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Video-Based Activity Recognition for Automated
Motor Assessment of Parkinson’s Disease
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Abstract—Over the last decade, video-enabled mobile
devices have become ubiquitous, while advances in mark-
erless pose estimation allow an individual’s body position
to be tracked accurately and efficiently across the frames of
a video. Previous work by this and other groups has shown
that pose-extracted kinematic features can be used to re-
liably measure motor impairment in Parkinson’s disease
(PD). This presents the prospect of developing an asyn-
chronous and scalable, video-based assessment of motor
dysfunction. Crucial to this endeavour is the ability to auto-
matically recognise the class of an action being performed,
without which manual labelling is required. Representing
the evolution of body joint locations as a spatio-temporal
graph, we implement a deep-learning model for video and
frame-level classification of activities performed according
to part 3 of the Movement Disorder Society Unified PD
Rating Scale (MDS-UPDRS). We train and validate this sys-
tem using a dataset of n = 7310 video clips, recorded at
5 independent sites. This approach reaches human-level
performance in detecting and classifying periods of activity
within monocular video clips. Our framework could support
clinical workflows and patient care at scale through applica-
tions such as quality monitoring of clinical data collection,
automated labelling of video streams, or a module within a
remote self-assessment system.
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I. INTRODUCTION

A. Background

HUMAN Activity Recognition (HAR) is the process of
detecting and classifying human actions through sen-

sor data [1]. The widespread availability of easy-to-use video
recording devices increases the appeal of computer-vision-based
HAR, operating on a sequence of captured images. An auto-
mated activity recognition framework would facilitate many
practical applications such as behavioural analysis [2], auto-
matic security surveillance [3], and human-computer interactive
systems [4].

In the context of healthcare, HAR has found use as an as-
sistive tool for patient monitoring, remote medicine services or
eldercare [5], [6]. Mobile health technology has been shown
to effectively complement traditional public health services,
and the rapid growth of its popularity further motivates the
development of machine-driven HAR [7], [8]. However, HAR
remains challenging, due in part to the complexity of scenes and
human movements [9].

B. Motivation

Parkinson’s disease (PD) severity is often assessed using the
Movement Disorder Society Unified PD Rating Scale (MDS-
UPDRS) [13]. Part 3 of this four-part assessment comprises
14 motor activities performed by the patient and rated by an
examining clinician. The in-person character and duration of
the assessment impose constraints on the frequency of patient
monitoring efforts, as patients typically travel to each assessment
site and clinician time is finite. These limitations may be offset
by a remote, asynchronous and self-administered system capable
of collecting and analysing data with a high frequency and at
scale. To automatically guide the patient through an assess-
ment and validate that each motor task has been completed, an
assessment-focused activity recognition framework needs to be
developed. In addition to enhancing patient care, such a system
could be used to automatically annotate large quantities of motor
assessment data in clinical trials, greatly increasing the statistical
power of future PD research.

C. Previous Work

In recent years deep learning (DL) techniques have increas-
ingly been applied to HAR. Facilitated by large datasets and
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Fig. 1. Automated motor assessment pipeline. (A) The MDS-UPDRS motor assessment is recorded, for example, using a mobile device such
as a tablet and a collection of videos and corresponding severity scores is saved. (B) A pose estimation library OpenPose is used to estimate the
patient’s joint locations in each video frame and a spatio-temporal graph representation of the patient’s movement is created. (C) The pose graph
is processed using a deep-learning model which outputs a vector of predicted activity confidence scores for each frame of the input. (D) Regions
of patient activity are identified based on the frame-level prediction output. (E) Activity-specific joint-based signal is extracted using the predicted
region of activity and forms an input to a disease severity estimation model [10], [11], [12].

faster computing, DL frequently yields superior performance
compared to more traditional “shallow” techniques. An added
benefit of many DL methods is the end-to-end learning and
prediction setup, removing the need for feature engineering and
validation [14], [15].

Previous HAR work broadly falls into two categories accord-
ing to input data, accelerometer data [16] and image data. Within
vision-based HAR, two further subdivisions can be delineated:

1) Pixel-based activity recognition from a video stream [17],
[18]. These methods process the video input captured by a
camera directly which allows the model to extract features
describing both the human subjects and their surround-
ings. However, the typically large input dimensionality
makes these methods vulnerable to over-fitting in the
absence of vast quantities of training data, which may
prevent such systems from generalising well [19].

2) A two-step framework whereby human pose estimation
(i.e. annotation of body joint locations) is performed first,
followed by activity recognition based on the estimated
key points [20], [21]. In this approach, the prediction
errors from both pose estimation and activity recognition
modules may compound, but the great dimensionality
reduction implicit in the first stage appears to more than
compensate, resulting in a good performance on tractable
data sets.

In the context of Parkinson’s disease, HAR methods have
been applied to recognise a set of universal activities such
as walking or standing [22], [23], but its application to the
clinically relevant MDS-UPDRS motor assessment remained,
to our knowledge, unexplored. Additionally, the performance of

deep learning methods in medical settings is often limited by the
amount of available training data, preventing in-depth evaluation
of typically data-hungry deep learning frameworks [24].

D. Our Approach

In this work, we present an application of vision-based HAR
method for the classification of motor assessment tasks per-
formed by Parkinson’s patients. We train a deep learning model
to classify patient’s activity based on estimated body joint lo-
cations obtained using an open-source pose estimation library
OpenPose [25] and evaluate the approach using a large multi-site
dataset of MDS-UPDRS part 3 assessment video recordings. We
extend the framework beyond video-level activity classification
to perform the prediction on a frame-by-frame basis, allowing
the model to recognise multiple activities in any order within a
single video clip of arbitrary length and specify the beginning
and the exact duration of the activity. This flexibility predisposes
the system to a greater number of real-world applications.

II. METHODS

Fig. 1 illustrates the pipeline for video collection, pose
estimation, and activity recognition. The introduced activity
recognition module can facilitate the automatic localisation of
MDS-UPDRS motor tasks within videos, accommodating fur-
ther analysis such as model-based disease severity estimation.
Clinical assessments of Parkinson’s patients were conducted
across multiple centres in the U.K. and USA, in the course
of clinical care. Video recordings of these assessments were
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TABLE I
VIDEO AND SEVERITY RATING COUNTS BY MDS-UPDRS ITEM CLASS

collected through KELVINTM [26], a video-based motor assess-
ment platform developed by Machine Medicine Technologies
(MMT) [27].

A. Data

1) Activity Classes: The MDS-UPDRS instructions specify
a set of items to be performed by a patient and evaluated by
an expert clinician in terms of PD symptom severity. In our
dataset, every assessment has been recorded and saved in the
form of multiple video clips, one video per item. For training
of the activity recognition model, we selected a subset of items
that can be performed without assistance, taking into consider-
ation overall informativeness about a patient’s holistic disease
state [28]. Some MDS-UPDRS items correspond to two distinct
activities, such as left and right hand Finger Tapping. This has
been reflected in the activity class labels, shown in Table I, as
the model makes the distinction between laterals. An additional
No Action class has been included to indicate when patients are
not performing any of the target activities.

2) Multi-Site Patient Population: The data include 7310
videos recorded as a part of 1170 PD motor assessments com-
pleted at five sites: DCMN (Department of Clinical and Move-
ment Neurosciences, Institute of Neurology, University College
London), NRC (Neuroscience Research Centre, Molecular and
Clinical Sciences Research Institute, St. George’s, University of
London), DRC (Dementia Research Centre, Institute of Neurol-
ogy, University College London), PDMDC (Parkinson’s Disease
and Movement Disorders Centre, Baylor College of Medicine),
TSL (The Starr Lab, University of California San Francisco).

To evaluate the cross-patient performance of the model we
utilise a 5-fold cross-validation split of the data on an assessment
level, stratified by the patient’s disease severity. This way, all
videos from a single assessment appear in only one of the cross-
validation folds, ensuring that the model is not trained and tested
using the same patient data.

To test the model’s ability to generalise to unseen assessment
environments, data from a single site, namely TSL, have been
held out of the cross-validation setup for cross-site performance
comparison. The distribution of assessments across sites is
shown in Table II. Furthermore, data on patient characteristics
have been available for 620 out of 1170 assessments. A summary
of the information is presented in Table III.

3) Region of Interest: Along with the MDS-UPDRS item
label, the dataset contains a human-annotated region of interest
(ROI) for each activity in the video. The ROI specifies the
interval of frames within which an item-specific activity took
place. Combining the ROI annotation with the activity label
enables frame-level prediction training, where each frame within
the specified range is considered as belonging to the target
activity class. Frames outside the annotated region are assigned
the No Action label.

4) Data Collection: The video assessments used for this work
were collected using consumer-grade handheld devices with
an installation of KELVINTM, a clinical tool that has been
adopted in line with the respective procedures of each institution.
No specific requirements regarding the distance of the camera
to the subject were imposed during data collection. Informed
consent was obtained from all subjects and the agreements
formed with each institution allow for the data to be used in
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TABLE II
SITE DISTRIBUTION

TABLE III
PATIENT CHARACTERISTICS

this context. A subset of the data has been collected as part of
clinical trials: Exenatide for Parkinson’s Disease (EXENATIDE-
PD, NCT01971242), Antidepressants Trial in Parkinson’s Dis-
ease (ADepT-PD, NCT03652870) and The Motor Network in
Parkinson’s Disease and Dystonia: Mechanisms of Therapy
(NCT03582891).

5) Pose Estimation Processing: Prior to activity classifica-
tion, 2D coordinates of estimated body joint locations were
extracted from every frame in each video using a marker-
less deep-learning pose estimation library OpenPose [25]. The
framework is integrated as part of the KELVINTM platform.
Pixel coordinates and estimation confidence scores for 25 body
key points and 10 hand key points (fingertips) have been selected
to capture poses and movements characteristic to the predicted
tasks.

B. Model

1) Spatio-Temporal Pose Graph: Instead of treating each
key-point independently, the model views the input as a spatio-
temporal graph representing the evolution of the estimated body
pose. Key-point locations correspond to the graph vertices and
are connected by two sets of edges: 1) spatial and 2) temporal.
The spatial edges connect joints within each frame, according to
the anatomical construction of the human skeleton. The temporal
edges connect corresponding joints in neighbouring frames. A
simplified representation of a spatiotemporal pose graph has
been depicted in Fig. 1(B)

2) Network Architecture: The model architecture is based
on the ST-GCN model introduced in [14]. It consists of 10

graph convolution layers operating in both spatial and temporal
dimensions, followed by a final prediction convolution layer.
Compared to common convolution neural networks (CNNs)
where the convolution window slides over a well-defined grid-
structured input, graph convolution networks (GCNs) perform
the calculation on a graph-based input instead.

Given a series of poses, the original model outputs a single
action prediction vector of size (C), where C is the number
of target classes. It makes use of strided temporal convolutions
and a global averaging layer. Increasing the stride of temporal
convolutions increases the receptive field of successive layers
and allows the model to capture features of predicted activity
spanning a broader time window. The global averaging layer
allows video-level action prediction for image sequences of
arbitrary length.

The model structure has been augmented to predict the per-
formed action on a frame level, outputting a prediction vector of
shape (T,C). To preserve the size of the input’s time dimension
T , the stride values in all temporal convolution layers have been
set to 1, and the time averaging step has been omitted.

C. Training Setup

1) Data Sampling: Each input video captures a single MDS-
UPDRS item and may contain up to two ROI annotations (one for
each lateral activity). To prevent the model from learning order
dependencies between action classes (for example, right-hand
movements are generally followed by left-hand movements),
the input for double-labelled items is split between the two ROI
annotations during training.
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Manual ROI labellers were instructed to label only one ex-
ample of an activity class in each video. To avoid presenting
the model with a No Action label for non-annotated regions of
true activity, for training, we cut the input to a maximum of 45
frames outside either end of the annotated ROI. To offset the loss
of true No Action regions further away from the ROI, we reverse
the remaining 45-frame segments of No Action and append them
to the ends of the input. For validation and testing no cutting has
been applied.

The duration of PD assessment can vary considerably within
and between activity classes. Considering the frame-level pre-
diction setup we leverage the fully convolutional model ar-
chitecture and view each input as a set of T examples and
randomly sample a fixed number of consecutive frames (sam-
pling window) from the processed videos to accommodate input
length differences for batch training. We have chosen a sampling
window of 150 frames and a batch size of 16. Model validation
and testing have been performed without subsampling.

2) Data Augmentation: During training, the sampled pose
sequences were randomly augmented using four transforma-
tions: shift, rotation, scaling and horizontal flip; designed to
simulate varying camera placements. Moreover, flipping the
pose horizontally allowed for left-lateral movements to be
considered as right-lateral activity examples and vice versa.
Additionally, out-of-frame masking was randomly applied to
chosen classes, removing pose information from lower or upper
parts of the video, for upper- and lower-body activity classes
respectively.

3) Training: The models have been trained using the common
cross-entropy loss LCE . In the frame-level setup, it took the
form:

LCE = −
N∑

n=1

(
L∑

l=1

(
C∑

c=1

log(xn,l,c)qn,l,c

)
1

L

)
1

N
(1)

where N is the size of a sample batch, L is the length of a
sampling window and C is the number of predicted classes.
xn,l,c is the predicted probability for activity class c in the lth
frame of the nth sample. qn,l,c is the target activity label for
the corresponding frame. Target labels have been augmented
according to a smoothing strategy introduced in [29]. To prevent
the model from becoming too confident in a single prediction
and overfitting to the training data, the true binary frame label y
is transformed according to:

q(y) = (1− ε)y +
ε

C
(2)

The smoothing parameter ε has been set to 0.1 as per the original
implementation.

The training gradient descent has been performed using the
Adam [30] optimiser with an initial learning rate of 0.01. A
maximum number of training epochs has been set to 100. The
adjustment of the learning rate during training has been guided
by a linear scheduler, which monitored a validation set loss and
decreased the learning rate by a factor of 3 if no validation
score improvement has been recorded for 5 consecutive epochs.
Model training has been distributed using AWS batch service
over GPU-enabled (NVIDIA V100) compute instances.

Fig. 2. Model-predicted ROI extraction strategy. Raw frame-level out-
put of the ST-GCN network (top). Connected regions of similar activities
are grouped together (middle). Final prediction output after frame ma-
jority voting over grouped regions (bottom).

D. Post-Processing and ROI Prediction

One of the objectives of the framework is to accurately anno-
tate the region of a patient’s activity. As the activity prediction
is performed on a frame-by-frame basis, the connectivity of
outputted single-class regions may be affected by factors such as
noise present in pose estimation data. To counter confusion be-
tween classes sharing similar poses and movement patterns, for
example left hand FT and left hand HM, the frame-level output
is processed by first finding connected regions of limb-grouped
activities, and then assigning the final class label to each region
according to the majority vote of the constituting frames. The
process is visualised in Fig. 2. Since the human-annotated ROIs
specify only one region of distinct activity per video, the longest
connected region of each predicted activity class is considered
the final model annotation.

E. Evaluation

1) Video-Level Classification: In the video-level setup, given
a series of poses from a single video, the model has to identify
the corresponding MDS-UPDRS task being performed by the
patient.

Model performance is evaluated using two metrics: balanced
accuracy: prediction accuracy averaged across MDS-UPDRS
items; and top-3 accuracy, where the target class is among the
top 3 most confident predictions.

We compare the ST-GCN’s performance with two “shallow”
machine learning models: KUPDRS [10], [11], [12], originally
developed for PD severity estimation, extracts MDS-UPDRS
item-specific signals and features and performs the prediction
using a random forest classifier. The model has been adopted
to perform activity recognition instead of severity estimation;
Cov3DJ [31], constructs a key-point covariance-based descrip-
tor to characterise pose movements throughout the video. The
obtained representation is classified using a linear SVM model.

2) ROI Prediction: Predicting the activity on a frame-by-
frame basis allows the model to localise and classify regions
of patient activity within an assessment video. The processing
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of the raw model prediction into ROIs has been described in
II-D. We choose a popular segmentation accuracy measure,
the intersection over union (IOU), as the primary metric to
evaluate the correspondence of human- and model-provided
ROI annotations. The IOU score specifies the quality of overlap
between two activity region annotations. It has been calculated
for all labelled regions of patient activity.

3) Annotation Agreement Comparison: To analyse the level
of agreement between different human annotations and compare
them to the model-predicted ROI, 80 videos (10 videos per
predicted MDS-UPDRS item), not found in the main dataset
and without an existing ROI annotation, have been selected and
independently annotated by three human labellers.

For each such video, we construct a “robust” label by com-
bining two human annotations. Given 3 possible pairings of
human labellers, we obtain 3 such annotations. Each “robust”
annotation consists of 3 regions: 1) the overlap of two ROI anno-
tations, 2) segments covered by only one of the ROI annotations,
and 3) frames covered by neither ROI annotation. Regions 1
and 3 are considered “robust” annotations of activity and No
Action regions respectively and form the video ground-truth
label. Region 2 is regarded as an area of human disagreement
and is excluded from evaluation.

We then compute the IOU score for all “robust” labels, once
using the model prediction, and once based on the remaining
human annotation (one that has not been used to construct the
“robust” label). We compare the scores to see whether the model-
and human-predicted activity regions differ significantly in the
presence of inter-labeller variability.

4) Disease Severity Estimation: For every video in the
dataset, there exists a set of corresponding PD severity scores
assigned by expert clinicians according to the MDS-UPDRS
manual. Previous work has shown that machine-learning models
can analyse PD assessment videos within manually annotated
ROIs of patient activity through the extraction of kinetic signals
and features, and yield estimates of the motor impairment sever-
ity [10], [11], [12], [32]. To test the adequacy of using model-
predicted ROIs for PD severity inference, we cross-validate the
severity-estimation models trained with human-annotated ROI
data and compare test-fold prediction accuracy based on both
human- and model-annotated ROIs.

III. RESULTS

A. Video-Level Classification

The confusion matrix for video-level activity classification
is shown in Fig. 3. The trained model achieves a mean cross-
validation accuracy score of 96.51% balanced across predicted
MDS-UPDRS items. Noticeable confusion occurs between
items sharing similar movement patterns and poses: hand-items
including FT, HM and PS; as well as leg-items TT and LA.

Cross-validation and held-out site performance comparison
of the deep learning framework with two “shallow” machine
learning models for video-level activity classification is shown in
Table IV. Although the traditional machine learning models have
indicated the ability to discriminate between the target classes in
most cases, the deep learning model significantly outperforms
both alternatives.

Fig. 3. Row-normalised confusion matrix for video-level classification
of MDS-UPDRS related activities. The ST-GCN achieves almost perfect
prediction accuracy regardless of the target item. Most prominent con-
fusion arises within groups of hand- and leg-related items, which could
be explained by the high similarity of poses involved.

TABLE IV
VIDEO-LEVEL ACTIVITY RECOGNITION

The held-out test site performance decreases compared to the
cross-validation result for all models, suggesting the methods
might not generalise as well to unseen assessment settings.
Further inspection of the results revealed the KUPDRS model
can be sensitive to patients not being fully in-frame, which leads
to the omission of samples. Recalculation of ST-GCN held-out
site scores excluding samples discarded by the KUPDRS model
yields 95.19% balanced accuracy and 99.39% top-3 accuracy
scores, almost matching the cross-validation data performance.

B. ROI Prediction

Compared to human annotators, the model has no prior knowl-
edge of the motor assessment item being captured in the video
and can misclassify the identified activity ROI. Misclassification
of a correctly localised region of activity will result in a zero IOU
score. Similarly, if the longest-connected region of the target
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TABLE V
REGION OF INTEREST PREDICTION

Fig. 4. Examples of human- and model-annotated regions of activity.
Video 1) The model has been able to identify the activity in the very
first frame of the video despite the absence of prior context. Video 2)
The predicted region of Postural Tremor of Hands extends significantly
beyond the human annotation. The way PT activity is performed can
vary between assessment sites, leading to inconsistency in labelling.
Video 3) Regions of correct activity are accurately localised within the
video. Despite the relatively low IOU score for Gait Towards Camera
class, the automatically annotated region exceeds the human label by
less than a second on either end.

activity (chosen as the final model ROI prediction according
to II-D) has been unlabelled, the metric score will again be 0.
Mean IOU scores, both including and excluding misclassified
or mislocalised model ROIs have been reported in Table V.

For correctly localised and classified regions of activity (the
predicted region overlaps with the labelled one), the mean IOU
score across most of the activity classes exceeds 0.8. Examples of
model-annotated regions of activity together with correspond-
ing IOU scores are visualised in Fig. 4. The cross-validation

Fig. 5. ROI prediction performance for different patient groups. The
performance decreases for patients with higher PD severity. The severity
score of 4 is often assigned to patients who are unable to perform
the desired activity. A lack of kinetic information can lead to model
failure, as it cannot see the subject’s intention to perform the task. The
model displays no significant difference within sex and age groups. Age
grouping has been based on the median age. Standard deviations of
5-fold cross-validation results were used to produce the presented error
bars.

results broken down by disease severity, sex and age are shown
in Fig. 5.

The misclassification rate for hand and leg-related items is
around 5%, which corresponds to the video-level confusion for
these tasks. For Gait, patients often perform the task twice,
repeating the walk towards and away from the camera. Choice
of the unlabelled Gait ROI contributes to its mislocalisation rate.
Although Postural Tremor of Hands has been well-identified on
the video level, many of the predicted regions do not overlap with
the human annotation. PT assessment can vary between sites,
which can cause divergence in human labelling and negatively
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Fig. 6. Confusion between No Action frames and predicted classes,
grouped by MDS-UPDRS items. The No Action frames are mainly
confused with the video item label, which suggests that regions of true
activity are over-predicted by the model, or, more likely in our view, have
not been annotated.

impact model training and evaluation. For overlapping predic-
tions, however, the IOU score matches that of other activity
classes.

Although most of the items have shown no significant de-
crease in performance for the held-out site, notable differences
can be seen for leg-related activities and Arising from Chair.
Substantially different camera placements or failure to capture
the entire patient in the frame can negatively affect the connec-
tivity of the predicted activity region. The result highlights the
importance of data capture standardisation.

The confusion for No Action frames grouped by
MDS-UPDRS items is shown in Fig. 6. The regions of
No Action are mostly confused with the corresponding video
item label, despite the similarity of No Action poses between
classes such as sitting down for all hand- and leg-items. This
may suggest that the ground-truth ROIs occasionally cover only
a subsection of the intervals during which the relevant activity
was being performed, or the video contains an additional,
unlabelled region of the target activity.

C. Multi-Item Video Stream

One of the benefits of a frame-by-frame activity prediction
setup is the ability to process video inputs of arbitrary length and
automatically annotate and classify multiple regions of patient
activity. To validate the model’s capability of continuous, multi-
item activity recognition, a single video of a subject performing
MDS-UPDRS specified activities in a randomised order has
been recorded and processed by the proposed framework. As
shown by Fig. 9, the model has identified all regions of human
activity and correctly classified 91.8% of all frames labelled by
a human annotator.

Fig. 7. Comparison of human and model performance in identifying
“robust” regions of patient activity. For half of the item classes, the
model-human agreement level matches that of human-human. 95%
confidence intervals presented in the figure are based on 1000 bootstrap
iterations. Annotation of significant differences is based on a paired t-test
with Bonferroni correction applied to the resulting p-values.

Fig. 8. Row-normalised confusion matrices of disease severity esti-
mates based on human-annotated ROIs (Top-left) and model-annotated
ROIs (Top-right). The difference in severity score estimation accuracy
based on human- and model-annotated regions of activity with 95%
bootstrap confidence intervals (Bottom). In summary, for most clinical
scores the severity estimation models display no systematic differences
in performance when model-annotated ROIs and associated kinetic
features are used to infer the disease severity.

D. Annotation Agreement Comparison

Comparison of mean IOU for each predicted MDS-UPDRS
item under robust ROI labels, for human annotations and model
predictions, has been shown in Fig. 7. The model, in general,
performs on par with human annotators. Despite the statistically
significant differences in mean IOUs between human and model
video annotations, the magnitudes may be considered negligible.
For Pronation Supination and Leg Agility, the significant dif-
ference in reported TPR arises due to the model identifying the
wrong class, while still accurately identifying the activity region.
This happens in 1-2 videos of these items. For Gait, the decrease
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Fig. 9. Example implementation of continuous activity recognition with raw (no post-processing) frame-level prediction. The model has been able to
identify multiple activity classes in a single video, with overall frame prediction accuracy of 91.8%. Video available at https://youtu.be/7dqgAHdJank.

in performance may be caused, in part at least, by noise present
in pose estimates when patients are far from the camera. The
difficulty of consistent PT and AFC activity annotation is shown
by relatively low human-to-human agreement, which coincides
with previous results.

E. Disease Severity Estimation

Severity-estimation model results based on human and model
ROI annotations are presented in Fig. 8. Model annotated ROIs
cause no systematic decrease in SE model performance for
severity scores lower or equal to 3. In particular, acceptable
accuracy, or +/−1 accuracy (i.e. prediction error within 1 point
on the MDS-UPDRS scale), shows no clinically nor statistically
significant change. As previously shown in Fig. 5, the ROI
prediction accuracy decreases for the highest-severity patients.
The model might fail to recognise when the patient intends but
is unable to perform the activity, which consequently would bias
the severity estimate towards lower scores, as we limit the input
to “active” regions only.

IV. DISCUSSION

A. Summary of Result

We developed a vision-based HAR framework capable of
dynamically classifying motor assessment tasks performed by
Parkinson’s disease patients. A deep learning model, utilising the
estimated body joint locations of the patient as input, was trained
to distinguish between 8 MDS-UPDRS items and correspond-
ing 15 activity classes. The model achieves 96.51% balanced
accuracy in video-level activity classification and outputs highly
accurate annotations at a frame-by-frame temporal resolution.

We have additionally shown how our method generalises to
new patient data, recorded at settings not seen during training,
displaying comparable performance on data collected at a held-
out site for most of the predicted activities.

By comparing mean inter-human and human-model differ-
ences in the annotation of patient activity regions, we demon-
strated a close correspondence between human and model ac-
tivity labelling. Finally, using model-annotated regions of inter-
est for algorithmic disease severity estimation yielded similar
performance, potentially obviating the need for (previously re-
quired) human labelling.

B. Limitations and Future Work

While in most cases the model is able to provide a continuous
region of correct activity class prediction, areas of prominent
confusion have been identified. Further work will be undertaken
to improve the activity recognition accuracy for classes sharing
similar movement patterns and body poses. Exploration of ex-
tensions and alternatives to the presented framework inspired
by advances in general HAR modelling will be a part of future
research endeavours. This may entail the addition of higher-
order pose information including inter-frame key-point velocity
or acceleration.

Considering the effect of inconsistent ROI labelling on frame-
level-based activity prediction training, a model-assisted re-
labelling effort may be justified. Additionally, techniques such
as self-distillation may be used to offset the negative impact of
noisy labels.

The presented activity recognition pipeline has been devel-
oped using cloud servers. However, many practical applications
will require real-time local computation that is deployable on
commercially available mobile device hardware. Future devel-
opment efforts may therefore focus on mobile device implemen-
tation.

C. Practical Applications

Combined with disease severity estimation models [10], [11],
[12], this HAR framework is a crucial element in achieving
remote, asynchronous PD motor assessment at scale. Potential

https://youtu.be/7dqgAHdJank
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applications include, but are not limited to, massive remote
clinical trials, closed-loop and patient-driven programming of
both invasive and non-invasive neuromodulation devices, and
the general medical management of patients.

ACKNOWLEDGMENT

Data were collected at; Department of Clinical and Move-
ment Neurosciences, Institute of Neurology, University College
London; Neuroscience Research Centre, Molecular and Clinical
Sciences Research Institute, St. George’s, University of London;
Dementia Research Center, Institute of Neurology, University
College London; Parkinson’s Disease and Movement Disorders
Center, Baylor College of Medicine; The Starr Lab, University
of California San Francisco. We thank all the staff involved in
the data collection.

We thank the employees at Machine Medicine Technologies
for labelling the regions of interest in all videos.

Competing interests: Machine Medicine Technologies have
funded this work and are the owner of the developed tech-
nology. The Authors declare no other Competing Financial or
Non-Financial Interests.

REFERENCES

[1] E. Kim, S. Helal, and D. Cook, “Human activity recognition and pat-
tern discovery,” IEEE Pervasive Comput., vol. 9, no. 1, pp. 48–53,
Jan.-Mar. 2010.

[2] M. Popa, A. K. Koc, L. J. M. Rothkrantz, C. Shan, and P. Wiggers, “Kinect
sensing of shopping related actions,” in Proc. Int. Joint Conf. Ambient
Intell., 2012, pp. 91–100.

[3] R. Nar, A. Singal, and P. Kumar, “Abnormal activity detection for bank
ATM surveillance,” in Proc. IEEE Int. Conf. Adv. Comput. Commun.
Inform., 2016, pp. 2042–2046.

[4] A. Almeida and A. Alves, “Activity recognition for movement-based
interaction in mobile games,” in Proc. 19th Int. Conf. Human-Comput.
Interact. Mobile Dev. Serv., New York, NY, USA, 2017, Art. no. 55,
doi: 10.1145/3098279.3125443.

[5] T. T. Zin et al., “Real-time action recognition system for elderly people
using stereo depth camera,” Sensors, vol. 21, no. 17, 2021, Art. no. 5895.
[Online]. Available: https://www.mdpi.com/1424-8220/21/17/5895

[6] S. L. Lau, I. König, K. David, B. Parandian, C. Carius-Düssel, and M.
Schultz, “Supporting patient monitoring using activity recognition with
a smartphone,” in Proc. 7th Int. Symp. Wireless Commun. Syst., 2010,
pp. 810–814.

[7] G. D. Giebel and C. Gissel, “Accuracy of mhealth devices for atrial
fibrillation screening: Systematic review,” JMIR Mhealth Uhealth, vol. 7,
no. 6, Jun. 2019, Art. no. e13641. [Online]. Available: https://doi.org/10.
2196/13641

[8] S. N. Gajarawala and J. N. Pelkowski, “Telehealth benefits and barri-
ers,” J. Nurse Practitioners, vol. 17, no. 2, pp. 218–221, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S15554155
20305158

[9] B. Romaissa, B. Nini, M. Sabokrou, and A. Hadid, “Vision-based hu-
man activity recognition: A survey,” Multimedia Tools Appl., vol. 79,
pp. 30509–30555, 2020.

[10] S. Rupprechter et al., “A clinically interpretable computer-vision based
method for quantifying gait in Parkinson’s disease,” Sensors, vol. 21,
no. 16, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/
16/5437

[11] G. Morinan et al., “Computer-vision based method for quantifying rising
from chair in Parkinson’s disease patients,” Intell.-Based Med., vol. 6,
2022, Art. no. 100046. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2666521221000223

[12] G. Morinan et al., “Computer vision quantification of whole-body Parkin-
sonian bradykinesia using a large multi-site population,” npj Parkinson’s
Dis., vol. 9, no. 1, Jan. 2023, Art. no. 10. [Online]. Available: https:
//doi.org/10.1038/s41531-023-00454-8

[13] C. G. Goetz et al., “Movement disorder society-sponsored revision of the
unified parkinson’s disease rating scale (MDS-UPDRs): Scale presentation
and clinimetric testing results,” Movement Disord.: Official J. Movement
Disorder Soc., vol. 23, no. 15, pp. 2129–2170, 2008.

[14] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc AAAI Conf. Artif.
Intell., 2018, vol. 32.

[15] W. Yang, J. Zhang, J. Cai, and Z. Xu, “Shallow graph convolutional
network for skeleton-based action recognition,” Sensors, vol. 21, no. 2,
2021, Art. no. 452. [Online]. Available: https://www.mdpi.com/1424-
8220/21/2/452

[16] N. Dua, S. Singh, and V. Semwal, “Multi-input CNN-GRU based hu-
man activity recognition using wearable sensors,” Computing, vol. 103,
pp. 1–18, 2021.

[17] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[18] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 4489–4497.

[19] L. Chen, Curse of Dimensionality. Berlin, Germany: Springer, 2009,
doi: 10.1007/978-0-387-39940-9_133.

[20] F. M. Noori, B. Wallace, M. Z. Uddin, and J. Torresen, “A robust human
activity recognition approach using openpose, motion features, and deep
recurrent neural network,” in Proc. Image Anal. 21st Scand. Conf., 2019,
pp. 299–310, doi: 10.1007/978-3-030-20205-7_25.

[21] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 12026–12035.

[22] M. Kazemimoghadam and N. P. Fey, “An activity recognition framework
for continuous monitoring of non-steady-state locomotion of individuals
with parkinson’s disease,” Appl. Sci., vol. 12, no. 9, 2022, Art. no. 4682,
doi: 2076-3417/12/9/4682.

[23] B. Rezaei et al., “Target-specific action classification for automated as-
sessment of human motor behavior from video,” Sensors, vol. 19, no. 19,
2019, Art. no. 4266. [Online]. Available: https://www.mdpi.com/1424-
8220/19/19/4266

[24] D. Chen et al., “Deep learning and alternative learning strategies for
retrospective real-world clinical data,” Npj Digit. Med., vol. 2, no. 1,
May 2019, Art. no. 43, doi: 10.1038/s41746-019-0122-0.

[25] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose: Realtime
multi-person 2D pose estimation using part affinity fields,” in Proc. IEEE
Trans. Pattern Anal. Mach. Intell., 2019, p. 1.

[26] Machine medicine technologies limited, “Kelvin software webpage,”
2021. [Online]. Available: https://machinemedicine.com/getting-started/

[27] Machine Medicine Technologies Limited, “The company’s website,”
2021. [Online]. Available: https://machinemedicine.com/

[28] G. Morinan, R. A. Hauser, A. Schrag, J. Tang, J. O’Keeffe, and M.-N.
S. D. S. Group, “Abbreviated MDS-UPDRs for remote monitoring in PD
identified using exhaustive computational search,” Parkinson’s Dis., vol.
2022, Jun. 2022, Art. no. 2920255, doi: 10.1155/2022/2920255.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2014.

[31] M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban, “Human
action recognition using a temporal hierarchy of covariance descriptors
on 3D joint locations,” in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013,
pp. 2466–2472.

[32] Y. Chen, H. Ma, J. Wang, J. Wu, X. Wu, and X. Xie, “PD-Net: Quantitative
motor function evaluation for parkinson’s disease via automated hand
gesture analysis,” in Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data
Mining, 2021, pp. 2683–2691, doi: 10.1145/3447548.3467130.

[33] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” Ann. Math. Statist., vol. 18,
pp. 50–60, 1947.

https://dx.doi.org/10.1145/3098279.3125443
https://www.mdpi.com/1424-8220/21/17/5895
https://doi.org/10.2196/13641
https://doi.org/10.2196/13641
https://www.sciencedirect.com/science/article/pii/S1555415520305158
https://www.sciencedirect.com/science/article/pii/S1555415520305158
https://www.mdpi.com/1424-8220/21/16/5437
https://www.mdpi.com/1424-8220/21/16/5437
https://www.sciencedirect.com/science/article/pii/S2666521221000223
https://www.sciencedirect.com/science/article/pii/S2666521221000223
https://doi.org/10.1038/s41531-023-00454-8
https://doi.org/10.1038/s41531-023-00454-8
https://www.mdpi.com/1424-8220/21/2/452
https://www.mdpi.com/1424-8220/21/2/452
https://dx.doi.org/10.1007/978-0-387-39940-9_133
https://dx.doi.org/10.1007/978-3-030-20205-7_25
https://dx.doi.org/2076-3417/12/9/4682
https://www.mdpi.com/1424-8220/19/19/4266
https://www.mdpi.com/1424-8220/19/19/4266
https://dx.doi.org/10.1038/s41746-019-0122-0
https://machinemedicine.com/getting-started/
https://machinemedicine.com/
https://dx.doi.org/10.1155/2022/2920255
https://dx.doi.org/10.1145/3447548.3467130


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


