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IMPORTANCE The identification of patients at risk of progressing from intermediate
age-related macular degeneration (iAMD) to geographic atrophy (GA) is essential for clinical
trials aimed at preventing disease progression. DeepGAze is a fully automated and accurate
convolutional neural network–based deep learning algorithm for predicting progression from
iAMD to GA within 1 year from spectral-domain optical coherence tomography (SD-OCT)
scans.

OBJECTIVE To develop a deep-learning algorithm based on volumetric SD-OCT scans to
predict the progression from iAMD to GA during the year following the scan.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included participants
with iAMD at baseline and who either progressed or did not progress to GA within the
subsequent 13 months. Participants were included from centers in 4 US states. Data set 1
included patients from the Age-Related Eye Disease Study 2 AREDS2 (Ancillary
Spectral-Domain Optical Coherence Tomography) A2A study (July 2008 to August 2015).
Data sets 2 and 3 included patients with imaging taken in routine clinical care at a tertiary
referral center and associated satellites between January 2013 and January 2023. The stored
imaging data were retrieved for the purpose of this study from July 1, 2022, to February 1,
2023. Data were analyzed from May 2021 to July 2023.

EXPOSURE A position-aware convolutional neural network with proactive pseudointervention
was trained and cross-validated on Bioptigen SD-OCT volumes (data set 1) and validated on 2
external data sets comprising Heidelberg Spectralis SD-OCT scans (data sets 2 and 3).

MAIN OUTCOMES AND MEASURES Prediction of progression to GA within 13 months was
evaluated with area under the receiver-operator characteristic curves (AUROC) as well as area
under the precision-recall curve (AUPRC), sensitivity, specificity, positive predictive value,
negative predictive value, and accuracy.

RESULTS The study included a total of 417 patients: 316 in data set 1 (mean [SD] age, 74 [8];
185 [59%] female), 53 in data set 2, (mean [SD] age, 83 [8]; 32 [60%] female), and 48 in data
set 3 (mean [SD] age, 81 [8]; 32 [67%] female). The AUROC for prediction of progression
from iAMD to GA within 1 year was 0.94 (95% CI, 0.92-0.95; AUPRC, 0.90 [95% CI,
0.85-0.95]; sensitivity, 0.88 [95% CI, 0.84-0.92]; specificity, 0.90 [95% CI, 0.87-0.92]) for
data set 1. The addition of expert-annotated SD-OCT features to the model resulted in no
improvement compared to the fully autonomous model (AUROC, 0.95; 95% CI, 0.92-0.95;
P = .19). On an independent validation data set (data set 2), the model predicted progression
to GA with an AUROC of 0.94 (95% CI, 0.91-0.96; AUPRC, 0.92 [0.89-0.94]; sensitivity, 0.91
[95% CI, 0.74-0.98]; specificity, 0.80 [95% CI, 0.63-0.91]). At a high-specificity operating
point, simulated clinical trial recruitment was enriched for patients progressing to GA within 1
year by 8.3- to 20.7-fold (data sets 2 and 3).

CONCLUSIONS AND RELEVANCE The fully automated, position-aware deep-learning algorithm
assessed in this study successfully predicted progression from iAMD to GA over a clinically
meaningful time frame. The ability to predict imminent GA progression could facilitate clinical
trials aimed at preventing the condition and could guide clinical decision-making regarding
screening frequency or treatment initiation.
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G eographic atrophy (GA) is the advanced nonexuda-
tive form of age-related macular degeneration (AMD)
characterized by loss of photoreceptors, retinal pig-

ment epithelium, and choriocapillaris.1,2 These changes of-
ten begin in the perifovea and later progress to the fovea with
debilitating, irreversible outcomes for central vision.3 GA is pre-
ceded by the intermediate stage of dry AMD (iAMD), which usu-
ally has minimal effect on visual acuity. GA affects more than
5 million individuals worldwide, a figure that is steadily ris-
ing as the median age worldwide increases.4,5

However, an impediment to the study of preventative treat-
ment is the low likelihood of progressing from iAMD to GA: the
per-year incidence of progression is estimated to be 0.75% to
3.67%.6-8 Consequently, without a means to identify the pa-
tients most likely to progress, clinical studies of GA preven-
tion are hindered by the need for long study periods and large
patient cohorts. Additionally, in a potential future with thera-
peutics that prevent progression from iAMD to GA, predict-
ing near-term progression to GA would be valuable in target-
ing treatment to the patients who stand to benefit. Finally, more
frequently examining iAMD patients at high-risk of progres-
sion to GA would allow the early initiation of currently avail-
able therapeutics for greater preservation of retinal tissue.
Thus, we sought to use deep learning to predict the progres-
sion from iAMD to GA. We aimed to create an algorithm that
did not require human annotation or expert feature selec-
tion; generalized to multiple spectral-domain optical coher-
ence tomography (SD-OCT) devices, including current stan-
dard-of-care models; was validated on data obtained during
routine patient care; made predictions on a clinically mean-
ingful timeframe; and was automated end-to-end allowing for
the screening of large patient databases without the need for
human intervention.

Methods
Ethics and Institutional Governance Approvals
This study was reviewed and approved by the Duke Univer-
sity institutional review board. Patient consent for inclusion
of data was waived for this retrospective analysis, which did
not alter standard patient care procedures. Patient data were
deidentified and precautions were taken as per Duke Univer-
sity institutional review board protocol to ensure the security
of protected health information and other study data. The pro-
tocol followed tenets of human research as presented in the
Declaration of Helsinki. The study followed the Strengthen-
ing the Reporting of Observational Studies in Epidemiology
(STROBE) reporting guideline.

Data Sets and Clinical Taxonomy
The study involved 3 independent data sets (Table). Data set
1 was collected in the course of the Age-Related Eye Disease
Study 2 (AREDS2) Ancillary Spectral-Domain Optical Coher-
ence Tomography (A2A) study,6 an ancillary observational pro-
spective study of a subset of eyes from the multisite AREDS2
study.9,10 Bioptigen (Research Triangle Park, North Carolina)
SD-OCT volumes (6.7 mm × 6.7 mm, 100 B-scans per vol-

ume) were obtained at 4 participating institutions: Emory Uni-
versity Eye Center, Atlanta, Georgia; Devers Eye Center, Port-
land, Oregon; Duke Eye Center, Durham, North Carolina; and
the National Eye Institute, Bethesda, Maryland.3,4 Details of
the study have been previously published.9 The resultant data
set for model development and cross-validation from the A2A
study (data set 1) consisted of 304 volumetric SD-OCT scans
of eyes with GA in the present scan; 60 SD-OCT volumes of eyes
with iAMD that progressed to GA at an encounter 1 year later
(progression); and 721 SD-OCT volumes of eyes with iAMD that
did not progress to GA at an encounter 1 year later (nonpro-
gression). For all data sets, OCT-GA was defined as the pres-
ence of the following 3 criteria: (1) retinal pigment epithelium
atrophy or absence, (2) choroid enhancement, and (3) outer
plexiform layer dipping toward the retinal pigment epithe-
lium over an area of at least 175 μm as defined in the AREDS2
A2A study and cited in prior publications.9,11,12 This defini-
tion preceded the establishment of the Classification of Atro-
phy Meeting, Complete Retinal Pigment Epithelial and Outer
Retinal Atrophy (cRORA) as a clinical and research definition
of GA on OCT. Nevertheless, there were no cases of iAMD that
also met criteria for cRORA, and all but 1 case that progressed
to OCT-GA also met the definition of progression to cRORA at
the same time point. For all data sets, iAMD was defined as ex-
tensive medium drusen (63-125 μm) or large drusen (≥126 μm)
with no evidence of advanced exudative or nonexudative AMD
per previous definitions, and all eyes with exudative AMD were
excluded from the study.13-15

Validation SD-OCT scans were obtained from routine out-
patient encounters within the Duke University Health Sys-
tem from July 2008 to August 2015 (Table). The first indepen-
dent validation data set (data set 2) was composed of Spectralis
(Heidelberg, Germany) SD-OCT scans (8.7 mm × 7.2 mm, 61 B-
scans per volume) obtained from the Main Duke Eye Center
(Durham, North Carolina) and 2 regional satellite practices (Ra-
leigh, North Carolina, and South Durham, North Carolina). Data
sets 2 and 3 were collected between July 1, 2022, and Febru-
ary 1, 2023. Under an adjudicated consensus labeling system,
3 experienced ophthalmologists (E.D., E.K., E.L.) evaluated

Key Points
Question Can a convolutional neural network-based deep
learning algorithm predict progression from intermediate
age-related macular degeneration (iAMD) to geographic atrophy
(GA) from a volumetric spectral-domain optical coherence
tomography (SD-OCT) scan?

Findings In this cohort study of 417 patients, a convolutional
neural network accurately predicted eyes that progressed from
iAMD to GA within 1 year using volumetric SD-OCT scans.
Simulations using the convolutional neural network for clinical trial
recruitment of patients at risk for disease progression resulted in a
greater yield in identifying patients progressing to GA in the trial
cohort.

Meaning The findings in this study suggest that automated
prediction of imminent GA progression could facilitate clinical trials
aimed at preventing disease and guide clinical decision-making
regarding screening frequency or treatment initiation.
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volumetric SD-OCT scans, near-infrared reflectance imaging,
and, where available, fundus autofluorescence images and
other multimodal imaging for cases of iAMD or GA. For eyes
with GA, preceding SD-OCT scans were obtained and labeled
as to the number of days to the first SD-OCT scan depicting GA
designated as the date of progression. For eyes without GA, SD-
OCT scans were labeled as to the number of days in the future
that a subsequent SD-OCT ascertained that the eye had not de-
veloped GA. For patients in whom both eyes had iAMD or GA,
1 eye was randomly selected for inclusion. Data set 2 in-
cluded 53 patients: 23 eyes with iAMD that progressed to GA
within 13 months and 30 with iAMD that did not progress to
GA over the same period. The prediction interval was ex-
tended from 12 months to 13 since routine monitoring of iAMD
often recurred at just greater than a 12-month interval. A sec-
ond independent validation data set (data set 3) was col-
lected from 2 additional regional satellite practices within the
Duke University Health System located in different cities (Mor-
risville, North Carolina, and Cary, North Carolina) and with dis-
tinct medical staff and SD-OCT devices from the clinics from
which data set 2 were obtained. The methods applied to data
set 2 were also applied to data set 3. Data set 3 included 48 pa-
tients: 26 eyes with iAMD that progressed to GA and 22 eyes
that did not progress to GA during the same time period (Table).
Since there were no a priori estimates of the expected effect
size or performance of the model, an initial arbitrary but lo-

gistically feasible target of 50 eyes was set for each data set,
balanced between those that progressed to iAMD and those that
did not. Data were analyzed from May 2021 to July 2023.

Model
A multiview convolutional neural network architecture16 based
on and initialized with parameters from the Inception ver-
sion3 neural network17 was pretrained on natural images from
ImageNet.18 Additional domain-specific pretraining was per-
formed with a publicly available SD-OCT data set with multi-
task learning.18,19 The position-aware model used a transfor-
mation layer to embed the position identifier into a
6-dimensional positional feature vector ei. Then, the feature
vector fi and positional feature ei were concatenated and fed
into a fully connected layer to obtain ai = FC2([fi, ei]), which
were progressed to attention weights wi by feeding the ai into
a softmax function, so:

M

i = 1
wi = 1

The final probability of GA for a given SD-OCT volume was the
weighted summation of the attention weights wi and corre-
sponding preclassification probabilities pi for all scans

M

i = 1
wi pip(GA) =

Table. Characteristics of Data Sets 1, 2, and 3

Characteristic Data set 1 Data set 2 Data set 3
Role in model development Training, cross validation External validation External validation

Setting of data collection Clinical study Routine patient care Routine patient care

Location of acquisition Atlanta, Georgia; Portland,
Oregon; Bethesda,
Maryland; Durham, North
Carolina

Durham, South Durham,
Raleigh, North Carolina

Morrisville, Cary, North
Carolina

SD-OCT device Bioptigen SD-OCT Heidelberg spectralis Heidelberg spectralis

No. of patients 316 53 48

No. of eyes 316 53 48

No. of OCT volumes 1085 53 48

iAMD to iAMD, No. (%) 721 (66.5) 30 (56.6) 22 (45.8)

iAMD to GA, No. (%) 60 (5.5) 23 (43.4) 26 (54.2)

GA to GA, No. (%) 304 (28.0) 0 0

Data labeling Grading in certified
reading center

Consensus grading
by 3 ophthalmologists

Consensus grading
by 3 ophthalmologists

Demographic characteristics

Age, mean (SD), y 74 (8) 83 (8) 81 (8)

Sex, No. (%)

Female 185 (59) 32 (60) 32 (67)

Male 131 (41) 16 (33) 21 (40)

Race and ethnicity, No. (%)a

Asian 3 (1) 1 (2) 0

Black 5 (2) 1 (2) 2 (4)

Hispanic/Latino NA 0 0

Non-Hispanic/Latino NA 50 (94) 47 (98)

White 298 (95) 50 (94) 46 (96)

Other/unknowna 10 (3) 1 (2) 0

Declined to answer NA 3 (6) 1 (2)

Abbreviations: GA, geographic
atrophy; iAMD, intermediate
age-related macular degeneration;
NA, not applicable; OCT, optical
coherence tomography; SD-OCT,
spectral-domain optical coherence
tomography.
a Race and ethnicity data were

acquired via patient self-reported
data as reflected in the electronic
medical record. As such, the
category of other reflects the record
and cannot be further defined
herein.
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(eFigure 1 in Supplement 1). The model was trained in a con-
trastive learning manner with proactive pseudointervention
learning as previously described (eFigure 1 in Supplement 1).20

The model was coded in PyTorch and trained with the
Adam Optimizer21 on a GPU TITAN Xp for 100 epochs with a
learning rate of 0.0005 for pretrained feature exactor (0.005
for fully connected layers) and a decay of 0.5 applied to the
learning rate at every 10 epochs. Model development was per-
formed on 108 500 SD-OCT B-scans of 512 × 1000 pixels cor-
responding to 1085 individuals, 28% of which (30 400 scans)
correspond to patients with GA (data set 1) (Table). Model per-
formance was estimated via 5-fold cross-validation with stan-
dard deviation. The statistical significance of the difference be-
tween receiver-operating characteristic (ROC) curves for
different models was quantified with the DeLong test.22 Con-
fusion matrices and their summaries (sensitivity, specificity,
positive predictive value, negative predictive value, and ac-
curacy) obtained by thresholding the prediction values from
the model with values estimated by Youden index.23 To visu-
ally interpret model predictions, the model generated atten-
tion maps via weight backpropagation,20 which probabilisti-
cally masks out regions of the scan that do not contribute to
the ability of the model to predict GA.

In order to justify the design choices in the proposed multi-
scan position-aware model trained with proactive pseudoin-
tervention, we performed ablation studies to assess the con-
tribution of each component (eTable 1 in Supplement 1).
Additionally, human-annotated features were fed into the
preprediction layer of the model to determine if it could im-
prove model accuracy (eTable 2 in Supplement 1). These hu-
man-annotated features have been prev iously
published.6,10,11,24-26 For model validation, SD-OCT volume
scans from the independent validation data sets 2 and 3 were
input to the final model (multiscan, position-aware model
trained with proactive pseudointervention) after contrast lim-
ited adaptive histogram equalization image normalization. Ad-
ditional details may be found in eMethods in Supplement 1.

Results
The study included a total of 417 patients: 316 in data set 1
(mean [SD] age, 74 [8]; 185 [59%] female), 53 in data set 2, (mean
[SD] age, 83 [8]; 32 [60%] female), and 48 in data set 3 (mean
[SD] age, 81 [8]; 32 (67%] female). The convolutional neural net-
work-based deep-learning model used in this study for pre-
diction of progression from iAMD to GA was trained and cross-
validated on SD-OCT volumes from data set 1 (Table; eTable 1
in Supplement 1). The prediction of progression from iAMD to
GA within 1 year yielded an area under the ROC curve (AU-
ROC) of 0.94 (95% CI, 0.92-0.95) and area under the precision-
recall curve (AUPRC) of 0.90 (95% CI, 0.85-0.95) on 5-fold cross
validation. An optimal threshold value was obtained by Youden
index23 resulting in the following performance values for the
prediction of GA 1 year later: sensitivity 0.88 (95% CI, 0.84-
0.92), specificity 0.90 (95% CI, 0.87-0.92), positive predic-
tive value 0.82 (95% CI, 0.75-0.89), negative predictive value
0.94 (95% CI, 0.89-0.97), and accuracy of 0.89 (95% CI, 0.87-

0.91) (Figure 1). For identification of GA in the eye at the cur-
rent time of acquisition, we obtained AUROC of 0.95 (95% CI,
0.89-0.98), AUPRC of 0.91 (95% CI, 0.87-0.95), sensitivity of
0.93 (95% CI, 0.87-0.99), specificity of 0.85 (95% CI, 0.78-
0.92), positive predictive value of 0.71 (95% CI, 0.65-0.76),
negative predictive value of 0.97 (95% CI, 0.95-0.99), and ac-
curacy of 0.88 (95% CI, 0.83-0.94).

To assess the performance of the fully automated model
relative to one supplemented with human-selected image fea-
tures, we compared a version of the final model trained with
human-annotated SD-OCT features associated with progres-
sion to GA to a version without the human-annotated fea-
tures (eTable 2 in Supplement 1).6 The model with the addi-
tional human-annotated features (eTable 1 in Supplement 1)
produced an AUROC of 0.95 (95% CI, 0.92-0.95) for the 1-year
prediction of GA, exceeding the fully automated model by a
margin of 0.01 AUROC (95% CI, 0.02-0.03; P = .19).

The model was further validated on an independent data
set (data set 2) (Table) obtained during routine patient care on
a separate SD-OCT device (Heidelberg Spectralis). Data set 2
consisted of 53 SD-OCT volumes from eyes with iAMD, 23 of
which progressed to GA within the subsequent 13 months. AU-
ROC on the validation set was 0.94 (95% CI, 0.91-0.96) for pre-
diction of GA at 13 months (AUPRC, 0.92 [95% CI, 0.89-0.94];
sensitivity, 0.91 [95% CI, 0.74-0.98]; specificity, 0.80 [95% CI,
0.63-0.91]; positive predictive value, 0.78 [95% CI, 0.70-
0.85]; negative predictive value, 0.92 [95% CI, 0.90-0.95]; and
accuracy, 0.85 [95% CI, 0.87-0.91]) (Figure 1). The external vali-
dation data set did not exclude cases on the basis of macular
comorbidities, and as a result, 13 cases (24.2%) also had cys-
toid macular edema, peripapillary atrophy, vitreomacular trac-
tion, or epiretinal membrane with pucker. For identification
of GA at the current time in data set 2, we obtained an AUROC
of 0.97 (95% CI, 0.96-0.99).

Looking beyond 1-year predictions, when the model was
given SD-OCT scans obtained from eyes up to 2 years prior to
GA progression, the AUROC remained high at 0.88 (95% CI,
0.80-0.96). However, the ability of the model to predict GA di-
minished rapidly beyond 24 months, and the model could not
distinguish SD-OCT scans from eyes that would progress in 3
to 5 years from those that would not progress in 3 to 5 years or
more (Figure 2).

We sought to further understand the performance of the
model by using weight backpropagation to generate atten-
tion maps for SD-OCT volumes (Figure 3; eFigures 2-5 in
Supplement 1). In these attention maps, red dots highlight areas
that the model identifies as most salient for the prediction of
GA or progression to GA. In eyes with current GA (eFigure 2A
in Supplement 1), the red dots were concentrated in the GA le-
sion area associated with the atrophic outer retina, the Bruch
membrane, underlying choriocapillaris and choroid, and of-
ten in the neurosensory retina over the GA lesion in a vertical
distribution through the nerve fiber layer. In eyes with iAMD
that would progress to GA in 1 year (Figure 3; eFigures 2-5 in
Supplement 1), the red dots were predominantly found in large
pigment epithelial detachments, especially those with over-
lying hyperreflective foci and early choroidal hypertransmis-
sion. This reflected the fact that in 303 cases (83.3%) of pro-
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gression in our data set, the initial GA lesion arose following
the collapse of a pigment epithelial detachment; in many of
the remaining 61 cases (16.7%), there were not scans suffi-
ciently far into the past to establish that the atrophic lesion had
not arisen from a previously collapsed pigment epithelial de-
tachment. Among nonprogressing eyes, the weight backpropa-
gation maps showed attention distributed more diffusely across
larger areas of retinal pigment epithelium and drusen rather
than clustered around suspicious lesions (Figure 3). Further
supporting the face validity of the model, the extrafoveal SD-

OCT B-scans where GA lesions rarely appeared showed dif-
fusely scattered attention mapping and low predictive value
(eFigures 4 and 6 in Supplement 1). Prediction errors by the
model showed a less coherent pattern of attention mapping.
In 1 example of a false-positive result, attention was more dif-
fusely distributed similar to the pattern of attention seen in true
negative cases, and in fact, progression to GA occurred just 1
year later than the prediction (eFigure 5 in Supplement 1). In
an example case of a false negative, attention was clustered
on unrelated image features rather than a pigment epithelial

Figure 1. Prediction of Progression From Intermediate Age-Related Macular Degeneration to Geographic Atrophy Within 1 Year
Across 3 Independent Data Sets
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Specificity (95% CI): 0.90 (0.87-0.92)
Accuracy (95% CI): 0.89 (0.87-0.91)
AUROC (95% CI): 0.94 (0.92-0.95)

Sensitivity (95% CI): 0.91 (0.74-0.98)
Specificity (95% CI): 0.80 (0.63-0.91)
Accuracy (95% CI): 0.85 (0.87-0.91)
AUROC (95% CI): 0.94 (0.91-0.96)

Rows of the confusion matrices represent ground truth labels and columns
represent model predictions. Assignments were obtained by thresholding-
predicted geographic atrophy probabilities with thresholds chosen by Youden
index. Area under the receiver operating characteristic curves (AUROCs) for

data set 1 depict the final model in addition to lines for ablation design-based
studies of the model. AUROCs for data sets 2 and 3 display a high-specificity
operating point selected for clinical trial recruitment in addition to 1 identified
by Youden index.
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detachment that would collapse into a GA lesion 12 months later
(eFigure 5 in Supplement 1).

In data set 2, we selected a high-specificity operating point
optimized for high throughput autonomous patient screen-
ing for clinical-trial recruitment. At this operating point, speci-
ficity was 0.98 (95% CI, 0.94-1.00) and sensitivity was 0.59
(95% CI, 0.53-0.63) (Figure 1). We calculated the enrichment
that could be achieved in patients progressing from iAMD to
GA if the model were used to screen and enroll 1000 patients
for a hypothetical 1-year clinical trial. Depending on the base-
line incidence of iAMD to GA progression in the population,
use of the model would lead to an 11.2- to 20.7-fold enrich-
ment in progressing patients in this data set (Figure 4; eTable 3
in Supplement 1). Since the model would need to be autono-
mously applied to multiple image databases in the course of
clinical-trial recruitment, we tested its performance in data set
3 at the same operating threshold. At this value, the high-
specificity operating point showed a specificity of 0.96 (95%
CI, 0.95-0.99), sensitivity of 0.60 (95% CI, 0.49-0.68), and an
8.3- to 12.2-fold enrichment depending on baseline preva-
lence of progression (eTable 3 in Supplement 1).

Discussion
Progression from iAMD to GA represents a transition from a
largely asymptomatic condition to one that may devastate cen-
tral vision. However, since fewer than 1 in 21 will progress from
iAMD to GA each year, identifying at-risk individuals is a cru-
cial but difficult task.6-8 In this cohort study, we describe a con-
volutional neural network-based deep-learning algorithm de-
signed to predict the progression from iAMD to GA from SD-
OCT volumes.

Although a number of previous research efforts have ap-
plied machine learning to predicting progression to GA, to our

knowledge, there has not been an algorithm with high accu-
racy, single-modality input, full automation, and external
validation.6,27-30 Recent publications have also used deep learn-
ing to automatically detect pre-GA lesions, like incomplete reti-
nal pigment epithelium and outer retinal atrophy or nascent
GA, from SD-OCT images. However, the predictive utility and
reproducibility of these markers for progression to GA re-
mains in contention.31-34 For instance, Wu et al35 found that
incomplete retinal pigment epithelium and outer retinal at-
rophy did not contribute any greater predictive power be-
yond that offered by nascent geographic atrophy in predict-
ing GA progression. Indeed, only 3% of observed eyes with
incomplete retinal pigment epithelium and outer retinal at-
rophy progressed to GA within 36 months in the study, com-
pared to 93.1% of eyes with incomplete retinal pigment epi-
thelium and outer retinal atrophy in the initial study.32,34 These
discrepant results may be due in part to the challenging of
achieving interreader agreement for incomplete retinal pig-
ment epithelium and outer retinal atrophy even among ex-
perts. Research is underway to address this critical unmet need
to predict progression from iAMD to GA.36

Our algorithm exceeds previous efforts in several re-
spects. First, the model was trained on the high-quality
AREDS2-A2A data collected under clinical trial protocols and
is, to our knowledge, the largest data set of data depicting pro-
gression from iAMD to GA. Second, our model was validated
on 2 independent data sets collected in the course of routine
patient care. Third, the model’s face validity was confirmed
with weight backpropagation attention maps that high-
lighted the pathological regions of AMD as the most salient for
model prediction. Fourth, the model required input of a single
SD-OCT volume for prediction, an imaging modality avail-
able for every patient encounter in a retina health care pro-
vider’s office. Fifth, the model generalized across SD-OCT de-
vices, including Heidelberg Spectralis, a standard-of-care
device for both patient care and clinical trials. The definition
of GA was recently updated for SD-OCT criteria instead of color
fundus photography, and it is likely that patient care and clini-
cal trials in the future will continue to be carried out primar-
ily with this imaging modality.37-39 Sixth, the model demon-
strated excellent performance on the external data sets.
Seventh, the model showed temporal specificity for short-
term conversion within 1 to 2 years. Seventh, we used an end-
to-end approach, in that the model receives an SD-OCT vol-
ume as input and produces binary predictions without the need
for human selection of image features, input of clinical and
demographic data, or other manual steps. Adding data fea-
tures generated by a clinical-trial reading center did not im-
prove model performance.

This latter strength of the algorithm is essential for its ap-
plication to clinical trials or patient care. Investigators seek-
ing to test new therapies to prevent the progression from iAMD
to GA could apply the model to large databases of SD-OCT vol-
umes and return a list of patients likely to undergo progres-
sion during the 1- to 2-year duration of the trial. Depending on
rates of disease progression within a population, the use of our
algorithm at its high-specificity operating point could lead to
an 8.3- to 12.2-fold increase in the yield of patients whose eyes

Figure 2. Temporal Specificity of the Model Shown by Prediction of
Likelihood of Progression From Intermediate Age-Related Macular
Degeneration (iAMD) to Geographic Atrophy (GA) Across 5 Years
From the Date of GA Progression or Nonprogression
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are progressing when applied to external databases of images
collected during routine patient care (Figure 4; eTable 3 in
Supplement 1). As 1 example, at a commonly accepted inci-
dence of progression from iAMD to GA of 3.0% per year, a clini-
cal trial that enrolled 1000 patients with iAMD for a 1-year trial
could expect just 30 of them to progress to GA, whereas using
a deep-learning algorithm to screen patients for trial enroll-
ment would yield 292 progressing patients per year—a nearly
10-fold increase. This order of magnitude or greater enrich-
ment would facilitate clinical studies that today may be infea-
sible.

Limitations
Our study has several limitations. First, although the data in-
volved in the study represent, to our knowledge, the largest
published cohort of patients progressing to GA, it is neverthe-
less a small number of cases for deep learning (by compari-
son, ImageNet, a natural image data set widely used to de-
velop deep learning algorithms, contains over 14 million

images). The size of the training data also limits the nature of
the prediction of GA progression. A nonbinary output from the
model, for instance, a prediction of months or years to GA pro-
gression, would be superior to binary class prediction. How-
ever, such a model would require a larger training set to achieve
a high level of accuracy. A larger training set may also allow
for additional learning that could extend the prediction be-
yond 2 years for greater inclusion of pathology.

Another limitation is that the validation data set was manu-
ally assembled by a human reader from billing and diagnosis
codes. Large image databases may contain a wider variety of
ocular phenotypes than what was encountered by a deep-
learning algorithm in the current study that may affect per-
formance. Nevertheless, the algorithm had excellent perfor-
mance in the presence of ocular comorbidities for both true
positive and true negative cases.

As another challenge to the prediction of GA, the defini-
tion of the disease continues to evolve, particularly as newer
imaging modalities like SD-OCT supplant older modalities like

Figure 3. Example Predictions From a Deep-Learning Algorithm

A True-positive prediction of progression to geographic atrophy
 with attention map

B True-negative prediction of nonprogression to geographic 
atrophy with attention map

C True-positive prediction of progression to geographic atrophy D True-negative prediction of nonprogression to geographic atrophy 

t = –350 d t = –360 d

t = 0 d gt = P
p = P

gt = NP
p = NP

t = +444 d

A and C, True positive prediction of progression to geographic atrophy (GA).
The attention map shows clustering around the pigment epithelial defect with
overlying hyperreflective foci that collapses into a GA lesion (arrowhead) less
than 1 year later. B and D, True negative prediction of nonprogression to GA

shows model attention directed to several pigment epithelial defects as well as
diffusely distributed along the outer retina. At 26 months after prediction, the
eye remained without GA.
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color fundus photography. A more recent GA-like entity de-
fined by cRORA has been used as an end point in several
studies.39,40 We believe that our algorithm would be suffi-
cient to identify the progression from iAMD to cRORA. In fact,
97.3% of cases of progression to GA in our external validation
data sets also met the definition of cRORA; in only one case, a
new GA lesion measured 200 μm, which fulfilled the defini-
tion of GA by OCT but not cRORA. Moreover, we plan to ex-
pand the capacity of our algorithm to encompass additional
clinical trial end points.

Additionally,thedevelopmentdatasetwasclassimbalanced.
However, the AUPRC, a sensitive measure of performance in im-
balanced data sets, was high for the internal data set, and more-
over, the 2 external validation data sets were balanced between
classes. Additional training and validation of the model will be
sought through external collaborations for the improvement of
prediction accuracy and confirmation of the algorithm’s gener-
alizationtoreal-worlddatabases.Thisisespeciallyimportantsince
the racial and ethnic diversity of the training data was low, al-
though this challenge extends beyond our data sets due to the
demographic predilections of AMD. Nevertheless, this work pro-
videsanimportantfoundationforfuturelargerscaleefforts,most
desirably a prospective validation study.

Conclusions

The findings in this study present the development of a novel,
fully automated deep-learning algorithm to detect the pres-
ence of GA secondary to AMD in SD-OCT volumetric scans and
to predict progression from iAMD to GA within 1 year. The mul-
tiscan position-aware model trained with proactive pseudo-
intervention had excellent performance characteristics that
were equivalent to a similar algorithm that was also trained on
expert-defined features without requiring the costly and labor-
intensive process of image annotation. The value of a deep-
learning algorithm to predict progression to GA is 3-fold. First,
it may facilitate enrollment for clinical trials for iAMD through
high-throughput screening of large databases to identify pa-
tients with iAMD at high risk of imminent progression to GA.
Second, if an effective treatment to prevent progression to GA
becomes available in the future, this algorithm may help phy-
sicians decide which patients with GA would derive the great-
est benefit from treatment. Third, in the current setting of an
approved therapy to slow GA, the algorithm can identify pa-
tients who should be monitored more frequently so that
therapy can be initiated at the onset of disease.
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