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ABSTRACT
Future observations of the large-scale structure have the potential to investigate cosmological
models with a high degree of complexity, including the properties of gravity on large scales,
the presence of a complicated dark energy component, and the addition of neutrinos changing
structures on small scales. Here we study Horndeski theories of gravity, the most general
minimally coupled scalar–tensor theories of second order. While the cosmological background
evolution can be described by an effective equation of state, the perturbations are characterized
by four free functions of time. We consider a specific parametrization of these functions
tracing the dark energy component. The likelihood of the full parameter set resulting from
combining cosmic microwave background primary anisotropies including their gravitational
lensing signal, tomographic angular galaxy clustering, and weak cosmic shear, together with
all possible non-vanishing cross-correlations is evaluated; both with the Fisher formalism as
well as without the assumption of a specific functional form of the posterior through Monte-
Carlo Markov-chains (MCMCs). Our results show that even complex cosmological models
can be constrained and could exclude variations of the effective Newtonian gravitational
coupling larger than 10 per cent over the age of the Universe. In particular, we confirm strong
correlations between parameter groups. Furthermore, we find that the expected contours from
MCMC are significantly larger than those from the Fisher analysis even with the vast amount
of signal provided by stage IV experiments, illustrating the importance of a proper treatment of
non-Gaussian likelihoods and the high level of precision needed for unlocking the sensitivity
on gravitational parameters.
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1 IN T RO D U C T I O N

Combination of different cosmological probes such as type Ia Super-
novae (SNIa, e.g. Perlmutter et al. 1997; Riess et al. 1998; Perlmutter
et al. 1999; Riess et al. 2004, 2007), the angular power spectrum of
the cosmic microwave background (CMB) anisotropies (e.g. Hin-
shaw et al. 2013; Planck Collaboration 2016) and of galaxy clus-
tering (e.g. Cole et al. 2005) led to the conclusion that the Universe
is expanding in an accelerated fashion. The concordance cosmo-
logical model, �CDM, is based on a description of space time by
general relativity (GR) with a non-zero cosmological constant �,
filled with cold dark matter (CDM), photons, and baryons. So far,
the �CDM model has been consistent with almost all observations.

� E-mail: reischke@posteo.net

While SNIa probe the cosmological background model only and
CMB experiments are sensitive to early-time structure formation,
upcoming surveys of the large-scale structure will provide exquisite
data of the perturbed Universe. Even if the cosmological background
seems to be very well described by the �CDM model, perturbations
on this background could still be different. More importantly, GR
has been tested on non-cosmological scales and in the weak field
limit only (see Heavens, Kitching & Verde 2007; Bertschinger &
Zukin 2008; Jain & Zhang 2008; Berti et al. 2015, for reviews),
with inconclusive answers on tensions of the data with �CDM
(Giannantonio et al. 2010; Dossett et al. 2015). More recently it
also has been found to be consistent with binary black hole mergers
(Abbott et al. 2016) and neutron star mergers (Abbott et al. 2017a).
The latter showed that the expansion speed of tensorial modes is
equal to the speed of light. In the standard paradigm one assumes
that the physical laws are also valid on cosmological scales. Even
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for GR this corresponds to an extrapolation passing many orders of
magnitude. Especially GR is applied in the strong curvature regime
in cosmology since the scales of interest are often of comparable
size as the horizon.

From this discussion it should be clear that GR needs to be
tested on cosmological scales (Lue, Scoccimarro & Starkman 2004;
Kunz & Sapone 2007; Laszlo & Bean 2007; Joyce, Lombriser &
Schmidt 2016; Koyama 2016; White 2016). In order to test it,
observable consequences of modifications to GR need to be es-
tablished and compared to observational results (Koyama 2006).
Those modifications of GR lead to very different phenomena (see
Clifton et al. 2012, for a review) and influence the background
expansion as well as the growth of structures (Zhao et al. 2009;
Kobayashi, Tashiro & Suzuki 2010). Furthermore, these models
are highly degenerate with (clustering) dark energy models (e.g.
Copeland et al. 2005), which can as well reproduce very different
expansion histories and structure growth. This is already evident
from the structure of the field equations of GR: modifications in
the gravitational sector can be interpreted as a modification in the
matter sector and can thus be treated as some kind of dark energy
component (Battye & Pearson 2012, 2013). Consequently, cosmo-
logical tests require exquisite data with high statistical significance
in order to have strong enough signals to constrain nuisance, cos-
mological, gravitational, and particle physics parameters (Clifton
et al. 2012; Boubekeur et al. 2014).

In the next decade we expect a huge step forward in large-scale
surveys dubbed stage IV experiments (Albrecht et al. 2006). These
are in particular the EUCLID mission (Laureijs et al. 2011) or LSST
(LSST Science Collaboration 2009) for galaxy clustering and weak
gravitational lensing, CMB stage IV experiments (Abazajian et al.
2016), or surveys of the distribution of neutral hydrogen through
its hyperfine transition with the SQUARE KILOMETER ARRAY (SKA;
Maartens et al. 2015). Operating at very different redshift and scales,
cross-correlation between those experiments will provide signifi-
cant information about the underlying gravity model. Additionally
these missions will also deliver tests of fundamental physics such as
the mass scale of the neutrinos (Pettorino et al. 2010; Font-Ribera
et al. 2014). This is of particular importance as the neutrino masses
are highly degenerate with modifications of the gravity sector (Baldi
et al. 2014; Baldi & Villaescusa-Navarro 2016; Merkel & Schae-
fer 2017). Being very sensitive to the mass of the neutrinos, CMB
experiments will yield complementary information to weak lensing
surveys or galaxy clustering that are sensitive to the gravitational
slip or the modified Poisson equation, respectively.

Having a high dimensional parameter space, advanced sampling
techniques are required, even for forecasting to yield conservative
errors on the cosmological parameters. The inference process itself
is carried out with maximum likelihood methods and the best-fitting
parameter is given by the maximum likelihood estimator (MLE). By
virtue of Bayes’ theorem the likelihood can be cast into a posterior
distribution for the cosmological parameters. The statistical errors
on the parameters are given by confidence intervals calculated from
the Monte-Carlo Markov-Chain (MCMC).

A typical forecasting tool is the Fisher matrix that approximates
the posterior distribution as a Gaussian. This assumption is only ex-
act for linear model parameters, and in the general, non-linear case
one can at least expect to find approximate Gaussian likelihoods as
soon as the data constrain the possible parameter values to fall into
a sufficiently small range of values inside which a linearization of
the dependence between the model prediction and the choice of the
parameter value is applicable. In this limit the statistical errors pre-
dicted by the Fisher-matrix formalism should correspond well to the

true variances and the Cramér-Rao inequality turns into an equality.
The amount of data for cosmological measurements is, however,
limited in a natural way, consequently the Cramér-Rao bound can
never turn into an equality: unlike in other branches such as particle
physics, cosmological parameters can only be determined simul-
taneously, and the hierarchy1 of parameters typical for cosmology
requires exquisite precision on some fundamental parameters (for
instance �m and σ 8) before meaningful constraints on subtle effects
such as modifications of gravity or dark energy can be derived.

In this work we study the constraining power of future exper-
iments on modified gravity including several other cosmological
parameters as well as neutrino masses using both a Fisher analysis
and MCMCs. In particular, we employ affine invariant, parallelized
sampling to investigate the shape and orientation of likelihoods in a
17D parameter space composed of parameters governing the back-
ground dynamics, changes in gravity, and astrophysical parameters
(Foreman-Mackey et al. 2013; Santos, Devi & Alcaniz 2016).

Ideally, one would like to be as general as possible when inves-
tigating gravitational theories, that is covering the largest possible
theory space. From an observational point of view there are phe-
nomenological parametrizations such as the μ, γ parametrization
(Planck Collaboration 2016). It is, however, not clear to which the-
ories this parametrization is related. On the other hand, there exists
a very wide range of gravitational theories and it is necessary to
bundle them in different classes. At the background level, it is clear
that an effective equation of state, w(a), of the dark energy describes
the evolution of the metric completely, because density and pressure
as a function of time are the only degrees of freedom a relativistic
fluid can have under the assumption of the Friedmann symmetries.

Dark energy is usually described using the first two terms of the
Taylor expansion w(a) = w0 + (1 − a)wa (Chevallier & Polarski
2001). On a perturbative level the description is more complicated.
A common method to deal with the perturbations is the effective
field theory (EFT) approach. Here, one sets up an action for the
perturbations containing all operators obeying the symmetries of the
background cosmology as well as the properties of the underlying
effective dark energy description. The coefficients are then functions
of time only and fully describe the perturbations at a linear level.

Here, we particularly focus on Horndeski theories of gravity
(Horndeski 1974; Nicolis, Rattazzi & Trincherini 2009; Deffayet
et al. 2011) that represent the most general minimally coupled
scalar–tensor theory of gravity. These theories are free from ghost-
like degrees of freedom, since the field equations do not contain
derivatives higher than second order. Especially, we will use the
HICLASS code (Zumalacarregui et al. 2016) to calculate the per-
turbations in the EFT framework on a background described by an
effective equation of state that was introduced for the Horndeski
class in Bellini & Sawicki (2014). It allows to describe the linear
perturbations by four functions of time only. Due to measurements
of gravitational wave signals (Abbott et al. 2016, 2017b,a) the free-
dom in those functions can be reduced even further since the tensor
speed excess αT is basically fixed to its GR value. In this context
Ezquiaga & Zumalacárregui (2017), Creminelli & Vernizzi (2017)
as well as Amendola et al. (2018), Sakstein & Jain (2017) discussed
the particular implications on Horndeski theories, showing that the
scalar can be coupled only conformally to the curvature. Further-
more, the kineticity does not influence cosmological observables

1With hierarchy we refer to the different accuracy at which cosmological
parameters can be measured, which is limited by the accessible information
and the sensitivity of the probes.
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significantly and it is basically uncorrelated with the remaining free
functions.

This leaves two free degrees of freedom in this class of models,
the running of the Planck mass αM and the braiding αB, describing
the clustering of the dark energy component on small scales.

We will investigate the constraining power of combined obser-
vations of CMB temperature and polarization anisotropies, CMB
lensing, galaxy clustering, and cosmic shear on the remaining two
degrees of freedom and the neutrino mass scale.

The structure of the paper is the following: In Section 2 we
summarize the basic properties of Horndeski theories of gravity.
Then, in Section 3 we introduce the cosmological probes used.
In Section 4 the statistical methods are described. We present the
results in Section 5 and summarize in Section 6.

2 SC A L A R – T E N S O R TH E O R I E S O F G R AV I T Y

The most general scalar–tensor theory of gravity (Horndeski 1974)
has the following Lagrange density:

L =
5∑

i=2

Li

[
φ, gμν

] + Lm

[
gμν, ψ

]
, (1)

such that the action is S = ∫
d4x

√−gL, where d4x
√−g is the

canonical volume form, φ the scalar field, gμν the metric, and ψ

some collection of matter fields. The individual terms in the La-
grange density are given by

L2 = G2(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X(φ, X)
[
(�φ)2 − φ;μνφ

;μν
]
,

L5 = G5(φ,X)Gμνφ
;μν

− 1

6
G5X(φ,X)

[
(�φ)3 + 2φν

;μφα
;νφ

μ
;α − 3φ;μνφ

;μν�φ
]
. (2)

Here we labelled the kinetic term of the field X ≡ −∇νφ∇νφ/2.
The four functions Gj and K = G2 can in principle be chosen freely
and characterize the theory completely. Note that this theory is only
minimally coupled to matter through the canonical volume form,
extending this particular coupling would go beyond the class of
Horndeski gravity. Covariant derivatives are denoted by semicolons.

In Bellini & Sawicki (2014), it was shown that the evolution
of linear perturbations in Horndeski theories can be completely
characterized by free functions depending on time only:

M2
∗ = 2

(
G4 − 2XG4X + XG5φ − φHXG5X

)
,

HM2
∗αM ≡ dM2

∗
dt

,

H 2M2
∗αK ≡ 2X

(
KX + 2XKXX − 2G3φ − 2XG3φ

)
+ 12φ̇XH

(
G3X + XG3XX − 3G4φX − 2XG4φXX

)
+ 12XH 2

(
G4X + 8XG4XX + 4X2G4XXX

)
− 12XH 2

(
G5X + 5XG5φX + 2X2G5φXX

)
+ 14φ̇H 3

(
3G5X + 7XG5XX + 2X2G5XXX

)
,

HM2
∗αB ≡ 2φ̇

(
XG3X − G4φ − 2XG4φX

)
+ 8XH

(
G4X + 2XG4XX − G5φ − XG5φx

)
+ 2φ̇XH 2 (3G5X + 2XG5XX) ,

M2
∗αT ≡ 2X

(
2G4X − 2G5φ − (φ̈ − φ̇H )G5X

)
. (3)

Here M∗ is the Planck mass and αM describes its time evolution, it
has thus direct implications on the gravitational interaction via the

Poisson equation. αK describes the kinetic energy and is thus largely
unconstrained by observations, since there is no direct influence on
any observable. In contrast, the braiding αB describes how φ itself
mixes with the scalar perturbations of the metric. Lastly αT basically
describes the propagation speed of tensorial modes and how it differs
from normal null geodesics. Therefore, both αM and αT affect the
propagation of gravitational waves, they can be constrained rather
well by non-cosmological experiments (e.g. Lombriser & Taylor
2015; Velten, Jiménez & Piazza 2017). Clearly, these functions
restrict the evolution of perturbations in scalar–tensor theories of
gravity that can be parametrized by only a few numbers. A common
choice for a parametrization would be

αi = α̂i�DE + ci, (4)

since in such a way the modifications track the accelerated expan-
sion of the Universe. Quite obviously, this approach is idealized;
however it gives us a good idea what can be learned from data in
these very general models. For a more detailed discussion on these
topics we refer to Linder, Sengör & Watson (2016) and Alonso
et al. (2017). In Newtonian gauge the linear perturbation equations
in Fourier space are given by

k2�k = −3H 2
0 �m

2a
δkμ(k, a) (5)

and

�k

k

= γ (k, a), (6)

where the subscript k denotes the corresponding wave-number in
Fourier space. It should be noted that we do not refer to any particular
parametrization here with which equation (5) would be valid only
in the quasi-static regime. The functions μ and γ describe the
direct mapping between the density and the potential fluctuations
and the two potential fluctuations, respectively. We will keep this
notation throughout this paper such that one could adapt everything
to particular parametrizations in μ and γ with keeping in mind
that the results derived here do not make use of the quasi-static
approximation.

Many modified gravity models are equipped with a screening
mechanism such that at small scales or high density regions GR
is recovered (Babichev & Deffayet 2013; Joyce et al. 2015). This
mainly helps the theories to survive local tests of gravity in the solar
system. Screening effects become important at small cosmological
scales, such that the effect of modified gravity is suppressed with
respect to linear theory (Barreira et al. 2013; Li et al. 2013; Winther
et al. 2015). So far non-linear structure formation in modified gravity
scenarios is only done for very specific models, but not for such a
general class as Horndeski, even though a lot of the theories covered
by Horndeski theories have an effective screening mechanism which
is, however, only present at the non-linear level. In this work we
will use linear predictions and then apply the halo model correction
to the linear predicted power spectrum. We justify this choice by
a phenomenologically chosen screening scale ks imposed on the
α-functions (Alonso et al. 2017):

αi → αi exp

[(
− k

2ks

)2
]

. (7)

3 C O S M O L O G I C A L P RO B E S

Each data set is given by a collection of spherical harmonic modes
{aX

�m} where X labels the probe considered. In this work we will
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focus on CMB primary anisotropies, i.e. temperature fluctuations
(T) and two polarization modes (E, B), the CMB lensing signal
deflection field (D), tomographic galaxy clustering (gi), and cosmic
shear (γ i). If the modes follow a Gaussian distribution they can be
fully described by their angular power spectra. Since the modes of
different data sets are not independent, the cross-spectra will not
vanish and carry valuable cosmological information. On the other
hand, the correlation between the different data sets reduces the
independence of the modes resulting into less information.

In this section we will discuss all relevant spectra together with
their respective noise properties. Throughout this section we will
always use the Limber projection (Limber 1953) whose validity
was discussed in great detail in Kitching et al. (2017). Throughout
this section we will use �′ = � + 1

2 , as a better approximation for
projecting spectra.

3.1 Structure growth

As outlined in Section 2, modified gravity mainly influences the
growth of structures, i.e. the metric perturbations. For evolving the
perturbations we use the Boltzmann code hi class (Zumalacar-
regui et al. 2016) which is an extension of CLASS (Lesgourgues
2011) for scalar–tensor theories of gravity. The code evolves ini-
tial conditions set by perturbations forward in time using linear
equations only. At small scales and low redshifts the perturbations
become non-linear. On these scales the treatment of the Boltzmann
codes breaks down. For the CMB primary anisotropies this effect
is small, since the only non-linear contributions come from the in-
tegrated Sachs–Wolfe effect that has most of its power on large
angular scales.

On the contrary cosmic shear and galaxy clustering will acquire
the majority of their signal from non-linear scales. It is therefore
necessary to model the non-linear scales carefully to exploit the full
power of future surveys. A lot of effort has been put into understand-
ing the non-linear evolution theoretically in standard cosmological
models in both analytical models (e.g. Zel’Dovich 1970; Buchert
1992; Bouchet et al. 1995; Bernardeau et al. 2002; Cooray & Sheth
2002; Hilbert, Hartlap & Schneider 2011; Bartelmann et al. 2014;
Bartelmann et al. 2017), and through simulations (e.g. Smith et al.
2003; Heitmann et al. 2010). In modified gravity theories non-linear
models are more difficult due to the modified Poisson equation
and so far no common description of non-linear scales in general
tensor–scalar theories (e.g. Hu & Sawicki 2007; Zhao, Li & Koyama
2011; Casas et al. 2017) exists, and only restricted simulations of
non-linear structure formation within GR (Adamek et al. 2013) or
certain types of f(R)-gravity (Achitouv et al. 2015) are available. In
this work we take care of non-linearities by using the Halofit model
(Smith et al. 2003; Takahashi et al. 2012; Mead et al. 2015). It is thus
assumed that the effect of modified gravity is negligible on small
scales and that GR yields an adequate description (Hu & Sawicki
2007). For Horndeski cosmologies this is not true in general, since
there is no screening evolved. It is therefore necessary to include
the screening by hand as described in equation (7).

Phenomenologically, the effect of screening can be better under-
stood by looking at the effective Newtonian coupling, the gravita-
tional slip, and the linear growth factor:

μ(k, a) → μGR + μMG(a, k)W (k; ks)

γ (k, a) → γGR + γMG(a, k)W (k; ks)

D+(k, a) → D+GR(a) + D+MG(a, k)W (k; ks). (8)

Here W(k, ks) ∝ exp (− (k/ks)2) is a low-pass filter to ensure that
on scales k > ks GR is recovered. An usual value for the screening
scale would be ks ≈ 0.1h Mpc−1. In the limit of GR, μ and γ are
unity, while the linear growth factor D+(a) can be recovered from

d2

da2
D+(a) + 1

a

(
3 + dlnH

dlna

)
d

da
D+(a) − 3

2a2
�m(a)D+(a) = 0.

(9)

Furthermore, baryonic effects such as feedback mechanisms be-
come important on small scales, since the dark matter particles are
coupled to the baryons by gravity. Schneider & Teyssier (2015)
proposed a fitting formula able to describe the effect on the matter
power spectrum for a variety of feedback models. The fitting for-
mula depends on several parameters, for instance, the average halo
mass, Mc, below which most of the gas is ejected, and the maximum
scale, ηb, up to which the suppression is active.

3.2 CMB primary anisotropies

Maps of the CMB temperature and polarization contain various kind
of primary anisotropies that are mainly related to the potential land-
scape at the last scattering surface. Foregrounds induce secondary
anisotropies, which, however, can be removed very well as they de-
stroy the thermal CMB spectrum. The cleaned maps of CMB data
are given in spherical harmonics of P = T, E, B with some instru-
mental noise n, with root mean square σ 2

P . Instrumental noise CMB
experiments can be modelled by a Gaussian beam with width θbeam.
Additionally one adds white noise to find the noise covariance to be
(Knox 1995)

NP (�) ≡ 〈nP∗
�mnP ′

�m〉 = θ2
beamσ 2

P exp

(
�(� + 1)

θ2
beam

8ln2

)
δPP ′ (10)

diagonal in P as the noise of different maps is uncorrelated, likewise
one obtains diagonality in � and m for full-sky observations of
statistically homogeneous and isotropic fields.

Consequently, the angular power spectrum is given by

〈aP∗
�maP ′

�′m′ 〉 ≡ ĈPP ′
(�) = (

CPP ′
(�) + NP (�)

)
δ��′δmm′ . (11)

Due to statistical isotropy and homogeneity the spectra are diagonal
in � and m. Stage III CMB experiments such as WMAP (Hinshaw
et al. 2013) or Planck (Planck Collaboration XIII 2016) will even-
tually be surpassed by stage IV CMB experiments (Abazajian et al.
2016; Thornton et al. 2016) that will have a very small instrumental
noise (cf. Table 2) allowing for measurements up to � ∼ 5000 es-
pecially for the polarization maps. Very small scales with � > 2500
will thus not be dominated by the instrumental noise. However, due
to photon diffusion the signal is strongly suppressed at those scales.
We therefore decide to cut all CMB measurements at � ≈ 2500. It
should be noted that the primordial B-mode signal is vanishing at
the last scattering surface in the analysis here. However, there is a
non-vanishing B-mode signal induced by gravitational lensing.

For the reionization we use a simple hyperbolic tangent with one
step for hydrogen and a second for helium reionization. For details
on the model we refer to Lewis (2008).

3.3 Cosmic shear

Bundle of light rays travelling from distant galaxies get distorted
at the per cent level due to the perturbed gravitational potentials
of the large-scale structure (for reviews, we refer to Bartelmann &
Schneider 2001; Hoekstra & Jain 2008; Bartelmann 2010). Since
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photons move on null geodesics, lensing measures both gauge in-
variant quantities of the perturbed metric � and  (up to a sign,
depending on the signature of the metric, Acquaviva, Baccigalupi &
Perrotta 2004). In case of GR both potentials are equal, but this is no
longer the case for modified gravity theories, thus making cosmic
shear a probe of deviations from GR. The weak lensing effect is
described by a line-of-sight integral of the two metric perturbations
that defines the lensing potential:

ψi =
∫ χH

0
dχWψi

(χ )(� + ) , (12)

where χH = c/H is the Hubble radius and i is the index of the
tomographic bin. Here the lensing weight function is defined via

Wψi
(χ ) = Gi(χ )

aχ
. (13)

The tomographic bins are introduced to partially regain redshift
information that is destroyed by the line-of-sight integration (Hu
2002). This procedure is for example not necessary in 3D weak lens-
ing (Heavens 2003) where the redshift information is completely
carried through the analysis by means of a spherical Fourier-Bessel
decomposition of the shear field (see in particular Spurio Mancini
et al. 2018, for an application to Horndeski gravity). However, 3D
weak lensing is computationally much more expensive than 2D
cosmic shear with tomography due to necessary integrations over
spherical Bessel functions.

The tomographic lensing efficiency function is given by

Gi(χ ) =
∫ χi+1

min(χ,χi )
dχ ′p(χ ′)

dz

dχ ′

(
1 − χ

χ ′

)
, (14)

with the Jacobi determinant dz/dχ
′ = H(χ

′
)/c due to the transfor-

mation of the redshift distribution p(z)dz of background galaxies in
redshift z, which is given by (Laureijs et al. 2011)

p(z)dz ∝ z2 exp

[
−
(

z

z0

)β
]

. (15)

Typical parameters for stage IV experiments are z0 ≈ 1 and β =
3/2. The angular power spectrum of the lensing potential is then
given by

Cψiψj
(�) =

∫ χH

0

dχ

χ2
Wψi

(χ )Wψj
(χ )P�+ (�′/χ, χ ) . (16)

Here we defined the power spectrum of the sum of the two Bardeen
potentials � and .

The noise contribution of observed lensing spectra is Poissonian
shape noise due to the finite number of galaxies in each bin that are
used to estimate the lensing signal

Ĉψiψj
= Cψiψj

+ σ 2
ε

nbin

n̄
δij , (17)

with the intrinsic ellipticity dispersion σ ε = 0.3, the number of
tomographic bins nbin, and the mean number density of galaxies n̄.
Note that, using this definition of the noise, the source distribution
must be normalized in each tomographic bin separately. Finally, the
convergence spectra is related to the lensing potential spectra via
the Poisson equation �ψ = 2κ , yielding a factor �4/4 in the flat-sky
limit. By combining geometric information with the growth history
and the initial fluctuation spectrum, gravitational lensing is an ideal
probe for investigating gravity on cosmological scales (Vanderveld
et al. 2012; Pratten et al. 2016; Spurio Mancini et al. 2018), and its
second-order corrections carry sensitivity with respect to changes in
the gravitational interaction (Vanderveld, Caldwell & Rhodes 2011;
Renk et al. 2017).

In this work we will ignore the contribution from intrinsic align-
ments leading to intrinsically correlated shapes of galaxies (e.g.
Croft & Metzler 2000; Heavens, Refregier & Heymans 2000; Cate-
lan, Kamionkowski & Blandford 2001; Jing 2002; Mackey, White &
Kamionkowski 2002; Forero-Romero, Contreras & Padilla 2014;
Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al. 2015; Tu-
gendhat & Schaefer 2017; Blazek et al. 2012, 2017). There are two
additional signals on top of the lensing signal, they are called II
and GI alignment and describe the correlation of the intrinsic el-
lipticity with itself and the correlation of the lensing signal with
the intrinsic ellipticity, respectively. Both quantities are present in
observed ellipticity spectra, which would ideally be interpreted as
being proportional to the cosmic shear signal only. Intrinsic align-
ments only make up a few per cent of the lensing signal, depending
on the angular scale considered. However, due to the high statisti-
cal significance with which cosmic shear is measured by stage IV
surveys, the impact on the inference process can be very strong.
Additionally, the alignment of galaxies is itself a probe of the LSS
and thus contains valuable cosmological information if modelled
correctly.

3.4 Galaxy clustering

Complementary to cosmic shear, galaxy clustering (e.g. Baum-
gart & Fry 1991; Feldman, Kaiser & Peacock 1994; Heavens &
Taylor 1995; Di Dio et al. 2016; Raccanelli et al. 2016) measures
the statistics of the density contrast, δ, and thus directly the mat-
ter power spectrum. Therefore galaxy clustering is only affected
by the time–time component of the metric perturbations. However,
galaxies are a biased tracer of the total matter distribution (as sum-
marized by Desjacques, Jeong & Schmidt 2018). Quite general we
will therefore write δ(k, z)b(k, z) = δg(k, z). Once the bias is known,
we proceed in analogy to the cosmic shear case and find the angular
power spectrum of galaxy clustering

Cgigj
(�) =

∫ χH

0

dχ

χ2
Wgi

(�′/χ, χ )Wgj
(�′/χ, χ )Pδ(�′/χ, χ ), (18)

where Pδ is the matter power spectrum. The galaxy weight function
is defined as

Wgi
(�/χ, χ ) = H (χ )

c
b(�/χ, χ )p(χ ) if χ ∈ [χi, χi+1). (19)

Thus, we assume no cross-correlation between different tomo-
graphic bins in a galaxy survey. This assumption relies heavily on
the error of the redshift estimation, which can be quite substantial
for photometric surveys. A commonly used value is σ (z) = 0.05(1 +
z). In contrast to cosmic shear, galaxy clustering has a much shorter
correlation length and cross-correlations between the bins become
only important if the average bin width is of the same order as the
redshift error. Here we choose the redshift bins such that an equal
number of galaxies lies into each bin and thus the signal-to-noise
stays comparable. For the six tomographic bins used in this case this
amounts to a minimum redshift width of �z = 0.2 at z = 1, showing
that only correlation between the two bins at the peak of the red-
shift distribution will play a significant role. Here we will neglect
this contributions, but we keep in mind that this cross-correlation
needs to be taken into account for higher nbin. In Bailoni, Spurio
Mancini & Amendola (2017), the effect of redshift bin uncertainty
and bin cross-correlation was investigated for a spectroscopic sur-
vey, showing that the impact on the Fisher matrix can be up to 30
per cent .
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For the galaxy bias we assume a simple linear model with no
scale dependence (Ferraro, Sherwin & Spergel 2015):

b(χ ) = b0(1 + z(χ )) . (20)

This model is of course really optimistic, since it does not allow
for a non-linear redshift evolution of the bias and has no scale
dependence. Since the overall bias amplitude is a free parameter
we expect that the influence on �m and σ 8 due to more complex
bias models is marginal. It should, however, be noted that the fixed
redshift dependence can lead to underestimation of the errors of
parameters that depend strongly on the redshift information in the
survey, for example w0 and wa. The observed spectrum suffers again
from Poissonian shot noise:

Ĉgigj
= Cgigj

+ nbin

n̄
δij . (21)

Despite the effects mentioned, there exist further effects such
as redshift-space distortion or lensing magnification (Yoo, Fitz-
patrick & Zaldarriaga 2009). In our analysis we neglect those ef-
fects, which would also influence the modelling of the intrinsic
alignment signal.

3.5 CMB lensing

The CMB lensing signal is induced by the LSS (e.g. Hirata & Sel-
jak 2003; Lewis & Challinor 2006a). Being released at a redshift of
roughly z∗ ≈ 1100 the lensing signal of the CMB carries a lot of cos-
mological information. CMB lensing effectively shuffles patches of
the CMB map around differentially, thus destroying the homogene-
ity of the unlensed CMB. Since the unlensed CMB is not accessible,
one has to assume that it is indeed statistically homogeneous. In this
way can be reconstructed from the five observed spectra (the EB
and TB cross-correlations vanish due to parity). A minimal variance
and unbiased estimator was constructed by Hu & Okamoto (2002)
and Okamoto & Hu (2003)

ĈDD(�) = CDD(�) + NDD(�) . (22)

Even with future experiments the noise will start dominating at mul-
tipoles well below 1000. Thus, the main contribution to the lensing
signal comes from linearly evolved structures. The noise properties
of the lensing signal are completely determined by the reconstruc-
tion if the lesning signal and its expression is also given in Hu &
Okamoto (2002) and Okamoto & Hu (2003). For the reconstruction
noise we use the noise properties of the other estimators as listed
in Table 2. Furthermore there exists in principle a non-vanishing
cross-correlation between the reconstructed lensing signal and the
CMB polarization that is not considered here. The largest effect
arises from the B-mode signal of the CMB polarizations that are
then usually discarded to circumvent the problem of dealing with
the complicated covariances. In this analysis we ignore this effect
since it will not change our analysis strongly as most of the CMB
polarization signal arises from the E-modes.

Let χ∗ be the comoving distance to the last scattering surface,
the lensing signal of the CMB is just

ψCMB =
∫ χH

0
dχWCMB(� + ), (23)

with the CMB lensing efficiency function

WCMB(χ ) = χ∗ − χ

χ∗χ
H (χ )

ca
. (24)

The angular power spectrum for the CMB lensing signal has the
same structure as equation (16) with the weight function replaced
by (24).

3.6 Cross-correlations

ln the very end, the statistics of the random field describing the LSS
is probed, in particular at very different epochs, making the combi-
nation of the different observations so powerful. At the same time
there are numerous cross-correlations between the different probes.
The potential landscape at the last scattering surface introduces
correlations between the temperature and polarization anisotropies.
Only the E and B modes are uncorrelated due to parity arguments.

The calculation of the cross-spectra follows the same recipe as
before, with weight functions and power spectrum adopted accord-
ingly. As an example, consider the cross-correlation between cosmic
shear and galaxy clustering:

Cgiψj
(�) =

∫ χH

0

dχ

χ2
Wgi

(�′/χ, χ )Wψj
(�′/χ )Pδ,�+ (�′/χ, χ ). (25)

Here we defined the cross-correlation power spectrum of the density
fluctuations with the sum over the two Bardeen potentials. As in the
case for cosmic shear we could also rewrite equation (25) so that it
only contains Pδ by using the ratio between  and �, as well as the
modified Poisson equation.

For the noise part we consider cells i with population number ni

and the quantity

f (x) =
∑

i

δD(x − xi )nifi , (26)

which can be cast into galaxy counts, δgi
, or a shear measurement,

εi, respectively. Working out the correlation 〈ff〉 one finds, as ex-
pected, that the shot-noise is sourced by the correlation 〈εiδgi

〉. This
correlation in principle should vanish, since the intrinsic shape is
not correlated with the galaxies position and the average number
density. However, considering intrinsic alignment models for linear
galaxies, the intrinsic shape is sourced by the gravitational tidal
field (Troxel & Ishak 2015). Therefore, the intrinsic ellipticity can
be related to the density. Consequently there will be some additional
correlation between galaxy clustering and weak lensing due to the
intrinsic alignment model. However, we expect this contribution to
be very small compared to the overall signal.

Additionally, galaxy clustering as well as cosmic shear are cor-
related with the CMB lensing signal (Kitching, Heavens & Das
2014). Lensing of the CMB and the temperature anisotropies have a
non-vanishing cross-correlation due to the integrated Sachs–Wolfe
effect (Lewis & Challinor 2006b).

On very large scales the temperature fluctuations of the CMB
are modified due to time-evolving potentials. This is called the
integrated-Sachs–Wolfe effect (iSW, Sachs & Wolfe 1967). The
weight function of the iSW effect is given by

WiSW(k, a) = 3

2χ3
H

a2E(a)F ′(k, a), (27)

where the prime denotes a derivative with respect to a and

F (k, a) = μ(k, a)
D+(k, a)

a

(
1 + 1

γ (k, a)

)
. (28)

Since the iSW is a late-time effect there is a cross-correlation be-
tween galaxy clustering, cosmic shear, and CMB lensing. For the
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first we obtain the following cross-spectrum as

CgiT (�) =
∫

dχ

χ2
Wgi

WiSWD+(�′/χ, χ )
Pδ(�′/χ )

k2
(29)

and similarly for CψiT and CDT.

4 STATISTICS

We collect all probes in a complex vector a�m, such that the statistics
of the modes can be represented by the covariance matrix, Ca(�) ≡
〈a�ma+

�m〉. The likelihood of a set of modes to be represented by its
covariance is given by

L({a�m}) =
∏

�

p [{a�m} |Ca(�)]2�+1 . (30)

Due to statistical isotropy and homogeneity the likelihood decom-
poses into disconnected products of �- and m-modes. The exponent,
2� + 1, takes care of the multiplicity of the m-modes as a reflection
of statistical isotropy. Note that the covariance implicitly depends
on the model parameters.

Constructing the likelihood therefore reduces to a model for the
distribution of the modes. At early times, the modes can be assumed
to be Gaussian to very good approximation. On small scales at late
times, however, Gaussianity is destroyed due to non-linear evolu-
tion. Empirically, the modes seem to follow a log-normal distribu-
tion (Hilbert et al. 2011), but to date there is no analytic derivation
of this behaviour from first principles. A way out is to not consider
the modes, but rather to compress the data to obtain an estimator of
the power spectrum, Ĉ(�i) = ∑

�∈�i
|a�m|2, where no information

is lost due to statistical isotropy. The advantage of this estimator
is that the distribution is very well approximated by a Gaussian
at sufficiently large � due to the central limit theorem. At small
multipoles the distribution is skewed and can be shown to follow
a Gamma distribution if the modes themselves are distributed in a
Gaussian way [Hamimeche & Lewis (2009) for CMB likelihoods
and Sellentin & Heavens (2018); Sellentin, Heymans & Harnois-
Déraps (2018) for cosmic shear likelihoods]. Another advantage of
the latter approach is that the influence of probes can be analysed
more independently. At the same time, the construction of the like-
lihood for the power spectrum estimator requires the knowledge of
its covariance, which itself depends on the cosmological parame-
ters (e.g. Scoccimarro & Frieman 1999). This makes the inference
process more complicated, since higher order cumulants have to be
calculated.

Here, we will assume the modes to follow a Gaussian distribution
for simplicity, and that the statistical symmetries of homogeneity
and isotropy are fulfilled. This implies no correlation between �-
or m-modes, and we correct the covariance for an incomplete sky
coverage with a factor

√
fsky. Consequently, the distribution of a

single mode in equation (30) is given by

p ({a�m} |Ca(�))= 1√
(2π )N detC(�)

exp

[
−1

2
a+

�mC−1
a (�)a�m

]
. (31)

Here, N = 4 + 2nbin is the dimension of the data vector a�m.
Having said this, it is already clear that by combining different

measurements and thus a new entry to a�m all possible correla-
tions with the other measurements must be explained by the model.
This effect is subtle: the non-vanishing correlations lead to a de-
creasing signal, compared to measurements that are independent.
However, as said before, the model has to explain those correlations
as well, possibly yielding a larger constraining power. It is thus nec-
essary to include all correlations, since ignoring them would imply

the wrong assumption of statistical independence and of vanishing
cross-correlations that would be predicted to be non-zero by a given
cosmological model.

The logarithmic likelihood L = −2lnL can be brought into the
following form:

L =
∑

�

(2� + 1)
[
ln (detCa(�)) + a+

�mC−1
a (�)a�m

]
, (32)

up to an irrelevant additive constant. Averaging over the data yields

〈L〉 =
∑

�

(2� + 1)
[
ln (detCa) + tr(C−1

a Ĉa)
]
, (33)

where Ĉa = 〈a�ma+
�m〉 is the covariance matrix of the data. In our

case, the covariance assumes the following form for each � sepa-
rately and independent of m, Ĉa =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T T T E 0 T D Tg1 . . . T gn T γ1 . . . T γn

ET EE 0 ED 0 . . . 0 0 . . . 0
0 0 BB 0 0 . . . 0 0 . . . 0

DT DE 0 DD Dg1 . . . Dgn Dγ1 . . . Dγn

g1T 0 0 g1D g1g1 . . . g1gn g1γ1 . . . g1γn

...
...

...
...

...
. . . . . .

...
. . .

...
gnT 0 0 gnD gngn . . . gng1 gnγn . . . gnγn

γ1T 0 0 γ1D γ1g1 . . . γ1gn γ1γ1 . . . γ1γn

...
...

...
...

...
. . . . . .

...
. . .

...
γnT 0 0 γnD γng1 . . . γngn γnγ1 . . . γnγn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where n is the number of tomographic bins and the label of each
entry XY denotes the covariance CXY(�) discussed in Section 3. The
symmetry and positive definiteness of the covariance is ensured by
the Cauchy–Schwarz inequality. It should be noted that there is no
correlation 〈γ igj〉, for zi < zj.

The posterior equals the likelihood for a uniform prior up to a nor-
malization constant by virtue of Bayes’ theorem and the maximum-
likelihood estimate is defined to be the point in parameter space θ̂ ,
where 〈L〉 has its maximum.

A common approximation for the posterior is the Fisher matrix
Fμν , which is the curvature of the log-likelihood at the best-fitting
value. For Gaussian distributed data it can be calculated easily by
(Tegmark, Taylor & Heavens 1997):

Fμν =
�max∑

�=�min

2� + 1

2
tr
(
∂μln[Ca(�)] ∂ν ln[Ca(�)]

)
. (34)

The Fisher matrix is exact only if the posterior distribution is Gaus-
sian. It is especially insufficient for poorly constrained parameters
and high-dimensional parameter spaces. The Cramér–Rao inequal-
ity states that the Fisher matrix yields a lower bound for the fore-
casted errors only. Furthermore, the Fisher matrix can be used to
calculate the cumulative signal-to-noise ratio:

�2(≤ �) =
�max∑

�=�min

2� + 1

2
tr
(

C−1
a (�)Sa(�)C−1

a (�)Sa(�)
)

, (35)

where Sa is the covariance without noise. Effectively, the signal-
to-noise ratio � corresponds to the ratio between the signal of an
assumed amplitude A divided by the anticipated statistical error
σA = 1/

√
FAA from the Fisher matrix FAA. The derivative in equa-

tion (34) is calculated by finite differencing:

∂μf (xμ) ≈ f (xμ + �xμ) − f (xμ − �xμ)

2�xμ
. (36)
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Convergence is ensured by varying �xμ until Fμν does not change
by more than 5 per cent. All expressions so far assumed that the
spherical harmonic coefficients completely describe the fields under
consideration. This is true only if the corresponding basis functions
form a complete basis. If the survey area does not cover the whole
sky this is no longer true, and especially for small survey areas and
complicated masks this effect can become very important. For state
IV surveys we expect the sky coverage fsky to be roughly one third.
It therefore suffices to multiply the log-likelihood with a factor of
fsky to model the information loss.

Additionally to the Fisher analysis we carry out an MCMC us-
ing the sampling technique proposed by Goodman & Weare (2010).
This stretch-move technique is invariant under affine transformation
of the parameter space and is rather insensitive on the covariance
between the parameters. Convergence of the chains is ensured by
estimating the exponential autocorrelation time and letting the walk-
ers run for multiple autocorrelation times after the initial burn-in
period. For a more detailed discussion we refer to Redlich et al.
(2014).

5 C ONSTRAINTS O N MODIFIED GRAV IT Y

Likelihoods of the parameter set are evaluated using MCMC sam-
pling. In particular we employ an affine-invariant sampler. The re-
sults are then compared to the Fisher matrix forecast, which ef-
fectively assumes a Gaussian posterior. The latter comparison is
important because numerical errors in the evaluation of the Fisher
matrix might lead to differing parameter degeneracies and because
the Fisher matrix technique only allows for lower bounds on the
magnitude of statistical errors. Fig. 3 shows joint constraints on
the two Horndeski parameters αM and αB, as evaluated by MCMC
sampling, with a marginalization over the remaining parameters.
Clearly, αM can be measured to be non-zero in a significant way
while a measurement of αB is possible but less significant. For the
purpose of this investigation, we displace the reference cosmology
away from the �CDM parameter choices, but will comment on the
relevance of the reference cosmology further below.

Fig. 4 shows the true MCMC-evaluated likelihood on the two α

parameters, the neutrino masses, and the dark energy parametriza-
tion in comparison to the results for a Gaussian approximation of
the likelihood. We selected these parameters because they are the
most difficult to measure with the largest statistical errors and at the
same time the most interesting: while any parameter that enters the
model in a non-linear way will have a non-Gaussian likelihood, this
non-Gaussianity is more prominent in less constrained parameters
than in better constrained ones. While in most cases with a param-
eter degeneracy, the Fisher-matrix formalism seems to be able to
predict them reasonably well, the degeneracy between the neutrino
mass

∑
mν and αB is not reproduced entirely. Apart from those re-

sults, the most important consequence of non-Gaussian likelihoods
is that they give rise to larger statistical errors as would be expected
from the Cramér–Rao bound.

5.1 Experimental setup

The experimental characteristics anticipated for stage IV observa-
tions of the cosmic large-scale structure are summarized in Ta-
ble 1. They correspond to the data set retrieved by the European
Euclid mission (Laureijs et al. 2011) and in conjunction with high-
resolution observations of the cosmic microwave background of the
next generation of CMB observatories one can access multipoles
up to � � 3000 in temperature and � � 5000 in polarization before

Table 1. Basic parameters of the experimental setup for a stage IV exper-
iment. While the noise properties of galaxy clustering and cosmic shear is
controlled by n0, nbin, and σε ≈ 0.3, the noise of CMB anisotropies depends
on various parameters, which are summarized in Thornton et al. (2016). The
two values for �max refer to LSS and CMB observations, respectively.

n0 z̄ nbin fsky �min �max

30 arcmin−2 0.9 6 15.000 deg2 10 2000, 2500

Table 2. Noise level for a stage IV CMB experiment in different bands. The
total noise contribution is then the inverse weighted sum of the individual
noise contribution in each band.

ν (GHz) θbeam (arcmin) σP (μK arcmin)

90 5.7 18.80
105 4.8 13.80
135 3.8 9.85
160 3.2 7.78
185 2.8 7.05
200 2.5 6.48
220 2.3 6.26

being limited by noise. The noise levels of a stage IV CMB exper-
iment are listed in Table 2. It should, however, be noticed that we
use a maximum multipole of 2500, since higher multipoles will not
contribute strongly to the overall signal-to-noise due to the damping
of the CMB anisotropies. This will also have negligible influence
on the overall parameter constraints on modified gravity since the
sensitivity on gravity originates from larger scales.

As a lower multipole limit we use �min = 10, which is a realistic
value for LSS measurements. For CMB measurements, the noise
curve will not stay flat at very low � due to atmospheric effects even
for stage IV experiments. This effect is not included in our analysis
and, so that the noise level is entirely dominated by cosmic variance
only also on very large scales. The main effect of this will be the
further limitation of the measurement of the sum of the neutrino
masses due to the degeneracy between the fluctuation amplitude
and the optical depth.

Data of that quality show an impressive overall signal-to-noise
ratio, as depicted by Fig. 1 and allow for the determination of the
parameter values of a complex cosmological model. The cumu-
lative signal is given for an all-sky observation with no redshift
information, i.e. nbin = 1, and adding tomographic information
would increase the sensitivity of the measurement with respect to
line-of-sight-varying quantities. Furthermore, cosmic shear is level-
ling out earlier than galaxy clustering because of the line-of-sight-
integrating nature of weak lensing. CMB anisotropies consist of
three probes, namely temperature and E-mode polarization spectra
and cross-spectra, with the additional reconstructed CMB-lensing
deflection field, for which we assume information originating from
the polarization B-mode as well. On large angular scales, all probes
are cosmic variance dominated, and the comparatively small sig-
nal strength of the CMB-lensing deflection field is caused by the
reconstruction noise.

Large-scale structure data, i.e. weak gravitational lensing and
galaxy clustering, probe overlapping sections of the cosmic large-
scale structure and are therefore not statistically independent. The
right-hand panel in Fig. 1 shows the influence of the non-vanishing
cross-correlation between the different probes: Ignoring the cross-
correlation would overestimate the signal-to-noise ratio, as shown
by the blue curve, which is corrected by the inclusion of the cor-
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Figure 1. Cumulative signal-to-noise ratio (see equation 35). For a survey with settings as in Table 1 but with nbin = 1. Left-hand panel: All probes individually.
Right-hand panel: Adding galaxy clustering and cosmic shear with (×) and without (+) cross-correlation.

rect cross-correlation, as shown by the orange line. This reduction
in signal strength would amount to �16 per cent, but would not
straightforwardly imply a similar decrease in sensitivity. In contrast,
because the cross-correlation is in fact measurable, it constitutes a
valuable source of cosmological information.

Even though we find that the signal-to-noise ratio still increases
for � > 2500, we ignore those scales from our analysis since they
probe the deeply non-linear regime, which would require a faithful
description of non-linear structure formation, in particular trispec-
trum corrections to the covariance matrix. Furthermore, we do not
consider a cut-off multipole as it is, for example, done by Alonso
et al. (2017) for galaxy clustering.

5.2 Cosmological constraints

The full set of four possible α-functions that characterize a
Horndeski-cosmology cannot be constrained by cosmological data.
As shown by Alonso et al. (2017), the kineticity αK is basically
unconstrained by cosmological observations and uncorrelated with
the remaining modified gravity parameters. Furthermore, the tensor
speed excess, αT, has been constrained recently to be very close to
zero by observations of the near-coincidence of the electromagnetic
and gravitational wave signal of a neutron star merger (Abbott et al.
2017a). Consequently, we exclude both parameters from our analy-
sis and only retain αM and αB, which form together with the standard
FLRW parameters �m and �b, a time-varying dark energy compo-
nent with equation of state parameters w0 and wa, the parameters
ns that determine the shape of the CDM spectrum and determine
the physical density parameters, and finally phenomenological and
astrophysical parameters such as the reionization redshift zre, the
biasing parameter b, and the baryons-to-photons ratio ηb. Together,
these parameters form a 17D parameter space that we set out to
constrain through cosmological data.

Degeneracies and correlations between the parameters are de-
scribed by Pearson’s correlation coefficient rμν under the assump-
tion of a Gaussian posterior distribution,

rμν = cov(θμ, θν)√
cov(θμ, θμ)cov(θν, θν)

, (37)

which can be straightforwardly derived from the Fisher matrix un-
der the assumption of a Gaussian likelihood, where the parameter
covariance is equal to the inverse Fisher matrix. The results are
shown in Fig. 2, where one can indeed see that αK is not correlated

Figure 2. Pearson correlation coefficient rμν for all parameters in the anal-
ysis (including α̂K and α̂T) for a survey with specifications as in Table 1.

with the remaining parameters.
As a prior we assume a flat prior for all parameters. Due to physi-

cal conditions, the parameter space is bounded for some parameters
as summarized in Table 3 by the requirement that the parameters
should be positive, for example, in order to exclude unstable per-
turbations if αi < 0. It should be noted that a flat prior is not always
the optimal choice if the parameter space is bounded (Hannestad &
Tram 2017). However, if the MLE is far away from the bound a flat
prior is again optimal.

For the choice of the fiducial model we offer two alternatives,
an ad-hoc Horndeski model with the parameter choices αB = 0.1,
αM = 0.2 with an evolving dark energy component with w0 = −0.8
and wa = 0.2 in comparison to a standard �-CDM cosmology (note
that the fiducial values are not exactly at the �CDM fiducial due to
stability reasons), where the α and w parameters are not relevant but
where one nevertheless can derive error forecasts. All constraints
will vary across parameter space (Schäfer & Reischke 2016), which
motivated us to quote errors and correlation coefficients for different
choices of the fiducial model. In forecasting, we consider the param-
eters compiled in Table 3, where we summarize the expected uncer-
tainties, both for the Fisher- and MCMC-evaluated likelihood, the
fiducial choices, and the resulting true and Gaussian-approximated
statistical errors.
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Table 3. Parameters used for the inference process with two different fiducial models, and the 68 per cent marginalized errors from the Fisher analysis, σ F and
the MCMC σ . For the MCMC, the errors are just given for the modified gravity model, while the Fisher analysis covers both the modified gravity and �CDM
fiducial. All uncertainties given correspond to the usage of all probes discussed. The fiducial values are taken from Collaboration et al. (2016), Schneider &
Teyssier (2015) and Ferraro et al. (2015).

Parameter
Fiducial

(MG)
Fiducial
(�CDM) σ (MG) σ F (MG)

σ F

(�CDM) Prior Comments

α̂K 0.05 0.05 – – – [0, ∞) Fixed
α̂B 0.1 0.01 0.065 0.035 0.041 [0, ∞) –
α̂M 0.2 0.01 0.049 0.032 0.043 [0, ∞) –
α̂T 0.01 0.01 – – – [0, ∞) Fixed
w0 − 0.8 − 1.0 0.0134 0.006 0.009 [− 1, 1] –
wa 0.2 0.0 0.029 0.016 0.028 [0, ∞) –
∑

mν [eV] 0.05 0.05 0.016 0.011 0.01 [0, ∞) –
�m0 0.314 0.314 0.001 0.0007 0.001 [0, ∞) –
σ 8 0.834 0.834 0.002 0.0016 0.0013 [0, ∞) –
h 0.674 0.674 0.0013 0.0008 0.009 [0, ∞) –
�b 0.0486 0.0486 0.00019 0.00013 0.00016 [0, ∞) –
ns 0.962 0.962 0.0014 0.0013 0.0013 [0, ∞) –
zre 11.357 11.357 0.28 0.026 0.027 [0, ∞) –

ks 0.1 0.1 0.010 0.012 [0, ∞) –
b 0.68 0.68 0.0016 0.0010 0.001 [0, ∞) –
Mc 0.26 0.26 0.0023 0.0023 0.0022 [0, ∞) –
ηb 0.5 0.5 0.0063 0.006 0.006 [0, ∞) –

Figure 3. Joint plot of the resulting posterior estimated from the MCMC for
the remaining free modified gravity parameters. All other parameters have
been marginalized over. Note that the contours shown do not correspond to
certain σ regions.

In Fig. 3 we show the marginalized posterior for the remaining
two modified gravity parameters αM and αB. There is a strong
correlation between αM and αB as also found in Alonso et al. (2017).
Furthermore, one can see the skewness in the distribution, which is
caused by the positivity bound on the two parameters. We expect
that the distribution to become more symmetric if the maximum
likelihood-estimate is further away from the �CDM fiducial model
or if the statistical errors of one of the parameters become less by
inclusion of more data.

In Fig. 4 we show the constraints on the modified gravity param-
eters, the dark energy equation of state, and the neutrino masses
for the fiducial Horndeski cosmology. The blue shaded contours

correspond to the distribution estimated from the MCMC corre-
sponding to the 1σ confidence interval. All other parameters from
Table 3 are marginalized over. Red ellipses show the correspond-
ing error forecast from the Fisher-matrix formalism. Clearly, the
Gaussian approximation generally leads to tighter constraints as
can be expected from the Cramér–Rao equality. Especially for
more poorly constrained parameters the MCMC errors are signif-
icantly larger. For the 1σ errors, we find the errors to be up to
1.8 times larger for αB and 1.3 times for αm. Furthermore, we
find that degeneracies in general, for instance between αm and
αB, are well represented by the Fisher-matrix formalism and that
the largest impact of non-Gaussian distribution concerns the mag-
nitude of the errors where the Fisher-matrix formalism is overly
optimistic.

Quite generally, we find the degeneracies to be very similar when
comparing the Fisher matrix with the MCMC, in particular the
strong degeneracy between wa and w0 is reproduced very nicely.
The only exception is the degeneracy between the sum of the neu-
trino masses and the braiding-term that shows a stronger degeneracy
in the Fisher forecast. Since every contour shown in Fig. 4 shows a
marginalized contour, it is not straightforward to follow where this
discrepancy originates from.

In Fig. 5 we show the effect of the choice of the fiducial mod-
els. Red ellipses correspond to the �CDM, while the blue corre-
spond to the modified gravity model as described in Table 3. The
main difference between both models is the background expansion
due to the dark energy equation of state and the modified gravity
parametrization. It can be seen that the forecasted errors can change
quite substantially. Most affected by this are the two dark energy
parameters w0 and wa, which can be understood quite well since the
w > −1 supports clustering and thus increases the overall lensing
signal relative to the noise. Moreover, the derivatives of the spectra
tend to be larger if wa > 0. One can also see a slight change of the
ellipse in the αB − αM plane that can be understood with the same
reasoning. As pointed out in Schäfer & Reischke (2016), the choice
of the fiducial model is of great importance, especially for high
dimensional parameter spaces. The difference found here can be of
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Figure 4. Comparison of the MCMC results (light blue) with the Fisher-matrix forecast (red ellipse). The contour plot shows the probability only in the
68 per cent region and can therefore be seen as a direct comparison with the Fisher matrix. All contours are marginalized over all other parameters summarized
in Table 3 where also the marginal errors are given. The experimental setup is the one described in Table 1.

Figure 5. Dependence of the Fisher matrix on the fiducial point in parameter space. Red ellipses correspond to the �CDM and blue ellipses to the modified
gravity model summarized in Table 3. The difference between both models is the fiducial values for the modified gravity and dark energy parameters. Both
surveys use the same specification as described in Table 1. Note that the ellipses have been moved to the same point in parameter space for better comparison.
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similar magnitude as effects due to marginalization over nuisance
parameters.

Alonso et al. (2017) investigated the constraints of stage IV sur-
veys with a Fisher analysis only. To qualitatively compare both
works we investigated a similar parameter space. A comparison
with their best constraints Alonso et al. (Table 1 in 2017) show
that our constraints derived with the Fisher matrix formalism on
modified gravity parameters are in general tighter. This effect is, for
example, related to the marginalization over αT and the modelling
of intrinsic alignments. In contrast we find very similar results for
the dark energy equation of state as well as for the neutrino masses.
Generally we find good agreement with the results of Alonso et al.
(2017), especially with respect to parameter degeneracies. Since
our main goal was the investigation of the likelihood with MCMC
techniques, we refer the reader to Alonso et al. (2017) for a more
detailed discussion on the influence of relativistic scales and alter-
native parametrizations.

6 C O N C L U S I O N

In this work we have investigated the potential of future cosmo-
logical surveys to constrain cosmological models based on scalar–
tensor theories of the Horndeski class, including a dark energy and
a neutrino component. The constraints draw information from a
wide array of observations. Apart from temperature and polariza-
tion anisotropies of the CMB and the reconstructed CMB lensing
deflection field, we consider tomographic galaxy clustering and
weak lensing to assemble the data covariance matrix and supply
all possible non-zero cross-correlations. We assume that the modes
of all large-scale structure probes follow Gaussian distributions,
and that consequently the cosmological information is derived from
two-point statistics. Error sources are instrumental noise in the case
of the CMB, Poisson noise for galaxy clustering, shape noise for
weak lensing, and the reconstruction noise of the CMB lensing
deflection field. Apart from determining the parameter covariance
in a Gaussian model for the likelihood through a Fisher matrix
analysis, we computed the likelihood through an MCMC, where
we employed parallelized affine invariant sampling. The parameter
space to be investigated by the MCMC sampler was only loosely
restricted by priors and we assume the cosmological model to be
spatially flat.

(1) Scalar–tensor theories of gravity as complex as the Horndeski
class of models, can be well constrained by future surveys: Even
the inclusion of a parametrized dark energy component affecting the
FLRW dynamics of the model and a neutrino component impacting
on the amount of fluctuations on small spatial scales would allow
a determination of the gravitational parameters with relative errors
below 10 per cent. This is made possible by the combination of two-
point correlation functions that are measured by stage-IV surveys
with significances in excess of 1400σ (CMB anisotropies), 750σ

(galaxy clustering), 500σ (weak lensing), and 250σ (CMB lensing),
while strong cross-correlations, in particular between weak lensing
and galaxy clustering, reduce the significance of the signal on one
hand, but do in fact add new information and increase the sensitivity
of the signal to the underlying cosmology on the other.

(2) The phenomenology of scalar–tensor theories include devi-
ations of the propagation velocity of gravitational waves from the
speed of light: as very tight bounds exist from the direct observa-
tion of gravitational waves, αM is well constrained and would be
an interesting value to compare with values resulting from struc-
ture formation. Alternatively, constraints on αM from gravitational

waves would be a strong prior for the cosmological model. In any
case, the parameter constraining power of cosmological observa-
tions on αB and αM, the dark energy component, and the density
parameters clearly originates from the combinations of probes at a
wide range of redshifts and excludes variations of the gravitational
constant over the age of the Universe that are larger than 10 per cent.
Errors of that magnitude imply that cosmological surveys can com-
plement Solar system tests of modified gravity models on large
scales.

(3) The constraints from gravitational wave experiments greatly
reduce the volume in the theory space of the Horndeski class, as
for example discussed in Amendola et al. (2018). It will therefore
be possible to constrain the remaining degrees of freedom at the
10 per cent level. The constraints derived by Alonso et al. (2017)
are therefore slightly worse, since they did not use the constraints
from gravitational waves.

(4) Evaluation of the likelihoods over a 17D parameter space,
which comprises gravity, the standard FLRW parameters, the CDM
spectrum, and astrophysical parameters such as galaxy bias or reion-
ization redshift, was carried out with a parallelized, affine-invariant
MCMC sampler. The MCMC results were contrasted with those
from a standard Fisher matrix analysis, illustrating its limitations.
While parameter degeneracies were usually approximated well by
the Fisher matrix, the magnitude of the statistical errors were usu-
ally underestimated by up to 30 per cent in the gravity parameters
and the neutrino masses, by 50 per cent in the dark energy pa-
rameters and by a small margin in the standard parameters of a
�CDM model. It matters to a similar extent how the fiducial model
is chosen, there are varying precisions to be expected if the true
cosmology is a purely tensorial �CDM model with a cosmological
constant instead of dark energy or a scalar–tensor theory, the latter
leading to tighter constraints. In fact, this behaviour is known from
clustering dark energy cosmologies, where relaxing the value of the
dark energy sound speed away from cs = 1 enables clustering and
leads to more precise measurements of cs (Ayaita, Schäfer & Weber
2012).

(5) As it is difficult in cosmology to investigate certain aspects
independently from others, we have included neutrinos, whose non-
zero mass could be confirmed between 3σ and 4σ , as well as a
time-evolving dark energy component, where both the difference
of the equation of state from w = −1 and its time evolution would
be highly significant measurements. In a cosmology as complex
as the type that we are investigating, many physical and statistical
effects are relevant that determine the precision at which a param-
eter can be measured. Apart from a particular correlation function
being directly sensitive to a parameter variation, there are indirect
effects as well. For instance, the well-measured baryon density is
a valuable input for the amplitude of baryon acoustic oscillations
in galaxy clustering, which in turn improves constraints on dark
energy through the background expansion history. For being able
to quantify degeneracies between parameters, we have computed
Pearson’s correlation coefficient for each parameter pair in our 17D
parameter space, from which we have identified the strongest de-
generacies to be present in the group αB, αM, and αT, as they are all
relevant in the evolution of gravitational potentials, in the group w0

and wa because even this combination of probes cannot constrain
dark energy properties independently, and in the group �m, σ 8, h,
and ns as they determine jointly the shape and normalization of
the CDM spectrum. One could, to some extent, expect further con-
straining power from the inclusion of non-Gaussian information, in
the form of polyspectra (Hu et al. 2012) or of cluster counts (Allen,
Evrard & Mantz 2011), or by using new experimental techniques
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for large-scale structure surveys such as 21cm-cosmology (Hall,
Bonvin & Challinor 2013; Pourtsidou 2016).

(6) It should be generally noted that the analysis presented here
is far from final since we assumed several simplifying assumptions:
(i) very simplistic model for galaxy clustering that ignores redshift
errors, redshift space distortion, and has a very simple model for the
galaxy bias; (ii) simple noise curves for the CMB experiments at low
multipoles and a vanishing cross-correlation between CMB lensing
and the B-mode polarization; (iii) a simplistic description of non-
linear structure growth; and (iv) dereliction of intrinsic alignments
in weak lensing maps.

With these conclusions at hand, future prospects would involve
the study of how systematic effects are able to introduce biases,
for instance, how the intrinsic alignment effect tampers with grav-
itational lensing (Joachimi et al. 2015; Kiessling et al. 2015; Kirk
et al. 2015; Troxel & Ishak 2015) or how the assumption of bias-
ing models interferes with the galaxy clustering signal, how probes
can be optimized to yield the best discrimination in model selec-
tion, and how cosmological information flows from the observa-
tion to the model selection or to the final parameter constraint.
Likewise, it would be interesting to see to what extent the larger,
non-Gaussian error would change the model selection process and
change Bayesian evidences for subclasses of Horndeski cosmolo-
gies. In this respect, the true information content of non-linearly
evolving and therefore non-Gaussian structures is difficult to quan-
tify, but can be expected to add degeneracy-breaking power as well
as further information on the phenomenology of gravity, in partic-
ular screening mechanisms.
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