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ABSTRACT
Spatial uncertainty of soil parameters has a significant impact on the analysis of

slope stability. Interval field analysis is emerging as a complementary tool of the con-
ventional random field method that can take spatial uncertainty into account, which,
however, has not been investigated in slope stability analysis. The present paper pro-
poses a new method, named the interval field limit equilibrium method (IFLEM), for
assessing the stability of slope in the presence of the interval field. In this method,
the modified exponential function is introduced to characterize the spatial uncertainty
of the interval field and the Karhunen-Loève-like decomposition is employed to gen-
erate the interval field. Then, in a single calculation, the deterministic slope stability
analyzed by the Morgenstern-Price approach is implemented in order to estimate the
safety factor. Subsequently, the upper and lower bounds of the interval of safety factor
are efficiently evaluated by a kind of surrogate-assisted global optimization algorithms,
such as Bayesian global optimization used in this study. Finally, the effectiveness of
the proposed method is verified by the numerical example. The results indicate that the
proposed method can provide reasonable accuracy and efficiency, which is potentially
applicable to a number of geotechnical systems.

INTRODUCTION
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Slope failure is a major threat to people’s lives and property in mountainous areas.
Due to the complex material composition and various deposition conditions, there is
considerable spatial uncertainty in the properties of geotechnical materials (Phoon and
Kulhawy 1999). Previous studies have indicated that the spatial uncertainty usually
has a great impact on the design and analysis of geotechnical structures, hence it
should be properly taken into account. The random field theory as one of the feasible
techniques to characterize the spatial uncertainty (Griffiths and Fenton 2004). A series of
progresses have been emerged in recent decades, particularly a comprehensive overview
is given (Jiang et al. 2022). Although the random field theory can address the spatial
uncertainties, it requires a large number of samples to obtain statistical characteristics,
such as mean value, coefficient of variation, and correlation function. However, it
is difficult to estimate these parameters in the presence of sparse measurement data,
particularly the correlation length and correlation function (Cami et al. 2020). To address
the challenges connected to the statistical inference of the properties of autocorrelation
functions, (Wang et al. 2019) proposed a bootstrap method for statistically inferring
the autocorrelation coefficients as well other parameters of a random field. However,
for sparsely sampled random fields, extra statistical uncertainties are introduced when
estimating the sampling distribution of the random field parameters (Montoya-Noguera
et al. 2019).

Alternatively to random fields, the interval field method proposed by (Moens et al.
2011) only requires the upper and lower bounds of material parameters, as well as
a description of the spatial dependence for modelling the spatial information. As a
possibilistic method, the interval field method has rapidly developed in recent years,
and a large number of studies have been conducted to compare it with probabilistic
random fields. For instance, (Chen et al. 2020) made an objective comparison between
the interval and random field methods for the modelling of spatial uncertainty in the
case of sparse data. The researchers have shown that the interval field method and
the random field method are not competing but complementary. This complementarity
was earlier illustrated by (Elishakoff et al. 1994), who compared structural models
with initial imperfections via stochastic and nonstochastic models and concluded that
if probabilistic information is available, one has to use a probabilistic approach and
if the probabilistic information is unavailable, one should use nonstochastic approach
for uncertainty quantification. From the preceeding discussion, it can be seen that the
interval field method is receiving growing attention, but its application in geotechnical
engineering is rarely reported. Therefore, the present study expands its scope on
characterizing the spatial uncertainty in geotechnical engineering.

In practical terms, an interval field can be regarded as a family of dependent interval
variables indexed by location. When considering this interpretation, the methods devel-
oped for propagating interval variables could also be applicable to the propagation of
interval fields. Over the past several decades, a plethora of methods have been developed
for interval uncertainty propagation, such as the interval arithmetic (Moens and Hanss
2011), the interval perturbation methods (Wang et al. 2014) and the global optimization
approach (Deng et al. 2017), etc. It is recommended to refer to (Faes and Moens 2020)
for a comprehensive review on the related computational methods. Among these algo-
rithms, global optimization approaches are the standard technique for solving interval

2 Feng, September 9, 2022



problems. In this direction, a Bayesian global optimization is also presented to obtain
the lower and upper response bounds of a computationally expansive model subject to
multiple interval variables (Dang et al. 2022).

In this paper, the stability analysis of slopes is analyzed when the spatial uncertainty
affecting the slopes is modeled by interval fields. The main contributions of this work are
summarized as follows: first, the interval field is introduced to characterize the spatial
uncertainty of slopes. This is a modelling strategy complementary to the conventionally
used random fields, and it is, to the authors’ best knowledge, applied to slope stability for
the first time. In this representation, an expansion over an orthogonal basis, similar to the
Karhunen-Loève-like decomposition in random field analysis, is used to represent the
interval field by employing multiple interval variables. Second, a general methodology,
called the interval field limit equilibrium method (IFLEM), is proposed to propagate
interval fields in slopes. This approach estimates the resulting lower and upper bounds
of the safety factor of the slope stability. Additionally, the Bayesian global optimization
algorithm is applied to find the lower and upper bounds of the safety factor of a slope
characterized by multiple interval variables, where the Morgenstern-Price method is
employed for deterministic analysis.

INTERVAL FIELD THEORY
The interval field model solves the problems of changing mechanical parameters with

spatial location from a non-probabilistic perspective by measuring the spatial uncertainty
of the parameters in the form of upper and lower bounds (Sofi et al. 2019). In this paper,
the K-L like expansion is used to represent the interval field 𝜓 𝐼 (x) : Ω × IR ↦→ IR,
with IR the space of interval valued real numbers. The expansion of an interval field is
written as:

𝜓 𝐼 (x) = 𝜓 𝐼
o(1 + 𝜓 𝐼

𝑛 (x)), (1)

𝜓 𝐼
𝑛 (x) =

∞∑︁
𝑗=1

√︁
𝜆 𝑗 𝑓 𝑗 (x)𝜁 𝑗 , (2)

where 𝜓 𝐼
o is the center value of the interval field, 𝜓 𝐼

𝑛 (x) is a dimensionless interval field
with unit range, 𝜆𝑚 ∈ [ 0,∞) is the 𝑚-th eigenvalue of the spatial dependency function,
𝑓𝑚 : Ω ↦→ R is the 𝑚-th eigenfunction of the spatial dependency function, and 𝜁 𝑗 ∈ IR
is the 𝑗-th extra unitary interval (Sofi 2015).

The extra unitary interval is quite different from the classical unitary interval. It
relies on the rules of the classical interval analysis. The specific details about the
classical interval analysis can be found in (Sofi 2015). The extra unitary interval is
given by

𝜁 𝑗 ∈ [−1, 1], 𝑗 = 1, 2, · · · , 𝑙. (3)

Besides, the uncertain flexibility of the spatial dependency condition is described by
a single interval variable constant over the whole range. For that, the following equality
holds

𝜁 𝑗 × 𝜁 𝑗 = [0, 1] . (4)
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For numerical implementation, the interval field is represented by 𝑙-term expansions.
To be specific, the 𝑙-term expansions of the interval field reads

𝜓 𝐼 (x) = 𝜓 𝐼
o(1 +

𝑙∑︁
𝑗=1

√︁
𝜆 𝑗 𝑓 𝑗 (x)𝜁 𝑗 ). (5)

For details of the method, the reader is referred to the work of (Sofi et al. 2019). In
this process, the error of the 𝑙-term expansions of the interval field can be represented
as:

𝜀t(𝜓 𝐼 (x)) = 1 −
∑𝑙

𝑗=1 𝜆 𝑗∑∞
𝑗=1 𝜆 𝑗

, (6)

where 𝜀t ∈ [ 0,∞) is the error of the 𝑙-term expansions of the interval field, 𝜆 𝑗 is 𝑗-th
eigenvalue.

In this paper, the 𝛾(𝜇, 𝜐) is used to characterize spatial uncertainty and has a number
of formulations, such as the single exponential model, squared exponential model, etc
(Cami et al. 2020). Among them, the modified exponential model is differentiable
at the origin, such that the K-L expansion itself exhibits higher computational effi-
ciency (Spanos et al. 2007; Faes et al. 2022). Thus, in this paper, we assumed that
the spatial dependency function, 𝛾(𝜇, 𝜇′, 𝜐, 𝜐′), has the following modified exponential
form:

𝛾(𝜇, 𝜇′, 𝜐, 𝜐′) = exp
(
− |𝜇 − 𝜇′|

𝑙h
− |𝜐 − 𝜐′|

𝑙v

)
(1 + |𝜇 − 𝜇′|

𝑙h
) (1 + |𝜐 − 𝜐′|

𝑙v
), (7)

where 𝛾(𝜇, 𝜇′, 𝜐, 𝜐′) is the spatial dependency function, (𝜇, 𝜐) and (𝜇′, 𝜐′) denote two
points in a 2-D space, exp (·) is the exponential function, 𝑙h is the horizontal spatial
dependency length which is similar to the horizontal correlation distance, 𝑙v is the
vertical spatial dependency length which is similar to the vertical correlation distance,
|𝜇 − 𝜇′| and |𝜐 − 𝜐′| respectively denote the horizontal and vertical distances between
the two points.

In this paper, an assumed spatial dependency function, the modified exponen-
tial function is used for illustrative purpose. After the spatial dependency function
𝛾(𝜇, 𝜇′, 𝜐, 𝜐′) : Ω×Ω ↦→ R is determined, the spatial uncertainty can then be character-
ized (Faes et al. 2022). Specifically, the Fredholm integral equation of the second kind
is solved to obtain the eigenvalues and eigenfunctions of the 𝛾(𝜇, 𝜇′, 𝜐, 𝜐′) (Atkinson
and Han 2009). The Fredholm integral equation of the second kind takes the form:∫

Ω

𝛾(𝜇, 𝜇′, 𝜐, 𝜐′) 𝑓 𝑗 (𝜇′, 𝜐′)d𝜇′d𝜐′ = 𝜆 𝑗 𝑓 𝑗 (𝜇, 𝜐), (8)

where 𝜆 𝑗 is the 𝑗-th eigenvalue of the spatial dependency function, and 𝑓 𝑗 (·) is the 𝑗-th
eigenfunction of the spatial dependency function. In order to numerically solve the
Fredholm integral equation of the second kind, the interval field is first discretized into
a series of points, and the integral Eq. (8) is solved by determining the eigenvalues and
eigenvectors of the covariance matrix.

INTERVAL FIELD LIMIT EQUILIBRIUM METHOD
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Limit equilibrium method and its extension to interval field
The limit equilibrium method (LEM) used in this paper is the Morgenstern-Price

method. The Morgenstern-Price method is similar to the Spencer method, but it allows
for various user-specified interslice force functions (Morgenstern and Price 1965). In
the Morgenstern-Price method, it is assumed that

𝜒l/𝑒l = tan 𝛽 = 𝜆 𝑓 (𝑢), (9)

where 𝜒l is inter-slice vertical force, 𝑒l is inter-slice horizontal force, 𝜆 is a constant,
and 𝑓 is an inter-slice function. In particular, the inter-slice functions in the present
implementation is half-sine function.

Fig. 1. Schematic diagram of limit equilibrium method

According to Fig. 1, the equilibrium equations of the forces in the horizontal and
vertical directions are derived respectively. In the process, cohesion and internal friction
angle are expressed in the form of interval fields. The obtained equations are shown as
follows:

𝑡 sin𝛼 + 𝑛 cos𝛼 = Δ𝑤 + Δ𝑣 − Δ𝜒, (10)

𝑡 cos𝛼 − 𝑛 sin𝛼 = Δ𝑞 − Δ𝑒, (11)

𝑡 cos𝛼 = 𝜓 𝐼
𝑐Δ𝑝 sec𝛼 + 𝑛 tan𝜓 𝐼

𝜑, (12)

where 𝑡 is tangential force at the bottom of the soil strip, 𝑛 is the normal force at the
bottom of the soil strip, 𝛼 is the angle between the tangent line at the bottom of the soil
strip and the horizontal direction, Δ𝑤 is the gravity of the soil strip, Δ𝑣 is the external
force on the soil strip in the vertical direction, Δ𝜒 is the difference in vertical force
between strips on both sides of the soil strip, Δ𝑞 is the horizontal component of the soil
strip, Δ𝑒 is the difference in horizontal force between strips on both sides of the soil
strip, 𝜓 𝐼

𝑐 is the interval field of 𝑐, and 𝜓 𝐼
𝜑 is the interval field of 𝜑.

In addition, the equilibrium equation of the moment is derived as follows

(𝜒 + Δ𝜒)Δ𝑝
2
+𝜒Δ𝑝

2
+ (𝑒 + Δ𝑒)Δ𝑞 − 𝑒Δ𝑟 − Δ𝑞Δ𝑠 = 0, (13)
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where Δ𝑝 is the width of the soil strip, 𝑒 is the lower soil strip is subjected to the
horizontal force between the strips of the upper soil strip, Δ𝑟 is the distance between the
position of the force of the upper soil strip on the lower soil strip and the center point
of the bottom of the strip, and Δ𝑠 is the distance between the position of the horizontal
component of the soil strip and the center of the bottom of the strip. The 𝑓s of the slope
can be calculated from Eqs. (14) and (15) by combining Eqs. (10)-(13) according to the
equilibrium condition of force and moment, that is,

− d𝑒
d𝑝

(1 + tan𝜓 𝐼
𝜑 tan𝛼) + d𝜒

d𝑝
(tan𝜓 𝐼

𝜑 − tan𝛼) = 𝜓 𝐼
𝑐 sec2 𝛼 + (d𝑤

d𝑝
+ d𝑣

d𝑝
)

(tan𝜓 𝐼
𝜑 − tan𝛼) − d𝑞

d𝑝
(1 + tan𝜓 𝐼

𝜑 tan𝛼),
(14)

∫ 𝑏

𝑎

[𝜆 𝑓 (𝑝)𝑒 − 𝑒 tan𝛼] d𝑝 =

∫ 𝑏

𝑎

d𝑞
d𝑝

Δ𝑠 d𝑝. (15)

Estimate the safety factor bounds by Bayesian global optimization
In this paper, we use an improved Bayesian global method to determine the upper

and lower bounds of the interval, i.e., the maximum and minimum values (Dang et al.
2022). In this problem, the optimization problem, including the maximum and minimum
values, can be formulated as 

max 𝑓s(ζ)
min 𝑓s(ζ)
s.t. 𝜁 𝑗 × 𝜁 𝑗 = [0, 1],

(16)

where ζ = (𝜁1, 𝜁2, · · · , 𝜁𝑙)T is the 𝑙-dimensional vector of interval variables, 𝑓s(ζ) :
IR𝑙 ↦→ IR is the objective function, and 𝜁 𝑗 × 𝜁 𝑗 = [0, 1] is the constraint conditions.

For the minimization problem, the objective function improvement 𝜃 (ζ) is defined
as

𝜃 (ζ) = max{𝛾min − 𝛾̂(ζ), 0}, (17)
where 𝛾min is the current optimal objective function value, and 𝛾̂(ζ) is the set of
parameters that obey normal distribution.

The expectation value of 𝜃 (ζ) is given by (Jones et al. 1998)

E[𝜃 (ζ)] =


(𝛾min − 𝛾̂(ζ))Φ
(𝛾min − 𝛾̂(ζ)

𝑠(ζ)
)
+ 𝑠(ζ)𝜙

(𝛾min − 𝛾̂(ζ)
𝑠(ζ)

)
, 𝑠 > 0

0, 𝑠 = 0,
(18)

where E[·] is the expectation operator, Φ is the standard normal cumulative distribution
function, 𝜙 is the standard normal distribution probability density function, 𝛾̂(ζ) and
𝑠(ζ) are the mean and standard deviation of the normal distribution of the Kriging
model predictions, respectively.

The new sample points are found by solving the following suboptimization problem
which maximize the value of E[𝜃 (ζ)]:{ max

ζ
E[𝜃 (ζ)]

s.t. 𝜁 𝑗 × 𝜁 𝑗 = [0, 1] .
(19)
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Convergence criterion for Bayesian global optimization
The convergence criterion is an essential element for the optimization algorithm. It

is determined by controlling the ratio of the maximum expected value of 𝜃 (ζ) to the
current optimal objective function value. The convergence criterion of the present paper
is defined as

| max E[𝜃 (ζ)] |
|𝛾min | + 𝛿

≤ 𝜖, (20)

where max E[𝜃 (ζ)] represents the maximum value of E[𝜃 (ζ)], 𝛾min represents the
minimum value of 𝛾 observed so far, 𝛿 is an infinitesimal value, 𝜖 is the threshold value.
In this case, 𝛿 is 1e-6 and 𝜖 is 0.001. The optimization process is terminated when the
ratio of the maximum expected value of 𝜃 (ζ) to the current optimal objective function
value is less than 𝜖 for three successive iterations.

ILLUSTRATIVE EXAMPLES
Description of the problem

To illustrate, a single-stage slope is used to demonstrate the generation of the interval
field, and then the interval of the 𝑓s is calculated according to the proposed method. This
slope has a height of 28 m and an angle of 36.9◦, in which the height of the lower floor
is 4 m and the height of the upper floor is 24 m, as shown in Fig. 2. In order to generate
interval fields for the slope, 489 elements are discrete in the slope. In the process, the 𝑐
and 𝜑 are spatially variable described by the interval fields which are generated by the
method mentioned in Section 2. And we use the parameter of midpoint of the element
on behalf of the whole element.

It is crucial to determine the upper and lower boundaries of the interval field and
the parameters of the spatial dependence function when establishing the interval field.
This is because interval estimation captures the uncertainty of the parameters through
an upper bound with a lower bound. The initial estimation of interval boundaries can be
based on the analyst’s expertise and experimental data. However, the expert knowledge
that is available in most practical engineering design cases is sparse, ambiguous, or
subjective. In such cases, it is wise to collect more data to refine the interval. A
Bayesian inference scheme can in this context be used to determine interval bounds on
small data sets. It is based on considering a complete set of parameterized probability
density functions to determine the likelihood function, which can then be used in a
Bayesian framework to assess the extreme value distributions on the bounds of the
interval, given the available data. The parameters of the interval field of the slope are
shown in Table 1. The minimum value of 𝑐 is 15 kPa and the maximum value is 21
kPa, and the minimum value of 𝜑 is 16◦ and the maximum value is 24◦. The horizontal
spatial dependency length 𝑙h is set to 30 m, and the vertical spatial dependency length
𝑙v is 4 m.
Interval field analysis results and discussion

First, the interval field of the single-stage slope is generated and the error of the K-L
like expansion level is analyzed. In this example, the error of the K-L like expansion is
controlled within 5% and the K-L like expansion term is six (Huang et al. 2001). Then,
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Table 1
Material parameters of the single-stage slope in Example 1

Parameters Maximum value Minimum value 𝑙h 𝑙v

𝑐(kPa) 21 15 30 4
𝜑(◦) 24 16 30 4

the eigenfunctions and eigenvalues are solved according to the spatial dependency
function.

The single-stage slope with interval field is calculated and its sliding surfaces (SS)
are obtained as shown in Fig. 2. To calculate the 𝑓s, the sliding surfaces should be
selected first. For illustration purposes, three typical sliding surfaces are considered. In
this figure, three special sliding surfaces are marked according to the range of the 𝑓s. The
red sliding surface in the diagram represents the most dangerous sliding surface, while
the green sliding surface represents the safest sliding surface. Each sliding surface
was analyzed respectively. The safety factor bounds of the upper and lower of the
single-stage slope with interval field are calculated by the Bayesian global optimization
method. The interval of 𝑓s was obtained as [0.83, 0.994] for the sliding surfaces 1,
[0.946, 1.132] for the sliding surfaces 2, and [1.107, 1.415] for the sliding surfaces
3. The calculated interval of 𝑓s is represented in Fig. 3. The optimization of the
sliding surface 1 to obtain the interval of 𝑓s required 19 deterministic analyses, the
sliding surface 2 required 20 times, and the sliding surface 3 required 21 times. In
Table 2, the results of the Bayesian global optimization are compared with the surrogate
optimization method. It can be found that Bayesian global optimization shows great
advantages in terms of both computational accuracy and efficiency. For the sliding
surface 2 of interval field analysis, the interval of 𝑓s is [0.946, 1.132]. Since 𝑓s = 1 is
included in the interval of the 𝑓s, the stability of the slope in this state is unsure, and
essentially no fixed statement can be made. This is because there is no information
available on the probability distribution of the 𝑐 and 𝜑 within the bounds of the interval.
In the analysis by the interval method, only the information of the upper and lower
boundaries of 𝑐 and 𝜑 are predicted.

Fig. 2. Three typical sliding surfaces for the single-stage slope failure
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Fig. 3. Results of interval field and interval analysis in the single stage slope analysis

Table 2
Results of the efficiency comparison

Method Result 𝑁

Bayesian optimization [1.107, 1.415] 21
Surrogate optimization [1.011, 1.412] 505 + 368

For the same 𝑐 and 𝜑 intervals, the interval field with consideration of spatial
uncertainty is compared with the interval analysis method for homogeneous materials.
The intervals of 𝑓s were calculated for the interval field and interval analysis, respectively.
It can be found in Fig. 3. It can be noticed that the interval field method can reduce
the interval of 𝑓s in comparison with the interval analysis method. Moreover, it is more
consistent with the real situation after considering the spatial uncertainty.

In order to study the influence of interval field parameters on the calculation results,
the influence of spatial dependency length on the calculation results of the interval
field is analyzed. It’s shown in Figs. 4 and 5. The interval fields were calculated for
the horizontal spatial dependency lengths of 5 m, 10 m, 15 , 20 m, 25 m, and 30 m,
respectively. The interval fields were calculated for the vertical spatial dependency
lengths of 2 m, 4 m, 6 , 8 m, and 10 m, respectively. When the horizontal spatial
dependency length is 5 m, the interval of the calculated results is [1.198, 1.341].
And the interval of the calculated results is [1.107, 1.415] when the horizontal spatial
dependency length is 30 m. With the expansion of the input parameter interval, the
interval of the calculated 𝑓s increases rapidly. When the spatial dependency length
is greater than 25m, the percentage of the interval increase of the 𝑓s becomes larger.
Therefore, more attention should be paid to the selection of the spatial dependency
length.

CONCLUDING REMARKS
The main contribution of this work is the proposal of a new interval field limit

equilibrium method, IFLEM, for efficiently estimating the interval of the 𝑓s of a slope
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Fig. 4. Influence of the horizontal spatial dependency length on interval field results

Fig. 5. Influence of the vertical spatial dependency length on interval field results

in the presence of spatial uncertainty. For our purpose, the IFLEM method first char-
acterizes the interval field by using the Karhunen-Loève like expansion. Further, based
on the Morgenstern-Price method and the generated interval field (IF), a computational
method for calculating the 𝑓s of slopes is proposed. Then, to efficiently and accurately
solve the optimization problem for the upper and lower bounds of the 𝑓s, a dedicated
iterative algorithm is developed based on Bayesian global optimization (BGO). Finally,
the IFLEM is formed by an elegant combination of IF and LEM. The main feature of
IFLEM is the ability to obtain the interval of the 𝑓s, resulting from uncertainties in
model parameters and their spatial uncertainty. The numerical example is presented to
illustrate the availability and effectiveness of the proposed approach.

The numerical results indicate that the proposed method allows to perform the
uncertainty analysis of slopes in the presence of sparse data. Noting that the upper and
lower bounds of the 𝑓s are obtained with a small number of deterministic analyses, the
proposed method seems to be effective and efficient for quantitative analysis of slopes
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with scarce data. The influences of the spatial dependency length and the interval radius
are investigated. The results shows that different values of spatial dependency length
can result in a large variation of the interval of 𝑓s. Besides, compared to the interval
radius of 𝑐, the interval of 𝑓s is more sensitive to the interval radius of 𝜑. Hence, it
is of great significance to reasonably determine the spatial dependency length and the
interval radius of 𝜑 in the interval field analysis of slopes.
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