
Hyperparameter optimisation in differential evolution

using Summed Local Difference Strings, a rugged but

easily calculated landscape for combinatorial search

problems

Husanbir Singh Pannu 1,3, Douglas B. Kell1,2*
1 Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and

Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69

7ZB, UK 1; Douglas.Kell@liverpool.ac.uk
2 The Novo Nordisk Foundation Centre for Biosustainability, Technical University of

Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark 2
3 Computer Science and Engineering Department, Thapar Institute of Engineering and

Technology Patiala India 147004. hspannu@thapar.edu

* Correspondence: hspannu@thapar.edu

Abstract: We analyse the effectiveness of differential evolution

hyperparameters in large-scale search problems, i.e. those with very many

variables or vector elements, using a novel objective function that is easily

calculated from the vector/string itself. The objective function is simply the sum

of the differences between adjacent elements. For both binary and real-valued

elements whose smallest and largest values are min and max in a vector of

length N, the value of the objective function ranges between 0 and (N-1) × (max-

min) and can thus easily be normalised if desired. This provides for a

conveniently rugged landscape. Using this we assess how effectively search

varies with both the values of fixed hyperparameters for Differential Evolution

and the string length. String length, population size and generations for

computational iterations have been studied. Finally, a neural network is trained

by systematically varying three hyper-parameters, viz population (NP),

mutation factor (F) and crossover rate (CR), and two output target variables are

collected (a) median and (b) maximum cost function values from 10-trial

experiments. This neural system is then tested on an extended range of data

points generated by varying the three parameters on a finer scale to predict both

median and maximum function costs. The results obtained from the machine

learning model have been validated with actual runs using Pearson’s coefficient

to justify the reliability to motivate the use of machine learning techniques over

grid search for hyper-parameter search for numerical optimisation algorithms.

The performance has also been compared with SMAC3 and OPTUNA in

addition to grid search and random search.

Keywords: combinatorial search; optimisation; evolutionary algorithms

1. Introduction

The tunably rugged fitness landscape reflects the intuition that
combinatorial search problems can be seen in terms of a ‘landscape’
containing valleys and hills [1]. The NK model invented by Stuart
Kauffman [2] can be adjusted by changing N (string length) and K to
define the ruggedness level of the flexible landscape as shown in Figure
1. To explain the search of most rugged string in the NK-landscape, a

random three letter string has been considered (JIE) in Fig 1(A). In the

consecutive iterations, various single letter alterations have been
considered in each iteration and cumulative distance of consecutive
letters has been used for the cost function (Fig 1(B)). Furthermore, the
connected graph shows potential search paths in pursuit of extreme
points (highest peak and deepest valley) within the combinatorial search
space of string sequences. Darkness in colours in Fig. 1(C) signifies
higher cost functions and finally in Fig. 1(D) this graph is one of the
various tracks in complex NK-landscape showing the challenge of the
optimization algorithm.

Combinatorial search problems are common in both theoretical and
applied sciences such as optimisations, biology and complex
evolutionary systems. As an example, in a business organisation, an
agent may be searching a landscape of business opportunities. The
valleys and hills represent the losses and profits. The journey through
the landscape associates the decisions of the organisation whilst altering
the structure of the organisation and modifying the products and
services. All of the underlying processes interact in a complex
evolutionary fashion and affect the cash flow and thus profit [3]. Most
scientific problems can in fact be cast as combinatorial search or

optimisation problems [4]. The kinds of optimisation in which we are
here interested thus consist of a ‘search space’ or landscape in which a
variety of inputs can be combined in potentially complex and nonlinear
ways to lead to an output or objective function. Because the number of
combinations always scales exponentially with the number of variables,

the search spaces can easily be made to be far beyond any kind of
exhaustive search (other than for small numbers of variables [5]),
whether the search is computational or experimental. Heuristic
methods, in which we seek to understand, simulate and navigate the
landscape intelligently, are therefore appropriate. Among these,

evolutionary algorithms of various kinds are pre-eminent [6]. Equally,
because of the vastness of the search spaces, a variety of attempts have
been made to create them in silico, using a more-or-less complex
function of the inputs to calculate the output at that position in the
search space. The idea of such strategies is that (notwithstanding that

there is ‘no free lunch’ [7-11]) an algorithm of interest may be assessed
in competition with others [12], or its hyperparameters tuned to effect
the most rapid searches. In evolutionary computing, three of these
hyperparameters are the population size, the mutation rate, and the
crossover rate [13]. In some cases, these hyperparameters can have very
considerable effects on the efficiency of a search (e.g. [14]).

Fig 1. (A) Combination space of various example string sequences
of length 3. The digits represent the cumulative inter-letter distances of
the string; the sequences along the arrows show the alterations of letters
within consecutive strings to signify perturbations (B) Graphical
rendering of potential paths to search for the global extrema (peak or
valley) in the combinatorial string space (C) Relative colouring for
visual comparison, darker means bigger cost function value i.e. higher
cost function value (D) The graphs is one of the search possibility in the
high NK-landscape showing the complexity of the search of extreme
points through an algorithm.

Well-known fitness functions used for creating landscapes of this
type, often tuned to be ‘deceptive’ to evolutionary algorithms [15,16],
include NK [2,17,18] (and variants such as NKp [19]), OneMax/max-
ones [20,21], and the royal road [22-24]. Max-ones is especially easy to
understand, since each variable is cast as an element of a (binary) string
or vector of length N, and the fitness is simply the total number of
elements containing a 1, with the maximum possible fitness obviously
being N. That said, max-ones yields reasonably easily to evolutionary
algorithms [25] as the crossover operator allows such algorithms more-
or-less easily to combine building blocks (schemata [13]) successfully,
not least because the ‘fitness’ of any element of a string is not context-
sensitive.

We here develop and exploit a simple, related objective function in
which the objective is not to maximise each element but to maximise the
sum of the differences between adjacent elements. This is very easily
calculated, allowing rapid assessment of different search algorithms. It
provides for a landscape that is locally smooth but globally very rugged.
Here the contribution to the overall fitness of any element of the string is
absolutely context-sensitive. Thus, the problem is to find the most
rugged string of length n using differential evolution which has three
tuning parameters, viz. NP (population size of search particles), F
(mutation factor), CR (crossover rate). The objective function for the
hyperparameter optimisation for summed local difference strings has
been defined with the following examples.

Example 1: String = “AAAA” has summed differences |A-A|+|A-
A|+|A-A| = 0. String “ABCD” has summed differences |A-B|+|B-
C|+|C-D| = 3. String “AZAZ” or “ZAZA” has |A-Z|+|A-Z|+|A-Z| =
75.

Example 2: The maximum ruggedness value of a string of length n
is (n-1) × (U-L) where U and L are the maximum and minimum values
of the alphabet values. In example 1 U = Z = 26 and L = A = 1 and n=4,
thus (4-1) × (26-1) = 75.

Even for binary strings this makes the problem much harder than
max-ones. In addition, two very different (in fact maximally different)
strings of length N have the same, maximum fitness, viz
101010…1010101 and 010101…0101010 of (N-1). We later also consider
real-valued (integer) strings, such that the problem difficulty can be
varied not only by varying the string length but by varying the number
of allowable values in each position. Of the many variants of

evolutionary algorithm, we focus on differential evolution, as originated
by Storn and Price [26,27] and reviewed e.g. in [28-34], as it seems to be
highly effective in solving a wide range of problems.

Objective function and machine learning models need to be
optimised according to the data distribution in order to find the best
representative generalisation. Hyper-parameter tuning determines the
best combination of free variables so that validation set yields the best
performance. Hyperparameters have been tuned either by manual hit-
and-trial, or through grid search, which involves systematically trying
all possible combinations with a specified linear spacing. But both of
these methods are limited to the human imagination or time duration to
attempt grid search on a given level of granularity. Thus, an automatic
machine learning based hyperparameter value optimisation has been
proposed (e.g. [34-36]).

The paper is organised as follows: the first section is about the
introduction of the rugged fitness landscape and local difference strings,
Section 2 is a literature review, Section 3 covers the differential
evolution and machine learning techniques used, Section 4 is about the
results and discussion, Section 5 is the conclusion and future scope.

2. Literature Review

2.1 Differential Evolution Variants

In [37], a variant of DE using asymptotic termination based on the
average differential of the cost function values has been proposed. The second
modification is a new search for a critical parameter which helps to explore the
search space. In [38], an ensemble of control parameters and mutation
methods for DE has been proposed while considering the dynamic mutation
strategies and set of values for control parameters. In [39], monkey king
differential evolution using a multi-trial vector has been studied. The relation
between exploitation and exploration depends upon control parameter and
evolution strategy. To enhance the performance, multiple evolution strategies
have been considered to generate multi-trial vectors. In [40], an ensemble of
DE using multi-population approach and three distinct mutation methods,
“rand/1”, “current-to-rand/1”, “current-to-pbest/1”. CEC 2005 benchmark
functions have been used for performance evaluation.

2.2 Hyper-parameter Tuning

In [41] an advanced hyper-parameter tuning technique ‘Optuna’ has
been proposed. It allows API for dynamic user interaction, efficient search and
pruning options, and easy to implement features. An automatic parameter
tuner for sparse Bayesian learning has been proposed in [42]. The empirical
auto-tuner has been used to address the neural network-based learning for
performance comparison. In [43], a combination of stochastic differential
equations and neural networks has been studied to extract the best
combination of free parameters for the application of the economics dataset
from Greater London using a Harris-Wilson model for a non-convex problem.
In [44], a multi-label classification and complex regression problem has been
addressed for auto-parameter tuning in deep learning models. In [45], ANNs
have been used to predict the parameters for DE using 24 test problems from a
Black-Box Optimisation Benchmarking dataset. In [46], parameter independent
DE for analytic continuation has been studied using imaginary correlation
functions of time. The parameters are embedded into the vectors which need
to be optimised through the evolution. A study in [47] has proposed parameter

optimisation for DE for the CED05 contest dataset that includes 25 complex
mathematical functions with dimensions as high as 30.

3. Background

This section discusses the background techniques of differential evolution and
artificial neural networks used in this research.

3.1 Differential Evolution (DE)
It is an efficient metaheuristic algorithm for numerical optimisation in

which the output cannot be precisely defined from the input variables. For a
given dimension of the data vector (string for example) it takes few input
parameters such as number of points searching for the solution (population
NP), mutation factor (F) and crossover rate (CR). The algorithm has 4 phases
of execution: initialisation of population particles, mutation, crossover and
then selection [48] as shown in Figure 2. This whole computation is repeated
for a specified number of iterations (also known as generations) or a
constrained time frame. Initialisation is usually done randomly from the
normal distribution in the search domain followed by mutation which means
finding the best parents to yield the child particle. Afterwards, crossover
yields the child particle by varying proportions of parent particle attributes.
The final step is selection, which means to update the current particle, how to
use the new child along with other randomly selected particles with tuneable
proportions. The idea is to maximise the randomness to avoid getting locked
in local extrema. In our study, the simplest mutation formula (DE/rand/1) is
used which is defined in (1) below:

Yi = X1i + F(X2i – X3i) (1)

where i is the ith point computed in an iteration from X1, X2 and X3
random points out of the population. Next, to increase the diversity of muted
vectors, the crossover operation is performed which is defined in (2). It mixes
the target vector with another random vector in the population in an
adjustable proportion using random probability function which can be defined
using CR value. CR rate thus defines the ratio in which the new trial vector Ui
inherits the values from mutation vector.

�� � ��� , �� 	
��0,1� � ��
��, ����	���� � (2)

For the selection phase, the cost function of this new trial vector is

calculated after the crossover phase to compare with the fitness of the target
vector Xi. The better among the two is selected to update the army of points in
the population. Let f(.) be the fitness function then, selection is defined as in (3)
below:

�� � 1� � ��� , �� ���� � ����
��, ����	�����

 (3)

Fig 2. Flow of differential evolution metaheuristic algorithm

3.2 Artificial Neural Networks (ANN)

Artificial neural networks in data analysis got their origin from the
behaviour of biological neurons on human brains. ANN consists of
artificial nodes (neurons) which are interconnected through layers of
other neurons to compute and refine the data using non-linear
activation functions in the successive layers. Connection strengths
among neurons is controlled by weight parameters (W). The simplest
ANN in which we are interested is the multilayer perceptron (MLP), a
three-layer structure is defined which contains the input layer, the

hidden layer and the output. The standard structure of ANN is
illustrated in Figure 3 and details can be found in [49].

Fig 3. An example artificial neural network with three inputs, one

hidden layer with five neurons and the output layer. The inside
structure of each neuron has been shown in the dotted box. A node or
neurons is the weighted average of the input signals added with a

constant (bias) value and travels through a function which is usually
non-linear in nature such as a tanh, sigmoid or ReLU (Rectified Linear
Unit) function.

4. Results

Classical differential evolution uses three hyperparameters: the
population size NP, a mutation factor F controlling the mutation rate,
and a parameter CR that determines the extent of the uniform crossover
[20] [26]operator used. We start with standard and fixed (non-adaptive)
values of NP = 50, F = 0.4, CR = 0.1 as recommended by Storn and Price.
NP is usually scaled to the length of the vector (number of input
variables) to be optimised, but not much is known for problems that
have a great many input variables [50], for instance directed protein
evolution [51,52]; others are reviewed e.g. in [45].

4.1 Understanding the landscape ruggedness

To understand the nature of the landscape, it is convenient to create
a random landscape in which, initially each element of the vector of
length N=50 is set randomly to A to Z (Table 1). The random letters in
each of the 10 vectors are the population candidates to search for the
best rugged string of length 50.

Table 1. Random landscape of 10 vectors (population size) with

dimensions = 50 (string length) and initial cost function value (summed
consecutive differences)

SR Vector of length 50 Function

Cost

1 GLPFFCVOBVANQGUQKHRRWBIDKURNCNYOCDBCQLQIUXHONOJGRK 384

2 UNQBHPJUCEZOADILXMBZVOVGFIKQTCZZVRCGSDXRTGZSBPRWSG 454

3 OOSKURLLTNYAORMWLJYLRQSRWNBKOYNAXRRNQJJJXSEIYXHNQQ 358

4 EJGFPREJIIHODQEXKTTNPBOEJGCNDRUFPDYVEOKXMWPWFTORLM 406

5 OBBMAREGDIBWCYMBEEBSPTIHNXOPSOMMXCPHJJFGDHRJEUNFGC 372

6 CPICSKHOLMUSGVJWJFMLUTMTRUZXQCBNZYCDVRFNWKDVGAXEJN 417

7 CYKGXKQWNTYTVYLPOCHLHOOPYPYUVZTEHKBRPCLADTIIOVJBGP 363

8 UYHYLMSVWLTLKWNKRKFBOUENTVSVCKJTJBMDYTAIIQLDDVBONY 408

9 AUMHUZPEHTEDLFCSBMMPFUZGGYSOJNUEMWAFCLSNZKMRJZDOIB 449

10 YIIBQZDVPNOABPVXDCALDDGXVTVPTUEKQVMIVBKWUCFESABITC 404

After 10 iterations of the DE algorithm, the best particle and cost

are as follows. Particle = APGZ TTTA PZIZ HZAZ ZDAZ BAEA ZAAZ
AVWZ ABAZ AZAZ AZZZ AZAZ AZ, Cost function = 773, Benchmark
= (26-1) × (50-1) = 1,225. Elapsed time is 0.1955 seconds. The values of
Dimensions = 50, Np = 10, Population Crossover Rate (CR) = 0.8 and
Mutation Factor (F) = 0.85 for this example. Figure 4 shows the
consistent improvement in the cost function.

Fig 4: Cost function values for 10 iterations for string length = 50.

The values of Dimensions = 50, Np = 10, Population Crossover Rate

(PCr) = 0.8 and Mutation Factor (F) = 0.85.

4.2 Varying the hyperparameters in standard differential evolution
All simulations are performed in MATLAB 2018b software with a

system configuration of MAC Air (2017), 1.8 GHz Intel Core i5

processor, 8GB 1600 MHz DDR3 memory, HD Graphics 6000 1536 MB
and macOS version 10.13.6. The experiment was repeated for 500-
dimensional string, 10-trials and 50 generations with NP in [50,500], CR
in [0.1,1], F in [0.4,0.9]. The stats were recorded for the median and
maximum function values for 10-k trials listed in Table 2. A total of 600

values were collected for various combinations of NP, F and CR values
suggested in [45]. Out of those 600 values, the best 5 were selected and
they were calculated for extended iterations/generations as shown in
Table 3. It infers that the cost function value generally tends to increase

with iterations but not always. This is because at higher dimensions the
problem is highly difficult to solve and not always yields the best
solution during the metaheuristic search.

Table 2. Benchmark value for 500-dimensional string is (26-1) ×

(500-1) = 12,475. NP = {50,100,…,500}, CR = {0.1,0.2,…1}, F =
{0.4,0.5,…0.9} so total 10×10×6 = 600 experiment values. The min and
max values refer to the range of cost function values obtained through
the experiments.

 Range of function values

10-trials Minimum Maximum

Median of cost function

5555.5 8870

44.5% 71.1%

Maximum of cost function

5629 9226

45.1% 73.96%

Table 3. Top 5 cases among 600 trials analysed for increased
number of iterations from 100 to 1000. The winners are highlighted in
bold text.

CASE1 NP F CR Iterations 100 200 300 500 1000

 500 0.9 1 Median 9632 10300 10375 10300 10375

 Maximum 9716 10550 10425 10375 10625

CASE2 NP F CR Median 7935 8970 9269 9280 9295

 500 0.8 0.9 Maximum 8222 9106 9322 9592 9538

CASE3 NP F CR Median 8801 9246 9159 9012 9230

 500 0.9 1 Maximum 8901 9362 9342 9181 9328

CASE4 NP F CR Median 7002 9037 9218 9536 9242

 500 0.8 0.9 Maximum 7862 9152 9529 9677 9651

CASE5 NP F CR Median 6075 8211 8500 8675 8450

 500 0.8 0.9 Maximum 6250 8451 8500 8775 8500

Table 4 and Figure 5 illustrate the normalised function values for

various combinations of population size and generations. For median of cost
function values, it has been found that 9196 value is obtained with the NP=50
and Gen=500. For the maximum cost function values the value 9373 is found
when NP=125 and Gen=200. Thus, it is not easy to say which of the NP and
Generation values are the best ones to yield the best function cost but
generally more generations with bigger population size is a good combination.

Table 4. Normalised comparison (NP*Gen constant) of cost function
values (median and maximum over 10-trials) for F=CR=0.9, string length
= 500. The values of VP and generations have been varied such that the
product of NP and Gen is 25000. Figure 5 is the visual illustration.

Sr. NP Generations Median Maximum

1 500 50 8236 8272

2 250 100 9109 9394

3 125 200 9150 9373

4 50 500 9196 9304

5 10 2500 8137 8601

Fig 5. Normalised comparison of various values of function cost for

median and maximum using F=0.9, CR=0.9, string length

(dimension)=500, 10-trials. (a) NP=500, Gen=50 (b) NP=250, Gen = 100 (c)
NP=125, Gen=200 (d) NP=50, Gen=500 (e) NP=10, Gen=2500. The values
of NP and Generations have been chosen such that the product remains
constant (=25000) to analyse the effect of reducing population and

increasing generations.

Tables 5-7 illustrate time consumption analysis against variations

in NP, string length and iterations of calculations. Figures 6-8 are the

graphical representations of these tables for the ease of visualisation.
The time variations are almost linear giving the idea about the problem
complexity in regard to the variable changes.

Tables 5. For 50 iterations, string length 500 (data vector

dimension), F=0.4, CR = 0.1 the time in seconds for various NP values

has been calculated ranging from 50 to 500 for 10-trial experiments.
Figure 7 is the graphical rendering of this table.

NP
50 100 150 200 250 300 350 400 450 500

Time
1.32 2.46 3.73 4.88 6.24 7.43 8.94 10.32 11.71 14.07

Fig 6. Graph between NP (x-axis) and Time in seconds (y-axis) for fixed
values of string length = 500, F = 0.4, CR = 0.1 and iterations = 50 for 10-
trial experiments. The time consumption is nearly linear with the
population size.

Table 6. String length (Dimension) versus time consumption in seconds

for fixed values of NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for
experiments to calculate median and mean function costs. The time
consumption varies almost linearly with the string length. Figure 8
shows the graphical representation

Dim 100 200 300 400 500 600 700 800 900 1000

Time 0.7992 1.1327 1.7634 2.1091 2.5229 2.8815 3.2637 3.5849 3.9694 4.2432

Fig 7. Graph between string length (x-axis) and Time in seconds (y-axis)

for fixed values o NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for
experiments to calculate median and mean. The time consumption
varies almost linearly with the string length.

Table 7. Iterations and time in seconds comparison for fixed values of

string length = 500, NP=100, F=0.4, CR=0.1 and 10-trial experiments. The
relation is almost linear and is rendered in Figure 9.

Gen 50 100 150 200 250 300 350 400 450 500

Time 2.56 4.75 7.19 9.99 11.64 13.99 16.49 20.28 20.99 25.55

Fig 8. Graph between iterations (x-axis) and time in seconds (y-axis) for

fixed values of string length = 500, NP=100, F=0.4, CR=0.1 and 10-trial
experiments. The relation is almost linear.

4.3 Training Data and ANN Training for Automatic Parameter Tuning

The neural network has been trained for 600 data points which includes

three independent input variables: Population (NP), Mutation Factor (F)
and Cross-mutation Rate (CR). The values range for NP is [50,500], F is
[0.4,0.9], CR is [0.1,1] chosen according to our experiments and
suggestion given in [40]. These 600 training data points have been
collected by running 10-fold trials for each entry to find out median and

maximum cost function values and is quite a time consuming task. This
is due to finding the right range of these 3 hyperparameter values and
then running the code to compile the data for few hours. So the
differential evolution function is called 600×10 = 6,000 times for various
values of these three hyperparameters. The training sample data and the

computed median and maximum function costs have been rendered in
Table 8. Afterwards, Neural Network Fitting in MATLAB has been
used for regression using three input variables and two target variables
respectively. The default values of the model have been used, for
example ratio of training: validation: testing is 70:15:15, number of
hidden neurons = 10, Bayesian Regularization training algorithm for
training. Figures 9-10 demonstrate the frequency histogram of error

values in relation to instances. After the training of ANN, the error of
actual versus predicted values were collected for all training and tested
values among 600 data points and plotted to see the quality of the

trained model. Most of the error values are 0 which indicates that the
model is well generalised and validated.

Table 8. Training data for ANN containing 3 input variables and two

target variables. The NP ∈ {50,100,…,500}, F ∈ {0.4,0.5,…,0.9}, CR ∈ in
{0.1,0.2,…,1} so a total of 10×6×10 = 600.

Input variables Target var1 Target var2

SR. NP F CR Median Fun Val. Max Fun Val.

1 50 0.4 0.1 5559.5 5676

2 50 0.4 0.2 5705 5837

… … … … … …

600 500 0.9 1 8870 9226

Fig 9. Error histograms for training, testing and validation for 600
examples after ANN training for median cost function values. Ratio of

train:validate:test used is 70:15:15. The target function used is the
median cost function value from 10-trial experiments and input values
to ANN were NP, F and CR.

Fig 10. Error histograms for training, testing and validation for 600
examples after ANN training for max cost function values. Ratio of

train:validate:test used is 70:15:15. The target function used is the
maximm cost function value from 10-trial experiments and input values
to ANN were NP, F and CR.

Tables 9-10 show the function costs on 10-trial average for the mean

squared error (MSE) and regression coefficient (R) values as the number
of hidden neurons increase during the ANN training.

Table 9. For the median cost function values (from 10-trials) the
following are the MSE and R values for increasing number of neurons in
ANN training

Median

Function

Cost

 Neurons 10 20 30 40 50 60 70 80

Training MSE 3008.8 2102.2 1264.8 1472.8 1572.3 1108.8 1653 1540.5

R 0.9975 0.9983 0.9987 0.9990 0.9985 0.9988 0.9989 0.9989

Testing MSE 2858 3624 5883.7 5616.6 4622.5 7715.5 3162 5431.8

R 0.9948 0.9959 0.9947 0.9962 0.9974 0.9946 0.9936 0.9957

Table 10. For the maximum cost function values (from 10-trials) the

following are the MSE and R values for increasing number of neurons in
ANN training

Max

Function

Cost

 Neurons 10 20 30 40 50 60 70 80

Training MSE 8738 6682.7 6021.4 5308.3 5790.4 5791.7 5557.3 5059.4

R 0.9937 0.9954 0.9958 0.9963 0.9958 0.9960 0.9961 0.9964

Testing MSE 1148.3 1192.8 1308.1 1228.3 2106.7 1262.8 1689.5 1252.9

R 0.9934 0.9916 0.9912 0.9914 0.9872 0.9908 0.9877 0.9926

Fig 11. The demonstration of 3,971 test points (19×11×19) parameter
combinations of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9}, CR ∈
{0.1,0.15,...,1}. The colour depicts the median of cost function values of
10-trial runs. The yellow shows higher (better) values and blue shows
lower cost function values for those combinations of NP, F and CR. Left
and right graphs are two perspective view of the same 3-d figure.

Fig 12. The demonstration of 3,971 test points (19×11×19) parameter
combinations of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9}, CR ∈
{0.1,0.15,...,1}. The colour depicts the maximum value of cost function for
10-trial runs. The yellow shows higher (better) values and blue shows
lower cost function values for those combinations of NP, F and CR. Left
and right graphs are two perspective view of the same 3-d figure.

Figures 11-12 show typical curves of the median and maximum fitness
as a function of the number of evaluations for 10-trials. A 4-d
representations of the test results obtained by ANN with 3,971 points
has been shown, for a range of NP ∈ {50,75,...,500}, F ∈ {0.4,0.45,...,0.9},
CR ∈ {0.1,0.15,...,1} values. The colour illustrates the range of cost
function values predicted by ANN. Yellow means higher (better)
function value and blue means lower cost function value for that
combination of NP, F and CR hyper-parameters. It can be observed that
the best function values (both maximum and median values) are
obtained from higher NP, CR and F values in general. It can be seen that

the best function costs correspond to maximum values of NP, F and CR
values for both figures.

4.4 Validation

Among the total tested values (3,971) we chose the best 10% values with
maximum cost function values (yellow in Figure 11-12) to calculate the

actual cost functions through differential evolution on the average of 10-
trials. Afterwards, both the continuous variables (ANN suggested

output and actual DE values) for (NP, F, CR) hyper-parameter
combinations have been analysed using Pearson’s correlation
coefficients (ρ). For both cases of DE versus ANN test results ρMEDIAN =
0.7 and ρMAXIMUM = 0.68. It indicates a significant positive relationship
among two variables [53]. Thus the hyperparameter optimisation in
differential evolution with summed local difference strings can be
performed efficiently using the neural network simulation.

4.5 Comparison with other state-of-art

To analyse the effectiveness of ANN-based parameter tuning of DE, we
compared the following techniques: (i) Grid Search, (ii) Random Search,
(iii) Sequential Model-based Algorithm Configuration (SMAC) [44], (iv)
Optuna [41] (v) ANN in Table 11 and Figure 13.

Grid Search suffers from the curse of dimensionality, resulting in
an explosion in the number of possible evaluations, which is improved
by Random Search. But random search is not well sorted and may miss
the potential extremas. SMAC uses random forests (RF) and is a
Bayesian optimiser in which RF helps in categorical variables to support
large search space hyperparameter searches and is well scalable for
increasing the number of training samples. It is available online
https://github.com/automl/SMAC3. Optuna [41] is recent software used for
hyperparameter optimisation using define-by-run API, pruning and
search strategy implementation, versatile utility including distributed
computing, scaling and interactive interface for users to modify the
search space parameters dynamically. It is available online
https://github.com/optuna/. Hyperparameter auto-tuning has also been
performed for sparse Bayesian learning (SBL) in [42] using neural
network-based learning, and has shown considerable improvement in
recovery performance and convergence rate.

Table 11. Hyperparameter optimisation for differential evolution
algorithm to search for {NP,F,CR} by various algorithms. Benchmark
value for string of length (=NP) of 500 = (26-1)*(500-1)=12,475 and 10
trial runs. Generations for DE=100 for all of them consistently and max
of 10 trials experiments for the best cost calculations. Accuracy is the
ratio of best cost and the benchmark (=12,475).

Methods Details Hyperpram Values Best Cost Accuracy

Grid Search NP∈[50,500],

F=CR=[0.40, 0.41,..1.0}

NP=390, F=0.95,

CR=0.90

8616 0.6907

Random

Search

NP∈[50,500],

F, CR ∈ [0.4,1]

NP=450, F=0.91,

CR=0.88

8572 0.6871

SMAC NP∈[50,500],

F, CR ∈ [0.4,1]

NP=410, F=1, CR=0.98 8990 0.7206

Optuna NP∈[50,500],

F, CR ∈ [0.4,1]

NP=430, F=,0.87

CR=0.92

9244 0.7410

ANN NP∈[50,500],

F=CR=[0.40, 0.41,..1.0}

NP=500, F=0.90,

CR=0.89

9438 0.7566

Fig 13. Graphical representation of accuracy comparision of Table 11.
Our ANN performed better than the other state-of-art hyperparameter
techniques studied.

ANN performed better compared to Grid Search, Random Search,
SMAC and Optuna (Table 11 and Fig 13.), but requires a considerable
amount of time to generate the training data to simulate the behavior of
the rigged function outcome for given values of NP, F and CR.
Afterwards it is able to predict the new values of hyperparameters to
search for the optimal combination of tuning parameters. ANN requires
much less time as compared to DE to calculate the cost function once it
is trained on a good sized set. For the sake of simplicity, only 600
examples have been used to train ANN for this case study, but a few
thousand runs of DE would be better to yield the training data for ANN.

5. Conclusion

In this research, hyperparameter optimisation in differential evolution
has been studied using Summed Local Difference Strings, which is a
rugged but easily calculated landscape for combinatorial search
problems with wide applicability in numerical optimisation, biological
sciences, finance and organisational management. Differential evolution
is a powerful numerical optimisation technique for non-differentiable
and complex functions which cannot be nicely defined in mathematics,
but it has three hyperparameters (NP, F, CR) to be optimised. In this
study a machine learning technique has been exploited to suggest the
best possible combinations of hyper-parameters instead of a tedious
grid search. The limitation of the technique is that training data
collection is time consuming and needs a careful analysis of input
variable ranges (NP, F, CR). Two output variables were recorded
(median and maximum value) after 10-trial experiments of each
combination of the hyperparameters. Finally, testing of the machine
learning model has been employed on a bigger data (3,971) and the top
10% test results were compared with the actual DE results yielding a
Pearson correlation coefficient of ~0.7. Specifically, it was found that
larger values of NP, F and CR hyper-parameters yield better outcomes.

In future, we plan to explore more bio-inspired algorithms and
other ways to search for hyperparameters such as to embed the hyper-
parameters in the very population being optimised. We will also explore

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Grid Search Random

Search

SMAC Optuna ANN

binary strings and real valued strings with an extended range of values
beyond 26 with advanced options of mutation and cross-over equations.

Acknowledgements

We thank the UK EPSRC and AkzoNobel for financial support via the

SusCoRD project, grant EP/S004963/1. DBK thanks the Novo Nordisk

Foundation for financial support (grant NNF20CC0035580).

References

1. Kauffman, S.; Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol

1987, 128, 11-45.

2. Kauffman, S.A.; Weinberger, E.D. The nk model of rugged fitness landscapes and its application to

maturation of the immune response. J Theor Biol 1989, 141, 211-245.

3. Levinthal, D.A. Adaptation on rugged landscapes. Manage Sci 1997, 43, 934-950.

4. Kell, D.B. Scientific discovery as a combinatorial optimisation problem: How best to navigate the

landscape of possible experiments? Bioessays 2012, 34, 236-244.

5. Rowe, W.; Platt, M.; Wedge, D.; Day, P.J.; Kell, D.B.; Knowles, J. Analysis of a complete DNA-protein

affinity landscape. J R Soc Interface 2010, 7, 397-408.

6. Bäck, T.; Fogel, D.B.; Michalewicz, Z. Handbook of evolutionary computation. IOPPublishing/Oxford

University Press: Oxford, 1997.

7. Corne, D.; Knowles, J. No free lunch and free leftovers theorems for multiobjecitve optimisation

problems. In Evolutionary multi-criterion optimisation (emo 2003), lncs 2632, Fonseca, C., et al., Ed.

Springer: Berlin, 2003; pp 327-341.

8. Culberson, J.C. On the futility of blind search: An algorithmic view of 'no free lunch'. Evolutionary

Computing 1998, 6, 109-127.

9. Rowe, J.E.; Vose, M.D.; Wright, A.H. Reinterpreting no free lunch. Evol Comput 2009, 17, 117-129.

10. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimisation. IEEE Trans Evol Comput 1997,

1, 67-82.

11. Wolpert, D.H. What is important about the no free lunch theorems? arXiv 2020, 2007.10928.

12. Sacks, J.; Welch, W.; Mitchell, T.; Wynn, H. Design and analysis of computer experiments (with

discussion). Statist Sci 1989, 4, 409-435.

13. Goldberg, D.E. Genetic algorithms in search, optimisation and machine learning. Addison-Wesley: 1989.

14. Corne, D.W.; Oates, M.J.; Kell, D.B. On fitness distributions and expected fitness gains of parallelised

mutation operators: Implications for high mutation rates and rate adaptation in parallel evolutionary

algorithms. In Parallel problem solving from nature - ppsn vii, Merelo Guervós, J.J.; Adamidis, P.; Beyer, H.-

G.; Fernández-Villacañas, J.-L.; Schwefel, H.-P., Eds. Springer: Berlin, 2002; pp 132-141.

15. Goldberg, D.E. Genetic algorithms and walsh functions: Part ii, deception and its analysis. Complex

Systems 1989, 3, 129-152.

16. Davidor, Y. Epistasis variance: A viewpoint on representations, ga hardness, and deception. Complex

Syst. 1990, 4, 369-383.

17. Kauffman, S.A.; Johnsen, S. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states,

and coevolutionary avalanches. J Theor Biol 1991, 149, 467-505.

18. Kauffman, S.A. The origins of order. Oxford University Press: Oxford, 1993.

19. Barnett, L. In Ruggedness and neutrality: The nkp family of fitness landscapes, Proc.6th Int'l Conf. on

Artificial Life, 1998; MIT Press: pp 17-27.

20. Syswerda, G. In Uniform crossover in genetic algorithms, Proc 3rd Int Conf on Genetic Algorithms, 1989;

Schaffer, J., Ed. Morgan Kaufmann: pp 2-9.

21. Tuson, A.; Ross, P. Adapting operator settings in genetic algorithms. Evol Comput 1998, 6, 161-184.

22. Belding, T.C. In Potholes on the royal road, GECCO 2001: Proceedings of the Genetic and Evolutionary

Computation Conference, San Francisco, CA, 2001; Spector, L.; Goodman, E.D.; Wu, A.; Langdon, W.B.;

Voigt, H.-M.; Gen, M.; Sen, S.; Dorigo, M.; Pezeshk, S.; Garzon, M.H., et al., Eds. Morgan Kaufmann: San

Francisco, CA, pp 211-218.

23. Spirov, A.V.; Myasnikova, E.M. Heuristic algorithms in evolutionary computation and modular

organization of biological macromolecules: Applications to in vitro evolution. Plos One 2022, 17.

24. van Nimwegen, E.; Crutchfield, J.P.; Mitchell, M. Statistical dynamics of the royal road genetic

algorithm. Theoretical Computer Science 1999, 229, 41-102.

25. He, J.; Chen, T.S.; Yao, X. On the easiest and hardest fitness functions. Ieee T Evolut Comput 2015, 19, 295-

305.

26. Price, K.V.; Storn, R.; Lampinen, J.A. Differential evolution: A practiical approach to global optimisation.

Springer: Berlin, 2005.

27. Storn, R.; Price, K. Differential evolution - a simple and efficient heuristic for global optimisation over

continuous spaces. J Global Optim 1997, 11, 341-359.

28. Chakraborty, U.K. Advances in differential evolution. Springer: Berlin, 2008.

29. Feoktistov, V. Differential evolution: In search of solutions. Springer: Berlin, 2006.

30. Onwubolu, G.C.; Davendra, D. Differential evolution: A handbook for global permutation-based combinatorial

optimisation. Springer: Berlin, 2010.

31. Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-

of-the-art works. Alex Eng J 2022, 61, 3831-3872.

32. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans Evol Comput

2011, 15, 4-31.

33. Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution - an updated survey.

Swarm Evol Comput 2016, 27, 1-30.

34. Tanabe, R.; Fukunaga, A. Reviewing and benchmarking parameter control methods in differential

evolution. IEEE Trans Cybernet 2020, 50, 1170-1184.

35. Li, L.S.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based

approach to hyperparameter optimisation. J Mach Learn Res 2018, 18.

36. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated machine learning: Methods, systems, challenges. Springer:

Berlin, 2019.

37. Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the differential evolution

algorithm. Symmetry-Basel 2022, 14, 447.

38. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with

ensemble of parameters and mutation strategies. Appl Soft Comput 2011, 11, 1679-1696.

39. Nadimi-Shahraki, M.H.; Taghian, S.; Zamani, H.; Mirjalili, S.; Elaziz, M.A. Mmke: Multi-trial vector-

based monkey king evolution algorithm and its applications for engineering optimisation problems.

PLoS One 2023, 18, e0280006.

40. Wu, G.; Mallipeddi, R.; Suganthan, P.N.; Wang, R.; Chen, H. Differential evolution with multi-

population based ensemble of mutation strategies. Info Sci 2016, 329, 329-345.

41. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter

optimisation framework. KDD19 2019, 2623-2631.

42. Gao, D.; Guo, Q.; Jin, M.; Liao, G.; Eldar, Y.C. Hyper-parameter auto-tuning for sparse bayesian

learning. arXiv 2022, 2211.04847.

43. Gaskin, T.; Pavliotis, G.A.; Girolami, M. Neural parameter calibration for large-scale multi-agent

models. arXiv 2022, 2209.13565.

44. Iliadis, D.; Wever, M.; De Baets, B.; Waegeman, W. Hyperparameter optimisation in deep multi-target

prediction. arXiv 2022, 2211.04362.

45. Centeno-Telleria, M.; Zulueta, E.; Fernandez-Gamiz, U.; Teso-Fz-Betoño, D.; Teso-Fz-Betoño, A.

Differential evolution optimal parameters tuning with artificial neural network. Mathematics 2021, 9,

427.

46. Nichols, N.S.; Sokol, P.; Del Maestro, A. Parameter-free differential evolution algorithm for the analytic

continuation of imaginary time correlation functions. Phys Rev E 2022, 106, 025312.

47. Rönkkönen, J.; Kukkonen, S.; Price, K.V. Real-parameter optimisation with differential evolution. Proc.

IEEE Congr. Evol. Comput 2005, 506–513.

48. Price, K.V. Differential evolution. In Handbook of optimisation, Springer: Berlin, 2013; pp 187-214.

49. Anderson, J.A. An introduction to neural networks. MIT press: Boston, 1995.

50. Piotrowski, A.P. Review of differential evolution population size. Swarm Evol Comput 2017, 32, 1-24.

51. Arnold, F.H. Directed evolution: Bringing new chemistry to life. Angew Chem Int Ed Engl 2018, 57, 4143-

4148.

52. Currin, A.; Swainston, N.; Day, P.J.; Kell, D.B. Synthetic biology for the directed evolution of protein

biocatalysts: Navigating sequence space intelligently. Chem Soc Rev 2015, 44, 1172-1239.

53. Nettleton, D. Selection of variables and factor derivation. In Commercial data mining, Nettleton, D., Ed.

2014; pp 79-104.

