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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Rural O3 exposure is �10 ppb higher than that of adjacent urban areas in China.

- Excess cardiopulmonary deaths rise from 299,500 in 1990 to 373,500 in 2019.

- Premature cardiovascular deaths due to long-term O3 exposure are overlooked.

- Urban migration reduces population-weighted O3 exposure and associated mortality.
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Ever-increasing ambient ozone (O3) pollution in China has been exacer-
bating cardiopulmonary premature deaths. However, the urban-rural expo-
sure inequity has seldom been explored. Here, we assess population-scale
O3 exposure and mortality burdens between 1990 and 2019 based on inte-
grated pollution tracking and epidemiological evidence. We find Chinese
population have been suffering from climbing O3 exposure by 4.3 ± 2.8
ppb per decade as a result of rapid urbanization and growing prosperity of
socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1
ppb higher ambient O3 than the adjacent urban citizens, and thus urbaniza-
tion-oriented migration compromises the exposure-associated mortality on
total population. Cardiopulmonary excess premature deaths attributable to
long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600–
510,900) in 2019, is underestimated in previous studies due to ignorance
of cardiovascular causes. Future O3 pollution policy should focus more on
rural population who are facing an aggravating threat of mortality risks to
ameliorate environmental health injustice.

INTRODUCTION
Photochemical smog events of Los Angeles in the 1940s aroused public

awareness to surface ozone (O3) pollution for the first time. As a secondary
air pollutant, O3 is formed from a collection of precursor chemicals including
NOX (NO2 and NO), carbon monoxide, and volatile organic compounds
(VOCs), through complex photochemical reactions and NOX-ROX (RO and
RO2) cycles.

1 Anthropogenic emissions from vehicles, petrochemical indus-
tries, coal-fired power plants, and other types of incomplete combustions
exacerbate the O3 pollution.

2,3 While deforestation decreases biogenic activ-
ities, global warming enhances biogenic emissions of VOCs (e.g., isoprene),
which also adds on to the surface O3 burden.

4 High ambient O3 pollution has
been causing significant population health issues. Epidemiological studies
show that short-term high-concentration exposure to ambient O3 can cause
asthma exacerbation,5 respiratory symptoms,6 myocardial infarction,7 or
even cardiac arrest,8 and long-term O3 exposure can even increase the mor-
tality risks of chronic respiratory diseases (CRDs) and cardiovascular
diseases (CVDs).9 Hence, understanding the spatiotemporal pattern of

ambient O3 will be of incontrovertible significance for public health
protection.
The TOAR (Tropospheric Ozone Assessment Report) collaborative network10

and CNEMC (China National Environmental Monitoring Center)11 have been
archiving in situ ambient O3 observations, but the selective spatial representative-
ness will hamper the credibility of exposure assessment for populations residing
distant frommonitoring sites. Chemical reanalysis12 and satellite-based remote-
sensing measurements13 have been playing an irreplaceable role in ambient O3

tracking. Besides the conventional chemical transport models (CTMs),14 the
state-of-the-art coupled Earth systemmodels with interactive chemistry-climate
feedback collated by CMIP6 (Coupled Model Intercomparison Project Phase 6)
provide long-timescale full coverage global ambient O3 numerical simulation
ensemble.15 The booming of artificial intelligence algorithms makes it feasible
to fuse these seamless products and the scattered observations, yielding high-
quality fused databases.16-20 Due to the rapid photochemical and radical-
involved kinetic reactions, ambient O3 is of high geographical variability. Rural en-
vironments are observed to be of higher ambient O3 pollution,21,22 a key point
omitted in many large-scale population health impact assessment studies, and
thus the urban-rural environmental injustice has long been overlooked.We herein
synthesizemultiple well-developed ambient O3 concentration databases with ur-
ban-rural differentiation to better characterize the population exposure levels re-
stricting biases or errors from any single sources.
Previous O3-mortality estimation studies only considered premature deaths

caused by chronic obstructive pulmonary disease (COPD) due to the limited
epidemiological evidence.23 We accomplish a systematic review to collect up-
to-date O3-mortality associations from cohort studies on long-term O3 expo-
sure-associated multi-cause mortality, and conduct meta-analysis to pool the
estimated exposure-response association strengths (i.e., relative risks).9 With
the help of the China Statistical Yearbook series, we calibrated the Chinese pop-
ulation, and then linked the ambientO3 exposure and exposure-response relation-
ships to estimate the excess mortalities among Chinese population during
1990–2019. Cohort-based relative risks are estimated using Cox regression,
assuming relative hazard keeps constant along with the time series. Therefore,
cross-sectional urban-rural distinguished populations are sufficient for mortality
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estimation, and there is no need to consider accumulative exposure or individual-
level rural-to-urban migration history.

Throughout this study, we aim to underscore the urban-rural disparity of
ambient O3 pollution across China, and emphasize the severity of cardiopulmo-
nary mortalities attributable to O3 exposure. Urbanization refers to the phenom-
enon that the originally low-population density settlements become a city due to
the gradual gathering of population and frequentialized economic activities, lead-
ing to a social structure change that rural population are gradually transformed
into urban residents. We thus define rural-to-urban migration and rural residents
whose habitations are urbanized both as urbanization-orientedpopulationmigra-
tion to distinguish the urban and rural residents, as reflected in the cross-
sectional population density offered by United Nations World Population Pros-
pects.24 Rural residents contribute much lower anthropogenic emissions of O3

precursors (especially NOX by vehicles) than urban citizens, but are unfairly
exposed to higher O3 pollution. Thosemoving to cities can reduce their exposure
level, while there is always a certain proportion of rural residents (e.g., living
relying on farming) lacking willingness or capability to migrate. In this sense,
we underline the higher rural O3 exposure, and highlight the antagonism effect
between the gradually increasing ambient O3 concentrations and the population
migration to assist in understanding the dynamics of total O3 exposure-associ-
ated excess mortality. We intend to inform the policymakers to be aware of
the urban-rural environmental justice in terms of ambient O3 exposure, echoing
the Sustainable Development Goals advocated by the United Nations (e.g., SDG
3) to ensure healthy lives and promote well-being for the whole population.

RESULTS
Spatiotemporal patterns of urban-rural differentiated ambient ozone

We fuse four well-established data products calibrated by in situ obser-
vations (see Methods S1 and S2) to quantify the urban and rural popula-

tion exposure to ambient O3 scaled in 6 months (April to September) using
the ozone-season daily 8-h maximum average (OSDMA8) metric (see
geographical mapping of starting year 1990 and endpoint year 2019 aggre-
gated by prefecture-level cities in Figures 1A–1D, and province-level statis-
tics in Table S1). Rural O3 pollution was generally more severe, as 9.8 ± 4.1
ppb higher than the adjacent urban O3 concentrations, averaging over 30
studied years.
Higher O3 pollution mainly clustered in Jing-Jin-Ji and adjacent areas (i.e.,

Shanxi, Henan, Shandong, Anhui, and Jiangsu Province), where the highest
climbing rates concurrently occurred (Figures 1E and 1F). In 1990, the nation-
wide ambient O3 exposure was 40.4 ± 8.1 ppb for all urban citizens, and
54.0 ± 5.7 ppb for rural residents. In 2019, rural O3 rose to 67.6 ± 10.2 ppb by
an increasing rate of around 3.9 ± 2.7 ppb per decade, and urban O3 climbed
to 59.2 ± 12.6 ppb by a more prominent increasing speed of approximately
6.2 ± 3.4 ppb per decade.
We present the country-level and region-specific (seven administrative

geographical divisions and four megalopolises, see definitions in Methods S3
and Figure S1) longitudinal trends of urban, rural, and population-weighted expo-
sure (PWE) to ambient O3 in Figure S2. Among the seven geographical divisions,
the highest O3 pollution exacerbation rates were observed in East China (7.6 ppb
per decade), followed by South (6.1 ppb per decade) and Central China (5.9 ppb
per decade). Fourmegalopolises suffered rapid deterioration, especially the Jing-
Jin-Ji urban agglomeration (9.2 ppb per decade). The lowest population O3 expo-
sure increases occurred in Northwest China (2.3 ppb per decade). PWE also re-
flects the relative proportions of urban-rural residents in the studied areas, that in
less-urbanized regions (e.g., Northwest China), PWE is closer to the rural expo-
sure levels, and vice versa. The rural–urban differences were shrinking over
the three decades, 1990–2019, but this is due to the faster urban O3 growth
instead of the rural air pollution decline.

Figure 1. Mapping of prefecture-city-level ambient ozone and temporal trends (A and B) Peak ambient ozone concentrations with urban-rural differentiation for 1990 by metric of
6-month (April to September) ozone-season daily 8-h maximum average (OSDMA8, ppb). (C and D) Peak ambient ozone concentrations for 2019 by OSDMA8. (E and F) Thirty-year
annual average change rates. Upper panels (A, C, and E) are distinguished for urban residential environments, and lower panels (B, D, and F) for rural living environments. Ambient
ozone concentrations in 10-km spatial resolution are predicted by fusion of multiple downscaled data products (see Methods S1 and S2) and are averaged for mapping in prefecture-
level cities. Urban and rural temporal change rates for each prefectural city are estimated by generalized linear model. Province-level statistics for 1990 and 2019 are listed in Table S1.
Base-map of China credits to Ministry of Natural Resources, PRC.
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Hierarchical mortality cause identification attributable to ozone exposure
Previous long-term O3 exposure-associated mortality (i.e., excess mortality)

estimation studies did not consider cardiovascular deaths,25,26 since relevant
epidemiological studies exploring the risk association between O3 exposure
and cardiovascular mortality were rather rare, and contradiction existed among
the sparse evidence.27-30 However, after updating the systematic literature re-
view to includemore recent research intometa-analysis, we find a growing num-
ber of studies tending to take a stand that long-term O3 exposure is also associ-
ated with additional premature death risks of ischemic heart disease (IHD) (RR =
1.021; 95% confidence interval [CI], 1.008–1.033) and total CVDs (RR = 1.024;
95% CI, 1.015–1.033). Newly published relevant cohort studies also update the
mortality risks of COPD, all CRDs, and all non-communicable diseases (NCDs)
(see Method S4 and Figures S3–S8). Therefore, we extend estimations onto
tier-stratified multi-cause (tier 1: NCDs, tier 2: CRDs and CVDs, tier 3: COPD
and IHD) O3-induced excess deaths using optimized exposure-response curved
relationships (see Method S5 and Figure S9), with three hierarchical mortality
proportions calculated (Figure S10).

In 1990, COPD-induced mortality associated with long-term ambient O3 expo-
sure occupied 97.7% (95% UI: 95.6%–99.8%) of all-type CRD excess deaths, and
the proportions remained constant over the 30 studied years (97.4%, 95% UI:
95.2%–99.5% in 2019). This verifies the coherency of the exposure-response
risk associations for COPD and CRD mortalities, and indicates that COPD is
themain cause of respiratorymortality—this is alsowhy theGlobal Burden of Dis-
ease (GBD) 2019 study attributes all O3 exposure-associated premature deaths
to COPD.23 Contrarily, IHD excess deaths accounted for 56.6% (53.8%–59.5%) of
all-type cardiovascular deaths attributable to O3 exposure in 1990, ascending
monotonously to 90.9% (87.3%–94.7%) in 2019. This suggests thatmore cardio-
vascular mortality causes other than IHD can also be associated with long-term
O3 exposure (e.g., congestive heart failure

31), and that IHDmortality rates soared
disproportionally with these non-IHD CVDs, especially since 2000, resulting in
such longitudinal cross-tier heterogeneity. Considering the high uncertainty in
relative risks of IHDmortality drawn from limited cohort-based studies and other
cardiovascular mortality causes potentially associated with O3 exposure, we
hence choose CVD excess mortality estimation as our main analysis.

Total CRD and CVD excess deaths made up 70.9% (95% UI: 68.7%–73.1%) of
the proportion of NCD mortality attributable to long-term O3 exposure in 2019,
and it is noteworthy that the fraction in 1990 even erroneously exceeded
100%, indicating that the meta-estimated exposure-response relationships
based on currently available evidencemight not be sufficiently consistent across
causes. The declining trend of the proportion reveals that mortality by other
NCDs not associated with O3 exposure (e.g., cancer) still increased, and thus es-
timations for long-term ambient O3 exposure-associated NCD deaths might
bring in unnecessary overestimation and unidentified uncertainties. Therefore,

we decided to report the total excess cardiopulmonary mortality (specifically
for CVDs and COPD) as ourmain results for the sake of full-scalemortality cause
inclusion together with uncertainty restriction.

Excess cardiopulmonary mortality associated with ozone exposure
Wemap the excess cardiopulmonary deaths due to long-term O3 exposure in

2019 aggregated by prefecture-level cities in Figure 2 (gridded mortality in Fig-
ure S11). The geographical distribution of the mortality approximately delineates
Hu’s Line (also known as the Heihe-Tengchong Line) dividing Southeast and
Northwest China. Urban mortality clusters mainly in the metropolises and popu-
lous provinces with high ambient O3 pollution (e.g., Shandong, Henan, Jiangsu),
while rural mortalities are geographically distributedmore evenly. In 2019, a total
of 373.5 (95%UI: 240.6–510.9) thousand cardiopulmonary deathswere ascribed
to long-term ambient O3 exposure, among which urban excess mortality was
200.0 (128.9–273.6) thousand, and rural excess mortality was 173.5 (111.7–
237.4) thousand (Table 1). The COPD excess mortality was 177.1 (120.4–
239.5) thousand, and excess deaths induced from all-type CVDs were 196.4
(120.2–271.4) thousand. Mortalities in East China occupy around a third of the
total deaths across the whole nation.
The O3-attributable excess cardiopulmonary deaths accounted for 3.5%

(2.3%–4.8%) of the overall Chinese mortality in 2019. In 1990, the total excess
cardiopulmonary mortality was 292.0 (188.5–402.1) thousand, consisting of
3.5% (2.2%–4.8%) of the total mortality. Rural mortality was 209.900 (135.6–
288.7) thousand, exceeding the urban O3-attributable deaths by 127.8 (82.7–
175.3) thousand (Table S2). Categorized by region, residence location, and mor-
tality cause, the temporal trends of the estimated cardiopulmonary excess
deaths associated with long-term O3 exposure are shown in Figure 3. Total
excess deaths increased by 3.3 (2.1–4.5) thousand per year, among which ur-
ban mortality climbed by 4.7 (3.0–6.4) thousand per year, while rural mortality
shrank by 1.4 (0.9–1.9) thousand per year (Table S3). COPD mortality shows a
decreasing trend by 1.0 (0.7–1.4) thousand per year due to the steady decline
of cross-sectional mortality rates (Table S4), while the CVD mortality surged by
4.3 (2.8–6.0) thousand per year. Highest growths are observed in East and
Central China while, in contrast, rates of change in Northwest China are
insignificant.
Besides the number of excess deaths, which are strongly dependent on the

population density, we also report the mortality rates adjusting the population
to highlight the risks attributable to ambient O3 exposure (Table 1). The average
cardiopulmonary mortality rate over the Chinese population was 26.7 (17.2–
36.5) per 100,000 in 2019. Specifically, urban population mortality rate was
23.6 (15.2–32.3) per 100,000, while rural mortality rate was higher at 31.4
(20.3–43.0) per 100,000. In earlier years, urban-rural divergences were greater.
In most regions of China, rural residents suffer greater excess cardiopulmonary

Figure 2. Mapping of ozone exposure-associated cardiopulmonary deaths in 2019 Excess cardiopulmonary mortalities are defined as the total deaths caused by chronic
obstructive pulmonary disease and all-type cardiovascular diseases (COPD + CVDs). Numbers of premature deaths differentiate (A) urban, (B) rural, and (C) total population, and are
aggregated to prefecture-level cities for mapping. Exposure-response curved relationships for COPD and cardiovascular mortality (see Figure S9) are estimated by exposure re-
sampled meta-regression (see Method S5) considering 29 cohort-based epidemiological studies (see Table S9) identified from up-to-date systematic review. Color scale intervals are
divided by Jenks natural breaks due to non-Gaussian and multi-peak mortality distribution. Regional statistics with multiple mortality metrics (death number, mortality rate, years of
life lost) for 2019 are listed in Table 1, and statistics for 1990 are summarized in Table S2.
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mortality risks. Years of life lost (YLLs) (equal to the disability-adjusted life years
when focusing merely on mortality) attributed to O3 exposure was 6.78 (4.28–
9.35) million in 2019, and specifically 2.91 (1.84–4.01) million years for urban
population and 3.87 (2.44–5.34) million years for rural population. YLLs show
a descending trend by 0.06 (0.04–0.09) million years per decade, even given
the increase of excess mortality, as the life expectancy of Chinese population
has significantly prolonged in the past three decades owing to the substantial
improvement of the medical care system.32

Regulations are being made and revised to protect public health. The Na-
tional Ambient Air Quality Standards (GB3095-2012) enacted by The Minis-
try of Environmental Protection of China (MEPC) since 2012 stipulate the
Level-I standard as 100 mg/m3 (equivalent to �51.0 ppb), which is in accor-
dance with the previous version of WHO Air Quality Guidelines (AQG2005),33

and Level-II transitional standard as 160 mg/m3 (equivalent to �81.6 ppb).
Taking 2019 as an example, if all regions suffering O3 higher than Level-II
were set to be exposed to 81.6 ppb, then only 14.2% of the excess premature
deaths could have been avoided; while realizing Level-I standard could have
effectively reduced 75.3% of the excess mortality, among which rural mortal-
ity could have been prevented by 84.1%, emphasizing the importance of
achieving the planned O3 control target. The stricter provision on warm-sea-
son peak O3 pollution level, 60 mg/m3 (equivalent to �30.6 ppb) is added in
AQG2021 for the first time,33 based on the new evidence of long-term effects
on all-cause and respiratory mortality. Realization of this ultimate goal can
theoretically prevent all excess mortalities induced by long-term O3 expo-
sure, as the standard is below the threshold level (40–50 ppb, see Figure S9)
synthesized from currently available epidemiological evidence.

Insights on driving factors of mortality change
Figure 4 sorts the provinces (including the municipalities) by O3 exposure-

associated excess cardiopulmonary deaths. For urban mortality (Figure 4A),
the top 5 provinces, Shandong, Henan, Jiangsu, Hebei, and Anhui, have prevailed
over the 30 years due to the dense urban population. Comparatively, ranking of
rural mortality attributable to ambient O3 exposure shows more of a shuffled
pattern (Figure 4B). Multiple factors can influence the O3-associated mortality

change, as illustrated in Figure 5, decomposing the excess mortality change be-
tween 1990 and 2019 down to O3 exposure change, population growth, popula-
tion aging, overall cross-sectional mortality rate change, and urbanization-ori-
ented population migration. The increments in ambient O3 exposure (32.4%),
total population (24.6%), and the vulnerable population proportion defined as
the fraction of age R25 (13.4%) add on to the mortality increase, which are
compromised by the declines in overall cross-sectional mortality rates
(�11.2%), and populationmigration from rural to urban residence (�34.5%), lead-
ing to the overall mortality increasing rate by 24.7% for the entire population.
It is noteworthy that contributions from urbanization-oriented population

migration act as a significant role in mortality change, which is overlooked in
previous studies. Given that ambient O3 pollution is generally lower in urban
environments, population-weighted O3 exposure can be reduced when a
large proportion of rural residents migrate to cities, resulting in a reduction
of total mortality. The effect of population migration takes the predominant
role in moderately developed regions, such as Northwest provinces, while
deterioration of ambient O3 pollution and population growth carried the deci-
sive weight in highly developed areas, such as Beijing, Shanghai, and Guang-
dong (Figure 5).
The antagonism between the growing ambient O3 and population migration

reveals the blind spot of using the PWE metric to quantify the population expo-
sure that some regions specifically show low increasing or even decreasing ten-
dencyof PWE (Figure S12) should not be ascribed to the alleviation of ambient O3

pollution, but the population migration to cities, even if both the urban and rural
O3 pollutions are elevating (e.g., Sanya in Hainan Province, urban O3 rose from
46.7 to 50.3 ppb and rural O3 climbed from 61.1 to 63.2 ppb, but the rural popu-
lation proportion nose-dived from 70.3% to 17.7%, causing �5.9 ppb change in
PWE). Such a phenomenon is mainly observed in vast territory cities in remote
areas with lower annual pollution increasing rates but significant urbanization
progress. In a nutshell, we aim to highlight the urban-rural O3 exposure injustice
for environmental policymakers—rural populations are persistently suffering
from higher and ever-increasing O3 exposure, despite the fact that rural-to-urban
migration has been decreasing the ascending rate of overall exposure-associ-
ated excess mortality risks.

Table 1. Regional and nationwide cardiopulmonary mortality metrics associated with long-term ozone exposure in 2019

Region

Excess deaths (thousands) Mortality rates (per 100,000) YLLs (million years)

Urban Rural Total Urban Rural Total Urban Rural Total

Northeast China 9.5 17.3 26.9 19.6 27.8 24.2 0.38 0.49 0.87

(6.1–13.1) (11.1–23.8) (17.3–36.9) (12.6–26.9) (17.9–38.2) (15.6–33.2) (0.24–0.53) (0.32–0.68) (0.55–1.22)

North China 34.6 25.5 60.1 30.7 39.2 33.8 0.60 0.70 1.30

(22.4–47.1) (16.5–34.7) (38.9–81.8) (19.8–41.8) (25.3–53.3) (21.8–46.0) (0.39–0.83) (0.44–0.96) (0.82–1.77)

East China 83.0 38.9 121.9 26.0 35.1 28.3 0.51 0.62 1.13

(53.6–113.4) (25.1–53.1) (78.7–166.6) (16.8–35.5) (22.6–47.9) (18.3–38.7) (0.32–0.70) (0.39–0.86) (0.72–1.56)

Central China 41.0 30.3 71.2 27.6 34.4 30.1 0.54 0.61 1.15

(26.4–55.9) (19.5–41.3) (45.9–97.2) (17.8–37.7) (22.2–46.9) (19.4–41.1) (0.34–0.75) (0.39–0.84) (0.72–1.58)

South China 14.2 15.2 29.4 14.6 24.9 18.6 0.29 0.45 0.74

(9.1–19.7) (9.7–20.9) (18.8–40.6) (9.3–20.2) (16.0–34.3) (11.9–25.6) (0.18–0.40) (0.27–0.61) (0.46–1.02)

Northwest China 4.7 17.0 21.6 15.2 28.4 23.9 0.30 0.51 0.81

(3.0–6.4) (10.9–23.3) (13.9–29.7) (9.7–20.9) (18.3–39.0) (15.4–32.9) (0.19–0.41) (0.32–0.70) (0.51–1.11)

Southwest China 13.0 29.3 42.3 14.6 28.0 21.8 0.29 0.49 0.78

(8.3–17.9) (18.8–40.2) (27.1–58.2) (9.3–20.1) (18.0–38.5) (14.0–30.0) (0.18–0.40) (0.31–0.69) (0.49–1.09)

Nationwide 200.0 173.5 373.5 23.6 31.4 26.7 2.91 3.87 6.78

(128.9–273.6) (111.7–237.4) (240.6–510.9) (15.2–32.3) (20.3–43.0) (17.2–36.5) (1.84–4.01) (2.44–5.34) (4.28–9.35)

Threemortalitymetrics are estimated as (1) the number of excess deaths in thousands, (2) age-standardizedmortality rate per 100,000, and (3) years of life lost (YLLs)
in million years. We only regard premature deaths as health outcomes from long-term ozone exposure in our study, so that disability-adjusted life years (DALYs) are
equal to YLLs, for years of healthy life lost due to disability (YLDs) are considered constantly to be 0 (DALYs = YLLs + YLDs). Estimates are summarized bymedianwith
95% uncertainty intervals (UIs) from 1,000-times Monte Carlo bootstrap simulation. Estimations of 1990 mortality metrics are summarized in Table S2.
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DISCUSSION
To the best of our knowledge, this is the first study systematically assessing

the long-term O3 exposure-associated multi-cause (especially cardiopulmonary)
excess mortality in China over the 30 historical years (1990–2019). We use a
high-spatial-resolution ambient O3 concentration dataset to quantify population
O3 exposure, andmachine learning-based data fusion supervised by in situ obser-
vation can effectively reduce the O3 estimation biases.16-19 The urban-rural differ-
entiation can more precisely characterize the environmental inequality that rural
residents contribute less anthropogenic emissions of O3 precursors, but suffer
from higher O3 exposure. We collect, review, and pool themost up-to-date epide-
miological evidence on cause-specificmortality risks, including cohort studies on
Chinese population to constrain bias from ethnical heterogeneity.34,35 Synthe-
sized fromall qualified evidence,we conclude that long-termO3 exposure is asso-
ciated with both respiratory and cardiovascular mortality, while conventional
mortality estimation studies, such as the GBD 2019 report,23 overlooked the
chronic respiratory risk, which might have severely underestimated the factual
premature deaths (e.g., cardiovascular premature deaths occupied over half of
total cardiopulmonary mortality in 2019). We highlight these blind points to
arouse public attention that ambient O3 hazards might have been underrated,
and rural residents should be more aware of their O3 exposure.

There are four major causes leading to higher rural O3 pollution beyond the ur-
ban NOX transporting to rural communities. First, it is important to note that NOX

emissions are more pronounced in urban environments, leading to increased O3

scavenging by NO from traffic emissions, a phenomenon often referred to as the
“NOX titration trap.” Second, urban areas tend to have higher aerosol concentra-
tions, which can hinder solar radiation and thus limit photolytic reactions; addi-
tionally, these aerosols can serve as a sink for HOx radicals and HNO3, effectively
suppressing O3 formation.36,37 Third, rural regions typically experience elevated
biogenic VOC emissions due to the greater expanse of vegetation.4 Finally, rural
areas exhibit higher COemissions, primarily due to the incomplete combustion of
solid fuels, which are commonly used in China. This increased CO emission con-
tributes to the generation of radicals that facilitate the oxidation of NO, thereby

further augmenting O3 formation.38 Spatial patterns of the localized rural-urban
O3 differences (i.e., contrasting the rural ambient O3 concentration with the adja-
cent urban O3 level) are associated with a collection of sociodemographic and
ecological features (Table S5), coinciding with the proved mechanisms.
Pre-existing studies only considered excess respiratory mortality associated

with O3 exposure because earlier evidences on cardiovascular mortality risk
were contradictive. For instance, studies on ACS CPS II cohort estimated a pro-
tective effect on ischemic heart disease,28which neutralized the risks reportedby
other studies.29 As a precursor of O3, NO2 concentrations are found to be anti-
correlated with O3, and such collinearity can erroneously misconceive the O3-
mortality relationship in multivariate regression analysis. We thus do not include
studies in which mortality risks due to O3 exposure are concealed by adjusting
NO2 exposure into meta-analysis.39 In the Integrated Science Assessment for
Ozone and Related Photochemical Oxidants (referred to as ISA2020, EPA/600/
R-20/012) released by the US EPA in 2020, it is concluded that “the body of ev-
idence is suggestive of, but not sufficient to infer, a causal relationship between
long-term O3 exposure and total mortality” based on evidence published by
March 2018.40 However, after reviewing the latest epidemiological evidence,
we have decided to act as whistleblowers to push the envelope and emphasize
the potential additional risk of long-termO3 exposure on cardiovascularmortality.
As outlined in the Clean Air Act, ISAs are scheduled to be updated every 5 years
due to the evolving nature of science (https://www.epa.gov/air-research/
research-health-effects-air-pollution). We have taken a step ahead of the US
EPA in conducting evidence evaluations of the long-term O3 exposure induced
cardiovascular mortality risks at the epidemiological level.
The O3 exposure-cardiovascular mortality association is pathologically plau-

sible as verified in previous studies. InhaledO3 can trigger systemic inflammatory
responses in the circulatory system,41 provoke coagulation, platelet dysfunction,
and endothelial injury,42 elevate oxidative stress of the cardiovascular system,43

and induce progressive thickening of the carotid arteries to restrict blood circula-
tion.44 In addition, short-termepidemiological studies focusing on acute O3 expo-
sure revealed strong association with a variety of cardiopulmonary symptoms,5

Figure 3. Thirty-year trends of national and regional urban-rural disaggregated excess cardiopulmonary deaths associated with long-term ozone exposure Total premature death
numbers, aggregated for nationwide and seven geographical regions, are presented by piling up of mortality causes: COPD and all-type cardiovascular diseases. The upper part above
the baseline in each subplot indicates urban population mortalities, and the lower part represents premature deaths on rural residents. Thirty-year longitudinal change rates with 95%
confidence intervals (CIs) (1,000 deaths per decade) for 4 mortality indices (i.e., urban COPD, urban CVD, rural COPD, and rural CVD) as inserted are estimated by log-linear meta-
regression models considering the central mortality estimates together with uncertainties derived from Monte Carlo bootstrap simulation. See Table S3 for detailed statistics of
temporal trends of multiple mortality metrics.
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and thus it is sufficiently reasonable to assume that O3 exposure increases the
cardiovascular mortality risk.

We show that ambient O3 pollution in China manifests a steadily climbing
tendency, even given that the landmark National Air Quality Action Plan
came into force in 2013.45 This can be ascribed to the nonlinear relation-
ships between the O3 budget and emissions of precursors and the side ef-
fect of controlling particulate matter. Previous studies have verified that
high-O3 pollution cities follow the VOC-limited regime, indicating that
reducing VOC will be more effective in abating O3 pollution than controlling
NOX emission.46 In addition, the effective control of aerosols could have
increased solar radiation, and consequently accelerated tropospheric
photolysis to boost O3 formation.47 But, fortunately, O3-NOX-VOC relation-
ships have been approaching the transitional regime in metropolises such
as Beijing as the relevant policies have been consistently implemented,48,49

and hence we anticipate ambient O3 pollution will decline in the near future.
We highlight the urban-rural environmental injustice in terms of ambient O3

exposure, and also stress the antagonism between the climbing pollution levels
and urbanization-oriented populationmigration on total populationmortality. Our
findings emphasize that, although high-speed urbanization has been pursued,
government policymakers should never be blinded by the moderated growing
rate of total population excess deaths attributable to long-term O3 exposure,
as rural residents suffer from ever-growingmortality risks due to higher air pollu-
tion exposure. Besides, exposure to particulate matter is also of urban-rural
inequality among the Chinese population, as solid fuels have been widely used
among rural residents during the past several decades, which can generate addi-
tional household exposure.50 China has launched a rural clean heating campaign
to reduce particulate matter pollution,51 but there are still no policies specifically
focusing on rural O3 control. Therefore, special attention is urgently needed for
rural residents to promote their environmental health equality. We strongly

recommend that cities in which a substantial population of rural inhabitants
reside in the downwind areas of urbanized districts, adopt strictmeasures to con-
trol diurnal anthropogenic NOx emissions to curtail the urban-to-rural transfer of
precursors. In addition, meteorological factors should be considered to enhance
the efficacy of O3 pollution control measures.
We encourage future research on four important areas. First, overall cause-

specific mortality rates are highly affected by regional socioeconomic status,
resulting in un-neglectable urban-rural divergence and geographical vari-
ability. In this study, we make a compromise to use country-level metrics pro-
vided in the GBD 2019 report due to the unavailability of province-level statis-
tics throughout the 30 studied years. However, China CDC is endeavoring to
release localized statistics, and relevant studies can be enhanced in the near
future. Second, residential attribution is actually not simply as binary, as there
are more sophisticated categorizations (e.g., urban, suburban, peri-urban,
and rural). We analyzed the localized urban-rural O3 discrepancy benefiting
from urban-rural classified in situ observations and population distribution,
and we need more precise classification to update the habitation-differenti-
ated estimations and evaluate the effect on regional environmental health.
Third, it will be valuable to keep tracking the ambient air pollution. We hanker
after high-quality ambient air pollution databases from satellite-based
remote-sensing measurements and CTM simulations, and more competitive
data fusion algorithms to capture the population exposure with higher cred-
ibility are always appreciated. Finally, we need more nationwide cohort
studies for multi-cause mortality risk estimation, so as to strengthen the
representativeness of the pooled risk associations on Chinese population.
The association between cardiovascular mortality risk and long-term
ambient O3 exposure is still in need of justification by follow-up studies. Pro-
spective cohort studies in China are thriving in recent years, which can fill the
literature gap and promote multi-region health studies.

A

B

Figure 4. Leading 10 provinces and ranking changes of excess cardiopulmonary deaths from 1990 to 2019 Provinces altogether with municipalities are ranked in descending order
separately for urban (A) and rural (B) populations according to the numbers of excess cardiopulmonary deaths (scaled in thousands with 95% UIs estimated byMonte Carlo bootstrap
simulation) attributable to long-term ambient ozone exposure.
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MATERIALS AND METHODS
Urban-rural differentiated ambient O3 tracking

The core basis ambient O3 concentration tracking database with urban-rural distin-

guishment was developed by a two-stage space-time Bayesian neural network frame-

work, consisting of first-stage multi-model ensembler (BayNNE)16 and second-stage

downscaler (BayNND).17 BayNNE integrated eight fully coupled free-running simula-

tions from CMIP6-endorsed Earth system models with interactive chemistry and

chemistry-climate feedbacks, assisted with over 40 auxiliary predictors including soci-

odemographic, ecological, and emission features,17 improved from the previously pub-

lished version (see details in Method S1). The target spatial resolution was set at 1� 3
1� , capturing the cell-average ambient O3 concentrations with intra-cell variabilities

smoothed. Predictions of cell-average concentrations (C) followed Equation 1, which

were the basis for further downscaling. In the equation, MðiÞ refer to simulations by

different models, and subscripts loc and t represent spatial locations (by coordinates)

and temporal nodes (by month), respectively.

Cloc;t =
X

a
ðiÞ
loc;t$M

ðiÞ
loc;t +bloc;t + sloc;t (Equation 1)

BayNND predicted ambient O3 concentrations from BayNNE-generated cell-level aver-

ages concentrations in 1/8� 3 1/8� spatial resolution with stacked urban-rural differentia-

tion. The “stacked” downscaling algorithm encapsulated urban- and rural-averaged ambient

O3 concentrations into each spatial cell, assigning all urban (or rural) population in each cell

uniformlywith a cell-specific urban (or rural) prediction (seeFigure S13 for visual illustration).

The schematic diagram of two-stage Bayesian neural network algorithms was conceptual-

ized in Figure S14, and mathematical forms of BayNND are demonstrated in Equations 2

and 3, where BayNN represents Bayesian neural network regressor, e for Bayesian estima-

tion ensemble member, res for urban/rural classification, si for three spatial indicators, ti for

three temporal indicators, and a for auxiliary predictors. The parameter family q including ai ,

b, s, k, and dwere predicted from ensemble averages byMarkov-chainMonte Carlomethod

for Bayesian neural network.

CðresÞ
loc;t = kðresÞloc;t Cloc;t + d

ðresÞ
loc;t (Equation 2)

q
ðresÞ
loc;t;e = BayNNðresÞ

e ðs1; s2; s3; t1; t2; t3; a1; a2;/Þ (Equation 3)

Data fusion
Besides the BayNND, we fused three additional peer-reviewed high-quality data prod-

ucts18-20 to realize an enhanced 30-year historical monthly averaged ambient O3 concentra-

tion database spanning 1990–2019. The first 0.1� 3 0.1� elemental dataset was developed

by M3Fusion (multi-scale, multi-modal, and multi-temporal fusion) machine learning algo-

rithm and the conventional Bayesian maximum entropy statistical method in sequence

(M3-BME) to assimilate nine observation-nudged CTM simulations.20 Covering 30 years,

the calibration-observation accuracy is high to R2 = 0.81, RMSE = 4.0 ppb after space-

time correction.

One ambient O3 product was constructed using a cluster-enhanced ensemble ma-

chine learning (CEML), training region-exclusive algorithms to retain the geographical

variability.18 CEML mixed the results from chemistry reanalysis and remote sensing,

with over 80 supplemental geographical and meteorological features, to realize

0.5� 3 0.5� monthly resolved ambient O3 concentrations across 2003–2019, with over-

all accuracy R2 = 0.92, RMSE = 4.1 ppb.

The last base dataset supported by the team of Tracking Air Pollution in China (TAP), was

produced by random forest regressor with stochastic spatial auto-correlation signal

compensation.19 TAP utilized CTMsimulations and satellite remote-sensingmeasurements

to realize near real-time 0.1� 3 0.1� daily prediction since 2013, achieving accuracy as

Figure 5. Contribution decomposition of nationwide and province-level relative changes in long-term ozone exposure-associated excess deaths from 1990 to 2019 Five
contribution components are considered to be responsible for relative mortality changes as changes in (1) warm-season ambient ozone exposure levels, (2) total population, (3)
population structure (e.g., aging), (4) cross-sectional overall mortality rates of COPD and cardiovascular diseases, and (5) urbanization. Urbanization is approximated by population
fractions of urban residents. Independent contributions from each factor are dissociated by step-by-step feature substitutionmethod, as shown by the stacked bars for the nationwide
average and each province ormunicipality. Circlesmark the overall relative change percentages of total cardiopulmonarymortalities from 1990 to 2019, which are equal to the sum of
five influencing factors. Hong Kong andMacao are not analyzed as these two special administrative regions have fully accomplished urbanization since 1990 and thence effects from
population migration cannot be dissociated.
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R2 = 0.70, RMSE = 13.3 ppb. All three data products measured the ambient O3 in metric of

daily maximum 8-h average. Detailed procedures were precisely delineated in the original

literature.18-20

Fusingmultiple databases supervised by in situobservations can restrict biases fromany

single approach. As all four ambient O3 tracking products had achieved high consistency

with the observations, we used an elastic net regressor to fuse BayNND, M3-BME, CEML,

and TAP, assisted with three spatial and three temporal indicators,17 to avoid overfitting.

Detailed phased procedures for data fusion were illustrated in Method S2. Finally, by high-

lighting the peak exposure (April to September), 6-month ozone-season daily maximum

8-h average (OSDMA8) was calculated for mortality estimation. The Bayesian neural net-

works were constructed on Python-package TensorFlow (version 2.3.1), and elastic net re-

gressions were performed by scikit-learn (version 0.23.2).

Ground-level observations for supervised training and validation
Weused stationary observations as labels for all-stage supervisedmodel training and ac-

curacy evaluation. The urban-rural distinguished in situ observationswere obtained from the

TOAR archives10 and CNEMC.11 TOAR recognized 3,610 urban and 3,206 rural sites based

on population density by remote sensing; CNEMC identified 1,777 urban and 245 suburban

sites by administrative district division, whereas 245 suburban-labeled sites were reclassi-

fied as rural sites throughout this study, as (1) the observed “suburban”-labeled ambient

O3 concentrations were closer to the predicted rural concentrations (R2 = 0.81, normalized

mean bias, NMB = 2.8%) than urban predictions (R2 = 0.48, NMB = �11.6%, details in Fig-

ure S15), and (2) the projected population density of 2019 of the suburban-labeled sites

were way lower than 1,500 people per km2, the urbanization standard (Content S1).

In the first-stage multi-model fusion, 1� 3 1� gridded cell-average concentrations

including all available sites excluding CNEMC stations (cell-average levels could be urban-

biased due to disproportional deployment in urban and rural environments) were used as

supervision labels for model training. The global-scale overall fitting accuracy was

R2 = 0.94, RMSE = 2.6 ppb bymetric of monthly averaged daily 8-h maximum, and the eval-

uation of 10-fold cross-validation test showed R2 = 0.90.

In the second-stage 1/8� 3 1/8� gridded downscaling with urban-rural differentiation and
third-stage data fusion, we used urban- and rural-labeled observations for model training.

Throughout the studied 30 years globally, accuracy of urban predictions was R2 = 0.90,

RMSE = 3.8 ppb (cross-validationR2 = 0.85), andR2 = 0.92, RMSE = 5.6 ppb (cross-validation

R2 = 0.88) for rural predictions in the second-stage BayNND.

For the latest 6 years (2014–2019), prediction accuracies were evaluated with observa-

tions in China, as R2 = 0.91, RMSE = 4.2 ppb (cross-validation R2 = 0.82) for urban, and

R2 = 0.89, RMSE = 5.2 ppb (cross-validationR2 = 0.86) for rural predictions by the third-stage

data fusion algorithm. The 10-fold methodological cross-validation tests on Chinese sites

during 2014–2019 revealed R2 R 0.82, RMSE% 7.0 ppb, and 30-year global overall accu-

racy of the final dataset was R2 = 0.92, RMSE = 4.4 ppb (Table S6). Spatiotemporal gener-

alizability kept satisfactory across all designed tests (Method S8 and Table S7).

Risk association quantification
We updated the latest published systematic review9 up to October 2022 to collect all

recently published cohort-based epidemiological evidence on risk association between

long-term O3 exposure and multi-cause mortalities. We searched four additional qualified

studies,34,35,52,53 and by Quality Assessment Tool of Observational Cohort and Cross-

Sectional Studies developed by NIH (Table S8), all these newly added studies were catego-

rized as “Good” (Table S9).

We applied the Hunter-Schmidt meta-analysis estimator to pool the relative risk values

reported by multiple studies, based on which mortality causes with significant positive

pooled risks were then considered for further mortality estimation in this study. We finally

identified NCDs (RR = 1.016; 95% CI, 1.011–1.021), CRDs (RR = 1.020; 95% CI, 1.006–

1.035), together with COPD (RR = 1.056; 95% CI, 1.029–1.084) as a subordinate respiratory

disease, and CVDs (RR = 1.024; 95% CI, 1.015–1.033) with its subset, IHD (RR = 1.021; 95%

CI, 1.008–1.033), asmortality causes associatedwith long-term O3 exposure, bymeta-anal-

ysis (see Method S4 and Figures S3–S7 for details). The meta-analysis results were as-

sessed to be of “High” credibility by the Grading of Recommendations Assessment, Devel-

opment, and Evaluation system (Tables S10–S14).54

To capture the potential nonlinear trends of exposure-mortality associations more pre-

cisely, the concentration-response curves for the five identified mortality causes were con-

structed by meta-regression enhanced with exposure range resampling (see Method S5).9

Concentration-response curves provided by the original literature were preferred in priority,

while for studies not reporting the curves, linear trendswere presumed by setting the lowest

5th percentile exposure concentration as the theoretical minimum risk exposure level for re-

sampling (seeTable S15).55 Thecause-specific curve-based relative risk valuesasa function

of exposure concentration (RRx , see Figure S9) are adopted for O3 exposure-attributable

excess mortality estimation as main analysis.

Population gridding and calibration
We integrated the population products included by the Socioeconomic Data and Applica-

tions Center (SEDAC) and China Statistical Yearbook series (1999–2020) released by Na-

tional BureauofStatistics to generate thecalibrated griddedChinese population dataset dur-

ing 1990–2019. We applied a cubic spline model to extrapolate the two fundamental

datasets, Gridded Population of the World (GPW) (version 4.11) and Population Dynamics

with urban-rural specification (version 1.01), to the 30 consecutive study years for each

grid. Next, we linearly calibrated the province-level populations aligning with the China Sta-

tistical Yearbook. The demographic age statistics were downloaded from GBD Population

Estimates 1950–201956 and The China Statistical Yearbook series 2004–2019, with which

the age-stratified risked population (age R25) were estimated. Grid-level male and female

populations were additionally split according to the province-level gender ratio reported in

the China Statistical Yearbook for further sensitivity analysis.

The urban-rural binary classification for each cell residedwith habitantswas basedon the

population density of each 3000 3 3000 fine cell: >1,500 people per km2 as urban and<1,500

people per km2 as rural. When upscaling to 1/8� 3 1/8� coarser cell, the urban and rural res-
idents were summed up separately and stacked in each coarse cell. The reason for gridded

population upscaling is the spatial resolution limitation of ambient O3 tracking (approxi-

mately 10 3 10 km2). A schematic illustration for urban-rural stacked upscaling is shown

in Figure S16. The ultimate annually resolved population dataset with 1/8� 3 1/8� spatial

resolution encapsulated four counts of population in each grid: (1) rural male, (2) rural fe-

male, (3) urbanmale, and (4) urban female. Detailed procedures are explained in theMethod

S6 and Figure S17.

The definition of urbanization throughout the study is cell-level proportion of urban resi-

dents among all population. Due to data unavailability, we did not track the individual-level

migration behavior, whereby rural-to-urban population migration was reflected in a cross-

sectional level by change of the urban-rural population structure, as illustrated in Figure S18.

A demonstrative diagram for stacked population exposure assignment (i.e., cell-based con-

centration-population projection) is given in Figure S19. The cell-level PWE from ambient O3

concentration of x was calculated by Equation 4, suitable for urban, rural, and total

populations.

PWE =

P
res
xres$PopresP
res
Popres

(Equation 4)

Excess mortality estimation
We estimated the O3 exposure-attributable excessmortalities by linking ambient O3, con-

centration-response association, population, and cross-sectional mortalities together. For

the population at risk (i.e., age R25), the population attributable fraction (AF) at specific

ambient O3 concentration of x followed

AF =
RRx � 1

RRx
(Equation 5)

with which the cell-level excess deaths, DMort, and attributable YLLs, DYLLs, were esti-

mated as

DMort =
X
res

X
age

y0age$AFres$Popage;res (Equation 6)

DYLLs =
X
res

X
age

YLLs0age$AFres$Popage;res (Equation 7)

where y0 and YLLs0 are the cause-specific cross-sectional mortality rate and rate of YLLs

(per 100,000), respectively; and Pop is the cell-level population at risk. Subscript age refers

to the age-stratified group by 5-year intervals from25 toR95 (i.e., 25–29, 30–34,., 90–94,

andR95) corresponding to the estimates of mortality rate provided by Institute for Health

Metrics andEvaluation (IHME), anddue to dataunavailability, age structure is assumed to be

the same for urban and rural populations; AFres is calculated from urban-rural distinguished

ambient O3 concentrations. The cross-sectional annual age- and gender-standardized mor-

tality statistics of the five studied causes were collected from the GBD Results portal. The

cell-level estimations were specified for urban and rural residents, given distinguished

ambient O3 exposure and population.

Mortalities were estimated by 1,000 realization Monte Carlo bootstrap, accomplished in

Python (version 3.8.0). Considering the skewed distribution, medians are extracted to
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represent the central levels other than the arithmetic means, together with 95% UIs. Global

distributions of the results were mapped via QGIS (version 3.26). Sensitivity analyses were

enclosed in Method S7.

Other involved analysis
Grid-level results were aggregated into seven administrative geographical divisions

(Northeast, North, East, Central, South, Southwest, and Northwest China) and four world-

class megalopolises (Jing-Jin-Ji, Cheng-Yu, Yangtze River Delta, and the Greater Bay

Area) for statistics and interpretation. Further descriptions were expounded in Method S8

and Figure S1. Longitudinal trends of O3 concentrations were calculated by generalized

linear model, and trends of estimated mortality metrics with 95% UIs were calculated by

log-linear meta-regression with a random-effects estimator, conducted in R packagemeta-

for. Association assessment of driving factors on rural-urban ambient O3 disparity was real-

ized by generalizedmultivariate linear regressionmodel, and feature screeningwasconduct-

ed by forward stepwise selection setting significant threshold as p < 0.2. Literature-based

external validations on the urban-rural differentiated ambient O3 predictions were presented

in Figure S20 and Content S2.

Source apportionments for the 1990–2019 mortality change rates were accomplished

by controlling the relevant factors each-by-each, following the piling-up decomposition

approach suggested by GBD 2015.57 For each province, we calculated the percentage con-

tributions of change rates in excess deaths from five independent factors: (1) effect of

change in urban and rural ambient O3 pollution level, (2) effect of population growth, (3) ef-

fect of population aging, leading to greater risked population, (4) effect of change in baseline

mortality rate (i.e., cross-sectional mortality rate reported by IHME), and (5) effect of urban-

ization-oriented urban-rural population structure change (i.e., Chinese rural populations are

migrating to urban living environments), among which the last factor is extended from pre-

vious studies. We added special treatment on the urban-rural exposure differentiation, as to-

tal excess mortality burdens in 1990 (year 1 as noted in the superscript) and 2019 (year 2)

were calculated as demonstrated below.

DMortð1Þ =
X
age

X
res

 X
age

Popð1Þ
age;res 3

Popð1Þ
ageP

Popð1Þ
age

3 y0ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 8)

DMortð2Þ =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0ð2Þage 3
Popð2Þ

res 3AFð2Þ
resP

Popð2Þ
res

!
(Equation 9)

We then defined the modified excess mortalities by substituting the influencing features

step by step, as presented below.

A =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð1Þ
ageP

Popð1Þ
age

3 y0 ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 10)

B =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 11)

C =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0 ð2Þage 3
1 � AFð2Þ

res

1 � AFð1Þ
res

3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!

(Equation 12)

D =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0 ð2Þage 3
Popð1Þ

res 3AFð2Þ
resP

Popð1Þ
res

!
(Equation 13)

From DMortð1Þ to A, we only changed the total population but maintained the age demo-

graphic and urban-rural structure, so that the dissociated contribution of population growth

was calculated by Equation 14. We then replaced the age structure to observe the effect of

population aging (Equation 15). Next, the baseline mortality rate was updated, where we

should introduce a correction factor (Equation 12, the fourth term in the bracket), that the

2019 baseline mortality rate contains the part of contribution from changed O3 exposure,

from which we calculated the effect of baseline mortality rate change (Equation 16). Finally,

the exposure-determined AFswere aligned to 2019 level, and we thus calculated the contri-

bution from exposure change (Equation 17) and the remained urbanization-oriented popu-

lation migration (Equation 18).

Population growth effect ð%Þ =
�
A � DMortð1Þ

�.
DMortð1Þ (Equation 14)

Population ageing effect ð%Þ = ðB � AÞ=A (Equation 15)

Baseline mortality rate change effect ð%Þ = ðC � BÞ=B (Equation 16)

Exposure change effect ð%Þ = ðD � CÞ=C (Equation 17)

Population migration effect ð%Þ =
�
DMortð2Þ � D

�.
D (Equation 18)
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