158 by U
niversity C

ollege London user on 23 O
ctober 2023

https://orcid.org/0000-0001-8593-1477
https://orcid.org/0009-0002-3941-9872
https://orcid.org/0000-0003-3320-554X
https://orcid.org/0000-0002-4735-0468
https://orcid.org/0000-0002-4275-9328
https://orcid.org/0000-0001-8235-0095
https://orcid.org/0000-0002-9340-2708
mailto:camille.lassale@isglobal.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/eurjpc/zwad317


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• The study included 5274 participants from Spain, the USA, and the UK, combining data from four different cohorts. We 
assessed adherence to different healthy diets: Mediterranean style diet, plant-based diet, and Dietary Approaches to Stop 
Hypertension diet. We used advanced technology to analyse blood DNA methylation, which refers to chemical modi-
fications in the DNA that can affect gene activity.  

• We discovered 18 CpGs that showed differential methylation patterns related to the dietary scores. Importantly, 12 of 
these CpGs had previously been associated with cardiovascular disease or risk factors, suggesting a potential link between 
diet, epigenetic changes, and heart health. Some of the diet-related CpGs mapped to genes involved in pathways asso-
ciated with cardiovascular disease. Moreover, using a method called Mendelian randomization, we found that several 
CpGs may have a causal association with body mass index, systolic blood pressure, and risk of type 2 diabetes and cor-
onary heart disease.  
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Introduction 
Cardiovascular diseases are the leading causes of death and morbidity 
globally, and they result from a complex interaction between genetics, 
lifestyle, and environmental factors.1 The epigenome, which controls 
the differential expression of genes in each cell type, is both heritable 
and modifiable by lifestyle and environmental factors2 and has the po-
tential to represent gene–lifestyle/environment interactions. One key 
epigenetic mechanism is DNA methylation (DNAm), the reversible add-
ition of a methyl group at the five-carbon position of a cytosine, mainly in 
cytosine–phosphate–guanine (CpG) dinucleotide sites in humans. 

Poor quality of diet is a key cardiovascular risk factor.3,4 As foods are 
a mixture of complex nutrients rather than isolated elements, describ-
ing dietary patterns has received increasing interest in nutritional epi-
demiology.5 Some dietary components (e.g. folate, vitamins B6 and 
B12, betaine, methionine, choline, polyphenols, flavonoids, and polyun-
saturated fatty acids) are key determinants of DNAm levels,6 which in 
turn could mediate the effects of diet on health-related outcomes.7 

Maternal diet composition has consequences on foetal programming, 
growth, and metabolism,6 but the effect of diet on epigenetic markers 
has been less studied in adults. Recent epigenome-wide association 
studies (EWASs) started to uncover differentially methylated CpGs 

in relation to diet. For example, 11 CpGs were found to be associated 
with coffee consumption.8 Two previous EWASs measured overall diet 
quality and found association of CpG methylation levels with dietary 
patterns. One study9 found 30 distinct CpGs to be associated to the 
Modified Mediterranean Diet Score (MMDS) only (6 CpGs), the 
Alternative Health Eating Index (AHEI) (20 CpGs), or both diet scores 
(4 CpGs). The other study found 24 additional CpGs associated with 
the AHEI.10 Some of these CpGs associated with diet quality were 
linked to cardiometabolic health outcomes such as obesity, diabetes, 
dyslipidaemia and elevated blood pressure, and all-cause mortality,9 

therefore might point to an epigenetic mechanism underlying the asso-
ciation between diet quality and cardiometabolic health. If these CpGs 
are related to differences in cardiometabolic disease risk using ap-
proaches less affected by residual confounding, such as Mendelian ran-
domization (MR, which also suggests potential causal associations),11 

this would indicate a possible mediating effect of methylation on the 
preventive role of diet in these diseases. 

Using data from four cohorts with information on blood DNAm, we 
aimed to uncover differentially methylated CpGs associated with three 
diet quality scores [MMDS, healthy plant-based diet (HPDI), and 
Dietary Approaches to Stop Hypertension (DASH)]. We also aimed 
to test whether there was a causal relationship between diet-associated 
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CpGs and cardiometabolic factors [body mass index (BMI), diabetes, 
blood lipids, and blood pressure] by using MR analyses. 

Methods 
Study design and populations 
We designed a meta-EWAS (Figure 1) using four independent populations, 
predominantly of European ancestry: REgistre Gironí del COR (REGICOR, 
n = 842), a population-based cohort of adults aged 35–79 years old (average 
age 57.3 years; 50.4% female) living in the Girona province, Spain; the 
Framingham Offspring Study (FOS, n = 1843), a population of adults in the 
USA, aged 40–92 years old (average age 66.4 years; 56.7% female)12; the 
Women’s Health Initiative (WHI, n = 1736), a population of US postmeno-
pausal women aged 50–79 years old (average age 64.2 years)13; and the 
Airwave Health Monitoring Study (AIRWAVE, n = 852) of police officers 
and staff in Great Britain, a population aged 20–64 years old (average age 
41.1 years; 42.9% female).14 Both FOS and WHI data were available in the 
database of Genotypes and Phenotypes (http://dbgap.ncbi.nlm.nih.gov; 
Project #9047). The AIRWAVE data were available after approval by 
Dementia Platform UK (Study #0438) on https://portal.dementiasplatform. 
uk/. Participants in all four studies gave their informed written consent. The 
FHS, WHI, and AIRWAVE studies were approved by ethics committee. 
The REGICOR study and ancillary protocols were approved by the Parc 
de Salut Mar Ethics Committee (2012/4729/I; 2015/6199/I; and 2018/7855/I) 

Diet assessment and diet quality scores 
Dietary data were obtained from semi-quantitative food frequency ques-
tionnaires in REGICOR,15 FOS,16 and WHI17 participants. In AIRWAVE, 
these data were obtained from 7-day food diaries.18 Implausible question-
naires and energy under- and overreporters were excluded as described in  
Supplementary material online, Text S1. 

Diet quality was assessed using three different diet scores: MMDS,9 

HPDI,19 and DASH.20 These three scores were chosen because they mostly 
rely on food group intake and include only minimal micronutrient intake es-
timation, which are less reliable with food frequency questionnaires. 

Moreover, these scores have been associated with a lower BMI and other 
cardiometabolic health outcomes in many studies.19,21–23 Their computa-
tion is detailed in Supplementary material online, Text S2. Briefly, the 
MMDS includes nine components: vegetables, fruits, nuts, legumes, whole 
grains, fish, ratio of monounsaturated fatty acids to saturated fatty acids 
(positive), red and processed meats (negative), and alcohol (moderate in-
take). The DASH diet score includes eight components: fruits, vegetables, 
nuts and legumes, low-fat dairy products, whole grains (positive), sodium, 
sweetened beverages, and red and processed meats (negative). The HPDI 
includes 18 components: seven healthy plant foods (whole grains, fruits, ve-
getables, nuts, legumes, vegetable oils, and tea and coffee), five less healthy 
plant foods (fruit juices, refined grains, potatoes, sugar-sweetened bev-
erages, and sweets and desserts), and six animal foods (animal fat including 
butter or lard, dairy, eggs, fish and seafood, meat, and miscellaneous animal- 
based foods). The three scores reflect widely used dietary recommenda-
tions but yet are different in their computation and content (e.g. low-fat 
dairy considered a healthy item in the DASH diet, whereas dairy is a detri-
mental item in HPDI and is absent from MMDS calculation). We calculated 
Pearson’s correlation coefficients between the three diet scores, in each co-
hort, to assess the similarities between them. We also calculated Pearson’s 
correlation coefficients between EWAS coefficients of the three diet scores 
to assess consistency or differences in direction of the association between 
CpG methylation and each diet score. 

DNA methylation 
DNA extraction and methylation assessment methods were previously de-
scribed for all four cohorts.12,24,25 Briefly, DNA was extracted from periph-
eral blood cells in all cohorts (whole blood or buffy coat). DNAm levels were 
measured using the Illumina HumanMethylation450 BeadChip (450K) array 
in REGICOR-450K (n = 573), WHI, and FOS and Illumina MethylationEPIC 
BeadChip (EPIC) in REGICOR-EPIC (n = 269) and AIRWAVE. The 450K ar-
ray analyses over 485 000 CpGs per sample, and EPIC analyses over 850 000 
CpGs, including >90% of 450K CpGs.26 We focused on autosomal CpGs 
available in the 450K array (i.e. the EPIC-specific CpGs were excluded). 
We obtained genomic information of the CpG using the manifest and anno-
tation provided by Illumina and contained in the corresponding R packages 
available through Bioconductor (assembly reference hg19). 

For the measurement of methylation levels, M-values of each CpG were 
used. Although methylation can be measured also as a β-value, M-values are 
more statistically robust27 and are calculated as follows: 

Mvalue = log2
(Mi + α)
(Ui + α) 

with Mi = intensity of methylated probes; Ui = intensity of unmethylated 
probes; and α = 1 (constant offset). CpGs with M-values close to 0 are half- 
methylated. Positive values indicate the presence of more methylated than 
unmethylated cytosines, while negative M-values denote the opposite ratio. 
M-values were normalized with the dasen function from the wateRmelon R 
package28 and standardized by batch as previously reported.12 

Quality control of the raw DNAm data was previously described for the 
REGICOR, WHI, and FOS samples by our group.12,24 For AIRWAVE, qual-
ity control is described in Supplementary material online, Text S3. A total of 
463 932 CpGs were finally included in the analysis. Supplementary material 
online, Figure S1 shows a Venn diagram of the number of CpGs available in 
each sample. 

Covariates 
Age, sex, ethnicity (AIRWAVE and WHI), and smoking status (never, ex- 
smoker, and current smoker) were collected by questionnaires, and BMI 
was measured by trained nurses in all cohorts. In AIRWAVE and WHI, cov-
ariates were collected at the same visit as diet quality data and blood samples. 
In REGICOR, covariates and blood samples were collected at follow-up, 6 
years later than diet quality (assessed at baseline). In FOS, covariates and 
blood samples were collected at Exam 8, 7 years later than diet quality (col-
lected at Exam 7). Family relationship was available in FOS, allowing to create 
a kinship variable used as a random effect in regression models. Peripheral 
blood cell counts (NK, CD8T, CD4T, B cells, monocytes, and granulocytes) 
were estimated using the Houseman algorithm29 with the minfi R package30 

integrating data from the FlowSorted.Blood.450 k R package.31 

Figure 1 Study design of the one-step meta-epigenome-wide asso-
ciation between three diet quality scores and DNA methylation in 
four adult cohorts (REGICOR, Airwave, Framingham Offspring 
Study, and Women’s Health initiative). Abbreviations: meta-EWAS, 
meta-analysis of epigenome-wide association studies; CpG, cyto-
sine–phosphate–guanine; DASH, Dietary Approaches to Stop 
Hypertension; MMDS, Modified Mediterranean Diet Score; HPDI, 
Healthful Plant-based Diet Index.  
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In order to remove noise from potential and non-measured sources of 
variation due to technical and biological confounders, surrogate variables 
were estimated for REGICOR (two variables for DASH, HPDI, and 
MMDS for 450k array; three variables for DASH, six variables for HPDI, 
and seven variables for MMDS for epic array), FOS (two variables for 
DASH, MMDS, and HPDI), and WHI (six variables for DASH, two variables 
for MMDS and HPDI) using the sva R package32 to account for unknown 
sources of potential technical or biological confounding. In AIRWAVE, 
due to computational limitations, we did not calculate them but included 
the chip as a random effect in analyses to account for batch effect. 

If EWAS results were inflated (lambda values > 1.05), we corrected the 
coefficients, the standard errors, and the P-values using the bacon R pack-
age.33 Q–Q plots of P-value distribution (observed vs. expected) and 
Manhattan plots before and after correction (when needed) are shown in  
Supplementary material online, Figures S2 and S3. 

Meta-epigenome-wide association study of 
diet quality scores 
All diet scores were standardized in each cohort and used as continuous ex-
posure variable. We performed EWAS for each of the three diet scores, in 
all samples, using DNAm M-values as the outcome variable. We used linear 
models in WHI and REGICOR populations and linear mixed models with 
random effects in FOS and AIRWAVE. We defined two models based on 
the covariates we adjusted for. Model 1 was adjusted for blood cell count, 
age (years), total energy intake (kcal), sex (except in WHI, where all parti-
cipants are women), smoking status (former, current, or never smokers), 
and surrogate variables (except in AIRWAVE). In WHI, we further adjusted 
for ethnicity [White n = 841 (48%) and non-White]. In AIRWAVE, due to 
the very low number (n = 29) of non-White participants, they were ex-
cluded from the analysis (Supplementary material online, Text S2). Model 
2 was further adjusted for BMI (kg/m2). To assess if the associations were 
not merely explained by adiposity, we calculated the attenuation (in %) of 
the coefficients between Model 1 and Model 2 (that includes BMI) using 
the following formula: 

Attenuation =
Coefficientmodel1-Coefficientmodel2

Coefficientmodel1
× 100 

We considered an attenuation of 10% as an important contribution of BMI 
to explain the association. In the linear mixed models in FOS, we used the 
family relationship variable as a grouping factor (random effect), and in 
AIRWAVE, we used the chip information from EPIC arrays to account 
for batch effect. 

For each diet score, we meta-analysed the results from the five samples 
using the R package meta.34 We report significant fixed effects, except in the 
presence of substantial heterogeneity between cohorts, defined as a value 
of I2 > 50% or a Q-test < 0.05, where we report the random effects. To de-
fine the statistical P-value threshold, we applied the Bonferroni correction 
for multiple testing,35 corresponding to a P < 1.08 × 10−7, and reported 
those CpGs with P-value lower than the threshold as main results. We 
also identified those CpGs with a false discovery rate (FDR)–corrected 
P < 0.05 using the Benjamini–Hochberg method.36 

Due to the ethnic diversity of the WHI sample, we conducted a sensitiv-
ity analysis excluding this sample from the meta-analysis to check if the re-
sults were influenced by ancestry. 

Functional interpretation of diet-related CpGs 
We used the GTEx expression database (https://gtexportal.org/home/) to 
provide further insight in the differential expression of the identified genes 
across different human tissues. Furthermore, we looked for each CpG on 
the EWAS catalogue (http://www.ewascatalog.org/) to report any previous-
ly reported association with cardiometabolic health outcomes, lifestyle, or 
dietary intake. 

To identify pathways and molecular functions of the diet-related CpG map-
ping to genes, we conducted functional enrichment analysis including all the 
FDR-significant CpGs to allow a sufficient number of genes to be included. 
We used the missmethyl R package,37 as implemented in the Functional 
Enrichment module of the EASIER R package.38 This is a method to identify 
pathways in which the genes annotated to the CpGs are overrepresented. 
We used public annotation data from gene ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), the Molecular Signatures 
Database (MSigDB), and ConsensusPathDB (http://consensuspathdb.org) 
that includes four databases [protein complex–based sets (C), GO level 2 
(G2), GO level 3 (G3), and manually curated pathways from pathway data-
bases (P)]. Finally, we retrieved information related to the CpG location 
(gene position and island relative positions) and chromatin states using 
Roadmap blood 15 reference chromatin states.39 

Mendelian randomization 
We studied the effects of the identified CpGs on inherited susceptibility to 
four cardiometabolic traits [BMI, triglycerides, systolic blood pressure (SBP), 
and type 2 diabetes (T2D)] and coronary heart disease (CHD) to explore 
whether those CpGs could play a role as mediators of the association be-
tween diet and cardiometabolic disorders. To test for causality, we performed 
two-sample MR analyses using the R package TwoSampleMR.40 Regarding the 
exposure, we searched for single nucleotide polymorphisms (SNPs) that are 
linked to the presence of the diet-associated CpGs in the GoDMC methyla-
tion quantitative trait loci (mQTL) database (http://mqtldb.godmc.org.uk/).41 

We used a linkage disequilibrium  filter of 0.8. Regarding the outcomes, we 
used the most updated genome-wide association study (GWAS) summary 
statistics for BMI,42 triglycerides,43 SBP,44 T2D,45 and CHD46 all of them based 
on populations of European ancestry. We took this decision because there 
were only a minority of non-White participants in the meta-EWAS data set 
(n = 895); therefore, 83% of our sample was from European ancestry. We 
looked for the SNPs linked to the identified CpGs in the summary statistics 
of the GWASs on the aforementioned cardiometabolic traits. We excluded 
genetic variants showing a stronger association with the outcome than with 
the exposure using the Steiger filtering (to avoid bias due to reverse caus-
ation47), and palindromic SNPs with allele frequencies close to 0.5, and we 
harmonized the format of both data sets. Finally, we used a multiplicative ran-
dom effects inverse-variance weighted method as the main MR approach.47 

We also studied the three assumptions that must be met to obtain valid con-
clusions in MR (a robust relationship between genetic instruments and the ex-
posure, lack of confounding of the genetic instrument–outcome associations, 
and the exclusive link of genetic instruments to the outcome through the ex-
posure of interest47) as reported in Supplementary material online, Text S4. 

Results 
We analysed the association of diet and DNAm for a total of 5274 par-
ticipants (67.7% women). All participants were from European ancestry 
except in WHI (52.9% of non-White participants) (Table 1). 

Diet-associated CpGs 
The diet scores were moderately correlated (see Supplementary 
material online, Figure S4). After meta-analysing the results from the indi-
vidual populations with Model 1 (adjusted for cell count, age, sex, energy 
intake, smoking, and surrogates), we found a total of 18 CpGs associated 
with diet scores at a P < 1.08 × 10−7: 11 CpGs were associated with 
DASH, five CpGs with HPDI, and four CpGs with MMDs (Table 2;  
Supplementary material online, Figure S5). Two of those CpGs were 
common to the DASH diet and either MMDS or HPDI: cg03819286 (an-
notated to MGRN1) and cg13518625 (intergenic). Supplementary 
material online, Table S1 shows 146 distinct diet-associated CpGs at a 
more lenient threshold (FDR < 5%). It should be noted that coefficients 
in the REGICOR-EPIC cohort were often of lower magnitude and pre-
cision (being the smallest sample included in this meta-EWAS), and 
that for cg03084350 and cg13518625, the heterogeneity was substantial 
(over 50%). Furthermore, EWAS coefficients were highly correlated for 
the three diet scores (see Supplementary material online, Figure S6), re-
flecting consistent associations between diet quality and methylation, re-
gardless of the definition of a ‘healthy diet’ and the computation of the 
score. When restricting the meta-analysis to cohorts of European des-
cent only (i.e. excluding estimates from the WHI, Supplementary 
material online, Table S1), all estimates were in the same direction as in 
the main analysis, and <10% showed an important attenuation of the 
coefficients (>25% attenuation). False discovery rate significance was 
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lost in most cases due to the loss of power. Of the Bonferroni-significant 
CpGs, only cg02650017 (PHOSPHO1) was less strongly associated with 
diet scores, while the others displayed similar associations as in the 
main meta-analysis. 

When further adjusting for BMI (Model 2), we found that 12 CpGs 
displayed weaker coefficients of the association between diet quality 
and methylation, but that six CpGs (cg05575921, cg23900905, 
cg13518625, cg02650017, cg18181703, and cg00711496) showed 
only a slight attenuation of the association with MMDS or HPDI 
(Table 3). These CpGs were annotated to four different protein-coding 
genes and considered the ‘top’ diet-related CpGs. 

Because the MMDS-associated CpG cg05575921 mapping to the 
AHRR gene has been previously strongly associated with smoking, we 
conducted stratified analysis by smoking status. We found that the as-
sociation was null in non-smokers and only apparent in ever smokers 
(see Supplementary material online, Figure S7). 

Among the 18 CpGs, 16 were annotated to 15 protein-coding genes. 
Some of these genes are involved in metabolic pathways including fatty 
acid beta-oxidation and calcification (CPT1A and PHOSPHO1) and in 
some cancers (PRMT1). SOCS3 has also been reported to be a major 
regulator in inflammation and infection. According to the GTEx expres-
sion data set, these annotated genes are differentially expressed in dif-
ferent tissues, with a majority of genes expressed in spleen, lung, and 
whole blood (see Supplementary material online, Figure S8). 

Association between diet-associated CpGs 
and cardiometabolic markers 
Out of the 18 Bonferroni-significant CpGs, methylation levels corre-
sponding to higher diet quality were associated with lower C-reactive pro-
tein levels (six CpGs), lower BMI (six CpGs), lower waist circumference 
(two CpGs), lower risk of T2D (three CpGs), lower triglycerides (one 
CpG), higher HDL cholesterol (one CpG), lower SBP (one CpG), lower 
carotid intima–media thickness (one CpG), lower risk of myocardial in-
farction (one CpG), better lung function (two CpGs), and lower risk of 
Crohn’s disease (two CpGs). Methylation levels linked to better diet qual-
ity were also inversely related to odds of smoking in seven CpGs (Table 2). 

Enrichment analysis of diet-associated 
CpGs 
We only found significant enrichment for the genes mapped to the 
FDR-significant diet-associated CpGs using the ConsensusPathDB 

(Table 4) but not with the annotations from GO, KEGG, or MSigDB (see  
Supplementary material online, Tables S2–S4). The terms from protein 
complex–based sets with greater overrepresentation of the diet-related 
genes were the SKI–SMAD3 complex, a family of signal transducer and 
transcription modulator that interfaces multiple signalling pathways, in-
volved in regulating cell proliferation, apoptosis, and differentiation.65 

Besides, we found enrichment for R-spondin (RSPO) proteins and 
NFKB1–NFKB2–RELA–RELB complex. We also obtained significant re-
sults in the enrichment of GO Level 2 for several biological processes 
(see Supplementary material online, Table S5). Although not reaching 
FDR statistical significance, the most represented pathways across data-
bases (GO, KEGG, and manually curated pathways) were signalling of 
TGF-beta receptor, MAPK, interleukin-1, interleukin-6, VEGF-A/ 
VEGFR2, SMAD2/3:SMAD4 transcriptional activity, and fatty acid metabol-
ism (see Supplementary material online, Tables S2, S3, and S6). When we 
analysed gene position (see Supplementary material online, Figure S9A 
and Table S7), we found TSS1500 and gene body region being significantly 
overrepresented, whereas TSS200 was underrepresented. Regarding CpG 
island relative positions (see Supplementary material online, Figure S9B and  
Table S8), N shelf, S-shore and body it flanks, and Open Sea were significant-
ly overrepresented, whereas island was underrepresented. As for the chro-
matin state analysis, transcription-related (Tssa Flnk, Tx, Tx Flnk, and 
TxWk) and enhancers (Enh and EnhG) were overrepresented (see  
Supplementary material online, Figure S9C and Table S9). 

Mendelian randomization analyses 
There were genetic instruments available in the GoDMC database only 
for 10 out of the 18 Bonferroni-significant CpGs (four out of the ‘top’ 
six CpGs). Mendelian randomization suggested that genetically deter-
mined methylation levels corresponding to lower diet quality at 
cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 
(SLC29A3) were causally associated with higher BMI and at 
cg05399785 (WDR8) with greater SBP (Table 5). Mendelian randomiza-
tion also showed methylation levels associated with higher diet quality 
at cg00711496 (PRMT1) to be causally associated with lower BMI, T2D 
risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk [al-
though weakly, risk ratio (RR) = 0.98 (0.96; 1.00), P = 0.05]. 
Nonetheless, we also observed results that contradict our hypothesis 
and the observational evidence with disease risk: methylation levels re-
flecting higher diet quality at cg02650017 (PHOSPHO1) were associated 
with higher T2D risk, and methylation levels reflecting lower diet quality 
at cg27395200 (BRD2) were associated with lower CHD risk and at 
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Table 1 Descriptive characteristics of study populations  

WHI FHS REGICOR-450 REGICOR-EPIC AIRWAVE  

n 1736 1843 573 269 853 

Age (years), mean (SD) 64.2 (7.05) 66.4 (8.87) 57.9 (11.44) 56.0 (7.03) 41.1 (9.37) 
Female sex (n, %) 1736 (100) 1045 (56.7) 285 (49.7) 139 (51.7) 366 (42.9) 

BMI (kg/m2), mean (SD) 29.8 (6.02) 28.2 (5.37) 27.2 (3.93) 28.3 (5.87) 27.1 (4.41) 

Smoking status            
Never 938 (54.0) 1640 (89.0) 302 (52.7) 162 (60.2) 558 (65.4)  

Ex-smoker 634 (36.5) 32.0 (1.70) 147 (25.7) 63.0 (23.4) 214 (25.1)  

Smoker 164 (9.40) 171 (9.30) 124 (21.6) 44 (16.4) 81.0 (9.50) 
Energy kcal/day [mean (SD)] 1628 (636) 1841 (573) 2319 (596) 2459 (593) 1925 (482) 

Alcohol g/day [mean (SD)] 3.75 (10.7) 10.2 (14.8) 9.64 (14.0) 11.0 (14.0) 15.9 (17.1) 

MMDS [mean (SD)] 12.0 (4.04) 12.1 (4.45) 11.8 (4.42) 11.9 (4.36) 11.8 (4.29) 
DASH [mean (SD)] 24.3 (4.94) 24.4 (4.67) 24.5 (5.24) 23.9 (4.95) 23.9 (5.04) 

HPDI [mean (SD)] 54.7 (7.34) 52.1 (6.71) 57.4 (6.97) 57.6 (7.00) 55.7 (7.35)  
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cg23761815 (SLC29A3) were associated with lower SBP and lower 
T2D risk. For other traits and other CpGs, results were either non- 
significant or did not meet all MR assumptions. 

Discussion 
In this meta-EWAS, we found 18 CpG sites showing differential methyla-
tion levels associated with three diet quality scores. Mendelian randomiza-
tion analyses suggest that some of these CpGs may be causally associated 
with BMI, blood pressure, and T2D, implying that DNAm may be a mech-
anism by which diet quality influences cardiometabolic health. 

Some of our findings replicated previous diet quality EWAS results. 
Three CpGs were previously associated with diet quality scores in the 
same direction as in our study: cg03084350 (PLCD1),10 cg02079413 
(SNORA54), and cg18181703 (SOCS3).9 Moreover, the positive associ-
ation between methylation at cg00574958 (CPT1A) and a greater 
DASH score (a typically low-fat diet) was consistent with previous find-
ings of a positive association with dietary carbohydrates and negative 

with dietary fat intake.66 Mediation analysis in the same study revealed 
significant indirect effects through the mediator cg00574958, meaning 
that fat and carbohydrate intake influences the risk of metabolic dis-
eases (BMI, diabetes, triglycerides, SBP, and metabolic syndrome) 
through CPT1A-cg00574958 methylation. However, no genetic instru-
ments were available for this CpG to perform an MR analysis. Our re-
sults are observational, and only one study to date has investigated the 
effect of a Mediterranean diet intervention in a subsample (n = 36) of 
the PREDIMED trial67: we did not replicate the findings of that study 
which showed the intervention was associated with change in methyla-
tion at cg01081346 and cg17071192. 

The majority of the associations between diet scores and DNAm were 
attenuated when BMI was included as a confounder, which suggests that 
BMI explains an important part of the observed associations and that the 
observed differential methylation may be a consequence of adiposity. 
However, the associations between diet scores and six CpGs displayed 
coefficients of similar magnitude (or even stronger) regardless of BMI, indi-
cating that diet was associated with methylation at those CpGs independ-
ently of BMI, making them robust methylation signatures of diet quality. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Consistent diet-associated CpGs after adjustment for body mass index (<10% attenuation) 

Diet 
score 

CpG CHR Position 
(BP) 

Gene β M1a SE 
M1a 

P-value 
M1a 

β M2b SE 
M2b 

P-value 
M2b 

I2 

M1c 
I2 

M2c 
% change in 
coefficient 
M1 to M2d  

MMDS cg05575921e 5 373378 AHRR  0.0688  0.0110 3.70E−10  0.0800  0.0212 1.66E−04  0.20 0  −16.2357 

HPDI cg23900905 8 82641291 —  0.0774  0.0136 1.37E−08  0.0771  0.0219 4.38E−04  0 0  0.3983 
MMDS cg13518625 8 29522838 —  0.0655  0.0118 2.62E−08  0.0685  0.0235 3.61E−03  0.46 0  −4.5291 

HPDI cg02650017 17 47301614 PHOSPHO1  0.0683  0.0121 1.75E−08  0.0646  0.0219 3.19E−03  0.14 0  5.3190 

MMDS cg18181703 17 76354621 SOCS3  0.0778  0.0116 2.09E−11  0.0824  0.0245 7.65E−04  0.29 0  −5.8260 
MMDS cg00711496 19 50191497 PRMT1  0.0710  0.0132 9.24E−08  0.0711  0.0248 4.11E−03  0 0  0.4841 

M1, Model 1; M2, Model 2; CpG, cytosine–phosphate–guanine; DASH, Dietary Approaches to Stop Hypertension; MMDS, Modified Mediterranean Diet Score; HPDI, Healthful 
Plant-based Diet Index; CHR, chromosome. 
aRegression coefficients are DNA methylation (M-value SD) change for per 1 SD increase in diet scores from fixed effects meta-analysis using Model 1 (non-adjusted for BMI). 
bRegression coefficients are DNA methylation (M-value SD) change for per 1 SD increase in diet scores from fixed effects meta-analysis using Model 2 (adjusted for BMI). 
cI2 for heterogeneity of coefficients across cohorts: ranges from 0 (absence of heterogeneity) to 1 (maximum heterogeneity). 
dChange in the diet–CpG beta coefficient after adjustment for BMI (from Model 1 to Model 2). A positive value reveals attenuation, a null value reveals no change in coefficient, and a 
negative value reveals a coefficient of stronger magnitude after adjustment for BMI. 
eHypomethylation of cg05575921 has been consistently associated with smoking.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Gene enrichment analysis in protein complex–based sets (ConsensusPathDB) of the false discovery rate– 
significant diet-associated CpGs 

Protein complexa All entities (n)b Overlapping entities (n)c P-valued FDRe  

SKI–SMAD3 complex 2 2 4.E−05 4.E−04 
SKI–SMAD3–SMAD4 complex 3 2 1.E−04 4.E−04 

SMAD3–SKI–NCOR complex 3 2 1.E−04 4.E−04 

SMAD3–cSKI–SIN3A–HDAC1 complex 4 2 2.E−04 6.E−04 
LGR4–RSPO supercomplex 11 2 2.E−03 4.E−03 

CHUK–NFKB2–REL–IKBKG–SPAG9–NFKB1–NFKBIE– 

COPB2–TNIP1–NFKBIA–RELA–TNIP2 complex 

12 2 2.E−03 4.E−03 

R-smad:smad4 complex:corepressor:deacetylase:responsive element 21 2 0.01 0.01 

Cytokine receptor:SOCS3 40 2 0.03 0.03 

aFsetID and URLs to protein complex–based set term visualization can be found in Supplementary material online, Table S10. 
bNumber of genes in the protein complex term. 
cNumber of genes annotated to the list of the FDR-significant diet-related CpGs. 
dP-value for overrepresentation of the protein complex term within the CpG list. 
eFalse discovery rate (adjusted P-value).  
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Table 5 Mendelian randomization analyses between diet-related CpGs and four cardiometabolic traits and coronary 
heart disease 

CpG and outcome SNPs Assoc. MR 
(IVW)a 

Validated MR assumptionsb F-stat MR estimate: IVW 

MR-Egger 
intercept 

MR 
estimates 

SNP 
heterog. 

Beta/OR (95% CI) P-value  

cg00711496 (PRMT1) association with diet +  
Body mass index 14 — Yes Yes Yes 582  −0.026 (−0.032; −0.020)  <1.0E–5  
Systolic blood pressure 15   Yes No No 558  −0.13 (−0.23; −0.032)  0.009  

Triglycerides 14         558  −6 × 10−4 (−0.004; 0.003)  0.710  

Type 2 diabetesc 15 — Yes Yes Yes 558  0.98 (0.97; 0.98)  <1.0E−5  
Coronary heart diseasec 14 — Yes Yes Yes 558  0.98 (0.96; 0.99)  0.01 

cg02079413 (SNORA54) association with diet −  
Body mass index 33 + Yes Yes Yes 869  0.012 (0.010; 0.014)  <1.0E−5  
Systolic blood pressure 37        935  0.018 (−0.026; 0.062)  0.431  

Triglycerides 37  Yes Yes No 935  −0.003 (−0.005; −6 × 10−4)  0.014  

Type 2 diabetesc 37  Yes Yes No 935  0.98 (0.97; 0.99)  <1.0E−5  
Coronary heart diseasec 32        935  1.00 (1.00; 1.01)  0.203 

cg02107842 (MAST4) association with diet −  
Body mass index 5 + Yes Yes Yes 359  0.011 (0.005; 0.017)  <0.001  
Systolic blood pressure 6        327  −0.009 (−0.21; 0.20)  0.929  

Triglycerides 6  No No No 327  −0.015 (−0.026; −0.003)  0.012  

Type 2 diabetesc 6  Yes No Yes 327  0.99 (0.98; 1.00)  0.004  
Coronary heart diseasec 5  Yes No Yes 327  0.96 (0.94; 0.99)  0.011 

cg02650017 (PHOSPHO1) association with diet +d  

Body mass index 17  No No No 569  −0.015 (−0.020; −0.009)  <1.0E−5  
Systolic blood pressure 19        534  −0.002 (−0.16; 0.15)  0.981  

Triglycerides 18  Yes Yes No 534  0.014 (0.007; 0.022)  <0.001  

Type 2 diabetesc 19 + Yes Yes Yes 534  1.03 (1.02; 1.05)  <1.0E−5  
Coronary heart diseasec 17  No Yes No 534  0.83 (0.81; 0.85)  <1.0E−5 

cg03084350 (PLCD1) association with diet −  
Body mass index 10  Yes No Yes 149  0.010 (0.002; 0.019)  0.022  
Systolic blood pressure 13        142  0.029 (−0.17; 0.22)  0.768  

Triglycerides 13        142  0.003 (−0.005; 0.011)  0.486  

Type 2 diabetesc 13        142  0.99 (0.94; 1.04)  0.641  
Coronary heart diseasec 10        142  1.00 (0.96; 1.03)  0.806 

cg05399785 (WDR8) association with diet −  
Body mass index 15  Yes Yes No 421  0.007 (6 × 10−4; 0.013)  0.031  
Systolic blood pressure 16 + Yes Yes Yes 406  0.10 (0.009; 0.19)  0.031  

Triglycerides 16  Yes Yes No 388  −0.009 (−0.014; −0.004)  <0.001  

Type 2 diabetesc 16  Yes No Yes 388  0.99 (0.98; 1.00)  0.01  
Coronary heart diseasec 16        388  0.99 (0.97; 1.01)  0.389 

cg05575921 (AHRR) association with diet +d  

Body mass index 22        222  −0.007 (−0.014; 8 × 10−4)  0.08  
Systolic blood pressure 22        219  0.20 (−0.005; 0.40)  0.055  

Triglycerides 22        219  0.002 (−0.001; 0.006)  0.197  

Type 2 diabetesc 22        219  0.99 (0.96; 1.02)  0.525  
Coronary heart diseasec 17 — Yes Yes Yes 219  0.98 (0.96; 1.00)  0.052 

cg13518625 (intergenic) association with diet +d  

Body mass index 9  Yes No No 263  0.019 (0.009; 0.029)  <0.001  
Systolic blood pressure 11        272  0.077 (−0.14; 0.30)  0.49  

Triglycerides 11        272  −0.028 (−0.067; 0.011)  0.164  

Type 2 diabetesc 11  Yes No Yes 272  1.09 (1.06; 1.12)  <1.0E−5  
Coronary heart diseasec 8  Yes No Yes 272  1.08 (1.05; 1.11)  <1.0E−5                                                                                                                                                                                                                    

Continued 

8                                                                                                                                                                              J. Domínguez-Barragán et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/advance-article/doi/10.1093/eurjpc/zw
ad317/7289158 by U

niversity C
ollege London user on 23 O

ctober 2023



One CpG, cg05575921, maps to AHHR, and hypermethylation at this 
CpG has been shown to be associated with lower inflammation, carotid 
intima–media thickness, and higher risk of myocardial infarction,68 while 
hypomethylation has been consistently associated with smoking.69 

Therefore, it is possible that hypermethylation might be more driven 
by non-smoking status than by diet quality, as it was also suspected in 
the recent EWAS of coffee consumption,8 although smoking status 
was adjusted for. However, when stratifying by smoking status, the asso-
ciation with diet was only apparent in smokers: this might suggest that 
diet-related hypermethylation only occurs at this site if already hypo-
methylated (as typically observed for smokers), as a potential protective 
mechanism.70 Our result aligns with those of a recent Japanese study, 
whereby fruit intake and coloured vegetable intake were associated 
with hypermethylation at this CpG only in current and ex-smokers.71 

Among other CpGs of interest, cg18181703 is annotated to SOCS3, 
a gene involved in immune system regulation. This CpG is positively as-
sociated with diet quality, and inverse associations between methyla-
tion at this CpG and C-reactive protein,48 BMI,56,61,72 and T2D risk58 

have been reported. This CpG was previously identified as associated 
with diet quality, and all-cause mortality,9 suggesting this epigenetic 
modification by diet might involve inflammation. Unfortunately, we 
could not perform MR due to the lack of mQTLs for this CpG. 
Similarly, methylation at CpGs such as cg07573872, cg12269535, and 
cg26470501 has been associated with lower BMI and C-reactive pro-
tein levels in previous studies.48,49,56 Moreover, cg07573872 maps to 
SBNO2, cg12269535 maps to SRF, and cg26470501 maps to BCL3, 
which are all genes implicated in inflammation response.54,73 

Functional analyses suggested an overrepresentation of diet-related 
genes in the SKI–SMAD3 complex and TGF-β signalling pathway. The 
SMAD complex interfaces signalling pathways targeting gene promo-
ters and is required for the TGF-β transcriptional responses.74 Both 
SMADs and TGF-β proteins, as well as the transcription factor 
NF-κB, MAPK, and IL-1, which were also enriched, are involved in in-
flammatory signalling and cardiovascular diseases.75–77 Another 

interesting enriched complex was RSPO, which can agonize the 
Wnt/β-catenin signalling pathway which controls vascular smooth mus-
cle cell phenotypic modulation in cardiometabolic disease.78 Finally, 
there was an overrepresentation of genes involved in the vascular 
endothelial growth factor VEGF-A/VEGFR2 pathways, which are in-
volved in atherosclerosis.79 

Our findings suggest that changes in DNAm may mediate the pro-
tective effects of diet on chronic disease. Methylation levels corre-
sponding to higher diet quality were associated in previous studies 
with lower levels of risk factors for cardiometabolic disease (adiposity, 
low-grade inflammation, dyslipidaemia, T2D, and ischaemic heart dis-
ease), better lung function, and lower risk of other chronic inflamma-
tory diseases (e.g. Crohn’s disease). Furthermore, MR analysis 
supported causal effects of five CpGs [cg02079413 (SNORA54), 
cg02107842 (MAST4), cg05399785 (WDR8), cg23761815 (SLC29A3), 
and cg00711496 (PRMT1)] on BMI, of cg00711496 (PRMT1) on T2D, 
of two CpGs [cg00711496 (PRMT1) and cg05575921 (AHRR)] on 
CHD, and of cg05399785 (WDR8) on SBP. PRMT1 expression is ele-
vated in certain conditions, such as cancer, and in several tissues, 
such as blood vessels, and it plays an important role in immunity and 
cardiovascular disease.80 Therefore, this diet-modifiable CpG might 
be an interesting target as it lies on the pathway between diet quality 
and various cardiometabolic traits. Nonetheless, MR evidence also sup-
ports causal associations between three CpGs and cardiometabolic 
traits in which better diet quality DNAm levels were associated with 
worse cardiometabolic health markers, which were opposite to what 
was found in observational EWAS, in particular for cg23761815 
(SLC29A3) and cg02650017 (PHOSPHO1) in relation to T2D risk. 
However, it should be noted that when restricting the analysis to co-
horts of European ancestry, cg02650017 was less strongly associated 
with diet, which might indicate an influence of ethnicity in this associ-
ation, and the use of European summary statistics in the MR might 
not be appropriate. Moreover, methylation at cg27395200 (BRD2) 
was negatively and consistently associated with healthy diet in the 
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Table 5 Continued  

CpG and outcome SNPs Assoc. MR 
(IVW)a 

Validated MR assumptionsb F-stat MR estimate: IVW 

MR-Egger 
intercept 

MR 
estimates 

SNP 
heterog. 

Beta/OR (95% CI) P-value  

cg23761815 (SLC29A3) association with diet −  
Body mass index 15 + Yes Yes Yes 111  0.023 (0.015; 0.030)  <1.0E−5  
Systolic blood pressure 15 — Yes Yes Yes 111  −0.27 (−0.40; −0.14)  <0.001  

Triglycerides 15        111  0.002 (−0.004; 0.008)  0.584  

Type 2 diabetesc 15 — Yes Yes Yes 111  0.92 (0.90; 0.94)  <1.0E−5  
Coronary heart diseasec 12        111  1.05 (0.98; 1.12)  0.134 

cg27395200 (BRD2) association with diet −  
Body mass index 2  ? ? ? 226  0.038 (0.028; 0.049)  <1.0E−5  
Systolic blood pressure 7        189  −0.21 (−0.61; 0.19)  0.293  

Triglycerides 7        189  −0.002 (−0.020; 0.015)  0.806  

Type 2 diabetesc 7        189  0.99 (0.96; 1.02)  0.511  
Coronary heart diseasec 6 — Yes Yes Yes 189  0.97 (0.94; 0.99)  0.019 

MR, Mendelian randomization; IVW, inverse-variance weighted; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; F-stat, F-statistic. 
aMR assumptions #1 [the genetic instruments used are robustly related to the exposure (F-stat > 10)] and #2 (no confounding of the genetic instrument–outcome associations is present) 
were verified for all CpGs. Assumption #3 (the genetic instruments are exclusively linked to the outcome by the exposure of interest) is verified if there is no evidence of pleiotropy. 
Pleiotropy can be detected if (i) the MR-Egger method shows a non-zero intercept; (ii) there is lack of concordance among MR estimates (magnitude, direction) in inverse-variance 
weighted and the alternative methods; and (iii) between-SNP heterogeneity is observed according to Cochran’s Q and Rücker’s Q. We provide here a summary of whether each of 
these three assumptions on absence of pleiotropy are met (yes) or not (no). The information to reach these conclusions can be found in Supplementary material online, Table S11. 
bEven if the IVW estimate is significant, we do not consider this result valid if the one or more of the MR assumptions are not verified. 
cFor type 2 diabetes and coronary heart disease, the estimate is an OR/RR. 
d‘Top’ diet-related CpG for which the association with diet was not attenuated after adjustment for BMI.  

Blood DNA methylation signature of diet quality and association with cardiometabolic traits                                                                                    9 
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/advance-article/doi/10.1093/eurjpc/zw
ad317/7289158 by U

niversity C
ollege London user on 23 O

ctober 2023

http://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwad317#supplementary-data


present meta-EWAS but with various unhealthy behaviours (smoking51 

and alcohol consumption54) previously. Higher methylation at this CpG 
was associated with lower CHD risk in MR analyses, whereas it was as-
sociated with higher levels of fasting insulin81 and higher risk of 
Alzheimer’s disease55 but lower risk of COPD50 in previous EWASs. 
Therefore, the methylation at this CpG in response to the environment 
and its role in disease aetiology is likely complex and involves different 
metabolic pathways. 

Our study has various strengths, including the large sample size (n =  
5274) from four well-characterized cohorts. While the FHS and WHI 
samples were used in previous diet quality EWASs,9,10 their results 
were not meta-analysed and focused on MMDS and AHEI, so the exam-
ination of the DASH and HPDI scores is unique to the present study. 
Moreover, unlike the largest EWAS on diet published to date,9 we in-
cluded smoking as a confounder variable due to its effect on DNAm, 
making our results less biased. Another strength is the use of both 
cross-sectional (WHI and Airwave) and longitudinal (FOS and 
REGICOR) designs: the top hit associations were consistent in direc-
tion and magnitude as seen in the forest plots, which indicates robust-
ness of these findings and partly rules out reverse causality bias. 
Similarly, WHI is ethnically diverse and comprise only women, and 
the AIRWAVE study is a younger population, but these differences 
did not result in distinctive patterns of diet–CpG associations for these 
two populations, indicating robustness of our findings. However, our 
study also has limitations. First, dietary exposures were not calculated 
using the same sources of information (AIRWAVE used 7-day food re-
cords while the other three cohorts used less precise food frequency 
questionnaires) and the same food items, so they might not reflect 
diet quality the same way. We tried to overcome this limitation by using 
widely used, replicable, validated, food-based dietary scores that do not 
include components on micronutrient intakes (except for sodium in the 
DASH score), which are notoriously unreliably estimated with food fre-
quency questionnaires.82 Second, DNAm was measured in blood, 
whereas the biological impact of diet may be more relevant to measure 
in specific tissues such as adipose tissue, gastrointestinal, or liver cells.83 

Third, our participants were middle aged adults of mostly European an-
cestry, which would limit the generalizability of our findings and might 
include selection bias. Studies of greater sample size with more diverse 
ethnicity representation are therefore necessary. Fourth, although MR 
comes as a great advance in observational epidemiology to investigate 
the causal effects of a wide range of exposures, there are some limita-
tions associated to the fact that it assumes a relationship between the 
exposure, outcome, and instrument variable (genetic variants) to be 
true. Nonetheless, we have thoroughly tested MR assumptions by con-
ducting different sensitivity analyses. 

To conclude, this study found 18 diet-associated CpGs, five of which 
replicating previous findings with diet quality. Twelve of these CpGs 
showed associations with cardiometabolic traits in previous studies, 
particularly inflammation, adiposity, and T2D, and our MR analysis re-
vealed some potential causal link with adiposity, T2D, blood pressure, 
and coronary artery disease. We demonstrate here that integrating in-
formation on diet quality and epigenetic markers has the potential to 
help understand the mechanisms that underlie the effect of diet on car-
diometabolic health. 
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