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Abstract:  We analyse the effectiveness of differential evolution 

hyperparameters in large-scale search problems, i.e. those with very many 

variables or vector elements, using a novel objective function that is easily 

calculated from the vector/string itself. The objective function is simply the sum 

of the differences between adjacent elements. For both binary and real-valued 

elements whose smallest and largest values are min and max in a vector of 

length N, the value of the objective function ranges between 0 and (N-1) × (max-

min) and can thus easily be normalised if desired. This provides for a 

conveniently rugged landscape. Using this we assess how effectively search 

varies with both the values of fixed hyperparameters for Differential Evolution 

and the string length. String length, population size and generations for 

computational iterations have been studied. Finally, a neural network is trained 

by systematically varying three hyper-parameters, viz population (NP), 

mutation factor (F) and crossover rate (CR), and two output target variables are 

collected (a) median and (b) maximum cost function values from 10-trial 

experiments. This neural system is then tested on an extended range of data 

points generated by varying the three parameters on a finer scale to predict both 

median and maximum function costs. The results obtained from the machine 

learning model have been validated with actual runs using Pearson’s coefficient 

to justify the reliability to motivate the use of machine learning techniques over 

grid search for hyper-parameter search for numerical optimisation algorithms. 

The performance has also been compared with SMAC3 and OPTUNA in 

addition to grid search and random search. 
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1. Introduction 

The tunably rugged fitness landscape reflects the intuition that 
combinatorial search problems can be seen in terms of a ‘landscape’ 
containing valleys and hills [1]. The NK model invented by Stuart 
Kauffman [2] can be adjusted by changing N (string length) and K to 
define the ruggedness level of the flexible landscape as shown in Figure 
1. To explain the search of most rugged string in the NK-landscape, a 

random three letter string has been considered (JIE) in Fig 1(A). In the 



consecutive iterations, various single letter alterations have been 
considered in each iteration and cumulative distance of consecutive 
letters has been used for the cost function (Fig 1(B)). Furthermore, the 
connected graph shows potential search paths in pursuit of extreme 
points (highest peak and deepest valley) within the combinatorial search 
space of string sequences. Darkness in colours in Fig. 1(C) signifies 
higher cost functions and finally in Fig. 1(D) this graph is one of the 
various tracks in complex NK-landscape showing the challenge of the 
optimization algorithm. 

Combinatorial search problems are common in both theoretical and 
applied sciences such as optimisations, biology and complex 
evolutionary systems. As an example, in a business organisation, an 
agent may be searching a landscape of business opportunities. The 
valleys and hills represent the losses and profits. The journey through 
the landscape associates the decisions of the organisation whilst altering 
the structure of the organisation and modifying the products and 
services. All of the underlying processes interact in a complex 
evolutionary fashion and affect the cash flow and thus profit [3]. Most 
scientific problems can in fact be cast as combinatorial search or 

optimisation problems [4]. The kinds of optimisation in which we are 
here interested thus consist of a ‘search space’ or landscape in which a 
variety of inputs can be combined in potentially complex and nonlinear 
ways to lead to an output or objective function. Because the number of 
combinations always scales exponentially with the number of variables, 

the search spaces can easily be made to be far beyond any kind of 
exhaustive search (other than for small numbers of variables [5]), 
whether the search is computational or experimental. Heuristic 
methods, in which we seek to understand, simulate and navigate the 
landscape intelligently, are therefore appropriate. Among these, 

evolutionary algorithms of various kinds are pre-eminent [6]. Equally, 
because of the vastness of the search spaces, a variety of attempts have 
been made to create them in silico, using a more-or-less complex 
function of the inputs to calculate the output at that position in the 
search space. The idea of such strategies is that (notwithstanding that 

there is ‘no free lunch’ [7-11]) an algorithm of interest may be assessed 
in competition with others [12], or its hyperparameters tuned to effect 
the most rapid searches. In evolutionary computing, three of these 
hyperparameters are the population size, the mutation rate, and the 
crossover rate [13]. In some cases, these hyperparameters can have very 
considerable effects on the efficiency of a search (e.g. [14]).  

 



Fig 1. (A) Combination space of various example string sequences 
of length 3. The digits represent the cumulative inter-letter distances of 
the string; the sequences along the arrows show the alterations of letters 
within consecutive strings to signify perturbations (B) Graphical 
rendering of potential paths to search for the global extrema (peak or 
valley) in the combinatorial string space (C) Relative colouring for 
visual comparison, darker means bigger cost function value i.e. higher 
cost function value (D) The graphs is one of the search possibility in the 
high NK-landscape showing the complexity of the search of extreme 
points through an algorithm. 

Well-known fitness functions used for creating landscapes of this 
type, often tuned to be ‘deceptive’ to evolutionary algorithms [15,16], 
include NK [2,17,18] (and variants such as NKp [19]), OneMax/max-
ones [20,21], and the royal road [22-24]. Max-ones is especially easy to 
understand, since each variable is cast as an element of a (binary) string 
or vector of length N, and the fitness is simply the total number of 
elements containing a 1, with the maximum possible fitness obviously 
being N. That said, max-ones yields reasonably easily to evolutionary 
algorithms [25] as the crossover operator allows such algorithms more-
or-less easily to combine building blocks (schemata [13]) successfully, 
not least because the ‘fitness’ of any element of a string is not context-
sensitive. 

We here develop and exploit a simple, related objective function in 
which the objective is not to maximise each element but to maximise the 
sum of the differences between adjacent elements. This is very easily 
calculated, allowing rapid assessment of different search algorithms. It 
provides for a landscape that is locally smooth but globally very rugged. 
Here the contribution to the overall fitness of any element of the string is 
absolutely context-sensitive. Thus, the problem is to find the most 
rugged string of length n using differential evolution which has three 
tuning parameters, viz. NP (population size of search particles), F 
(mutation factor), CR (crossover rate). The objective function for the 
hyperparameter optimisation for summed local difference strings has 
been defined with the following examples. 

Example 1: String = “AAAA” has summed differences |A-A|+|A-
A|+|A-A| = 0. String “ABCD” has summed differences |A-B|+|B-
C|+|C-D| = 3. String “AZAZ” or “ZAZA” has |A-Z|+|A-Z|+|A-Z| = 
75. 

Example 2: The maximum ruggedness value of a string of length n 
is (n-1) × (U-L) where U and L are the maximum and minimum values 
of the alphabet values. In example 1 U = Z = 26 and L = A = 1 and n=4, 
thus (4-1) × (26-1) = 75. 

Even for binary strings this makes the problem much harder than 
max-ones. In addition, two very different (in fact maximally different) 
strings of length N have the same, maximum fitness, viz 
101010…1010101 and 010101…0101010 of (N-1). We later also consider 
real-valued (integer) strings, such that the problem difficulty can be 
varied not only by varying the string length but by varying the number 
of allowable values in each position. Of the many variants of 



evolutionary algorithm, we focus on differential evolution, as originated 
by Storn and Price [26,27] and reviewed e.g. in [28-34], as it seems to be 
highly effective in solving a wide range of problems.  

Objective function and machine learning models need to be 
optimised according to the data distribution in order to find the best 
representative generalisation. Hyper-parameter tuning determines the 
best combination of free variables so that validation set yields the best 
performance. Hyperparameters have been tuned either by manual hit-
and-trial, or through grid search, which involves systematically trying 
all possible combinations with a specified linear spacing. But both of 
these methods are limited to the human imagination or time duration to 
attempt grid search on a given level of granularity. Thus, an automatic 
machine learning based hyperparameter value optimisation has been 
proposed (e.g. [34-36]). 

The paper is organised as follows: the first section is about the 
introduction of the rugged fitness landscape and local difference strings, 
Section 2 is a literature review, Section 3 covers the differential 
evolution and machine learning techniques used, Section 4 is about the 
results and discussion, Section 5 is the conclusion and future scope. 

2. Literature Review 

2.1 Differential Evolution Variants 

In [37], a variant of DE using asymptotic termination based on the 
average differential of the cost function values has been proposed. The second 
modification is a new search for a critical parameter which helps to explore the 
search space. In [38], an ensemble of control parameters and mutation 
methods for DE has been proposed while considering the dynamic mutation 
strategies and set of values for control parameters. In [39], monkey king 
differential evolution using a multi-trial vector has been studied. The relation 
between exploitation and exploration depends upon control parameter and 
evolution strategy. To enhance the performance, multiple evolution strategies 
have been considered to generate multi-trial vectors. In [40], an ensemble of 
DE using multi-population approach and three distinct mutation methods, 
“rand/1”, “current-to-rand/1”, “current-to-pbest/1”. CEC 2005 benchmark 
functions have been used for performance evaluation. 

2.2 Hyper-parameter Tuning 

In [41] an advanced hyper-parameter tuning technique ‘Optuna’ has 
been proposed. It allows API for dynamic user interaction, efficient search and 
pruning options, and easy to implement features. An automatic parameter 
tuner for sparse Bayesian learning has been proposed in [42]. The empirical 
auto-tuner has been used to address the neural network-based learning for 
performance comparison. In [43], a combination of stochastic differential 
equations and neural networks has been studied to extract the best 
combination of free parameters for the application of the economics dataset 
from Greater London using a Harris-Wilson model for a non-convex problem. 
In [44], a multi-label classification and complex regression problem has been 
addressed for auto-parameter tuning in deep learning models. In [45], ANNs 
have been used to predict the parameters for DE using 24 test problems from a 
Black-Box Optimisation Benchmarking dataset. In [46], parameter independent 
DE for analytic continuation has been studied using imaginary correlation 
functions of time. The parameters are embedded into the vectors which need 
to be optimised through the evolution. A study in [47] has proposed parameter 



optimisation for DE for the CED05 contest dataset that includes 25 complex 
mathematical functions with dimensions as high as 30. 

3. Background 

 
This section discusses the background techniques of differential evolution and 
artificial neural networks used in this research. 

 
3.1 Differential Evolution (DE) 
It is an efficient metaheuristic algorithm for numerical optimisation in 

which the output cannot be precisely defined from the input variables. For a 
given dimension of the data vector (string for example) it takes few input 
parameters such as number of points searching for the solution (population 
NP), mutation factor (F) and crossover rate (CR). The algorithm has 4 phases 
of execution: initialisation of population particles, mutation, crossover and 
then selection [48] as shown in Figure 2. This whole computation is repeated 
for a specified number of iterations (also known as generations) or a 
constrained time frame. Initialisation is usually done randomly from the 
normal distribution in the search domain followed by mutation which means 
finding the best parents to yield the child particle. Afterwards, crossover 
yields the child particle by varying proportions of parent particle attributes. 
The final step is selection, which means to update the current particle, how to 
use the new child along with other randomly selected particles with tuneable 
proportions. The idea is to maximise the randomness to avoid getting locked 
in local extrema. In our study, the simplest mutation formula (DE/rand/1) is 
used which is defined in (1) below: 

Yi = X1i + F(X2i – X3i)       (1) 

where i is the ith point computed in an iteration from X1, X2 and X3 
random points out of the population. Next, to increase the diversity of muted 
vectors, the crossover operation is performed which is defined in (2). It mixes 
the target vector with another random vector in the population in an 
adjustable proportion using random probability function which can be defined 
using CR value. CR rate thus defines the ratio in which the new trial vector Ui 
inherits the values from mutation vector.   

�� � ��� ,    �� 	
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For the selection phase, the cost function of this new trial vector is 

calculated after the crossover phase to compare with the fitness of the target 
vector Xi. The better among the two is selected to update the army of points in 
the population. Let f(.) be the fitness function then, selection is defined as in (3) 
below: 
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Fig 2. Flow of differential evolution metaheuristic algorithm 
 

 
3.2 Artificial Neural Networks (ANN) 

Artificial neural networks in data analysis got their origin from the 
behaviour of biological neurons on human brains. ANN consists of 
artificial nodes (neurons) which are interconnected through layers of 
other neurons to compute and refine the data using non-linear 
activation functions in the successive layers. Connection strengths 
among neurons is controlled by weight parameters (W). The simplest 
ANN in which we are interested is the multilayer perceptron (MLP), a 
three-layer structure is defined which contains the input layer, the 

hidden layer and the output. The standard structure of ANN is 
illustrated in Figure 3 and details can be found in [49]. 

 

Fig 3. An example artificial neural network with three inputs, one 

hidden layer with five neurons and the output layer. The inside 
structure of each neuron has been shown in the dotted box. A node or 
neurons is the weighted average of the input signals added with a 

constant (bias) value and travels through a function which is usually 
non-linear in nature such as a tanh, sigmoid or ReLU (Rectified Linear 
Unit) function. 

4. Results 
 

 



Classical differential evolution uses three hyperparameters: the 
population size NP, a mutation factor F controlling the mutation rate, 
and a parameter CR that determines the extent of the uniform crossover 
[20] [26]operator used. We start with standard and fixed (non-adaptive) 
values of NP = 50, F = 0.4, CR = 0.1 as recommended by Storn and Price.  
NP is usually scaled to the length of the vector (number of input 
variables) to be optimised, but not much is known for problems that 
have a great many input variables [50], for instance directed protein 
evolution [51,52]; others are reviewed e.g. in [45].  

 
4.1 Understanding the landscape ruggedness 

To understand the nature of the landscape, it is convenient to create 
a random landscape in which, initially each element of the vector of 
length N=50 is set randomly to A to Z (Table 1). The random letters in 
each of the 10 vectors are the population candidates to search for the 
best rugged string of length 50.  

 
Table 1. Random landscape of 10 vectors (population size) with 

dimensions = 50 (string length) and initial cost function value (summed 
consecutive differences) 

SR Vector of length 50 Function 

Cost 

1 GLPFFCVOBVANQGUQKHRRWBIDKURNCNYOCDBCQLQIUXHONOJGRK 384 

2 UNQBHPJUCEZOADILXMBZVOVGFIKQTCZZVRCGSDXRTGZSBPRWSG 454 

3 OOSKURLLTNYAORMWLJYLRQSRWNBKOYNAXRRNQJJJXSEIYXHNQQ 358 

4 EJGFPREJIIHODQEXKTTNPBOEJGCNDRUFPDYVEOKXMWPWFTORLM 406 

5 OBBMAREGDIBWCYMBEEBSPTIHNXOPSOMMXCPHJJFGDHRJEUNFGC 372 

6 CPICSKHOLMUSGVJWJFMLUTMTRUZXQCBNZYCDVRFNWKDVGAXEJN 417 

7 CYKGXKQWNTYTVYLPOCHLHOOPYPYUVZTEHKBRPCLADTIIOVJBGP 363 

8 UYHYLMSVWLTLKWNKRKFBOUENTVSVCKJTJBMDYTAIIQLDDVBONY 408 

9 AUMHUZPEHTEDLFCSBMMPFUZGGYSOJNUEMWAFCLSNZKMRJZDOIB 449 

10 YIIBQZDVPNOABPVXDCALDDGXVTVPTUEKQVMIVBKWUCFESABITC 404 

 
After 10 iterations of the DE algorithm, the best particle and cost 

are as follows. Particle = APGZ TTTA PZIZ HZAZ ZDAZ BAEA ZAAZ 
AVWZ ABAZ AZAZ AZZZ AZAZ AZ, Cost function = 773, Benchmark 
= (26-1) × (50-1) = 1,225. Elapsed time is 0.1955 seconds. The values of 
Dimensions = 50, Np = 10, Population Crossover Rate (CR) = 0.8 and 
Mutation Factor (F) = 0.85 for this example. Figure 4 shows the 
consistent improvement in the cost function. 



 
Fig 4: Cost function values for 10 iterations for string length = 50. 

The values of Dimensions = 50, Np = 10, Population Crossover Rate 

(PCr) = 0.8 and Mutation Factor (F) = 0.85. 
 
4.2 Varying the hyperparameters in standard differential evolution 
All simulations are performed in MATLAB 2018b software with a 

system configuration of MAC Air (2017), 1.8 GHz Intel Core i5 

processor, 8GB 1600 MHz DDR3 memory, HD Graphics 6000 1536 MB 
and macOS version 10.13.6. The experiment was repeated for 500-
dimensional string, 10-trials and 50 generations with NP in [50,500], CR 
in [0.1,1], F in [0.4,0.9]. The stats were recorded for the median and 
maximum function values for 10-k trials listed in Table 2. A total of 600 

values were collected for various combinations of NP, F and CR values 
suggested in [45]. Out of those 600 values, the best 5 were selected and 
they were calculated for extended iterations/generations as shown in 
Table 3. It infers that the cost function value generally tends to increase 

with iterations but not always. This is because at higher dimensions the 
problem is highly difficult to solve and not always yields the best 
solution during the metaheuristic search.  

  
Table 2. Benchmark value for 500-dimensional string is (26-1) × 

(500-1) = 12,475. NP = {50,100,…,500}, CR = {0.1,0.2,…1}, F = 
{0.4,0.5,…0.9} so total 10×10×6 = 600 experiment values. The min and 
max values refer to the range of cost function values obtained through 
the experiments.  

 Range of function values 

10-trials Minimum Maximum 

Median of cost function 

5555.5 8870 

44.5% 71.1% 

 

Maximum of cost function 

5629 9226 

45.1% 73.96% 

 
 



Table 3. Top 5 cases among 600 trials analysed for increased 
number of iterations from 100 to 1000. The winners are highlighted in 
bold text. 

CASE1 NP F CR Iterations 100 200 300 500 1000 

  500 0.9 1 Median 9632 10300 10375 10300 10375 

  Maximum 9716 10550 10425 10375 10625 

      

CASE2 NP F CR Median 7935 8970 9269 9280 9295 

  500 0.8 0.9 Maximum 8222 9106 9322 9592 9538 

      

      

CASE3 NP F CR Median 8801 9246 9159 9012 9230 

  500 0.9 1 Maximum 8901 9362 9342 9181 9328 

      

      

CASE4 NP F CR Median 7002 9037 9218 9536 9242 

  500 0.8 0.9 Maximum 7862 9152 9529 9677 9651 

      

      

CASE5 NP F CR Median 6075 8211 8500 8675 8450 

  500 0.8 0.9 Maximum 6250 8451 8500 8775 8500 

 
Table 4 and Figure 5 illustrate the normalised function values for 

various combinations of population size and generations. For median of cost 
function values, it has been found that 9196 value is obtained with the NP=50 
and Gen=500. For the maximum cost function values the value 9373 is found 
when NP=125 and Gen=200. Thus, it is not easy to say which of the NP and 
Generation values are the best ones to yield the best function cost but 
generally more generations with bigger population size is a good combination. 

 
Table 4. Normalised comparison (NP*Gen constant) of cost function 
values (median and maximum over 10-trials) for F=CR=0.9, string length 
= 500. The values of VP and generations have been varied such that the 
product of NP and Gen is 25000. Figure 5 is the visual illustration.  

Sr. NP  Generations Median Maximum 

1 500 50 8236 8272 

2 250 100 9109 9394 

3 125 200 9150 9373 

4 50 500 9196 9304 

5 10 2500 8137 8601 

 
 



 
Fig 5. Normalised comparison of various values of function cost for 

median and maximum using F=0.9, CR=0.9, string length 

(dimension)=500, 10-trials. (a) NP=500, Gen=50 (b) NP=250, Gen = 100 (c) 
NP=125, Gen=200 (d) NP=50, Gen=500 (e) NP=10, Gen=2500. The values 
of NP and Generations have been chosen such that the product remains 
constant (=25000) to analyse the effect of reducing population and 

increasing generations. 
 
Tables 5-7 illustrate time consumption analysis against variations 

in NP, string length and iterations of calculations. Figures 6-8 are the 

graphical representations of these tables for the ease of visualisation. 
The time variations are almost linear giving the idea about the problem 
complexity in regard to the variable changes.  

 
Tables 5. For 50 iterations, string length 500 (data vector 

dimension), F=0.4, CR = 0.1 the time in seconds for various NP values 

has been calculated ranging from 50 to 500 for 10-trial experiments. 
Figure 7 is the graphical rendering of this table.  

NP 
50 100 150 200 250 300 350 400 450 500 

Time 
1.32 2.46 3.73 4.88 6.24 7.43 8.94 10.32 11.71 14.07 

 



 

Fig 6. Graph between NP (x-axis) and Time in seconds (y-axis) for fixed 
values of string length = 500, F = 0.4, CR = 0.1 and iterations = 50 for 10-
trial experiments. The time consumption is nearly linear with the 
population size.  

 

Table 6. String length (Dimension) versus time consumption in seconds 

for fixed values of NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for 
experiments to calculate median and mean function costs. The time 
consumption varies almost linearly with the string length. Figure 8 
shows the graphical representation 

Dim 100 200 300 400 500 600 700 800 900 1000 

Time 0.7992 1.1327 1.7634 2.1091 2.5229 2.8815 3.2637 3.5849 3.9694 4.2432 

 

 

Fig 7. Graph between string length (x-axis) and Time in seconds (y-axis) 

for fixed values o NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for 
experiments to calculate median and mean. The time consumption 
varies almost linearly with the string length.  

 



Table 7. Iterations and time in seconds comparison for fixed values of 

string length = 500, NP=100, F=0.4, CR=0.1 and 10-trial experiments. The 
relation is almost linear and is rendered in Figure 9. 

Gen 50 100 150 200 250 300 350 400 450 500 

Time 2.56 4.75 7.19 9.99 11.64 13.99 16.49 20.28 20.99 25.55 

 

 
Fig 8. Graph between iterations (x-axis) and time in seconds (y-axis) for 

fixed values of string length = 500, NP=100, F=0.4, CR=0.1 and 10-trial 
experiments. The relation is almost linear. 

 

4.3 Training Data and ANN Training for Automatic Parameter Tuning 

The neural network has been trained for 600 data points which includes 

three independent input variables: Population (NP), Mutation Factor (F) 
and Cross-mutation Rate (CR). The values range for NP is [50,500], F is 
[0.4,0.9], CR is [0.1,1] chosen according to our experiments and 
suggestion given in [40]. These 600 training data points have been 
collected by running 10-fold trials for each entry to find out median and 

maximum cost function values and is quite a time consuming task. This 
is due to finding the right range of these 3 hyperparameter values and 
then running the code to compile the data for few hours. So the 
differential evolution function is called 600×10 = 6,000 times for various 
values of these three hyperparameters. The training sample data and the 

computed median and maximum function costs have been rendered in 
Table 8. Afterwards, Neural Network  Fitting in MATLAB has been 
used for regression using three input variables and two target variables 
respectively. The default values of the model have been used, for 
example ratio of training: validation: testing is 70:15:15, number of 
hidden neurons = 10, Bayesian Regularization training algorithm for 
training. Figures 9-10 demonstrate the frequency histogram of error 

values in relation to instances. After the training of ANN, the error of 
actual versus predicted values were collected for all training and tested 
values among 600 data points and plotted to see the quality of the 

trained model. Most of the error values are 0 which indicates that the 
model is well generalised and validated. 

 



Table 8. Training data for ANN containing 3 input variables and two 

target variables. The NP ∈ {50,100,…,500}, F ∈ {0.4,0.5,…,0.9}, CR ∈ in 
{0.1,0.2,…,1} so a total of 10×6×10 = 600.  

Input variables Target var1 Target var2 

SR. NP F CR Median Fun Val. Max Fun Val. 

1 50 0.4 0.1 5559.5 5676 

2 50 0.4 0.2 5705 5837 

… … … … … … 

600 500 0.9 1 8870 9226 

 

 

 

Fig 9. Error histograms for training, testing and validation for 600 
examples after ANN training for median cost function values. Ratio of 

train:validate:test used is 70:15:15. The target function used is the 
median cost function value from 10-trial experiments and input values 
to ANN were NP, F and CR. 

 



 

Fig 10. Error histograms for training, testing and validation for 600 
examples after ANN training for max cost function values. Ratio of 

train:validate:test used is 70:15:15. The target function used is the 
maximm cost function value from 10-trial experiments and input values 
to ANN were NP, F and CR. 

 

Tables 9-10 show the function costs on 10-trial average for the mean 

squared error (MSE) and regression coefficient (R) values as the number 
of hidden neurons increase during the ANN training. 

 

Table 9. For the median cost function values (from 10-trials) the 
following are the MSE and R values for increasing number of neurons in 
ANN training 

Median 

Function 

Cost 

 Neurons 10 20 30 40 50 60 70 80 

Training MSE  3008.8 2102.2 1264.8 1472.8 1572.3 1108.8 1653 1540.5 

R  0.9975 0.9983 0.9987 0.9990 0.9985 0.9988 0.9989 0.9989 

Testing MSE  2858 3624 5883.7 5616.6 4622.5 7715.5 3162 5431.8 

R  0.9948 0.9959 0.9947 0.9962 0.9974 0.9946 0.9936 0.9957 

 

Table 10. For the maximum cost function values (from 10-trials) the 

following are the MSE and R values for increasing number of neurons in 
ANN training 

Max 

Function 

Cost 

 Neurons 10 20 30 40 50 60 70 80 

Training MSE  8738 6682.7 6021.4 5308.3 5790.4 5791.7 5557.3 5059.4 

R  0.9937 0.9954 0.9958 0.9963 0.9958 0.9960 0.9961 0.9964 

Testing MSE  1148.3 1192.8 1308.1 1228.3 2106.7 1262.8 1689.5 1252.9 

R  0.9934 0.9916 0.9912 0.9914 0.9872 0.9908 0.9877 0.9926 

 



Fig 11. The demonstration of 3,971 test points (19×11×19 ) parameter 
combinations of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9}, CR ∈ 
{0.1,0.15,...,1}. The colour depicts the median of cost function values of 
10-trial runs. The yellow shows higher (better) values and blue shows 
lower cost function values for those combinations of NP, F and CR. Left 
and right graphs are two perspective view of the same 3-d figure. 

 

Fig 12. The demonstration of 3,971 test points (19×11×19 ) parameter 
combinations of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9}, CR ∈ 
{0.1,0.15,...,1}. The colour depicts the maximum value of cost function for 
10-trial runs. The yellow shows higher (better) values and blue shows 
lower cost function values for those combinations of NP, F and CR. Left 
and right graphs are two perspective view of the same 3-d figure. 

 

Figures 11-12 show typical curves of the median and maximum fitness 
as a function of the number of evaluations for 10-trials. A 4-d 
representations of the test results obtained by ANN with 3,971 points 
has been shown, for a range of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9}, 
CR ∈ {0.1,0.15,...,1} values. The colour illustrates the range of cost 
function values predicted by ANN. Yellow means higher (better) 
function value and blue means lower cost function value for that 
combination of NP, F and CR hyper-parameters. It can be observed that 
the best function values (both maximum and median values) are 
obtained from higher NP, CR and F values in general. It can be seen that 

the best function costs correspond to maximum values of NP, F and CR 
values for both figures.  

 

4.4 Validation 

Among the total tested values (3,971) we chose the best 10% values with 
maximum cost function values (yellow in Figure 11-12) to calculate the 

actual cost functions through differential evolution on the average of 10-
trials. Afterwards, both the continuous variables (ANN suggested 

 

 



output and actual DE values) for (NP, F, CR) hyper-parameter 
combinations have been analysed using Pearson’s correlation 
coefficients (ρ). For both cases of DE versus ANN test results ρMEDIAN = 
0.7 and ρMAXIMUM = 0.68. It indicates a significant positive relationship 
among two variables [53]. Thus the hyperparameter optimisation in 
differential evolution with summed local difference strings can be 
performed efficiently using the neural network simulation. 

 

4.5 Comparison with other state-of-art 

To analyse the effectiveness of ANN-based parameter tuning of DE, we 
compared the following techniques: (i) Grid Search, (ii) Random Search, 
(iii) Sequential Model-based Algorithm Configuration (SMAC) [44],  (iv) 
Optuna [41] (v) ANN in Table 11 and Figure 13.   

Grid Search suffers from the curse of dimensionality, resulting in 
an explosion in the number of possible evaluations, which is improved 
by Random Search. But random search is not well sorted and may miss 
the potential extremas. SMAC uses random forests (RF) and is a 
Bayesian optimiser in which RF helps in categorical variables to support 
large search space hyperparameter searches and is well scalable for 
increasing the number of training samples. It is available online 
https://github.com/automl/SMAC3. Optuna [41] is recent software used for 
hyperparameter optimisation using define-by-run API, pruning and 
search strategy implementation, versatile utility including distributed 
computing, scaling and interactive interface for users to modify the 
search space parameters dynamically. It is available online 
https://github.com/optuna/. Hyperparameter auto-tuning has also been 
performed for sparse Bayesian learning (SBL) in [42] using neural 
network-based learning, and has shown considerable improvement in 
recovery performance and convergence rate.  

 

Table 11. Hyperparameter optimisation for differential evolution 
algorithm to search for {NP,F,CR} by various algorithms. Benchmark 
value for string of length (=NP) of 500 = (26-1)*(500-1)=12,475 and 10 
trial runs. Generations for DE=100 for all of them consistently and max 
of 10 trials experiments for the best cost calculations. Accuracy is the 
ratio of best cost and the benchmark (=12,475).  

Methods Details Hyperpram Values Best Cost Accuracy 

Grid Search NP∈[50,500], 

F=CR=[0.40, 0.41,..1.0} 

NP=390, F=0.95, 

CR=0.90 

8616 0.6907 

Random 

Search 

NP∈[50,500],  

F, CR ∈ [0.4,1] 

NP=450, F=0.91, 

CR=0.88 

8572 0.6871 

SMAC NP∈[50,500],  

F, CR ∈ [0.4,1] 

NP=410, F=1, CR=0.98 8990 0.7206 

Optuna NP∈[50,500],  

F, CR ∈ [0.4,1] 

NP=430, F=,0.87 

CR=0.92 

9244 0.7410 

ANN NP∈[50,500], 

F=CR=[0.40, 0.41,..1.0} 

NP=500, F=0.90, 

CR=0.89 

9438 0.7566 

 



 
Fig 13. Graphical representation of accuracy comparision of Table 11. 
Our ANN performed better than the other state-of-art hyperparameter 
techniques studied.  

 

ANN performed better compared to Grid Search, Random Search, 
SMAC and Optuna (Table 11 and Fig 13.), but requires a considerable 
amount of time to generate the training data to simulate the behavior of 
the rigged function outcome for given values of NP, F and CR. 
Afterwards it is able to predict the new values of hyperparameters to 
search for the optimal combination of tuning parameters. ANN requires 
much less time as compared to DE to calculate the cost function once it 
is trained on a good sized set. For the sake of simplicity, only 600 
examples have been used to train ANN for this case study, but a few 
thousand runs of DE would be better to yield the training data for ANN. 

5. Conclusion  

 

In this research, hyperparameter optimisation in differential evolution 
has been studied using Summed Local Difference Strings, which is a 
rugged but easily calculated landscape for combinatorial search 
problems with wide applicability in numerical optimisation, biological 
sciences, finance and organisational management. Differential evolution 
is a powerful numerical optimisation technique for non-differentiable 
and complex functions which cannot be nicely defined in mathematics, 
but it has three hyperparameters (NP, F, CR) to be optimised. In this 
study a machine learning technique has been exploited to suggest the 
best possible combinations of hyper-parameters instead of a tedious 
grid search. The limitation of the technique is that training data 
collection is time consuming and needs a careful analysis of input 
variable ranges (NP, F, CR). Two output variables were recorded 
(median and maximum value) after 10-trial experiments of each 
combination of the hyperparameters. Finally, testing of the machine 
learning model has been employed on a bigger data (3,971) and the top 
10% test results were compared with the actual DE results yielding a 
Pearson correlation coefficient of ~0.7. Specifically, it was found that 
larger values of NP, F and CR hyper-parameters yield better outcomes.  

In future, we plan to explore more bio-inspired algorithms and 
other ways to search for hyperparameters such as to embed the hyper-
parameters in the very population being optimised. We will also explore 
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Grid Search Random 
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binary strings and real valued strings with an extended range of values 
beyond 26 with advanced options of mutation and cross-over equations.  
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