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Abstract 
As semiconductor devices continue to evolve the need for more accurate 

models in device simulation and design becomes greater. Improvements in 

process technology have meant device dimensions have fallen, putting a greater 

requirement on the accuracy of device models. This requirement has been fulfilled 

to a large extent by numerical models, which unlike analytical models can 

accurately account for the detailed nature of modern VLSI devices. Moreover, the 

allowable geometries and bias conditions of most analytical models are often too 

restrictive to provide adequate simulation. 
A two dimensional numerical model has been developed, which is capable 

of modelling a wide variety of different devices over a full range of bias levels. 

Unlike other numerical models it contains the ability to simulate self-heating and 

electro-thermal interaction under conditions of high power dissipation. 

A highly detailed mathematical model for semiconductor device physics is 

described. The model serves to couple a solution of Poisson's equation arid the 

current continuity equations with a solution to the heat flow equation. In this way 

electro-thermal interaction is accurately modelled. The temperature dependence 

of the physical parameters required by the model has been included wherevPr 

possible and novel features include current flow due to temperature gradients, 

heavy doping effects, carrier-carrier scattering, temperature dependent thermal 

conductivity and Shockley-Read-Hall and Auger recombination. 
The resulting continuous problem was transformed into a discrete one by 

the application of the classical finite difference method. Two orthogonal 

co-ordinates were considered, these being cartesian co-ordinates (x, y) and 

cylindrical co-ordinates (r, y). Very little additional effort is required to obtain the 

discrete cylindrical problem and yet it accurately defines a device with cylindrical 

symmetry in all three dimensions. For this reason many of the simulations have 

concentrated cylindrical type structures. 

Having obtained the discrete problem which in general is non-linear, it has 

been solved using Newton's method. The high power operating condition 

represents a most severe numerical problem owing to the strong interaction which 



exists between the equations that constitute the model, under such conditions. 
This has led to the requirement for two different solution procedures, these being 

the decoupled approach, which is most efficient at low injection levels and the 

coupled approach, which is more efficient at higher injection levels. The 

application of either approach requires the repeated solution of a large system of 
simultaneous equations. A number of iterative techniques such as the Strongly 
Implicit Procedure (SIP), Successive Line Over-Relaxation (SLOR) and Successive 
Block Over-Relaxation (SBOR), that have proven to be most efficient for solving 
these systems are described. 

Numerical results have been obtained at various stages in the development 

of the model. Initially a simple Poisson solver was written, and by coupling this 
with a numerical solution of the ionization integral a very powerful 'off-state' model 
was obtained. This model is capable of accurately predicting breakdown voltages 
and it was used to investigate the various techniques for improving the curvature 
related breakdown voltage of planar diffused junctions. The technique of 'resurf 
layers' proved to be the most effective and tile optimum parameters giving 
maximum breakdown voltage improvement were obtained. 

Results from the off-state model were incorporated into a number of bipolar 
transistors that have been designed and fabricated as part of this project. Details 

of these devices are given, together with there characterisation, which was 
performed with the aid of the model. 

Having added the steady state Current continuity equations to the model it 

was used to investigate the consequences of emitter widths on the pulsed power 
handling capability of interdigitated bipolar transistors. Transient effects were then 
included in the model, which was also coupled with a collector circuit equation in 

order to model transistor operation during inductive switch-off. The results of these 
last two investigations indicated that the trend should be towards finer emitter 
structures. 

Finally a solution to the heat flow equation was Incorporated into the model, 
which was then used to Investigate transient self-heating phenomena leading to 
thermal second breakdown In bipolar transistors. A comparison was made with 
experiment through the construction of a non-destructive test circuit and the 
potential benefit to be gained from grading the collector Impurity profile was 
investigated. 

Although all the simulations performed in this work have been directed at 
bipolar transistor operation, the model has been designed In such a way that it 

would be a very simple matter to after the model to suit MOST or JFET operation. 

- iv- 



Acknowlegments. 
I would like to express my sincere thanks to my supervisor, Dr. Keith 1. 

Nuttall, for his continuous support throtighout this project. The many stimulating 
discussions we shared, especially those concerning semiconductor physics, have 

given me an excellent grounding to my career and will prove invaluable in the 

years to come. I am also grateful to tile Head of the Department of Electrical 

Engineering and Electronics, Prof. W. Eccleston for providing the facilities required 
in this project. 

I am extremely grateful to a number of colleagues from the Department of 
Electrical Engineering and Electronics. Firstly, I would like to. thank Julian 

Humphreys, with whom I worked in close collaboration. We have exchanged many 
interesting thoughts with regard to numerical modelling and device. physics, which 
I have found to be particularly helpful. Special thanks also goes to'Dr. Trevor 

Davies, for supplying me with a copy of his numerical model at the start of my 

project. This provided me with a very firm foundation upon which I was able to 

build. Thanks also to Dr. Steve Hall for demonstrating the use of the GAELIC rnask 
drawing facility and also for showing a keen interest in my work. I am also grateful 
to Andrew Jackson for help with circuit design and to Andrew Demery for all his 

time spent helping me with my many software problems. Sincere thanks also go 
to Bill Gould for his technical support and to all the other technical staff for their 

help and friendship. 

I wish to extend my thanks to all my present colleagues in the Discrete 

Devices Group at Philips Research Laboratories, Surrey. In particular I am very 

grateful to David Coe and David Paxnlan for their patience and understanding 
during the preparation of this thesis. 

_,. 
I would like to thank my parents for the faith a nd support they gave me 

throughout my time spent working on this project. 
Finally, I wish to acknowledge Ferranti Elect 

* 
ronics pic. for providing a CASE 

award and to the Science and Engineering Research Council for funding this 

project. 

-v- 



Table of Contents 
Chapter 1. Introduction . ................................................. I 
1.1 Perspective . ....................................................... 1 
1.2 History and Review . ....................... ......................... 3 
1.3 Objectives and Overview . ............................................. 6 
References . .......................................................... 7 

Chapter 2. Fundamental Basis For Numerical Modelling . ....... * ................. 11 

2.1 Poisson's Equation 
. ................................................ 11 

2.2 Current Continuity Equations 
. ......................................... 12 

2.3 Current Transport Equations 
. .......................................... 13 

2.4 Carrier Concentrations 
. ............................................. 20 

2.5 Heat Flow Equation 
. ................................................. 25 

2.6 Boundary and Interface Conditions 
. ..................................... 

25 

2.6.1 Boundary and Interface Conditions for Electrical Model 
. .................. 

28 

2.6.2 Boundary and Interface Conditions for Thermal Model 
. .................. 

31 

References 
. .......................................................... 32 

Chapter 3. Models for Physical Parameters and Device Attributes . ................ 34 
3.1 Carrier Mobility . ......................... .......... 35 

3.1.1 Phonon Scattering 
. ..................... ......................... 35 

3.1.2 Impurity Scattering 
. .................... ......................... 36 

3.1.3 Carrier-Carrier Scattering 
. ............... .......................... 43 

3.1.4 Velocity Saturation of Carriers . ............ ......................... 45 

3.2 Intrinsic Carrier Concentration. * .............. .......... I ............... 52 
3.3 Band-gap Narrowing . ............ :*.......... .......................... 52 

3.4 Carrier Recombination/Generation . ........... ......................... 56 

3.4.1 Shockley-Read-Hall Recorn bi nat ion/Ge ne ration . ........................... 
57 

3.4.2 Auger Recombination . .................. ......................... 59 

3.4.3 Carrier Lifetimes . ...................... .......................... 60 

3.5 Thermal Conductivity . ...................... .................... 65 

3.6 Heat Generation ........................... ......................... 67 

References . ................................ ......................... f, 8 

-vi - 



Chapter 4. Discretization Of The Governing Equations . ......................... 
72 

4.1 Discretization Of The Static Equations . .................................. 
73 

4.1.1 Cartesian Co-ordinates . .......................................... 
73 

4.1.1.1 Discretization of the Poisson Equation ...................... 
76 

4.1.1.2 Discretization of the Continuity Equations 
.................... 

78 

4.1.1.3 Discretization of the Heat Flow Equation . .................... 
88 

4.1.1.4 Discretization of the Boundary Conditions . ................... 
90 

4.1.2 Cylindrical Co-ordinates . ......................................... 98 

4.1.2.1 Discretization of the Poisson Equation . ...................... 
98 

4.1.2.2 Discretization of the Continuity Equations . ................... 99 

4.1.2.3 Discretization of the Heat Flow Equation . ................... 100 
4.2 Discretization of the Dynamic Equations 

. ............................... 
100 

4.3 Mesh Generation 
. ................................................. 

103 

References . ........................................................ 105 

Chapter 5. The Solution of Large Systems of Non-Linear Algebraic Equations Arising 
from the Semiconductor Problem . ...................................... 107 

5.1 Decoupled Solution Procedure . ................................... .. 109 
5.1.1 Initialisation Procedure . .................................... .... 
5.1.2 The Solution of Poisson's Equation . ................................ 
5.1.3 Solution of Electron Current Continuity Equation . ...................... 

114 

5.1.4 Solution of Hole Current Continuity Equation . ......................... 
1`16 

5.1.5 Solution of the Heat Flow Equation . .............................. . 117 

5.1.6 The Solution of Linear Systems Arising from the Decoupled Procedure . ..... M 

5.1.6.1 Successive Line Over-Relaxation (SLOR) . ................... 
120 

5.1.6.2 The Strongly Implicit Procedure (SIP) . ..................... 
122 

5.2 Coupled Solution Procedure . ........................................ 
132 

References . ...................................... ; ... **... *,, **,, *, * 139 

Chapter 6. Results . .................................................. 141 

6.1 An Investigation into the'Techniques for Improving the Curvature Related 

Breakdown Voltage of Diffused Junctions . ................................ 142 

6.1.1 Introduction . .................................................. 142 

6.1.2 Breakdown Voltage Modelling Considerations . ........................ 142 

6.1.3 Field Ring Considerations . ....................................... 150 

6.1.4 Results . ..................................................... 153 

6.1.5 Conclusion . .................................................. 156 

6.2 Design and Characterization of Bipolar Test Structures . .................... 156 

6.2.1 Mask Design . ................................................. 
156 

6.2.2 Device Processing . ............................................. 
162 

6.2.3 Device Characteristics and Comparison with Model . ................... 
167 

- vii - 



6.2.4 Summary . ................................................... 
171 

6.3 Optimization of Emitter Widths . ...................................... 
172 

6.3.1 Introduction . .................................................. 
172 

6.3.2 A Comparison of Analytical and Numerical Models for Emitter Pinch 
. ...... 

173 

6.3.3 Optimization of Emitter Width 
. .................................... 

177 

6.3.4 Conclusion 
. ................................................... 

188 

6.4 A Model for Inductive Switching using Bipolar Transistors 
. ................. 

jq0 

6.4.1 Introduction 
. ...................... ............................. 

190 

6.4.2 Coupling of the Numerical Model with the Collector Circuit Equation 
. ....... 

192 

6.4.3 Turn-Off of Transistors with Cylindrical Geometry 
. ..................... 

192 

6.4.4 Discussion 
. ................................................... 

207 

6.4.5 Conclusion 
. .................................................. 212 

6.5 Electro-thermal Interaction and Thermal Second Breakdown in Bipolar Transistors. 213 

6.5.1 Introduction 
. .................................................. 213 

6.5.2 A Non-Destructive Test Circuit for Pulsing Transistors into Thermal Second 

Breakdown 
. ..................................................... 215 

6.5.3 Experimental Results 
. ................... ....................... 

218 

6.5.4 Numerical Results 
. ............................................. 

222 

6.5.5 Comparison of Experimental and Numerical Results . ................... 
232 

6.5.6 The Consequences of Graded Collector Profiles on Thermal Breakdown. 
.... 

235 

6.5.7 Conclusion 
. .................................................. 

242 

References 
. ........................................................ 243 

Chapter 7. Conclusion . ................................................ 246 
7.1 Summary 

. ...................................................... 246 
7.2 Recommendations 

. ................................................ 249 
References . ......................................................... 252 

Appendix . ............................................. 253 

- viii - 



List of Illustrations 
Figure 1. A Bipolar Transistor Structure Illustrating Solution Domains and 

Boundaries ........................................... 27 

Figure 2. Mobility of Electrons due to Lattice Scattering in Silicon . ........ 37 

Figure 3. Mobility of Holes due to Lattice Scattering In Silicon . ........... 38 
Figure 4. Mobility of Electrons due to Lattice and Impurity Scattering in Silicon 41 

Figure 5. Mobility of Holes due to Lattice and Impurity Scattering In Silicon 42 

Figure 6. Mobility of Electrons due to Carrier-Carrier Scattering .......... 45 

Figure 7. Mobility of Holes due to Carrier-Carrier Scattering ............. 
46 

Figure 8. Mobility of Electrons and Holes Versus Electric Field ...... .... 
50 

Figure 9. Drift Velocities of Electrons and Holes Showing Velocity Sat, -ration 
51 

Figure 10. Intrinsic Carrier Concentration in Silicon from 300K to Melting Point. 53 

Figure 11. Band-gap Narrowing as a Function of Total Impurity Concentration 55 

Figure 12. Circuit and Voltage Waveform for Lifetime Measurement using the 

OCVD Technique 
. ...................................... 

63 

Figure 13. Thermal Conductivity of Silicon from 300K to Melting Point . ...... 
66 

Figure 14. A Typical Mesh 
. ....................................... 

75 

Figure 15. The Five Point Molecule 
................................ 

76 

Figure 16. The Growth Function 
................................... 

83 

Figure 17. The Growth Function 
................................... 

84 

Figure 18. Modulus of the bracketted term in equation (4.42) ............. 
85 

Figure 19. Illustration of Newton's Method 
. .......................... 

109 

Figure 20. Flow Diagram Illustrating Decoupled Solution Procedure . ...... 110 

Figure 21. Example of a Linear Systern Resulting from the Decoupled Solution 

Procedure . .......................................... 
119 

Figure 22. Lower and Upper Triangular Matrices for a4 by 6 Mesh . ....... 
124 

Figure 23. The LU Product . ...................................... 
125 

Figure 24. Mesh in Vicinity of Point ij . ............................. 
127 

Figure 25. Flow Diagram Illustrating Coupled Solution Procedure . ........ 
133 

Figure 26. Example of a Linear System Arising from the Coupled Solution 

Procedure . .......................................... 
137 

- ix - 



Figure 27. One-Dimensional Potential Profiles After Successive Iterations of 

the SIP . ............................................ 
143 

Figure 28. Diagram Illustrating the Technique used to Follow a Flux Line 

Passing Though Mesh Point lj 
. ........................... 

145 

Figure 29. Voltage Contours and Flux Lines for a Curved Junction at a Straight 

Mask Edge .......................................... 148 

Figure 30. Field Contours and Breakdown Locus for a Curved Junction at a 
Circular Mask Edge 

................................... 149 

Figure 31. Device with a Single Field Limiting Ring ................... 150 

Figure 32. Illustration of Technique to Located Field Ring Voltage 
. ........ 152 

Figure 33. Breakdown Voltage as a Function of Resurf Layer Doping 
. ...... 155 

Figure 34. Masks for Devices A and B.............................. 157 
Figure 35. Masks for Devices C and D.............................. 158 
Figure 36. Masks for Devices E and F.............................. 159 
Figure 37. Vertical View of Single Emitter Finger Metalization 

. ........... 160 
Figure 38. Output Characteristics 

................................. 168 
Figure 39. Base and Collector Currents as a Function of Base-Emitter Voltage 

for Device C ....................... ................. 170 
Figure 40. A Comparison of Models for Emitter Pinch 

.................. 175 
Figure 41. A Comparison of Models for Emitter Pinch .................. 176 
Figure 42. One Dimensional Electric Field Profiles at Various Current 

Densities 
........................................... 180 

Figure 43. Current Flow Profiles Just Prior To Breakdown for Various Emitter 

Widths 
............................................. 181 

Figure 44. Current Densities Along Emitter-Base, Base-Collector and 
Collector-Substrate Junctions 

............................ 182 
Figure 45. Electric Field Profiles Just Prior to Breakdown 

............... 183 
Figure 46. Average Collector Current against Emitter Width . ............. 185 
Figure 47. Safe Operating Areas for Different Emitter Widths ............ 187 
Figure 48. Safe Operating Areas for Different Emitter Widths on a Logarithmic 

Axis ............................................... 188 
Figure 49. Variation of Current Gain and Base-Emitter Voltage with Collector 

Current for Various Emitter Widths ........................ 189 

Figure 50. An Inductive Collector Load with a Free-Wheeling Diode 
. ...... 191 

Figure 51. Flow Diagram of Coupling Procedure 
. ..................... 193 

Figure 52. Voltage and Current Transients During Switch-Off . ............ 195 

Figure 53. A Schematic of the Collector Load Line .................... 196 

Figure 54. Hole Concentration Profiles at Various Times During Switch-Off 197 

Figure 55. Hole Concentration Profiles at Various Times During Switch-Off. 198 

-x- 



Figure 56. Vertical Electron Current Densities at Emitter-Base, Base-Collector 

and Collector-Substrate Junctions During Switch-Off .......... 199 
Figure 57. Electron Current Density Profiles Showing Divergence ......... 200 
Figure 58. Variation of Electric Fields During Turn-Off for Circular Emitter 

Structure . ........................................... 203 
Figure 59. Electric Field Profiles at Various Times During Turn-Off . ....... 204 
Figure 60. Electric Field Profiles at Various Times During Turn-Off . ....... 205 
Figure 61. Variation of Electric Fields During Turn-Off for Ring Emitter 

Structure . ........................................... 207 
Figure 62. Electric Field Profiles at Various Times Before the Emitter-Base 

Junction Has Recovered . ............................... 208 
Figure 63. Vertical Current Densities at Various Times Before the 

Emitter-Base Junction Has Recovered . ..................... 209 
Figure 64. Estimated RBSOA for Circular and Ring Emitter Devices . ....... 211 
Figure 65. Non-Destructive Test Circuit for Investigating Thermal Second 

Breakdown . ......................................... 216 
Figure 66. Base Current Waveforms During the Delay Time to Breakdown 219 
Figure 67. Emitter Current Waveforms During the Delay Time to Breakdown 221 
Figure 68. Base Current Waveforms for Graded Collector Profiles ........ 222 
Figure 69. Computed and Experimental Base Current Waveforms ......... 224 
Figure 70. Temperature Profiles at Various Times Before Breakdown. . .... 225 
Figure 71. Temperature Profiles at Various Times Before Breakdown . ..... 226 
Figure 72. Contour Maps of Hole Concentration at Various Times Before 

Breakdown .......................................... 228 
Figure 73. Contour Maps of Hole Concentration at Various Times Before 

Breakdown 
.......................................... 229 

Figure 74. Electric Field Profiles Prior To Breakdown . ................. 230 
Figure 75. Variation of Peak Temperature and Peak Field due to Self-Heating 232 
Figure 76. Vertical Electron Current Densities for the Ring Emitter Structure 233 
Figure 77. Base Current Waveforms for Graded Collector Profile ......... 236 
Figure 78. Variation of Peak Temperature and Peak Field for Uniform and 

Graded Collector Profiles . ............................... 237 
Figure 79. Field Profiles Prior to Breakdown for the Graded Collector ..... 238 
Figure 80. Vertical Electron Current Densities Prior to Breakdown for the 

Graded Collector . ..................................... 239 
Figure 81. Temperature Profiles Prior to Breakdown for the Graded Collector. 240 
Figure 82. Contour Maps of Hole Concentration Prior to Breakdown for the 

Graded Collector ..................................... 241 

-A- 



List of Tables 

Table 1. Lattice Mobility Constants . ............................... 
36 

Table 2. Constants for Mobility due to Impurity Scattering . .............. 
39 

Table 3. Constants for Mobility due to Combined Effects of Lattice and 

Impurity Scattering . ..................................... 
40 

Table 4. Parameters in Equation (3.14) for Effects of Velocity Saturation of 

Carriers on Mobility . .................................... 
48 

Table 5. Lifetime - -- , Constants . ............................... 
61 

Table 6. Specific Heat and Density of Silicon and Mild Steel . ............ 
67 

Table 7. Estimated (Old) and Measured/Calculated (New) Parameters . .... 169 

- xii - 



Chapter 1. Introduction. 

1.1 Perspective. 

The rapid growth of the modern electronics industry was initiated in 1947 

with the invention of the point contact bipolar transistor The second major 
breakthrough was made in 1960 when the first fully operational MOST was 
demonstrated [1.2]. Soon after this the first integrated circuit became 

commercially available and rapid advancement has continued so that by today 

silicon chips are being manufactured which contain over 400,000 devices. As 
devices have become smaller and more complex there has been a continual need 
to up-date and improve the models used to represent their structure and 

operation. Accurate device modelling provides the foundation for the entire 

semiconductor industry since it is the only way that the device designer can study 
the detailed internal operation of particular device. In the early classical models 
for device operation the device was sectioned into various regions, each being 

treated as a separate entity. These closed form solutions were then matched at the 

boundaries of the various regions to provide a global solution. Using this 

procedure it was often necessary to make rather inaccurate assumptions, both 

within the regions and at their boundaries. Moreover, these models were usually 

only applicable in one dimension only, with other dimensions often being taken 

into account by making use of an over simplified distributed one dimensional 

model. 
The use of modern numerical modelling techniques largely overcomes the 

problems associated with classical approaches. Numerical methods, like classical 

ones, also require that the device be segmented into separate regions, however, 

in this instance a self-consistent global solution is obtained, which satisfies each 

individual region. The solutions are 'automatically' matched at the boundaries 

between the regions, which are usually made very much smaller than the device 

dimensions. This allows for very precise evaluation of device operation. The 

requirement for such a large number of regions imposes an extremely large 

computational problem and as such numerical solution techniques have only 
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become feasible in the last 20 years or so, with the advent of powerful mainframe 

computers. 
Power conversion and control provided the very first use for semiconductor 

devices with applications in digital electronics being realised at a later date. By 

today a plethora of different types of power devices exist, which use quite different 

operating principles. At present one specific type of device cannot be singled out 

as giving a better performance over all the others across the entire power 

spectrum which ranges up to 10KV and 5000A. Rather, each particular device has 

its own advantages and disadvantages in each particular operating region. Power 

thyristors are at present the only devices that are capable of withstanding the 

extremely high blocking voltages and conduction currents, but they are only able 
to achieve this at the cost of speed. The Gate Turn-Off thyristor (GTO), finds its 

application in the slightly lower voltage range, le. 1000-2000V and is able to handle 

currents of up to 1000A. The power bipolar (BJT) and Darlington transistors are 
most appropriate between about 250 and 800V up to a maximum current rating of 
1000A. The more recent power MOS devices will find use in high frequency 

applications up to 1000V and 100A. The reason for such a low current limit is that 
these devices suffer from high on-resistance losses since they do not make use 
of any conductivity modulation effect. However, this very fact means that they are 
able to operate at ultra high frequencies (> 50OMHz). Even more recently the 
invention of the Insulated Gate Transistor (IGT) [1.3] has put the use of 
conventional bipolar transistors under serious threat. These devices require very 
little gate drive power and can be driven from low cost integrated electronics, 
making them extremely attractive indeed. The problem of very high input power 
dissipation that exists with the bipolar transistor has been alleviated somewhat by 

the use of the Darlington configuration [1.4], but it is still unable to compete with 
the IGT in this respect. A number of disadvantages do, however, exist with the IGT 

the most important being the difficulty of achieving rapid removal of stored charge 

and the diode voltage drop, which is inherent between source and drain. 

Nevertheless it has been predicted by some that the power bipolar transistor is 

likely to be superseded by power MOS devices in the near future [1.51. This 

prediction was based on a comparison between IGT's fabricated using modern 
techniques and conventional bipolar designs. However, a number of bipolar 

geometries have recently come to light (1.6], [1.7], which have been reported to 

give extremely impressive operating characteristics. They have been fabricated 

using Power MOS technology and consist of multiple cellular type emitters. These 

devices have been reported to be exceptionally fast with the ability to handle very 

high power. Thus, it would seem fairer to compare this new class of bipolar 

devices against the IGT, since both use the same state of the art technology. It is 
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expected that these devices will compare rnuch more favourably with tile IGT, and 
it may well mean that the BJT will maintain its position in the market for many 
years to come. 

1.2 History and Review. 

The first devices to exhibit any significant power handling were 
dernonstrated by Hall in 1952 [1.8]. These were rectifiers formed from germanium 

mesa alloy junctions and had blocking voltages of 200V and forward current rating 

of 35A. In the mid 1950's single crystal silicon became available and the larger 
bandgap of silicon compared with germanium meant a considerable improvement 

in performance. By the late 1950's diffused junctions were being combined with 

mesa etching in order to improve voltage blocking capabilities. By 1964 this 

technique was realising breakdown voltages of up to 2KV [1.9]. The first 

commercially available transistors were manufactured by Texas Instruments in 

1954 [1.10] and yet it was not until a decade after this that applications to high 

power handling began. However, development has been so rapid that by today 

thyristors are available with current ratings of 6000A and blocking voltages of 
400OV. The development of the power transistor accelerated in the 1960's with the 

introduction of the planar process by Fairchild [1.11] and the use of 

photolithography techniques for accurate device definition. The introduction of the 

epitaxial process [1.12] also proved to be vital. A great deal of effort has since 
been made to optimise designs in order to relax the trade-off that exists between 

power capability and speed. 
By the early 1980's the state of the art was represented by by extremely 

large power transistors with diameters of 38mm that were capable 
' 
of delivering a 

continuous collector current of 200A with a collector-emitter open base breakdown 

voltage (13VCEO) of 850V [1.13). These transistors were able to conduct a collector 

current of IOOA with a hFE of 8 at a collector emitter saturation voltage of 2V. The 

use of Darlington configured transistors was found to increase the hFE by an order 

of magnitude [1.14], but resulted in a slower device as stored charge is not as 

easily removed. The power transistor is continuing to evolve so rapidly that these 

transistors are already beginning to be replaced by an exciting new type of 

transistor which is the result of a totally different design methodology. Rather than 

using very few emitters with large areas as was the case until very recently the 

current trend is towards using many fine emitters in a single device [1.151. The 

development of such fine structures has been made possible by the use of modern 

MOS processing techniques [1.16]. The advantages of such designs are that stored 
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charge can be removed more readily and the detrimental effects of emitter current 
crowding are reduced as for both cases lateral base resistances are low. Such a 
design has been reported to have very impressive characteristics indeed [1.15]. 
A typical device was able to switch 50A through an inductive load with a supply 
voltage up to 1000V. The turn-off time for such an arrangement consisted of a 
storage time of only 21ts and a MOSFET like fall time of 30ns. 

Numerical device modelling has evolved over a similar time span as the 
transistor itself. Since this type of modelling is heavily dependent on computing 
power this fact is perhaps not too surprising. Details of the first truly numerical 
model were published by Gummel in 1964 [1.17]. In this paper he presented a one 
dimensional steady state model for a bipolar transistor, which for the first time 
used a single algorithm to simulate the entire device as opposed to a particular 
region within the device. This approach was extended by DeMari (1.18] [1.19], who 
used it to model steady state and transient operation of single p-n junctions. In 
1969 Scharfetter and Gummel described a model for a silicon Read diode oscillator 
[1.20]. In this paper they presented a novel treatment of the current transport 
equations, which has since proven to be of utmost importance and has been 
incorporated in all subsequent models of note. 

Owing to the limited computer resources that were available in the 1960's 
these first simulations had to be restricted to one dimension only. Some of the first 
bipolar transistor simulations in which two dimensions were taken into account 
were by Slotboom [1.21] and Heimeier [1.22]. During the 1970's and 80's a vast 
amount of literature has become available on the subject, covering all tile 
important types of MOS and junction devices. For an extensive review of such 
literature the reader Is referred to [1.23]. As far as power BJT's are concerned one 
of the first notable papers was by Manck et al. [1.24] in which a two dimensional 
simulation of high injection effects was presented. In order to model these effects 
it was necessary to use a different solution procedure to that proposed by Gummel 
in 1964, and which had been used in all previous models. This technique has also 
proven to be absolutely vital for modelling power devices and has since been 

widely employed. In a subsequent paper [1.25] Manck and Engl extended their 
model to include transient capability in order to simulate turn-off dynamics in 
lateral BJT's. In 1976 Gaur et al. [1.26] described a two dimensional steady state 
model capable of modelling non-isothermal phenomena. This model represents a 
primitive version of the model which forms a major part of this project. For the first 
time a numerical model was used to investigate electrical and thermal interaction 
due to self-heating. This model was later extended to cater for transient 

electro-thermal effects (1.27). 
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In 1978 Turgeon and Navon [1.28] published details of a transient numerical 
transistor model which was coupled with external base and collector circuit 

equations consisting of resistors and inductors. This allowed device operation to 
be evaluated for a specific requirement and in particular for switching inductive 
loads. An extremely well developed model was presented by Gaur [1.29] in 1977. 
Many of the effects which are important in characterising power BJT's were 
accounted for, including avalanche generation, high injection effects and 
self-heating. 

In 1983 an extension for modelling devices with cylindrical symmetry was 
described [1.30], which has also implemented here. Modelling with cylindrical 
co-ordinates requires very little extra computational effort over modelling with 
cartesian co-ordinates and yet it avoids the need to make 2-D approximations, 
which often leads to significant inaccuracies. In 1986 a 2-D model was used to 

predict the onset of current mode second breakdown during switch-off with 
inductive loads [1.31]. The use of numerical modelling provided the necessary 
accuracy to simulate the detailed two dimensional current flow, which was 
essential in locating the precise point at which the device was expected to enter 
breakdown. Recently a similar analysis was reported [1.32], but this time the 
benefits to gained from altering the emitter structure were also considered. 

As device dimensions have continued to fall the validity of the 2-D 

approximation has become subject to Increasing uncertainty. Unfortunately tile 
full 3-D analysis remains a considerable computational problem even for the most 
powerful modern day computers. As a result of this very few 3-D simulators have 
been developed and those that have been reported have to be run on extremely 
fast super-computers to keep run times down to an acceptable level [1.33] [1.34]. 

Numerical models have also been extensively used to model avalanche 
breakdown In reverse biased p-n junctions. These models are often called 
'off-state' models as they do not incorporate the effects of current flow and as such 
are significantly easier to solve. They are, however, extremely useful for providing 
optimised data on the various field relief schemes that are used to protect 
junctions against premature breakdown. The first such model was reported in 1975 
by Temple and Adler [1.35]. They considered the curvature related breakdown in 

single unprotected planar diffused junctions. Since then off-state models have 
been used to investigate most of the techniques for improving breakdown voltage 
such as - single field limiting rings [1.36], multiple ring systems [1.37], field plates 
[1.38], 'resurf' layers [1.39], depletion etch techniques [1.40], p-7r-v structures 
[1.411, positive angle bevelling [1.42] and negative angle bevelling [1.43]. Such an 

off-state model has been developed as part of this project [1.39] and close 

agreement has been obtained between predicted and actual breakdown values. A 
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number of other authors have also reported close agreement between computed 
and experimental results eg. [1.371 and [1.40], certifying the excellent accuracy of 
these models. 

Numerical modelling has developed into a well established disciplin and is 

now widely utilised. A number of text books have become available which cover 
many aspects of this wide ranging subject [1.23] [1.44] [1.45]. The book by 
Selberherr [1.23] is extremely helpful and essential for anyone wishing to know 

more about numerical modelling. Two major conferences specifically concerned 
with numerical process and device simulation are now held bi-annually [1.46] 
[1.47] to cater for the interest that now surrounds the subject. In addition, a number 
of general modelling programs are commercially available, which can be tailored 
to suit a particular requirement, such as SEDAN [1.481 and BIPOLE (1.49] for I-D 
simulations and BAMBI [1.50] for 2-D. 

1.3 Objectives and Overview. 

The primary aim of this project was to provide the University of Liverpool 
with a computer model which could accurately reflect the internal physical 
operation of discrete silicon devices in general. The intention being that the model 
could be applied to junction type devices eg. diodes, BJT's, thyrisors, as well as 
MOS devices and also to the more recent combined junction and MOS devices 
such as MIXFET's and COMFET's. It was necessary to use numerical methods to 
provide the sufficient degree of generality required to simulate such a diverse 
range of devices. These methods can be used to solve the universal set of 
equations that define the operation of all semiconductor devices, making thern 
extremely versatile indeed. Such a solution can be obtained without having to 
make any initial over-riding assumptions and yet can yield knowledge of internal 

voltage and temperature profiles, carrier distributions and current flow in the most 
minute detail. A small amount of numerical modelling had already been carried 
out at Liverpool prior to the commencement of this project [1.51] and, as such, this 
work represents an extension to an existing model. However, a great many 
additions and improvements have been made, which largely outweigh the original 
work and, thus, for the sake of completeness the model will be described here in 
its entirety. 

An additional objective of this project was to design a set of masks for the 
fabrication of several different power b1polar transistor structures. A number of 
circular and interdigitated structures have been subsequently designed, which 
were fabricated at the Southampton University Microfabrication Centre. For this 

-6- 



project the numerical model has been used almost exclusively to investigate the 

behaviour and to characterise these devices, and has not been used to model 

MOS type devices. 

Approximately two years elapsed between completion of the mask design 

and the final fabrication stage, during which tirne the bulk of the numerical model 

was being developed. Since these two tasks continued very much in parallel it was 

extremely difficult to obtain optimised design criteria with the aid of the model 

prior to device fabrication. However, a number of early results did provide 

optimum data in sufficient time for it to be included in the processing schedule. 
This data was concerned with the use of 'resurf layers' to Improve the breakdown 

voltage of the base-collector junction, which has since proven to be extremely 

effective. 
The description of this project is split into a number of major chapters, with 

each one covering a quite separate and distinct item from the next. The order in 

which the chapters appear represents the natural progression in the development 

of the numerical model. In the following chapter a description of the fundamental 

semiconductor equations will be presented together with the approximations 

made in their derivation. In chapter 3 the empirical models that have t'-(-, n cI--_). -RPn 
to represent the physical parameters, which are important in quantifying device 

operation will be presented. The derivation of the discrete forms of tile 

fundamental semiconductor equations is described in chapter 4. This is the stage 
that converts the continuous problem into a discrete one. Chapter 5 gives an 

account of the various techniques that have been employed to solve the discrete 

problem. Numerical and experimental results are discussed and compared in 

chapter 6. This chapter is divided into several sub-sections covering the separate 

studies that have been undertaken as part of the overall project, and finally chapter 
7 presents the conclusions drawn from this work. 
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Chapter 2. Fundamental Basis For Numerical 

Modelling. 

In this chapter a mathematical model, describing the operation of 

semiconductors in general, will be presented. In subsequent chapters a solution 
to the equations that constitute this model will be sought using numerical 
techniques. These equations are often called the basic semiconductor equations 

and they can be derived from Maxwell's equations together with several relations 
from solid state physics. 

2.1 Poisson's Equation. 

Poisson's equation may be derived from Maxwell's third equation, which 

reads: 

div 5= (2.1) 

where 5 is the electric flux density vector and p is the electric charge density. For 

semiconductor problems it is usual to represent 5 In terms of the electric field, ý 

as follows: 

tE (2.2) 

where P, is the permittivity. This relation is valid if the permittivity is considered to 

be time invarient, which is an excellent approximation. It is desirable to introduce 

the electrostatic potential, 0 in place of the electric field. This may be achieved by 

setting Maxwell's second equation to zero, which assumes a 'curl' free electric 

field. 

curl E at 
(2.3) 
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where 
9 is the magnetic flux density vector. If the 'curl' of a vector function is zero 

then it can be represented as the gradient of a scalar function. In this case, 
therefore, the electric field may be given by: 

E grad 1// (2.4) 

Substituting this equation into (2.2) and then the result into (2.11) gives: 

div (r grad qj) =-p (2.5) 

For the purpose of this work the permittivity, t has been taken to be a scalar 
quantity. More precisely though, the permittivity is a tensor of rank two. However, 

all devices being considered here are assumed to have been fabricated frorn 

single crystal silicon, which is not expected to exhibit a significantly anisotropic 
permittivity. The abrupt change in permittivity at the interfaces between different 

material layers eg. at an SI-S'02 interface, will be treated using Gauss' law of flux 

continuity as discussed later. In semiconductors the space charge density, p is the 

product of the elementary charge, q and the sum of the various static and mobile 
charge concentrations. 

q(ND-NA+p-n) (2.6) 

where ND and NA are the magnitudes of the ionized donor and acceptor 
concentrations, whic h are positively and negatively charged, respectively. The 

magnitudes of the mobile carrier concentrations are represented by p and n, 
which are the positively charged holes and negatively charged electrons, 
respectively. Equation (2.6) is purely a subs titution and no approximations have 
been required for its derivation, however, a number of assumptions-are necessary 
in calculating the different charge concentrations. 

2.2 Current Continuity Equations. 

These equations may be derived frorn Maxwell's first equation, which 
states: 

+ 49D curl H at (2.7) 

where fi is the magnetic field strength vector and 
Y denotes the conduction 

current density. Applying the 'div' operator to both sides of this equation and 
remembering that 'div curl' applied to any vector is always zero. 
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div curl H= div + div 0 (2.8) 
at 

The last term in this equation can be rewritten by using (2.1) as follows. 

OD a ap 
div T= -(divD) t 

(2.9) 
t (I ta 

The donor and acceptor concentrations in (2.6) are assumed not to vary 
with time and, therefore, any impurities that may become electrically active with 
time, due to temperature fluctuations, for example will be ignored. In addition the 

current density term, 1 in (23) can be split into two separate components, one due 

to electron flow, 1, and another due to tile flow of holes, JP. On the basis of these 

considerations equation (2.8) becomes: 

div (in + 1p) +q -L (p - n) =0 (2.10) 
at 

This equation states that the time rate of change of charge at a point is 
dependent or the difference between the inward and tke outward current flowing 

through that point, as would be expected from physicai reasoning. Equation (2.10) 

may be split into two separate continuity equations to allow for a distinct treatment 

of electrons and holes, by Including a quantity, R, which gives: 

an divJn at qR (2.11) 

lop divJp +q at 

The quantity, R is a function which describes the net recombination and 

generation of electrons and holes. By its definition a positive value for R implies 

a net recombination of carriers with a corresponding reduction in their 

concentrations. Conversely, a negative value for R implies a net generation of 

electrons and holes. An entirely independent model for R must exist if (2.11) and 
(2.12) can really be considered as two separate equations. Such a model can be 

derived from a knowledge of statistical and solid state theories as will be shown 
in chapter 3. 

2.3 Current Transport Equations. 

A large number of physical and mathematical concepts must be called upon 
for the derivation of the current transport equations. A great deal of literature 
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exists which covers this matter in great depth, so rather than repeat much of this 

a brief account will be presented here, with a number of references to more 
detailed studies where appropriate. 

In general the electron and hole current densities may be written as the 

product of the electron or hole concentrations, their velocities, or ;,, and the 

elementary charge they carry. 

Jn -q n (2.13) 

lp 
qp ;p (2.14) 

The difficulties arise in relating the average carrier velocities to the electric 
field, temperature, T and carrier concentrations. This relation may be found, 

however, by means of a distribution function, f, where c is used to represent n for 

electrons or p for holes. This is a function of phase space, which is the space of 

spatial co-ordinates ;t=A+ yj + A, momentum co-ordinates 
ý= kxI + kyj + kzk 

and time, t. Here, 1, j and k are conventional unit orthogonal vectors. Phase space 

consists, therefore, of seven dimensions. The number of particles in a small 

, 
(;, Wj) is the constant of element of phase space is proportional to dW. dý and f, 

proportionality, which may be described as the probable density of particles in 

phase space. The density of particles in space must include all values of 

momentum so that [2.1]: 

fc(;, W, t). dW 

The corresponding current density being given by: 

c 
_q - 

W. fc(;, W, t). dW =qc ;c (2.16) 
Vk 

where m* is the effective mass, assumed to be independent of energy and C 
direction and the integration has been performed over the entire momentum 

volume Vk. The Liouville theorem states that the time derivative of the distribution 

function along a particle trajectory, ýQ). W(t) is zero, which results from the need 
to conserve the number of states [2.2]. 
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d 
-T, f"(; ý(o, W,; (t), t) =o (2.17) 

If this derivative is expanded then the implicit form of the Boltzmann 

transport equation is obtained. 

afc 
+ gradkfc 

dkc 
+ grad, tc. - 

dxc 
=0 (2.18) 

at - dt dt 

In this equation ' gradk ' and 'grad, ' are the gradient operators with respect 
to the W and ; co-ordinates respectively. This equation describes the variation of 
the distribution function with time due to the movement of particles in spatial and 

momentum space. The derivative of rnomentum with respect to time equals the 

sum of all the forces, 9C 
acting on the particles, and the time derivative of ý gives 

the group velocity, ýc. 

dkc 
dt 

(2.19) 

dxc 
dt uc (2.20) 

The force, 9. may be divided into forces due to external macroscopic fields, 

F., and internal localised forces, Fj, which arise from collisions with impurities 

and defects. Carriers can also lose energy to thermal lattice vibrations (phonons) 

[2.3]. The explicit form of the Boltzmann transport equation may now be written. 

afc + ýc 
at ,. gradkfc + ýc. gradxfc 

gci. 
gradkfc (2.21) 

The laws of dynamics cannot be used to calculate the effects of the internal 

forces, 9ci on the distribution function and statistical laws have, therefore, to be 

applied. This would make the Boltzmann transport equation amenable to a solution 
by Monte Carlo methods [2.4], [2.5], whereby the motion of one or more carriers 
is simulated at a microscopic level. Unfortunately this method requires excessive 

amounts of computation, making it rather impractical for general application. 
However, the scattering term on the right hand side of (2.21) may be approximated 
by supposing that if all external forces are suddenly turned off, giving: 

Fc,. gradkfc + ýc. grad, fc =0 (2.22) 
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The distribution function will then return to its equilibrium value due to 

changes in momentum brought about by collisions, which scatter tile carriers. This 

process can be represented by: 

af, fc - fc 0 (2.23) at TC 

where fco is the distribution function in equilibrium and Tc is time taken to return 
to equilibrium and is called the relaxation time, which is typically less than a 

picosecond. The Boltzmann equation may now be written as follows. 

afc 
+ gce. 

gradkfc + ý,. grad, f, 
fc - fc 0 (2.24) at TC 

A number of implicit assumptions have been made in arriving at this 
equation, the most important of these being: 

All scattering processes are assumed to be elastic and the scattering 
probability is independent of external forces. 

Carrier-carrier interaction has been neglected. This would affect the scattering 
term on the right hand side of (2.24). 

All collisions are assumed to be instantaneous so that the duration of a 
collision is much shorter than the average time between collisions. 

External forces are virtually constant over a distance which is comparable to 
the physical dimensions of the wave packet associated with carrier motion. 

9 All effects of degeneracy have been neglected in obtaining the right hand side 
of (2.24) 

The current transport equations may now be obtained by multiplying 
throughout by the random particle velocity, ý, and integrating over the entire 
momentum space. 

a- 
at 

ýc. fc. dW+ 9c ý,. grad e kfc. dW 
Vk Vk 

Oc-(Oc. grad., fc). dW 1f Oc. (fc - fcý)AW 

(2.25) 

TC 

vk Vk 



Considering each term in sequence, from (2.16), 

(2.26) f,. d7( 

The second integral can be integrated by parts, using the following relation. 

1 gradkfc. dW = -i fc. dW (2.27) 
vk V, 

The Integral, therefore, becomes: 

ýc. gradkfc. d c* (2.28) 

V, 
Mc 

The solution to the third integral is not quite as straightforward. Since 

u,. u. Is a scalar and gradx is independent of k space then grad, can be placed 
before the integral. The treatment then continues by considering an ideal gas in 

thermal equilibrium. Since it is known that there is a thermal energy of 112kT per 
degree of freedom of motion, then in three dimensions the thermodynamic 

temperature is obtained by equating the random kinetic energy and the thermal 

energy. 

3kT 
< (mclc - mclc). (M*. 6c - M*.; c)12m* > (2.29) 

2-ccc 

where <> Implies an average value for all particles. In semiconductors the 

average drift velocity, ;, is usually much smaller than the random velocity, uc and 

can be ignored. By approximating Tc to be the carrier temperature in terms of the 

total energy the third integral can then be defined as follows [2.3]. 

grad, ý,. Oc. fc. d gradx(c k Tj 

V, 
mc 

The integral on the right hand side of (2.25) can be split as follows. 

(2.30) 
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Vk 

ýc. fc. d 
- 

fv, 
ýc. fco*d (2.31) 

The equilibrium distribution has zero mean velocity and so the second 
integral is zero. The first Integral is given by (2.26). 

It is assumed, here, that tile external forces, ke 
are entirely due to an 

electric field, ic, 
so that any Lorentz forces due to magnetic induction are 

neglected, which is also required for the validity of (2.26). 

F, e =-q En, Fpe =q Ep (2.32) 

By substituting for the Integrals in (2.25) the following differential equations 
for the drift velocities of electrons and holes are obtained. 

(n ýn) +qni, + grad(n k Tn) =_T 
ýn 

(2.1 : 3) 
at mn Mn n 

a- (p ; P) - --2-* pip + grad(p k Tp) =-p 
VP 

(2.34) 
at mm 

TP 

An approximate solution to these equations can be calculated by firstly 

defining the effective carrier mobilities, thus: 

'un =q (2.35) 
Mn 

It = 
qT p 

(2.36) 
MP 

Equations (2.33) and (2.34) can now be rewritten by using (2.35) and (2.36) 

and remembering (2.13) and (2.14). 

OJn 
n at + J,, =qp, n E, +k Pn grad(n Tn) (2.37) 

aip 
,p at 4- Jp =q pp p Ep -k pp grad(p Tp) (2.38) 

Since the relaxation times are so small it is usual to Ignore the first term in 

these equations. They are then accurate to the first order in the relaxation times. 
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From this point it will be assumed that the electron and hole temperatures are 

equal and that they are In thermal equilibrium with the crystal lattice. Thus, Tn and 
Tp will both be represented by T. The Einstein relations are valid under these 

conditions, and they are given by: 

DR kT (2.39) - 1-n q 

kT (2.40) Dp - "'P q 

where Dn and DP are the diffusion coefficients. The required forms of the current 
transport equations can now be obtained by expanding the grad operator in 

equations (2.37) and (2.38). 

T Jn =9 I-In n E, +q Dn grad n+qn Dn grad T (2.41) 

Jp =q pp p Ep -q Dp grad p-qp DpT grad T (2.42) 

where DT are the thermal diffusion coefficients, which a. a equal to DclT. In addition C 
to the well known drift and diffusion terms, extra terms are included in (2.41) and 
(2.42) which describe the motion of carriers due to temperature gradients. A 

number of assumptions have been made in arriving at these equations, the most 
Important of which are as follows. 

0 The effects of degeneracy have been neglected in obtaining the scattering 
term due to internal forces. 

0 All collisions have been assumed to be elastic, and thus, polar optical phonon 

scattering which is important in GaAs is neglected. 

Spatial variations of collision time and band structure have been ignored, so 
that a slowly varying impurity concentration over a carrier mean free path is 

presumed. 

Carrier temperatures have been assumed to be equal to the lattice 

temperature, which means that the motion of 'hot' carriers [2.6] is incorrectly 
described. These are particles with energies that are well away from the band 

edges, and consequently are not in thermal equilibrium with the lattice. 

0 The Lorentz force due to magnetic induction has been omitted from tile term 
describing the external forces. 
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The energy bands are assumed to be parabolic, which also means that 

degeneracy effects cannot be accounted for. 

The first order current terms in (2.37) and (2.38) have been neglected, which 

means that time dependent conductivity phenomena such as velocity 

overshoot cannot be considered. 

The effects of the various boundaries of a device on the distribution function 
has been ignored and the semiconductor has been assumed to be infinitely 

large. The distribution function is considerably different at its boundaries eg. 

S'-S'02 interface [2.71. 

This derivation has been presented primarily to illustrate the 

approximations that have to be made in obtaining the current transport equations. 
Their subsequent use then being restricted to applications where these 

approximations are valid. As such, this only represents a brief treatment of the 

Boltzmann equation, however, several texts are available in which much more 

rigorous procedures are presented eg. [2.8] and [2.91. 

A more precise perturbation solution of the Boltmann equation has been 

performed by Stratton [2.10] in which he showed that for the case where lattice or 

phonon scattering is the dominant process the thermal diffusion coefficient is 

exactly half the value obtained here. Since then, however, it has been shown that 

DT is a sensitive function of impurity scattering [2.11], and the factor of a half can C 
disappear if impurities are present. However, it will be seen that for all devices 

considered here that the greatest temperature gradients exist in the low doped 

collector regions where impurity scattering is negligible, and so the halving factor 

has been included ie. DT = Dc/(2T). C 

2.4 Carrier Concentrations. 

Accurate models for the electron and hole concentrations are of extreme 
importance if close qualitative and quantitative agreement is to be obtained with 

practice. Such models are well established and may be obtained by integrating the 

product of the density of states, p(E) and the distribution functions, f(E) across the 

respective energy bands. 

p, (E) fn(E) dE (2.43) 
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pf pv(E) fp(E) dE (2.44) 
Ebot 

where Ec is the lowest energy in the conduction band, Ev is the highest energy in 
the valence band, and Etp and Eb,, t are the energy levels at the top of the 

conduction band and the bottom of the valence band respectively. The density of 
available states in the conduction and valence bands are given by [2.12]: 

pc(E) =4 
7t (2m, ) S/2 

VIE - Ec (2.45) 
h3 

4 7r (2m P)3/2 
pv(E) =-h3 ýEv 

-E (2.46) 

where h is Planck's constant, and mn and rnp are the density of states effective 

masses of electrons and holes, respectively. The distribution functions can be 

obtained from statistical analysis and are given by the Fermi-Dirac functions. 

fn(E) =-1EE (2.47) 
1+ exp 

(k) 

f,,, (E) = 
I (2.48) 

rp - 
+ exp( 

EkTE 

Ef. and Efp are the Fermi levels for electrons and holes. Carrying out the integration 

results in: 

n= Nc 2 Fl 12 
Efn - Ec 

(2.49) kT 
%F7E 

Nv 2 F- 12 
Ev -E lp ) (2.50) jjr '(kT 

where N. and Nv denote the effective density of states in the conduction and 
valence bands, respectively and are given by: 

Nc =2 
2nkTmn )3/2 

(2.51) 
h2 
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Nv =2(2 
7r kT mp )3/2 

(2.52) 
h2 

and F, 12(X) is the Fermi integral of order 1/2, which does not have an analytical 

solution. 

F, �(x) ý 
jy- 

-, dy (2.53) 
fo c*, 

1+ exp(y - X) - 

For non-degenerate semiconductors, however, the Fermi integral does 

have an asyrntotic analytical solution. 

F, 12(X) ý-- - exp x, X<<-l (2.54) 
2 

This is an excellent approximation provided the Fermi levels do not 

encroach any closer than about 3kT from the conduction and valence band edges, 

and it is consistent with approximations made in the derivation of the current 
transport equations. The electron and hole concentrations now read: 

n=N. exp 
Efn -Ec (2.55) 

kT 
) 

p=N, exp 
Ev -E 'p (2.56) 

( 
kT 

Although non-degenerate statistics have been applied, the combined 

effects of degeneracy and bandgap narrowing can be incorporated into the model 
by splitting the band edges into two parts. 

Ec = Eco - bEc (2.57) 

Ev = Evo + 6Ev (2.58) 

where Eco and Evo denote the band edges for a pure or intrinsic semiconductor, 

and 6E. and bEv describe rigid shifts of the band edges due to the influence of 
dopants. 

In order to obtain more suitable forms for n and p it is necessary to 

introduce some physical considerations concerning Intrinsic semiconductors. 
These are undoped semiconductors in which the electron and hole concentrations 

are equal and their concentration is called the intrinsic carrier concentration, ni. 
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n=p=n, (T) (2.59) 

The mass action law, which is valid for both intrinsic and extrinsic 

semiconductors under thermal equilibrium is given by: 

np=n, (T) 2 (2.60) 

An expression for n, can be obtained setting Efn = Efp = E,, the Fermi level 

in an intrinsic semiconductor, and then inserting (2.55) and (2.56) into (2.60). 

n, (7) = 
ýN--, Nv exp( 

69 ) 
(2.61) 

2kT 

where Eg = Eco - Evo is the band-gap energy. The intrinsic Fermi level can be 

obtained by equating (2.55) and (2.56). 

Ei = 
(Ec + Ej 

+3kT log, (2.62) 
24( Mn -2P- ) 

The small deviation of El from the mid-gap point clue to the difference in the 

effective masses is usually negligible and El is usually used to specify the mid-gap 

energy. Thus, for an intrinsic semiconductor (2.55) and (2.56) become: 

ni = Nc exp 
Ei -Eco Nv exp 

Evo -Ei (2.63) 
kT) kT 

) 

This allows (2.55) and (2.56) to be rewritten in the following form, 

remembering (2.57) and (2.58). 

n=n, exp 
Ef, - Ei + ÖEc 

(2.64) 
kT 

p= ni exp 
Ei - Efp + AEv 

(2.65) 
kT 

The mid-gap and Fermi energies are now converted into potential form by 

multiplying by the elementary charge. 

Ei =-q ýi, Ef, =-q 0�, Ef, =-q0, (2.66) 

where Vj is the electrostatic potential as considered previously, 0, is the 

quasi-Fermi potential for electrons and 4)p is the quasi-Fermi potential for holes. 

If In addition the band-gap narrowing terms (5Ec and bEv are converted into units 
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of electron volts by dividing them by the elementary charge, q then the desired 
forms for the carrier concentrations are obtained. 

n= ni exp 
On - On 

(2.67) VT 

p= ni exp 
op - VIP 

(2.68) 
VT 

where 0, Op and the thermal voltage, VT are given by: 

V1, = V/ + 6E,, Vip = q., - bEv (2.69) 

kT VT 
q 

(2.70) 

The spacial variation of 0, gives the slope of the conduction band edge, 
which represents the driving force for electrons and similarly the slope of the 

valence band edge is the driving force for holes, which depends on the spatial 

variation of Op. Thus, in the current transport equations, (2.41) and (2.42) the field 

terms in and ip may be given by: 

En ý- grad ýn 
, Ep =- grad ý., 

p 
(2.71) 

Though not rigorously correct this operational model for band-gap 

narrowing is extremely attractive as the effects due to shifts of both band edges 

can be separated. In the past it has been usual to incorporate band-gap narrowing 
by introducing a so called effective intrinsic concentration [2.13], while assuming 

equal shifts of both band edges, which is rarely the case. Furthermore, the model 
presented here Is more pertinent with n, (T) dependent solely on temperature. A 

model for the doping dependence of band-gap narrowing will be presented in the 

next chapter. Unfortunately, the proportion of narrowing occurring at each of tile 
band edges is very often not known. However, it has been shown by Adler [2.14] 

that the effects of this ambiguity on current density is negligible. He compared two 

extreme cases; one where all the bandgap narrowing was placed in the bEc term 

and another where all the narrowing was placed in the bEv term. He showed, and 
it ha. s also been observed here, that the electrostatic potential and charge density 

are altered but the current density is unaffected by such a change. Thus, the 

external device characteristics do not depend on the difference between bEc'and 
bEv but only on their sum. Adler also pointed out that since band-gap narrowing is 

usually found from transport measurements of the n. p product the combined 
effects of band-gap narrowing and degeneracy are inherently accounted for. 
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2.5 Heat Flow Equation. 

Since it is intended to investigate device behaviour under operating 

conditions where considerable power is dissipated it is necessary to account for 

the associated non-uniform temperature rises and related heat transfer effects. 
This can be achieved by supplementing the previously obtained electrical model 

with the heat flow equation. Within the semiconductor heat flows by conduction 

primarily as a result of phonon interaction. It has been found experimentally that 

the heat flux, i (energy per unit time per unit area) that is conducted in a 

non-uniform temperature distribution is given by: 

f= -K(T) grad T (2.72) 

where K(T) is the thermal conductivity of the semiconductor material, which itself 

is dependent upon temperature. In order that energy is conserved the heat flux 

must obey the following continuity equation. 

aT 
div f PC at 

(2.73) 

where Q is the thermal generation (W CM-3) ,p is the specific mass density 

(Kg cm-3) and c is the specific heat capacity (J Kg-1 K-1) of the material. The 

temperature variation of p and c can be neglected for practical applications [2.15]. 

This equation states that the difference between the outward and inward flux 

flowing through a particular point is equal to the difference between the amount 

of heat which is generated and that part which is stored causing the temperature 

to rise at that point. The heat flow equation is obtained by substituting (2.72) into 

(2.73). 

div K(T) grad T aT (2.74) 
at 

This equation, therefore, accounts for the combined effects of temperature 

rise and heat transfer via conduction through the semiconducting material. 

2.6 Boundary and Interface Conditions. 

The previously defined mathematical model can be solved for the set of 
dependent variables (O^pj), which may vary in time and space, only if adequate 
boundary conditions exist. Thus, the application of the proposed generalised 

model to a specific problem is achieved by invoking the necessary boundary 
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conditions. it is often possible to simplify a particular problem without having to 

make assumptions that would introduce significant error. Many devices, for 

example, have long finger-like geometries which exhibit homogenous operation 
along the entire finger length. By modelling the operation over a plane which is 

orthogonal to the finger and assuming that this is representative of every plane 

along the finger, only two carteslan co-ordinates are needed. 
In general there are two types of boundary conditions, those that represent 

physical or structural boundaries that are present at the edges of a device and 
those that are introduced to ease tile problem of finding a solution, but do not 

coincide with actual physical boundaries. These artificial conditions can be 

Imposed on the basis of a certain amount of knowledge of device operation, which 
is known prior to having obtained a solution. Provided they are correctly applied 
these boundary conditions should not introduce any error. Many devices consist 

of a large array of identical structures that are repeated at regular intervals. 

Furthermore, each of these structures often exhibits symmetrical operating 

characteristics allowing for further sub-divisions. Artificial boundary conditions 

enable these building blocks to be isolated from each other and then a solution to 

only one such block is all that is required to provide a full representation of device 

operation. Artificial boundaries are also useful for isolating the active region of a 
device, which is the area of most interest and often takes up only a very small 

portion of the entire chip area. These isolated regions represent the domains over 

which the mathematical model formed by the governing equations must be solved. 
A second type of condition that must be satisfied is the so-called interface 

condition. They do not coincide with the boundaries of the domain, but Must be 

applied within the domain itself. These conditions are necessary to account for the 

abrupt changes in the electric flux, 5 and heat flux, i occurring at the interfaces 

between the various materials that go to make up a device. 

The numerical modelling techniques that have been employed are at 

present restricted to the consideration of two orthogonal spatial dimensions. An 

extension to three dimensions would In general present too great a computational 
burden even for the most powerful modern day computers. However, it would be 

a simple exercise to extend the present model to three dimensions when adequate 

computational resources do become available. 
The various boundary conditions that have been utilized will be described 

with the aid of a particular example. However, the example that has been chosen 
Is sufficiently general In that it Illustrates all the different types of boundary 

conditions that are commonly used. The example Is depicted in Figure 1 and is 

of bipolar transistor structure which has been fabricated using a conventional 
double diffused planar process. It can be seen immediately that symmetry has 
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Figure 1. A Bipolar Transistor Structure Illustrating Solution Domains and Boundaries. 
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been assumed and an artificial boundary (A-T) has been drawn through the -centre 

of the device. Therefore, depending on what co-ordinate system is applied, either 

a symmetrical long finger-like geometry is assumed (cartesian co-ordinates) or a 

cylindrically symmetrical geometry with circular emitter and base diffusions 

(cylindrical co-ordinates) is assumed (cf. chapter 4). The electrical domain 

represents the region over which Poisson's equation and the current continuity 

equations (supplemented by the current transport equations) must be solved, and 

the thermal domain represents the regions over which the heat flow equation is 

solved. Electro-thermal interaction is inherently accounted for where these two 

domains coincide. Strictly speaking the electrical domain shown in Figure 1 

denotes the area over which only Poisson's equation is solved, with the current 

continuity equations being relevant only in the semiconductor region (H-N-C-D). 

The boundary and interface conditions pertaining to the electrical and thermal 

models will now be considered independently. 

2.6.1 Boundary and Interface Conditions for Electrical Model. 

In the example three ohmic contacts are present at E-F-G-H, I-J-K-L and 
D-C. The first two represent real contacts on the top surface of the chip, but the 

third is an artificial boundary. Since the conductivity of the substrate is usually very 
high then a negligible voltage will be dropped across it. Thus, for electrical 

purposes the back contact which in reality exists at the chip-header interface can 
be shifted to a position just below the collector-substrate junction. This then avoids 
the need to include most of the substrate, which is usually much thicker than the 

epi-layer, in the solution domain. However, care must be taken in ensuring that a 
'safe' distance exists between the artificial contact and the collector-substrate 
junction, such that device operation remains unaffected. This depends very much 

on device operating conditions; for example if the device is operating in saturation 
the separation should be at least two hole diffusion lengths. Alternatively, under 

conditions of high collector voltage the separation must at least allow for free 

depletion of the substrate. 
Throughout this work all contacts have been assumed to be voltage 

controlled, by which it is meant that known potential values are applied at the 

contacts. It is also possible to specify current controlled contacts, by which a 
certain current could be made to flow in or out of a contact. The application of this 

condition unfortunately disrupts the solution procedure [2.1], however, a novel 

approach which aims to circumvent such problems has been reported recently 
[2.16]. In all cases considered here though, voltage controlled contacts have 

proved perfectly adequate. It is well established to assume thermal equilibrium 
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and space charge neutrality at ohmic contacts. In thermal equilibrium the electron 

and hole Fermi potentials are equal and the mass action law may be obtained by 

multiplying (2.67) and (2.68). 

np=n, (7) 2 
exp 

(5Ec + 5E v ni, (7)2 (2.75) VT 

where nieff) is an effective intrinsic concentration. The space charge neutrality 
condition is simply given from (2.6) by: 

np=0 (2.76) 

where N= ND - NA is the net ionized impurity concentration. Equations (2.75) and 
(2.76) can now be solved for n and p giving: 

,22 
TN -+4nie 

+N 
n= 

'-- 
---- 2 

i, (2.77) 

p 

22 PN -+4 
n, eN (2.78) 

2 

If the applied potential, OA is referenced to the Fermi potential and the 

'built-in' contact potential, O'b is defined as the difference between the electrostatic 
(mid-gap) potential, 0 and the Fermi-potential then: 

Vf ý OA + Ob (2.79) 

The built-in potential can then be obtained from (2.68) and (2.69). For a 

contact to n-type semiconductor: 

VT loge( -n2, - 
)- bEc (2.80) 

and for a contact to p-type semiconduclor: 

V'b VT loge 
ni + bEv (2.81) 

(p) 

At a voltage controlled contact, therefore, the set of dependent variables 

n, p) are known prior to entry into the solution procedure, and furthermore, n 

and p are dependent only upon the net doping, N, meaning that only V/ needs to 
be changed with bias. Such a fixed boundary condition, which in this instance 
holds for Poisson's equation and the Current continuity equations is commonly 

called the Dirichlet boundary condition. 
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The artificial boundaries A-D and B-C are usually treated by assuming that 
they are lines of perfect syrnmetry. This condition is invoked by assuming that the 

electric flux, and electron and hole current density components normal to these 
boundaries are zero. 

00 
Ox 

(2.82) 

Jnx ý0, ip, =0 (2.83) 

It may be noted that (2.82) and (2.83) are self-consistent, provided tile heat 

flux and diffusion gradient also vanish at these boundaries, through the current 
transport equations (2.41) and (2.42). In a strict sense these conditions imply an 
infinite number of cells whereas only a finite number can exist in practice and 
some discrepancies are inevitable. However, if the boundary B-C is moved far 

enough away from the active device region Such that any further movement would 

result in a negligible effect on tile solution, then tile device can be considered to 

be a single celled structure. This being formed by the half cell shown in Figure I 

reflected about A-D. The top boundary of tile domain far Poisson's equation is 

separated from the top surface of the chip by an air gap. This has been done to 

minimise the effects of the imposition of such a boundary on the potential 
distribution within the chip. The thickness of the air-gap was chosen to be large 

enough so that the potential distribution along the chip surface was unaffected with 
the following Dirichlet boundary condition along A-B. 

a q, 
Py (2.84) 

That part of the top boundary for the solution of the continuity equations 
(H-N), which coincides with tile S'-S'02 interfaces ie. G-L and K-N, is treated by the 
following condition. 

Jny = 0, ipy =0 (2.85) 

This condition states there can be no current flow into the oxide. When 

solving Poisson's equation the discontinuity of electric field, i at the Si-S102 
interface and the oxide-air interface (F-I and J-M) can be accounted for by the 
following two interface conditions, which may be obtained from Gauss' law of flux 

continuity. 

a q, a q1 
"OX ay - "Sil ay ý Qint (2.86) 
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ýo 
ao aý 0 (2.87) ey -ox ey ý 

where (2.86) applies to the Si-S102 interface and (2.87) applies to the SiO2-Alr 
interface. Here QInt is the fixed interfacial oxide charge in C CM-2 and Esil, E, ),, and 
t. are the permittivities of silicon, S'02 and free space respectively. 

2.6.2 Boundary and Interface Conditions for Thermal Model. 

As was the case for the electrical domain the thermal domain is assumed 
to be completely symmetrical about its centre line, in which case the following 
Neumann boundary condition is assurned to hold along E-T. 

oT 
=0 (2.88) ax 

This is again consistent with boundary condition (2.83), through current 
transport considerations. The bottom face of the header is assumed to be in 
intimate thermal contact with a prefect heat sink. Such a heat sink would prevent 
any rise in temperature at this boundary. It can be seen from equation (2.73) that 
this is impossible to achieve in practice, since any heat flux entering tile heat sink 
would cause its temperature to rise unless the heat capacity of the heat sink given 
by the product pc is Infinite. All results presented here, however, are for transient 
heating effects, and in every case tile heat flux generated in the active region of 
the device did not reach the bottom of the header in the time intervals that were 
considered. In these cases, therefore, the boundary condition should not affect the 

results and the following Nzuwv-rý condition can be applied. 

T= Tamb (2.89) 

where Tamb is the ambient temperature. Convective heat transfer has been 

assumed along the remaining portion of the boundary. This can be modelled using 
Newton's law of cooling [2.17], which states that: 

TJ; 
=h (Ts - Talb) (2.90) 

where n is a vector of unit length and is normal to the boundary in question. T', is 
the temperature at the surface and h is called the convective heat transfer 
coefficient or film coefficient. This lumped coefficient depends not only upon tile 
composition of the fluid (air) surrounding the device but also on tile nature and 
geometry of the fluid motion past the surfaces. For unforced convection in air h 
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takes a value of approximately 1X 10-3 W CM-2 K-1. Substituting (2.72) into (2.90) 

gives the following condition for the horizontal boundary portions E-R and Q-S. 

-K(T) --ý-T =h (Ts - Tamb) (2.91) ay 

and similarly for the vertical portions R-Q and S-U: 

-K(T) -2-T =h (T, - Tamb) (2.92) 
Ox 

The abrupt discontinuity in thermal conductivity that occurs between the 

chip and header can be treated by assuming continuity of heat flux across the 
interface, which gives rise to the following interface condition. 

K(T) -ý-T = KH 
OT (2.93) 

ay ey 

where KH is the thermal conductivity of the header material. 
In this chapter a mathematical model for semiconductor device operation 

has been proposed, which can be solved subject to a Darticular set of boundary 

conditions. However, before a solution can be sought it is necessary to define 

some empirical models for several physical parameters and attributes pertaining 
to device operation. For example models must be obtained for mobility, 

recombination/generation, thermal conductivity and thermal generation. The 

models that have been employed to simulate such attributes will be presented in 

the following chapter. 
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Chapter 3. Models for Physical Parameters and 
Device Attributes. 

Inherent In the mathematical model derived in the previous chapter are a 
number of physical parameters, about which very little information has so far been 

given. In this chapter a model which quantifies each of the parameters will be 

presented. These models either represent an empirical fit to universal 

experimental findings or have been obtained on the basis- of a physical 
understanding of the various processes occurring within a device. Usually a 

combination of both these techniques is employed to obtain a desired result. The 

overall accuracy of such models is of paramount importance, since not only do 

they dictate the numerical accuracy of the model against experimentation, but they 

also define the qualitative nature of device operation. This is especially important 

if once having obtained good agreement between actual device characteristics and 

computed results, the 0 computer model is then required to be used to investigate 

the possible effects of making a change to the device design. In this instance the 

model is required to account for heating effects and the temperature dependence 

of the parameters is a primary concern and has been considered, wherever 

possible and applicable. Since it is intended to use- model to investigate 

phenomena associated with thermal second breakdown the temperature range 

over which the physical models are to be considered must extend right up to the 

melting point of silicon (1700K). 

In section 3.1 a model will be presented for mobility which depends on a 
number of scattering processes. Mobility is of obvious importance as the-amount 

of current -which flows at any'point in a semiconductor is directly proportional to 
this quantity. In section 3.2 a model for the intrinsic carrier concentration, n, (T) is 

proposed which takes account of the temperature dependencies and quantifies the 

various parameters on the right hand side of equation (2.61). A model for band-gap 

narrowing due to interactions between carriers and between carriers and ionized 
impurities at high dopant densities is -provided in section 3.3. In section 3.4 a 
model for recombination/generation resulting from a statistical analysis is 

presented, and carrier lifetimes, including some experimental measurements are 
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discussed. A temperature dependent model for thermal conductivity, K(T) is given 

in section 3.5, and finally an accurate model for thermal generation, Q is presented 

in section 3.6. 

3.1 Carrier Mobilify. 

During the derivation of the current transport equations the relaxation 
times, Tn and rp, which describe the average time between scattering events were 

substituted with a so-called carrier mobility (cf. equations (2.35) and (2.36)). This 

was done because mobilities are Intuitively much easier to imagine than relaxation 
times, and furthermore they are much more practical quantities for engineering 

applications. There are a number of scattering mechanisms that affect the 

relaxation times and, therefore, the carrier mobilities, the most important of which 

are due to thermal lattice vibrations (phonon scattering), ionized impurities 

(Coulomb scattering) and the electrons and holes themselves (carrier-carrier 

scattering). An additional effect which must be accounted for is the saturation of 

the drift velocity of warm and hot carriers due to lattice vibrations. The effect each 

of these mechanisms has on the magnitude of the mobility will now be considered 
in the above sequence. 

3.1.1 Phonon Scattering. 

Phonon or lattice scattering is the most fundamental process by which 

carriers In a pure crystal are scattered and is due to their Interaction with 

thermally generated vibrations of the atoms forming the crystal. It is found, 

because of wave motion, that electrons and holes can actually travel freely through 

a perfectly periodic crystal without any collisions with the lattice. Thus, there will 

only be collisions with those atoms that are displaced from their ideal positions in 

the lattice because of thermal vibrations of the lattice. These vibrations are said 

to perturb the perfection of the periodic lattice structure and scatter the carriers. 
Because the atoms in a solid are bound together, the vibration of any one atom is 

propagated to the other atoms by waves. The particles associated with these 

waves are called phonons. In silicon there are basically two different scattering 

mechanisms associated with carrier plionon interaction, these being acoustic 

phonon scattering and optical phonon scattering. A detailed discussion of these 

effects is beyond the scope of this work, but further considerations can be found 

in [3.1] and [3.2]. 
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For the purpose of quantifying these effects it is usual to fit a simple power 
law to experimentally obtained mobility values. The mobility due solely to phonon 
scattering Is given by: 

L LO (TY 'n-P 
An, p ýP 300K 

(3.1) 

Throughout this chapter the temperature has been normalized by 300K 

giving a more direct display of room temperature results. Such a fit has been 

performed by Arora et al. [3.3] on the experimental data of Long [3.4] and Norton 

et al. [3.5] for electron mobility, and on the data of Ll [3.6] for hole mobility. The 

coefficients which gave the best fit are given in Table 1. 

A LO 

(CM2V-IS-1) 

electrons 1448 2.33 

holes 473 2.23 

Table 1. Lattice Mobility Constants. 

These results for electrons and holes are shown graphically in Figure 2 

and Figure 3 respectively. The temperature range has been restricted to 1000K 

as the model predicts that the carrier mobilities will remain reasonably constant 
at higher temperatures than this. The model must be subject to some uncertainty 
at temperatures above 500K since no experimental data is available for validation 
above this temperature at present. Optical phonon scattering becomes more 
important at higher temperatures causing carrier transitions -between energy 
valleys in the Brillouin zone [3.1]. These effects may not, therefore be quantified 
correctly by the empirical model. In fact the experimental results of LI and Thurber 
[3.7] seem to suggest that the model returns values of electron mobility that are a 
little low at higher temperatures. 

3.1.2 Impurity Scattering. 

Impurity or Coulomb scattering is due to the fact that when an electron or 
a hole travels past a fixed ionized donor or acceptor it will be deflected because 

of the attractive or repulsive forces set up between the charges. Consequently the 

role of impurity scattering becomes more important as the total concentration of 
ionized impurities increases or as the temperature decreases (< 300K). The 

-36- 



1600 
ýquat, Lon (3.11 
raf. (3.4) 

0 raf. (3.5) 
1400 A raf. (3.7) 

v ref. (3.8) 

1200 -0 

:7 

1000 - 
r2 u A 

r: 

-j tIUU A 
- 

m C3 
3-- 

6 
C= 600 -A C3 

400 - 

200 - 

300 400 500 600 700 800 900 1000 

TEMPERnTURE (K) 

Figure 2. Mobility of Electrons due to Lattice Scattering In Silicon. 

ionized impurity scattering mobility, /it can be modelled using the modified 
Brooks-Herring formula [3.6] [3.7), which additionally takes into account 

anisotropic scattering effects due to the ellipsoidal band structure of silicon. 

It IATY. 5 

n'P Nj G(b) 300K (3.2) 

where N, = ND + NA is the total number of impurities and G(b) Is a function given 
by: 

G(b) = log, (b + 1) -- 
b (3.3) b+1 
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Figure 3. Mobility of Holes due to Lattice Scattering in Silicon. 

Assuming all donors and acceptors are ionized, which is an excellent 

approximation for temperatures above 300K, then b is given by: 

b (3.4) 
N, 

( 
30TOK 

)2 

The coefficients, A and B for electron and hole mobility are given in 

Table 2. The function G(b) models the influence of 'neighbouring' ionized 
impurities which screen each other due to their Coulomb potential and, therefore, 

are inactive as scattering centres [3.9]. 
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A 

(CM-1 V-IýS-l 

B 

(CM-3) 

electrons 3.793 x 1021 1.368 x 1020 

holes 2.91 X 1021 2.25 x 1020 

Table 2. Constants for Mobility due to 

Impurity Scattering. 

So far the formulation has neglected the effect of electron-electron (e-e) and 

hole-hole (h-h) scattering on the lonized impurity scattering mobility. Although 

collisions between carriers cannot alter the total momentum, it tends to randomise 

the way in which this total momenturn is distributed amongst carriers with different 

energies [3.6] [3.7]. Since all donors and acceptors [lave been assumed to be 

ionized then the effects of e-e and h-h scattering is to reduce the mobility given 
by equation (3.2) by a factor of 0.632 for both electron and hole mobility. Having 

obtained j, L and pf they are then combined according to the mixed scattering 

formula [3.9]. 

L/ 
= it L[l + X2lCi(X) cos(x) + sin(x) 

(s i (X) - -a- 
)JI (3.5) 

2 

where Ci(x) and Si(x) are the cosine and sine integrals of x respectively and 

x= /6ý/pl 
. This procedure has been carried out by Arora et al. [3.3] up to a total 

impurity concentration of 5x 1018 cm-3 for electrons and 2x 1018 CM-3 for holes. 

For electron mobility above 5X 1018 CIn-3 thp .y used the experimental data of 

Mousty et al. [3.10], Fitietti et al. [3.111 and Chapman et al. [3.12] for phosphorLIS 

clopant. It is found that at these co nce ntrat ions the mobility depends on the nature 

of the dopant and the mobility for phosphorus dopant is on average 10-15% higher 

than the corresponding value for arsenic clopant [3.13]. Experimental values were 

also taken for hole mobility above 2x 1018 CM-3. 

These mobility values, both calculated and experimental, were then fitted 

into the following expression for mobility using an error minimising optirnisation 
technique (3.3]. 

DIFF 
Ll 

= 
MIN + n, p (3.6) 

n, p /117. p REF 1+ (NiINn. 
p 
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This equation is similar to the well established one used by Caughey and 
Thomas [3.14]. Here , MIN is the minimum mobility value expected at the highest 

dopant densities (> 1020 CM-3), it DIFF is the difference between the maximum 

mobility at low dopant densities and the minimum mobility as above. NREF is a 

reference concentration and fl is an exponential factor that controls the slope of 

the ILI versus Ni curve around the point where Nj equals NREF. Using their 

optimisation technique Arora et al. calculated the values of these parameters at 
temperatures of 200K, 300K, 400K and 500K for electrons, but only at 300K for 

holes, as an Insufficient amount of experimental hole data was available for fitting 

at high temperatures and concentrations. Thus, the temperature variation of jtMIN, 
NREF and P for holes was taken to be tile same as that for electrons. It was stated 
that as these three parameters are mainly governed by pf and since factors 

affecting the temperature dependence of pit are the same for electrons and holes 

(cf. equation (3.2)), then this should be a valid approximation. The resulting form 

of the equation with temperature dependent parameters reads: 

Ll 
_ 

MINO( T )-0.57 
ltn, p - Anp 300K 

DIFFOI T- anp 
Pn, p k 300K 

N, 
+. 

REFO( T )2.546 
Nn, 

p 300K 

where 14MINO, A DIFFO, a and NREFO is given in Table 3. 

A MINO 

(CM2V-IS-1) 
I" 

DIFFO 

(CM2V-1S-1) 

N REFO 

(CM-3) 

electrons 88 1252 2.33 1.432 x 1017 

holes 54.3 407 2.23 17 2.67 x1 ! 1] 

Table 3. Constants for Mobility due to Combined Effects of Lattice and Impurity 

Scattering. 

(3.7) 

It may be noted that oc in equation (3.7) is the same as that in equation (3.11), 

since jtDIFF is dominated by the lattice mobility. Equation (3.7) is plotted in 

Figure 4 and Figure 5. Again no experimental data is available above 500K for 

electrons and 400K for holes. The general agreement between equation (3.7) and 

experiment is good, though the equation may be returning values of mobility that 

are slightly too high in the Impurity range 1016 - 1017CM-3 for both electrons and 
holes. 
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The small number of data points at a temperature of 400K in Figure 5 tends 

to prove the point that the temperature variation of the parameters tLMIN, NREF and 
fl are roughly the same for both electrons and holes. As a final point it must be 

stated that no difference has be made between the impurity scattering of minority 

carriers or majority carriers, thus it is assumed for example that an electron in 

n-type material with a particular impurity concentration will have the same mobility 

as it would in p-type material with the same total impurity concentration. This 

could lead significant errors as the scattering characteristics of different dopants 

need not necessarily be the same [3.16]. 

3.1.3 Carrier-Carrier Scattering. 

Carrier-carrier scattering is a process by which mobile carriers interact 

with one another. It is similar to ionized impurity scattering, except that mobile 

particles deflect about a common centre of mass. It causes a further reduction in 

mobility and unlike the previously considered scattering mechanisms it depends 

on operating conditions other than temperature. The mobility reduction resulting 

from carrier-carrier scattering depends upon the amount by which the carrier 

concentrations exceed their thermal equilibrium values. Thus, it is particularly 

important in devices where the minority carrier concentration can exceed the 

background net doping concentration resulting in conductivity modulation. This 

effect occurs, for example, in the intrinsic region of a P+N diode and also in 

bipolar transistors operating in saturation or under low hFE conditions. However, 

the effects of carrier-carrier scattering are expected to be negligible in MOSFETs 

under normal operating conditions as in this case minority carrier concentrations 

will be very low. However, since the model is intended for use in the simulation 

of bipolar transistors the effects of carrier-carrier scattering must be accounted for. 

The influence of carrier interaction on mobility in silicon were first 

quantified by Fletcher [3.17] who proposed the use of a formula originally intended 

to model the interaction between molecules in a non-uniform gas [3.18]. This 

formula has since been considered by Choo [3.19] who inserted values for the 

constants in the formula that were left undefined by Fletcher. Having lumped all 

the constants together the final version of the equation for moBility due to 

carrier-carrier scattering, Itc is given as follows. 

2.08 x 10 21 cm -i V -i s -1 (T )312 

c 30OK 
Iln, P 14 2(T )2 

(A + /\)-2131 
(3.8) 

np l+I. 183x10 cm- np (" + '\) 1()ge 
1 

30OK 
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AAA 

where n and P are the excess carrier concentrations. That is, n=n-; T, where F 
is the thermal equilibrium value of n calculated from equation (2.77), and 
A 

P=p- jT, where jY is the thermal equilibrium value of p calculated from (2.78). It 

may be noted that lic has the same value for electrons and holes since it depends 

only on the sum of the excess carrier concentrations. The mobility, Ac was 
combined with the lattice and impurity scattering mobility, ALI using the simple 
Mathiessen rule. 

LIC 
Pn, p 

I (3.9) 11 
L, +c lln, p An, p 

This rule is not rigorously correct as the lattice and ionized impurity 

scattering mechanisms can not be considered to be fully independent from 

carrier-carrier scattering mechanisms. This is a definite requirement for the 

applicability of the Mathlessen rule [3.20]. However, it has been observed in the 

past that more complicated theoretical models do not justify the additional effort 
for the purpose of simulation [3.21] [3.22]. 

In nearly all important cases affected by carrier-carrier scattering the 
A 

excess carrier concentrations, A and P are equal due to the need to maintain 
charge neutrality. An exception to this rule In power bipolar transistor operation 
would occur in the mobile space charge region that is set up in the collector region 
under conditions of high collector current and voltage. This is commonly known 

as the Kirk effect [3.23] and In this case charge neutrality does not prevail and the 

excess carrier concentrations are not equal. However, this effect is due to the 

velocity saturation of carriers and, therefore, the mobility will be dominated by this 

phenomenon and the effects of carrier-carrier scattering will be overridden. 
Equation (3.9) has been plotted in Figure 6 and Figure 7 for electrons and 

holes respectively, for a low ionized impurity concentration, N, of IX loll CM-3 
such that 14LI is dominated by lattice scattering. Bearing in mind the above 

A 
assumptions the equation has been plotted, at various temperatures, against n or 
A 
P, which have been assumed to be equal. It is evident from Figure 4 and 
Figure 6 that carrier-carrier scattering gives rise to a similar reduction in mobility 

as Impurity scattering. This is not too suprising as the relaxation times associated 

with At and pC have similar energy dependent expressions [3.241. Unfortunately no 

experimental data is available at present for comparison with these curves. 
However, a brief comparison has been carried out by Dorkel et al. [3.24] who 

showed good agreement between the sum of the mobilities, ALIC + ALIC calculated nP 
from (3.9) at 300K and the experimental data of Krausse [3.25] and Danhauser 
[3.261, which was taken from measurements on P+N diodes. However, a lot more 

-44- 



1600 

1500 

1400 

1300 

1200 

1100 

1000 
900 

800 

C) 

700 

cr I-- Boo C3 

ý Soo 
400 

300 

200 

too 

n 

T 300K 
T 400K 

........... T 500K 
T BOOK 
T 700K 
T BOOK 
T 900K 
T IDOOK 

........................... ......... 

--------------------------- 

10 is 10 is 10 17 10 is 10 19 10 20 

EXCESS CHRRIER CONCENTRHTION (cm-3) 

Figure 6. Mobility of Electrons due to Carrier-Carrier Scattering: The total impurity 

concentration is IX 10 14 CM -3 

work needs to be carried out in order to establish a model that can be used with 

complete confidence. 

3.1.4 Velocity Saturation of Carriers. 

At low electric fields the drift velocities of electrons and holes are 

proportional to the applied electric field and the constant of proportionality is the 

mobility. However, the carrier velocities can not increase indefinitely with field and 
they In fact reach a constant value at very high fields (>2x 104V cm-1). There 

must, therefore, be a corresponding fall in mobility. The carriers gain energy from 
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the electric field which Increases their temperature over and above that of the 

crystal lattice, such that they are no longer in thermal equilibrium. The saturation 

of drift velocity arises because there is a maximum frequency at which the silicon 
lattice can vibrate which is in the range 1013Hz and gives rise to the maximum 

optical phonon energy. The need to conserve the rate of loss of energy from a 

particle via optical phonon Interaction with the mean rate of supply of energy to a 

particle from the electric field results In a requirement for a constant drift velocity 
[3.27]. 
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The magnitude of the drift velocity is usually taken as the product of the 

mobility and the magnitude of the field component in the direction of current flow, 

that is: 

Pn 
E. Jn 

(3.10) 
1 in I 

ýp lip 
E. Jp 

1 yp I 

Strictly speaking the driving force for electrons and holes is given by the 

gradients of their respective quasi-Ferml levels, 4), and Op. The effects of diffusion 

gradients on the carrier velocities will then be properly described. Thus (3.10) and 
(3.11) should be replaced with the following. 

I; 
nl = tin Igrad4)nl (3.12) 

17p I= lip I grad 4)p 1 (3.13) 

Here the gradients of the quasi-Fermi levels always point in the direction 

of current flow. However, In most instances where velocity saturation effects are 
important the field is equal to the gradient of both quasi-Fermi levels making (3.10) 

and (3.11) valid. In the region of a forward biased p-n junction, though, (3.10) and 
(3.11) are invalid as in these regions diffusion currents are important. If applied to 

these regions (3.10) and (3.11) give negative values for the particle speedst Such 

problems can be avoided since at forward biased junctions the quasi-Fermi levels 

are essentially flat having a negligible effect on mobility ill these regions. 
Therefore, the electric field, which is much easier to derive than the gradient of the 

quasi-Fermi levels can be used in this instance without any loss of accuracy. 
The effects of velocity saturation on mobility have been modelled using the 

formulation of Scharfetter and Gummel [3.28] with the extensions suggested by 

Thornber [3.29]. The original formulation of Scharfetter and Gummel which 

accounts for the combined effects of ionized Impurity scattering and velocity 

saturation at 300K is as follows. 

L 
LIE It 

N, (EIA)2 
+(E 

)2 
+ TE + 7+N 

I IS EIA +FT 

I 
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where E is the magnitude of the field in the direction of current flow, S is a fitting 

parameter and NRE is a reference impurity concentration. The remaining 
parameters A, B and F are defined in Table 4. In this equation the subscript n, p 
has been omitted from the mobilities and parameters, but it should be noted that 
(3.14) applies equally to both electron and hole mobility. 

A 
(V cm-1) 

B 
(V cm-1) 

F 

electrons 3.5 x 103 7.4 x 103 8.8 

holes 6.1 x 103 2.5 x 104 1.6 

Table 4. Parameters in Equation (3.14) for Effects of Velocity 
Saturation of Carriers on Mobility. 

Since ionized Impurity scattering has already been taken into account it is 

necessary to remove these considerations frorn equation (3.14). This is achieved 
by firstly rewriting (3.14) for the low field case: 

Ll 
L 

Ni 

+ NIIS 

and then expressing (3.14) in terms of (3.15). 

LIE 
Ll 

A 

(EI(AL A)) 2+(E )2 

L + (IULI) 
ItL EI(ItL A) +FAB 

(3.15) 

(3.16) 

According to Thornber the term 11L 8 in this formula may be interpreted as 
the carrier saturation velocity Vsat . Multiplying tjL from equation (3.11) at 300K with 
B from Table 4 gives an electron saturation velocity of 1.07 x 107 cm s-1 and a hole 

saturation velocity of 1.18 x 107 CM s-1. These values are quite acceptable, though 
the value for holes could be considered to be a little high. The term IAL A 

represents the velocity of longitudinal acoustic phonons, vO, which describes the 

effects of warm carriers on the carrier drift velocity. According to the detailed 

scaling considerations of Thornber the term pL E In the denominator of (3.16) 

should be replaced with ItLIE. Having made these alterations equation (3.16) can 
now be written in its final form. 
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ALIE = 

Ll 

EE 
)2 

vph 
)2 )+( yLlE 

vph 
Ll 

E+Fv Pý v 
sat 

(3.17) 

The parameter F does not seem to have any physical significance and can 
be identified purely as a fitting parameter. At present a temperature dependent 

model for Vph is not available, however, the saturation velocity is known to fall with 
temperature and can be modelled with the following expressions [3.22]. 

sat 7-1(T )-0.87 
(3.18) Vn ý1X 10 cm s 300K 

sat = 8.37X10 6 
cm S-1 

(T )-0.52 
VP 300K 

The effects of carrier-carrier scattering can be incorporated into the above 

model by simply substituting ILLI in equation (3.17) with tLLIC from equation (3.9). 

Equation (3.17) has been plotted in Figure 8 for electrons and holes. In this case, 

however, it is more usual to interpret the results on a drift velocity versus field 

diagram as is shown in Figure 9. Experimental data has been obtained using the 

time-of-flight technique [3.30] [3.31], which is based on the well known 

Haynes-Shockley experiment [3.32]. Good agreement is obtained with experiment 

for the electron velocity. It can be seen from the two experimental curves at 300K 

that the model is accurate to within the bounds of experimental uncertainty. In the 

case of hole velocity equation (3.17) predicts rather a low value for the drift 

velocity, although the experimental curves will be subject to a similar spread as 
for electrons. Fortunately, for all modelling applications considered here 

significant hole current is never likely to come under the influence of high fields 

owing to the way in which the devices have been configured to operate. This 

would be the case for an n-p-n bipolar transistor operating below avalanche 
breakdown. If p-n-p transistor operation were to be considered, however, 

significant hole current would flow through the collector depletion region and the 

influence of the field on the hole drift velocity should be carefully considered. 
A number of other scattering mechanisms exist, but have not been 

considered here as they are not expected to Influence the operation of the type of 
devices for which the model was originally conceived. The two most important 

scattering mechanisms that have been omitted are neutral impurity scattering 
[3.6] [3.7], which Is only Important at temperatures below about 77K, and so-called 

surface scattering [3.33], which affects the channel mobility in MOS transistors. It 

-4.9- 



1600 

1500 

1400 

1300 

1200 

1100 
1000 .2 goo 

m 

m 700 
Z: 
2t Soo C3 
CH Soo 
.3 

400 

300 

200 

100 

n 

T- 300K 
T- 400K 

.......... T- 500K 
T- BOOK 
T- 700K 
T- BOOK 
T- BOOK 
T- IOOOK 

---------- 

------------------- 

10 2 10 3 10 4 

ELECTRIC FIELD IV cm-11 
500 1111 illl III 

10 5 10 a 

450 

400 

350 

300 

250 

200 
x_- 
ý 

150 

100 

50 

T 300K 
T 4DOK 

.......... T SOOK 
T BOOK 
T 700K 
T BOOK 
T 900K 
T IDOOK 

-------------- 

.............................................. 

........ --- --- ---- --- 

10 10 3 10 4 10 5 10 a 

ELECTRIC FIELD IV cm-11 

Figure 8. Mobility of Electrons and Holes Versus Electric Field: The effects of impurity and 

carrier-carrier scattering have been omitted. 

-50- 



10 

7 

C3 
m 
D 
ul 

E. 4 
cz C3 
m3 
C3 w 

2 

1 

n 

300 

370K 

430K 

600K 

BOOK 

1000K 

EquotLon (3.17) 
Ref (3.30) 
Rof (3.311 

I-a 

: 

c12 
c2 

ri 
ca 

re 
E3 

9 
c2 

ELECTRIC MELD IKV cre-11 

300K 

370K 

EquaLLon (3.17) 
Rof 13.30) 

001, 

10 20 30 40 so so 70 80 go 100 

ELECTRIC FIELD IKV cm-11 

Figure 9. Drift Velocities of Electrons and Holes Showing Velocity Saturation: The effects of 
impurity and carrier-carrier scattering have been omitled. Dashed lines show 
experimental data at temperatures of 300K, 370K and 430K. 

-51- 



would be a simple matter to incorporate these considerations into the existing 

mobility model. 

3.2 Intrinsic Carrier Concentration. 

The intrinsic carrier concentration, n, (T), that is the concentration of 
electrons or holes in a pure semiconductor, can be obtained by inserting 

equations (2.51) and (2.52) into (2.61). Careful consideration should be taken to 

ensure that the temperature dependencies of tile density-of-states effective 
masses, mn(T) and mp(T), and the band-gap energy, Eg(T) are all accurately 
accounted for. Such considerations have been made by Barber [3.34], who 
illustrated the consistency between reported values of m., mp, E. and nj through 

equation (2.61) in the temperature range 200K - 700K. The approach presented 
by Barber for the calculation of n, (T) is rather involved for the purposes of device 

simulation. However, Barber's results were found to agree to within 14% of an 
empirical model used to fit the earlier measurements of Putley and Mitchell 
[3.35]. This empirical model was used to fit experimental data obtained ill tile 
temperature range 20K -* 500K and Is given by the following expression. 

n, (I) = 1.61 x 10 20 CM-3 
(T )312 

exp( -0.603 eV (3.20) 
300K kT 

Although not immediately apparent, the temperature dependencies of mnv 
mp and Eg are all inherently accounted for by this equation, since it has been 

obtained by direct comparison with measurements of n, (T). Furthermore, it agrees 
well with the detailed considerations of Barber. Equation (3.20) is plotted in 
Figure 10 from room temperature up to the melting point of silicon. Tile 

experimental data of Morin and Maita [3.36] and Putley and Mitchell were 
calculated from conductivity and Hall effect measurements. Those of Putley and 
Mitchell can be considered most reliable since they were performed on very pure 
oxygen-free silicon. Tile data of Herlet [3.37] was taken from measurements on the 
forward characteristics of p-n junctions and are accurate to only 20%. It is 

estimated that the average deviation of the experimental data of Putley and 
Mitchell from equation (3.20) is only 5%. 

3.3 Band-gap Narrowing. 

Nearly all semiconductor devices contain regions where the doping levels 

are higher than 1018 CM-3 and carrier transport through these heavily doped 
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Figure 10, Intrinsic Carrier Concentration In Silicon from 300K to Melting Point. 

regions plays an important role in the overall operation of the device. The present 

understanding of heavily doped semiconductors is fairly limited, but it is generally 

accepted that the density of states functions for electrons, pc(E) and holes, p, (E) 

are influenced by essentially two categories of phenomena. The first category are 
the many-body effects, which consist of interactions between carriers and between 

carriers and ionized Impurities. These effects result in rigid shifts of both the 

conduction and valence band edges towards each other, but do not alter the 

parabolic energy distribution of the density of states functions given by (2.45) and 
(2.46). The second category results frorn the random distribution of impurities, 

which causes electrostatic potential fluctuations. The overlapping of the electron 

wave functions at the impurity states which gives rise to band-tailing and impurity 
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bands also contributes to this category. This latter category of phenomena result 
in a distortion of the density of states function such that they can no longer be 

considered to be parabolic. A detailed survey of these phenomena is beyond the 

scope of this work, however, a comprehensive review of these effects is given in 
[3.38]. 

For practical purposes it is usually acceptable to assume that the parabolic 

shape of the density-of-states functions does not become distorted, while taking 

the effects of distortion into account by the use of an effective band-gap narrowing 
term that assumes only rigid shifts of the band edges. This term can be obtained 
directly from transport measurements and is a more relevant quantity for general 
device applications. The best established model that accounts for the quantitative 

effect of impurity concentration on band-gap narrowing is that of Slotboom and De 

Graaff [3.39]. Their formula gave the best empirical fit to data obtained from 

electrical testing of several n-p-n transistors with different highly doped base 

regions, and is given by: 

+ AEg = 6EC + (5EV = Ej log, log, 
(( N-) 

+C) (3.21) 
No 

t 

ITO 

Slotboom and De Graaff found that the values, No = 1017 CM-3, E, =9 meV 

and C=0.5 gave the best fit to their data, which ranged from 4x 1015 CM-3 to 

2.5 x 1019 cm-3- Since it was first presented this equation has been verified 
theoretically [3.40] and values of No, El and C were derived which were similar to 

the original values of Slotboom and De Graaff. More recently a model has been 

reported by Lanyon and Tuft [3.41] that accounts for the effect of temperature on 
the band-tails and thereby provides a band-gap narrowing model for heavy doping 

effects which is temperature dependent, as follows. 

AEg =-3q TT ýFNWJ- 
(3.22) 

16 7z r 
312 k 112 
sil 

Inserting values for the physical constants and rearranging gives: 

-ý ýNj 0,5ý- 
ýý (3.23) AE9 = 22.58 me V( 

30TOK 
Yc3 

1c 

Unfortunately this equation is only accurate for non-degenerate material 
(NI <3x 1019 CM-3). For the strongly degenerate case (NI >1X 1020 CM-3) the 

following equation, which does not contain any temperature dependency has to 

be applied. 
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AEg = 162 meV 
( 

20 

N, 
3 

)116 

10 cm- 
(3.24) 

Equations (3.21), (3.23) and (3.24) are plotted as a function of N, in 
Figure 11 together with a range of experimental data for comparison. It can be 

seen that both models provide a good representation of the currently available 
data, which is subject to a considerable spread. The model of Lanyon and Tuft 

gives a reduction in high doping effects at higher temperatures owing to an 
Increase In the screening radius [3.41]. An abrupt discontinuity in the gradient of 
the curves calculated from equation (3.23) Is apparent at the point where they meet 
the asymptote given by equation (3.24). This is not strictly correct and does not 
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exactly follow the model of Lanyon and Tuft who also considered band-gap 

narrowing in the intermediate doping region between the non-degenerate and 

strongly degenerate cases. Taking these considerations into account produces a 

smoother transition between the two extremes given by (3.23) and (3.24). In this 
intermediate region, however, the calculation of AEg is much more involved, 

requiring as it does a solution to the Fermi half-integral (2.53). Such a solution 
cannot be justified for the purposes of general simulation, bearing in mind the 

overall uncertainty In the experimental data that the models are supposed to 

represent. 
Finally, it must be pointed out that the model of Slotboom and De Graaff 

was used only in earlier versions of the numerical model and all results presented 
here were obtained using the temperature dependent model of Lanyon and Tuft. 

3.4 Carrier RecombinationlGeneration. 

It was stated in section 2.2 that the splitting of the current continuity 

equation (2.10) is only possible if an indepp-ndent model for the 

recombination/generation term, R is available. It is intended to present such a 

model in this section, but only a brief account will be given here. For an excellent 

review of tile current understanding of recombination phenomena reference 
(3.48] Is recommended. 

Recombination Is the rate by which excess electrons and holes in a 

semiconductor resulting from an external stimulus (eg. ionizing radiation or 
junction biasing) return to their thermal equilibrium values when the stimulus is 

removed. Conversely, generation is the rate by which the excess concentrations 
Increase under the Influence of the external stimulus. At any point in space and 
time the carrier concentrations may be written as the sum of their thermal 

equilibrium and excess values. 

+A (3.25) 

p= 
jT +A (3.26) p 

AA 

where iT and j5 are the thermal equilibrium values and n and p are the excess 
values. For the case of an external generating stimulus, GE the continuity equation 
for holes (2.12) can be rewritten. 

A ap 
R+ GE - -! - d iv Yp (3.27) 

at q 
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The rate at which the holes try to return to their equilibrium concentration 
is proportional to the amount by which they exceed their equilibrium 
concentration, that is their excess concentration. Though it is far from linear the 

net recombination term, R Is often replaced by `ý JTp, where rp is called the hole P 
lifetime and is not to be confused with the hole dielectric' relaxation time. In 

general T is a function of " and equation (3.27) is non-linear. If tile semiconductor PP 
is uniformly illuminated then div YP 

=0 and (3.27) becomes: 

AA 
(10 

=-p 
at Tp+ 

GE (3.28) 

The lifetime TP can be interpreted In two different ways from this equation. 
If the external generation Is maintained at a constant rate and steady state is 

reached then Tp is the ratio of the excess concentration to the generation rate, 
GE. This is the generation lifetime. Alternatively if the concentration A has reached P 
steady state and the excitation Is removed abruptly then: 

AA 
pp 

(3.29) TP 
0A let R p 

where R is the recombination rate of excess holes. This lifetime is the 

recombinative lifetime. The two most important mechanisms by which 

electron-hole pairs can recombine in silicon are by so called Shockley-Read-Hall 

recombination and Auger recombination. These two mechanisms will now be 

considered separately. 

3.4.1 Shockley-Read-Hall Recombination/Generation. 

A model for this mechanism established around the same time by Shockley 

and Read [3.49] and Hall [3.50]. It Is, therefore, most widely known as 
Shockley-Read-Hall (SRH) recombination/generation (from now on called 
recombination) In this case recombination occurs via energy states which are 
situated near the centre of the band-gap, and as such are called deep level 

recombination centres or traps. These traps are created by Impurity atoms other 
than donors and acceptors which only give rise to energy levels near the band 

edges. These are called shallow energy levels and are not efficient as 
recombination centres. The most important Impurities that give rise to deep levels 
in silicon are gold, platinum, copper, Iron and oxygen. Each type of impurity leads 
to more than one deep level, but a single level situated nearest the centre of the 
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band-gap dominates the carrier recombination in most cases. Deep level traps are 
also known to occur at crystal defects such as dislocations. 

The potential energy of an electron-hole pair Is lowered in two stages. the 
first part of the energy is released when an electron makes a transition from a 
state in the conduction band to a deep level centre and the remaining energy is 

released when an electron falls into an empty state in the valence band. The 

energy is dissipated in the form of phonons. Since silicon is an indirect band-gap 

semiconductor, that is the electrons near the conduction band edge do not have 
the same momentum as the holes at the valence band edge, then during the 
transition momentum as well as energy must be conserved. This is made possible 
by exchanges of momentum with the deep energy states which have a wide range 
of momenta. Shockley, Read and Hall derived a model for carrier recombination 
through a single level recombination centre using non-degenerate statistics, which 
showed that the net rate of recombination of excess carriers can be written as: 

SRH np - nie (3.30) 
Tno(P + nie) + Tpo(n + n, e) 

This Interpretation of the SRH model assumes that the trap lie, exactiy at 
the centre of the band-gap. The parameter T, O is the electron lifetime in highly 

doped p-type material, Tro is the hole lifetime in highly doped n-type material, and 
nie is the effective intrinsic concentration given by equation (2.75). A number of 
interesting limiting consequences arise from equation (3.30). For instance, in a 
depletion region m--p2tO and (3.30) can be written. 

SRH nn /e ie 
Tno + Tpo TSC (3.31) 

where Tsc is the space charge generation lifetime. Here the recombination term is 

negative which means that carriers are generated in a depletion region. This 

accounts In part for the leakage current In reverse biased p-n junctions, which 
increases rapidly with temperature since n,, approximately doubles for every 
11*C temperature rise. This phenomenon Is extremely important in high power 
operation. 

A second interesting case arises when the excess carrier concentrations 

greatly exceed their thermal equilibrium values, as is the case under high level 

-A Injection 0>>p, n>> F). In such situations space charge neutrality also 
AA 

usually applies (n = P) and equation (3.30) reduces to: 

AA 
SRII nn (3.32) 

Tno + Tpo Ta 
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where r, is the ambipolar lifetime. Again the carrier lifetimes are equal to the sul" 

of the electron and hole minority carrier lifetimes. The lifetimes are longer under 
high level conditions since the electrons and holes are in equal number and half 

the traps are occupied. The models that have been employed for room 
temperature lifetimes together with some experimental measurements are 

presented In section 3.4.3. The second most important recombination mechanism 
in silicon is Auger recombination and this will now be considered. 

3.4.2 Auger Recombination. 

This is the mechanism by which carriers recombine whilst interacting with 

other carriers so that both energy and momentum are conserved when making a 
transition. There are basically two types of Auger recombination and these are 
direct band-to-band Auger recombination (BBA) and trap assisted Auger 

recombination (TAA). The effects of TAA recombination are expected to be 

insignificant as they are dominated by normal phononic SRH type recombination 
[3.48] [3.51]. 

A number of processes are possible via BBA recombination. An electron in 

the conduction band can, for example, move to the valence band and in doing so 

it transfers part of its energy and momentum to a second electron in the 

conduction band, causing this electron to move away from the conduction band 

edge. Alternatively, the electron could also have transmitted its energy and 

momentum to a hole In the valence band, which would subsequently move away 

from the valence band edge. Both these mechanisms are recombinative, however, 

electron and hole emission can also occur by the consummation of energy from 

highly energetic electrons In the conduction band or holes In the valence band. 

The statistics of BBA recombination are well established and the recombination 

rate has been found to be given by: 

AUG 2 R= (c,, n+ cp p) (n p- nie) (3.33) 

where Cn and c,, are the Auger capture coefficients for electrons and holes and are 

given by 2.8 x 10-31 cm6s-I and IX 10-31 cm6s-I respectively [3.46]. These 

coefficients have been found to be very weak functions of temperature [3.42] and 

any temperature dependency has, therefore, been omitted in this work. Auger 

recombination causes a reduction in minority carrier lifetimes only in regions 

where the electron concentration or hole concentration or both concentrations 

exceed about 1018 cm-3. Thus, It Is restricted to heavily doped regions or regions 
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that are highly conductivity modulated. For minority holes injected into a heavily 
doped n-type region the Auger lifetime obtained from (3.29) is as follows. 

AUG 11 
Tlow 22 

(3.34) 
c. n c. Ný 

In heavily conductivity modulated regions where electrons and holes are in 

equal quantity and the Auger lifetime is given by: 

AUG 11 
(3.35) Thigh ý 

(Cn +cp) n2- (CII +cp )P2 

The slightly lower lifetime for this case is reflected by the fact that 
interactions involving two holes and one electron is probable in this instance as 
well as interactions between two electrons and one hole. The SRH lifetimes are 
less than the Auger lifetimes in most regions of a device and they, therefore define 

the overall lifetime given by: I/TTOT = IITSRH + JITAUG. The SRH lifetimes will now 
be considered. 

3.4.3 Carrier Lifetimes. 

The SRH lifetimes Tno and Tpo are dependent on a number of quantities and 
they may be given by the following expressions. 

Tno -1 (3.36) 
an vth Nt 

TPO -1 (3.37) 
(Tp Vth 

Wt 

where vth = , 
13kTIW Is the carrier thermal velocity, a,, p are the electron and 

hole capture cross-sections and Nt is the density of deep level traps. The 

temperature dependencies Of Tno and Tp. are controlled by the temperature 

dependencies of vth and an, p. Although Vth varies as the actual lifetimes 

Increase with temperature because at high temperatures the carriers are more 

energetic and must approach the trap more closely to be captured by it. The 

temperature dependence of the capture cross-sections account for this. It has 

been found that Cn, p oc T-b and measurements on the transient behaviour of p+n 
diodes have shown that b has a value of 2.7 for n-type silicon and 3.4 for p-type 

silicon [3.53]. It is predicted, therefore, that Tno varies as 7-2-9 and Tp,, as T2.2. 

Unfortunately the temperature dependencies of the carrier lifetimes were not 
known at the time the numerical model was being developed and room 

-60- 



temperature lifetime were assumed throughout. However, these temperature 
dependencies should be Included In the numerical model for future simulations. 

The SRH lifetimes are also dependent upon doping density as well as 
temperature. A high concentration of dopant atoms introduces defects into the 

semiconductor crystal causing an increase in the density of recombination 
centres, Nt. It has also been suggested that the concentration of deep levels could 
be increased due to the Increased solubility of deep level impurities like iron and 
gold in heavily doped silicon [3.48]. Dislocations can act as deep level SRH 

recombination centres because the strain field associated with them introduces 

energy levels In the mid-gap region and also because deep level impurities 

migrate to these sites due also to the strain they generate in the lattice. An 

empirical model which describes the variation of the minority carrier SRH lifetimes 

with dopant density has been proposed by Fossum [3.54]. 

LOW 
Tn, p 

Tno, po N, 
(3.38) 

REF Ný, 
p 

Values of TLOW 
,, p and NREF that gives the best fit to available measurements n, p 

of lifetime In substrate material [3.48] are given In Table 5. 

TLOW 

( sec) 

NREF 

(CM-3) 

electrons 3x 10-4 7.1 X 1015 

holes 3.95 X 10-4 1 7.1 x 10'-5 

Table S. Lifetime Constants. 

The lifetimes in diffused layers are expected to be much less than those 

given on the basis of the parameters in Table 5, for substrate material. This is due 

to the additional crystal damage resulting from Ion implantation and subsequent 
diffusion or oxidation of dopant atoms during processing. Fossurn (3.54] estimated 
a -rLOW value for his n+ diffused layers that was about 500 times less than the value P 
In Table 5. Such a reduction In lifetime Is obviously highly dependent on 
processing. This means that to be able to accurately model recombination in a 
particular device then the lifetimes should, strictly speaking, be measured from the 
device that is to be simulated, provided, of course, such a device is available. This 

presents a rather severe limitation as simulation results are often required in 
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advance of fabrication. A great deal more data is required on lifetimes in diffused 

layers and on the variation of lifetimes with processing before these limitations 

can be removed. 

Much of the simulation work reported here has been addressed to several 
bipolar devices that have been designed and fabricated as part of this project. The 

design of these devices is outlined in chapter 6. They have been characterised for 

lifetimes with the aid of the numerical model and also by experimentation. The 

collector layer of these devices is low doped making them amenable to collector 
lifetime measurement via open circuit voltage decay (OCVD) techniques [3.55]. For 

this method the base collector (p-v-n) junction is forward biased so that the v 

region becomes heavily conductivity modulated. The forward bias is then removed 

and the junction is immediately subject to open circuit conditions. The decay of 
forward voltage across the junction is measured on a cathode ray oscilloscope 
(CRO) and the collector lifetime can be calculated from the resulting rate of voltage 
decay. The circuit that was used to perform this function together with the resulting 

waveform is shown In Figure 12. 

A small signal MOS transistor was used to provide a switch with a high 

impedance off-state. The p-v-n junction is represented by the diode and a unity 

gain buffer constructed from a 741 operational amplifier was used to isolate the 

CRO. The applied bias can be altered by changing the supply voltage or series 

resistance though a single bias point should be sufficient. When the p-v-n junction 

is forward biased the hole concentration in the v region at the edge of the forward 

biased depletion region associated with the p-v junction is: 

p exp 
(qV, (3.39) 

kT 

where V, is that part of the forward voltage which falls across this junction. 

Similarly, the electron concentration in the v region at the edge of the depletion 

region near the v-n junction is: 

exp 
(q V2 

(3.40) 
kT 

where V2 is the voltage across the v-n junctiop. Upon multiplying (3.39) and (3.40) 

the following is obtained. 

q (Vl + V2) 
2 

np exp nj exp (3.41) kT( kT 

A 

where V=V, +V2. In high level operation nýepý--n _P >>N, and: 
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Figure 12. Circuit and Voltage Waveforin for Lifetime Measurement using the OCVD 

Technique. 

A( qV ) 
p n, exp 2kT 

(3.42) 

Taking the derivative of this equation with respect to time gives: 

A 
ap qA OV 

(3.43) at 2kT Pt 

Rearranging this equation and remembering expressions (3.29) and (3.32) 

gives the required result. 

A 
p 2kT 1 (3.44) Ta 

q avlat 
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The voltage waveform in Figure 12 exhibits a sudden drop in voltage prior 
to two distinct linear voltage decay ranges. The sudden fall in potential is an ohmic 

potential drop which occurs Immediately the forward bias is removed. This is 

followed by a rapid linear voltage decay giving way to a relatively slow voltage 
decay. Detailed numerical measurements have have shown that the lifetime in the 

v region can be calculated using the above technique from the slope in the less 

rapidly varying potential region (3.56] [3.57]. The initial steep slope is due to 

recombination In the end regions. As previously explained the lifetime in these 

regions is considerably shorter, and this results in a rapid reduction of the stored 

charge at the edges of the v region. Since the charge in the centre of the v region 
is relatively unaffected, large diffusion gradients are set up which result in 

diffusion of carriers into the end regions. Eventually the carrier profiles become flat 

and diffusion into the end regions can be Ignored. Carrier decay is then governed 
by recombination in the v region which has a much longer time constant giving a 

slower forward voltage decay. For the example shown in Figure 12 this condition 
does not arise until the forward voltage has dropped to 0.25v, which corresponds 
to low level conditions, where the concentration of holes in the v region is much 
less than the background donor concentration, N,. In this situation the entire 
forward voltage is dropped across the p-v junction and taking the derivative of 

equation (3.39) with respect to time gives a value for the low level lifetime that is 

exactly half the value given by (3.44). From the slope of the waveform in 

Figure 12 the collector lifetime is evaluated to be 30, us. This is an acceptable 

value, although it is an order of magnitude lower than that given by (3.38) using the 

values in Table 5. However, as previously stated these values are only valid for 

bulk material. The base lifetime has been calculated from the slope of the initial 

rapid voltage decay of the waveform in Figure 12, assuming low level injection in 

the highly doped end regions. This gives a value of 2tLs, which is expected to be 

rather high since diffusion into the end regions will tend to sustain the voltage 
dropped across the junctions. In modern day bipolar transistors operating in low 

level conditions the base recombination component of the base current is usually 

negligible as base transit times are much shorter than the base lifetime. For this 

case, therefore, the choice of base lifetime is not critical. In saturation or high level 

operation, however, the base recombination component can become significant, 

although in most cases recombination in the collector should dominate owing to 
its larger volume compared with the base. 

The emitter minority carrier lifetime has been obtained by directly 

comparing experimentally and numerically obtained current gain (hFE) values at 
low Injection levels. The transistors were found to have a hFE of 33 at a 
collector-emitter bias of 10 v and a collector current of 8 mA. A value for the hole 
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lifetime in the emitter of 165 ns was required to repeat these values with the 

numerical model. This lifetime value has been found to give acceptable current 

gains for a range of bias points. 
It has been pointed out by Adler et al. (3.58] that SRH recombination and 

band-gap narrowing are tile dominant mechanisms limiting the emitter injection 

efficiency, which for an n-type emitter is defined as the ratio of the electron current 
density to the total current density flowing across the emitter-base junction. The 

injection efficiency governs the hFE of the transistor since the base transport factor, 

which Is defined as the ratio of the electron current density leaving the base to that 

entering the base, is in general very close to unity. Band-gap narrowing was found 

to donninate the injection efficiency for shallow diffused emitters of about I prn and 
SRH recombination dominated for emitters deeper than about 4 Pm, but the effects 

of Auger recombination were negligible In all cases. Full agreement has been 

obtained with these conclusions in all simulations carried out for this project. The 

Auger lifetime given by (3.34) is much larger than the SRH lifetime within a 
diffusion length from the forward biased emitter-base depletion region on the 

emitter side. This is because the ionized Impurity density within this length is too 

low to give a significant reduction in TAUG, since the emitter impurity profile is 

diffused and not abrupt. The SRH lifetime within the diffusion length, therefore, 

governs the hole injection into the emitter together with a drift term due to 

band-gap narrowing. 
These values of lifetime have been assumed to be constant within their 

specified regions and any variations that may occur due to non-uniform impurity 

distribution have been neglected. This section completes the characterisation of 
the electrical parameters and the parameters that affect the thermal characteristics 

of a silicon device will now be considered. 

3.5 Thermal Conductivity. 

The thermal conductivity of low doped silicon and germanium has been 

measured by Glassbrenner and Slack [3.59] from 3K to melting point. From 

theoretical reasoning they found that their data could be fitted with the following 

formula. 

K(T) -1 a+bT+cT 
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where a=0.03 W-1 cm K, b=1.56 x 10-3 W-1 cm and c=1.65 x 10-6 W-1 cm K-1. 

This equation has been plotted in Figure 13 and is gives values that are within 5% 

of the data of Glassbrenner and Slack up to a temperature of 1000 K. 

In relatively pure semiconductors (< 1018 CM-3 impurities) virtually all the 

heat is conducted by phonons up to a temperature of about 600 K [3.60]. At higher 

temperatures (> 1000 K) photons, electron-hole pairs and the electrons and holes 

themselves make a significant contribution to heat conduction. As the temperature 

is raised above the Debye temperature considerable numbers of carriers are 

generated and the thermal conductivity due to electron-hole pairs (ambipolar 

diffusion) Is the same order of magnitude as the phonon thermal conductivity 

[3.58]. 
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Figure 13. Thermal Conductivity of Silicon from 300K to Melting Point. 
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The thermal conductivity of highly doped silicon (> 1019 CM-3) is found to 

be approximately 20% less than for pure material despite the larger number of 

carriers that are available for transporting heat. Theory indicates that the thermal 

conductivity is decreased as a result of carrier-phonon scattering. However, owing 
to the lack of available information on this subject the effects of heavy doping on 

thermal conductivity has been omitted from the numerical model. 
The headers of the devices under consideration are made of mild steel. In 

metals heat is conducted primarily by electrons and the thermal conductivity is a 
much weaker function of temperature. Mild steel has a thermal conductivity of 
0.45 IN cm-1 K-1 at room temperature and this value has been assumed to be 
independent of temperature for the purposes of modelling. The specific heat 

capacity, c and density, p of both silicon and steel are also weak functions of 
temperature and have been assigned the constant values given in Table 6. 

c 
(J Kg-I K-1) 

p 
(Kg CM-3) 

silicon 703 2.328 x 10-3 

steel 460 7.884 x 10-3 

Table 6. Specific Heat and Density of Silicon 

and Mild Steel. 

3.6 Heat Generation 

A model for heat generation which is physically very sound has been 

suggested by Adler [3.61]. 

EE 
div( qc 

Yn, + --, v- Yp) (3.46) 

where the band edges Ec and Ev are In Joules. Expanding the 'div' operator gives: 

in p ý_. grad Ec + 
ý- 

grad Ev + RE (3.47) q9 

where R is the recombination/generation rate and Eg is the band-gap energy in 

Joules. Without any loss of accuracy equation (3.47) can be converted to a form 

more suitable for computer implementation which is given by: 
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Jn-E, + Jp. Ep +R Eg (3.48) 

where En and Ep are given by equations (2.71). The last term in this equation takes 

account of the heat gained or lost when carriers recombine or when they are 

generated. 
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Chapter 4. Discretization Of The Governing 

Equations. 

In general the system of partial differential equations that govern device 

operation cannot be solved by analytical methods. Only a limited number of 
special types of elliptic equations have been solved analytically; these solutions 
being restricted to problems Involving domains with simple shapes and boundary 

conditions that can be easily satisfied. In most cases, therefore, a solution must 
be sought using numerical methods. 

The major difference between analytical and numerical methods lies in the 

underlying assumptions which have to be made in both methods. Assumptions in 

analytical approaches are usually made on the basis of some prior knowledge of 
device operation. The numerical approach, however, is to solve a set of discrete 

equations, which Is itself an approximation to the governing equations. A solution 

can be calculated without having to make many prior assumptions of device 

operation. This makes It superior for solving complex problems, where an 

analytical approach would require many over-simplifying assumptions. 
A solution to a problem using numerical methods involves essentially two 

stages. Firstly, the domain must be partitioned Into a number of subdomains. The 

differential equations are then approximated within each of the subdomains by 

algebraic equations. This stage serves to reduce the continuous problem Into one 

which involves only values of the continuous dependent variables (ý^p, T) at 
discrete points in the domain, and is called the discretization stage. Secondly, the 

resulting system of algebraic equations, which is In general non-linear must be 

solved for the discrete dependent variables. This stage will be treated separately 
in Chapter 5. 

Discretization of the governing equations is most commonly achieved using 
either finite difference (4.1] or finite element [4.2] methods. The difference method 
uses a local approximation to the differential operator, whereas the finite element 

method applies a collection of shape functions as trial functions to approximate the 

solution globally. The finite difference method has be chosen for use in preference 
to the finite element method as it has a number of advantages. Firstly, the 
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formulation of the difference method is better - establ is lied, moreover it has been 

adapted especially to suit the semiconductor problem. Secondly, calculation of a 
desired set of algebraic equations requires -significantly less effort by the 
difference method. Finally, a problem arises when the-finite element method is 

applied to the continuity equations [4.3]. This is due to the difficulty of fitting shape 
functions, which are represented by low order polynomials, to the exponentially 
varying carrier concentrations. The finite element method does, however, have 
the advantage that it allows more efficient partitioning of the domain into 

sub-domains. This results in a smaller set of equations than would be obtained 
with an equally accurate difference method. Less effort would then be required in 

solving this reduced set of equations. However, this saving is somewhat offset by 
the greater effort required to obtain the discrete approximation by the finite 

element method in the first place. 

4.1 Discretization Of The Static Equations. 

Initially the discretization of the static equations, only, will be considered. 
These equations describe device operation for the case where the boundary 

conditions for electrostatic potential are made time invariant, and are obtained 
from the governing equations by setting tile partial derivatives of the carrier 
concentrations and temperature with respect to time to zero, thus: 

q div grad ý+ (NO - NA +p- n) =0 (4.1) 
, sil 

q divJ,, -R=O (4.2) 

q 
divJp+R=O (4.3) 

div K(7) grad T+Q=0 (4.4) 

Discretization of these equations will now be carried out using both 

carteslan and cylindrical co-ordinate systems. 

4.1.1 Cartesian Co-ordinates. 

Only two orthogonal space dimensions will be considered. A third 
dimension can be added by simply extending the two dimensional formulation. 
The three dimensional problem, however, will not be considered as it results in 
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an extremely large set of algebraic equations, the solution of which requires 
computational resources well beyond those available at present. In many 
semiconductor devices (eg. interdigitated structures) current flow, electrostatic 
potential and temperature vary only in two dimensions over much of the device. 
Operation of these devices can, therefore, be accurately modelled using two space 
dimensions only. 

The first stage towards a solution using the classical method of finite 
differences is to generate a mesh, which is a series of mesh lines drawn parallel 
to the co-ordinate axes. For example, if NX lines are drawn parallel to the y-axis 
and NY lines parallel to the x-axis, such that the first and last lines coincide with 
the boundaries of the domain, then the resulting mesh will have NX. NY points of 
intersection. These points are usually called nodes or mesh points. A typical 
mesh for the example problem is shown in Figure 14. Discretization will be 

performed using the classical five point method and the nomenclature to be used 
throughout is given in Figure 15. 

Taylors theorem provides the basis for all difference equations and it states 
that if a function, u and its derivatives are single valued, finite and continuous 
functions of x and y, then: 

4 
+ 

hj2 3 

_ýLu + 
h, a3u Iu 11 

+O(h 
5) 

u, +,, ýu, j+h, 
au It 

+ -L -2ý- ax 21 (qX2 1 31 aX3 j 41 aX4 i 

(4.5) 

, au 1 hiýI a2 h33 17j4-1 a4U , 
uj-, jý uij - hi ,ou1- 

1-1 -ýýu +- -+ O(h 5) 
- ax ij 

+ 2-1 aX2 ij 3! axa 

1 

ij 41 (9X4 id 

(4.6) 

24 

+ 
au u a3u ,ju 5) 

Uij+I ý uij + kl 
Au li 

+1 + -L -ýL 
1+ 

O(k' 
Dy 

1 

ij 21 ay2 1 3! ay3 1 41 ay4 

(4.7) 

ý3 4 kjýj j_1 j2! U _I _! 
fu u U/J-1 = uj - kj-, oy -ý! - 

Ili 
+ O(k) 

ou 
21 oY2 j- 31 OY3 41 OY4 

(4.8) 

Discretization Is carried out by the simple application of these series to the 

continuous problem. Initially, only the Inner points (I <i< NX, I <j <NY) will be 

considered, and the boundary conditions will be treated in a later section. Each of 
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Figure 15. The Five Point Molecule: Showing the adopted nomenclature for the finite 

difference method. 

the partial differential equations will be treated separately, beginning with the 

Poisson equation. 

4.1.1.1 Discretization of the Poisson Equation 

Expansion of the 'div' and 'grad' operators in the Poisson equation (4.1) 

results in: 

a V/ 
++q (NO-NA+p-n)=O (4.9) 

ax 2 ay rsil 
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The partial derivatives can now be represented at each of the inner points 
using the Taylor series expansions. Eliminating the first order derivatives from 

series' (4.5) and (4.6) and Ignoring terms of fifth and higher order gives: 

V/i+lj - V/ij VIIJ - 01-ij 

o2o hi hi-I 
(4.10) 

CIX 2 
lij- 

0.5 (hi-I + h) + Tqxij 

The local truncation error, Tqxlj is given by: 

hi-I - h, a3o I (hi - hi-1)2 + hi-I hi a4o 
Tq, xlj ý3 ax 3 Ij 12 ax 4 

The local truncation error is the difference between the exact value of the 

second derivative at (ij) and its discrete approximation. Here it is seen that for a 
uniform mesh the truncation error is proportional to the square of the mesh 
spacing, weighted with the fourth order partial derivative. However, a much finer 

mesh would be required to define the electrostatic potential in regions where it 

varies rapidly, compared to that required In regions of slowly varying potential. 
Hence, the use of a strongly non-uniform mesh is often obligatory. A truncation 

error which Is of first order In mesh spacing weighted with the third order 
derivative is, therefore, the best that can be achieved. 

Similarly, for the derivatives parallel to the y-axis, elimination of the first 

order derivatives from (4.7) and (4.8) results In: 

011+1 - vili viii - Oli-I 

020 kj kj-l 
+ T4, 

yij 
(4.12) 

Oy 2 Ij 0.5 (kj-l + kj) 

where, 

kj a3q k 
-1 - kj /I (kj - J_1)2 + kj_lkj a4o 

(4.13) Tq, yij ý= 3 ay 3 Ij 12 cly 4 
lij 

The final discrete form of the Poisson equation is obtained by substituting 

I equations (4.10) and (4.12) Into equation (4.9), thus: 

01+1j - oli Oli - 01-ii oij+i - oij oij - OIJ-1 

h, 
0.5 (h, 

hi-I 
-+- 

kj 
0.5 (kj 

kj-i 
(4.14) 

-1 
+ hi) 

-1 
+ kj) 

Tqxj + Tqylj + -I- (ND, NA,,, - nij + pij) esit 

-77- 



Collecting all terms in the discrete potentials and ignoring the local 

truncation error results in the following equation, which is more suitable for 

computer implementation. 

AijOij-, +BijVii-lj+CljOij+Dijqli+lj+E, jVilj+, + C7 (NDj-NA, 
J-nij+pij)=O Esil 

(4.15) 

The coefficients of the discrete potentials are given by: 

Aij - kj-, (kj 
21+ 

kj) 
(4.16) 

BIJ -2+ h) 
(4.17) 

Dij - h, (h, 
2 

-1 

Ejj - kj(ki 
2 (4.19) 

-1 
+ kj) 

CIj =- (Aij + Bij + Dij + Ejj) (4.20) 

This completes treatment of the Polsson equation. It remains to note that 
the discrete Laplace equation Is obtained by simply equating the space charge 
term in equation (4.15) to zero. 

4.1.1.2 Discretization of the Continuity Equations. 

Initially, consideration will be given to finding discrete approximations to 
the carrier transport equations, (2.41) and (2.42). The desired result will then be 

obtained by substituting these approximations into discrete versions of the 

continuity equations, (4.2) and (4.3). 
The formulation that has been adopted for the discretization of the transport 

equations was first suggested by Scharfetter and Gummel [4.4], and has since 
been extended to Include the effects of temperature gradients by McAndrew et. 
al. (4.5]. This formulation has become the very foundation for all accurate 
numerical solutions of the semiconductor problem, and it has been used to good 
effect by many workers in the past eg. [4.6], [4.7]. It gains tremendous advantages 
over conventional discretization schemes, because the assumptions made in its 
derivation have been chosen to reflect the physics of carrier transport in 

semiconductors. The main assumption being made is that the components of the 
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electron and hole current densities parallel to the x and y axes are conserved 

along the line between adjacent mesh points. This is equivalent to assuming that 
both recombination/generation processes and divergence of current are negligible 
between adjacent mesh points. The resulting formulae predict an exponential 

variation of the carrier concentrations between mesh points. This, therefore, gives 

a very good representation of the distribution of carriers in regions of particular 
interest and importance, for example in diffused layer regions and in the vicinity 
of forward biased junctions. Conventional discretization schemes, that assume a 
linear variation of carrier concentration between mesh points, are at a distinct 

disadvantage, as they would require a much finer mesh in order to resolve the 

concentrations to the same accuracy. 
Only the electron transport equation will be treated as the procedure for 

holes is completely analogous. However, results for both electrons and holes will 
be given for completeness. Firstly, the current density between two mesh points 
is approximated by the following truncated Taylor expansions. 

inx(x C- Ixi, Xwl, Yj) ý Jn + X-Xj- 
±i ) OJnx 1 (4.21) ý41/2j 

(2 

ax 1+1/2j 

Jny(xl, Yc-1YpYj+il)ýJnyjj, j12+ Y-Yj- 
Li ) 

_LJny 
1 

(4.22) 
2 ay lj+112 

Similar expressions can be written for the current densities in the intervals, 
(x e [x, 

-,, xj, yj) and (xi, ye [y, 
-,, yj]) . 

Substitution of equation (4.21) into the electron transport equation, (2.41), 

for example, yields the following relation for the electron concentration in the- 

... interval(xc-[xi, x�1], yj). 

an 00n 
+ 

k' aT j '(x Jnx I k Tiln ax - qllnn N-T fLnn ax = nx,,,, 2, j +- xi - 
L2i ýa-x 

/2, j 
(4.23) 

Here the Einstein relation, (2.39) Is assumed to hold for -the diffusion 

coefficient and mobility and the thermal diffusion coefficient, DT A has been assumed 
to be given by Dnl(2T). In the Initial treatment the last term in equation (4.23) will 
be omitted. The equation can then be written in the form stated by McAndrew et. 

al. [4.5], which Is suitable for solving. 

a(nT) T-q 4n , Jnxi+il2, 
j .- --L -2. 

T + (0) 
kPn (4.24) ox 

( 
2T ax- a, ý 

) 
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A number of assumptions must be made before a solution can be sought. 
Firstly, the partial derivative of the electrostatic potential must be assumed to be 

constant in the interval under consideration. This assumption has already been 

invoked In the discretization of the Poisson equation. Similarly, the partial 
derivative of the electron temperature must also be assumed to be constant. As 

will be seen in section 4.1.1.3 this is consistent with the assumptions to be made 
in the discretization of the heat flow equation. Finally, the carrier mobility must 

also be assumed to be constant along the path of integration. Having made these 

assumptions the equation becomes a first order non-honnogenous partial 
differential equation in the variable (nT) with a single parameter, J ni+ 1 /2, J' 

It can be 

solved subject to the following boundary conditions. 

n(xi, yj) = nip T(x,, y) = Tij (4.25) 

n(x, +,, yj) = n, +,.,. T(x, +,, yj) = Ti+lj (4.26) 

Following the usual solution procedure for such an equation the integrating 

factor is calculated, thus: 

I. F. = exp __L 
OT 

_ý 
q 

_ýo ax (4.27) 
( 

2T ax kT ax 
)I 

The subscript Of '11n has been ornitted at this stage, in order to preserve 
clarity. It must be noted that In the treatment of tile electron transport equation all 
occurrences of q1 should, therefore, be replaced by On, and similarly in the 
treatment of the hole transport equation, all occurrences of i// should be replaced 
by 0,,. Application of tile chain rule to equation (4.27) gives: 

I. F. = exp 
f 

_LIT 
NY ax 49T (4.27) ox 2TkjTT 

Since 
ao 

and -ý-T have been assumed to be constant then: 0x (I x 

T 

where the exponent, E Is given by: 

(4.29) 

Iq0 E=--T-T - (4.30) 0T 
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Equation (4.24) Is then multiplied throughout by its integrating factor, giving: 

O(nT E+) 

- 

Jnxi,,,,, 
j TE (4.31) Ox k pn,,, 

12, j 

Separating the variables and Integrating results in: 

a(nT E+l) 
= 

Jnx, 
+i, 2,, ax TEaT (4.32) k ýIni+112, 

j aT 

Carrying out the Integration results in: 

nT 
E+l 

= 

Jnxi, 
112, j Ox T E+l 

+c (4.33) FT "E +1 

The parameter, JnXI+1124 and the constant of integration, C may be found by 

substituting the boundary conditions, (4.25) and (4.26) Into equation (4.33), and then 

solving the resulting pair of equations. Following this procedure results in: 

i 
li"1+112.1 

1+, jB(F(ýl+Ij, ýij, TI+lj, Tij» - ni, B{F(ý�, ý�1� Tlj, TI+lj») nxi+, 12,1 hiL(Tlj, Ti. 1j) 
(n 

(4.34) 

and, 

c 
n, +,, nij 

exp 
F(oi+lj, 01j, Tj+jj, Tj) 10geT, +Ij 

exp 
F(01+lj, Viij, Tj+jj, TO 10geTli I 

10ge(Twiffli) 

II 

loge(Tj+jj/Tjj) 

I 

(4.35) 

where the Bernoulli function, B and the functions F and L are given by: 

B(X) =x (4.36) 
exp x -I 

F(01,029 Tis TO 
T2 - TI q (02 - 01) L(TI, T2) (4.37) 2k 

L(TI, T2) = 
loge(T2/Ti) 

(4.38) 
T2 - TI 
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Substituting for Jnx,, 
1,24 and C in equation (4.33) gives the desired solution 

for the electron concentration, which is: 

n(x e [x� x�, ], yj) = nij + G(x, 0,7) (ni+Ij - njj) (4.39) 

where the growth function, G(x, 0, T) is given by, 

G(x, 0, T) = 

I- expi F(01+1,, V11j, Tj+jj, Tj) 
log, (l + (TI+Ij - Tij)(x - xi)ITI, h, ) 

log, (Ti+lj/Tij) 

I 

1- exp(F(O, +,,, 01j, Ti+lj, Tj)) 

(4.40) 

A fully analogous treatment of the hole transport equation results in: 

P(x e Exp x, +, ], yj) = pij + G(x, - ýJ) (pi+lj - pij) (4.41) 

The growth function is plotted in Figure 16 and Figure 17 in a normallsed 
interval for different values of (Vli+lj - ql1j), T, +, j and Tjj. The shape of the growth 
function arises as a direct consequence of the condition of constant current 
density Imposed In the derivation. Since the diffusion gradient of the carrier 
concentrations Is given by the gradient of the growth function it is evident the 

growth function reduces to a simple linear function if the field and temperature 

gradient are zero. 
If the previous calculation is performed without omitting the last term in 

equation (4.23) then an additional term must be included on the right hand side of 
equation (4.34) for the internodal current density. This term is given by: 

Tni+112, 
j ý hi 

0.5 - T1+1 jl(Ti+l j- Tij + F(qlij, 01+1 j, Tij, Tj+j j)IL(Tij, Tj+j j)) (4.42) 
1 

exp[F(01+1,, qjjj, Ti+lj, Tj)) -1 

0.5 + Tljl(Ti+lj - Tij + F(Olp Oi+lj, Tip Ti+lj)IL(Tfj, Tj+jj)) I aJnx 

exp[F(oij, 0, +lj, Tij, Ti+lj)) -1 OX 1+1/2j 

The bracketted term In equation (4.42) has been plotted in Figure 18 
against (0, +,, - 01, ) for various combinations of temperature. It may be seen that 
the absolute value of T,, 

+, 12,, never exceeds 0.5. Thus at worst, the truncation error 
is of first order in mesh spacing weighted with the first derivative of the current 
density. 

The equation for the vertical component of the electron current density in 
the interval (xj, y e [yj, y, -,, 

]) can now be written by simply adusting equation (4.34), 
thus: 
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IF 
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(x-xi)/hi 

Figure 16. The Growth Function: Plotted in a normalised interval for various values of 

(01+ Ij - 4,11, J) - 

gn,,, +112 (n, 
j+jB(F(ýjj+j, qllj, Tlj+,, Tj)) - nijB(F(Oij, Oij+,, Tij, Tij+, ))) Jny,, 

1,1/2 kjL(Tij, Tij+, ) 

(4.43) 
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Figure 17. The Growth Function: Plotted in a normalised interval for various values of 
(I///+ I'l - 4/1, J) - 

The corresponding hole current density components may be calculated by 

treating the hole transport equation (2.42) in exactly the same way. These 

components are given by: 

JPXI 
ý 112,1 - 

iip, +, 12'j (p, jB[F(411+lj, 411j, Tij, Ti+,, j)) - pi+,, IB[F(41, j, 
41j+1j, Tj+jj, Tij))) (4.44) h, L(T, j, Tl+lj) 
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Figure 18. Modulus of the bracketted term In equation (4.42): It can be seen that its value 
never exceeds 0.5. 

k, u, p,,,.,,, (p, 
jB [F(Oij+,, qllj, Tij, Tij+, )) - Pjj+j B [F(Oij, Oij+i, Tij+,, Tj))) JPY'441/2 - kjL(Tij, Tij+, ) 

(4.45) 

In order to discretize the continuity equations, (4.2) and (4.3), the 'div' 

operator must first be expanded, thus: 

aJnx 
+ 

aJny 

R=0 (4.46) 
ax ay 

) 

ajpx 
+ 

"JPY 
+R=0 (4.47) 

ax ay 
) 

Tj, j=300K, Ti+j j=300K 
---- Ti j =350K, Ti+l, 'j---300K 

.......... Ti: j=400K, Ti+j j=400K 
Ti, j=400K, Ti+l: j=450K 

111111ir 111111111 1 lilt 

V/ 
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Discretized versions of the partial derivatives may be obtained by, firstly 

writing Taylor series' for the x and y directed current densities at the central node 
(Q). This stage is similar to that outlined in the discretization of the Poisson 

equation (cf. (4.5) to (4.8)). However, rather than eliminate the first order 
derivatives as was done in the Poisson equation, here, the current densities at the 

central node are eliminated. The following relations are subsequently obtained. 

OJnx I- Jnxi, 
112,1 - Jnx, 

-i,,, + 
hi-I - h, a2 Jnx 

(4.48) 
ax Ij 0.5(hi + hi-1) 4 

ax, 
OJny JnYIJ1112 

- 
jt7yij-1/2 

+ 
kj-, - kj a2jny 

(4.49) 
ay 

11j= 
0.5(k, + kj-, ) -4 ay 21 ij 

The discrete version of the continuity equation for electrons is obtained by 

adding (4.48) to (4.49) and substituting the result into equation (4.46). By ignoring 

the second term in equations (4.48) and (4.49) the following relation is obtained. 

2( Jnxi, 
112J - Jnx, 

-112j + 
Jnyj+,,, - Jnyl, 

-I Rij =0 (4.50) T hi + hi-, kj + ki-I 

Similarly for holes, 

2 
JPXi+il2j - JPXi-112J 

+j 
PYIJ+1/2 - JPyij-112 

+ Rij 0 (4.51) V( hi + hi-, ki + kj-l 

Substituting tile discretized current transport equations (eg. (4.34) and 
(4.43)) into equation (4.50), and collecting all the terms in tile discrete electron 

concentrations results in the final discrete version of the electron continuity 

equation, which is given by: 

FIj n, j-, + Gjj nj-, ,+ Hij nij + lij n, +, j+ Lij nij+l - Rij =0 (4.52) 

where, 

-1, 
q 2k it,, J_112 

B[F(oij vij, TIJ-1, TO) 
FIj -q L(Tij-1, Tj) kj-, (kj + kj-, ) 

(4.53) 

2k B(F(Oi lij, TI-Ii, TO) 
GIj - 

Pni-112J 
-1j, 

V, 
(4.54) 

q L(Ti-Ij, Tj) hi-I (h, + hi-i) 
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-2 k tun, j-11, 
B(F(ýjj, Oij-1, Tij, Tlj-, )} 

Hij q L(Tij-1, Tij) kj-l (ki + kj-i) 

lln, 
-,,,, 

B[F(Oij, Oi-Ij, Tij, Ti-1j)) 

L(TI-Ij, Tij) hi-, (h, + hi-1) 

lln,, 1,2,1 
B[F(Oij, Oi+lj, Tip Ti+lj)} 

L(Tij, Tj+, j) hi (h, + hi-1) 

+ 
ttnij+1,2 B [F(Viij, Vlij+i, Tij, Tij+, )} 

L(Tij, Tij+, ) kj (kj + ki-1) 

lij = 
2k ýtn14 

1/2j 13(F(qij+jj, Oij, Ti+lj, Tj)) 

q L(Tij, Tj+jj) hi (h, + hi-1) 

Lij = 
2kp,, 

J, 112 
B[F(Olj+,, 01j, Tlj+,, Tjj)} 

q L(Tij, Tij+, ) kj (kj + kj-, ) 

(4.55) 

(4.56) 

(4.57) 

A similar treatment of the hole continuity equation (4.51) results in the 
following equation In the discrete hole concentration v,. Iues. 

Mijpij-l + Wijpi-lj+ Xijpij+Sljpi+lj+ Uijpij+i + Rjj= 0 (4.58) 

where, 

MIJ = 
-2k 'IP/J--1/2 B(F(Oij, Vij-,, Tij-1, Tij)) 

(4.59) 
q L(Tij-1, Tj) ki-I (kj + kj-, ) 

Wli = 
-2 k pp, 

_112,1 
B( F(Oij, Vil-, j, TI-i j, Tjj)} 

(4.60) 
q L(TI-Ij, TI) hi-, (hi + hi-1) 

2k x1j =q( 

+ 

APIJA12 B(F(qijj-j, Viij, Tij, Tij_, )} 

L(Tij-1, Tj) kj-, (k, + kj_, ) 

llPi-112J B(F(ol-Ij, V11j, Tij, Ti_ij)} 
L(Tl-lj, Tj) hi-I (hi + hi-1) 

(4.61) 
'UPi+112J 

B[F(01+lj, 01j, Tij, Ti+lj)) 

L(Tij, Ti+lj) hi (hi + hi-1) 
IIPIJ+1/2 B[F(Oij+,, 01j, Tip Tij+i)} 

L(Tjj, Tij+, ) kj (kj + ki-1) 

-L 

stj = 
-2 k PPI 11 12J 

B[F(oij, 01+1j, Ti+lj, Tij)) 

q L(Tij, Ti+lj) h, (hi + hi-1) (4.62) 
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Uli - 
-2 k 

'UPii41/2 13 {F(ýij, ý, rij+� Tij+� Tiß 
(4.63) 

q L(Tij, Tii+1) kj (kj + kl-1) 

The discrete continuity equations have a local truncation error that is 
dependent upon the local variations in potential, temperature and current density. 
It is, therefore, desirable to increase the mesh density in regions where these 

quantities are expected to be significant. Since the absolute value of the bracketed 
term in equation (4.42) never exceeds 0.5, then the truncation error must obey the 
following inequality. 

h, 
T I6Jn I hi-, OJn 
n, < 71 Th -1 

1 ax 1+1 /2j 

1 

+ hi + hi ax 1-1 /2j 

kj aJn ki-I oin I 
(4.64) 

+ kj + kj-i ay /j+1/2 

1 

+ kj + kj-l ay Q-1/2 

4.1.1.3 Discretization of the Heat Flow Equation. 

The heat flow equation is treated in a similar way as the Poisson equation. 
Firstly, the 'div' and 'grad' operators in equation (4.4) are expanded to give: 

a K(7) aT 
+0 K(7) aT 

+Q=0 (4.65) ax, 
( 

ax 
) 

ay 
( 

49Y 

) 

Initially, consideration will be given to the first term in this equation. The 

outer, first order partial derivative is replaced using: 

au UI+l 12j - Ui-1 12j 
+ 

hj-, - hi a2U 
(4.66) ax 

1 
ij 0.5 (hi + hi-1) 4 ax 21 li 

This gives: 

Kg1 j+112J - KI-112j 
aX 4112j aX 1-112j 'a (K(7) aT )1= 

ax (3x ij 0.5 (hi + hi-1) (4.67) 

+ 
hi-, - hi a22 (K(T) aT 

ij 4 ax ax 

The mid-interval derivatives with respect to temperature are given by: 

aT I T/+1 i- T/i 
aX I+i/2j hi 

2 
a3 hi T (4.68) 24 aX3 i+1/2j 
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aT T/i - Ti-I h23 i-i aT 11-112J 

ax 1-1 /2j hi-, 24 aX3 

Substitution into equation (4.67) results in: 

0 (K(7) OT )I 

ij WX ax 

Ki+112J 
(T, +l i- TO 

- Ki-112J 
(TIJ - T, 

-, 
h, hi-I 

0.5 (hi + hi-1) 

(4.69) 

+ TT,,,, (4.70) 

This relation is then substituted into equation (4.65) together with the 

corresponding relation for the partial derivatives in the y-direction. Upon 

collection of all the terms in the discrete temperatures, the required result is 

obtained as follows. 

Tl Ij Tlj-l + T2, j TI-1 j+ T3, j Tij + T4ij Tj+j j+ T5jj Tjj+j + Qjj =0 

where the coefficients are given by: 

') k' 

TI Ij -- kj 
-- 

-I 
(kj + kj-, ) 

T2, j 
2 Ki-1/2j 

hi-, (h, + hi-1) 

0 k' 
- 

T4, j hi(hi + hi-1) 

13 k, 

T5jj -- WW fý 
kj(kj + kj-, ) 

T3, j =- (TI Ij + T2jj + T4, j + T5jj) 

The local truncation error is given by: 

Ki h2 
-112J 1-1 a3 T Kh2 a3 i+1/2j iT 

TTIJ - 12 (hi + hi-1) aX3 112J i- (hi + hi-1) aX3 _ýj 12J 

+ 
hi-, - h, a2 

K(T) aT 
2 

+ 
KIJ-1/2 k; 

1 a3 T 1 

492 ax 12 (kj + kj-, ) aY3 IJ-1 /2 

Klj+112 kj 2 
a3 T kj-i - kj 02 ýT 

12 (kj + kj-, ) + 
aY3 lj+112 

(K( 
4 ay 2 7) - tj ay 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 
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The truncation of error of the heat flow equation is of first order in the mesh 
spacing multiplied with the third order temperature derivative. This is true 

regardless of whether the mesh points are uniformly or non-uniformly spaced, 
which is in contrast to the case for tile Poisson equation ( cf. (4.11), (4.13) ) and 
may be attributed to the temperature dependent thermal conductivity. 

4.1.1.4 Discretization of the Boundary Conditions. 

Having treated the governing equations at all the inner mesh points, 
attention will now turned to the points which coincide with the boundaries of the 
domain. Firstly the Dirichlet boundary condition is considered. It is a simple 
matter to obtain the discrete form of this condition since only values at the central 
node (Q) are involved. Equations (2.77), (2.78) and (2.79) are simply written at each 
node as follows. 

oij = VlAij + ýbjj (4.78) 

if Njj >0 then: 

22 

n� - 

ý% +4 nieij + Nii 
(4.79) 

2 

Pij nij 

else: 

(4.80) 

22 

Pij 

ýNjj 
+ 

-4n,,,, 
- Nij 

2 

2 
ni,,., 

nij = pij (4.82) 

This technique to obtain the discrete electron and hole concentrations is 

preferable to directly applying (2.77) and (2.78) to each node as it avoids any 
inherent problems associated with numerical round off and cancellation. For-the 

example shown in fig. (4.1) the built-in potential and applied potential at each node 
of the various contacts, assuming an n-p-n transistor are as follows. 

k TI, 6 n,,, 
bEc (4.83) Emitter (1 :! ý i 10,4:! ýj 6), Ve, VJb,, ý -q 10ge 
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ýU'1,6 1 po 
+ 6E, (4.84) Base (17:!! ý/! ý22,4s-j-: 56), ýAjjýVb, Objjý- 

q 
loge 

(I 

i's 

Collector (1 !! g i:! ý. 34, j = 26), Ij ( nij 
bEc,, (4.85) qlAij Vc, qfbij 

ý 
'qT 

loge nji, 

In the case of the emitter and base contacts the built-in potentials are 
calculated using the values of n, p, T, (5EC and bEv at j=6 since this row is the 

upper boundary for the solution of the current continuity and heat flow equations. 
The carrier concentrations at these contacts, given by equations (4.79) to (4.82), 

need only be calculated, therefore, at j=6. 

As an example of the discretisation of the Neumann boundary condition 
(eg. (2.82), (2.83) and (2.88)), the boundary A-D (ie. i=1,1 ! ýj: &' 26) will be 

considered, as all the governing equations must obey this condition along this 
boundary. In this instance the unit normal vector is parallel to the x axis and the 

equations evaluate to: 

aý 
= (4.86) -57 1 

li 
Jnxij ý0 (4.87) 

j ; 3x"j =0 (4.88) 

OT I 
tj 

=0 (4.89) TX 

For the case of the electrostatic potential discretization is most simply 

performed by rewriting the Taylor series (4.5) In terms of 0 and setting the first 

order derivative to zero (cf. (4.86)). The resulting equation for the second order 
differential becomes, 

a2o 2 (qii+lj - Oij) h, a3o 
(4.90) 

a 
-i.. 

I12 
-ýX3 

I 

Ij xJ hi 

This equation is then substituted Into the Polsson equation, (4.9) in place 

of equation (4.10). The coefficients Bij and Djj of the discrete Poisson equation, 
(4.15) now become: 

BIJ =0 (4.91) 
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Di. 1 
2 
h, 2 (4.92) 

The coefficients A, j, Ej, and Cjj are given once again by (4.16), (4.19) and 

(4.20) respectively. It may be noted from equation (4.90) that the local truncation 

error of the discrete Neumann condition is of the same order of magnitude as that 

of the discrete Poisson equation at the inner mesh points. Thus, accuracy is 

maintained. Derivation of the discrete boundary conditions of the remaining 

equations is achieved by utilising ail extremely effective technique called 'mirror 

imaging'. Firstly, the following interpolation formula, for a uniform mesh 
(hi = h, 

-, 
) is obtained from Taylor series'. 

UQ - 
Ui+l 12j + tii-1 12j 

--- 
1) 12 a2U 1 

ij 
(4.93) 

2 -8 -7x i- 

If the quantities J, x, and -ý-T are successively substituted for u in (4.93), jpy ax 
then, bearing in mind the boundary conditions, (4.87) to (4.89), the following 

relations are obtained: 

i+ (4.94) Jnxi 
-112, j nx, 1,12J 4 aX2 

2 h a2j 
pX j -j + (4.95) pxi 1/2j pxi 1/2, j 4 ax 2 

2 
a2 

Ki 
aT T+ hi 

K(T) 
aT (4.96) 

-1 /2j = -Ki+112J -L- 
I)I 

ax i-112J (I xW 12. j 4 aX2 ax ij 

Although the quantities defined by (4.94) to (4.96) lie outside the solution 
domain, they can now be used to provide the discrete boundary conditions, which 

will have truncation errors of the same order as the corresponding discrete 

approximations at the inner points. If (4.94) is substituted into (4.50), (4.95) into 

(4.51) and (4.96) Into (4.67), then the following approximations are obtained. 

2 
_4_ 

J'7y,,,, 
12-Jny,, -,,, Rij =0 (4.97) V hi kj + kj-l 

2(+ 
JPYI, 

jf 112 - 
JPyi, 

j -112 + Rij =0 (4.98) 7 h, /(, 4 kj-l 
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KI+112J aT 
aX 

11+1/2j 

hi 

KgI aT 
jj+112 a; - Kjj ay /j+1/2 -1/2 ax Q-1 12 

kj + kj-l 

) 

Qij = 

(4.99) 

The desired result is then obtained by substituting the discrete 

approximations for inter-nodal current densities and temperature gradients into 

these equations. in the case of electron current current continuity, the coefficients 
FIj and Ljj are unchanged from their values given by (4.53) and (4.57). However, the 

remaining coefficients now become: 

Gjj =0 (4.100) 

-2k 
ýInlj-112 B[F(Vlij, Oij-1, Tij, Tij-1)) 

Hij ý -q L(Tjj-j, Tj) kj-, (kj + kj-, ) 

+ 

pni+112J B [F(Oij, 01+1 j, Tip Tj+j j)) (4.101) 2 L(Tij, Tj+jj) hi 

+ 
Pnij+112 B[F(Oij, Oij+,, Tij, Tij+i)) 

L(Tij, Tlj+, ) k, (kj + kj-, ) 

2k 'Uf? i. 4-1/2j 
B[F(Vfi+lj, 01j, T1+1j, Tj)) 

(4.102) 2 
q L(Tjj, T1+1j) h, 

For hole current continuity Mij and Ujj are given by (4.59) and (4.63) 

respectively, and: 

X/i = 

wj4 =0 (4.103) 

2k Pij-i/2 B(F(Olj-,, V11j, T1j, Tij-1)) 

qý L(Tij-1, Tj) kj-, (kj + kj-, ) 

+ 
ýIA+112J B(F(ýj+jj, ýjj, Tip Ti+lj)) 

L(Tij, Tj+jj) hj2 

+ 
14pij+II2 B(F(ýjj+j, 01j, Tij, Tij+, )) 

L(Tij, Tlj+, ) kj (kj + kj-, ) 

SIJ - 
-2 k 91+1 12J B [F(Oij, Oj+j j, Tj+j j, Tij)) 

q L(Tij, Ti+lj) hi 

(4.104) 

(4.105) 
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In the case of the discrete Heat Flow equation, (4.711) the coefficients 
T11j, T3, j and T5jj are given once again by (4.72), (4.76) and (4.75) respectively. 
However, T2jj and T4jj now become: 

T2, j =0 (4.106) 

T4jj =2 
KI+112J 

(4.107) 2 hi 

In order to obtain the discrete Poisson equation at the silicon-silicon 
dioxide interface G-L (12:! 9/: 916, j=6) and K-N (23:! 9i_<ý34, J=6), Gauss' law 

must be taken into account. For a mesh point at this interface the unit normal 

vector is parallel to the y-axis and Gauss' law (2.86) states that: 

eý 1-9 12-1 
= Qi, t (4.108) flox ay OXIJ 

Ist ay silii 

By substituting 0 for u in the Taylor series (4.8) the following discrete 

representation for the potential gradient in the silicon dioxide is obtained. 

Do I= 0/i - oli-i 
+ 

kj-l 020 1 kj2 1 030 1 (4.109) TY 
oxij kj-j 2 -iy--2 

0,, j 
6 aY3 oxij 

Similarly from series (4.7) the potential gradient in the silicon is obtained. 

a2o 12 
3o 

00 Oij+l - qIIJ kj kj a1 
ay silij kj 2 aY2 6 ay 3 siljj 

The quantities defined by (4.109) and (4.110) are now substituted into (4.108) 

to give: 

to, kj-l 
a'O I+ 

tsilk, 
a'O 12 

Qint + 2ro, 
(OU-1 - 00 

+ 2tsf, 
(Ofm - 0, J) 

ey 2 Ox/i ay 2 S//j, j 
kj- I kj 

2323 
(4.111) 

tOxkj-I a0 Esilk; a0 
+3 

ay 
-3 

1 

oxj 3 aY3 

I 

Strij 

Discretization now proceeds by adding the following term to the left and 

right hand sides of (4.111). 

toxkj-l 
a2ý I+ 

tsilkj -Lo- 
1 

ax 2 OXj ax 
2 Silid 
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Remembering that the discrete version of the second derivative with 
respect to the x-axis Is given by (4.10) then the following result is obtained. 

Eox kj-, 
( 020 1, 

-ýýo 
I+ 

rsil k, 
( 020 1+ a2o I 

ax 
2 oxij Oy 2 oxj 

) 

ax 
2 si/jj ay 

2 sil, 

i- 
oli oli - oi-li 

(rox kj-l + rsj, kj) 
hi 

0.5 (hi 
hi-I 

- 
-1 + hi) 

+2 Qi, t +2 tox 
(OIJ-1 0, J) +2 rsij 

(VIIJ+1 - 01) 
kj-l kj 

22 (hi-I - h) o3o Eoxk; -i - Esilkj 
+ (tox kj-j + tsil kj) + 3 ox 31 Ij 3 ay 3 Ij 

In order to continue the Laplace and Poisson equations are now recalled. 
These are the governing equations of potential in the oxide and semiconductor 

regions, respectively. 

a2o 
, a'o loxia 

ý-X2 
I 

oxi,, ay 
2 

a 2o 
, 

61 V/ IEq 
(ND,, 

j - NAj + pi. j - nij) (4.115) 
ax 21 siljj ay 2 siljj sil 

The bracketted terms on the left hand side of (4.113) are now replaced with 
(4.114) and (4.115). After collecting all the terms in the discrete potentials, the 

resulting equation Is found to be of the same form to that obtained at the points 
within the silicon (cf. (4.15)), and is given by: 

Aij Oij-, + Bij 01-, j+ Cjj Viij + Dij Vli+l j+ Ejj tPip., 

+ -I- 
(ND, 

NA, 
j - nij + pij +2 

Qint 
0 

(4.116) 
esit q kj 

)= 

The coefficients are given by: 

Aij =2 
cox (4.117) 

tsil kj kj-l 

BIJ 
2 (pox kj-l + rsil kj) 

rsil kj hi-, (hi-I + h) 

-95- 



Dij =2 
(rox kj-, + t, j, kj) 

tsil kj hi (hi-, + h) 

Ei -2 (4.120) 2 kj 

CIj =- (Aij + Bij + Dij + E, j) (4.121) 

The discrete interface condition could have been obtained more simply by 

substituting (4.109) and (4.110) into (4.108). However, the truncation error resulting 
from this technique would contain second order derivatives of potential. This is 

extremely undesirable, because in obtaining the discrete Poisson equation it is the 

second order derivatives which must be resolved (cf. (4.10)). The above method 
has therefore been chosen in preference, as it can be seen from (4.113) that the 

associated truncation error is of first order In mesh spacing multiplied by the third 

order partial derivative. This is, once again, of the same order as the truncation 

error at the inner points. 
The discrete equation at the air-oxide interface, F-I (12 :51: 5 16,4) and 

J-M (23! ý 1! 9 34, j= 4), Is obtained by simply comparing (4.108) with tile 

corresponding equation for Gauss' law at the air-oxide interface (2.87), which is: 

r 
aý 1-F 

-ýL 
1=0 (4.122) 

10 ay alrij ox ay oxjj 

The coefficients Aij to Ejj are, therefore, obtained by substituting 

to for Eox and tox for tsil In (4.117) to (4.120). Also, since no charges are assumed to 

be present at this interface the space charge term on the left hand side of (4.116) 

would be zero. 
A completely analogous procedure can be applied to the heat flow equation 

at the silicon-header boundary (P-Q). In this case the heat flux continuity equation 
(2.93) must be obeyed. The resulting discrete equation is given, once again by 

(4.71), with the heat generation, Q set to zero. However, the coefficients are now 

given by: 

Tl Ij -2 
Kjj-, /2 (4.123) kj-l k1 

2(kj-l KI-I 12J + kj KH) 

ýjj - ki 7i-i(fii + 

-96- 

(4.124) 



T4,. j = 
2(kj-l Kj+112j + kj K14) 

ki h, (hi + h, 
-, 

) 
(4.125) 

T5jj -2 
KH 

(4.126) 
k2 i 

and T3, j is once again given by (4.76) 
The convective boundary condition for the heat flow equation will now be 

considered. The boundary R-Q will be taken as an example and for a node on this 
boundary equation (2.92) can be written: 

K(T) -! 
ýT- I 

ij ý -h (Tij - Tamb) (4.127) ax 

Using (4.93) the term on the left [land side of (4.127) can be replaced as 
follows. 

K(T) OT 
ax 

I 
Ij 

Ki+1/2j 
aTI 

A- KI-112J 
aT I 

Ox 1+1/2j ax i-1/2j 

2 
(4.128) 

The term which lies outside tile solution domain can now be replaced with 
tile following: 

KI+112j 
aT 1= 

-Ki-112. j 
aT 1-2h 

(Tij - T��b) (4.129) 
ax i+112j ()X 1-1 12j 

This term can now be SUbstituted into (4.67) in place of (4.68), resulting in: 

(9 , 
(K(T) 

-2T -2 KI-112,1 
(Tij - Ti-lj) 

-2 h 
(TIJ - Tamb) 

(4.130) 
Ox ax h, 2 hi-I 

This relation is then substituted into the heat flow equation together with 
the corresponding term in the y direction, which remains unaltered from that of the 
inner points. Having gathered together all terms in the discrete temperatures the 

result becomes: 

Tl ij Tij-, + T2jj Ti-I j+ T3, j Tij + T51. j Tij+l + Qjj +2h 
Tamb 

=0 (4.131) 
hi-, 

where: 

T2jj -2 
Ki 

2 
112J (4.132) 

hi-I 
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Tlij and T5jj are given again by (4.72) and (4.75) and T3,, is given by: 

T3jj T1 Ij + T2, j + T4jj + T5jj +2h (4.133) 
hi-I 

) 

Although the higher order terms have been omitted from this analysis the 

truncation error of (4.131) is of the same order as the truncation error at the inner 

mesh points. 

4.1.2 Cylindrical Co-ordinates. 

Devices that exhibit cylindrical symmetry are most efficiently modelled 
using a cylindrical co-ordinate system. Such devices may be fabricated by 

employing circular or annular masking techniques. The three cylindrical 

co-ordinates are radius r, displacement y and rotation 0. If the device to be 

modelled is assumed to be perfectly symmetrical about its centre point then the 

co-ordinate 0 becomes redundant and can be omitted. Modelling in all three space 

dimensions is, therefore, achieved using only two co-ordinates (r, y). Thus, if only 

two orthogonal space co-ordinates are considered, then models for devices that 

can be assumed to be cylindrically symmetrical are inherently more accurate than 

models for devices without this symmetry. It will be seen that only a small amount 

of additional effort is required to discretize the equations on a cylindrical mesh, 

which makes modelling of cylindrical devices very efficient indeed. 

4.1.2.1 Discretization of the Poisson Equation. 

Expanding the 'div' and 'grad' operators in the Poisson equation gives 
[4.6]: 

a2o 00 q (ND-NA+p-n)=O (4.134) 
Dr 2 ay 2r ar tsil 

The x axis of the cartesian co-ordinate system must now be considered to 

be the radial axis of the cylindrical co-ordinate system, so that the h values now 

represent the mesh spacings in the radial direction. Having redefined this axis the 

only additional term that must be considered is the third term in (4.134). The 

discrete version of this term is obtained by eliminating the second order terms in 

the Taylor series' (4.5) and (4.6). 
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14 Uf41 i- ýii) 
hi 

(ýI-1 i- qlij) Ti -ar- 
1 

ij 
= ri h, (h, + hi-1) 

hi hi-, a3ý 1 

ri hi-, (hi + h, 
-1) (4.135) 

6ri ar3 

The truncation error is again of the same order as that for the discrete 

versions of the second order derivatives. For cylindrical co-ordinates, therefore, 
the coefficients Bij given by (4.17) must be multiplied by a factor MI, and the 

coefficients Dij given by (4.18) must be multiplied by a factor M2j, where: 

Mli 1- -L, (4.136) 
2ri 

) 

M2,1 + 
hi-, 

(4.137) 
2ri 

) 

The remaining coefficients are then given by (4.16), (4.17) and (4.20). 

4.1.2.2 Discretization of the Continuity Equations. 

In this case the only alteration that is required is the addition of an extra 
term in the divergence operator of the continuity equations (4.2) and (4.3) which 

now become (4.7]: 

aJnr 
+ 

OJny 
+Ij Or Oy r n) -R=0 (4.138) 

ljpr 
+ 

ajpy 
-L j+R=0 (4.139) 

ar ay rP) 

A discrete version of the extra term is found by eliminating the first order 
derivatives from the Taylor series' (4.5) and (4.6). 

1 hi-I hi 
7 Jnr 

I=- 
Jnr 

I+ 
r, hj(hj + hi-1) i+112J ri hi-i (hi + h, 

-, 
) 

Jnr 
I 

i-l 12J 
hi hi-i 02 Jnr 

(4.140) 

2r, - ý; T 
I 
ij 

A similar equation may be written for hole current. Here, once again, the 
truncation error is of similar magnitude to that for the discrete partial derivatives 

of the current densities (cf. (4.48)). Upon substituting the discrete transport 

equations for the internodal current densities in (4.140), it becomes apparent that 
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the coefficients Gjj and Iij of the discrete electron current continuity equation (4.52) 

need to be multiplied by M1, and M21 respectively. Similarly, in the case of the hole 

continuity equation (4.58) the coefficients WIj and Sij must also be multiplied by 
M111 and M2j respectively. 

4.1.2.3 Discretization of the Heat Flow Equation. 

The heat flow equation (4.4) may be rewritten for the case of cylindrical 
co-ordinates as follows. 

a (K(7) aT )+0 (K(T) 0T)+-! 
- K(T) -! 

IT 
+Q=0 (4.141) 7r Or ay 0yr Or 

The discrete version of the extra term is calculated in a similar way to that 
for the Poisson equation (cf. (4.135)). 

IaT KIj 
hi-, 

- (Tw j- TIJ) - Kjj 
h, 

- (T 
-Ij - Tj) - ri ar ri h, (h, + hi-1) 

Kjj hi hi-I a3o_ 

r, h, 
-, 

(hi + hi-1) 1 
(4.142) 

6r, ar 31 ij 

In this case the coefficients T2, j and T4jj of the discrete heat flow equation, 
given by (4.73) and (4.74) must be multiplied by the factors MT2, j and MT4, j 
respectively. These factors are given by: 

M T2ij I- Kjj 2 Ki 
h, 

(4.143) 
-, /2j rl 

) 

MT41j 1+ Kij 
hi-, 

(4.144) 
2 Kj+1 12J rl 

) 

4.2 Discretization of the Dynamic Equations. 

In order to accurately simulate transient device operation the full dynamic 

semiconductor equations must be solved. Such a solution is desired for the case 
where the boundary conditions for electrostatic potential at the contacts are time 

variant. The dynamic equations may be written in shorthand form as follows. 

Fq, =0 (4.145) 

Fn - _Ln =0 (4.146) at 
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Fp + -ýP- =0 at (4.147) 

FT + PC 
aT 

=0 (4.148) 
at 

Here, Fq, Fn, Fp and FT have been used to represent the set of algebraic 

equations resulting from the spatial discretization of the Poisson, electron current 

continuity, hole current continuity and heat flow equations, respectively. In this 

section time discretization, only, will be considered. The following notation will be 

used to represent a single discrete time interval. 

tm (4.149) 

A number of different schemes are available for time discretization of the 

parabolic systems (4.139), (4.140) and (4.141), the simplest of which is the fully 

explicit (forward Euler) method, which may be written: 

F, p(qjm+,, nm, pm) =0 (4.150) 

Fn(Om+i, nmq pm, Tm) - 
nm+l -nm 

=0 (4.151) 
d,, 

Fp(qim+,, nm+,, pm, Tm) + -ým+l 
-pm 

-0 (4.152) 
dm 

FT(Trn, Qm+, ) -c 
TM+1 - Tm 

=0 (4.153) 
d,, 

Each set Is solved in succession at each point in time using the 'best 

available' values for the dependent variables. It is a simple matter to calculate the 

variables at time m+1. This being achieved by the solution of the linear systern 
(4.150) for JIm+j followed by the calculation of nm+,, pm+l and finally Tm+j frorn 

(4.151), (4.152) and (4.153) respectively, by simple substitution. 
The fully explicit scheme is extremely attractive, but unfortunately it 

possess a serious drawback In that the size of the time step dm must be made very 
small in order to guarantee stability of the numerical solution [4.8]. Stability is 

ensured provided that the following inequality is obeyed. 

22 hmln + kmin) 
(4.154) 

2 

This restriction Is In general so severe that it renders the fully explicit 
method unacceptable for practical purposes. Several semi-implicit time 
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discretization schemes have been presented by Mock [4.9] [4.10], but a number, 

of intrinsic problems has meant limited success. By far the most secure scheme 
is the fully implicit (backward Euler) method. For this scheme the discrete 

equations read: 

Fq, (O,, +,, n,, +,, p, +, ) = (4.155) 

n +1 -nm Fn(qt, +,, n, +,, pm+,, Tm+, ) -- 
m 

dm .=0 (4.156) 

Fp(ql, +,, nm+,, p, +,, Tm+, ) + 
Pm+i -Pm 

=0 (4.157) 
d, 

FT(Tm+lt Qm+l) C 
TM+1 - Tm 

=0 (4.158) 
dm 

This method is known to be unconditionally stable for any time step. The 

accuracy of this scheme as tirne advances is readily monitored by the local 

truncation error associated with the backward difference approximation, with can 
be obtained from the Taylor expansion. 

dm alu Tu. 
ý12 at2 

I 

M+i 
(4.159) 

where u denotes n, p or T. The main disadvantage of the fully implicit scheme is 

apparent from the large system of non-linear algebraic equations that has to be 

solved at every point in time. However, since this is the only feasible method 

available at present it has been employed for all transient simulations described 

In chapter 6. 
An accurate value for the truncation error Tu. 

1 cannot be calculated having 

obtained a solution at time rn, +1 as a solution at time rn +2 would also be 

required in order to calculate the second order derivative in (4.159) (cf. (4.10)). 

However, the value of the second order derivative at time rn will in general provide 

a close approximation to the value at tinne rn + 1, and this value can be calculated 
from an equation of the form of (4.10). Using this approximation the time step was 

chosen such that the following condition was obeyed at every node. 

dm 02U 1 
TU. 

+l 2 at2 m 

Um+i - Um 
dm 

100 t-- Um+l - um 

d, " 
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Thus, the truncation error is constrained to be less than 0.1% of the 

difference approximation to the first order time derivative. If this condition is not 

satisfied the time step is halved and the solution at time m+1 is recalculated. 
Otherwise the time step is successively increase by a factor of 10%. The minimum 
tirne step is 1 ns since in general silicon devices do not operate above 1 GHz. 

For the sake of completeness the discrete equations for the transient case 

at the inner mesh points will now be written in full 

Aij Oij-,,, +, + Bij Vli-lj, m+l + Cij qlij,, +i + Dij Oj-ýjj,, +, + Ejj Oij+,,, +, 

+q (Nij njj, m+j + pij, m+, ) =0 
(4.161) 

rsil 

Fij,,, +, nij-,,, n+l + G,,,, +, n, -, j,,, +, + Hij,,, +, nij,,, +, + n, +, j,,, +, 
n, j,,, +, -nij,, n (4.162) 

+ L, j,,, +, n, j+,,,, +, Rij,, +, dm 0 

Mli, m+i Pij-i, m+l + Wli, m+l Pi-lj, t-n+l + Xii, m+l Pti, m+i + Sij, m+l Pi+ij, m+l 
Pij, m+i -pli'm (4.163) 

+ Uij, m+l Pij+,, m+l + Rij, m+l 4 dm =0 

Tlij, m+l Tij-,, m+i + T2, j, m+l TI-Ij, m+1 + T3ij, m+l Tij, m+l + T4ij, m+l Ti+lj, m+l 
Tii, m+i - Tli'm (4.164) 

+ T5, j, m+l Tij+,, m+l + Qij, m+l /2 -P' dm =0 

4.3 Mesh Generation. 

From previous considerations it is apparent that the numerical solution is 

highly dependent upon the characteristics of the mesh. Unfortunately an 

optimised mesh cannot be designed prior to having obtained a solution since the 

solution itself is required in order to provide an estimate for the local truncation 

errors. This problem can be circumvented by making an initial estimate for the 

optimum mesh, calculating a solution on this mesh and then redesigning the mesh 

on the basis of the local truncation errors obtained. In this way the mesh is 

repeatedly improved until the desired accuracy is achieved. Such a procedure 

clearly involves considerable computational effort. 
The initial mesh should be chosen so that the device geometry and doping 

profiles are adequately resolved. The mesh lines that define the interfaces 

between the various different regions of a particular geometry and those that 

define the boundaries of the simulation domain are mandatory and must remain 
fixed throughout the adaptive meshing sequence. For example, in Figure 14 the 

column i= 11 defines the edge of the emitter contact and also in this case the 
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emitter mask edge. A second example is row j=6, which defines the Si-Si02 
interface and also the points where the emitter and base metalisation comes into 

contact with the silicon. A relatively fine mesh has been chosen to resolve the 
diffused emitter and base impurity profiles. Also, mesh lines have been positioned 
as close as possible to the metallurgical junctions. Therefore, the mesh depicted 
in Figure 14 represents a good initial design. 

Having obtained a solution on this mesh the local truncation errors can then 
be estimated using finite differences. Calculation of the truncation errors for the 
Poisson equation requires estimates for the third and fourth order derivatives with 
respect to potential (cf. (4.11) and (4.13)). The third order derivatives can be 

obtained by firstly calculating the second order derivatives from (4.10) and (4.12) 

and then taking the first order derivative of these values by inserting them into an 
equation similar to (4.135). In a similar manner the fourth order derivatives can be 

calculated by the double application of (4.10) and (4.12). The third and fourth order 
derivatives of potential are equivalent to the first and second order derivatives of 
space charge and, therefore, the truncation error will be largest near junctions or 
near the edges of depletion regions. The mesh spacing in these regions must be 

adjusted accordingly. 
The local truncations errors for the current continuity equations can be 

obtained from equations of the form of (4.42), which represents one of four 

components for electron current. The values of the current density derivatives at 
the mid-points between nodes can be obtained by interpolating the results of (4.48) 

or (4.49). It is important to note from equation (4.64) that the truncation error of tile 
discrete continuity equations is of the same order of magnitude as the difference 

approximation itself if a large potential difference exists between mesh points (cf. 
Figure 18). Consequently a fine mesh will be required in regions where divý is 
large. In the example of the BJT of Figure 14 when the base-emitter junction is 
forward biased the vertical electron Current density along this junction will peak 
sharply at the periphery of the emitter (i = 11) owing to the effects of emitter pinch 
(cf. chapter 6). The divergence of electron current will then be large in the base 

and collector regions directly beneath the emitter periphery. Thus, a fine mesh is 

required in these regions so that accurate simulation of current flow within the 
device is ensured. 

The heat flow equation can be treated for truncation errors (4.77) using a 
similar method to that outlined above for the Poisson equation. The third order 
derivative of T In this instance is proportional to the first order derivative of heat 

generation, Q in steady state or to the difference between heat generation and 
storage if heating takes place (cf. (2.74)). A fine mesh should therefore be utilised 
where the net generation is rapidly variant. 
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When adding new mesh lines the solution has to be interpolated onto the 

new mesh points to provide an initial estimate for subsequent computation. An 
interpolation scheme which has been recommended is to use directly the 
difference scheme for the newly introduced mesh points with the previous solution 
at the 'old' mesh points being held fixed [4.11]. Further details on adaptive 
meshing can be found (4.11] and [4.12] 

The above described adaptive meshing feature has not yet been 
implemented in the numerical model and is left for future consideration. The initial 

mesh which was chosen on the basis of device geometry and impurity profiles has 

also been assumed to be adequate for the definition of the solution. It must, 
therefore, be stated that the truncation error may be considerably large at certain 
locations within the solution domain and the simulation results could be affected. 
However, upon moving away from these regions the truncation error will decay 

and the effect on tile overall solution is often relatively small [4.12]. As a result the 

calculated contact currents can be expected to be comparatively accurate. Having 

completed tile discretization stage the techniques that have been used to solve the 

resulting large set of non-linear algebraic equations (4.161)-(4.164) will be 

presented in the following chapter. 
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Chapter 5. The Solution of Large Systems of 
Non-Linear Algebraic Equations Arising from the 

Semiconductor Problem. 

The main result of the preceding chapter was that discretization of the 

governing equations produces a large system of non-linear algebraic equations. 
This chapter Is concerned with the solution of this system for the discrete 

dependent variables (O, n, p, T). For both static and transient problems the set of 
discrete equations may be described with the aid of the following notation. 

F(v) = 

Fq, (v) 

F(v) " 
(v) 

(5.2) 
Fp(v) 
FAV) 

n 
p (5.3) 

_T_ 

In these equations F is a vector function of rank four which itself consists 

of the vector functions 170(v), Fn(V), Fp(v) and FT(v) that are all of rank (NX. NY). 

These vector functions represent, in listed form, the discrete approximations to the 

Poisson equation, the continuity equations and the heat flow equation respectively. 
The vector of unknowns, v also consists of four vectors, which represent the 

discrete dependent variables. The total scalar rank of IF and v is, therefore, 

(4. NX. NY). 

The values of the elements of the vector function, F are dependent upon the 

values of the unknowns, v (cf. (4.52)) and so the problem Is non-linear. In general 

such systems can only be solved by iterative techniques. By far the most widely 

used technique Is Newton's method. Using this method the equations are 
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repeatedly linearised and solved until a solution of the form (5.11) is obtained. 
Newton's method will initially be considered for the case of a single unknown and 
these considerations will then be extended to the multi-dimensional case in a 
formal manner. 

Newton's method can be applied to find the zero or root, xr of a function, 

f(x) provided a close initial approximation Is available and f(x) has a continuous 
first derivative. Let xO be an initial approximation to a root, xr of function, f(x). The 

function is then approximated by its tangent at the point xO; that is, the function 

f(x) is approximated by the linear polynomial: 

A 

f (x) = f(xo) + (X - X, ) f' (X) (5.4) 

and the next approximation to the root of f is determined by the root of this linear 

approximation, which is: 

f(x 0) 

f'(Xl) 
(5.5) 

Repetition of the above step gives rise to the ge.. eral formula for Newton's 

method. 

k+i k f(X k) 

xx -- k (5.6) 
f, (x 

A graphical representation of Newton's method is given in Figure 19. 

If the initial approximation, xO is not sufficiently close to the solution this method 

may diverge. However, provided the Xk values are sufficiently close to Xr then 

'quadratic convergence' is obtained [5.1], that is: 

lix k+l 
_ X'll :! -ý oc llx k_xr, 12 (5.7) 

This technique can be immediately extended to the multi-dimensional case 

given by: 

k-1 k_ (Vk)- V=V F' 1 F(Vk) (5.8) 

The matrix F(Vk) is called the Jacobian matrix of F(Vk). In order to avoid 

costly inversion of the Jacobian matrix equation (5.8) may be re-expressed as 

follows. 

F' (Vk) fiVk = -F(Vk) (5.9) 

where: 
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xr X3 X2 X1 X0 
x 

Figure 19. Illustration of Newton's Method. 

bv k=v k+l 
_vk (5.10) 

The linear system of equations (5.9) is relatively easy to solve as it allows 
the use of iterative procedures, which can take into account the sparse nature of 
the Jacobian. Newton's method has been used extensively to solve the 

semiconductor problem In the past. Two different solution procedures have proven 
to be particularly well suited to the solution of the semiconductor equations, 

namely the decoupled and coupled procedures. Both make use of Newton's 

method, but they differ in their implementation of it. These techniques will now be 

considered separately and then their relative merits will then be discussed. 

5.1 Decoupled Solution Procedure. 
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Figure 20. Flow Diagram Illustrating Decoupled Solution Procedure. 
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This procedure was first suggested by Gummel [5.2] in 1964 and is often 

referred to as Gummel's method. He suggested that each of the governing 
equations be solved individually and in a cyclical manner until convergence is 

achieved. This method will be described with the aid of the flow diagram of 
Figure 20. In the decoupled approach each of the governing equations is solved 
individually at each iteration. The non-isothermal problem is solved using two 
iteration levels, with (Vi^p) being solved in an inner iteration and temperature, T 

being solved in an outer iteration. This iteration procedure is continued until a 
consistent set of discrete dependent variables is obtained that satisfies expression 
(5.11). 

5.1.1 Initialisation Procedure. 

The initialization stage Is required to provide a full and unambiguous 
definition of the problem. The device geometry within the solution domain must 
be specified together with the boundary conditions which are to be applied. 
Certain physical attributes such as impurity profiles, SRH lifetimes and mobility, 

ALI must also be assigned. A mesh must be designed for the subsequent 
discretization stage on the basis of device geometry, impurity profiles and any 

prior knowledge of device operation. Newton's method also requires Initial 

estimates for the discrete dependent variables. Tile initial values of ý, n and p at 

all mesh points in the semiconductor are calculated by assuming space charge 

neutrality and thermal equilibrium, as was assumed for the contact boundary 

condition (cf. (4.78)-(4.82)). The applied potential OA throughout each region of tile 

device (eg. base, emitter and collector) is initially assumed to be the same as that 

applied at their respective contacts (cf. (4.83)-(4.85)). The quasi-Fermi levels 

and (PpU are set equal to the applied potential, 111A,, j at each mesh point. 

5.1.2 The Solution of Poisson's Equation. 

In the case of Poisson's equation a solution of the following form is desired 

at each iteration (index n) shown in Figure 20. 

F 
, 
(Vn) =0 (5.11) 

Recalling the discrete Polsson equation (4.15), it then becomes apparent 
that system (5.11) is non-linear as the electron and hole concentrations are 
dependent upon potential through the Maxwell-Boltzmann approximations (2.67) 

and (2.68). Substituting these approximations into (4.15) results in the following: 
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n1+ Bij qn + Cjj on on n Aij Ij- i- jj+Dij i+lj+Eij ij+l 

V/ n_ on-I + bE 
+q Nij - n,,, ep 

Ij n, j Cij 
tsil v 

Tij (5.12) 

n-i n 

+ ni,, exp 
OP/J iij + bEvlj 

0 v T/i 

It may be noted that the quasi-Fermi levels are fixed at their values from the 

previous iteration. It was suggested by Gummel [5.2] that a stable solution scheme 

could be obtained by introducing a second inner iteration (index k) to calculate the 

discrete potentials at each nth or outer iteration. 

k )n + 1314 (ok 
, 
)n + Cij (q knknk Aij qý Ij- I- ij) +Di., (Oi+lj) +Eij(Vjij+, ) 

kn_ bn-1 

+q Nij - n�, exp 
NI1J) 

nj + ÖE 
Cij 

Esit 

1 

Vr� 
(5.13) 

n-I 
_ (ok n 

nij exp 
Oplj 

v 
ij) + bEvj 

TIJ 

This equation Is subsequently linearized by the application of Newton's 

method, that is: 

Fq, (Vk)) (5.14) 

where: 

k+l 

The corresponding linearized form of (5.13) Is then obtained by applying 
(5.14) and is given by: 

A (b k )n + 13IJ (b ok 
1n+Aknkn1 

)n (6ýk n 
Ij Vý Dij (6 + EIj Ij- I- J) cli) (5011) + 

i)n + Bi ( Ik 1j)n + CIJ (qlk)n kk )n i- ý, j)" + E, j (ýIj [Aij (qlikj- j V, ij + Dij (0j+ + (5.16) 

kn+ (Pký)nj] q [Nij - (n, j) esil 
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(pk)n have been re-substituted for the In this equation (n, k 11 and tj j) A 

Maxwell-Boltzmann terms In (5.13) and the modified coefficient, (Cft. n Is given by: 14) 

Ak nq [(Pk)n + 
ý. )nj (Clj) = cij 

- 
Esil VTij I. J. (n,, (5.17) 

it may be noted that the values of the coefficients A, B, C, D and E are not 

related to the dependent variables (cf. (4.16)-(4.20)) and, therefore, they need only 
be calculated once at the initialisation stage. Also, in order that the Dirichlet 

boundary condition at the contacts is not violated it is necessary to ensure that all 
A 

these coefficients plus the residuals, Fq, are set to zero and the coefficient C is set 
to unity at mesh points which lie on the contacts. The actual solution of the linear 

system given by (5.16) for the values of the bVi's will be considered separately in 

section 5.1.6. Having calculated these values at the kt, ý Newton iteration they are 
then added to the existing potentials according to (5.15). The values of the carrier 

concentrations are then recalculated from the updated potentials using the 

Maxwell-Boltzmann approximations and then the linear system (5-16) is 

subsequently resolved. This process is repeated until a self-consistent solution is 

obtained and convergence has been achieved. Since Maxwell-Boltzmann statistics 

are applied then the following condition must be adhered to. 

Eg,., 
V, ij - Onj < -2 - 6E, 

If 
(5.18) 

If the solution of the linear system returns a value of potential that violates 
this condition then the potential is amended to the following before recalculating 
the electron concentration values. 

Eg, 
j VIIj -2 - 6Elj + 0,, 

j 

Similarly if the condition: 

Eg, 
j op" - V/ii :! ý -2 - bEv,, (5.20) 

is violated then the potential is amended to the following before recalculating the 

hole concentrations. 

Eg, 
j 6 (5.21) 01J -2 + Evii + OPij 
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These considerations do not only eliminate numerical overflow during 

computation but they also serve to improve the rate of convergence. The criterion 
for convergence is given by: 

kI 
max I boij ": ý 60inax V ii (5.22) 

A value Of 0*01 ý( VT(300K) volts was chosen for 41max, which ensures that 
the solution is sufficiently close to the root, jjr to be within the region of quadratic 
convergence, and furthermore, any further reduction in 4max together with 
consistent reductions in the convergence criteria for electrons and holes (cf. 

sections 5.1.3 and 5.1.4) only produced a change of at most, 0.1% in any of the 

calculated contact currents. Finally, it must be pointed out that for the transient 

case the above procedure is repeated at each point in time (cf. (4.161)). 
Before entering the routines to solve the continuity equations it is 

necessary to take into consideration the effects of carrier-carrier scattering (3.8) 

and carrier velocity saturation (3.14) on the electron and hole mobilities. The fields 

are calculated from the updated potentials arising from the solution of Poisson's 

equation at the ntt? outer iteration. The effects of carrier-carrier scattering are 
calculated using the latest concentration values also oLtained from the solution of 
Poisson's equation. 

5.1.3 Solution of Electron Current Continuity Equation. 

Following a similar procedure to that for Poisson's equation the iteration in 
this case is defined by: 

On t5n 
k=_F, (v k )), (5.23) 

In analogy with the Poisson equation the discrete electron continuity 
equation, (4.52) is recalled so that the constituent equation of the above systern 
can be written as follows. 

nk 17 nkn (Ak r? knnknk F; j (6n,, 
-, 

) + GIj (6n, ý) ((5nij) + lij ((5n, +, +I , +, )n 
-1j) + H, Lin (6n 

[Fn knk 
lj)n 

n k)n +nk, )n nkk 
(5.24) 

j (n,, 
-, 

)n + Gij (n, - (R on] + Hij (nij ij (ni+ + Lij (n, j+, )n 

where: 

( Rk )n 
A kn (H ý)n = Hij (5.25) 

-114- 



the derivative of the recombination term, which includes SRH (3.30) and 
Auger recombination (3.33) is given by: 

OR ap-b -rpo 
an -a2 1- (cn n+ cpp)p +b cn (5.26) 

where: 

Tp, (n + ni, ) + Tno (P + ni. ) (5.27) 

2 
np-nie (5.28) 

If any non-linearities associated with the carrier mobilities are ignored then 

the coefficients F, G, H, I and L can be considered to be independent of the value 

of electron concentration. Rather, they depend only upon the discrete potentials 

and temperatures. These coefficients need only be calculated once for each outer 
iteration, following the solution of Poisson's equation. As before care must be 

taken to comply with the Dirichlet condition at ohmic contacts and also in 

insulating rpgions, including any air gaps that may be present. The linearised 

continuity equation (5.24) Is of the same form as the linearised Poisson equation, 

and the solution of these systems will be considered In section 5.1.6. 
In the transient case a solution is sought at time m+1 by making use of 

knowledge of the concentrations at the previous or mth point In time (cf. (4.156)). 
A 

The modified coefficient Hij and the residual F,,, 
j must be altered to take Into 

account the rate of change of electron concentration. 

AA1 

Hij, m+l = Hij -- dm (5.29) 

F�, =F- 
nj�, 4.1 - n, j�, (5.30) 

J'MO nij d, 

A good initial guess for the electron concentration at tm+l is provided by the 

value at the previous time, tm. Once the 5n values have been calculated at the kth 

inner iteration they are then added to the existing concentration values. The 
A 

residuals, Fnlj, 
m+l and modified coefficients Hjj, m+j are then recalculated and the 

linear system Is resolved for the next set of bn values. The criterion for 

convergence of this procedure Is given by: 

max 
I inij Ix 

100 < bnmax v ij nij 
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The value of 6nmax is chosen to be consistent with that Of 60max via the 
Maxwell-Boltzmann approximation. 

ön = ni exp 
ý+ Öý - On + ÖEc 

n, exp 
ý- 0� + bEc 

(5.32) VT VT 

which reduces to: 

bn =n exp VT (5.33) 

thus: 

bnmax ý max 
I 

_An 
Ix 

100 exp 
4max 

11X 100 (5.34) 
n VT 

Therefore, for 6q1,,, =0.01 x VT the corresponcling value for 6nm,, is 1%. 

5.1.4 Solution of Hole Current Continuity Equati, )n. 

The procedure for hole is completely analogous to that for electrons, and 
the iteration is defined by: 

Op 
Jp k Fp(v k (5.35) 

Recalling the discrete hole continuity equation (4.58), then the constituent 

equation is: 

Mn (bpk nnkn "ýk nknnknnkn 
li Ij-1) +Wjj(6pj-jj) +(Xij) ((5nij) +Sij((5p, +,, ) +Uij(6pij+, ) 

(5.36) 
nknnk kn 

_[Mn(pk J)n+Wn(pk, j)n+Xn(pkn )n + (R li ii- ij i- ii ii) +Sii(Pi+ii) +U; J(Pij+l li) 

where: 

( qRjk Ak n Xn j 
)n 

(x1j) Ij IOPIJ 
(5.37) 

The derivative of the recombination term is given by: 

aR an-b Tno 
+ (c, n+ cpp) n+b cp (5.38) 

OP a2 
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where a and b are defined by (5.27) and (5.28). In the transient case the following 

alterations must be made as before. 

AA1 
xij, 

m+i = xlj + dm 

Fp, ý Fp,, 
j 

+ 
Pii, m+ I- Pii, m 

(5.39) 

J, Mýl dm 

The bp values are calculated at each iteration until the percentage change 
in hole concentration at all mesh points is less than bPmax ýI %- 

The solution for the set (Vi^p) at the end of each outer iteration is 

considered to be converged if the maximum changes in potential and carrier 
concentrations at any node do not exceed the specified maximum allowable 
values previously defined by 60max, bnmax and 6Pmax for the inner iterations. If this 

condition is not satisfied, however, the electron and hole quasi-Fermi levels are 
recalculated from the Maxwell-Boltzmann approximations using the newly updated 
carrier concentrations. 

on = on + bE 
(n 

in, (5.40) 
nij tj Cij -v Tij 10ge ý -5 -111 

( Pn 
nj 4)p = on ,j Ij - bEv,. 

j 
+ VT,,, loge 

nji, 

These updated quasi-Fermi levels are then used for solving the Poisson 

equation at the next outer iteration. 

5.1.5 Solution of the Heat Flow Equation. 

For problems that involve significant power dissipation within the device it 

may be necessary to solve the heat flow equation in order to take temperature 

rises into account. Before a solution to the discrete heat flow equation, (4.164) can 
be found the heat generated at each node must be calculated by the simple 

application of equation (3.48). In contrast to the previously outlined solution 

procedures Newton's method has not been employed for the solution of the 
discrete heat flow equation. A procedure which has proven to be much simpler 

and more effective is obtained by initially assuming equation (4.164) to be linear. 

The non-linearity arising from the temperature dependence of the thermal 

conductivity (cf. (3.45)) is initially neglected and the inter-nodal thermal 

conductivities are calculated from the temperatures arising from a previous 
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iteration. The coefficients Tl - T5 are then obtained from these thermal 

conductivity values. Having solved the resulting system, which is assumed to be 

linear the thermal conductivities are then re-evaluated from the newly obtained 
temperatures. The assumed linear system is subsequently resolved with the 

updated coefficients. This procedure was repeated until the maximum change 

made in a single iteration at all nodes is reduced to below 0.001 K. 

5.1.6 The Solution of Linear Systems Arising from the Decoupled 

Procedure. 

The solution of large systems of simultaneous equations can be achieved 

either by direct methods or by iterative methods. Direct methods solve the system 

of equations in a known number of arithmetic operations, and any errors incurred 

in the solution arise entirely from rounding errors introduced during computation. 
Basically these direct methods are elimination methods of which the best known 

examples are the systematic Gaussian elimination method and the triangular 

decomposition method [5.3]. In contrast, iterative methods seek to obtain a 

solution by the repeated application of a particular algorithm in order to make 

successive improvements to some initial guess at the solution. This cyclical 

procedure is repeated until a solution is obtained that is considered to be 

sufficiently close to the exact solution of the system. The direct approach is the 

most efficient method available for small sets of equations, but it is not for large 

sets. This method requires 2n2 arithmetic operations to solve n equations of the 

type being considered. However, due to the sparse (ie. large number of zero 

elements) nature of the Jacobian resulting from the five point difference scheme 
the most elementary iterative method available requires only 9n operations per 
iteration. Thus, for larger sets of equations (n>. 100) iterative methods become the 

most efficient. In addition to computational efficiency, iterative procedures 

possess other advantages over elimination methods. They require much less 

memory for storage of intermediate data and they are very easy to program. They 

are also usually more applicable to non-linear sets of equations than direct 

methods. This Is because very few Iterations are required near the root of the 

system when the changes being made are small. Because of these advantages 
iterative methods have been preferred in the past for solving the linear systems 

arising from the decoupled approach (5.4] [5.5]. Two such methods have been 

employed here; namely the Successive Line Over-Relaxation method (SLOR) [5.6] 

and the Strongly Implicit Procedure (SIP) [5.7]. The SLOR method proved to be 
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more efficient in solving the heat flow equation, whereas the electrical model was 
better suited to a solution by the SIP. 

Each of the linear systems may be expressed in matrix notation as follows. 

Az =b (5.42) 

The constituent equation of this system has the following form. 

aij z,, -, + fij ZI-I j+ cij zi., + dij z, +, ,+ eij z,, +, = bij (5.43) 

An example of such a system for a small 4x6 mesh is shown in 

Figure 21. The equations are ordered using natural ordering, that is from the top 

node to the bottom node of every column from left to right. Only the non-zero 

elements of matrix A are shown, which can be seen to have five non-zero 
diagonals. Iterative methods can ease the solution of such a system by taking 

advantage of its sparse nature. 

cl, ej di, Z11 bl, 
aq c12 e, 2 dj2 Z12 b12 

a13 c, 3 e13 d13 Z13 b13 

a14 C14 e14 d14 Z14 b14 

a, 5 c15 e15 d15 Z15 b, 5 
a, 8 c, 6 dIs ZIS ble 

f2i C21 e2i d2i Z21 b2i 

f22 a22 C22 e22 d22 Z22 b22 

f23 a23 C23 e23 d23 Z23 b23 

f24 a24 C24 e24 024 Z24 b24 

425 a. 5 c25 e25 d25 Z25 b25 

F26 a28 C28 d26 Z28 bý, 

f3l c3l e3l d3j Z3, b3l 

f32 a32 C32 e3, d32 Z32 b32 

63 a33 C33 e33 d33 Z33 b33 

f34 a34 C34 e34 034 Z34 b34 

G5 a35 c35 e35 d35 Z35 b35 

66 a38 C36 d3g Z36 b39 

f4i C4, e4l Z41 b4l 

f42 a42 C42 e42 Z42 042 

f43 a42 c., e4s Z43 b43 

444 a44 c44 e44 Z44 b44 
445 a45 c45 e45 Z45 b45 

f4d a48 C40 I N N 

Figure 21. Example of a Linear System Resulting from the Decoupled Solution Procedure. 

cl, el dil 
a, 2 c12 e, 2 dj2 

a13 c13 e13 d13 

a14 C14 e14 d14 

a, 5 c15 e15 d15 

a, 8 c, 6 dIs 

f2l C21 e2l d2i 
f22 a22 c22 e22 d22 

f23 a, 3 r-23 e23 d23 

f24 a24 C24 e24 d24 

f25 a. 5 c25 e25 d25 

F26 a28 C28 d26 

f3i c3l e3l d3i 

f32 a. 2 c32 e32 d32 

63 a33 C33 e33 d33 

f34 a34 C34 e34 034 

G5 a35 C35 e35 d35 

f3s a38 C36 d3g 

f4i c4l e4l 
f42 a42 C42 e42 

f43 a42 c., e4s 
444 a44 c44 e44 

445 a45 c45 e45 
f4d a4S C40 
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5.1.6.1 Successive Line Over-Relaxation (SLOR). 

This method belongs to the family of block iterative methods in which 

groups of mesh points are treated as single units [5.6]. The values zjj at each 

mesh point within the same group are modified simultaneously. This will involve 

the simultaneous solution of a sub-system of equations. Consequently individual 

components are implicitly defined in terms of other components in the same 

group. In the case of SLOR the unit is considered to be a mesh row or column. For 

the example shown in Figure 21 the system may be partitioned in the following 

manner. 

D, EI Zi bl 
C2 D2 E2 Z2 b2 

(5.44) 
C3 D3 E3 Z3 b3 

C4 C)4_ 
_Z4_ -b4_ 

In this example columns have been taken as units and Ci, Di and Ej are 

NY x NY sub-matrices, DI being tridiagonal and Ci and Ej being simple diagonal 

matrices. The block successive over-relaxation iterative method, which can now 

be rigorously applied to the system (5.42) takes the following form. 

AM+j +1 
Di zi = b, - Ci zm', - Ej zm, +l (5.45) 

and: 

M+l m AM+j m 

zi = zi + (2) (Zi - zi (5.46) 

A single iteration (index m) consists of applying (5.45) followed by (5.46) to 

each column in succession, starting at column I and ending at column NX. Rathpr 

than taking the vector z", to be the Solution at the ith column the SLOR method 

seeks to exaggerate the modifications made along each column by introducing an 

acceleration parameter, co. This has been found to drastically reduce the number 

of iterations required for convergence. The optimum value of 0) lies between I and 
2. This technique is called over-relaxation and it is known to diverge for (0 ý_> 2 

[5.3]. In order to illustrate this technique equation (5.45) has been applied to 

column 2 of the example problem of Figure 21 and the result is given by: 
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C21 021 ý21 M+l ni b2l -f2lZll -d2lZ31 

a22 C22 e22 
AM+j 
Z22 

+1 m 
b -f, zm 22 22 12 d22Z32 

ae 23 C23 23 
AM+j 

Z23 b -f zm-4-1 -d 
M 

21 23 13 23Z33 

a24 C24 024 
A177+1 
Z24 M+l m b21 -f24ZI4 d24Z34 

(5.47) 

a25 C25 025 
AM+j 
Z25 M+l m b2l -f25ZI5 -d25Z35 

a26 C26 
AM+j 
Z26 M+l m b2l -f26Zl6 -d26Z36 

This result is of the general form: 

AM+l Di zi = Vi (5.48) 

This tridiagonal system can be solved by the application of the so called 
Thomas algorithm [5.8], which uses triangular decomposition. Initially the 

sub-matrix Di is factorised into Di = LU, where L and U are lower and upper 
triangular matrices respectively. They are both bidiagonal matrices with the matrix 
L having non-zero elements in the diagonals corresponding to the a- and r. - 
diagonals of Di, and matrix U having non-zero elements in those diagonals 

corresponding to c and e with those corresponding to c being everywhere equal 
to unity. The LU product for the example problem is as ollows. 

Cl e', 
a' C1 e' 222 

at ct 0' LU 333 (5.49) 
a4' C4 e4' 

at Ct e, 555 
a# c' 66 

The non-zero elements of L and U may be evaluated by equating the LU 

product to D, and using forward substitution. The following is obtained for column 
i. 

aj' = a,, (5.50) 

I=p Cl ý ci'l C) cij - aij e, -, 
(2 j :!! ý NY) (5.51) 

ei, l E? ji 
eI= Cj, l , e) = cij - aij ej'-, - 

(2:! ýj:! ýNY-I) (5.52) 

Having factored the sub-matrix Di into L and U the problem is written as 
follows. 

AM+j LU zi = vj (5.53) 
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Following the established procedure an intermediate vector is introduced 

such that: 

Lw = vi (5.54) 

Setting corresponding elements of the vectors represented by the left and 
right hand sides of this equation equal permits the elements of w to be calculated 
as follows. 

V1 vj - aij w, -, (2:! gj < NY) (5.55) W, cill , "i cij-aije; j-l 

Equations (5.53) and (5.54) are then combined to eliminate v, and the result 
is pre-multiplied by L-1 to give: 

AM+j 
Zi = (5.56) 

AA 

The components zfjn+l of the solution vector Zm+l are then given recursively 
by: 

AM+j AM+j AM+j 

Zi, NY = WNY zij = w, - ej z, j+ , (NY -1j ýý: 1) (5.57) 

In summary, therefore, the solution vector is obtained by firstly evaluating 
the two intermediate vectors e' and w from (5.52) and (5.55) and then applying 
(5.57). Finally, equation (5.46) is applied in order to introduce some over-relaxation 
into the solution procedure. 

A problem of paramount importance associated with the SLOR method is 
the determination of an optimum value, (, )Opt of a), which minirnises tile number of 
iterations required to attain a converged solution. As pointed out by Smith [5.8] 

coopt can be simply related to the spectral radius of the Jacobi iteration matrix 

associated with matrix A of the linear system (5.42). However, evaluation of the 

spectral radius is an extremely difficult task for problems with a non-uniform mesh 

and non-simple boundary conditions. In light of this the value of Wopt was 
determined, more simply, by running a number of sample problems for several 
different values of co (1 ! ý: co < 2) and in each case noting the number of iterations 

required for convergence. The SLOR method was employed only for the solution 

of the heat flow equation (4.164) and in this case wopt was found to be 1.2. 

5.1.6.2 The Strongly Implicit Procedure (SIP). 

This method, first suggested by Stone [5.7], is more implicit than the SLOR 
technique. That is, each step of the SIP is more closely related to a direct solution 
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by elimination than a comparable step of SLOR, and it can therefore be expected 
to exhibit higher convergence rates. Basically, the SIP involves choosing a matrix 
B which is a good approximation to A in (5.42), with the prerequisite that B can be 

factored into upper and lower triangular matrices significantly more easily than A. 

The following iterative scheme, obtained by adding Bz to the left and right hand 

sides of (5.42) can then be expected to be rapidly convergent. 

13 z"'+' = (13 - A) zm +b (5.58) 

As previously pointed out the direct factorization of A requires excessive 

computational effort. In this case the lower triangular matrix will be the same size 

as A, but it will have non-zero elements in every diagonal from the diagonal 

corresponding to the f- diagonal of matrix A through to the diagonal corresponding 
to the c- diagonal of matrix A. Similarly, the upper triangular matrix will have 

non-zero elements in every diagonal from the c- diagonal through to the 

d- diagonal. In the elimination procedure each of these elements must be 

calculated and stored for later use. Thus, for each mesh point the number of 

elements that must be computed is 2(NY + 1). The generation of such a large 

number of intermediate coefficients makes direct elimi, iation very slow. In order 
to alleviate these problems Stone suggested that the matrix A be modified in order 
to make the system (5.42) amenable to a direct solution. It was proposed that the 

triangular matrices L and U should be restricted to having only three non-zero 
diagonals. The non-zero diagonals of the lower triangular matrix, L are designated 

to coincide with the f-, a- and c- diagonals of A, and the non-zero diagonals of the 

upper triangular matrix, U to coincide with the e- and d- diagonals of A, with each 

element of its principle diagonal being equal to unity. Such matrices resulting from 

the 4x6 mesh are depicted in Figure 22. Following a similar procedure to that 

outlined in section 5.1.6.1 for factorising tridiagonal matrices, the product of L and 
U is performed, the result of which is shown in Figure 23. Each element of the 

resulting matrix is then equated to the corresponding element of A and this gives 
the following set of relations for each mesh point. 

f; Ij= fii (5.59a) 

fi'i 0 j, - Ii ý-- 0 (5.59b) 

a,, = aij (5.59c) 

+ fl'j di'. (5.59d) Ij -1 j+ al'j E?, ', 
-, = cij 

cij ej = eij (5.590) 
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Figure 22. Lower and Upper Triangular Matrices for a4 by 6 Mesh. 
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Figure 23. The LU Product 

a, 'j d, j-, =0 (5.590 

II c, j d;, = dij (5.59g) 

By combining (5.59a) and (5.59b) it may be shown that oij =0 for all (Q). 

This would require from (5.59e) that ej =0 for all (Q) which is obviously not the 

case. Therefore, these seven relationships cannot be satisfied. 
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As pointed out by Stone the simplest definition of the approximation, B that 

can be factored into L and U would result from ignoring (5.59b) and (5.590 and 

using the five remaining relations to obtain the five dashed coefficients at each 

mesh point. Following this procedure yields a matrix B of the following form. 

B= LU = A+N (5.60) 

The matrix N consists of two non-zero diagonals which result as a 

consequence of disregarding the equalities (5.59b) and (5.590. These diagonals 

will be represented by: 

91j ý fi'i e i-ij 

hij = ai'j d, j-, (5.62) 

It was found, however, that the above definition of matrix B could not be 

used as the basis of a rapidly convergent iterative scheme, as it defines a 

particularly poor approximation to A. In order to obtain an improved approximation 
it is necessary to reduce the magnitude of matrix N in (5.60). This qnantity is 

defined as the sum of the magnitudes of all the elements of N. Stone proposed that 

this could be achieved by altering the original matrix, A. The altered matrix may 
be derived with the aid of Figure 24, which shows the mesh In the vicinity of point 

(1j). 
The original difference equation (5.43) at this point has non-zero coefficients 

for the unknown z values at Qj) and its four nearest neighbours, as indicated by 

the solid dots in Figure 24. The modified equation corresponding to the 

approximate matrix B of Figure 23 has non-zero coefficients not only for these 

z- values, but also for the values at the points indicated by the crosses in 

Figure 24; that is points Q- Ij + 1) and Q+ 1j - 1). In order to reduce the 

influence of these new terms, Stone suggested that approximately equal terms be 

subtracted from them. Suitable terms were obtained by firstly writing the Taylor 

series for point Ij+ 1) in the vicinity of p- oint Qj). 

21 
a2Z 

+ 
k2 a2Z 

Zi-ii+i = zij - hi-, az + kj az I+ ±i- j 
ax Ij ay tj 

'2 

21 aX2 21 ay2 
(5.63) 

- hi-I k2aZI J MY tj 

Similar Taylor expansions for points Q- 1j) and (i+ 1J), which are given 
by the series' (4.6) and (4.7) respectively are then subtracted from (5.63). If the last 
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Figure 24. Mesh In Vicinity of Point Q. 

term In (5.63) is neglected together with all third and higher order terms then the 
following relation is obtained. 

ZI-I J+l ý-- -Zij + Zlj+l + Zi-I j (5.64) 

Zi+l J-1 ý-, -Zli + 2'1+1 j+ ZIJ-1 (5.65) 

Provided z varies slowly across the mesil then equations (5.64) and (5.65) 

are good approximations. At this stage a certain amount of flexibility is introduced 
by multiplying the right hand sides of (5.64) and (5.65) by a variable iteration 

parameter, a before considering them to be approximations for z, -, j-4-, and z, +, j-,. 
If a lies in the range 0< ct <1 then whenever zj-jj+j and zj+jj-1 are introduced 
during factorisation then they are partially reduced by subtracting a fraction of the 

right hand sides of (5.64) and (5.65). Adopting this approach results in tile following 

modified version of the original equation (5.43). 

aij z�-, + fij zi-, j+ cij zij + dij z, +, ,+ eij zlj+, 
+ gij (Z1-1J4-1 -a( -zij + zij+, + Z, 

-1J)i 
(5.66) 

+ hij {zi+lj-, - ot ( -zij + zi+lj + zj-1» = bij 

The top line of (5.66) is simply the left hand side of the original equation and 
the terms which are multiplied by g1j and hij are the partially reduced z- values. In 

an analogous procedure to that used in obtaining equations (5.59a) through 
(5.59g), each of the terms in the nodal z values of (5.66) are collected and equated 
to the corresponding element of the LU product shown in Figure 23. Carrying this 

out results in the following set of simultaneous equations. 

f; Ii= fii - oc gli (5.67a) 
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a, 'j = aij - cc hij (5.67b) 

cij + f, 'j d, '-Ij + ai'j = cij +a gij +a hij (5.67c) 

ci'j oij = ejj - ot gij (5.67d) 

cl Ijd; Ij= dij - oc hij (5.67e) 

These equations together with (5.61) and (5.62) have been found to define 

a matrix, B which may be used as the basis of the iterative scheme given by (5.56). 

The dashed coefficients of L and U are firstly obtained at node (1, I). At this node 
the coefficients g1j and h1,1 are both zero and the remaining coefficients are given 
by 

fI 0 

0 

cm cm (5.68) 

ej, j = el, l/cl, l 
dj, j = dl, llcl, l 

At the remaining mesh points along the first column (2:! ý]:! ý NY) g1j is zero 

and hij is evaluated by eliminating the unknown, ajIj from (5.62) and (5.67b). This, 

and the other coefficients are then given by: 

hjj 
dj, 

-j a, j- 
I+ oc d; j-, 

f; j =0 

a; j = alj- a hjj (5.69) 

clj = clj - aij elj-i + ot hjj 

Ojj = Ojj/Clj 

dl'j = (d, j- oc h, j)lcl j 

Similarly, at the remaining mesh points along the top row (2:! ý i:! g NX) hi, j 
is zero and gj, j is obtained by eliminating fjIj from (5.61) and (5.67a) . The 

coefficients are then given by: 
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P:, ,. f. . 
gi, 11+ 

fl, i - ct go 

ai'� =0 (5.70) 

= ci, 1 - f, '� d; 
-1,1 

+ ct gij 

ei'� = (ei., - ct gi, 1)Ici, 1 
di', di, llci, 1 

The coefficients at the remaining nodes (2! 9 i:! ý NX, 2 <j:! ý NY) can now 
be calculated by application of the full set of equations given by: 

e, '-, , fij 
gij ý1+ 

hij 
d, ', 

-, aij 

+ ot di'j-, 

fi'i = fij - oc gii (5.71) 

aij = aij -a hij 

ci, 1 ý ci, 1 - fi'j di'-, j-a, j e, ', -, 
+ cc gij + ot hij 

e, 'j ý (eij - ot gij)Icij 

d, 'j = (dij - ot hij)Ic; j 

Having calculated all the elements of L and U they can then be used In the 

iterative scheme of (5.58), which can be rewritten as follows. 

B ilzm =b-A zm (5.72) 

where: 

bzm = zm+l -zm (5.73) 

Equation (5.72) is then re-expressed as: 

LU (lz'n =u (5.74) 

where the residual u is given by: 

u= b-Azm (5.75) 

The solution vector bzm can then be found by introducing an intermediate 

vector, w as was done for the SLOR method, thus: 
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Lw =u (5.76) 

The components of w are calculated using forward substitution by the 

application of the following expressions in the order they are specified below. 

Wi, i ý Ui, i/Ci, i 

-1)/C' wl, = (ulj-aijwlj ij 
wo ý (Ui, i ,i Wl-i, 1)Ici, l 

wij ý (uij - aij w�-, - fl'j w, -I 
)lci'� 

(2:! ýj:! ýý NY) 

(2:!! ý i:! ý NX) 

(2! 9i:! 9NX, 2:! ýj:! g NY) 

As for SLOR the solution is then obtained by solving: 

U Bzm 

(5.77) 

(5.78) 

This equation is solved recursively by backward substitution using the 
following expressions. 

6ZNMX, 
NY ý WNX, NY 

bzm I (NY -Iý!! j 1) NXJ ý WNXJ - eN. Vj WNXJ+l 
(5.79) 

m (NX -1ý!! i 1) 5ZI 
NY ý WI, NY - diNY WI+I, NY 

bzimj = wij - dj'j w, +, j- el'j wij+l (N. X -1 ý-> i ý: 1, NY -1 ýt j ý!: 1) 

Finally the bz values'are added to the corresponding z values. In summary, 
therefore, the solution procedure consists of applying (5.68)-(5.71) to find the 

dashed coefficients followed by the repeated application of (5.77), (5.79) and (5.73) 

to obtain the updated solution. It was suggested by Stone, however, that for every 

other iteration (ie. for even numbered iterations) the above algorithm should be 

applied with i varying as NX, NX -1... 1 rather than 1,2 ... NX. This re-ordering of 
the grid points has the effect of making the non-zero coefficients appear for the 

values zi-ij-1 and z, +, j+, as indicated by the open circles in Figure 24, rather than 

for the values zj_jj+j and zj+j, _1 as in the odd numbered steps. As stated by Stone, 

this variation Is not always essential for convergence, but it often increases the 

rate of, convergence. dramatically, - This, alteration can be implemented by 

reordering the original matrix, A. This Is achieved by 'reflecting' coefficients a, c 

and e about the vertical centre line of the mesh and also exchanging coefficients 

a and e, before re-applying the above scheme; that Is: 

'lij eNX+I-lj 

ejj aNX+ 1 -Ij 
Cij CNX+I-lj 

(5.80) 
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Having obtained the bz values at the even numbered steps they should also 
be reflected so that they are correctly positioned before being added to their 

corresponding z values. 

(5ZNX+l-ij ý- 6ZIJ (5.81) 

For this procedure it is noted that a new set of dashed coefficients must be 

calculated prior to each application of (5.77) and (5.79). 
The convergence rate of this method depends on the value of a. Rather 

than use a fixed value for every iteration Stone suggested using a range of a 
values ranging between 0 and Ctmax to improve convergence. The best maximum 
parameter was found to depend upon the particular problem being solved and a 
suitable value is given by: 

2h22k2 
0(max ý1- min - I- i (5.82) 2/ kJ2 '1_, 

_ 
2/h2 1+ hi kj II 

which for most applications gives a value just below unity. The individual 

parameters, a, stiould be geometrically spaced as follov., s. 

1- Ctn ý (1 - ccmax)n'N n=0,1 ... N (5.83) 

It was recommended by Stone that a minimum of four parameters are used 

and in this Instance a total of eight have been used (N=7). Each individual 

parameter is used for one forward and reverse sweep of the algorithm and the 

parameters are applied in a cyclical manner. The order of application of the 

parameters is not critical. While a,,, defined by (5.82) proved to be the optimum 

value for the solution of the linearised Poisson equation (5.16), experimentation 
has shown that the optimum value for the linearised continuity equations (5.24) and 
(5.36) is zero. In this case, therefore, all the a, values are zero and reflection of the 

coefficients becomes redundant. This value is probably justified by the fact that the 

carrier concentrations vary exponentially over certain regions within the 

simulation domain and In this case (5.64) and (5.65) can be expected to be very 

poor approximations. 
It was found that only one single forward or reverse sweep of the SIP was 

required to provide a sufficiently accurate solution to each of the linearised 

equations (5.16), (5.24) and (5.36) at each Newton iteration. Thus, the modified 
coefficient and residual (right hand side) of these equations are recalculated 
before each sweep of the SIP. In addition the solution vector, zi was initialized at 

zO =0 prior to each application of the SIP. 
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5.2 Coupled Solution Procedure. 

The coupled procedure was first reported for one dimensional steady state 

problems by Gokhale [5.9], and was later extended to transient problems (5.101 

and then to two dimensional problems (5.11] [5.12]. For problems where the 

potential distribution is a sensitive function of current density (eg. current induced 

base widening in BJT's) the coupled procedure gives much faster convergence 
than the decoupled procedure. In these situations the strong electrical coupling 
between the Polsson and continuity equations is reflected by the way in which the 

equations are solved. The coupled approach does, however, possess a number 

of disadvantages compared to the decoupled procedure. It is more involved with 

regard to program structure as it requires the use of additional coefficients over 

and above those of the decoupled approach. A more serious limitation is that this 

procedure requires a close initial guess to the solution before it can be applied 

otherwise divergence will result. This was not a prerequisite for the decoupled 

approach. 
In this particular application the electrical model which is comprised of 

Poisson's equation and the continuity equations is solved in a coupled manner, 

whilst the heat flow equation has been solved separately as in the decoupled 

approach. Although this may not be as attractive from a mathematical viewpoint 

as solving the complete system in a coupled manner, it does allow for greater 

flexibility as the effects of self-heating are often negligible or not required. The 

exclusion of the heat flow equation also simplifies the solution quite dramatically. 

A flow diagram for the coupled procedure Is shown in Figure 25. Notice that the 

outer iteration (index n) is not required In the coupled approach and the treatment 

of the heat flow equation is exactly the same as for the decoupled approach. The 

decoupled method is more efficient at low-level injection and it was used to 

initialise the coupled method. The base bias was then incremented in small steps 

(0.05v) while the collector voltage was kept constant. In this way high level 

injection could be simulated. The Newton method as applied to the electrical 

model may be written as follows. 

- 
OF OFq, OF 00 

- 

k 
k 4 F (4 k 

P) 4, f, n 
7p 041 On 

OF OF OF nnn - -- - 
k bn 

kkk Fn(ý/ np (5.84) 7n Tp 04, 
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-- 
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Figure 25. Flow Diagram Illustrating Coupled Solution Procedure. 

- 133 - 



The size of the Jacobian is now 3. NX. NY x 3-NX. NY as opposed to 
NX. NY x NX. NY for the decoupled approach. The corresponding nodal equations 
at the inner mesh points are evaluated by applying (5.84) to the discrete Poisson 

equation (4.15) and the continuity equations (4.52) and (4.58). The linearised 
Poisson equation is given by: 

II+ Bij (5 Vlk 
Ij+ Cij (5 ok 7 6ok A 6Vk jk 

jj Ij- i- ij+Dij VI+lj+Eij lj+1 

k+ ýj 6pk = _F (, kk, 
P) 7ij (5nij i jj qf q1 

,n 

(5.85) 

where the derivatives with respect to the carrier concentrations are given by: 

q Aij 8, (5.86) j Esif 

Applying (5.84) to the electron current continuity equation gives: 

=k k 7Zk bok 77k k '; k k -. k k F; j 6 Viij-i + Gij i-i j+ Hij ý oij + lij (5 V11+1 j+ Lij 6 Oij+l 

kkkk 
lj+ 

kkkkkk 
+ Fjj 6n, j-, + Gij bni- Hij bnij + lij bni+lj + Lij bnij+l (5.87) 

j 
öpk k k) 

n( jp ij -F 7, nk, 

The derivative of the discrete equation with respect to qlIj-, is denoted by 

Fij and may be written as follows. 

aF,, 
j 

- 
O(FIj nij-, + H,, n1j) 

(5.88) 
aoli-i a0li-i 

The following is obtained upon substitution of the coefficients Fjj and Hij 

with (4.53) and (4.55). 

q L(Tjj 

2k llnij-112 OB(F(Oij-1,01j, Tij-1, Tj)) 

-1, 
Tj) kj (kj + kj-, ) 

("ij-1 

aoij-, 

)) ) (5.89) 
aB(F(olp Oij-1, Tij, Tij-, 

- nij 
IIJ-1 

The derivatives can be evaluated with the aid of the chain rule as follows. 

aB(X) aB(x) ax ax 
= P(X) (5.90) 

(I xaýa V/ 

where P(x) is the derivative of tile Bernoulli function, (4.36) and is given by: 
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P(x) = 
(1 - x) exp(x) -1 (5.91) 

( exp(x) - 1)2 

The coefficient TI, is finally given by: 

2 finj-11, 
Fij = Tj-, (kj +kj-, ) 

(n,, 
-, 

P(F(O,, 
-,, 

Vlij, Tij-1, Tj)) + nijP[F(Oij, Oij-1, Tij, Tij-1)1) 

(5.92) 

The remaining coefficients of the (50 's are given as follows. 

21117i-1/2j 

Gjj - hi-, (h, +hi-, ) 
(nj-jP(F(q1j-jj, qlij, TI-Ij, Tj)) + n, jP(F(qlij, ql, 

-lj, 
Tij, Ti-Ifl) 

2 tt,,, 
112J bi = Tj-(hj +hi-, ) 

(n, +,, P[F(Vi+lj, qi1j, Tj+jj, Tij)) + niP(F(oij, oi+lj, Tij, Ti+lj))) 

2 it, ij+112 
Lij -Tj-(ki +kj-, ) 

(nij+, P{F(Oij+,, 01j, Tij+,, Tj)) + nijP{F(oij, Oij+,, Tij, Tij+, ))) 

Hij (Fij + Gij + lij + Lij) 

(5.93) 

In taking the derivatives with respect to potential any non-linearities due to 

the field dependent mobility have been ignored. This non-linearity is not expected 
to be significant as the variation of mobility with potential is of second order 
importance compared with variation of field with potential. Thus, the effect on the 

convergence rate of the Newton method should be small. The coefficient ffIj 

originates from the recombination term and is given by (5.38). The discrete hole 

current continuity equation can be treated in exactly the same way. Applying (5.84) 

to the hole continuity equation gives: 

7-. kk. -., kk-;, -k k+ ; Z'k k ; -. kk mij 6011-1 + w1i 6oi-ii + xij 
ij SIJ4j+jj+ujj6qjj+j 

kkkk Ak kkkkk 
Mij öplj-l + wij öpi-lj + xlj öpij + sij Api+IJ + Uli öpii+l (5.94) 

; 7k kkkk D,, bnij = -Fp(ill ,n, p 

The coefficients of the bql 's are as follows. 
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2 ItPij-112 

Mli = (pij-, P[F(oij, Viij-1, Tij-1, Tj)) +pjjPfF(ojj-j, 01j, Tij, Tij-1))) ki-, (kj +kj-, ) 

2 PPi-112J 
WJJ 

= hi-I (h, +hi-, ) 
(pi-, jP (F(Viij, q/i-I j, Tj_j j, Tj)) + pjjP [F(ol-I j, V11j, Tij, Ti-I fl) 

2 'UPi+112J 
s 'J - h, (h, +hi-, ) 

(pj+, jPfF(ojj, Vii+lj, Ti+lj, Tj)) +pijP[F(01+lj, 01j, Tip Ti+lj))) 

--2 'UPij+1/2 (pij+, P[F(oij, qiij+,, Tij+,, Tj)) + p, jP[F(Olj+,, ýjj, Tip Tij+, ))) U'J kj (kj +kj-, ) 

xij =- (Mij + Wii + Sii + Uli) 

(5.95) 

and Dij is the negative of the value given by (5.26). 
The additional coefficients generated in the coupled method disrupt the 

penta-diagonal structure of the Jacoblan resulting from the decoupled method. A 

new linear equation solution technique is, therefore, required which is suitable for 

solving the particular system generated In the coupled method. An iterative 

scheme that has proven to be highly convergent will now be described. 

Firstly the system is ordered in such a way that the bandwidth of the 
Jacoblan Is minimised. This ordering also serves to place nine out of a total of 
fifteen non-zero diagonals at or directly adjacent to the principle diagonal of the 
Jacoblan. This gives a significant improvement in the convergence rate of the 
iterative scheme to be employed. More specifically equations (5.85), (5.87) and 
(5.94) are ordered consecutively for each node starting from (1,1), then going down 

each column, moving from left to right. An example of the resulting linear system 
for a small 3x3 mesh is given In Figure 26. It is readily apparent that the systern 

can be partitioned in the following manner. 

YJ Z, A, F, 
X2 Y2 Z2 A2 F2 

000 40 0 
X, YJ Z, A, =-F, (5.96) 

:: zjVX-j XNX YNX 
JLA,, xj L 

Fjvxj 

The sub-matrices, Xj, Yj and Z, are of dimension MY x MY and Aj and F, 

are vectors of length 3NY. The method of SLOR has been utillsed to solve this 

equation. The particular scheme which has been used resembles closely that 

- 136- 



cll, ý*Il ffil ý11 Oll 6*11 Foil 

'711 
AI Ej 

I 
ýl 

I Hi Eli ill ill 6nil r,, l 

7115,11 XI1 5711 Ull ill sil 6pll fE 11 
A12 C12 A12 612 E12 

A 
012 6`0 12 FIM 

712 r, 2 1712 H12 C-12 L12 L12 

A 
112 112 6"12 Fnl2 

7 W12 M121 712 512 X 12 
5`12 U121 - - 

I'S 12 S12 6P12 Fpl2 

A13 C13 ; ý13 F13 

A 
013 6013 F*13 

F13 F13 Wl 
3H 13 C13 

4 
113 113 6r, 13 rnl3 

W13 M13 i. 13 
5-13 X 13 

i'l 
I Sin 6PI3 L= 

621 C21 ý21 i2l E21 D21 6*21 F021 

G21 G21 
A 

H21 H21 C21 L21 L21 
A 

121 121 6n2l Fn2l 
W21 W21 -- X2j D21 X21 U21 U 21 S21 S21 6P21 Fp2l 

822 A22 C22 i22 622 E22 D22 '5022 F*22 

IT22 G22 
A- F22 F22 W22 H22 E22 E22 L22 

A 

[22 122 6n22 Fn22 

W22 W22 W22 4f22 7221522 X22 U22 U 22 
'22 S22 OP22 Fp22 

623 A23 C23 Z23 621 D23 6023 F*23 

G23 G23 
A 

F23 F23 H23 H23 C23 123 123 5"23 Fn23 

W23 W21 -A W23 M? l 
'23 F21 X 21 

i2l S231 AP23 Fp23 

831 C31 ý31 '31 E31 6031 F#31 

G31 G31 -A-- H3, H31 C31 L31 L31 6"31 Fn3l 

W31 W31 j. 
31 

6731 XA31 U31 U31 6P 31 Fp3l 

832 32 C32 A32 832 E32 6#32 r. 32 
6-32 G32 

A-- 

[F3 

2 F32 WTI 
I 
Af3 

2632 L32 L32 6"32 "1732 

W32 W32 32 
A 

M32 X92 D 32 X92 U32 U32 6P32 Fp32 

f333 A33 C33 IW33 
5-33 6*33 FýjM 

E33 G33 

] 

W33 A F33 F33 H33 E-33 5"33 F"33 

W3 F133 --A R33 
M3ýX33 D33 X331 "P33 

-ýL-33 

Figure 26. Example of a Linear System Arising from the Coupled Solution Procedure. 
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described in section 5.1.6.1 for the decoupled approach. However, the most basic 

element of the Jacobian is now taken to be a3x3 sub-matrix rather than a single 

scalar quantity as was previously the case. The SLOR iterative scheme is 

completely defined by: 

^ m+I Yi Al -F, -X, Amll -ZiAI+, (5.97) m 

(j)(A 
M+j 

Am+' = Am + A, - Am) (5.98) 

These equations are of exactly the same form as (5.45) and (5.46). As 

before a single iteration of SLOR consists of calculating the A values 

simultaneously for each column from column 1 through to NX. Equation (5.97) can 
be expanded as follows: 
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Ci, 1 Eij 
Aij 

-fij - F�, bi2+1"1 - Dij bi"+1,1 
m+l 1m Ai, 2 CI, 2 Ei, 2 45i, 2 _f1,2 - F�, 3, mý1,2 

- DI, 2 
Öi+1,2 

1,2 

^m+l 
öm+l m Aij Clj Eij bij -fij-Fij 1-1j-Dijöi+lj 

Ei, NY-1 
m+I mm AI, NY CI, NY '5i. NY -fl, NY - FI, NY 

5i-+1,1NY - DiNY äi+1, 
NY 

(5.99) 

where the sub-matrices and sub-vectors are given by: 

Aij CIj Aij Bij Ejj 
A 

Ajj T71j Fjj Cij 17ij H ij CIJ Ejj Lij Lij 
A 

M/j MIJ Xjj Djj Xjj Uij U/j- 
(5.100) 

Bli Dij bVIIJ Fp, 
j 

FIj Gjj GIj Dij /Ij /jj 15ij 6njj fjj Fnj 
WIJ WIJ Sjj Sjj 6pjj Fpll 

Equation (5.99) is similar to (5.47) except that the elements of the matrix are 
now 3x3 sub-matrices and the elements of the vectors are 1x3 sub-matrices. 
This system can be solved by formally extending the Thomas algorithm described 
in section 5.1.6.1 to a more general block tridiagonal form. The elemental 3x3 

matrices, E; of the upper triangular matrix (cf. equation (5.49)) can be obtained 
from the generalised version of (5.51) which is given by: 

Ei = CT1 EIj , E; = (Cij - Aij Ej 1 
,l 1 1,1 1 -, 

)_ Eij (2:! g j:! g NY - 1) (5.101) 

Similarly the elemental 1x3 sub-vectors wj are obtained from the 

extension of (5.55). 

-1 
1 

Tl W, = Cj, j vi , Wj = (CIj - Aij Ej- (vj-Aijw, 
-, 

) (2! ýj--, NY-I) (5.102) 

where 

vj= -fjj-Fjj6jm+l-D 6m (5.103) ij ii i+Ij 
A 

The JIj values are then given recursively using the following extension of 
(5.57). 

A m+l m+l 
45 

1 Am+ 
ij+ (NY -1 >-j >- 1) (5.104) bi, NY WNY 9 

bij wj -- E; 14+1 
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Some over-relaxation is then introduced by applying: 

bm+1 
= 

bm 
"ýM+l 

i4 + (1) (- bm) 

ij bij Ij (5.105) 

where: 

Wq, 

to 
n (5.106) 

(OPI 

To summarize, therefore, a single iteration of block SLOR consists of 
calculating Ej from (5.101) and wj from (5.102) followed by bjT+1 from (5.104) and 
(5.105), starting at column 1 and ending at column NX. Inversion of the 3x3 

matrices, C1,1 and (Cjj - Alj E; 
-, 

) in (5.101) and (5.102) is most efficiently 
accomplished using cofactors as follows. 

a, I a2l a3l a22a33-a32a23 a3la23-'92la33 a2la32-a3la22 
I 

a12 a22 a32 - a32al3-al2333 a,, a33-a3jal3 a3jal2-aja32 (5.107) det 

_a13 
a23 a33- 

_al2a23-a22al3 
a2lal3-alia23 aja22-a2jal2- 

where the determinant is given by: 

det = all(a22a33 - a32a23) + a2l(a32al3 - al2a33) + a3l(al2a23 - a22ai3) (5.108) 

The use of (5.106) allows for different acceleration parameters to be 

specified for the three equations being solved. Experimentation has shown that 

convergence is most rapid for coq, = 1.6 and (o, = a)p = 1.0. The iteration is repeated 

until the changes being made to the b values becomes negligible, at which point 
0, n and p are updated for the next Newton iteration. This procedure is repeated 

until the maximum changes In V11j, nij and p, j are less than 6Vtmaxf 6nmax and 
6pm. x as defined for the decoupled procedure. The overall accuracy should, 
therefore, be equivalent in both procedures. 

This completes the description of the numerical model and it will now be 

used to provide information about the internal operation of a number of different 

power devices. 
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Chapter 6. Results. 

Several studies which have been carried out with the aid of the numerical 

model will be described In this chapter. In addition to the development of the 

model a certain amount of time has been devoted to the design of a number of 

different bipolar transistor geometries. The mask design, fabrication and eventual 

characterisation of these devices will also be discussed in this chapter. The period 

required for fabrication extended over many months during which time much of the 

numerical model was being developed. The masks had to be designed at a very 

early stage in tile project which meant that little time was available for optimizing 

the mask designs on the basis of predictive results from the model. The various 

items that have been covered will be described in chronological order and the way 

in which each item leads on frorn the last will then become apparent. 

The first task was to make an investigation into the curvature related 

avalanche breakdown of diffused junctions near a mask edge. Of particular 

interest are the several field relieving techniques that can serve to substantially 

improve the reverse breakdown voltage. This Study was made possible by the use 

of a small section of the full nUmerical model which was the first part to be 

developed. Having completed this, the mask set for the bipolar transistors was 

designed. Some considerations made oil the basis of the previous analysis of the 

field relieve schemes were Included hi the mask design. In this way the voltage 

handling capability of tile devices could be maximized. Upon completion of tile 

device design tile full electro-thermal model was developed. The model was 

Initially used to indicate the optimum power bipolar geometry for maximum pulsed 

power handling. This was followed by an analysis of transistor switching under 

inductive loading conditions. Such an analysis was made possible by the coupling 

of the numerical model with the collector circuit equation. In a final study the 

coupled Plectrical and thermal phenomena associated with thermal second 
breakdown were modelled. 
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6.1 An Investigation into the Techniques for Improving 

the Curvature Related Breakdown Voltage of Diffused 

Junctions. 

6.1.1 Introduction. 

A wide variety of techniques are available to protect curved junctions, 

which arise at mask edges, against premature reverse breakdown. As stated in 

chapter I these techniques include field plates, field limiting rings, 'resurf' layers 

and p-ir-n structures. In the following section a number of additions and 
subtractions to the existing model are described which will allow it to be used to 

calculate breakdown voltages. This part of the model only requires a solution to 
Poisson's equation and as such is comparatively simple, and yet it is extremely 
powerful as it can be applied to the most complicated geometry without 
necessarily incurring any loss of accuracy. 

6.1.2 Breakdown Voltage Modelling Considerations. 

The voltage profile of a reverse biased junction may be accurately 
modelled by solving Poisson's equation as described in section 5.1.2 for the 
decoupled approach. A solution to the current equations can be avoided by 

assuming that the quasi-Fermi levels extend without variation through the device 

with their values being given by the applied voltage at the appropriate contact. 
Thus, the electron quasi-Fermi level is set equal to the voltage applied at the 

contact to the n-type side of the junction, and the hole quasi-Ferml level is equal 
to the voltage applied to the p-type side. Once initialized, the quasi-Fermi levels 

are held fixed for the duration of the Solution procedure. The electrostatic potential 
is initialized to give space-charge neutrality at all mesh points through the use of 
the Maxwell-Boltzmann approximations. 

The quasi-Fermi levels are, therefore, separated by the applied potential 
difference across the junction, and consequently the condition of thermal 

equilibrium (pn = n, 2) in the neutral regions is violated. Such a positioning of the 
Fermi-levels results in a pn-product that is very much less than n?. The 

consequences of this on Recombination/Generation processes and leakage 

currents have not been assessed as the continuity equations are not solved. Its 

effect on the space charge term is negligible because the minority carrier 
concentrations are in general always too small to significantly affect the space 
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charge in neutral regions at low injection levels. The solution for electrostatic 

potential has been found to be almost entirely unaffected by the assumption of flat 

Fermi levels [6.1] and such 'off-state' models have been used to good effect by 

many workers in the past (cf. chapter 1). 

A typical run is shown in Figure 27 for the case of a simple p+-n junction 

in one dimension, with a p+ region that is assumed to have a Gaussian impurity 

distribution. Here the potential profile has been plotted after every Newton 

iteration of the decoupled procedure, which requires a single iteration of the SIP 

as stated In section 5.1.6.2. It may be observed that the slope of the initial step 

profile becomes smaller with each iteration until the converged solution is 

obtained in approximately 20 iterations. 

-20 

013 
40 - 

100 - 

160 - 

280 - C3 

340 - 

400 - 

460 - 
4)n 

520 
ýIII-I-I-II 

0 10 20 30 40 50 so 70 80 90 100 
Y IPM) 

Figure 27. One-Dimensional Potential Profiles After Successive Iterations of the SIP.: The 
background doping concentration is 1014 cm 3 and the applied reverse voltage Is 
Soo V. 
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Having obtained the converged potential distribution it is then necessary to 

solve the ionization integral in order to ascertain as to whether or not the applied 

reverse voltage is above or below that to cause avalanche breakdown. Tile 

ionization integral for pure hole injection may be written as follows. 

zn 

lp =1 cc exp (cc, - ap) dz' dz MP p 

(f 

ZP 
ZP 

where z is directed along a field (or flux) line, Mp is the hole multiplication factor 

(= J(z, )1J(zp)), zp and zn are the locations, along the flux line, of the depletion layer 

edges on the p-type and n-type sides and C(n and ap are the ionisation rates for 

electrons and holes respectively. Breakdown occurs when Mp --+ oo in which case 

lp= 1. This condition applies regardless of whether multiplication results from 

carriers that enter the depletion layer by diffusion from the end regions or frorn 

carriers produced by charge generation at deep levels within the depletion layer. 

The field dependencies of the ionisation rates have been taken into account using 

Chynoweth's law according to the measurements of Van Overstraeten and De Man 

[6.2], as follows. 

5 -1 1.231 x 10 6V 
cm-1 

an(E) = 7.03 x 10 cm exp 
( 

JEJ 
(6.2) 

in the range 1.75 x lCýV cm-' :g JE J : 96 x 105V cm-' and 

etp(E) = 1.582 x 106 cm -1 exp -2.036 x lo 6 vcm-l (6.3) 
JEI 

in the range 1.75 x 105 V cm-1 <- IEI:! ý, 4x 10-5 V cm-1. For the purposes of 

modelling the range of validity of these equations has been assumed to be 

extrapolated down to a field of 5x 101 V cm-'. Such an extrapolation is required 

as significant multiplication can occur down to this field value. There seems to be 

no physical evidence to suggest that the ionization rates will deviate considerably 
from their values given by (6.2) and (6.3) in this sightly lower field range [6.2]. 

From physical considerations the upper limit of 1, p is unity, however, 

evaluation of the double line Integral can yield values greater than this if the 

applied voltage exceeds the breakdown voltage. Although physically implausible, 

this fact can be used to good advantage since the magnitude of the lp value 

provides an Indication as to how far the applied voltage is from breakdown. It has 
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been found that the flux line along which most multiplication takes place is nearly 

always the one that passes through tile point of maximum electric field. This fact 

is due to the exponentially varying nature of the ionization coefficients with field. 

The exception to this rule occurs when high fields are sustained over substantial 

regions of a device. In this case care must be taken to locate the flux line giving 

maximum multiplication. 

Before the ionization integral can be solved the variation Of Un and ap with 

z must be found. This has been done by initially obtaining values Of an and ap at 

discrete points along the flux line, which will then allow the ionization integral to 

be evaluated numerically. The techniClUe used to follow the flux line will be 

described with the aid of Figure 28 
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Figure 28. Diagram Illustrating the Technique used to Follow a Flux Line Passing Though Mesh 
Point Q. 
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Firstly the ionization rates are calculated from (6.2) and (6.3) at the rnesh 
point coinciding with the maximum field In the device, which is represented by 

point 0 on the flux line in Figure 28. In solving Poisson's equation it was assumed 
that the internodal electric field values were constant and so the fields ExI, E, 2, 
Ey, and Ey2 shown in Figure 28 are given by: 

E,,, = (qij- qij+, j)1hj, EX2 = (qlij+l - qli+lj+, )Ihi 
(6.4) Eyl = (Vij - qllj+, )Ikj, Ey2 = (Vli+lj - qli+lj+, )Ikj 

The angle 0 is given simply by tan-I(Eyj/Ej). The procedure then continues 
by calculating OCn(E) and ap(E) at equally spaced intervals, bz along the flux line. 

The nominal value of bz was taken to be one thousandth of the width of the parallel 

plane depletion layer, WPP associated with the junction. This is simply given by: 

P2t, 
ij r, VR 

(6.5) WP 
q N13 

where N13 is the impurity concentration on the low doped side of the junction. Any 
further reduction In 6z would In general cause a change only in the third decimal 

place of /P. The location of the first point along th-3 flux line (labelled 1 in 
Figure 28) is given by 

XL ý XJ + (IZ COS 0, YL ý yj+bz sin 0 (6.6) 

This point does not in general coincide with the mesh and in order to 
interpolate the fields the four niesh points which form a box surrounding this point 
must be found. If the flux line has entered a new box then the fields given by (6.4) 

must be recalculated for the new box. These fields are then linearly interpolated 

on to the flux line using the following. 

(EX2 - Ex, ) (Ey2 - Eyl) 
Ex = Ex, + -k a, Ey = Eyl +b (6.7) 

j hi 

with a and b being defined In Figure 28. Having calculated the ionization rates at 
this point the location of the next point is then found by applying: 

tan-' 
( Ey ), 

XL`ý*XL + 6Z COS 0v YL=: ý*YL + 6Z sin 0 (6.8) Ex 

This procedure of stepping along the flux line, locating the surrounding 
mesh points, interpolating tile fields and then calculating Cen and ap is repeated 
until the field drops below the minimum value required for significant ionization 

_5 X 104 V cm (t- -1). The whole procedure is then repeated while following the flux 
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line in the opposite direction, starting from the maximum field point. Care must 

taken to ensure that the flux line does riot enter the silicon dioxide layer. This can 
be achieved by constraining YL to be greater than or equal to the distance of the 

SI-SiO2 interface from the top boundary of the simulation domain. Also, if the flux 

line should coincide with the SI-S'02 interface then the y-directed field component 

should be set to zero if it is directed upwards, since this component does not 

contribute to any multiplication. 
Once a, Q) and ocp(i) have been obtained at all points, i along the flux line 

then the ionization integral can be evaluated by simple summation of strips. 

MPW 
exp (i))(5z exp PQ))5z 

Lot"u) 
- 01P cc /P 

C(, (i) - 0cp(i) Imim 
1=4nin 

(6.9) 

This can be implemented In Fortran with a single DO-loop as follows. 

suml = 0.0 
SUM2 = 0.0 
DO 51= IMIN., IMAX 

ANMAP AN(I) - AP(I) 
SUMR SUMI 
SUM1 SUMI + ANMAP * DZ 
SUM2 SUM2 + AP(I)/ANMAP 

5 CONTINUE 
( EXP(SUM1) - EXP(SUMR) ) 

The value of 1p is given by SUM2. More elaborate numerical integration 

techniques such as the Trapezoidal rule or Simpson's rule proved to be less 

efficient as they require the use of nested DO-loops. In order to gain confidence in 

the above scheme the electron ionization integral was also evaluated using a 

similar technique. This integral is given as follows. 

Ofn exp (ap - a, ) dz' dz 
Mn 

(f 

Z 
ZP 

This integral is not such a strong function of voltage as Ip because the 

electron multiplication factor, Mn is a much weaker function of reverse voltage than 
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Mp [6.31. However, /, and I,, were both found to be unity at breakdown. As a further 

test the left and right hand sides of the following equality [6.4] were calculated 

numerically: 

Z, 
(a, - orp) dz = 10ge 

( Mn f 

MP 
ZP 

and were indeed found to be equal to within the bounds of computational accuracy 
limits, giving further prove that the model had been implemented correctly. 

Two example results are shown in Figure 29 and Figure 30 for single 

unprotected diffusions. Figure 29 shows the voltage contours at breakdown in the 

free space region immediately above the device as well as in the silicon. The p+ 
diffusion is assumed to have a Gaussian vertical profile with error function lateral 
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Figure 29. Voltage Contours and Flux Lines for a Curved Junction at a Straight Mask Edge: 

ri = 30 jim, MB =IX 1014 CM--3, Qintlq =3x loll CM-2, E,,, = 236 W cm-1 
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Figure 30. Field Contours and Breakdown Locus for a Curved Junction at a Circular Mask 
Edge: 
rj = 5, um, Na =IX 1015 cin -3, Qtnt = 0, E,,, = 324 W cm--l , BV = 110 V. 
Distances are in microns and contours are labelled in W cm-1. 

roll off. A more detailed description of such profiles will be given in section 6.2. 

The depletion region Is constricted at the SI-S'02 interface owing to the presents 

of positive interfacial oxide charge, Qinl- 

A number. of flux lines are drawn which are normal to the equipotentials 

apart from those which are constrained to run along the S'-S! 02 interface. 

Breakdown occurs along the flux line that is coincident with the Si-SI02 interface 

over its entire length. This is due directly to the presents of positive interface 

charge which causes the peak field and breakdown point to move from the bulk 
towards the interface. Figure 30 shows the field contours and breakdown locus for 

a diffusion which is assumed to have been defined by a circular mask of radius 
5pm, as in this instance cylindrical co-ordinates have been used. Since no 

- 149 - 



interface charges are assumed to be present the breakdown locus is in the bulk. 

In both examples the breakdown locus passes through the point of maximum field. 

6.1.3 Field Ring Considerations. 

The use of field limiting rings was first proposed by Kao and Wolley [6.5]. 

They consist of additional diffusions positioned adjacent to the main junction and 

are usually formed at the same processing step as the main junction itself. This is 

achieved by simply making extra openings in the rnask defining the main junction 

and no extra processing is, therefore required, making field rings very attractive 

indeed. A diode with a single field ring is illustrated in Figure 31. This is the 

situation at breakdown where the depletion region encompasses the field ring, 

which assumes a potential that Is Intermediate to the anode and cathode voltages, 

as no external contact is made to the ring. In this case the spacing between tile 

field ring mask edge and the main junction mask edge is 421tm and this is the 

optimum distance giving maximum breakdown improvement for a single field ring. 
The lonisation Integral along both tile flux lines is unity at the same reverse 

voltage of 660V. If the ring was further away from the main junction breakdown 
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Figure 31. Device with a Single Field Limiting Ring: rj = 10 jim, NB =IX 1014 cin-3 , 
Qi,, t = () 

, 
EANODE = 256 W cn? I, ERING = 268 W cm-1 , 

BV = 660 V, 

VRING = 250 V. Distances are In microns. The saddle point search is carried out in 

the boxed region. 
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would have occurred at the main junction at some lower voltage. Too small an 
anode-ring separation will on the other hand result in premature breakdown at the 

ring junction. The breakdown voltage of 660V represents an improvement of 38076 

over the unprotected junction breakdown voltage. 
The potential assumed by tile ring is that which results in zero net current 

flow Into the ring under steady state conditions [6.6]. In the case of a p+ ring, any 
hole current originating from deep levels In the depletion region or from diffusion 
into the depletion region, which then flows into the ring must be balanced out by 
hole current leaving the ring at some slightly forward biased point on the ring 
junction. Strictly speaking, therefore, a solution to the current continuity equations 
is required in addition to Poisson's equation, so that the correct ring potential may 
be obtained. However, this rather drastic measure can be avoided by using the 
algorithm now to be described. 

Initially the ring potential, that Is tile hole quasi-Fermi level in the 
metallurgical ring region is set to the voltage applied to the p+ anode and then 
Poisson's equation is solved. Having obtained the potential distribution a search 
is then made for the minimum nodal potential value along the ring junction. This 

potential 13 always located on the side of the ring nearest the main junction and the 

search is restricted to the box shown in Figure 31. The minimum need not 
necessarily coincide exactly with tile metallurgical junction and it should really be 
defined as the minimum potential on the crest of a vertical ridge of potential that 

arises between the ring and main junction. If no interface charges are present this 

minimum will be located at the SI-SiO2 interface. However, In the presence of 
Interface charge the minimum is relocated at a slightly lower position in the bulk 

silicon and in this case the minimum lies at the 'saddle' point of the ridge. 
The hole quasi-Fermi level in the ring is then reset to the potential at the 

minimum or saddle point minus tile built-in voltage at this point, and the polential 
In the ring Is re-initialized for space charge neutrality using tile updated 
Fermi-level, Op. This technique implies that the ring is not actually forward biased 

at the minimum, but that it Is under zero bias. Tests have shown that because only 
a small forward bias Is required to account for the low reverse leakage current 
entering the ring, this approximation results In a ring voltage that may be in error 
by only a fraction of a volt. The effect on the potential and field distribution is 
negligible. 

The Polsson equation is then resolved and the new ring potential is 
calculated as described above. This procedure is repeated until the ring voltage 
converges, which typically takes ten iterations. The technique is illustrated in 
Figure 32, which shows the potential along the S'_Si02 interface of the example 
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Figure 32. Illustration of Technique to Located Field Ring Voltage.: The final solution is 

shown in Figure 31. 

shown In Figure 31 directly after each Poisson solution. Tile ring voltage increases 

rapidly at first and then gradually converges to its final value. 

Although this technique for locating the ring voltage was developed 

independently as part of this project a published article [6.7] has since come to 

light, which describes a very similar technique. In this paper a comparison was 

made with ring voltages obtained from experimental ring devices, which showed 
that the algorithm described above provides accurate ring voltage values. It was 

also shown that the algorithm can be formally extended to multiple ring systems. 

- 152- 



6.1.4 Results. 

The 'off-state' model has been utilized in an investigation of various 
techniques for reducing field enhancement at curved junction regions to improve 
the breakdown voltage. A fully comprehensive review of tile results obtained frorn 
this investigation have been published [6.8], and a facsimile of this paper entitled 
'A Numerical Analysis of the Resurf Diode Structure' has been included in the 
Appendix at the end of this thesis. The paper describes virtually all the results 
obtained, and consequently only a brief description of the results will be made 
here, with the aid of the figures in the paper. For a detailed account of the results 
the reader is referred to the original work in tile appendix. 

The basic structure of the 'resurl" diode is illustrated in Figure I of the 
paper. In addition to the main p+ junction are are a p- resurf (standing for REduced 
SURface Field) layer and an n+ channel stopper. The p- layer can be formed either 
by a second epitaxial process or by Ion Implantation, which is rapidly becoming 
the standard technique for introducing dopant into silicon. The latter process is 

probably the more feasible as it relatively inexpensive and uninvolved. Ion 

implantation also provides precise control over tile amount of dopant introduced 
into the silicon, which is a prime requisite of the resurf method. For the purposes 

of simulation the resurf layer has been assumed to be uniformly doped right up to 
the p--n- junction, which is obviously impossible to achieve in practice with either 
method. Some experimentation is inevitable especially bearing in mind dopant 
diffusion and complex dopant segregation processes at the SI-S'02 interface 

during subsequent thermal annealing [6.9]. 
Figure 3 of the paper shows that a significant improvement over the 

unprotected junction breakdown voltage is possible by a suitable choice of resurf 
layer doping. A range of possible interfacial oxide charges can be accommodated 
for by slightly increasing tile resurf layer doping. It is significant that tile sarne 
breakdown voltage improvement can be. obtained with or without interface charge. 
In this respect tile resurf layer serves to passify the positive interface charges by 

providing negative acceptors In the Immediate vicinity of the Interface. Tills does 

not apply to other protection techniques such as field rings and field plates [6.101 

where the presence of interface charge results in a reduction in breakdown 

voltage even after reoptimization. The mechanism by which the layer operates is 
illustrated in Figure 4 which shows the equi-potentials at breakdown for three 
different layer doping densities. As the doping is increased the breakdown point 
moves from the main junction, at or near the SI-S'02 interface to a sightly deeper 

position in the bulk silicon and finally to the resurf layer-channel stopper junction. 
All results are based on the assumption that the resurf layer and main junction 
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depths are equal. This condition has been found to give maximum breakdown 

voltage improvement without affecting the parallel-plane portion of the main 
junction. The sensitivity of the breakdown voltage to resurf layer depth is indicated 

by Figure 5, which shows that the resurf depth should be within 111m of the main 
junction depth of 10, um to guarantee maximum benefit from resurf action. Figures 

6,7 and 8 provide resurf doping data that ensures optimum bulk breakdown 

regardless of Interface charge density. Data is provided for three different 

background dopings of IX 1014 CM-3,3 x 1014 CM-3 and IX 1015 CM-3 for which 

respective breakdown voltages of up to 140OV, 600V and 250V are attainable. The 

breakdown voltage Improvement possible by the use of resurf layers is Illustrated 

by the universal curves of Figure 11. A single universal curve can be plotted that 

describes the breakdown voltage of unprotected or protected junctions for all 
junction curvatures and background dopings. This is achieved by normalising the 

breakdown voltage by the corresponding parallel plane breakdown voltage and 

plotting this against the junction radius of curvature normallsed to the parallel 

plane depletion width at breakdown. It can be seen that resurf layers give a 

particularly good Improvement in breakdown voltage, which for most cases is over 

90% of parallel plane value. This Is significantly better than what can 'F-. obt-fl-er, 

with a single field ring and a good improvement over double and triple field ring 

systems is obtained for shallow junctions in lightly doped material. In Figure 12 a 

comparison has been made between the resurf and single field ring techniques. 

For the resurf case the effect of the Interface charge on the breakdown voltage call 
be effectively nullified by a slight Increase in resurf doping, whereas for the ring 

structure a readjustment of the ring spacing in the presence of interface charge 

results in a breakdown, which at best is 30% lower than for Qint ý 0- 

Having obtained such encouraging results for the resurf technique it was 
decided that they should be incorporated into the transistor designs to be 

fabricated, to protect the base-collector junction. The particular devices in question 

were required to have an n- collector layer thickness of 3711m and an impurity 

concentration of 1X 1014 cm-3. The diffused p-1, base junction depth was specified 

as 61im. The starting material for tills process was obtained by a double epitaxial 

process with a 61im p- layer being grown on top of a 37pm epitaxial collector layer. 

A number of different surface geometries were designed including interdigitated 

and circular types. Further details of processing and device design are given in 

section 6.2. Although this collector impurity concentration corresponds to that for 

which optimurn resurf doping data is available from Figure 6 of the paper, 
unfortunately this data is not applicable as these results assume that the n- layer 
is wide enough to allow for free depletion. The model has, therefore, been re-run 
for the specific geometry being considered and the result, which is similar to 
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Figure 33. Breakdown Voltage as a Function of Resurf Layer Doping.: The thickness of the 

n- layer is 371im. 

Figure 3 of the paper, Is Illustrated In Figure 33. On the basis of the computer 

generated curves a value of 1.5 x 1015 CM-3 was specified for the resurf doping. 

Devices were fabricated both with and without the resurf layer and the 

experimental points in Figure 33 indicate that the resurf layer produces a 
favourable improvement in breakdown voltage. The measured values were 

consistently obtained to within 5% of the indicated points, and furthermore, there 

was no notable difference between devices with different surface geometries. The 

rather low experimental breakdown voltage obtained for the unprotected junction 

suggests that some interface charge may be present. Although, it could equally 
be due to differences In junction depth and/or differences In the lateral to vertical 
junction depth ratio, which has been assumed to be unity for the purposes of 

simulation. 
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6.1.5 Conclusion. 

An extremely powerful model has been developed, which can be used to 

predict the breakdown voltage of even the most complicated geometries. Tile 

model has been used to characterize the technique of resurf layers and obtain 
optimum resurf doping levels for maximurn breakdown improvement. A suitable 
resurf layer to be Incorporated Into a number bipolar devices was designed with 
the aid of the model, and measurements on these devices have shown that the 

resurf layer gives a considerable improvement in breakdown voltage. 

6.2 Design and Characterization of Bipolar Test 

Structures. 
In this section an explanation of the design, fabrication and characterization 

of the several bipolar geometries will be given. The entire design and 
development of these devices has been undertaken as part of this project and as 

a result a great deal is known about them. This mal(es them ideal for use in 

verifying the accuracy of the model. 

6.2.1 Mask Design. 

Tile lithographic masks for defining device topology were designed using 
the GAELIC computer graphic facility provided by the Rutherford Appleton 
Laboratories. Six different geometries were designed, labelled A to F. Each 

geometry was fabricated on a separate chip and the chips were arranged in a2 
by 3 block, which was repeated across the silicon wafer. The various topologies 

are illustrated in Figure 34 to Figure 36. The minimum feature size is 5prn and the 
bond pads were required to be at least 120pm square. 

Device A has Interdigitated base contact windows and emitter fingers. This 

is a common technique used in power devices to reduce the effects of emitter 

pinch (cf. section 6.3). Three different emitter finger lengths of 460/im, 390pm and 
200pm are included and all emitters are 60pm wide. Each emitter has its own bond 

pad which allows for characterization of each individual emitter. This arrangement 
can also be used to investigate current redistribution between emitters, which is 

a consequence of self-heating under conditions of high power dissipation. The 

aspect ratio, R (length/width) of the longest emitter was chosen to be similar to 
that of a commercially available BSX59 transistor for which the aspect ratio is 

eight. This is an extremely important parameter in the operation of interdigitated 
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devices. Too large an aspect ratio can result in very uneven current injection from 

the emitter, with most current flowing from the end of the emitter nearest the bond 

pad. This is due to the finite resistance of the emitter metalization and the 

following simple calculation will be used to illustrate the effect. The calculation is 

performed with the aid of Figure 37, which shows a single emitter finger. 

dx 
II III IX) 

III 

/Je 
(X) 

10x 

Figure 37. Vertical View of Single Emitter Finger Metalization. 

The distance x along the finger is measured Vorn the end of the emitter 
diffusion nearest the bond pad. Tile vertical current density into the 

semiconductor, J, (x) can be written: 

Jo exp 
V13E(X) 

(6.12) kT 

where V, 3,, (x) is the base-emitter voltage the current density J, O will be assumed 

to be constant in this analysis. J, (x) is defined as the current density at a distance 

x along the finger, averaged across the width of the finger. The following two 

equations also hold. 

p (x) dV, gE =-W -t dx (6.13) 

, 
(x) dx (6.14) dl(x) =-WJ, 

where p is the resistivity of aluminium, I(x) is tile current flowing along the contact 
and t is the thickness of the contact. Inserting (6.12) into (6.14) and substituting for 
dx from (6.13) into (6.14) gives: 

w2q VBE(X) 
dl(x) = 

I-L j eo exp( dV, 3E(x) p /(x) kT 

Separating the variables and Integrating between 0 and L gives: 
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Axi -w2 

ti 
e0 

VBE(L)exp( 
q VBE(x) ) 

dV.. (x) (6.16) 

veE(O) 

Carrying out the integration: 

22 

- 
/P 

-Wt 
kT (Je(L) - Je(O)) (6.17) 2Pq 

The average current density, J, over the entire emitter area is IEI(LW) and 
this allows (6.17) to be rewritten as follows. 

IE *-- 
2tkT(J. (O) - J, (L) 
Rpq JIV 

where R is the aspect ratio (LIW). For maximum current spreading it is desirable 

to minimize tile ratio Pe(O) - Je(L))IJav at a given emitter current and this is 

achieved by decreasing the aspect ratio. 
Electrical measurements taken from a test metalization pattern have shown 

that, In this case, the thickness of the aluminium is 0.4771tm. As an example tile 
longest finger of device A can be expected to handle a maximum current of around 
200mA. Taking the resistivity of aluminium to be 2.67 pi2cm at room temperature 

gives a value of 1.58 for the bracketed term in (6.18) at this current. 
As a final point it must be stated that equation (6.18) will overestimate the 

amount of current crowding if the transistor is biased into high level injection. The 

pre-exponential term, Jet) In (6.12) will also then depend on x and will in fact 
; P, crease with Increasing x. Therefore, equation (6.18) strictly applies to low level 

operation only. From (6.18) it would seem desirable to make the emitter fingers 

very short and wide. However, distributed base resistances, which also result in 

current crowding will impose a limitation on the maximum width of the finger (cf. 

section 6.3). 
Device B has a cylindrical geometry with a central circular emitter encircled 

by a ring emitter, but with no base contact between them. Again separate contacts 
are provided for each emitter. In devices A to E the emitter and base metalization 
was designed not to extend beyond tile base-collector junction to avoid the 

possibility of any Inadvertent field plate action. In the case of device B this meant 
that the base diffusion had to be stretched to make room for the base contact, and 
as a result the device Is not completely cylindrical. The annular emitter has the 

same area as the central emitter, to allow for a fair comparison between their 

characteristics. Such a device could be used to investigate the effects of different 

- 161 - 



types of emitters on device ruggedness, especially with a view to switching 
inductive loads (cf. section 6.4). 

Device C is similar to device B except that in this case the ring emitter has 
been omitted. This is an important device as it is of simple construction and its 

operation can be modelled using cylindrical co-ordinates as described in chapter 
4. The simulations should be In close agreement with device characteristics 
provided the correct device attributes have been inserted into the model. 
Simulations of cross-sections through an interdigitated device using cartesian 
co-ordinates are likely to be less accurate, bearing in mind the variations along the 
fingers as previously discussed. Thus, the most thorough test for the model would 
be a comparison with electrical measurements from device C. 

Device D has a circular central emitter with two annular emitters. An 
Interlaced base contact is included to minimize emitter pinch. A small section of 
the annular emitters had to be masked off to allow for this. Once again the 
Individual emitters can be bonded as required. The topology of device E is based 

oil the commercially available BSX59 transistor, the only difference being that each 
emitter now has a separate bond pad. The four central emitter fingers are 50jan 

wide and 4001trn long, whilst the two outer emitters are the same length, but are 
only 20tim wide. 

Device F Is based on a commercially available Ferranti MPSA42 transistor. 
The construction requires that a portion of the emitter be masked off to allow for 

a contact to tile base. The emitter contact surrounds the base contact and extends 
over the emitter-base and base-collector junctions to provide field plate protection. 
The channel stopper contact is also extended over the oxide to give dual field plate 
action. Several test structures have also been included on this chip. The 

metalization pattern along the top of the chip was included to provide an estimate 
for the aluminium thickness. The resistance of the metal strip was obtained by 

passing a current between the two outer contact pads while measuring the voltage 
developed across tile two Inner pads with a high impedance volt meter. This four 

point probe technique is used to eliminate unwanted lead and contact resistances. 
The resistance was found to be 1.41, which translates to an aluminium thickness 

of 0.4771im. Other test patterns include diffused resistors and a large capacitor, 
which could be used to measure Interfacial oxide charge. 

6.2.2 Device Processing. 

Fabrication was carried out jointly between the Southampton University 
Microfabrication Centre (SUMC) and Ferranti Electronics p1c. The initial stage was 
performed at SUMC where all diffusions together with the top metalization were 

- 162- 



made. Subsequent back preparation of tile wafers and final packaging was carried 

out Ferranti. The accuracy with which the devices can be modelled depends upon 

a precise knowledge of the doping profiles in the base and emitter regions. 
The p-type base was formed by ! on implantation of boron with a dose of 

8x 1014 CM-2 at an implantation energy of 50 KeV. This was then annealed at a 

temperature of 1150"C firstly in dry oxygen for 10 mins, then in an inert ambient for 

240 mins and finally in wet oxygen for 20 mins. Unfortunately, an accurate estimate 

of the resulting profile cannot obtained from analytical techniques and numerical 

methods must be employed. A number of models that are designed to simulate 

device processing In silicon are commercially available. Such models include 

ICECREM [6.11] and the incredibly well developed SUPREM 111 [6.12]. These two 

models can only be used to model processing along a single line through a device, 

that is they are one-dimensional. More recently two-dimensional models such as 

SUPREM IV [6.13] and COMPOSITE [6.14] have become available that can be used 

to obtain dopant distribution near mask edges. However, such models were not 

available to simulate the process and the vertical doping profile is assumed to be 

Gaussian. The profile was obtained irorn the curves supplied by Irvin [6.15] on the 

basis of a target junction depth of 6pm and a sheet resistance of 1121llsquare, with 

a background doping of IX 1014 cm-3. The data was then fitted to the Gaussian 

distribution given by: 

N(y) = Ns exp -`ý) (6.19) 
a2 

where a= 
ý_Dt 

, N(y) and D are the concentration and diffusivity of the diffusing 

specie respectively, NS is the surface concentration and t the total anneal time. The 

values of NS and a which gave the best fit were 4x 1018 CM-3 and 1.84 pin 

respectively. 
An oxide layer of thickness 1700A ± 50A was grown prior to implantation 

and this Is close to the projected range of the Implantation. The peak boron 

concentration Immediately after implantation, therefore, lies close to the silicon 

surface. The Pearson IV type impurity profile resulting from ion implantation can 
be closely approximated by Gaussian distributions, especially at I ow Implantation 

energies such as 50 KeV. (6.9]. An important property- of the Gaussian profile is 

that it maintains its Gaussian nature as diffusion progresses. Thus, if the initial 

profile is Gaussian then to a first order the final profile will also be Gaussian. This 

is especially true In this case as intrinsic boron diffusivity can be assumed, which 
Is Independent of dopant concentration. This is a further requirement for the 
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validity of (6.19). The use of a Gaussian distribution to approximate the base 

impurity profile Is, therefore, very well founded. 

The emitter Is formed from an initial phosphorus predeposition at 10000C 

for 30 mins followed by a drive-in at 1150"C In nitrogen for 30 mins and then wet 

oxygen for 20 mins. In this case ýDt for the drive-in should be considerably larger 

than FDt for the predeposition and the vertical profile can again be assumed to 

be Gaussian. From the process schedule the estimated emitter depth was 3, um and 
the sheet resistance was 1OK21square. With the aid of Irvin's curves [6.15] the best 

fit to (6.19) was obtained with NS = 7.5 x 1019 CM-3 and cr = 1.27pm. 

Ideally the Impurity profiles would be measured from the actual 

manufactured devices, which is most commonly achieved from spreading 

resistance measurements, capacitance-voltage measurements or secondary-ion 

mass spectrometry (SIMS) [6.9]. All three techniques have limitations and are very 
difficult to perform. However, a simple electrical test can be carried out, which 

provides valuable information about the total charge in the base. This is an 

extremely Important quantity In transistor operation. The classical relation 
hetween collector current and base-emitter voltage for currPnt flow in a single 
direction is given by: 

Tn kTn2Av 
/C = 

I--- exp 
9 BE (6.20) 

G(Vc, 3) 

( 
kT 

) 

where T. Is the average electron mobility across the base, A is the emitter area 

and G is called the Gummel number [6.16] and is defined as the number of holes 

In one square centimetre of the base layer, and Is given by: 

A 

G(VC, 3) 
f 

p(y) dy 
Ye 

where y. is the emitter junction depth and Yb is the base junction depth. If the 

collector voltage Is increased the depletion region will extend further Into the base 

as well as the collector. and G will fall by an amount AG causing Ic to rise by an 

amount Alc. If YBE is kept constant and Tn is assumed not to vary with YCE then 

from (6.20): 

Ic G 
(6.22) Al c AG 

1 
VeE ýCollSt 

rearranging gives: 
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G= 
A/C AG 

(6.23) /C 

I 

YBE =const 

The AG term can be approximated by assuming that the base-collector 
junction is a one sided step junction and that the collector impurity concentration 
is known, thus: 

AG t-- 
/2 

esil AVC, 3 Nnc 
(6.24) 'V q 

Although this equation assumes that the depletion region does not extend 
into the base, which is inconsistent with the principle behind this technique, 

quantitatively this is of little consequence, and (6.24) only slightly over estimates 
AG. This analysis was performed under low level operating conditions 
ME ý 0.6V) to avoid modulation of the base charge and the Gummel number was 
found to be 4.2 x 1012 CM-2. The profiles described above, when inserted into the 

model give a value for G of 1.3 x 1013 CM-2. This was reduced to a more acceptable 

value of 4.5 x 1012 CM-2 by assuming a slightly lower boron concentration at the 

surface of 1.5 x 1018 CM-3, whilst maintaining the base depth at 6, arn. This requires 
new cr values for the base and emitter of 1.93pm and 1.19Arn respectively. When 

annealing in an oxidizing ambient it Is found that boron will segregate freely into 

the oxide [6.91. It is, therefore, quite possible that the boron concentration is 

somewhat less than expected, especially at the SI-SiO2 interface. It is equally 
probable that the final emitter depth Is greater than 3, um, which would also give a 
reduction in the Gummel number. However, this approach was found to give 

simulations that were not In such close agreement with device output 

characteristics (cf. section 6.2.3). 

According to Kennedy and O'Brien [6.17] the two dimensional profile 

arising near a mask edge was modelled using an error function lateral profile as 
follows. 

NS (-12 
XMASK -X 

N(x, y) = -2 exp 
f7 

21+ erf( (6.25) 

where XMASK Is the location of the mask edge. This equation applies near a right 
hand window edge. Near a left hand window edge XMASK and x in this expression 
must be interchanged. 

The collector layer thickness and doping was chosen to give an open base 
breakdown voltage, BVCEO of 250V. It is desirable when designing power bipolar 
transistors to minimize the collector resistance in order to reduce the associated 
quasi-saturation effects [6.18]. This can be achieved by utilizing a combination of 
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high doping levels and thin collector layers, which Is able to support the required 

BVCEO. The resulting specifications are such that the collector will become fully 

depleted just prior to breakdown and tile required donor concentration in tile 

collector is given by: 

2 esil Ec 2 tsil 13 VCEO 

2 NDC ý- qWC q WC 
(6.26) 

where Ec is the peak electric field at breakdown and Wc is the collector thickness. 

The resistance of a unit area of the collector material Is given by: 

R- 
WC 

- (6.27) 
q, u� NDC 

The resistance of the collector is a minimurn when: 

dR (6.28) 
dWc 

This gives, 

WC =3 
BVCEO 

(6.29) 
2 EC 

The corresponding optimum doping level Is: 

2 
NDC -4 

tsil Ec 
(6.30) 

9 (113 VCEO 

This gives an optimized collector resistance of: 

2 

R 
27 BVýEO 

(6.31) min 3 8 Ec tin rsil 

The exact value of EC has been shown to depend on hFE and BVCEO [6.201, 

and is given by: 

Ec = 6.4 x 10-5 [B VCEO(hFE + 1) 1 -116 V CM -1 (6.32) 

For all practical cases EC varies between 2x 105 V cm-1 for low values of 

'3vCEO(hFE +1) and 1x 105 V cm-1 for high values of BVCEO(hFE +1). Hence, in order 
to ensure that 13VCEO is at least 250V the value of Ec was taken to be 

Ix 105 V cm-1. Inserting this value Into (6.29) and (6.30) gives IX 1014 CM-3 for 

NDc and 37.5pm for Wc. This combination provides a minimum on-resistance of 
0.145 K2cm2. 
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A number of other collector layers with linearly graded doping profiles were 
designed. The impurity concentration was required to increase linearly frorn an 
initial low value at the base-collector junction to a high value at the 

collector-substrate junction. This was achieved using epitaxial growth. By grading 
the doping the critical collector current density at which avalanche injection is 

triggered can be vastly increased. As the collector current density is increased the 

electric field profile progressively transfers across the epitaxial layer in a 

controlled manner, and the maximum sustainable collector-emitter voltage will not 
fall below the zero current value until the field profile reaches the 

collector-substrate junction. The consequences of graded collector profiles are 
fully covered elsewhere [6.20], and their thermal properties will be briefly 

considered here. The collector profile is given by: 

NDc(y) = NDO +a (Y - Yb) (6.33) 

where NDO is the impurity concentration at the base-collector junction and a is tile 

gradient of the profile. The two specifications considered here were both designed 

to give a BVCEO of 25OV. Both had tile same NDO value of 5x 1013 CM-3 and a value 

of 1.1 X 1017 cm-4, but they had different thickness's of 50pm and 10OPm. Unless 

otherwise stated the collector specification is assumed to be uniformly doped at 

IX 1014 CM-3 with a thickness of 37.51im. 

Table 7 on page 169 summarizes the values of various parameters used to 

model the Impurity profile, and also the Shockley-Read-Hall lifetimes in the 

emitter, base and collector regions. Two sets of values are given. The 'new 

values' are those that have been obtained oil the basis of the physical 

considerations and measurements described above and in section 3.4.3. The 'old 

values' are estimated values that have been used In all the Simulations to be 

described in sections 6.3,6.4 and 6.5. These estimates were made prior to a 
detailed knowledge of the process schedule and also before any lifetime or 
Gummel number measurements had been made. 

6.2.3 Device Characteristics and Comparison with Model. 

Some typical output characteristics obtained from the devices are shown 
in Figure 38. In this case all emitters have been bonded together. The 

quasi-satu ration region [6.181, which Is due to the presence of a lowly doped 

collector layer is clearly visible. The gradient of the line joining the points on each 

curve at which operation leaves quasi-saturation as shown for device A gives the 

collector resistance, which in this case Is 15092. Assuming the vertical electron 
current density to be uniform over the entire emitter area and that no current 
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spreading occurs, then the collector resistance is given by Wcl(qp, ýNDcAd- where 
AE is the emitter area and It, c is the low field electron mobility in the collector. 
Inserting values from Table 7 gives a resistance of 1700. The differences can be 

attributed to current spreading In the collector, which will tend to reduce the 

resistance, and also to the uncertainty associated with locating the correct locus 

from the output characteristics. 

'old values' 'new values' 
Boron Surface Concentration 7x 1017 CM-3 1.5 x 1018 CM-3 

Base Depth 6, urn 61im 

a for Boron in (6.25) 21im 1.931tm 

Arsenic Surface Concentration 2x 1020 CM -3 7.5 X 1019 Cin-3 
Emitter Depth 2.5, um 3. Opm 

a for Arsenic in (6.25) 0.9341tin 1.1 9kLM 

Collector Doping Concentration IX 1014 ctn-3 1X 1014, CM-3 

Collector Layer Width 37.51tm 37.5pm 

Emitter Lifetime 165ns 165ns 

Base Lifetime 2ps 2gs 

Collector Lifetime 2ps 301ts 

Table 7. Estimated (Old) and Measured/CalCLIlated (New) Parameters. 

Figure 39 shows the base and collector currents as a function of V13E for 
device C with a YCE Of 10V. Both experimental and simulated data has been 

obtained at temperatures of 27"C and 150"C. These simulations were performed 

using the 'new values' listed in Table 7. In general all 'on-state' simulations are 

carried out by firstly applying the 'off-state' model as described in section 6.1 

which sets the voltage profile for zero current flow. The'. decoupled solution 

procedure is then applied for a low base-emitter bias. The base-emitter voltage is 

then incremented in steps of 0.05V, with all subsequent steps being solved with 
the coupled technique. The use of such small base steps ensures lhat the solution 

procedure remains within the radius of convergence of the Newton method. The 

reason for switching to the coupled technique is that it is much more efficient 
under high Injection conditions as stated In chapter 5. 

The error bars on the experimental data in Figure 39 at 27*C indicate the 

range of data obtained from several devices. Only one set of data was obtained 
at 150*C and the error bars associated with these points can be expected to be of 
similar magnitude to those at 27*C. The overall agreement between experiment 
and simulation is good at 27*C, provided the effects of carrier-carrier scattering 
given by equation (3.8) are omitted. The close agreement between simulated and 
experimental collector current rurves at 27"C signifies that the Gummel number 
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Figure 39. Base and Collector Currents as a Function of Base-Emitter Voltage for Device 

C: VCE ýI OV. Simulation were made using 'new values' listed in Table 7. 

measurement made earlier is valid. The deviation of simulated and measured base 

currents at low levels of operation indicates differences between the carrier 
lifetimes, especially In the region of the base-emitter junction, since at low 

currents recombination In this region dominates the base current. 
The experimental and simulated results at 150"C are not as close. At 

medium to high injection levels the simulated base and collector currents are too 

high. In this operating region the amount of base and collector current that flows 

at a given base voltage is heavily influenced by the lateral base resistance 
between the base contact and tile ernitter-base junction. A considerable proportion 
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of the base voltage is dropped across this resistance leaving less voltage to 

actively bias the emitter-base junction. It is apparent, therefore, that the model 
does not predict a large enough increase in base resistance with increasing 

temperature. This leads one to question the validity of equation (3.7) at higher 

temperatures. It may be observed from Figure 5 on page 42 that only a very small 

amount of experimental data is available for comparison with the model, which 

must be viewed with a considerable amount of uncertainty. 
The effect of including carrier-carrier scattering into the mobility model is 

also shown in Figure 39. Although the collector current is significantly reduced 
by carrier-carrier scattering at high injection levels the reduction in base current 

was found to be negligibly small. This is because the base current is dominated 

by the lateral base resistance between tile outer edge of the emitter and the base 

contact, which is ohmic and is not influenced by high injection. Carrier-carrier 

scattering can be seen to have a smaller effect at higher temperatures, and tills is 

because the mobility is already reduced because of increased lattice scattering (cf. 

Figure 6 on page 45). The effect of carrier-carrier scattering is to disrupt the good 

agreement that would otherwise be obtained between the model and experiment 

at 27"C , and in this respect the mobility reduction given by (3.8) would seem to 

be too severe. For this reason, together with the fact that in general very little dala 

is available which reliably quantifies carrier-carrier scattering, equation (3.8) has 

been omitted from the mobility model in the studies to be described in the 

following sections. As already stated the 'old values' in Table 7 have been used 

to describe the devices in the following sections. These values were chosen to 

obtain a good fit to measured device characteristics at 27*C such as those 

illustrated in Figure 39. The simulated results calculated with the 'old values' ate 

very similar to those calculated with tile new values for steady state problems at 

room temperature. 

6.2.4 Summary. 

In this section the design and fabrication of several different bipolar 

transistor geornetries has been described. The devices have been characterized 

and results obtained from the model have been compared against experimental 

measurements. Close quantitative agreement was obtained with room 
temperature measurements, but only qualitative agreement was obtained at higher 

temperatures. This Is reflected by the uncertainty associated with the models for 

the physical parameters eg. mobility, at higher temperatures. 
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6.3 Opfimization of Emiffer Widfhs. 

6.3.1 Introduction. 

The numerical model has been used to investigate the potential benefit to 
be gained In power handling capability from altering the emitter width of an 
interdigitated bipolar transistor geometry. The simulated devices will be assumed 
to be biased in the common-emitter configuration, under conditions of high 

collector voltage and high collector current density. Although considerable 
self-heating is likely to occur under Such conditions a solution to the heat flow 

equation has been ornitted. The inclusion of thermal effects into the solution 
procedure is not expected to affect the general conclusions of this investigation. 
Moreover, a solution to tile full electro-thermal model requires considerable 
computational resources because several solutions of tile electrical and thermal 

models are generally required to obtain a self-consistent solution for each bias 

point or at each instant of time. Thus, if such a solution can be avoided then it 

should significantly ease the task of device optimization. 
Hence, in a strict sense the results to be presented here are only valid for 

pulsed operation, which would minimize energy dissipation and related 

self-heating. In addition the mark to space ratio of the pulse chain should be made 
sufficiently large to avoid any thermal accumulation effects. However, the results 

obtained from the electrical model were found to favour geometries in which the 
heat generation is more evenly spread over a large volume of the device. This 

would tend to minimize both tile heating rate and the final steady state 
temperature attained should the device not fail. These thermal considerations tend 
to reinforce the recommendations arising from this analysis. 

For optimum performance an n-p-n transistor should be designed so that 
the vertical electron current density is as uniform as possible as it flows from the 

emitter to tile collector. This would minimize on-resistance and maximize the 

power that could be handled safely, as will be shown. Uniformity of current flow is 
disrupted by lateral resistances across the emitter metalization as described in 

section 6.2 and also lateral resistances associated with the base layer beneath the 

emitter. The lateral base current flows through this region tending to increase the 
forward base-emitter bias at the periphery of the emitter with respect to its centre. 
This effect is called 'emitter pinch' and it results in a significant difference between 
the current density at the emitter edge compared with its centre. 

The effects of emitter metallization resistances can be alleviated by using 
a thicker layer of aluminium. However, it is not such a straightforward matter to 
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decrease the resistance of the base layer, as this would require an increase in tile 

base impurity concentration, which would give rise to a corresponding fall in 

current gain through its influence on the Gurnmel number. Hence the need for 

interdigitation. As a preliminary exercise a comparison will be made between the 

numerical model and an analytical model [6.19] for emitter pinch. This will serve 
to illustrate the problem and also to illustrate the need for a numerical model to 

tackle such a problem. 

6.3.2 A Comparison of Analytical and Numerical Models for Emitter 

Pinch. 

Hauser [6.19] showed that the variation in emitter current density from the 

emitter centre (x = 0) to its edge (x = WE), due to the effects of distributed base 

potential, could be given by, 

JEW ý JERE) Cos 
2Z 

(6.34) 
Cos 2(Z X1W E 

where WE is half the width of the emitter finger, JE(WE) is the peak emitter current 
density and Z is a dimensionless quantity which may be determined from, 

Z tan Z= 
IE WE 

(6.35) 
IX LE 

where 1E is the total emitter current, LE is the total length of the emitter finger(s) 

and Ix has the dimensions of current and is given by, 

IX = 
2 VT WB 0+ hFE) 

ps (6.36) 

where VT is the thermal voltage (kTlq), W13 is the base width, hFE is tile transistor 

current gain (IC/113) and p13 is the reciprocal of the average conductivity In the base 

region beneath the emitter, that is, 

P13 ý 
q 

pp(y) N13(y) dy 
WB 

10 = RS W13 (6.37) 

where N, 3(y) Is the net impurity concentration In the base and Rs is the sheet 
resistance of the base layer. The base width can be measured using the 

angle-lapping and staining technique [6.9] and the sheet resistance can be 

obtained using the Van der Pauw technique [6.21]. Both these measurements 
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require extensive preparation and the resulting estimate for pI3 does not include 

the effects of base conductivity modulation and base widening, which occur at high 

injection levels. This represents a major limitation of the analytical model as it 

stands. 
Hauser also indicated that the peak emitter current density could be 

obtained from the value of the average emitter current density, thus, 

JERE) ý JEW 

'E 

2 WE LE 

sln(Z) cos(Z) 
z 

sin(Z) cos(Z) 

(6.38) 

The comparison has been made for a device with an emitter half-width of 
100 jim, an emitter length of I cm , and no de-blasing is assumed to occur due to 

the finite emitter metallization resistance. The 'old values' in Table 7 have been 

used for the Impurity profiles and lifetimes and this combination results in a PB Of 
0.9 L2cm. The same total emitter current has been assumed for both analytical 

and numerical cases. The results are shown in Figure 40 and Figure 41 for low 

and high current conditions, respectively. The agreement is seen to be particularly 

good for the low current case with the slight differences occurring at the emitter 

edge being attributed to two dimensional effects, which are not taken into account 
by the analytical model. More specifically the 'kink' in the numerical curve is due 

to the injection of base current into the emitter side wall in the numerical model. 
In the analytical model all the base current is assumed to flow vertically upwards 
from beneath the emitter. At the emitter edge, however, a certain proportion of the 
hole current back injected into tile emitter originates from a lateral position. Thus, 

at the emitter edge the vertically injected hole current is less than in the analytical 
model. This results in an increase in the lateral base current flowing through the 
base layer towards tile centre of tile emitter. Therefore the vertical emitter current 
density near the emitter edge falls off more rapidly with distance than in the 

analytical model (cf. Figure 40). 

The ratio of the vertical back injected hole current density to the vertical 
forward injected electron current density was found to be reasonably uniform 

along the emitter-base junction up to within 31im of the emitter edge. This ratio is 

much lower at the emitter edge due to sidewall injection as described above. As 

a result of this the lateral base current falls off more rapidly as it flows towards the 

emitter centre than in the analytical model, which assumes a value for this current 
density ratio that is averaged across the entire emitter width. Consequently at 
locations further than about 31im away from the emitter edge the base-emitter 

voltage does not fall off as rapidly as in the analytical model. This results in a 

z 
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Figure 40. A Comparison of Models for Emitter Pinch: For a total emitter current of 0.278A. 

vertical electron current density at the emitter centre, which is higher in the 

numerical model (cf. Figure 40). 

For the high current case however tile agreement is riot as good. The 

effects of emitter pinch are now more severe in both cases, because the base 

current is higher causing a greater voltage drop along the base-emitter junction. 

At these injection levels the current density in tile vicinity of the emitter edge is 

sufficiently large to cause the minority carrier concentration in the base to become 

comparable with majority carrier concentration there. This results in a reduction 
in the injection efficiency, JE(X)IJ, 3(x) at high emitter current densities. In the 

analytical model an average value is used for the injection efficiency related to the 

(I + hFE) term In equation (6.36). In the numerical model, which takes into account 
high injection effects, the injection efficiency near the emitter edge will be less 

than the average value. The lateral base current, therefore, falls off more rapidly 
in moving from the emitter edge to its centre, than is predicted by the analytical 
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Figure 41. A Comparison of Models for Emitter Pinch: For a total emitter current of 1.168A. 

model. At the emitter centre the Injection efficiency Is greater than the average 

value, and consequently the current density at this point is greater than that 

predicted analytically. High injection also results in base conductivity modulation 

resulting in a reduction of the lateral base resistance In regions of high emittor 

current density. Once base conductivity modulation occurs, emitter pinch tends to 

remain constant on the basis that a higher JC causes a higher J19, but the lateral 

voltage drop this extra current produces Is partially cancelled by the higher base 

conductivity. Both this effect and the variation of the emitter efficiency along the 

emitter-base junction tend to moderate the amount of emitter pinching that would 

otherwise occur. 
These high Injection effects cannot be easily Incorporated into the 

analytical model, because of the difficulties in measuring sheet resistance and 

effective base width in non-equilibrium conditions. Even if these values could be 

found, the variation of these parameters together with the emitter efficiency as a 
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function of x would also be required. In conclusion, therefore, the full numerical 

model should be employed to correctly simulate emitter pinch, especially ill high 

level operation, where the analytical model drastically over estimates current 

crowding. 

6.3.3 Optimization of Emitter Width. 

The model will now be used to investigate the consequences of changing 

a particular design parameter, with a view to optimizing device performance. In 

this section the effect of varying the emitter finger width will be investigated in all 

attempt to improve the device power rating, which is of primary importance in all 

power semiconductors. 
The importance of emitter pinch in power bipolar transistors was indicated 

in the previous section. Tile non-uniform current flow which results as a 

consequence of emitter pinch can lead to a significant degradation of the 

combined current and voltage handling capability of the device. It Would be 

extremely desirable to minimize these effects and so obtain more uniform current 
flow. Moreover, if current flow could be made sufficirntly uniform then device 

operation could be modelled using essentially one dimensional models, which 

would significantly ease the task of device design. 

Since the concentration of injected electrons peaks at the edge of the 

emitter, then a lateral concentration gradient exists, which will tend to cause the 

current to diverge as it passes through the base and collector. If the combined 
thickness of the base and collector layers is sufficient, and tile emitter fingers are 
thin enough, then the vertical current density can become uniform at some point 

prior to the high field region in the collector. If this can be achieved then it will 

serve to increase tile pulsed voltage and/or current required to initiate avalanche 
injection. 

The 'old values' have been used in this investigation and the cell half-width 

is taken to be WE+ 15 lim, whilst the base contact half-width was taken to be 

5 lum. These values were chosen as they represent the minimum dimensions that 

are commonly used in conventional bipolar technology. It is desirable to minimize 
these dimensions so that the emitter area Is maximized. 

For this analysis the collector to emitter voltage was held constant and the 

base voltage was incremented in small steps (0.05V), whilst noting the currents 
and peak fields at each step. This procedure was repeated until the critical field, 

EC was reached, at which point the device was considered to enter avalanche 
breakdown. The critical field was taken to be 1x 10,5 V cm-1, which under 

estimates the value given by (6.32), resulting in breakdown voltages that are less 
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than what should be possible experimentally. This test was carried out on a 

number of designs, all with different emitter widths. 
The dependence of the peak field on the collector current can be attributed 

to the well known Kirk effect [6.22]. At sufficiently high current densities the 

concentration of mobile electrons in the collector can exceed the background 

donor concentration there. This occurs because the fields in the collector 

depletion region are high enough (> 104 V CM-1) to cause the velocity of the 

electrons passing through'it to saturate at their limiting drift velocity, Vsat. If the 
n 

collector current density, Jc is assumed to be uniform throughout the collector 

then a simple one dimensional analysis gives: 

Jc =qn vs"t (6.39) 

where n is the electron concentration in the collector. The diffusion component is 

omitted, since at the fields under consideration the drift term dominates. The field 
is then obtained by solving Poisson's equation, which for this case is given by: 

dE 
-q 

(Noc 
_ 

Jc ) 

dx Esil q vsat n 
(6.40) 

This equation is solved subject to the condition that at the base collector 
junction (x = 0) the field is given by E(O). Thus: 

E(x) = E(O) + qx NDC - 
ic 

rsil 

(q 

vnsat 

E(O) can be calculated frorn: 

WC 
E(x)dx = -Vc, 3 (6.42) 

where VC13 is the applied collector-base voltage, which is much larger than the 

contact potential between the base and collector contacts, which has therefore 
been omitted. Solving gives: 

E(O) q WC 
NDC - 

ic vc13 
(6.43) 

2 tsil q vns"t WC 
n) 

Substituting this back into (6.41) gives the required result. 

E(x) 
ncj3 q 

(NDC 

- 
JC )[X 

- 
WC ] C, 3 

, sil q vsat 2 WC 
(6.44) 
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If the width of the space charge region is less than the collector width then 
INC must be replaced with the width of the space charge region given by: 

IN 
2 Esi, VCj3 

(6.45) 

q(NDC - 
JC 

sat 
(7 n 

Equation (6.44) has been plotted in Figure 42 for the optimised 250V device 

and for a collector voltage of 187.5V, which is 3/4 times BVCEO and a reasonable 
voltage at which the device could be expected to operate. Results are illustrated 
for various collector current densities. At a current density of 460 A CM-2 the peak 
field reaches the critical value for avalanche injection leading to second 
breakdown. Thus, if the collector current density can be considered to be uniform, 
then this current density multiplied by the active device area represents the 

maximum current a given device can handle. Any local Increase in current density 

will give rise to a corresponding increase in the local field, which in turn will 
initiate avalanche injection at a lower total collector voltage. 

A non-uniformity in collector current become-, especially apparent for 

devices with wider emitter fingers, where the effects of emitter pinch are more 

pronounced. This is illustrated In Figure 43, which shows how the current flows in 

four cells with different emitter widths. The collector voltage In all cases is 187.5V 

and the peak field is 1x 105 Vcm-1. The devices are, therefore, considered to be 

operating at a point just prior to breakdown. Each contour in Figure 43 represents 

a line, such that a constant fraction of the total current flows between it and the 

emitter centre line. Each contour is labelled with the corresponding current in 

A m-1 (Amps per metre length of emitter finger). Equivalently, it may be stated 

that equal proportions of the total current is constrained between adjacent lines. 

The diagram for WE12 = 101im shows that for narrow emitter widths very 
little pinching occurs and the contours are reasonably equally spaced along the 

emitter-base junction. Once the electrons have been Injected Into the base they 

diffuse laterally into the region of low electron concentration beneath the base 

contact. At the same time they drift vertically towards the substrate under the 

influence of the electric field. Divergence of current continues until the lateral 

diffusion gradient of electrons disappears, which is seen to occur approximately 
half way down the collector. Current flow through the remaining part of the 

collector is essentially uniform. The electron current leaving the emitter is 

constrained to flow within the cell half-width due to the zero current boundary 

conditions imposed along the vertical boundaries, and the current will redistribute 
itself between these two lines. If the right hand boundary is moved away from the 
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Figure 42. One Dimensional Electric Field Profiles at Various Current Densities: The critical 
field for avalanche breakdown is attained at a current density of 460 A cm-2. 

emitter a limit would be reached at which the uniformity of collector current is lost. 

It is therefore necessary to ensure that the gap between the emitters Is narrow 

enough to avoid this problem. 

In contrast, the device with an emitter half-width of 50prn exhibits a 

significant amount of emitter-pinch, with the contour separation becoming smaller 

towards the emitter edge. However, a sufficient amount of divergence causes the 

current density to become virtually uniform in the collector layer as before. For 

an 801Am emitter half-width the pinching is greater still and the cell width is much 

greater than the collector layer thickness. In this case, therefore, the current 

density is unable to become uniform in the time it takes for the electrons to 

traverse the base and collector layers. As stated previously this can cause a 

significant reduction in the pulsed (or surge) power handling capability of the 

device. A more extreme example of this is shown for WE12 = 120tim where the 
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current density at the collector-substrate junction is approximately four times 

higher under the base contact than under tile emitter centre. This can lead to 

extreme reduction in surge capability. 
The corresponding electron current densities across the emitter-base, 

base-collector and collector-substrate junctions for all four cases are shown in 

Figure 44. For WE12 = 501im two slight peaks are apparent in the current density 

profile along the collector-substrate junction, at the left and right hand edges of the 

cell, with a shallow minimum located below the emitter edge. This occurs despite 

the fact that the current initially peaks at the emitter edge, and is due to the 

existence of lateral fields in the collector forcing the electron current towards the 

left and right hand boundaries. These lateral fields are caused by the fact that the 

base is widest beneath the emitter edge, which can be seen from careful 
Inspection of the field profile in Figure 45. The non-uniformity of base width is 

itself a consequence of the uneven injection from the emitter, resulting from 

emitter pinch. This effect is also present for the 10pm emitter half-width, where 

the current density at the right hand boundary becomes slightly larger than that 

at the left hand boundary. In short the lateral field introduces an additional drift 

component that aids the divergence process, but it also results in slightly 

non-uniform current flow. It is readily apparent that the pinching is more severe 

for wider emitters. The non-uniformity of current density at the collector-substrate 
junction Is evident at a width of 80, um and tile peak current density at the this 

junction in all cases is 430 A CM-2, Which corresponds very closely to the value 

required for breakdown calculated using the simple one dimensional model. Thus, 

devices with narrower emitters which have uniform collector current densities can 

be accurately modelled with respect to avalanche injection using the simple one 

dimensional model. 
The electric field profiles which result as a consequence of the mobile 

space charge associated with the non-uniform current densities in the collector 
layer are shown In Figure 45. For the narrower emitters the field is uniform across 

the whole of the collector-substrate junction, as expected. Owing to emitter pinch, 
however, at higher emitter widths the field falls off towards the emitter centre in 

accordance with the current density. In the extreme case (WE12 = 120'Um) the 

concentration of Injected carriers from tile emitter centre Is so small that it does 

not exceed the thermally ionized donor concentration in the collector, and as a 

consequence the field peaks at the base-collector junction. 

In order to investigate the effect of emitter width on current handling 

capability, the average current density at breakdown was calculated by dividing 

the total collector current required to produce the critical field by the cell width. 
This value was then plotted against the corresponding emitter half width as shown 
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Figure 46. Average Collector Current against Emitter Width. 

in Figure 46. In this diagram a number of different curves have been plotted for 

various collector breakdown voltages. Thus, if the average current density values 

of the ordinate axis are multiplied by the total active chip area of a device with a 

particular emitter width, then the curves Indicate the maximum current pulse that 

the device can handle. For a collector voltage of 187.5v the surge capability 

becomes impaired once the ernitter half-width exceeds 40ptn, since the collector 

current density becomes non-uniform at widths greater than this. 

At lower collector voltages, greater collector currents are required to push 

the field up to its critical value. Because emitter pinch is more severe at higher 
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currents it is necessary to make a further reduction in the emitter width ill order 
to recover the desired uniform current density in the collector. Thus, at a collector 
voltage of 60V the emitter half-width must be made less than about 10ttm so that 
the collector layer is fully utilized. It is evident that if the emitter half-width is 
designed to be less than or equal to this value, this will then ensure maximum 
current handling at all collector voltages. 

A safe operating area (SOA), which defines the combinations of current and 
voltage that are acceptable for stable operation, can now be constructed for 
devices with different emitter widths. It is constructed by noting the average 
current densities at each of the collector voltages for a particular emitter half-width 

and then plotting the currents against the voltages. Thus, the parameter is 
transformed from collector voltage to emitter half-width. This procedure has been 

carried out for a number of widths and tile results are plotted in Figure 47. It can 
be seen that the biggest improvernent to be gained from utilizing narrow emitters 
is in the low voltage, high current operating regime. This is because of the acute 

pinching at high current as previously stated. It may also be noted that a device 

with 20itm wide emitters can handle approximately twice the current of a device 

with 2801. tm wide emitters at any particular collector voltage. 
The safe operating areas have been replotted in more conventional form 

on logarithmic axes in Figure 48. The maximum safe operating limit for an emitter 
half-width of 10pm or less Is in close agreement with the simple one dimensional 

model previously outlined. This predicts that the maximum voltage that can be 

sustained is proportional to the reciprocal of the peak current which can be 
handled at that voltage. The slope of the 101im curve in Figure 48 is, therefore, 

very close to -1. In practice, however, the critical field, Ec is not constant in the 

operating range under consideration. Its value tends to rise at higher currents and 
lower voltages due to a corresponding fall Ill hFE [6.20]. As a consequence, tile 

slope of the safe operating area will be greater than unity and is usually in the 

range -1.5 to -2. 
From the point of view of power handling, therefore, it seems beneficial to 

use very narrow emitter fingers. Tile consequences of such a design on the normal 
operation of the device has been Investigated. Figure 49 illustrates how the hFE 

varies with average collector current density. The fall of hFE with collector current 
may be attributed to high injection and base widening effects [6.22]. For very 

narrow emitters the hFE IS low and it then rises as the emitter Is widened. It 

reaches a peak at an emitter half-width of 201im and then falls with further 

increases in width. For narrow emitters the hFE is low because the emitter area is 

small, and consequently the emitter current density must be pushed up to account 
for the necessary collector current. This tends to enhance the high level effects 
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resulting in a premature reduction in hFE . At higher emitter widths the greater 

pinching effects are known to cause tile hFE to fall off more rapidly [6.23]. 

A similar situation exists for the emitter-base voltage requirement, which 

Is also shown in Figure 49. At very low widths a slightly higher YBE Is required to 

account for the higher emitter current densities. Whereas for very wide emitters 

the increased pinching must be offset by a corresponding increase in VBE. Though 

not illustrated here these trends were also evident at collector voltages of 60,100 

and 140V. 
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Making the emitter width too small or too wide, therefore, puts a greater 

requirement on. the base drive circuitry resulting in less efficient power 

conversion. For a device with this particular specification, therefore, an emitter 
half-width of approximately 201im can be recommended. This choice of width 

would provide optimum power handling and power conversion. 

6.3.4 Conclusion. 
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This investigation has illustrated the need to carefully choose the emitter 
stripe width so that the entire active chip area is fully utilized. Although the 

analysis was restricted to one particular case, its conclusions can be extended to 

all interdigitated type structures. In this analysis the collector specification was 
calculated to give minimum on-resistance, however, the collector could, just as 
easily, have been designed to give maximum collector current density for 
breakdown. This specification results in a marginally wider collector layer with a 
lower resistivity, resulting in a slightly higher current handling capability. 

Both optimization procedures give rise to the need for thicker collector 
layers at higher BVCEO requirements. In this case it is, therefore, expected that the 

emitter-half width could be extended above 201im, while maintaining maximum 
current handling. The only merit for widening the emitter seems to be to reduce 
deblasing along the emitter stripe. A properly designed power device should, 
however, incorporate a reasonably thick rnetalization pattern and emitter 
debiasing should not be a problem. Previous results have shown that it is, in fact, 

extremely undesirable to extend the ernitter width as this aids emitter pinch. The 

overall conclusion of this investigation is that the emitter width should be 

minimized to obtain maximum pulsed power handling, but if the emitter width is 

made too small then the power conversion efficiency will be impaired. This 

statement should hold regardless of lateral base resistance and collector 
specification. 

6.4 A Model for Inductive Switching using Bipolar 

Transistors. 

6.4.1 Introduction. 

There is an increasing demand in industry for high power transistors that 

are capable of efficiently switching inductive loads. A prime example of this Is in 
inverter circuits, which convert dc power to ac power and have, for example, 
applications in ac locomotives, dc power transmission lines and induction heating. 
Such circuits conventionally use thyristors, however, new power transistor 
designs offering higher switching speed and lower switching losses are now 
finding applications in this field. Furthermore, complicated and expensive 
commutating circuitry is not required when using transistors. A typical building 
block of an inverter circuit is shown in Figure 50, where L and R represent the 

primary winding of a transformer. 
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Figure 50. An Inductive Collector Load with a Free-Wheeling Diode. 

Thp most severe condition that the transistor must handle arises during 

switch-off with an inductive load. The voltage developed across the inductor is 

proportional to the rate of change of current through it. Thus, during switch-off, the 

collector current falls creating extremely large collector voltages. The 
freewheeling diode, D is present in order to prevent the collector voltage from 

reaching dangerously high values. It starts to conduct once the collector voltage 
reaches the supply voltage, VcC plus a forward diode voltage drop. The collector 
voltage is then clamped at this value and the inductor discharges through the 
diode. During turn-off, therefore, a high voltage/high current condition exists, 
which as previously shown can initiate avalanche injection leading to second 
breakdown. 

The transient device simulator has been coupled with the collector circuit 
equation in order to predict transistor switching dynamics during switch-off. The 

effect of altering the emitter geornetry on the switching performance was then 
investigated. 
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6.4.2 Coupling of the Numerical Model with the Collector Circuit 

Equation. 

Kirchoff's second law applied to the collector circuit of Figure 50 gives: 

di 
F v,, - Vcc -- R i, -L -c- .0 (6.46) 

t 

Using backward differencing for tile time derivative results in: 

i M+l m 
cc F= m+' 

-V- Ri -L=0 (6.47) Vce cc c dm 

In order to find a compatible collector voltage at time m+1, which satisfies 
both the transistor model and equation (6.47) an initial guess is made at the 

collector voltage, vCel A good initial guess can be obtained by using a linear 

extrapolation from the two previous discrete points in time. The collector current 

calculated from the transistor model is then used to calculate F in (6.47). If F is [lot 

sufficiently close to zero then Newton's method is- applied to (6.47) giving: 

n 
bvn _F , 

ce dF n 
(6.48) 

dvce 

where, 

dFn di n di n 
=1-R-cLc (6.49) dvce dvce dn? dvce 

The derivatives of collector current with respect to collector voltage can be 

approximated using the method of secants, thus: 

di nini n-I 
c -C c 

dvce vn n-i 
ce Vce 

(6.50) 

The numerical model is then rp-solved using the updated collector voltage. 
Condition (6.46) is subsequently checked and the who le procedure is repeated 
until F is sufficiently close to zero. In this case the absolute value of F was required 
to be less than 0.1% of VCC for convergence. This method is outlined in the form 

of a flow diagram in Figure 51. 

6.4.3 Turn-Off of Transistors with Cylindrical Geometry. 
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rigure st now Diagram of Coupling Procedure. 
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Turn-off of the type C device incorporating an inductive collector load has 

been modelled, and the 'old values' in Table 7 on page 169 have once again been 

taken to represent the device. Tile energy dissipated in the transistor is 

comparatively small during turn-on and the transistor is safe from breakdown. 
Consequently, the transient analysis was Initialized with the result of a steady state 
simulation in which the device was biased into saturation with fixed collector and 
base voltages. In this analysis the collector voltage was initialized at 0.2V and the 
base voltage at IV. The collector current was found to be 46.3mA for this biasing 

arrangement. The supply voltage, Vcc was assumed to be 100V and the collector 
resistance was subsequently calculated to be 21570. Finally, the value of the 
inductor was taken to be ImH, which is typical of many inverter applications. 

The device was turned off by reducing the base voltage to zero over a 
period of 220ns. This should be typical of what can be achieved with the available 
low impedance pulse generators (RO = 100). The base voltage should not be 

reduced more rapidly because the reverse base current that arises during 

switch-off generates a voltage across this impedance. This is apparent from 
Figure 52, which shows the computer generated base voltage and current 
waveforms and the corresponding collector voltage and current waveforms. 

The collector load line is shown in Figure 53. The device comes out of 
saturation in approximately 460ns and then enters the qu as! -satu ration region 
[6.18]. The operating point then moves directly into the high field region at about 
620ns, as the collector voltage increases. This mode of operation is similar to that 
described in section 6.2, where a current induced base is set up due to the velocity 
saturation of electrons. The voltage eventually gets clamped at IOOV and the 

collector current decays to zero. It must be pointed out that operation at a 
particular point on the load line will not correspond exactly with the coincident 
operating point on the output characteristic. This is due to a number of transient 

effects, and therefore, Figure 53 only represents schematically what happens 
during switch-off. 

The reverse base current is initially very large, since holes are at first 

removed from directly below the base contact and series resistances are very low. 
As time proceeds holes at a further distance from the base contact come under the 
influence of a reduced base potential. The series resistance between these more 
remote charges and the contact is larger and as a result the reverse base current 
falls. The variation in the hole distribution with time is shown in Figure 54 and 
Figure 55. 

Initially the entire collector region is saturated with holes. By 200ns a 
significant number of holes have been removed from the collector region directly 
beneath the base contact. After 462ns the collector region has become even more 
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depleted of charge. It is also seen that the emitter region closest to the base 

contact has become depleted of holes. This indicates that this part of the emitter 
has recovered and Is no longer injecting electrons into the base. 

However the total emitter current was was found not to decrease in 

proportion with the conducting area lost, which can be explained as follows. 

Equation (6.46) can be rearranged to give: 

-v ce = Vcc +R /c +L 
dic 

(6.51) 
dt 

If i. should fall during switch-off then if L is large enough vc, will rise, which 
in turn tends to maintain the collector current. For this reason it is found that the 

collector current is virtually constant during switching and the effect of the 

Inductance is to ensure that the collector voltage rises in such a way that ic 

remains approximately constant despite the reduction in the conducting emitter 
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area. Thus, it can be seen from Figure 52 at 462ns that the collector voltage is now 

starting to rise. By this time much of the charge in the collector has either been 

extracted from the device or lost via recombination, The collector current consists 

of two separate components; the first being the electron Current originating from 

the emitter, which flows across the base to the collector by normal transistor 

action. The second results from the removal of electrons from tile charge stored 
in the collector region that does not lie beneath the emitter. By 462ns the stored 

charge at the base-collector junction has dropped well below the background 

donor concentration. Thus, a space charge region is formed, the junction begins 

to recover and the collector voltage starts to rise. This rise in collector voltage 

causes operation to enter tile quasi-satu ration region shown in Figure 53. It can 

seen from Figure 54 that the hole concentration profile has receeded away from 

the collector-substrate junction beneath the emitter. This reveals an small ohrnic 

region of the collector and a current induced base is now evident. Both these 

phenomena are associated with quasi-saturation. Hence, beneath tile emitter tile 

developing collector voltage is supported across an ohmic resistance and beneath 

the base contact the voltage is supported by a depletion region. 
At a time of 542ns a greater portion of the emitter edge has recovered. The 

collector voltage has risen to 7V causing the depletion region beneath the base 

contact to widen. The current induced base has receded further revealing a larger 

ohmic collector region, and the device remains in quasi-satu ration. By 614ns tile 

emitter is only conducting over half its radius, the base-collector depletion region 
has expanded further, and the current induced base width continues to decrease. 

However, tile collector voltage has now risen to 12V creating a field which exceeds 
the value required to cause the velocity of the electrons passing through it to 

saturate (t-_20KVcm-1) . Thus, a mobile negative space charge region is set up, 

which supports the collector voltage and tile operating point moves into tile high 

field region as shown in Figure 53. At 6138ns the collector voltage is clamped at the 

supply voltage by the freewheeling diode and the emitter injects only at its centre. 
The current induced base now has a very small radius and the collector charge 
has been almost entirely removed. It can be seen from Figure 52 that all the 

charge is recovered by 726ns and tile collector current is reduced to zero. 
The vertical electron current densities at the emitter-base, base-collector 

and collector-substrate junctions are illustrated in Figure 56 at various times after 

operation has entered the high field region. At 614ns the emitter can be seen to 

conduct only over half its radius as stated previously. The electrons diverge as 
they pass to the collector contact causing the peak current density to fall and the 

current density profile to spread out. However, approximately two thirds of the 

collector current is supplied from the charge stored in the collector. Although the 
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current density emanating from the stored charge is much less than that flowing 

down the centre of the device, it flows over a much greater area because of tile 

cylindrical geometry and, therefore, constitutes a larger current. 
At 679ns the current density has risen at the emitter owing to the increasing 

collector voltage. However, the rise in peak current density at the 

collector-substrate is very small in comparison. This is explained by noting that 

the radius of the current filament is smaller. Thus, the large lateral diffusion 

gradients existing at the edge of the filament are able to penetrate to the centre 

of tile filament in the time it takes for the electrons to flow from the emitter to the 

substrate. This effect is nicely illustrated in Figure 57, which shows that as time 

advances and the filament radius becomes smaller the effects of divergence are 

more pronounced. At 614ns tile Current filament is sufficiently thick at the emitter 
to prevent a large reduction of the current density at the centre. However, at 
688ns the filament is sufficiently thin such that the current density starts to fall off 

at yý-_151tm . By 716ns the filament radius is only about 5pm and the current density 

falls off soon after the electrons have been injected from tile emitter (yý-_6pm). The 

current component originating from tile stored collector charge r': nnot be 

maintained at 688ns, and a sharp fall In the collector current is app. 1rent from 

Figure 52, together with a corresponding sharp rise in collector voltage. 
The variation in the peak field at the base-collector and collector-substrate 

junctions Is shown in Figure 58, and a number of field profiles at various points in 

time are given in Figure 59 and Figure 60. The peak field at the 

collector-substrate junction is situated directly beneath the centre of the emitter 

and it reaches a maximum value of 68KVcm-1 just before the collector voltage 
becomes clamped. This value Is just below that required for breakdown. However, 

the existence of such high fields is obviously extremely undesirable. If the on-state 

collector current and/or the clamp voltage were slightly higher then the field at 
turn-off could have been large enough to induce breakdown. The value of the load 

resistor would need to be decreased to obtain a higher on-state current, for a 

given steady state base-emitter voltage or base current. Hence, the transistor 

would not be as heavily saturated and the ratio of electron current flowing from the 

ernitter to collector to that which would be required to supply the collector plasma 

would be increased. Thus, tile smaller plasma could be removed well before the 

emitter recovers and the current induced base would be much wider as the 

collector voltage rises sharply. This would inevitably lead to higher fields at 
breakdown. From the point of view of inductive switching, therefore, it which seem 
beneficial to drive the transistor into heavy saturation prior to switch-off, though 

this would result in longer storage times. 
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Since the high fields developed during turn-off are a direct result of current 

pinching towards the centre of the emitter, it would seem desirable to try and 

eliminate this effect. The most obvious technique would be to remove the centre 

portion of the emitter. This is easily accomplished by masking off the required 
region during processing. 

In order to investigate such a design alteration the above transient analysis 

was repeated, but this time a circular centre portion of the emitter with a radius 

equal to half the original emitter radius was masked off. All other device attributes 

were left unchanged, and the device was biased into saturation with the same 

initial base and collector voltages. The initial base and collector currents were 
found to be almost identical to those for the original circular emitter structure. This 

is accounted for by the emitter pinch effects discussed in section 6.2. This effect 

70 
COLLECTOR-SUBSTRATE 
BASE-COLLECTOR 

so - 

so 

40 

C3 
-3 LLJ 
I. -, 30 

cc 
L. 3 
EL 

20 10 

10 ý 

550 Boo 650 

TIME (ne) 

700 750 

Figure 58. Variation of Electric Fields During Turn-Off for Circular Emitter Structure. 
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is present even under saturation conditions where the base and collector are 
heavily conductivity modulated. Although heavily modulated, the resistance of the 
base region is still adequate to give' significant debiasing of the emitter Centre. 
Thus, the emitter centre is virtually redundant under all operating conditions 
except during turn-off. As a result the load resistance value is virtually the same. 

The base voltage was then reduced with the same waveform as in 
Figure 52. It was found that tile base current, collector voltage and collector 
current waveforms were very similar to those for the circular emitter. This is not 
too surprising when it is considered that the charge stored in the collector 
dominates the turn-off characteristics. Since the base and collector specifications 
have not been altered then the amount of stored charge should be close to that 

of the original device. 
The variation of the peak fields at the base-collector and collector-substrate 

junctions for the ring emitter structure are shown in Figure 61. Tile x and y axes 
are the same as in Figure 58 to allow accurate comparison. In this case it can be 

seen that the peak field at the collector-substrate junction stays below the peak 
field at the base-collector junction for the entire turn-off transient. This is in 

complete contrast to the case for tile circular emitter. The peak field at the 

collector substrate junction Initially rises very slowly. At this stage the collector 
voltage has started to rise and the ring emitter is still injecting around its inner 

radius. The region around the inner radius is in quasi-saturation and the peak field 

at the collector-substrate junction lies directly below the inner radius. Field 

profiles at various times before tile emitter stops injecting are given in Figure 62, 

and the vertical current densities are shown in Figure 63. The field peak reaches 
a maximum at 620ns and then falls as the emiiter-base junction around the inner 

radius starts to recover. Meanwhile tile collector current is maintained by the 

supply of electrons from the charge stored in the collector. Tile emitter-base 
junction Is fully recovered by about 650ns and it is significant that this occurs 
before the collector voltage has risen to a high value. Tile peak field as a result 
of current flow from the emitter, therefore, only reaches a value of 13 KV cm-1. In 

contrast the emitter-base junction of tile circular emitter device does not recover 
until after the collector voltage has reached tile supply potential, resulting in the 

rather severe field spike shown in Figure 58. 
In the case of the ring emitter structure tile fields at both junctions rise to 

their steady state values as the collector voltage reaches the supply potential. Tile 
field at the collector-substrate junction never exceeds its off state value in the 

switching duration. The collector current falls off much faster than is shown in 
Figure 52 once the collector voltage is clamped, since in this case the 

emitter-base junction has already recovered. 
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6.4.4 Discussion. 

The locus of current and voltage values which arise during turn-off and 

which are large enough to cause breakdown defines the so called Reverse Bias 

Safe Operating Area (RBSOA) of the device. The series inductor in Figure 50 is 

usually large enough to give a rapid increase of collector voltage for only a small 
'W' - fall in collector current. In this case, therefore, the RBSOA defines the maximum 

on-current and corresponding maximum clamp voltage. An estimated RBSOA for 

the circular and ring emitter structure is shown in Figure 64. A different IRBSOA 

exists for a different value of Initial forward base current and/or a different base 

turn-off waveform. The maximum allowable collector current at low collector 

voltages is limited by the current handling capability of the bonding-wire, bonds 

or emitter metalization. The maximum allowable voltage can rise above BVCEO 
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provided the holes generated by avalanche ionisation call be removed via the 
base contact. For large enough reverse base current the maximum allowable 

voltage can even reach tile collector-base junction breakdown voltage, BVC80. The 

curved part of the RBSOA represents the limit above which avalanche injection 

occurs. On the basis of the previous results it is expected that for the ring emitter 
structure this limit can be extended well above that for the circular emitter 
structure. In fact it is quite possible that the RBSOA could even be rectangular 

since no excess fields seem to be induced during turn-off. 

A number of power bipolar transistors have been fabricated which utilize 
the hollow emitter concept [6.241 [6.25] [6.26). In the first case, [6.24] an 
interdigitated structure has been reported, which incorporates an emitter stripe 
having a shallow, low doped n-type region along its centre. Consequently this 

centre region did not contribute any injected electrons. In this case only a 10% 

improvement in current handling at a clamp voltage of 100V was reported in 

comparison with a similar device with a full emitter. This could be due to tile 

removal of an insufficient width of emitter, and thus, significant pinching could still 
have occurred. In this case it is probable that tile collector voltage increased 

before recovery of the emitter-base junction, resultinn in little improvement in 

RBSOA performance. 
In [6.25] a cellular type geometry has been fabricated and tested. Two 

similar structures with ring like ernitters have been compared with a device that 

did not have its centre masked off. The two ring emitter devices showed a 
dramatic 100% improvement in the Current that could be handled at any particular 

voltage all the way up to a BVCBO value of 120OV. Another cellular design has been 

constructed [6.26], which uses a double layer metalization technique to separately 

contact the base and emitter. In this case the emitters were square shaped with 

a large square centre portion masked off, such that tile emitter width was only 
5pm. The first metalization layer was formed into a grid to contact the base region 

around each emitter. The upper inetalisation was insulated from the first by all 

oxide layer and made contact with the emitter via a polysilicon ballast resistor. 
For this structure a fully rectangular RBSOA was reported, which extended all the 

way up to a BVC130 of 1000V. In this case it is almost certain that the emitter 

recovers before all the stored charge is removed since the emitters are extremely 

narrow. 
In (6.27] a numerical model has been used In a similar analysis to that 

described here. However, in this case a single cell of an interdigitated structure 
has been modelled, and the free-wheeling diode has been omitted. Again the 
collector current could not be maintained by the stored charge and the field at the 
collector-substrate junction increased rapidly (luring turn-off. For a striped 
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geometry a sharp ridge of high current density arises at turn-off, rather than a 

current filament in the case of the circular emitter. Comparison was made with a 
device where the centre of the stripe had been masked off. This causes the current 

ridge to be split into two smaller ones, running down the inside edge of each 

emitter finger. Thus, the mobile space charge is reduced and the fields are smaller 

at a particular collector voltage as the voltage rises. A field reduction of 

approximately 20% at any particular voltage up to 1000v was reported in 

comparison with the full emitter geometry. 
A second interesting comparison has been made in [6.251, which illustrates 

the effect of reducing the emitter size on the IRBSOA. A geometry was proposed 

which would consist of a uniform array of solid emitter squares surrounded by a 
base contact grid. Three such designs were fabricated, each with a different size 
of emitter square, but with approximately the same over all active chip area. It was 
found that the design with the smallest emitter gave over a hundred percent 
improvement in current handling capability at any particular collector voltage, 
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relative to tile design with the largest emitter. This can be explained by noting that 

the device with the smaller emitters can contain many more ernitter squares per 

unit area. Thus, should current filamentation arise during switch-off then tile 

current density within each filament should be less as a greater number of 
filaments will exist, provided that the current is shared equally between emitters. 
In addition divergence of current can result in a uniform current density within the 

collector layer, which minimizes the peak field at the collector-substrate junction 

(cf. section 6.2). Susceptibility to avalanche injection should therefore be 

minimized. It is also quite possible, for a fine enough emitter, that emitter injection 

will have terminated before a significant voltage rise, as the previous results have 

shown. 
The use of very fine emitters together with high packing density seems to 

be a very attractive technique for improving the RBSOA. However, problems arise, 

particularly in interdigitated devices, if file emitter contacts are made very narrow. 
This is because the resistance along the contact stripe becomes significant, 

causing considerable de-blasing of the emitter-base junction at the opposite end 
from tile contact pad. Recently, the problem of simultaneously achieving low 

contact resistance and high packing density has been aclileved by utilizing double 

layer metalization, which is a more modern technique usually employed in power 
MOS fabrication. Such techniques also lend themselves very well to the fabrication 

of cellular structures. 
It Is expected that devices with fine emitters and high packing, be they 

stripe or cellular geometry, will in general exhibit improved RBSOA performance 

compared to the hollow type emitter structure modelled here. This is because for 

the hollow emitter case the emitter must be made reasonably large since a 

sizeable hollow region is required to prevent filamentation, and this consumes 

valuable chip area. Moreover, the results given here, have shown that the removal 

of the emitter centre does not affect the oil-state operation because of predominant 

emitter pinching. This suggests that the emitter width was too large and its full 

area was not being utilized in the first place. However, if many fine emitters could 
be packed into an equivalent chip area then the electron current would be more 

evenly spread and could even become uniform before reaching the 

collector-substrate junction. This will result in optimum combined current and 

voltage handling. 

6.4.5 Conclusion. 

It has been shown that if enough charge is stored In the collector region to 

maintain the collector current until after the emitter base junction has fully 
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recovered then a dramatic improvement in the RBSOA will result. This leads to a 
desire to minimize emitter dimensions and maximize packing density, but this 
implies reducing the volume available to store the charge that allows filamentation 

to cease before voltage recovery. However, if the emitters dimensions are small 
they should recover sooner in the turn-off transient and the amount of stored 

charge required should be reduced. Even if the collector current could not be 

maintained by the stored charge, the resulting uniformity of current would tend to 

minimize fields. In this respect this conclusion is consistent with that obtained in 

section 6.3 to maximize the forward bias safe operating area. Both indicate that the 

trend should be towards finer emitter geometries to improve device robustness, 

provided that the problem of contacting to such a design can be overcome. 

6.5 Electro-thermal Interaction and Thermal Second 

Breakdown in Bipolar Transistors. 

6.5.1 Introduction. 

Since it was first reported in 1958 [6.28] the second breakdown 

phenomenon has received extensive coverage in the literature. Some of the more 

notable publications are [6.29], [6.30] and [6.31]. Unfortunately second breakdown 

remains rather a grey area despite all this effort. However, it is generally accepted 
that second breakdown can be induced either by thermal means (thermal second 
breakdown or TSB) or by subjecting a device to avalanche Injection conditions 
(current mode second breakdown or CSB). Both these mechanisms lead to a 

sudden collapse of the collector to emitter voltage, which is Indicative of second 
breakdown. CSI3 Is Initiated when the local current density at a particular applied 

voltage is of sufficient magnitude to give rise to avalanche injection. This results 
in filamentary current flow and the voltage collapses to a value that is sustained 
by the mobile space charge in the multiplication zone at the collector-substrate 
junction [6.32]. This process does not require any heating and depends only upon 
the instantaneous current/voltage combination applied to the device. Transistors 

are particularly susceptible to CSB when used for inductive switching as discussed 

in Section 6.4. The voltage sustained in CSB never varies very far from 20V and is 

relatively independent of device dimensions and doping. The high currents 

associated with the voltage collapse can cause a rapid temperature rise allowing 

operation to enter the TSB failure mode, which can result in permanent damage 
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to the device. In order to avoid this the duration of the low voltage state must be 

carefully controlled. 
Entry into TSB depends not only on the current/voltage combination, but 

also on length of time for which this combination is applied. Thus, a delay time 

exists between the Instant that the power is applied and the point at which TSB 

occurs. This delay is known as the triggering time and is an Important quantity in 

accurately defining the transistor safe operating area. TSB is initiated via a so 

called lateral thermal instability, which arises as a result of the positive 
temperature coefficient of the forward current across the emitter-base junction. 

Thus, if the temperature varies laterally along this junction, then preferential 
injection will arise where the temperature is highest. This will increase the power 
dissipation and, therefore, the temperature at this location and the mechanism will 
become regenerative. Eventually, the local temperature will exceed the intrinsic 

temperature of the material [6.33] resulting in significant thermal generation of 

electron-hole pairs, especially in the collector space charge region where power 
dissipation is highest. A plasma of electrons and holes forms a low resistance 
bridge across the collector space charge region, which is known as a 

mesoplasma. The voltage sustained In the low voltage state then depends on the 

olimic potential drops across the spreading resistances to the plasma [6.34]. This 

voltage is typically 10V and is also a fairly weak function of device dimensions and 
doping. A regenerative self-heating mechanism can also bring about the 

conditions necessary to induce CSB, prior to entry into TSB resulting in a 

reduction in the triggering time. Temperatures within the mesoplasma can easily 

reach the melting point of silicon (1412"C), but it is more likely that the eutectic 
temperature of the aluminium-silicon system at the contacts will be attained first 

[6.33]. 
In this section the combined electrical and thermal phenomena are 

simulated with the aid of the full numerical model as described in Chapters 4 and 
5. Since avalanche multiplication effects are not included in the 

recombination/generation model the effects leading to CSB cannot be taken Into 

account. However, the regenerative effects leading to TSB should be accurately 

reflected by the model. In order to reduce the possibility of the occurrence of 

avalanche breakdown prior to thermal breakdown, the initial current/voltage 

combination applied to the device was chosen such that the peak field was well 
below the value required to induce multiplication. 

In this section the combined electrical and thermal phenomena are 

simulated with the aid of the full numerical model, as described in Chapters 4 and 
5. Attention will be confined to the cylindrical type geometries ie. device types B 

and C, so that the two dimensional approximation can be avoided. This 
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approximation is expected to be particularly inaccurate now the thermal model is 
to be included. This is because localized temperature rises will cause the current 
to redistribute unevenly between and along the emitter fingers. Thus, device 

operation cannot be modelled by simply considering a single cell half-width, 
though this could be overcome by modelling several emitter fingers at once. 
Devices B and C are relatively easy to model because they do not have many 
emitters and heat flow is inherently modelled in all directions. 

In addition, a non-destructive test circuit has been constructed for the 

purpose of pulsing the devices into thermal second breakdown. As soon as the 

voltage collapse is detected the transistor under test (TUT) is turned off, which 
protects the device from permanent damage. A description of this circuit together 

with some typical results will now be presented. Some numerical results will then 
be considered and a comparison with experimental results will be made. 

6.5.2 A Non-Destructive Test Circuit for Pulsing Transistors into 

Thermal Second Breakdown. 

The circuit shown In Figure 65 was developed to study the behaviour of 
bipolar transistors during the delay time prior to entry into TSB. The circuit was 
designed to maintain both a constant collector current and a constant collector 
voltage for the entire duration of the delay time. This is an extremely desirable 
feature as it allows the transistor safe operating area to be defined on the 

conventional axes of collector current against collector voltage. As soon as the 

voltage collapse is detected the current flowing through the TUT is switched off to 

protect the device from extreme overheating. In the following description of circuit 
operation it is initially assumed that the DMOS transistor in series with the TUT is 
fully switched on. 

When the input (I/P) to the circuit shown in Figure 65 is at OV the resistor 
network formed by R1, R2 and R3 gives a voltage of approximately 2V at the 
inverting input of OP1. Feedback resistor R4 and R5 form a potential divider giving 
a voltage at the non-inverting input that is about one hundredth of the collector 

voltage of the TUT. Therefore, provided the collector voltage is below 200V then 

the output voltage of ON will be -15V Diode DI conducts through R6 and a small 

negative potential exists at the base of T1, which consequently does not conduct 

and the TUT is turned off. The circuit will remain in this off state provided the 

supply voltage, VCC does not exceed 20OV. 
If a negative going pulse (tx_ -3V) is applied at the input, so that the voltage 

at the inverting input of OPI drops below that at the non-inverting input, then the 
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Component Values 

RI, R3, R5, R6, R9, Rl I IK 
R2 2.7 K 
R4, R8, R12, R13 1 OOK 
R7 4M 
RIO 47K 
D1, D2 IN4001 
TI BFX85 
OP1, OP2 LM741 
DMOS Mullard BUZ64 
Schmitt Inverter CMOS 40106 
SR Flip-Flop CMOS QUAD NAND 4011 

voltage at the non-inverting input will follow tile voltage at the Inverting Input. The 

output of OP1 goes positive turning T1 on, which supplies base current to the TUT. 

The collector voltage of the TUT is now fixed at one hun. 1red times the value at tile 

non-inverting input of OP1 by R4 and R5, which in turn depends upon tile 

amplitude of the input pulse. The collector current is simply given by the difference 

between Vcc and the collector voltage divided by the resistance, R7. 

Since the collector current and voltage values are fixed for the duration of 
the input pulse, then any alteration in the operating characteristics of the TUT due 

to self-heating must be accommodated for by a change In base current and 
voltage. It was necessary to Include transistor T1 so that sufficient base current 
could be supplied to the TUT, which operates under conditions of low hFE. The 
base current requirement is, therefore, often well above the maximum output 

current rating of OPI. 

Should the device enter TSB then the associated collapse in collector 

voltage is detected by the comparator circu it formed by R8, R9, R 10, RII and OP2. 

The resistor values were chosen such that if the collector voltage drops below 

30V then the output of OP2 switches from +15V to -15V. Resistors R12 and R13 

serve to limit the switching range from +15V to OV to provide the required logic 

levels for the Schmitt inverter, which interfaces the CMOS SR flip-flop with the 

analogue circuitry. Thus, when the voltage collapse is detected the Set input of the 

flip-flop switches to logic 1( +15V), the ;5 output switches to logic 0 (OV) and the 
DMOS transistor in series with the TUT is switched off. This inhibits any current 
flow from collector to emitter and In addition diode D2 prevents the flow of any 
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reverse base current. Therefore, no power is dissipated by the TUT, which 
subsequently cools with a corresponding recovery of collector voltage. The DMOS 
transistor will remain latched in the off-state until the SR flip-flop is Reset. An 

appropriate Reset pulse is provided by the prepulse or 'SYNC' output of the input 

pulse generator. 

6.5.3 Experimental Results. 

In this investigation only single pulses have been considered, although the 

circuit could also be used to examine effects such as thermal accumulation under 
continuous pulsed operation. Base current waveforms have been measured using 
a current probe and stored on a digital storage oscilloscope. The waveforms 
illustrated in Figure 66 were taken frorn Device C (BVCEO = 250V, W, "j = 37.5, um, 
Neý, j= 1X 1014CM-3) and in all cases the collector voltage was held fixed at 100V, 

while the collector current was varied. It can be seen that the triggering time falls 
from 7ms to 150, us as the collector current is increased from 200mA to 550mA. 
Only a brief explanation of the general shape of the base current waveforms will 
be given here; a more detailed account will be given in the following section. 

The initial rise of the base current may be attributed to the temperature 
dependence of the limiting drift velocity of the electrons forming the mobile space 

charge region, which supports the collector voltage. Equation (3.18) predicts that 

the velocity will fall with increasing temperature. This will result in an increase in 

the concentration of the mobile electron space charge causing further expansion 
of the current induced base. This results in an increase in the Gurnmel number of 
the device and since the collector current is inversely proportional to this number 
then the base drive must be increased to maintain the specified collector current. 
The increase in base current is some what offset by the carrier lifetimes, which 
increase with temperature as discussed in chapter 3. 

Eventually the base current waveform levels off and starts to fall. This is 

because the hole current components originating from thermal generation in the 
high field region and diffusion from the substrate both increase with temperature. 
The intrinsic carrier concentration increases rapidly with temperature, 

approximately doubling every 11 "C. and the pn product is very small In the mobile 

space charge region. The equations for SRH and Auger recombination, therefore, 

predict an increase in the carrier generation rate with temperature In the high field 

region. The holes thus generated are swept into the base region to constitute a 
component of the base current. The second component is due to the hole 

concentration gradient in the substrate at the edge of the high field region. Holes 

diffuse upwards under the influence of this gradient and into the high field region 
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(mobile space charge region) whence they are swept into the base. The 

equilibrium concentration of holes in the substrate increases with temperature as 
nj increases, and the hole concentration gradient becomes steeper resulting in a 
greater diffusion component. Therefore, in order to maintain a constant collector 
current the externally supplied base current requirement must be correspondingly 
reduced. 

Close inspection of the base current waveforms for the higher collector 
currents reveals an abrupt discontinuity, with a rapid fall in current after a period 
of slowly failing base current. This indicates that avalanche multiplication has been 
induced, resulting In extremely rapid carrier generation over and above thermal 

generation. Immediately this occurs operation is triggered into second breakdown. 
This effect is expected to be more prominent at higher currents since the initial 

peak field prior to any self-heating will be higher at higher currents. Thus, only a 
small increment in the field due to self-heating would be required to attain be 

avalanche breakdown condition. 
At collector currents greater than 400mA (upper graph) the triggering time 

can be seen to decrease linearly with input power. The triggering time depends 

on tlýe time it tokes the self-heating effects to give enoligh field enhancement to 
initiate avalanche breakdown. However, at lower currents (lower graph), the 

triggering time decreases much more rapidly with the input power. At these 

currents the peak field throughout much of the duration of the delay time is 

expected to stay well below the value required for significant multiplication and 
breakdown will be dominated by thermal generation. The heat flow reaches the 

chip-header interface in approximately 200ps and the bottom of the header in 

approximately 4ms. Operation was found to be stable for currents below 200mA. 

In this situation the steady state chip temperature attained is well below that 

required for TSB. The steady state condition arises when the peak chip 
temperature reaches a value such that all the power dissipated as heat is removed 
from the chip and header via the heat transfer processes of conduction, convection 

and radiation. 
A second interesting result is shown in Figure 67, which shows the 

separate currents flowing In both emitters of device B 
(BVCEO ý 250V, Wept ý 36pm, Npi =1X 1014CM-3) for a collector current of 350rnA 

and a collector voltage of 100V. It is clearly seen that the current redistributes itself 

between the emitters as the device heats up, with the centre emitter conducting 

a greater portion of the total current as time advances. Current redistribution 
towards the centre emitter occurs despite the fact that initially a greater portion 

of the current flows through the outer emitter. This observation is in good 
agreement with the numerical results, which are described in the next section. 
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Figure 67. Emitter Current Waveforms During the Delay Time to Breakdown: The collector 

current is 300mA. 

Finally a brief investigation into the potential benefit to be gained from the 

use of graded collector impurity profiles was carried out. Figure 68 shows the 

base waveforms for device C geometry with the 50pm and 1001Am thick graded 

collector layers described in section 6.2.2. The collector current was again fixed 

at 350mA and the collector voltage at 10OV. Although these collector layers 

together with the uniformly doped layer have been designed to give a BVCEO Of 
250V the triggering time of the 501im layer is ten times longer than that for the 

uniformly doped collector, and the triggering time of the 100prn layer is nearly 
twice as long again. The effect of the grading is to prevent the field from rising as 
the saturation velocity decreases and the base widens with increasing 

temperature. The field profile gradually transfers from the base-collector junction 

to the collector-substrate junction as the saturation velocity falls. The peak field 

starts to rise only when the field profile reaches the col lector-s u bst rate junction. 

Hence, there is a delay before the peak field starts to rise and furthermore the 

peak field should not increase as rapidly as for the uniform collector, because the 

collector doping near the collector-substrate junction is higher than for the 

uniformly doped collector (cf. section 6.2.2). Hence, the localised heating in the 

peak field region is less severe for the graded collector. A more detailed account 
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Figure 68. Base Current Waveforms for Graded Collector Profiles 

of these phenomena will be given in the following section with the aid of a number 

of numerical results. 

6.5.4 Numerical Results. 

The full numerical model for ofPctro-thernial interaction has been utilized 

in this analysis. The energy dissipated in the bipolar transistor during switch-on is 

insignificant in comparison with that which is dissipated when the transistor is in 

the on-state. Thus, the time taken to charge the junction and diffusion capacitances 

is very short in comparison with the time it takes for significant heating. By 

making use of this fact the transient analysis could be initialized with 0, n and p 

distributions taken from a steady state analysis at the required collector current 

and voltage with the temperature fixed at ambient 300K. This eliminates a great 

deal of unnecessary computation and will not affect the accuracy of the results in 

the time ranges being considered. The collector current is subsequently 

maintained at a constant value by adjusting the base emitter voltage in an 

equivalent manner to the experimental ti-st circuit. At each point in time an initial 

guess is made for Vbe and tile numerical model is solved for a self-consistent set 
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of V.,, n, p and T. If the resulting collector current Is not sufficiently close to the 

required value then Vbe is altered by assuming /C to be of the following form. 

/ qv IC = ICO exp be ) 
(6.52) 

mkT 

Taking the derivative of Ic with respect to Vbe and approximating the 
derivatives by differences gives the following estimate for the required base 

voltage adjustment. 

mkT 
'CR-1C 

AVbe 
q /C 

(6.53) 

Here, 1CR is the required collector current, the dimensionless factor m can 
be obtained from the steady state characteristics calculated for the Initialization 

and the temperature, T was taken to be the average temperature along the 

emitter-base junction. This procedure is repeated at every Instant of time until tile 

calculated current lies within the required tolerance limits. As an example it takes 

typically three such iterations for a collector current of 350mA with an allowable 
tolerance of ± 2mA. 

The results of such an analysis for device C with uniform collector doping 

are shown in Figure 69. Once again the device attributes are taken to be the 'old 

values' in Table 7, but numerical results are also shown for the situation where 
the base lifetime is equal to the emitter lifetime and also for a ring emitter 

structure, which as before was formed by removing a centre portion of the emitter 

with half the radius of the full emitter. The equivalent experimentally obtained 

waveform is also plotted for comparison. Notice that because avalanche 

generation has not been included in the model the numerically obtained 

waveforms decay smoothly to zero without any discontinuities. 

By reducing the base lifetime the triggering time has been increased by 

50%. This is primarily due to the greater base current requirement which allows 
for more thermal carrier generation prior to TSB. The improvement to be gained 
from the use of ring emitters arises because this structure is less susceptible to 

the formation of localized regions of high current density. 

A number of temperature profiles at various instants of time for the full 

emitter structure (Tb = 2ps) are given in Figure 70 and Figure 71. It may be seen 
that the current density Is high enough such that the peak power dissipation and, 
therefore, the peak temperature Is located close to the collector-substrate junction. 
The full chip thickness Is shown so that the lower boundary of these contour 
diagrams coincides with the chip-header interface. After 5ps the peak temperature 
has risen to 360K and is located beneath tile outer perimeter of the emitter, 
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Figure 69. Computed and Experimental Base Current Wavelorms: YCE ý 100V, Ic = 350177A, 

13VCEO = 25OV, Npj =IX 1014CM A, Wpi = 361im. 

because of emitter pinching. However, the effects of emitter pinch are alleviated 

to some extent by current divergence in the collector layer. For example at this 

point the ratio of the current density at the collector-substrate junction underneath 

the emitter perimeter to that under the emitter centre is only 1.75. 

By 701As the peak temperature has risen to 650K and its location has shifted 

slightly towards the centre. The current density profile remains relatively 

unchanged and the point of peak ternperature does not, therefore, coincide with 

the position of the peak heat generation which remains under the emitter edge. 

Since the temperature at the emitter centre is 50*C higher than at its edge, the 

current might be expected to redistribute towards the centre. However, the 

mobility in the base falls with increasing ternperature and the corresponding 
increase in the lateral base resistance was found to balance out this effect leaving 

the current density profile relatively unchanged. 
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After 1301ts the peak temperature is 800K and has again moved slightly 
nearer the centre. Sufficient time has now elapsed such that the heat flow 

wavefront has reached the silicon-header interface. Since the thermal conductivity 
of mild steel is about seven times less than that of silicon then the temperature 

can now be expected to rise at a slightly faster rate. In this case, however, tile 
temperature build-up is so rapid that very little time is allowed for conduction of 
heat away from the active region and conditions are almost adiabatic. 
Consequently the effects of the header should be negligible in this case. 

At 200ps the terminal base current has dropped to zero and the 
temperature profile has changed significantly. A mesoplasma has begun to form 

and the entire device current Is shorted through it. The peak temperature in the 

mesoplasma is 1300K, which Is still well below the melting point of silicon 
(1700K). However, tile peak temperature of 940K at tile emitter contact is well 
above the minimum eutectic point of the aluminium-silicon system [6.33], which 
has a value of 850K for a system with 10% silicon and 90% aluminium (atomic 

percentages). Thus, melting can occur even prior to any voltage collapse. 
Figure 72 and Figure 73 show the variation of hole concentration with time. 

The effects of emitter pinch on the width of the current induced base are clearly 
visible at 5/ts. By 701ts the current induced base has widened even further. This is 

entirely due to the fall in the limiting drift velocity of electrons with temperature 

as predicted by equation (3.18). The subsequent increase in the concentration of 
electrons which constitute the mobile space charge region will result in a thinner 
high field region given by (6.45) and, therefore, a wider current induced base. This 

causes an increase in the charge stored in the base and a corresponding reduction 
in emitter efficiency. Also, since tile base is wider, more base recombination can 
be expected giving a reduction in the base transport factor. The resulting hFE 

reduction is offset by an increase in base current in order to maintain a constant 

collector current. 
After 130ps the holes that are thermally generated in the substrate and 

space charge regions become apparent. Those that are generated In the space 
charge region are swept into the base under the influence of the high electric field. 
Those that are generated in the substrate within about two diffusion lengths of the 
high field region come under the influence of tile hole concentration gradient and 
diffuse into the high field region. From Figure 71 the temperature over the space 

charge region is reasonably uniform with a value of 760K, which gives an n, (T) of 
6x 1016 CM-3. From Figure 73 the hole concentration In the space charge region 

can be seen to be much smaller than this. It has also been found that tile electron 
concentration in the space charge region is much less than ni. Thus, the space 
charge generated base current component can be calculated by approximating n 
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and p in equation (3.30) to zero. The total generated base current is the sum of that 

generated in tile space charge region and that diffusing from tile substrate and is 

given by: 

1qAWn, 
(T) 

1 'f - 
Lp(T) n, (T) 2 

(6.54) 'Bgen ý gien -ý ldiff ý 
TO -ý Tpo Tpo Nos 

where IN is the width of the space charge region, A is its area, which is roughly 

equal to the emitter area, NDs is the substrate donor concentration and Lp(T) Is the 

hole diffusion length in the substrate , 
FDp(7) 

rpo ). At 130ps for Tpo = T, O = 2ps 

the space charge generation component is roughly 0.38mA and the diffusicn 

component is roughly 0.23mA. Both these components will grow with time to 

account for the levelling off and evPntual rapid decline of the base current 

waveform. 
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By 2001ts the collector current is self-sustaining and all control over device 

operation is lost. The downward curvature of tile hole concentration contours at 
the centre of the device in Figure 73 indicate tile Initial stages of mesoplasma 
formation, and this represents the picture just prior to the voltage collapse. 

The electric field profiles at 70ps and 2001ts are illustrated in Figure 74. It 

may be seen that like the peak temperature the peak field shifts from beneath the 

emitter periphery to beneath the emitter centre. The vertical field profile along the 

emitter centre line also changes from one with a constant gradient as predicted 
by the previously outlined one dimensional theory to one with an increasing 

gradient. This occurs because of the alteration in the space charge density caused 
by the thermally generated electrons and holes. As a result, the negative space 

charge density increases from the edge of the current Induced base to the 

collector-substrate junction and the field profile changes accordingly. In both 

cases the peak field is well above the previously accepted value for the critical 
field for breakdown of 100KVcm-1. It is quite possible, therefore, that avalanche 
breakdown could have been induced prior to thermal breakdown in practice. 

The time variation of the peak field and temperature for the full emitter and 

ring emitter structures is shown in Figure 75. A number of workers (6.35], [6.36] 

have suggested that TSB occurs when the peak temperature reaches the intrinsic 

temperature of the collector layer. That is, tile temperature at which tile Intrinsic 

concentration becomes equal to tile ionized Impurity concentration of the collector. 

However, this suggests a value of 500K for the 1X 1014 CM-3 collector considered 

here, which is well below the calculated value of 1360K. However, better 

agreement has been obtained with a number of other workers (6.31], [6.37] who 

have calculated the temperature to be at or near tile melting point of silicon 
(1700K). More specifically though, the results described here seem to disagree 

with the concept of a triggering temperature. Rather, the results indicate that ently 

into TSB will occur as soon as the point is reached where tile entire base current 

requirment is supplied by thermally generated holes. Any further generation will 

result in a base current that exceeds the value required to maintain a constant 

collector current. The collector current is then forced to rise and rapid 

mesoplasma formation will ensue. 
Current filamentation is prevented in the case of the ring emitter structure 

and instead the current redistributes towards the inner edge of the emitter forming 

a tube of high current density. Figure 76 shows that the effects of emitter pinch 

are reduced with time as the thermally generated base current component, which 
does not generate any significant lateral voltage drop, becomes more significant. 
Tile effect of removing the centre of the emitter is to spread the current around tile 

inner emitter edge and so reduce the heat generation. However, this effect is 
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somewhat offset by the additional consequence of spreading the heat generation 

over a larger volume. As may be expected the peak field and temperature 

accordingly moves from below the outer emitter edge to below its inner edge. 

6.5.5 Comparison of Experimental and Numerical Results. 

It is clear from Figure 69 that the computed results underestimate the 

triggering time to breakdown. The differences may be due to Inaccuracies in the 

models used to represent the temperature dependent physical parameters or they 

could be due to deficiencies in the existing model. Although most of the important 

parameters which govern device operation have been accurately quantified at 

room temperature a considerable arnount of uncertainty still exists as to their 

variation with temperature. 
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The computed base current waveform is seen not to rise as rapidly as tile 

equivalent experimental waveform. Since this effect'seems to be due entirely to 

the temperature dependence of the electron saturation velocity then the model 

used in the computations would seem to be at fault. The experimental waveform 

would seem to suggest that the velocity decreases at a faster rate with 
temperature than predicted by equation (3.18). A greater amount of experimental 
data than that given in Figure 9 on page 51 is required to justify this model. 

The hole current component originating from the high field region is 

proportional to n, (7) and that originating from tile substrate is proportional to 

n, (T)2, and ni is, therefore, an extrernely critical quantity. From Figure 10 on page 
53 it is seen that the model may infact underestimate ni at higher temperatures, if 

only by a small amount. However, the early measurements of Morin and Maita 

should be viewed with caution as they were obtained from rather impure material. 
In 200its the temperature profile only just reaches the [leader and so no 

heat will be lost from the system through the header or heat sink if attached. 
However, the heat does reach the top of the chip and tile model assumes unforced 

convection to be the only heat transfer pýocess by which heat is allowed to escape 
from the top surface of tile chip. A considerable amount of heat can escape by 

means of conduction through the emitter contact metalization and subsequently 

through the bonding wire. In addition, at the higher surface temperatures arising 
just prior to breakdown a significant amount of energy can escape by radiative 
heat transfer. For example the Stefan-Boltzmann law [6.38] predicts that 

approximately six times more energy is lost via radiation compared with unforced 

convection at a surface temperature of 900K. 

A more important difference between the model and the devices seems to 

be the collector SRH lifetimes. From Table 7 on page 169 the measured lifetime 

is 30ps and the value used in the model is 2ps. Since tile current generated in tile 

high field region varies as 1/rpo and that generated in the substrate as 11/ýT 0 tile 

overall predicted thermal generation will be about an order of magnitude greater 

at a particular temperature than it should be. This may well account for the 

observed differences. 

It is equally probable that the differences are due to the existence in 

praclice of finite resistances in series with the emitter, which act as efficient 

stabilization against. thermal runaway [6.39]. Tile most important contribution to 

this resistance comes from the emitter bond wire and contact metallisation. The 

devices were bonded with 25pm diameter gold wire, which was found to be 

capable of carrying at least 2A of steady-state current. Assuming the bond wire to 

be 0.3cm long then at 900*C the resistivity of gold is 1111.81d2cm and the 

corresponding resistance of the bond wire is 0.70. For an emitter current of 
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400mA the voltage drop across this resistance is OM, which still leaves 99.7V 

across the device. Therefore, it is unlikely that this would account for any of tile 

differences. However, as previously pointed Out the aluminium-silicon eutectic and 

also the aluminium itself (melting point 660"C) can melt well before any voltage 

collapse. Although the resistivity of alurninium, even in its molten state would not 

account for a significant resistance, the electrical properties of such a molten 

contact will be rather uncertain. For instance the existence of voids in the 

aluminium would serve to reduce the area of current flow and so increase the 

series resistance. 

Evidence that the aluminium melts before TSB was obtained by observing 

the emitter metallisation through an optical microscope before and after thermal 

testing. The aluminium forming the emitter contact was found to have a slightly 
lighter colouration after testing, whereas the base metallisation remained 

unaffected. Despite this most of the tested devices remained fully operational, with 

their electrical characteristics being unaffected. In some extreme cases the gold 

bond wire was found to fuse, indicating that the temperature had risen above the 

melting point of tjoid which is 1064"C. 

In summary the emitter resistances together with the different collector 

lifetimes probably account for the differences in triggering time. From the above 

analysis it is more likely that it is the difference in collector lifetimes that is 

responsible for the observed discrepancy. The model should be re-run with a 

collector lifetime of 301ts to clarify this matter. 

6.5.6 The Consequences of Graded Collector Profiles on Thermal 

Breakdown. 

Two computed base current waveforms for type C geometry with 50/11n 

thick graded collector layers are illustrated in Figure 77. As before the collector 

voltage is 100V and the collector current is 350mA. The collector layer 

specifications were chosen according to the curves provided in [6.20]. as 
described in section 6.2.2. The corresponding experimental result is provided for 

comparison. Numerical results have been calculated not only for the intended 

optimum profile, but also for the experimentally obtained profile, which was 
measured using the spreading resistance technique [6.9]. It was found that the 

measured profile was linear but the slope, a and the initial doping, NDO in equation 
(6.33) were both higher than intended, having values of 2.2 x 1017 CM-4 and 
3x 1014 CM-3 respectively. 
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The consequences of the grading on tile peak field and temperature are 

illustrated in Figure 78. These results have been calculated for the optimum 

50grn profile and the corresponding results for the 371Lm uniformly doped collector 

are given for comparison. 
The field is clearly kept much lower by the grading. The slow but steady rise of the 

peak field indicates that the field profile is intially In 'contact' with the 

collector-substrate junction as otherwise its value would remain constant because 

of the grading. The effect of the grading is to impede the rapid development of the 

field spike and the associated highly localized temperature rise. As a result the 

triggering time has been increased by five times that of the conventional device. 

It may also be seen that the field is kept well below the critical field for avalanche 

injection over almost the entire delay time and it Is, therefore, unlikely that the 

triggering time will be significantly shortened due to these effects. 
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The field profiles at various times prior to TSIB are given in Figure 79 and 

the vertical electron current densities are given in Figure 80. The curvature of the 

vertical field profile is evident as is the downward movement of the field profile 

with time. This downward movement is explained by the reduction in O"t with A 
temperature causing an increase in the electron concentration In the space-charge 

region. The temperature profiles are shown in Figure 81 and the hole 

concentration contour diagrams in Figure 82. It can be seen that the temperature 

initially peaks half way down the collector at the position of the peak field. The 

peak then moves downwards and towards the emitter centre before TSIB is 

entered. A well developed mesoplasma is evident from Figure 82 at 977ps. At this 

point in time the plasma concentration is of the order of the peak impurity 

concentration in the base. 
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The differences between the numerically and experimentally obtained 

waveforms may once again be attributed to the previously described differences. 

An additional factor affecting the 501im device is that the measured base current 

prior to any self-heating is higher than the computed value. This suggests that 

variations in the base doping and perhaps lifetimes have occurred between 

separate process batches. The modelled profile, however, was not varied so that 

accurate comparison could be made between computed results for uniform and 

graded collector layers. 

The computed triggering time for a device with the measured collector 

profile is seen to be less than that for the optimum profile. The measured profile 

was found to have a higher initial doping and steeper slope than the optimum. This 

gives in a higher peak field at a given voltage, resulting in a more rapid local 

temperature rise. A particularly interesting observation can be made by 

comparing the experimental current waveforms in Figure 68 for the 

50Am and 10OAm graded collector devices. The base waveform of the 100, um layer 

exhibits a long slow fall off before entry into TSB. This is because the collector 
layer is wider and more heating is required to shift the peak field to the collector 

substrate junction. The peak field does not rise with temperature until the field 

profile reaches the collector-substrate junction. Thus, the heating is slow resulting 
in a slow fall in base current. 

6.5.7 Conclusion. 

The mechanism by which self-heating and eventual second breakdown 

occurs has been demonstrated with the aid of the numerical model and qualitative 

agreement has been obtained with experiment. Tile results have shown that both 

the peak field and peak temperature shift laterally from below the etylitter edge to 

below the emitter centre prior to the fort-nation of a high current filament through 

the emitter centre. The results do not Support the concept of a critical temperature, 

rather the device is found to enter TSB when /13 = 0, which depends on the over 

all temperature profile. The differences between computed and measured 
triggering times can be attributed to the different collector lifetimes and to the fact 

that series emitter resistances were not included in the model. It has also been 

demonstrated that the triggering time to TSB can be improved by utilizing a ring 

emitter structure or a graded collector impurity profile. Device ruggedness Is, 

therefore, improved and its Safe Operating Area (SOA) is extended. 
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Chapter 7. Conclusion. 

The multi-dimensional nature of semiconductor device operation demands 

the use of numerical simulation in device design. Analytical models simply cannot 

account for the for operation in three dimensions. Furthermore, analytical models 

usually only apply to a particular aspect of overall device operation and the 
intimate interaction between the different processes within a device is usually 

neglected. Such problems are largely overcome by the use of numerical 

modelling, which can be used to accurately predict the operation of practically 

realisable devices that are beyond purely academic examples. The accuracy is 

such that the number of design and fabrication cycles required for device 

development is drastically reduced, giving a significant saving of both time and 

money. 
A major limitation currently affecting the use of numerical methods is that 

they require considerable computational resources. Until recently numerical 

models could only be implemented on powerful mainframe computers, which In 

general has meant that their use has been restricted to the research type 

environment. Consequently there has been a relatively slow acceptance of 

numerical modelling by the commercial establishments. However, all this Is likely 

to change in the near future with the advent of cheap but powerful workstations 
together with parallel processing systems. 

7.1 Summary. 

The intention of project has been to develop and substantiate a numerical 

model for semiconductor device operation. Numerical modelling was chosen for 

its inherent accuracy and because it can be easily adapted to suit a wide range 

of situations. It has been shown that numerical methods can be used to solve the 

most complicated problems such as that arising from semiconductor physics. 
Hence, the problem need not be simplified in order to make it amenable to a 

solution. Here lies the fundamental difference between analytical and numerical 

approaches. In analytical methods the full problem is simplified in order to ease 
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the solution, where as in numerical methods the full problem is solved using a 
discrete approximation. 

The mathematical model described in chapter 2 is fundamental to most 
semiconductors and it only becomes specific to a given device upon the 

application of the boundary conditions. A diverse range of problems can be 

specified therefore, by simply altering the boundary condition, giving a high 
degree of flexibility. The model caters for a wide range of physical phenomena not 
normally accounted for such as current spreading, current flow due to temperature 

gradients, electro-thermal interaction and high doping effects. 
In order to quantify the model for a particular semiconducting material a 

number of physical parameters within the model must be defined. In this case the 
the material is silicon and the empirically obtained expressions used to describe 

the physical parameters are presented in chapter 3. A temperature dependent 

mobility model was presented, which accounts for all the Important scattering 
mechanisms in silicon. An expression for the variation of the Intrinsic carrier 

concentration with temperature was also presented that has proven to be critical 

when modelling self-heating. The carrier concentrations have been modelled 

using the Boltzmann approximation with heavy doping effects being treated by 

assuming rigid shifts of the parabolic density of states functions, through the use 

of an effective band gap narrowing term. The model for carrier 

recombination/generation accounts for phonon assisted transitions via deep level 

traps (SRH) and band to band transitions resulting from Interactions between three 

carriers (Auger). These are by far the most important recombination mechanisms 
in silicon. Careful consideration has been given to the SRH lifetimes, which are 
extremely difficult to quantify. This is because unlike many other parameters they 

are not only functions of known quantities such as temperature and doping, but 

they also depend upon device processing conditions and material purity. Since the 

model was to be compared against a particular set of devices, which were all 
fabricated with the same process, then it was decided that the lifetimes to be 

inserted into the model should obtained from these devices. The values were 

either measured directly from these devices, or obtained by comparison of 
computed and measured electrical data. Also included In chapter 3 Is an 

expression which describes the temperature dependence of the thermal 

conductivity in silicon, together with an accurate model for heat generation. 
Having formulated and fully defined the problem the mathematical model 

was then solved using numerical methods, which represent the only feasible 

approach to solving a problem of such complexity. Chapter 4 describes the finite 

difference method for transforming the continuous problem into a discrete one. 
Care has been taken to include truncation errors wherever possible, so that the 
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approximations being made are readily apparent. In addition the truncation errors 
can themselves be estimated using finite differences and on the basis of these 

estimates an optimum mesh can be designed. 

The discretisation stage generates a large system of non-linear algebraic 

equations, which presents a considerable computational problem. Here lies the 

major drawback of numerical modelling. Chapter 5 describes two separate 

approaches to solving such a system. Two approaches are generally required 

since one operates more efficiently at low Injection levels, while the other Is far 

superior for high level operation. Both approaches make use of Newton's method, 
which Involves repeatedly linearlsing and solving the system. The solution of the 
linear system Is computational intensive requiring large amounts of processing 
time. A number of iterative methods for performing this function are described In 

chapter 5. Iterative techniques were preferred to direct solvers as they are more 

efficient for sparse banded systems. 
Finally in chapter 6 the results of a number of Investigations that were 

performed with the aid of the model were described, together with the design and 

characterisation of several bipolar transistor geometries. Development of the 

model was carried out in stages and simulations were made after each 
development phase. In this way each version of the model could be thoroughly 

tested for programming errors and numerical accuracy before adding a further 

stage. Hence, in section 6.1 a comparatively simple 'off-state' model was 

presented, which provided the foundation for the full model. In this case only 
Poisson's equation needed to be solved, and by calculating the ionization integral 

along the resulting field lines it is has been shown that it is possible to obtain an 

accurate value for reverse biased breakdown voltage. The model was then 

extended to a full isothermal electrical model for steady state simulation. This 

involved a solution of the coupled Poisson and current continuity equations for 

time invariant applied voltages. Electrical results using this model are described 

in sections 6.2 and 6.3. The steady state model was then extended to cater for 

transient operation, and at the same tirne the model was coupled with an inductive 

collector circuit equation as described in section 6.4. Finally, the full transient 

electro-thermal model was completed, and it was used to Investigate thermal 

second breakdown phenomena in bipolar transistors, which was discussed In 

section 6.5. 

In many cases comparison has been made between simulation and 

electrical measurements obtained from the bipolar test structures described In 

section 6.2. These devices were designed and fabricated as part of this project, 

and were found to be fully operational. They provided the data against which the 
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model was calibrated, and favourable agreement was obtained between measured 
and computed results. 

In summary the main objectives of this project have largely been achieved, 
in that a powerful facility is now available at Liverpool for modelling, In detail, tile 

operation of silicon devices. Although the applications considered here have 

concentrated on bipolar transistors, the model can just as easily be applied to any 
other type of device eg. MOSFET's and JFET's. Moreover, the model has been 

written in such a way that only a small number of simple input routines need to 
be altered to completely specify a totally different type of device. 

7.2 Recommendations. 

A number of outstanding recommendations can be made with regard to the 
future development of the model, which will now be listed in a vague order of 
preference. 

1. The recombination/generation term, R should be extended to include the 

effects of avalanche generation, G, given by 

1 
G= -T 

(a, I J, I A- otp I Jp 

where CCn and ap are the ionisation rates and are given by (6.2) and (6.3) 

respectively. Since this Is a purely generative process expression (7.11) should 
be subtracted from R. Once this amendment is made, the contribution 

avalanche generation makes to the current flow can be simulated. This avoids 
the need to assume a critical field for breakdown, which was necessary in 

chapter 6. Apart from providing a more accurate breakdown prediction the 

addition of (7.1) to the model allows the phenomena leading to breakdown to 
be investigated. Breakdown voltages can be obtained under a full range of 

operating conditions, and not just for reverse biased junction breakdown as 
obtained from the 'off-state' model. 

2. Consideration should be given to providing a user Interface to the model. This 

would allow the user to define a particular problem by creating an Input file 

using an input language, which must be capable of being interpreted by the 
input routines. The Input data is then used to initiallse the model. The Input 

data file should contain a statement of the discretization mesh together with 
details of device geometry and attributes. The geometry can be defined using 
REGION statements followed by the range of mesh points that define the 

region eg. REGION CONTACT (X 15Y6 8). Each region block should contain 
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details of various attributes pertaining to that region eg. applied voltago, 
doping, relative permittivity, thermal conductivity, lifetimes etc. Any attributes 
that may vary within a region should be specified using function statements 
eg. doping, lifetime. The input language would, therefore, be capable of 
defining any arbitrary geometry including MOS and bipolar transistors. 

3. The fact that numerical methods are capable of solving the most difficult 

problems means that more emphasis is put on the fine details of the physical 
parameters described in chapter 3. The empirical models used to represent 
the physical parameters should be reviewed whenever new models or new 
experimental results become available. Although the models may be well 
defined at room temperature, some uncertainty exists at higher temperatures 
due to a lack of experimental data. The model for carrier-carrier scattering Is 

particularly doubtful and this should be given immediate attention. The 

measurements upon which the mobility model is based are all for majority 
carrier mobility, that is electron (hole) mobility in n-type (p-type) material. 
However, it has been found that minority carrier mobility can be significantly 
different from this [7.1]. Ionized impurity scattering is found to be heavily 
dependent on the type of impurity present, especially at hipt, implority 

concentrations. The carrier lifetimes should also be carefully considered. 
Although the doping dependence of lifetime In bulk silicon has been 

reasonably well quantified, very little is known about the influence of device 

processing on these values. Thermal diffusion and oxidation together with 
epitaxy and ion implantation are likely to bring about significant lifetime 

reductions in the various layers of a device. Some measurements on 
phosphorus diffused layers are given in [7.2] 

4. A major problem with the conventional finite difference method Is that it 

requires mesh lines to be extended right up to the boundaries of the 

simulation domain. In many cases these mesh lines will extend Into regions 
that are of little Interest or regions were the truncation errors are low. A better 

meshing algorithm would allow for the termination of mesh lines within the 
domain. This can be achieved using the technique of finite boxes [7.31. A more 
general technique [7.4] allows for a more arbitrary positioning of mesh points. 
In this case the mesh points do not have to be positioned along mesh lines 

and this approach seems to be particularly well suited to the semiconductor 
problem. Here the mesh is made up of triangles and mesh refinement Is 

achieved by fitting successively smaller triangles within each other. Although 

the use of such a mesh requires more 'book-keeping' than for a conventional 
difference mesh, this should be more than offset by the resulting reduction In 

problem size. Careful consideration should be given to mesh design so that 
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truncation errors are minimised and Investigations should be made Into the 

use of adaptive meshing as discussed in section 4.3. 
5. More effort is required to improve the linear solvers described in chapter 5, 

especially with regard to solving the system resulting from the coupled 
approach. The convergence rate of the successive block over-relaxation 
method is slow even for optimum acceleration parameters. In this case direct 
LU factorisation may be more efficient, though storage requirements will be 
drastically increased. Furthermore, LU decomposition requires the 

computation of an extremely large number of Intermediate coefficients, which 
can be very time consuming. Careful comparison must be made to identify the 
most efficient technique. An excellent review of the current state of the art 
methods for solving the linear systems arising from the semiconductor 
equations is given in [7.5] In this paper a method called conjugate gradients 
squared (CGS) is described for solving the linear system resulting from the 
coupled approach. This method was shown to give a considerable reduction 
in the number of operations required to obtain a solution compared with LU 
decomposition. 

6. The accuracy of the simulated results are critically dependent upon device 

geometry and impurity profiles. Although such information can be measured 
from actual devices this would require pre-processing and the model could not 
be used as a predictive tool. However, the process could be modelled In order 
to obtain an estimate of device structure and doping. Process modelling is 

very involved and requires as much effort as device modelling itself. It Is, 
therefore, recommended that the device model be coupled to an existing 
commercially available process model such as ICECREM, SUPREM III, 
COMPOSITE or SUPREM IV as described In section 6.2.2. If the model is 
coupled to a 1D process simulator an error function lateral roll off of the 
impurity profile would be required to approximate the lateral profile near a 
mask edge. It would be more desirable to couple the model with a 2D process 
simulator as this would allow a closed form solution for a given process. 

7. Throughout this work all contacts have been assumed to be voltage controlled 
as the boundary condition for current controlled contacts disrupts the banded 

nature of the coefficient matrices as stated in chapter 2. However, the novel 
approach suggested in [7.6] avoids this problem and should be subject to 
further investigation. 

8. As a final point it should be stated that If MOS type devices are to be simulated 
then the effects of surface scattering of carriers in channel regions should be 
incorporated Into the mobility model. Some models for this are described In 
[7.7] and [7.8]. 
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Appendix. 

Copies of two publications arising from this project are included here. The 
first, entitled 'A Numerical Analysis of the Resurf Diode Structure' is described In 

section 6.1. The second, entitled 'Optimisation of VDMOS Power Transistors for 
Minimum On-State Resistance' has not been considered In this thesis, as a 
detailed account of the results in this paper has already been given In J. T. Davies' 
Ph. D. Thesis, The University of Liverpool, 1985. 
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A numerical analysis of the resurf diode 
structure 

P. Walker, J. T. Davies and K. I. Nuttall, Ph. D. 

Indexing terms: Diodes, Semiconductor derices and materials, Numerical analysis 

Abstract: The results of a 2-dimensional numerical analysis of medium and high-voltage diode structures that 
incorporate a 'resurr field reduction layer arc presented. The work illustrates the effect of surface charge on the 
optimisation of the design and indicates the requirements that will ensure bulk breakdown for a wide range or 
surface charge densities. The results are used to assess the analytical design equation presented by Appels et at, 
modified to take account of surface charge. A comparison is also made with results obtained from an analysis or 
the ficl, d limiting ring technique, and the relative performance of the two methods is assessed. 

Introduction 

The production of high-voltage devices requires special 
consideration to be given to the effects of junction curva- 
ture and surface charge. Both of these can lead to a signifi- 
cant reduction of the breakdown voltage when compared 
to the theoretical maximum possible with a given substrate 
resistivity. Various schemes have been proposed to alle- 
viate these effects, including surface contouring (1], dif- 
fused guard rings (2] and field plate structures (3]. More 
recently, the field limiting ring system originally proposed 
by Kao et A (4] has received further attention [5,61, and 
a new technique employing 'rcsurf layers has been sug- 
gested [7]. Because 2-dimensional effects are fundamental 
to a detailed appreciation of these techniques, particularly 
in the presence of surface charge, computer analysis 
methods are being increasingly employed to assess their 
relative value and to produce design guidelines. Both 
single and multiple ring systems have been analysed 
recently in this way (5,6] and design rules for these are 
emerging. Unfortunately, variations in the surface charge 
density pose a particular problem concerning the practical 
implementation of the structures and, in many cases, its 
influence on the optimised design has yet to be assessed in 
a quantifiable manner. 

This paper presents the results of a computer analysis of 
diode structures employing 'resurf layer protection tech- 
niques. The results illustrate how surface charges modify 
the design parameters, and indicate the requirements that 
will ensure bulk breakdown for a wide range of surface 
charge densities. A comparison is made with results 
obtained from an analysis of the field limiting ring system, 
and the relative performance of the two methods is as- 
sesscd. 

2 Analysis 

A 2-dimcnsional solution of Poisson's equation using the 
finite difference method with a nonuniform grid has been 
obtained for the typical diode structure shown in Fig. 1. 

Local space charge has been assumed to be given by 

e= -q(NI, - NA +p- n) 

where p=n, expj'q(Oj-O, )1KT) 
n=n, explWO. - 0, )j; KTj 

opi = local potential 
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quasi-Fermi levels for electrons 
and holes respectively, 
and ND, NA are the local donor and acceptor 
dopant concentrations. 
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Uniform doping has been assumed for the n- substrate 
and p- cxpitaxial layer, with Gaussian profiles to approx- 
imate the p* and n* diffusions. An assessment of leakage 
currents has not been included in this analysis, and the 
positions of the quasi-Fermi levels have therefore been 
assumed to be determined by the condition of electrical 
neutrality at the appropriate ohmic contact and to extend 
without variation throughout the remainder of the silicon 
[8]. 

A condition of symmetry has been applied to the two 
sides AB, CD of the region analysed. Both the contact to 
the p* diffused region and the top boundary delineating 
the air space above the chip were fixed at zero potential, 
and the appropriate reverse bias applied to a contact along 
the lower face AD. The material parameters used are those 
appropriate to silicon, capped with a Ipm SiO, layer and 
aluminium inctallisation where applicable. Equal vertical 
and horizontal diffusion depths have been assumed for the 
p* and n* diffusions, but the vertical scale of Fig. I has 
been enlarged by a factor of ten for presentation purposes. 

The breakdown condition has been determined by 
evaluating the ionisation integral 

I- IMP 2p cxp (ot. - 3(p) dx' dy 



along several flux lines. commencing %%ith that passing 
through the region of maximum electric field strength. 
Although that flux line often resulted in the largest value 
for the integral. care was needed when substantial regions 
of moderate field strength existed. The applied bias was 
steadily increased until the peak value for the ionisation 
integral became unity. Although eqn. I assumes the multi- 
plication to be dominated by minority carrier injection 
from the n- region, the breakdown voltage obtained is not 
dependent on that assumption. 

The ionisation rate data used was based on the results 
obtained by Van Overstraetcn and DeMan [13] for fields 
in the range 1.75 x 105 <E<4.0 x 10' V/cm according 
to the relationships 

2. = 7.03 x 10' expi - 1.231 x ICIE) cm-' 

xp = 1'. 582 x 10' exp( -2.036 x 106/E) cm-' 
Calculation of the breakdown voltage appropriate to the 
plane diffused p*n junction along the boundary AB con- 
firmed that these coefficients satisfactorily predicted the 
measured breakdown voltages of plane p*n step junctions 
published previously by various authors (Fig. 2). The devi- 
ation noted at lower breakdown voltages can be attributed 
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to allow a fair comparison with alternative schemes and to 
minimise the possibility of interference with the normal 
operation of the particular device protected. Hencc the 
peak breakdown voltage realiscd in these calculations 
cannot exceed that established by the plane p*n- inter. 
face, BV,,,,. In the absence of any protection, simulated by 
replacing N,,, by -Ný,,, the planar breakdown voltage 
BV,,,,,., is obtained. These represent the upper and lower 
bounds for which breakdown voltages have been deter. 
mined. Surface charge densities of 0 and 5x 10" charges/ 
cm' have also been considered, encompassing the range 
typically encountered in practice [14]. In addition. the 
breakdown voltage will be dependent on the width of the 
P resurf layer, but the sensitivity is weak at all resurf 
doping levels provided that it exceeds that of the plane 
parallel depletion layer. Accordingly, this dimension has 
been chosen to be considerably wider than would normally 
be necessary, to remove the consequences of a further 
adjustable parameter. 

Fig. 3 shows the result obtained on a device with a sub- 
strate doping concentration of 10"' cm -3 and junction 
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to the diffused impurity profile of the junction analysed, 
%%hilst the slight underestimation noted for high voltage 
devices is consistent with the conclusions of recent authors 
191. 

Results 

The procedure described above has been applied to devices 
with the geometry shown in Fig. 1. using a range of p* 
junction depths (. x, ) and p- cpitaxial la)er and ri - sub- 
strate res istivities. Tests were also conducted for different 
p- epitax layer thicknesses. but in this work the layer 
thickness has been limited to the depth of the p* diffusion 
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depth 10 pm. The breakdown voltage for a plane junc. 
tion, BV,,,. and that of the corresponding planar junction. 
B V,,. 

_, 
(closely approximating ap*n step junction at this 

value of substrate doping) are also indicated. Junction cur- 
vaturc effects cause BV, I. - to be less than BV and 
surface charges lower BV,,. 

- still further. The 'results 

show that the substantial reduction in breakdown voltage 
due to junction curvature can. to a very large extent. be 
prevented by using the resurf layer. even in the presence or 
significant surface charge. Three portions or the graph may 
be identified, labelled 1-3 in Fig. 3. each corresponding to 
breakdown at a different location. Potential contour maps 
arc shown in Fig. 4 to illustrate the sequence that is typical 
of this structure. The initial rise of breakdown voltage with 
p- epitax doping (region I in Fig. 3) is associated %ith 
surface breakdown at the p*p- interface, Fig. 4a. As the 
epitax doping is increased, the breakdown location even- 
tually transfers to the lower portion of the curved p' dilTu- 
sion boundary in the bulk. giving rise to region 2 in Fig. 3. 
The breakdown voltage is often relatively insensitive to 
epitax resistivity in this region, but it is abruptly terminat. 
cd by region 3 when the doping is sufficient to allow 
breakdown at the p-n* interface. Fig. 4c. A rclati%-cly 
small range of epitax doping levels may therefore be idcnii- 
fed as representing a near optimum device. outside or 
which the breakdown voltage decreases sharply. The -., c%cr- 
ity of the fall is greater than that expected on the basis of a 
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resistivity change alone because the potential adopted by 
the p-type resurf layer, and hence the proportion of the 
total voltage being supported by the respective parts of the 
device, also changes with the epitax doping. The data prc- 
sented in Fig. 3 relate to a device for which the depth of 
the p* diffusion and p- epitax layer are equal. It is necess- 
ary to ensure that the depth of the p- layer is not signifi- 
cantly less than that of the p* diffusion for the method to 
be properly effective. Fig. 5 illustrates the consequences of 
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a reduced epitax layer thickness on the breakdown voltage 
of a typical device optimised for bulk breakdown. If other 
considerations permit, the layer could be allowed to extend 
beyond the junction depth, resulting in the structure pre- 
viously considered by Appels et at. (7). However, apart 
from Fig. 5, all the data presented in this work apply to 
the condition xi - dp,. 

The effect or surface charge will depend upon the &sym- 
metry of the junction considered. For the p*n device, posi- 
tive surface charges will lower the breakdown voltage 
when breakdown occurs at the p*p- interface (low N, j 
values) and raise the voltage when located at the p-n 
junction (high N,,, values). As a consequence, the optimum 
epitax doping range is shifted to higher values as shown in 
Fig. 3. For n*p- structures, the opposite will occur and 
the optimum epitax doping range will be moved to lower 
values by the surface charge. The results shown in Fig. 3 
relate to the p*n configuration and show that. ir high 
breakdown voltages are to be rcalised. the cpitax doping 
specification must not only be tightly controlled but also 
selected according to the surface charge density present. 

The extent to which the observed sensitivity to surface 
charge can be cased by using deeper diffusions is'shown in 
Fig. 6. The upper and lower limits to the range of N,,, 
values for which breakdown is confined to the bulk have 
been identified and plotted against lftj for each or two 
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%alues of surface charge density, N, =0 and 5x 10" 
charges -cm 2 respectively. The breakdown voltage achieved 

Is[ Nsz5xIO" ICM2 
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0 
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Fig. 6 Upper and lower linuts jor S, that ensure bulk breakdown. 
oyamst reciprocaijunction depth 
N, -O and 3x 10" cm-', N, - 10"cm". d,, - v, 

within these ranges of N,, i rises with both N,, i and xj as 
an increase in either parameter acts to reduce the diver- 
gence of flux in the vicinity of the curved p' boundary, 
which is where the breakdown is located. The design that 
results in maximum breakdown voltage therefore corre- 
sponds to the upper limits of N, P, shown in Fig. 6 for each 
value of surface charge density and xj. However, the 
breakdown voltage variation across the range shown for 
N, pi is not usually great, and above a junction depth of 
approximately 12 jum the bands overlap, revealing com- 
binations of N, P1 and icj values for which the breakdown 
location will be relatively independent of surface charge 
density. The appropriate region is shown shaded in Fig. 6. 

The results have been extended to include lower voltage 
structures as shown in Figs. 7 and 8. - In each case, the 

equation 2 
N,. SxiO km 

. ý! 
.; 

'o ýýN*_ýzo 

20 
Np, 

N., 

equation 2 

ý10 
z 

N,, (min) 
0 

N,, (min) 

0 005 01 015 0.2 0.25 
Ilx, Ijrn -1 

Fig. 7 Vpper and lower Imuti for N, that ensu" bulk breakdonn. 

ationow ret irroicaliunefion depth 

. Iv, -Oandý - 10" cm". N_-3 - 10"cm-'. d,, - 

lower limit of N., for which breakdown occurs in the bulk 

agrccs wcll with an equation of the form 

N, 
P, 4#Pdn) =A+B 

Xj 

and the upper limit may be described by the equation 
N,,,, 4max) = Cx D 

j 
Appropriate values for A, B. C and D are given in Table I 

and thcsc equations arc reprcsentcd by the solid lines in 
Figs. 6.7 and 8. 

An cxprcssion that allows an estimate for N,,,, to be 

2814 

obtained. given values for d,,, and N.,,. has been derived 
analytically by Appels et at. The analysis proceeds on the 
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Fig. 8 Upper and lower lonitsfin, N,, that ensure bulk breakdoun. 
against reciprixo1junciion depth 

N, - Oand 5x 10" cm'-. S. - 10" cm-'. d,. - x, 

basis that the p- resurf layer should be allowed to become 
fully depicted before breakdown occurs at the vertical 
p n' junction. In the presence of surface charge it is 
necessary to extend this concept to allow for surface deple. 
tion. Provided that the length of the resurf layer is suffi- 
cient. the electric field distribution near the centre or the 
layer may be considered to be essentially I-dimensional 
and normal to the surface. Under these conditions. the 
undepleted depth of the resurf layer will be reduced by an 
amount N. IN,,, i, where N, is the density of surface charges 
per unit area. The relationship then becomes 

N, 
P, 4d, Pj - 

N. IN,,,, ) < 
to t., E, 

(2) 
q(l + N,, INýb)': ' 

This expression -equires an estimate for E, the critical 
field for breakdown, which also depends on the doping 
level I N,, i in this case). The rclation 

F, = 2.75 x 10-1 x N, "" V/cm 1 01 

conforms to the peak field at breakdown for the computed 
data of Fig. 2 and has been used in eqn. 2 to determine the 
relationship between N.., and d,, i included in Figs. 6.7 
and 8 and for which dp, = YI. Although the equation does 
not provide an optimum design. it does ensure bulk break- 
down for a wide range of junction depths and makes an 
appropriate allowance for surface charge. The general 
validity of the results obtained by the equation is good. 
particularly in view of approximations involved in its deri- 

Table 1: Coefficients used in the empirical relationships for 
N., (max) and N,,, (rnin). 

N, -0 
N,... ABC0 
CM-3 

10" 54x 10" -2.2 p 10" 1.1 a 10'3 -0.57 3- 10" 82-10" -60-10" 2.7-10" -057 
10" 91,10" -1.1-10"' 36-10" -0.32 

N. -5- IV cm 3 
N., A 
CM-3 

1014 81- IV -0.4 - 10' 16 x 10-3 -060 
3- 10` 1.1 - 10" -2 3- 10'« 2.9 - 10'3 -0 60 
loýI 1-0-10" -3.5-10'* 28910'* -0.38 
The dimensions for N_, and x, are cm -I and cm. gespectively. 
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vation, but some reservations on its value when applied to 
shallow junctions in high resistivity materal arc apparent. 

The results of Figs. 6,7 and 8 show that. for the normal 
range of surface charge densities, it is possible to identify 
certain values for N,,,, and xj for which breakdown is con- 
fined to the bulk, regardless of the precise density of 
surface charge present. However, for medium- to high- 
voltage devices the appropriate ranges become very 
rcstrictive and require progressively deeper junctions. The 
prospect of alleviating this difficulty by the use of field 
plates to control the influence of surface charge on the 
breakdown location has also been investigated. The pre- 
vious structure was modified by the addition of field plates 
connected to the p" and n" diffusions and extended across 
the p- rcsurf layer for a distance of 150 pm over the I 14m 
oxide layer. The consequences of these additions on the 
breakdown voltage for a device with substrate doping of 
10" cm-I and surface charge density N, =5x 10" 
charges/cm 2 are shown in Fig. 9. The voltage correspond- 
ing to N,,, i =- 10" cm -' provides the breakdown of a 

parallel plane breakdown voltage (1430V) 

1ý40- --- --, 
PT. --, 4--l t-. -g, - ni YVI - 

-1 05 io is 20 
epi -dop4ng concentmbon Nvol x 104. crn-3 

Fig. 9 Breakdown roltaile against impurit 
'r concentration in the p- epi- 

taxial resurflayeF, illustrating theeffect on thebreakdo%n roliageofaddinq 
field plates to the basic structure shown in Fig. 2 

101, m. N_- 10"Cm-'. N. -S x 10"cm"' 
ithoul field plate 

with field plate 

planar diode in the absence of a resurf layer. Although the 
field plates by themselves make a significant contribution 
towards raising the planar breakdown %oltagc. it is still 
well below that made possible by the addition of a resurf 
layer of appropriate specification. The field plates raise the 
voltage when breakdown is located near the p* diffusion, 
but an improvement when located at the n' diffusion only 
becomes apparent with shallower junctions than that 
shown in Fig. 9. The effect of the field plates is summarised 
in Fig. 10 where the range of N, 

P, values that ensure bulk 

.7 
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U 

0 

z 
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\N.,,, (min) 
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Fig. 10 Vpper and loner liminfin, Ný that emure bulk brtakdt)%-"fi, r 
a re%urj struc(ure willifield plares. depth 
N, - Oand 3x 10" cm'*. Sý - 10'4 cm-'. d,, - xj 
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breakdown have been plotted as a function of x; '. The 
field plates are particularly effective in shallow-diffused, 
high-voltage resurf structures as a means of ensuring bulk 
breakdown despite the presence of a wide range of surface 
charge densities. 

The improvement in breakdo%%n voltage that can be 
achieved by the addition of an optimally designed resurf 
layer is shown in Fig. 11, and may be compared with that 
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Fig. 11 Normalised li"akdawn roliage against normalised Junction 
depthfi)r a" unprotected planar junction and an opfuniced "surfstructure 
Al%o included for compariwn are the correbtionding data for field ring turuclureL 
The multiple ring data were prewnted by Brieger co &1 [6] from an analytical solu. 
tion which has a limited validity range of x. It 

. ratios 
(i) Triple field ring (Brieger el a[ (611 
(it) Double- field : r. g (broeper el al (611 
jiul'Rewrr laye- 
livI Single lield ring lAdler et al (5)) 
(%I Planar junction 
0 N. -I. to,, cm 
A N. -3.10" cm-' 
TN. -I. 10" cm -, 

obtained using both single and multiple field limiting rings. 
The multiple ring data has been calculated using the 
appropriate design guidelines established by Brieger et A 
[6], the validity of which arc limited to the range xjAv,, 
shown. The rcsurf technique is able to achieve breakdown 
voltages that compare favourably with those obtained 
using ring structures. However. a disadvantage or ring 
structures not apparent in Fig. II is the sensitivity of the 
design to surface charge density. the compensation for 
which requires a reduction in ring spacing and an increase 
in the number of rings. A computer solution for the single 
ring structure was undertaken to demonstrate the effect 
and a typical example is shown in Fig. 12. The upper 
graph on the left-hand side of the Figure shows the break. 
down voltage as a function of junction to ring spacing for 
a 30 lim diffused junction in the absence of surface charge. 
The optimum spacing of 37 lim is critical and produces a 
peak breakdown voltage that represents little more than 
70"% of the plane parallel voltage. The addition of surface 
charge reduces the breakdown voltage achieved at that 
ring spacing to such an extent that for N. -5x 10" 
chargcs/cm', the ring has little beneficial effect. A 
reduction in junction to ring spacing down to 26 pm is 
required to restore an optimum design, but the breakdown 
voltage remains significiantly reduced. These results may 
be contrasted with the behaviour of an identical junction 
protected by the rcsurf technique for the same variation or 
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surface charge, shown on the right hand side of Fig. 12. 
Breakdown voltages greater than 95% of BV, p can be 
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Fig. 12 Breakdomi roltagefor a planar diode with a singlefield luniting 
ring compared to that Of the same diode emploYing a resurf layer. as a 
fioiction (! / ring separation and resurf layer doping concentration, respec- 
tively 
S. -0 and 5x 10" crn--. V_ - 10" cm-, v, - 30 pm 

achieved with and without surface charge, provided that 
appropriate adjustments are made to the doping level of 
the resurf layer. Even in the absence of any such adjust- 
ment, the breakdown voltage remains well above the best 
that can be achieved with a single ring system. 

Conclusions 

The results of a 2-dimensional numerical analysis of p*n 
diffused diode structures with resurf protection have been 
presented. The allowed tolerance in the rcsurf layer doping 
concentration that ensures bulk breakdown has been 
obtained over a range of junction depths, and the conse- 
quences of surface charge quantified. The work has shown 
that certain combinations of values for the resurf doping 
concentration and depth result in bulk breakdown for a 
wide range of surface charge densities. However, a certain 
minimum junction depth is required that becomes particu- 
larly restrictive in medium- to high-voltage structures. This 
problem can be eased by the use or field plates that also 
serve to stabilise charge migration over the surface. A brief 

comparison with field limiting ring structures applied 
under similar circumstances demonstrates the superiority 
of the resurf technique. particularly in the presence of 
surface charge. 
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Optimisation of VDMOS power transistors for 
minimum on-state resistance 

J. T. Davies 
P. Walker 
K. I. Nuttall 

Indexing terms: Transistors. Optimisation, kfetal-oxide-semiconductor structures 

Abstract: A 2-dimensional numerical simulation 
program has been applied to the power VDMOS 
structure to determine design guidelines for 
minimum specific on-state resistance subject to a 
given breakdown voltage requirement. The entire 
cell has been modelled to take full account of con- 
tributions from the inversion and accumulation 
layers as well as the effect of cell spacing on the 
breakdown voltage. Optimised cell width, epi- 
taxial thickness and doping concentration are pre- 
sented for a range of breakdown voltages. The 
results show that the optimum body diffusion 
spacing increases with the breakdown voltage 
rating up to approximately 400 V, giving an 
approximately linear relationship between the on- 
state resistance-area product and breakdown 
voltage for a constant body width of 15 um. 

Introduction 

The on-statc resistance of the VDMOS transistor is its 
most serious limitation when assessed against the per- 
formancc offered by a bipolar transistor of comparable 
voltage rating. It is of special concern in low-frcqucncy 
(<20 kHz) power applications. for which the on-state 
losses become dominant. The desire to minimisc these 
losses has led to several previous studies [1-4) that have 
identified three principal contributions to the total resist- 
ance, all of which are dependent upon the bias conditions 
(Fig. 1). The first component, the inversion channel resist- 
ance, is sensitive to the gate voltage. The second, the 
surface accumulation layer resistance, is dependent on 
both the gate and drain voltages, and the third, the drain 
resistance, is affected by the drain voltage through para- 
sitic JFET action produced by the body diffusions. To 
minimise the effect of the bias conditions and allow an 
assessment of the basic cell design, it is normal to evalu- 
ate and compare the minimum resistance produced under 
conditions of very low drain voltage and high gate 
voltage. Even under these conditions. it has been found 
that the channel and accumulation layer resistances rep- 
resent a significant proportion of the total resistance in 
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Fig. I Cross-section of the, VDAfOS transistor 

devices designed for low voltage applications (< 150 V). 
In contrast, high-voltage devices are dominated by the 
parasitic resistance of the drain. 

The earlier work has ranged from an analytical 
approach [1] through to a 2-dimensional numerical 
analysis co: -, fined to the drain region [4,7). Although this 
earlier worK produces a valuable insight into the origin 
and relative magnitude of the various components com- 
prising the total resistance, much of it has been con- 
cerned with non-optimised devices. Tamar et at. (2] 
performed a 2-dimensional numerical analysis of both 
breakdown voltage and on-state resistance for VDMOS. 
VMOS and UMOS devices with breakdown voltages of 
100,550 and 1000 V. However, the effect of the surface 
accumulation layer on the current distribution in the 
drain region was ignored in the VDMOS structure. 
which has been shown to be in error [3]. The main value 
of the work, was in the comparison between the on-state 
resistances of the three types of structure studied, 
although it is noted that the cell widths used were chosen 
on an apparently arbitrary basis and no attempt was 
made to optimise each structure in this respect. Byrne 
and Board [3] have adopted a more satisfactory 
approach, but the effect of cell halfwidth on breakdown 
voltage was neglected. Their choices of epitaxial layer 
thickness and doping concentrations were based on the 
specifications given by Tamar er aL. which relate to a 
constant nonoptimised cell spacing. In their later work 
(4] they adopted values based on the planar breakdown 
voltage with a correction for gate overlap effects. but 
gave little guidance on the optimum design for different 
breakdown voltages. A still later contribution (7] identi- 
fied the importance of this effect, and presented an opti- 
mised design for a breakdown voltage of 1000 V. but 
again based on a simplified model with the solution con- 
fined to the drain region. 
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This uork is concerned with the medium %oltaize 
ran ze o% er %% hich all conducting regions of the de% ice c; n 
be expected to contribute to the on-state resistance. A full 
solution of the entire cell has therefore been used to 
pro%ide a more rigorous assessment of the optimum 
structure in the voltage range where cell spacing is 
important. Full account is taken of cell width, cpitaxial 
laýcr thickness and resistivity on both the on-state resist- 
ance and breakdown voltage so that the true optimum 
structure is identified for a range of breakdown voltages. 
Design guidelines are provided for the appropriate cell 
spacing and epitaxial layer specifications, although in 
practice the breakdown voltage may be established by an 
additional diffusion through the central portion of the 
body diffusion. This prevents lateral body current from 
activating the parasitic npn transistor produced by the 
source, body and drain which would otherwise reduce the 
breakdown voltage to its BV,. value. An appropriate 
design procedure in this case would be to optimise the 
device first without the additional diffusion, but for a 
slightly higher breakdown voltage than ultimately 
required, and to subsequently add the controlling diffu- 
sion to produce the desired breakdown voltage. In this 
way a properly optimised structure should result with the 
guarantee of breakdown in the plane part of the junction. 
The work assumes that appropriate field termination 
measures are taken to prevent premature breakdown at 
the edges of the device. 

The optimisation procedure adopted here is similar to 
that of Tamar et aL except that cell width has been 
included as a variable and the results obtained from a 
more comprehensive numerical treatment of the device. 
Specific resistance values have been calculated on the 
assumption of a linear cell geometry. The geometric 
advantages of cellular designs will produce lower values. 

Results and discussion 

The analysis is based on a 5-point finite difference com- 
puter program that solved both the Poisson and electron 
current continuity equations for the entire device. The 
grid was selectively refined in critical areas to ensure 
computational accuracy. Particular attention was neccs- 
sary in the region of the surface inversion and accumula- 
tion layers. The breakdown voltages were obtained using 
the ionisation coefficients presented by Van Overstraeten 
and DeMan [5]. and surface mobilities from results 
obtained by Sun and Plummer [6]. Device symmetry 
allows the analysis to be confined to the half cell shown 
in Fig. 2, which also defines the terms used here. 

The simulation was first verified by a comparison with 
measurements obtained on nominal 30 V and 90 V 
devices (Fig. 3), the specification is included in Table 1. 

As the on-state resistance of Io%% voltage dc%ices includes 
a significant component due to the surface accumulation 
and inversion layers. this comparison represents a more 
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Fig. 3 On-state resistance as a function of gare voltage for two 
VDMOS transistors usedfor confirmation ofthe computer simulation 
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-90 "I 
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Table 1: Device parameters 
30 V device 90 V device 

x2f. gm 11.0 15.5 
N�. cm-3 11.5xIoll, 2.2x10"' 
Gi. pm 13.65 14.65 
Xiav - UM 4.82 5.4 
xisL., um 2.64 3.57 
xis, p - 9m 1.55 
XJSL., UM 1.32 
X... nm 89 
X.., UM 7.4 
gate width. cm 3.76 

comprehensive test of the model than would be obtained 
on higher voltage structures in which the resistance is 
dominated by that of the drain region. The on-state 
resistances shown in Fig. 3 are the asymptotic values 
obtained as the drain voltage approaches zero and 
demonstrate that the contribution from the surface layers 
persist to high gate voltages. In this work, as in others, 
the representative limiting on-state resistance is taken to 
be that obtained at V,, - VT - 15 V. The results also 
illustrate the strong dependence of on-state resistance on 
the drain doping level, which becomes even more pro- 
nounced in highcr-voltage devices. This is attributed to 
the increased resistance of the lightly doped drain, but 
with a compensatory effect due to current spreading from 
the surface accumulation layer, which has been shown to 
take place over a longer distance in high-resistivity 
material [4]. 

The foregoing illustrates the problem or simulta- 
neously achieving low forward voltage drop and a signifi- 
cant reverse voltage capability in VDMOS structures. 
Apart form considerations relating to the epitaxial layer 
specification, the resistance of a VDMOS transistor cell 
can be reduced by increasing the separation between the 
body diffusions. However, this increases the width of the 
cell and unless the resistance is reduced by proportion- 
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Fig. 2 lialf-cell cross-section used in the simulation program 
The vertical edges mark lines of symmetry in the full transistor cell. 



ately more than the device area increases, the resistance 
per unit area will increase. At very small body spacings. 
the current from the surface inversion layer is injected 
approximately uniformly into the drain material by the 
accumulation layer (Fig. 1), and the resistance varies 
approximately inversely with the body separation. For a 
fixed bod) diffusion width, the cell resistance therefore 
varies much faster than the rate at which the total cell 
area changes and consequently the on-statc resistance- 
area product falls as the cell width is increased. Howe%er, 
at larger separations the rate at which the active area 
between the body diffusions increases starts to slow rela- 
tive to the total cell area. Also the accumulation laver 
eventually becomes unable to maintain a uniform inj*ec- 
tion into the drain as its length increases so that still less 
benefit is to be obtained by extending the cell width 
further. The resistance per unit area therefore passed 
through a minimum at an optimum cell width and then 
begins to increase. The rate at which current is lost from 
the accumulation layer is greater for a high conductivity 
drain and thus the effective 'injection distance' is shorter. 
Consequently its effects become noticeable at smaller cell 
widths in low breakdown voltage devices and the 
optimum cell width is correspondingly smaller. 

Because of the effects described above and also the 
interaction that takes place between the body depletion 
layers at high voltages, both the breakdown voltage and 
on-state resistance will, in general, be functions of gate 
%idth, drain cpitaxial layer thickness and resistivity. The 
requirement is therefore to choose the combination of 
these three parameters that produces the lowest possible 
on-state resistance-area product, and at the same time 
achieving some target breakdown voltage. To satisfy this 
requirement, contours of constant breakdown voltage 
were first produced by variation of the drain epitaxial 
layer thickness over a range of epitaxial layer doping 
levels, with gate width as an incremented parameter. 
Values of on-state resistance were then calculated at a 
number of points along the constant breakdown voltage 
contours. The calculations were performed using the 2- 
dimensional model described above, incorporating 
Gaussian impurity profiles for the source and body diffu- 
sions. For a given process schedule, a change of drain 
doping also affects the net body doping concentration 
and diffusion depth. An allowance was made for these 
effects based on measurements taken on sectioned 
VDMOS devices. A factor of 0.7 was also found to be 
appropriate for the ratio of lateral/vertical diffusions. 
These and other details of the geometry chosen for simu- 
lation are summarised in Table 2. 

Table 2: Device parameters used In the computer simula- 
tions 

XjM,, w 76 NL*,, *", um (N., in cm-3) 
XJ111týXJ810 'XJSL Xisv 1 0.7 
X.. - 1000 A 
X, - 7.5jum 
Vr -15V 
V -I mv 
Gaussian impurity profiles were assumed for both body and source 
diffusions. 

A constant body diffusion width or 15 pm has been 
chosen, based on that of the test devices used to verify the 
model. It is very desirable to reduce this dimension to a 
minimum to make most use of the available chip area, 
consistent with an acceptable device yield. The benefits to 
be gained in this respect are greatest for low-voltage 

dc%ices on account of the thinner optimum epitaxial 
laýers used, which results in less efficient use of the 
material under the body diffusion. Tile optimisation of 
the design with respect to this paraineter is based on 
technological considerations and is not considered an 
adjustable parameter for the purposes of this %%ork. 

Results have been obtained for deNices with break- 
do%%n %oltages of 100.175.260and 350 V. of which Fig. 4 
is representative. In this diagram. the solid lines represent 
contours of constant breakdown voltage and the discrete 
numbered points the appropriate on-state resistance-area 
products. For the purposes of presentation. values have 
only been assigned to those points that identify the 
minimum resistance location. At low values of doping 
concentration all the curves for a given breakdown 
voltage tend to converge and the voltage is determined 
solely by the thickness of the epitaxial layer. This arises 
because under these conditions the layer is fully depleted 
and breakdown occurs in the plane part of the junction 
beneath the body diffusion. As the doping level increases, 
the location of breakdown begins to move towards the 
curved portion of the body diffusion and the breakdown 
voltage becomes independent of the drain epitaxial layer 
thickness. The proximity of the adjacent body diffusions 
then becomes important. For small cell spacings, the 
depletion layers interact strongly and reduce the effect of 
junction curvature. Higher drain doping levels can then 
be used to achieve the same breakdown voltage. As the 
cell spacing is increased, the interaction reduces and 
eventually becomes insignificant. Breakdown is then 
determined by the curvature or the body diffusions and 
causes the constant breakdown voltage contours to 
bunch together. 

The results for on-state resistance show that there is 
an optimum combination of cell width, epitaxial layer 
thickness and cpitaxial layer doping concentration which 
produces the lowest on-state resistancf ! or each break- 
down volta? ---. The minimum resib--! tv-arcA products 
and corresponding values for GL. .. 's, and NDD are 
plotted in Figs. 5 and 6. Tolerances have been drawn on 
the results for GL that correspond to the increments used 
for this parameter in the calculations. It is clear from 
these results that for design voltages of less than 400 V, 
the optimum cell size (GL) is different for each breakdown 
voltage, the reduction being more significant than that 
suggested by Byrne and Board, and a feature that was 
omitted entirely from Tamer's work. The results of Fig. 5 
show that the 5 prn body spacing hair width used by 
Tamar is appropriate for a 100 V device. (corresponding 
to an approximate GL value of 7.5 + 3.1 +5- 15.6 um 
for the cell geometry modelled here), but higher voltages 
require larger values. A true optimum can therefore only 
be found using a procedure that takes into account all of 
the dependent variables. 

There is some evidence that the optimum GL value 
tends to saturate with increasing breakdown voltage. 
Inspection of Fig. 5 and comparison with the results of 
earlier work concerned with higher voltages suggests that 
a GL value of 23 prn (corresponding to a body spacing of 
approximately 22 um), is appropriate for devices with 
breakdown voltage rating in excess of 400 V. The value 
compares favourably with that deduced as optimum by 
Byrne and Board [4] for a 400 V device, but is larger 
than that indicated by the later work relating to a 1000 V 
device [7]. Fortunately, the resistance is insensitive to 
body spacing in this higher voltage range, so that such 
discrepancies should have little practical importance. 
This feature is convenient, however. because it allows a 
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single mask set to be used to provide a %kide range of The obser%ed dependence of tile optimum Xs, and 
breakdown voltages. Different breakdown voltages can NI)I) on drain voltage can be represented by 
then be accommodated simply by appropriate adjust- 
ments to the values of Xs, and N, D, 

Xs, = 0.064 (B V-1; ýd, I+ XjB& (14m) 
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and 
N 

DD =I 0'8(B "' - I"bdy) -"' (CM - 3) 

%khere li,. d, is the voltage contained within the bod%- dif- 
fusion. Although this varies slightly with drain doping. a 
constant value of 45 V allows a good agreement %%ith the 
results of this work. These relationships between break- 
down voltage. NDD and Xs, suggest an absolute limit to 
the resistance-area product given by: 

R..., 
_ = 3.0 x 10 - 8(B V-V 

2.3 x 10-6 (BV - 
llbody)"" 

based on a constant body diffusion depth (Xj,,,. ) of 5 pm. 
and continuous top and bottom contacts to a region with 
the optimised thickness and doping concentration X, 
and NDV- In practice, the finite source and body dimen- 
sions limit the available rcsistance-area product to higher 
values. The relationship is included in Fig. 6 and a com- 
parison with the calculated values for R... _ proves a 
measure for the chip area use efficiency. In practice the 
geometric advantages of cellular, rather than linear, 
geometry devices leads to improvements in this compari- 
son. 

3 Conclusions 

The results of a 2-dimensional analysis of the VDMOS 
transistor show that the interbody spacing of an opti- 

mised structure decreases for design breakdown voltages 
less than 400 V. At higher voltages, a constant value 
appears to be appropriate so that only the epitaxial layer 
specification needs to be adjusted to accommodate a 
range of breakdown voltages. Over the range 150-400 V, 
the minimum R.. _,. product that can be achieved with a 
constant body width of 15 lim has been found to increase 
approximately linearly with the device breakdown 
voltage rating. 

References 

I SUN. SC, and PLUMMER. J D.: 'Modeling or the on-resistance or 
LDMOS, VDMOS and VMOS power transistors'. IEEE Trans, 
1980. ED-27. (2), pp. 356-367 

2 TAMAR. A. A, RAUCH, K_ and MOLL. J. L.: ibid, 1983. ED-30, (1). 
pp. 73-76 

3 BYRNE, DJ., and BOARD. K.: 'Manimisation of on-resistance or 
VDMOS power FETC, 1983. Electron. Lett, 19. (141. pp. 519-521 

4 BOARD, K, BYRNE. DJ, and TOWERS, M S.: IEEE Trans, 1984. 
ED-31, (IL pp. 75-80 

5 VAN OVERSTRAETEN, R. and DE MAN, H.: *Measurement of 
the ionization rates in diffused silicon p-n junctions'. Solid-State Elec. 
tron, 1970,12% p. 583-608 

6 SUN, S. C, and PLUMMER, J. D.: *Electran mobility in inversion 
and accumulation layers on thermally oxidised silicon surfaces. 
IEEE Trans, 1980, ED-27. (8), pp. 1497-1508 

7 DARWISH. M. N. and BOARD. K.: ibid., 1984, ED-31,021. pp. 
1769-1773 

IEE PROCEEDINGS, Vol. 134. P1. I. NO. J. JUNE 1987 91 


