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ABSTRACT 

The present research explores the use of Shannon's (informational) 

entropy measure and Jaynes' maximum entropy criterion in the solution 

of constrained optimization problems. At present the methods of 

mathematical programming contain no information-theoretic basis. They 

all view the optimization problems in terms of a topological domain 

defined deterministically by function hypersurfaces. Information 

theory appears to be incompatible with this as it is essentially 

concerned with probabilities. 

In contrast with the existing optimization methods, we simulate an 

optimization problem as a statistical thermodynamic system. Thus an 

optimizing process may then be interpreted as transitions of the system 

to a sequence of equilibrium states which are characterized by certain 

entropy maxima depending upon a "temperature" parameter. 

Several ways of using entropy in the optimization context are 

investigated. Some entropy-based methods are developed. In particular 

a primal function for constrained optimization is derived which has some 

of the characteristics of the norm of a vector and may be a basis for 

developing new and radically different algorithms. The present approach 

is similar but superior to the least pth method for minimax 

optimization. 
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A class of structural optimization problems is chosen to provide 

example problems. Computational results demonstrate that the 

entropy-based algorithm proposed in this work is efficient and reliable. 

The following parts of the present work are original: 

1. Two ways of deriving the dual of the maximum entropy problem are 

presented, the first using classical Lagrangean saddle-point 

criteria, and the second using the well-established duality theory 

of geometric programming. These dual forms yield additional insight 

into the nature of entropic processes and clarify some of 

ambiguities in the literature. They also afford a simple means of 

calculating the least biased probabilities using only standard 

unconstrained minimization algorithms. 

2. The framework of a surrogate constraint approach is utilized to 

simulate an optimization problem as a statistical thermodynamic 

system. The system approaches spontaneously an equilibrium state 

which is characterized by a certain maximum entropy of the system 

associated with a specified "temperature". Therefore an entropy 

maximization problem is formulated to estimate probabilities, i.e., 

surrogate multipliers, of the system being in each micro-state. 

Another approach to estimating these multipliers is also proposed 

which adds a term related to the multiplier entropy to a surrogate 

dual. Then a dual iterative procedure is derived using Lagrangean 

stationarity conditions for the modified surrogate dual problem. 

It is proved that the entropy-augmented dual approach is equivalent 

to the entropy maximization approach. 
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3. The entropy-augmented approach is further developed to derive a 

primal function for general constrained optimization which has some 

of the characteristics of the pth norm of a vector and approaches 

the uniform norm as the parameter p tends to infinity. It is also 

proved by means of the arithmetic-geometric inequality that this 

function actually produces an upper bound on the minimax Lagrangean. 

From a computational viewpoint, this primal function may be a basis 

for developing new and radically different algorithms. 

4. An explicit dual for a class of structural optimization problems 

is derived through the surrogate approach and it turns out to be 

the same as that by Temp1eman[91]. An entropy-based algorithm is 

presented to solve the optimum design problem. A remarkable feature 

of the proposed algorithm is that it retains all of the original 

constraints in the optimization procedure and increases the 

computational efforts only marginally. The iterations involve only 

algebraic operations so that the algorithm is very simple and easy 

to program. The results are compared with those obtained by other 

methods and show that the present algorithm is very effective and 

reliable. 
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NOTATIONS 

Cl - continuous and once differentiable functions 

E[.] - expectation operator 

En - n-dimensional Euclidean space 

exp - the exponent function 

GP - geometric programming 

Hm - the limit 

tn - the natural logarithmic function 

LP - linear programming 

Max - maximize 

MEC - Maximum Entropy Criterion 

MED - Maximum Entropy (probability) Distribution 

Min - minimize 

NLP nonlinear programming 

p.d. - probability distribution 

r.v. - random variable 

s.t. - subject to 

w.r.t. - with respect to 

Vf - gradient of the function f 

v 



CONTENTS 

ABSTRACT 

ACKNOWLEDGEMENTS 

NOTATIONS 

Chapter 1 

Summary 

Introduction 

1.1 

1.2 

Introduction '. 

Constrained Optimization Theory 

1.2.1 Convexity 

1. 2.2 

1. 2.3 

Lagrange ~ultip1iers and'Kuhn-Tucker Conditions 

Saddle Point and Duality 

1.3 Constrained Optimizati6n ~ethods 

1. 3.1 

1. 3.2 

1. 3. 3 

1. 3.4 

1.4 

1.4.1 

1. 4. 2 

1.4.3 

1.5 

Primal Hethods 

Penalty Function ~ethods 

Lagrange ~lethods 

Multiplier ~ethods 

Surrogate Approach to Constrained Optimization 

Some Relationships between Problems (P) and (S) 

Surrogate Solution Procedure 

Surrogate Duality 

Motivations and Specifications of the Present Research 

iv 

v 

1 

1 

1 

4 

5 

8 

13 

16 

18 

22 

25 

26 

28 

29 

31 

33 

35 

vi 



1.5.1 Motivations of the Present Work 

1.5.2 Specifications of the Present Work 

Chapter 2 Entropy and The Maximum Entropy Criterion 

Summary 

Introduction 2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

Definitions and Properties of Informational Entropy 

The Maximum Entropy Criterion (HEC) 

Interpretation of the Maximum Entropy Criterion 

Some Applications of the M&ximum Entropy Criterion 

Applications of Entropy to Optimization Problems 

Conclusions and Relevance to the Present Work 

Chapter 3 

Summary 

Duals of the Maximum Entropy Problem 

3.1 Introduction 

3.2 Dual Forms of the Maximum Entropy Problem (HEC) 

3.2.1 Lagrangean Dual Formulation 

3.2.2 Geometric Programming Dual Formulation 

3.3 Interpretation of the Entropy Duals 

3.4 Computational Application of the Entropy Duals 

3.5 Dual Forms for the Continuous Case 

3.6 Conclusions 

. . . . 

Chapter 4 Entropy in Optimization: Dual Methods . . . . 
Summary 

4.1 Introduction 

36 

38 

44 

44 

45 

48 

51 

56 

57 

60 

65 

68 

68 

68 

70 

70 

71 

74 

76 

80 

81 

82 

82 

83 

vii 



4.2 Statistical Thermodynamic Simulation of Optimization 

4.3 An Entropy Maximization Approach to Optimization 

4.4 An Entropy Augmentation Approach to Optimization 

4.5 Equivalence Relationship between Eqs.(4.11) and 

4.6 Conclusions . 

Chapter 5 

Summary 

Entropy in Optimization: Primal Methods 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

Introduction 

Primal Function of Constraiped Optimization 

Some Important Properties of the Primal Function 

Development of Numerical Algorithms 

Discussions 

Conclusions 

(4.31) 

Chap,ter 6 

Summary 

Entropy Methods' for Structural Optimization 

6.1 

6.2 

6.3 

6.4 

6.5 

Introduction 

Primal-Dual Method for Structural Optimization 

Primal-Dual Algorithm for Structural Optimization 

Numerical Examples 

Surrogate Dual for Structural Optimization 

6.5.1 Lagrangean Dual Formulation 

85 

89 

94 

100 

102 

103 

103 

104 

106 

111 

118 

122 

125 

128 

128 

130 

135 

139 

142 

145 

146 

6.5.2 Geometric Programming Dual Formulation 147 

6.6 Entropy-Based Dual Method for Structural Optimization 150 

6.7 Conclusions 154 

viii 



Chapter 7 Conclusions and Recommendations for Future Work 163 

7.1 Introduction 163 

7.2 Conclusions 

7.3 Recommendations for Future Work 

REFERENCES 

APPENDIX A 

APPENDIX B 

Appendix Bl 

Appendix B2 

Programming 

GEOMETRIC PROGRAMMING 

PUBLISHED PAPERS . 

Entropy Duals 

A ~aximum Entropy Approach to Constrained ~on-Linear 

165 

167 

171 

181 

184 

185 

199 

ix 



CHAPTER 1 INTRODUCTION 

SUMMARY 

This chapter introduces some of the basic concepts and important results 

of constrained optimization theory that are frequently used in the 

literature and in this thesis. Also, there is a brief review of the 

existing methods for solving costrained optimization problems which are 

either computationa11y effective or theoretically important. In 

particular, the surrogate constraint approach is given special attention 

due to its close relevance to the present work. 

The present research is motivated by a desire to provide optimization 

with an information-theoretic basis, and thereby to develop new and 

radically different optimization methods. 

1.1 INTRODUCTION 

The solution of an engineering decision-making problem invariably 

requires a compromise among many alternatives. The engineer wishes to 

seek an ideal compromise that satisfies all the limitations and 
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restrictions imposed on the decision problem and is best in some sense, 

such as maximum efficiency, minimum cost, or minimum weight, etc. 

Mathematical optimization techniques together with powerful 

computers enable one to systematically modify the decision towards the 

"optimum". Using this approach, one formulates a complex decision 

problem as the following optimization problem: 

Min 

s.t. 

and/or 

where x = (xl"" ,xn ) 

f(x) 

g/x) ~ 0 

hk(x) = 0 

j=l, ... ,m 

k=l, ... ,£ 

. . En . 1S an-vector 1n represent1ng 

(1.1) 

(1. 2) 

(1. 3) 

adjustable 

parameters, and f(x), gj(x) and hk(x) are real-valued functions of the 

vector x. 

The function f(x) is called the objective function of the problem, 

and the inequalities (1.2) and equalities (1.3) are the constraints 

which represent the restrictions imposed on the vector x of adjustable 

parameters. 

Any vector x that satisfies all the constraints (1.2) and (1.3) is 

called a feasible point. The set of all the feasible points constitutes 

the feasible region which is sometimes called constraint set. 

~t: 

A point x , which satisfies all the constraints and at which fex) 

attains its minimum, * is called the optimum point, and the pair x and 
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* * f(x ) constitutes an optimum solution where f(x ) represents the optimum 
~'r 

value of the objective fex). If fex )~f(x) holds for all x in the 
,'r 

feasible region, then x is called global optimum point, otherwise it 

is a local optimum point. 

* An inequality constraint g.(x) is said to be active if g.(x )=0 at 
J J 

,'r 
the optimum point x . For a real-world problem, there almost always 

exist several constraints, so that the corresponding problem is 

constrained, linearly or nonlinearly. Throughout this thesis, only 

constrained problems are considered. 

An optimization problem is said to be a linear programming problem 

(LP) if all the problem functions are linear in the variables x., 
1 

otherwise it is a nonlinear programming problem (~LP). The present work 

is mainly concerned with nonlinear programming problems. 

The area of linear programming in the last three decades has achieved 

great success - the most significant development being the simplex 

method by which the solutions of most linear programming problems can 

be systematically obtained in a finite number of iterations. On the 

other hand, there has been no single algorithm devised that can handle 

all non linear problems. The major difficu 1 ties presented in solving 

nonlinear optimization problems arise from the presence of nonlinear 

constraints. Keeping them satisfied involves considerable complexity. 

When inequality constraints are present it is impossible for one to know 

in advance whether an inequality constraint will be active or not at 
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the optimum. This has left the area of nonlinear optimization in an 

unsatisfactory state and it is, therefore, an active research field. 

One of the objectives of the present work is to look at non1inear 

programming at a different angle from previous work and to develop new, 

maybe more efficient, algorithms. 

The organization of this chapter is as follows. Section 1.2 

introduces some important concepts and results of constrained 

optimization theory such as convexity, Lagrange multipliers, 

Kuhn-Tucker conditions, saddle point, duality, etc.; Section 1.3 gives 

a brief review of the existing methods for solving constrained 

optimization problems; Section 1.4 examines a special approach, the 

so-called surrogate approach, which has close links to the present 

research. Motivations and specifications of the present work conclude 

the chapter. 

1.2 CONSTRAINED OPTIMIZATION THEORY 

Several concepts and results such as convexity, Lagrange multipliers, 

Kuhn-Tucker conditions, saddle point and duality are closely related 

and are very important in the development of constrained optimization 

from both theoretical and computational viewpoints. They are introduced 
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below without proofs which can be found elsewhere (Refs. [34], [39], 

[68], [71]). 

1.2.1 CONVEXITY 

A set is said to be convex if, given any two points xl and x
2 

in the 

set, the point X=AX1+(1-A)X
2 

is also in the set where A is a scalar, 

O~A~1. 

This definition can be interpreted geometrically as stating that a 

set is convex if, given any two points in the set, every point on the 

line segment joining these two points is also in the set. 

illustrated in Fig.1.1. 

This is 

The following proposition shows that certain set operations preserve 

convexity. 

Proposition 1.1: convex sets in En satisfy the following relations 

1. If C is a convex set and ~ is a real number, the set ~C is 

convex. 

2. If C and D are convex, then the set C+D is convex. 

3. The intersection of any collection of convex sets is convex. 

5 



A function f(x) is said to be a convex function if for all xl' x2 

in the (convex) domain of definition of f(x) and for all A (O~A~l), the 

following inequality 

0.4) 

holds. A concave function f(x) is defined in 0.4) if the relation "~" 

is replaced by "~". 

A linear function is both convex and concave. 

combination of convex functions is also convex. 

A positive linear 

The definition of a convex function can also be interpreted 

geometrically. A function f(x) is said to be convex if the line segment 

drawn between any two points on the graph of the function never lies 

below the graph, and concave if the line segment never lies above the 

graph. The convexity of functions is illustrated in Fig.l.2. 

Occasionally, quasi-convexity is used. A function f(x) is said to 

be quasi-convex in a convex set if for any two points xl and x
2 

in the 

set, the following relation 

(1.5) 

holds, where the point x is on the line segment joining the given points, 

i.e., x=Ax l +(1-A)x2 (O~A~l). A quasi-concave function f(x) is defined 

if the relation (1.5) is replaced by f(x)~min(f(xl),f(x2))' 
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A convex programming problem is one of minimizing a convex function 

(or maximizing a concave function) over a convex constraint set. For a 

convex programming problem, any local optimum is a global optimum. This 

is a desirable property from which many good methods are derived. 

The following proposition together with Proposition 1.1 can help 

identify whether or not a constraint set is convex. 

Proposition 1.2: If g(x) is convex, then the set R={x: g(x)~b} is convex 

for all scalars b. 

As a consequence of Propositions 1.1 and 1.2, the inequality 

constrained problem defined by (1.1) and (1.2), referred to as problem 

(P) later on, is a convex programming provided that the functions f(x) 

and gj(x), j=l, ... ,m, are all convex. This is true because: (1) each 

of the sets R.={x: g.(x)~O} is convex by Proposition 1.2, and (2) the 
J J 

constraint set R is the intersection of the sets R
j 

and is convex by 

Proposition 1.1(3). 

Although convexity is desirable, many real-world problems turn out 

to be nonconvex. In addition, there is no simple way to test a nonlinear 

problem for convexity, since there is no simple way to test a nonlinear 

function for this property. However convexity plays an important role 

in the development of non linear optimization methods. When convexity 

is assumed, many significant results have been derived. Often these 

results can give insight into the properties of more general problems. 

Sometimes, such results may be carried over directly to nonconvex 
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problems. Here the convexity assumption has given the researcher a basis 

upon which to derive the method, and the method may then be applicable 

to more general situations. Convexity thus plays a role in optimization 

theory much the same as that of linearity in mechanics. It is well known 

that many results derived from linear theory are used in nonlinear 

analyses. 

1.2.2 LAGRANGE MULTIPLIERS AND KUHN-TUCKER CONDITIONS 

Lagrange multipliers and the Kuhn-Tucker conditions are closely related 

and are very important in constrained optimization from both theoretical 

and computational viewpoints since they provide means for dealing with 

the constraints and establish criteria for recognizing the optima. 

Lagrange multipliers 

The equality constrained problem 

(E) : 

Hin 

s.t. k=l, ... ,£ 

(1.1) 

0.3) 
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may be indirectly solved by constructing a Lagrangean function: 

£ 
L(x,p) = fex) + ! Pkhkex) (1. 6) 

k=1 

where Pk ek=1, ... ,£) are called the Lagrange multipliers. 

The Lagrange multiplier of each constraint measures the rate of 

changes in the objective function, consequent upon changes in that 

constraint function. This information can be valuable in that it 

indicates how sensitive the objective function is to changes in the 

different constraints. 

It can be proved that the solution of problem eE) corresponds to a 

stationary point of the Lagrangean Cl. 6). Necessary conditions for 

stationarity are: 

t 
aL(x,'\.I)/ax. = afex)/axi + L '\.Ikeahkex)/axi) = 0 i=l, ... ,n (1.7) 

1 

k=l 

and 

aL(x,'\.I)/a'\.lk = hk(x) = 0 k=l, ... , t (1. 8) 

which reduce the problem (E) to solving n+£ simultaneous equations in 

the n+£ variables xi (i=1, ... ,n) and '\.Ik (k=l, ... ,£). 

However, it is not easy to solve the system of equations e1.7) and 

(1.8) for the following reasons. First of all, the problem 
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dimensionality is considerably increased since iterations have to be 

carried out simultaneously on x and p. Moreover Eqs.(1.7) and (1.8) are 

usually coupled and nonlinear so that they are hard to solve 

analytically or numerically. Because of this, the Lagrange multiplier 

method is not very useful for solving constrained optimization problems. 

It should also be noted that not all solutions of Eqs.(1.7) and (1.8) 

will be constrained minima, since these conditions also pertain to 

constrained maxima and saddle points. 

Kuhn-Tucker Conditions 

The most important theoretical results in the field of nonlinear 

optimization are the Kuhn-Tucker conditions [67] that establish the 

necessary conditions for optimality of the inequality constrained 

optimization problems. These conditions must be satisfied at any 

constrained optimum, local or global, of any linear and most nonlinear 

optimization problems. They form the basis for the development of many 

computational algorithms. In addition, some criteria for stopping many 

algorithms, i.e., for recognizing when a local constrained optimum has 

been achieved, are derived directly from them. 

The geometrical and analytical statements of the Kuhn-Tucker 

conditions are described as follows. 
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The Geometrical Statement of the Kuh n-Tucker Conditions: if f and 
,'r 

all g. are differentiable, the necessary conditions for a point x to 
J 

be a constrained minimum of the problem 

(P) 

Min 

s.t. 

,'r 

fex) 

g. ex) ~ 0 
J 

j=l, ... ,m 

(1.1) 

(1. 2) 

are that at x, -'Vf lie within the cone generated by the gradients 

'le 
Vg.(x ) of the active constraints. 

J 

The geometrical significance of these conditions is illustrated in 

Fig.1.3. 

The Kuhn-Tucker conditions are closely related to the classical 

Lagrange multiplier results Eqs.(1.6)-(1.8). By analogy with problem 

(E), a Lagrangean function for problem (P) can be constructed as 

L(x,ll) = f(x) + 
m 
1: 1l. g. ex) 

J J 
j=l 

(1. 9) 

where 1l. are viewed as Lagrange multipliers for the inequality 
J 

constraints g.ex)~O. The corresponding necessary conditions for 
J 

optimality are analytically stated below. 

The Analytical Statement of the Kuhn- Tucker Conditions: * If x is a 

local minimizer of the problem (P) and is also a regular point, then 
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* * * there exist Lagrange multipliers 1.1 such that x , 1.1 satisfy the 

following conditions: 

m 

* * * * * aL(x ,1.1 )/ax.= af(x )/ax.+ t 1.1. (ag.(x )/ax.) = 0 
1 1 J J 1 

i=l, .. ,n 0.10) 

j=l 

-;': 
g. (x 

J 
) ~ 0 j=l, .. ,m 0.11) 

.,: 
1.Ij 

~ 0 j=l, .. ,m (1. 12) 

,,: ,,: 
l.I j g. ex ) = 0 j=l, .. ,m 0.13) 

J 

* where x is said to be a regular point of the constraint set if the 

gradient vectors of the active constraints at x are linearly 

independent[7l]. 

* A point x which satisfies the Kuhn-Tucker conditions is sometimes 

referred to as a K-T point. Eq.(1.13) is referred to as the 

complementarity condition. 

Although the Kuhn-Tucker necessary conditions have great 

significance in constrained optimization theory, they cannot be used 

directly to solve optimization problems. The reasons are similar to 

those noted earlier for stationarity conditions (1.7) and (1.8) of the 

Lagrangean function (1.6). 
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1.2.3 SADDLE POINT AND DUALITY 

Saddle Point 

The Kuhn-Tucker conditions have a restriction on their application which 

is that the objective and constraint functions must be differentiable. 

There are other conditions, again centering around the Lagrangean 

function, which hold even in the absence of differentiability. These 

are the saddle-point criteria and are sufficient for a given point to 

be optimum for almost any optimization problem. 

A point (x' ,}.I') with }.I'~O is said to be a saddle point for the 

Lagrangean L(x,}.I) shown as in (1.9) if it satisfies 

L(x' ,}.I') ~ L(x,}.I') 

L(x' ,~') ~ L(x' ,~) 

for all x 

for all ~~O 

0.14) 

(1. 15) 

That is, x' minimizes L(x,~') over x-space and~' maximizes Lex' ,~) over 

all ~~O. In two variables, L(x,ll) would have the saddle shape with the 

saddle point yielding simultaneous ly a minimum in one variable and a 

maximum in the other. 

The following theorem gives necessary and sufficient conditions for 

a saddle point of L(x,ll). 
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Saddle-Point Theorem: (x' ,'\.1') is a saddle point for L(x,'\.I) if and only 

if 

(a) x' minimizes L(X,'\.I') over x-space (1. 16) 

(b) g. (x ') ~ 0 
J 

j=l, ... ,m (1.17) 

(c) '\.I' ~ 0 j=l, ... ,m (1. 18) 

(d) 1-1. I g. (x' ) = 0 j=l, ... ,m (1.19) 
J J 

Similarity of the saddle-point conditions (1.16)-(1.19) to the 

Kuhn-Tucker conditions (1.10)-(1.13) should be noted. Conditions 

(b)-Cd) are common to both. Condition Ca) replaces the stationarity 

condition (1.10) of LCx, ll) by its minimization. They will be proved 

to be equivalent for convex differentiable programming problems. 

The usefulness of a saddle point is brought out from the fact that 

if (x' ,ll') is a saddle point for L(x,ll), then x' solves the primal 

problem (P). 

Duality 

The concept of duality occurs widely in the optimization literature. 

The aim is to provide an alternative formulation of an optimization 

problem which is more convenient computationally or has some theoretical 

significance. The original problem is referred to as the primal and the 

transformed problem as the dual. Usually the variables in the dual can 
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~'r 
be interpreted as Lagrange multipliers and take the value ~ at the dual 

* solution, where ~ is a multiplier vector associated with a primal 
~'r 

solution x. In this sense the Lagrange multiplier methods might be 

thought of as a dual method. Usually, however, there is also present 

an objective function which has to be optimized. Duality theory of this 

kind is associated with a convex programming problem as the primal, and 

it is important to realize that if the primal problem is not convex then 

the dual problem may well not have a solution from which the primal 

solution can be derived. 

A particular form of dual formulation was proposed by Wolfe[105]. 

It may be stated as 

Wolfe's Dual Problem: 

* If x solves the convex primal problem and is a regular point, and 

~'r * if the objective and constraint functions are in Cl, then x and ~ solve 

the dual problem 

Max 
x,~ 

s. t. V L(x,~) = 0 x 

~ ~ 0 

(1. 20) 

(1.21) 

(1. 22) 

Furthermore the minimum primal and the maximum dual values are equal, 
-;': ~'r ~': 

that is, fex )=L(x ,~ ). 

The nonnegativity condition (1.22) of ~ applies only to problem (P). 
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Wolfe's dual formulation requires the differentiability of the 

objective and constraint functions. An alternative dual formulation that 

does not have the requirement of differentiability and sometimes is 

convenient computationally was proposed by Falk[32]. 

formulation takes the following form: 

Falk's Dual Problem: 

~Iax 

l.l 

s.t. 

d(l.l) = Min L(x,l.l) 
x 

l.l ~ 0 

Falk's dual 

(1.23) 

(1. 24) 

It is easily seen that Wolfe' s dual is related to the Kuhn-Tucker 

conditions while Falk's dual is related to the saddle point conditions. 

Both dual formulations are useful in developing algorithms as they 

enable one to solve a primal problem by means of solving an associated 

dual problem which may be solved more easily than the primal. 

1.3 CONSTRAINED OPTIMIZATION METHODS 

Over the last three decades, there has been a massive body of published 

work on the solution of constrained optimization problems. A 

comprehensive review of all these methods is beyond the scope of this 

thesis and the reader is referred to Refs. [13], [26], [34], [39], [46], 

[68] and [71]. 
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At the current stage of research it is not possible to say definitely 

that one method is entirely preferable or even that the best method has 

yet been found. Nevertheless, it is increasingly recognized that a good 

algorithm should be related to the Lagrangean function in one way or 

the other. 

The existing methods of constrained optimization can be roughly put 

into two categories: (1) primal methods, and (2) transformation methods. 

There are also many methods in each category. We restrict ourselves in 

this section only to those methods which are either computationally 

efficient or theoretically important in the context of the present 

thesis. Included are two methods, the feasible direction method and the 

gradient projection method, from the first category and three methods, 

the penalty function method, the Lagrange method and the multiplier 

method, from the second category. 

A mid-way approach between the primal and transformation methods, 

which is referred to as the surrogate constraint approach, is examined 

in Section 1.4 since it is particularly relevant to the present work. 
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1.3.1 PRIMAL METHODS 

By a primal method of solution we mean a search method that works on 

the original problem directly by searching through the feasible region 

for the optimum point. 

Briefly speaking, the idea is to pick a starting point inside the 

feasible region and to find a direction, termed a usable feasible 

direction, such that: (1) a small move in that direction violates no 

constraint, and (2) the objective function improves in that direction. 

One then moves some distance in this direction, obtaining a new and 

better point. The procedure is repeated until a point is obtained such 

that no usable feasible direction can be found. 

An iterative procedure for this method is shown geometrically in 

Fig.I. 4. The search starts with the point X
O and the usable feasible 

direction sO=-Vf(xo ). If a move along sO is made to minimize f(x) whose 

values are depicted by its contours, then the new point is Xl. 

Proceeding in the negative gradient direction at x 1 violates the 

constraints. There are, however, many directions in which one could 

move at this point, i. e., any direction pointing into the feasible 

region or along a constraint boundary. Among them, the local "best" 

direction s is usually chosen which is that feasible direction along 

which f(x) decreases most rapidly, 1. e. , T along which -s Vf(x) is 

maximized. Geometrically, this is the feas ible direction making the 

smallest angle with -Vf(x) and is the projection of -Vf(x) onto the 

18 



constraint boundary. At the point Xl, this is the vector s 1. The 

farthest point one can move along s 1 is x 2 • Repeating the procedure 

leads to x 3 with -Vf(x 3
). At this point there is no usable feasible 

direction in which case x 3 is a minimum point of f(x) over the feasible 

region. 

It should be noted that the above procedure is devised from 

considering the objective function as a hypersurface and using geometric 

arguments to devise search strategies. The feasible region is a 

topological domain defined deterministically by (constraint) function 

hypersurfaces. These geometric deterministic hypersurfaces play a large 

part in the development of the procedure. Calculated "information" 

(function values, gradients, etc.) is used in a geometrical way to 

search a deterministic topological domain for the optimum point. 

In what follows, two primal methods are examined of which one is 

Zoutendijk's feasible direction method and the other is Rosen's gradient 

projection method. 

Zoutendijk's Feasible Direction Method[107] 

The idea of feasible direction methods is to take steps, through the 

feasible region, of the form 
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0.25) 

where dr is a direction vector, and a r a nonnegative scalar, being 

chosen to minimize the objective function f(x) along the direction dr 

h h i · h h . r+ 1 b f ib 1 Th b I wit t e restr ctlon t at t e pOlnt x e eas e. us a feasi e 

direction method can be considered as a natural extent ion of 

unconstrained descent methods. Each step is the composition of selecting 

a feasible direction, and a constrained line search. For a feasible 

point xr, there can be many feasible directions from which a particular 

feasible direction is chosen in such a way that the objective function 

improves as greatly as possible while keeping the constraints satisfied. 

Zoutendijk proposed determining the feasible direction vector dr by 

means of a linear programming subproblem: 

~Iin 

s.t. 

Vf(xr)dr 

a?d r ~ 0 
J 

j E Ja 

(1. 26) 

0.27) 

r where Ja is the set of indices representing active constraints at x 

and a. is the coefficient vector of the jth active constraint (or its 
J 

linearized form). The linear program produces the locally best feasible 

direction in a sense similar to the steepest descent methods. 
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Rosen's Gradient Projection Method[82,83] 

The gradient projection method is motivated by a desire to implement 

the feasible direction philosophy while not requiring the solution of 

a linear program at each step. Instead of attempting to find the 

direction that leads to the best local improvement while maintaining 

feasibility, one seeks a direction that is perhaps not quite as good 

but is much easier to calculate. 

Rosen's gradient projection method calculates, at a feasible point 

xr , the feasible direction by 

0.28) 

where 

0.29 ) 

where pr represents the projection matrix, and A is the Jacobian matrix 

f h · . r o t e act1ve constra1nts at x . The method requires that the direction 

vector lies in the tangent subspace defined by the active 

constraints. The particular direction vector that is used is the 

projection of the negative gradient -Vf(x
r

) onto the subspace. 

An attractive feature of the primal methods is that they always 

generate a sequence of feasible points corresponding to decreasing 

objective functions. Even when the optimization process terminates 
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before convergence has been achieved, an improved design is generally 

obtained. 

Their main drawback arises from the special treatment of the 

constraints they require, especially for problems with nonlinear 

constraints. Keeping them satisfied is an arduous task that always 

demands a sophisticated algorithm. Consequently, primal methods are 

effectively used mainly for linearly constrained problems. 

In an attempt to alleviate the difficulties of the primal methods, 

various kinds of transformation methods that convert the original 

problem into a sequence of unconstrained problems have been proposed. 

Several transformation methods, such as penalty function methods, 

Lagrange methods and multiplier methods, are discussed below. 

1.3.2 PENAL TV FUNCTION METHODS 

Penalty function methods [34] transform the original problem into a 

sequence of unconstrained problems by adding to the objective function 

a penalty term reflecting the degree of violation of the constraints. 

In general the penalty functions take the following form: 

r r 
~(x,c ) = f(x) + c p(x) (1. 30) 
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where cr>O is a controlling parameter and p(x) represents the penalty 

term associated with the constraints, which vanishes if and only if x 

is feasible. Many different forms of p(x) have been suggested. For 

instance, where the original problem has only equality constraints, the 

most commonly used p(x) is: 

£ 
p(x) = L (h

k
(x))2 (1.31) 

k=l 

The procedure for solving the original problem is as follows: let 

r c (r=1,2, ... ) be an increasing sequence tending to infinity, and solve 

a sequence of unconstrained problems: 

Min 
r 

~(x,c ) r=1,2, ... (1.32) 

for given parameters cr (r=1,2, ... ), obtaining a sequence of minimizing 

points xr. It has been proved[34J that under rather general conditions 

r the sequence of minimizing points x converges to the solution of the 

original problem provided c r is large enough. 

For problems with inequality constraints only, a class of penalty 

functions, termed barrier functions, is usually used. A typical one of 

these functions is: 

p(x) = 
ID 
L (-l/g.(x)) 

J 
j=l 

(1.33) 
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r which prevents the solution points x from approaching the boundary of 

the feasible region. These effects will diminish as c r decreases. The 

algorithms based on this approach must start with a feasible initial 

point. An attractive feature of this approach is the fact that the 

successive unconstrained problems always have their minima inside the 

feasible region. 

When there exist both equality and inequality constraints, mixed 

penalty functions may be employed which combine the penalty terms of 

(1.31) with the barrier terms as shown in (1.33). 

The penalty function methods have been widely accepted in practice 

due to the simplicity of the approach, their ability to handle nonlinear 

constraints, and the availability of very powerful unconstrained 

minimization methods for solving the problem (1.32). There are, however, 

considerable disadvantages such as ill-conditioning and slow 

convergence which arise from the requirement that the controlling 

parameter cr must become very large (or very small, as appropriate) to 

force the minima of the successive unconstrained problems to converge 

to the minimum of the original problem. 
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1.3.3 LAGRANGE METHODS 

As we have noted earlier, it is impractical to solve a constrained 

optimization problem by means of directly solving the system of 

equations and inequalities of the stationarity conditions 0.7) and 

(1.8) or the Kuhn-Tucker necessary conditions (1.10)-(1.13). A general 

approach to using Lagrangean functions such as (1.9) is based on 

sequential minimizations of the Lagrangean function; that is. one 

minimizes 
r 

L(x,1.I ) over x-space for a sequence of multiplier vectors 

1.I r . This sequence is generated by iterations of the form 

r+1 
1.1. 

J 
j=l, ... ,m (1. 34) 

where xr is a minimizing point of L(x,1.I r ) over x-space, and a r is a 

stepsize parameter. 

The iteration (1.34) may be viewed as a steepest ascent iteration 

aimed at finding an optimum solution of an associated dual problem. 

Thus this approach is referred to as a primal-dual method which means 

that alternate iterations over x-space (primal) and l.I-space (dual) are 

required. 

In order for the dual problem to be well defined and the iteration 

(1.34) to be meaningful, a convex structure at the solution point is 

required. It is usually necessary to minimize the Lagrangean function 

a large number of times since the ascent iteration (1.34) converges only 
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moderately quickly. Thus this method has found applications only in the 

limited class of problems where minimization of the Lagrangean function 

can be carried out very efficiently due to some special structure of 

the problem, such as a separable structure. 

1.3.4 MULTIPLIER METHODS 

Starting around 1968, a number of researchers have proposed a class of 

methods, called multiplier methods, in which the penalty idea is merged 

with the primal-dual and Lagrangean philosophies. In the original form, 

proposed by Hestenes[59] and Powell[77], the methods deal only with 

equality constrained problems and the quadratic penalty term is added 

not to the obj ective function f (x) of the problem but rather to the 

Lagrangean function, thus forming the augmented Lagrangean function 

i. 

Lr(x,~) = f(x) + I ~khk(x) + 
k=l 

i. 

(1j2)c
r I (h

k
(x))2 

k=l 

A sequence of unconstrained minimizations of the form 

Min 
r L (x,~ ) 

r 

(1. 35) 

(1. 36) 

is performed where c
r 

is a sequence of positive penalty parameters. The 

r 
multiplier sequence ~ is generated by the iteration 
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r+1 r r r 
~k = ~k + c hk(x ) (1.37) 

where xr is a solution of the problem (1.36). The initial ~o is selected 

a priori, and the sequence cr may be either preselected or generated 

during the computation according to some appropriate scheme. 

It turns out that, by combining features of the penalty and the 

primal-dual approaches, the multiplier methods actually moderate the 

disadvantages of both. Convergence in the multiplier methods can usually 

be attained without the need to increase c
r 

to infinity thereby 

alleviating the ill-conditioning problem that plagues the penalty 

method. In addition, the multiplier iteration (1.37) tends to converge 

to the optimum Lagrange multipliers much faster than the iteration 

(1.34) of the primal-dual method. Because of these attractive features, 

the multiplier methods and their subsequently developed variations have 

emerged as a very important class of constrained optimization methods. 

Rockafellar[79,80] has suggested a suitable modification of the above 

multiplier function to deal with the inequality constrained problem (P). 

The theoretical and practical details associated with this development 

closely parallel those for the problem (E). A comprehensive description 

of the multiplier methods is given by Bertsekas[13]. 

Nevertheless, the Powell-Hestenes-Rockafellar method requires a 

sequence of unconstrained minimization problems to be solved and it is 

the case that more efficient methods can be obtained by avoiding this 

sequence, for example using exact penalty function. In the present 
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state of the art, unfortunately, these methods are neither as reliable 

nor as easy to program. 

1.4 SURROGATE APPROACH TO CONSTRAINED OPTIMIZATION 

A surrogate problem is one in which the original constraints are 

replaced by only one constraint, termed the surrogate constraint, which 

is a positive linear combination of the original constraints. This is, 

therefore, a midway approach between the primal problem 

unconstrained transformations. 

and its 

The concept of a surrogate constraint ~'as first introduced by 

Glover [48] who employed it in solving integer programming problems. 

Grrenberg and Pierska11a[52] provided the first major theoretical 

treatment of surrogate constraints in the context of general 

mathematical programming. There are also other researchers such as 

Everett[31] , Geoffrion[44] and Luenberger[70] who have made important 

contributions to the literature on surrogate constraints. 

For the inequality constrained problem (P) stated by (1.1) and (1.2), 

referred to as the primal problem, the corresponding surrogate problem 

has the form: 
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(S) 

where 

Nin 

s.t. 

A. (j=1, •.. ,m) 
J 

f(x) (1. 38) 

m 
1: A.g.(X) S 0 (1. 39) 

J J 
j=l 

are nonnegative weights, termed surrogate 

mu1 tipliers, which may be normalized without loss of generality by 

requiring 

m 
1: Aj = 1 (1.40) 

j=l 

Before we discuss solution methods for problem (S), it is worthwhile 

examining further some relationships between problems (P) and CS) in 

some detail. 

1.4.1 SOME RELATIONSHIPS BETWEEN PROBLEMS (P) AND (S) 

Some relationships between problems CP) and CS) are presented below as 

a proposition. Their proofs are straightforward and can be found in the 

aforementioned papers. 
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Proposition 1.3: 

1. The feasible region of problem (P) is always included by the 

feasible region of problem (S). 

2. 
s If x solves problem (S) 

~y 

and x solves problem ep), then 
s ,y 

f(x )Sf(x ) for all A~O. 

3. 
s If x solves problem (S) and is also feasible in problem (P), 

then xS also solves problem (P). 

4. If at least one of original constraints is active at the 

optimum, then the surrogate constraint must be active at the 

optimum. 

Proposition 1.3(1) can be easily verified. If Xl is a feasible point 

in problem (P), Le., g.(XI)~O (j=1, ...• m), Xl also satisfies (1.39) 
J 

for all A~O. Proposition 1.3(1) then follows. A comparison of the 

primal feasible region with the surrogate one is illustrated in Fig.1.5 

which shows that the primal feasible region is always a part of the 

surrogate feasible regions for any values of A. Problem (S) can, 

therefore, be viewed as a relaxation of problem (P). Consequently 

Proposition 1.3(2) follows. This implies that a (weak) duality 

relationship exists between problems (P) and (S). From 1.3(1) and 

1.3(2), Proposition 1.3(3) holds. This may be used as a criterion for 

terminating a surrogate algorithm. If the surrogate constraint is 

inactive at the optimum point, this means that all the original 

constraints have no effects on the solution. This produces a 

contradiction of the requirement that at least one of them is active. 
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Proposition 1.3(4) should hold, and thus the surrogate constraint (1.39) 

is often written as an equality later on. These relationships are very 

useful in developing surrogate algorithms. 

1.4.2 SURROGATE SOLUTION PROCEDURE 

In a surrogate approach to constrained optimization, the desired 

* solution x of problem (P) will be sought indirectly through a sequence 

of solutions of problem (S). Each of the surrogate problems corresponds 

to a specific vector A of surrogate multipliers. This approach assumes, 

therefore, that problem (P) and (S) are equivalent at the solution 

* point; specifically that a set of multipliers A exists and can be found 

* * such that x which solves problem (S) with A also solves problem (P). 

Previous researchers have studied this assumption, establishing 

conditions on its validity. The proof is not repeated here but is 

similar to existence and optima1ity proofs for Lagrange multipliers. 

* * ,'r An essential condition to be satisfied is that (x ,A ,~ ) should be 

a saddle point of the surrogate Lagrangean L which has the form 
s 

L (x,A,a) 
s 

= f(x) + a 
m 
r A.g.(X) 

J J 
j=1 

(1.41) 
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where a is the Lagrange multiplier associated with the surrogate 

~'r ~'r ~'r 

constraint (1.39). The saddle point ex ,A ,a ) must be such that 

* * * * * * L (x,A ,a ) ~ L (x ,A ,a ) ~ L (x ,A,a) s s s Cl.42) 

In which the left-hand inequality implies minimization over x-space for 

specified A and a while the right-hand inequality implies maximization 

over A and a space for specified x. 

The surrogate approach in general requires alternate iterations in 

x-space and A-space. A typical scheme is as follows. An initial set of 

It ' l' \ 0 1'S h d bl mu 1p 1ers A c osen an pro em (S) is solved to yield 

corresponding values of xO (by minimization, corresponding to the 

left-hand inequality in (1. 42)). The multipliers are then updated to 

(by a maximization process for fixed o x , corresponding to the 

right-hand inequality in (1.42)) and problem (S) is solved again to give 

Xl. The process is repeated until the sequence (Ao,xo ), (Al,Xl), ••• J 

(Ar,xr ), ... converges upon a solution of problem (S), and hence also 

* * of problem, at (A ,x ). The major snag in this iterative scheme lies 

in updating the multipliers A. This presents many difficulties and is 

discussed in Chapter 4. 
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1.4.3 SURROGATE DUALITY 

The solution procedure presented above is in fact a primal-dual 

approach. The saddle point conditions (1.42) assure that this duality 

relationship, termed surrogate (constraint) duality exists. 

A surrogate dual objective can be defined by: 

seA) = {Min f(x): 

x 

m 
1: A.g.(x)~O} 

J J 
j=l 

(1. 43) 

which is the minimum value of f(x) at the solution point of problem (S) 

for fixed A~O which satisfies, of course, the normality condition 

(1. 40) . 

It has been noted from Propos i tion (1. 3) that problem (S) is a 

relaxation of problem ep) and s (A) cannot exceed the optimum value 

*;1: 
f(x) of problem (P). With the surrogate constraint (1.39) becoming a 

more faithful representation of the original constraints, seA) 

i': 
approaches f(x ) more closely. Choices of the set of A that improve the 

proximity of (S) to ep) - Le., that provide the greatest value of 

seA) - yield the strongest surrogate constraint in a common sense, and 

motivate the definition of the surrogate dual. 
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(SO) 

Max s CA) (1. 44) 

m 
s.t. L A . = 1 (1. 45) 

J 
j=l 

Aj ~ 0 j=l, ... ,m (1. 46) 

Greenberg and Pieskalla[52] have shown that the dual function s ()..) 

is a guasiconcave function, thus assuring that any local maximum for 

S(A) is also a global maximum for S(A) (disregarding the possibility 

of a sequence of "plateaus"). In addition, their paper was the first 

to demonstrate rigorously a smaller duality gap for the surrogate 

approach than for the Lagrangean approach. It also provided sufficient 

conditions for the nonoccurrence of surrogate duality gaps. Glover[50] 

established necessary and sufficient conditions for optimality which 

invite direct comparison with those for Lagrangean duality. 

Computationally, an implementation of surrogate duality in posynomial 

programming problems was made by Dinkel and Kochenberger[24] in terms 

of geometric programming duality. For more knowledge of the surrogate 

duality theory, readers should refer to the aforementioned papers. 

It should be noted that only in a few cases, for example when the 

problem functions are separable, the dual function S(A) has an explicit 

form. For more general cases, it can only be obtained numerically by 

solving the surrogate problem (S) for fixed A. The solution of problem 

(SD) requires, therefore, a sequence of surrogate problems (S) to be 

solved. This demands an effective scheme to update A after each 

surrogate problem (S) is solved. It is obvious that a steepest ascent 
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iteration similar to Eq. (1.34) is not efficient due to its slow 

convergence. A better update scheme is therefore needed. 

1.5 MOTIVATIONS AND SPECIFICATIONS OF THE PRESENT 

RESEARCH 

In the previous sections, some important theoretical results and 

computational methods of constrained optimization have been introduced. 

As stated earlier, difficulties in the solution of constrained 

optimization problems arise from the presence of many nonlinear 

constraints. The primal methods are used effectively mainly for linearly 

constrained problems. The transformation methods make use of powerful 

unconstrained minimization algorithms and have wider applicability. 

In particular the multiplier methods are widely accepted since they 

combine advantages and overcome disadvantages of both conventional 

penalty methods and Lagrange methods. The main reason for this 

achievement arises from efficient updates of the Lagrange multipliers 

such that fast rates of convergence are obtained. However they require 

sequential unconstrained minimizations and some penalty parameters are 

updated rather arbitrarily whereas exact penalty functions suffer from 

instability due to discontinuity of their derivatives. Although there 

is still debate about which approach is best, it has been widely 

recognized that a better optimization method should be related in one 
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way or the other to the Lagrangean function; that is, interactivfty 

among the Lagrange multipliers should be fully taken into account. 

The surrogate approach has attracted little attention in nonlinear 

programming as it requires a sequence of surrogate problems with a 

single constraint to be solved. However it provides a framework to 

investigate the interactivity between constraints, i.e., between 

Lagrange multipliers. The success of the multiplier methods suggests 

that the interactivity of Lagrange multipliers should be further 

investigated from both computational and theoretical Viewpoints. 

1.5.1 MOTIVATIONS OF THE PRESENT WORK 

As noted earlier, the geometric and deterministic viewpoint has played 

a large part in the development of optimization methods. These methods 

have been devised from considering the objective function as a 

hypersurface and using geometric arguments to devise a search strategy 

as illustrated in Fig.!. 4. In this geometric interpretation, the 

constraints are viewed as deterministic boundaries which must not be 

crossed. Terms such as "gradients", "steepest descent" and "barriers" 

all have topological associations. They use calculated "information" 

(function values, gradients, etc.) in a geometrical way to search a 

deterministic topological domain for an optimum point. Information 
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theory appears to be incompatible with this as it is essentially 

concerned with probabilities. 

In contrast with conventional methods, a different viewpoint is 

adopted in the present work. One of its objectives is to set 

optimization in a non-deterministic context without topological 

analogies and to use calculated "information" in a different, 

non-geometrical, information-theoretic way to locate the optimum point. 

The idea behind this approach is based upon the speculation that an 

optimization problem could be thought of as a communication system in 

which "messages" are received and transmitted alternatively. Design 

of the system requires that the messages be correctly translated and 

effectively used subsequently. Thus, methods in information theory can 

then be used in the solution of optimization problems. It is the hope 

that this approach would yield new insights into optimizing processes 

and develop new and radically different algorithms. 

From a statistical point of view, a communication system has 

mathematical similarities to a statistical thermodynamic system. An 

optimization problem is consequently simulated in the present work as 

a statistical thermodynamic system for convenience of the later 

presentations. 
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1.5.2 SPECIFICATIONS OF THE PRESENT WORK 

The present work is the first step towards providing optimization with 

an information-theoretic basis. The means is to simulate an optimization 

problem as a statistical thermodynamic system. Several questions are 

then raised about how to do this simulation. They are: 

1. What are micro-states of this statistical thermodynamic system in 

an optimization context? 

2. What are the probabilities of the micro-states? 

3. What common characteristic is there in these two processes? 

4. What common law governs them? 

These questions are briefly answered as follows: 

1. Each micro-state in a multi-constrained optimization problem 

corresponds to a sub-optimization problem in which the objective 

function is optimized subject in turn to each of the original 

constraints. 

2. The surrogate multiplier associated with each constraint is 

interpreted as the probability of the system being in the 

corresponding micro-state. 

3. An optimizing process can be thought as a sequence of transitions 

of the system to its equilibrium states such that the "equilibria" 

become the common characteristic in the two processes. 
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4. That the entropy of the system attains a maximum value at an 

equilibrium state represents the common law to govern the two 

processes. 

To study these objectives, the thesis is arranged in the following 

way. 

1. Two important results in information theory, the Shannon entropy 

measure and Jaynes' maximum entropy criterion, and some of their 

applications are examined. Emphasis is placed on those applications 

which have been made in an optimization context. 

2. The entropy maximization process is further investigated to discover 

its wider applicability and its meaning in an optimization context. 

3. The statistical thermodynamic model of optimization is formed such 

that the methods of information theory can be applied to the 

solution of optimization problems. 

4. The nature of this simulation is further explored and some links 

between the present approach and existing optimization methods are 

sought. 

5. Some example problems are provided. They are solved by the present 

approach and the results are compared with those obtained by other 

methods. 

6. The wider applicability of the present approach is investigated. 
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Fig.1.3 Geometry of Kuhn-Tucker Conditions 

Fig.1.4 Feasible Direction Method 
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Fig. 1.5 Primal and Surrogate Feasible Regions 
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CHAPTER 2 ENTROPY AND THE MAXIMUM ENTROPY CRITERION 

SUMMARY 

This chapter introduces the concept of entropy and discusses the 

relationships between the informational entropy and the much 

better-known classical thermodynamic entropy. The research of the late 

1940s to early 1960s is surveyed which led to the development and 

quantification of uncertainty in a probabilistic sense. Entropy is used 

as a measure of uncertainty. The development of the Shannon I S 

informational entropy function is described and its further development 

into the maximum entropy criterion (HEC) is presented. 

A brief review is made of research literature dealing with 

applications of the maximum entropy criterion, together with other uses 

of the Shannon entropy measure in science and engineering. 

2.1 INTRODUCTION 

As stated in the introductory chapter, an optimization problem is 

simulated in the present work as a statistical thermodynamic system 
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while an optimizing process is thought of as transitions of the system 

to a sequence of equilibrium states which are characterized by certain 

entropy maxima depending upon a "temperature" parameter. Thus the 

concept of entropy is closely related to the present study. 

The entropy concept has played a central role in a number of areas 

such as thermodynamics, statistical mechanics and information theory. 

It springs from two roots. On the one hand, in classical thermodynamics, 

entropy is defined as a macroscopic thermodynamic variable of the system 

under consideration; on the other hand, in statistical mechanics and 

information theory, it is defined as a measure of the number of ways 

in which components of a system may be arranged under given 

circumstances. 

In classical thermodynamics, this concept has a significance no less 

fundamental than that of energy. According to the second law of 

thermodynamics, the entropy in an isolated system tends to a maximum 

so that this. variable is a criterion for the direction in which 

processes can take place. On the relation between energy and entropy, 

Emden wrote: 'In the huge manufactory of natural processes, the 

principle of entropy occupies the position of manager, for it dictates 

the manner and method of the whole business, whilst the principle of 

energy merely does the book-keeping, balancing credits and debits'. (See 

Fast [33]). 

Classical thermodynamics in which the entropy concept originated is 

concerned only with the macroscopic states of matter, i.e. with the 
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experimentally observable properties. It thus does not enquire into the 

mechanisms of phenomena and is therefore unconcerned with what happens 

on a microscopic scale. The microscopic picture, however, can help to 

give deeper meanings to the thermodynamic laws and concepts. The branch 

of science concerned with this aspect is statistical mechanics. 

When a small number of macroscopic variables such as pressure, 

temperature, volume, chemical composition, etc. of a system are known, 

the thermodynamic state of this system is known. It is clear that a 

description of this kind still leaves open many possibilities as regards 

the detailed state on an microscopic scale. One and the same state, in 

the thermodynamic sense, thus comprises very many states on the 

microscopic scale; that is, a thermodynamic state can be realized in 

many ways or micro-states. If the number of these micro-states is 

denoted by m, then entropy of the system is defined as 

S = k £n m (2.1) 

where k is Boltzmann's constant. The quantity S in Eq.(2.1) may be 

considered as the statistical interpretation of entropy. 

That entropy tends to a maximum means, according to (2.1), a tendency 

towards the state with a maximum number of possibilities of realization, 

i.e. a tendency towards the most probable state. In order to be able 

to apply (2.1) directly, all the micro-states must have the same 

probability of occuring. A definition of the entropy with more general 

validity than Eq.(2.1) will be introduced in Section 2.2. 
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Entropy of a system was first defined by C1ausius as a function of 

some macroscopic variables that can be directly measured. The C1ausius' 

entropy is a nonprobabi1istic concept and is usually referred to as the 

classical entropy. Bo1tzmann was the first to emphasize the 

probabi1istic meaning of the entropy. He noticed that the entropy of 

a physical system can be considered as a measure of "disorder" in the 

system and that in a system having many degrees of freedom, the number 

measuring the disorder of the system measures also the uncertainty about 

individual micro-states. However, he made no explicit reference to 

"information" and his entropy is, therefore, referred to as the 

statistical entropy. It was Shannon[ 86] who first introduced the 

entropy concept as a measure of uncertainty or information in an 

information theory context. Thus Shannon's entropy is referred to as 

the informational entropy which has wider applicability than the 

statistical entropy. 

2.2 DEFINITIONS AND PROPERTIES OF INFORMATIONAL ENTROPY 

One of the fundamental building blocks of modern information theory is 

the paper by Shannon[86] in which a new mathematical model of 

communication systems was proposed and investigated. The most important 

innovation of this model was that it cons idered the components of a 

communication system as probabi1istic entities. In his paper, Shannon 
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proposed a quantitative measure of the amount of uncertainty about the 

possible outcomes of a probabilistic experiment. 

Consider a probabilistic experiment having n discrete possible 

outcomes with the respective discrete probabilities 

Pl, ... ,Pn' satisfying the following axiomatic conditions 

n 
Pi ~ 0 (i=1,2, ... ,n) and I Pi = 1 

i=l 

Such an experiment, of course, contains an amount of uncertainty about 

the particular outcome which will occur if we perform the experiment. 

It can be seen that this amount of uncertainty, contained a priori by 

the probabilistic experiment, essentially depends on the probabilities 

of the possible outcomes of the experiment. For instance, if we have 

a probabilistic experiment having only two possible outcomes aI' a
2 

with 

two different sets of probability distributions (PI =0.5, P2=0. 5) and 

(Pl=0.96, P2=O.04), it is obvious that the first case contains more 

uncertainty than the second. In the second case, the result of the 

corresponding experiment is "almost surely" aI' while in the first case 

we cannot make any prediction on the particular outcome which will 

occur. This shows that a uniform probability distribution has a larger 

amount of uncertainty associated with it than a non-uniform 

distribution. 
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Shannon was able to postulate a measure of such uncertainty on a 

quantitative basis in the following way. He proposed that a measure for 

uncertainty should satisfy the following requirements: 

1. It should be continuous in the Pi (i=1, ... ,n). 

2. If all the Pi are equal, then it should be a monotonically 

increasing function of the number of outcomes n. This reflects the 

need that with equally possible outcomes, the measure of uncertainty 

should be higher when there are more possible outcomes than when 

there are few. 

3. The uncertainty about two independent events A and B should be the 

sum of the uncertainties about A and B taken separately. 

Shannon demonstrated that these criteria were sufficient to define 

uniquely the function: 

n 
S = - kIp. ~np . 

1. 1. 
(2.2) 

i=1 

where k is merely a positive constant depending on a suitable choice 

for the units of measure, and it is defined that O~nO=O. The function 

S in Eq.(2.2) is referred to as the informational entropy which is the 

form of entropy used in this thesis. 

Shannon's entropy measure has a number of properties which might be 

expected of a reasonable measure of uncertainty in a probabilistic 

context. They are summarized as the following proposition: 
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Proposition 2.1: 

1. 

2. 

3. 

4. 

S (Pl""'P )~O n n 

i#k), then S (Pl""'P )=0 n n 

Sn+l(Pl,···,Pn'O) = Sn(Pl"",Pn ) 

S (Pl, ... ,p )~S (l/n, ... ,l/n) n n n 

5. Shannon's entropy function S in Eq.(2.2) is a continuous and 

symmetric concave function w.r.t. all its arguments. 

The proof of Proposition 2.1 is very straightforward from Eq.(2.2) 

and can be found elsewhere[54]. According to Proposition 2.1(2), the 

entropy S is equal to zero if one of the probabilities PI" .. 'Pn is unity 

and all others are zero. But this is just the case where the result of 

the experiment can be predicted beforehand with complete certainty, so 

that there is no uncertainty about the outcome. From Proposition 

2.1(4), the probabilistic experiment with the greatest uncertainty is 

the one with equally likely outcomes; that is, Shannon's entropy 

measure, for fixed n, assumes its greatest value for the uniform p.d. 

The concavity of the Shannon entropy function S, according to 

Proposition 2.1(5), is a nice property which enables Jaynes' maximum 

entropy problem to be a convex programming problem as will be discussed 

in the next section. 
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2.3 THE MAXIMUM ENTROPY CRITERION (MEC) 

Shannon's entropy measure was an important step forward in that it 

allowed the amount of uncertainty in a probabilistic experiment to be 

quantified provided that the probabilities of all outcomes are known. 

The next important advance was made by Jaynes[60,61,63] who realized 

that in many probabilistic experiments the probabilities of discrete 

outcomes are often not known (unknown prior probabilities). Jaynes 

extended the use of the Shannon entropy measure to calculate the unknown 

prior probabilities from observable data on the probabilistic 

experiment, and hence extended the role of Shannon's function (2.2) from 

a simple measure to a crucial role in an inference process; i.e. given 

a probabilistic process and observed aggregated data from that process, 

what does the Shannon measure of uncertainty allow us to logically infer 

about the p.d's underlying the process? 

Suppose there exists an observable probabilistic process in which a 

discrete random variable can take on anyone of n outcomes of value 

x ... ,x. Suppose also that as a result of observations on the process 
l' n 

it can be deduced that the outcomes satisfy certain aggregated 

functional relationships gl(x), g2(x), ... , such as mean values, 

variance, etc. Let there be m such functions where m«n. What can be 

deduced about the probabilities PI"'" Pn of the random variable 

attaining values xl'.···' xn? Clearly an infinite number of p.d's can 

satisfy the m observed functions gl"'" gm' Which one should be chosen? 

Some selection criterion is then needed. 
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Jaynes, in a brilliant paper[60], wrote: 'in making inference on the 

basis of partial information we must use that probability distribution 

which has maximum entropy subject to whatever is known. This is the only 

unbiased assignment we can make; to use any other would amount to 

arbitrary assumption of information ""hich by hypothesis we do not have. ' 

Jaynes therefore recognized that the infinite number of p.d's which 

satisfy the m observable behaviour functions all have different Shannon 

entropy measures of uncertainty. The one with the highest entropy value 

should be chosen as this introduces minimum artificial bias into the 

choice. 

Jaynes referred to the above statements as the principle of maximum 

entropy, implying that all else is consequent upon its fundamental 

nature. In fact, Jaynes established a selection criterion among the 

p.d's compatible to the given information. The criterion has a 

subjective character by nature, but it can rather be considered as the 

most "objectively subjective" criterion for constructing the random 

distributions. 

The Jaynes' selection criterion is, throughout this thesis, referred 

to as the maximum entropy criterion nIEC) rather than the "principle" 

as it actually establishes an inference criterion. 

~lathematica11y, to maximize the entropy S of (2.2) subject to the 

given information, leads to a mathematical optimization problem: 
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(MEC) 

n 
Max S = - k ! Pi~npi (2.2) 

i=l 

n 
s. t. ! Pi = 1 (2.3) 

i=l 

n 
I Pigj(xi ) = E[gj] j=1, ... ,m (2.4) 

i=l 

where E[.] is the expectation operator and it is axiomatic that Pi~O. 

The constant k is set to unity below, which has no effect on the 

solution. 

Problem (MEC) can be solved using the Lagrange multiplier method. 

Introducing Lagrange multipliers (llO+1) for (2.3) and llj (j=1, ... ,m) 

for (2.4), we have the Lagrangean function 

n n m n 
L(p,1.I) = - ! p.~np.+(llO+l)( ! p.-1)+ ! 1.1.( ! P.g.(xi)-E[gj]) 

1 1 1 J 1J 

i=l i=1 j=1 i=1 

for which the stationarity conditions w.r.t. p. are: 
1 

m 
aL/api = -(l+£npi ) + (llO+1) + ! lljgj(x i ) = 0 

j=l 

from which 

i=l, ... ,n 

(2.5) 

(2.6) 
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hence 

= 110 + 
m 
r ll. g. (x.) 

J J 1 

j=l' 

m 
Pi=exp[lla+ r lljgj(Xi )] 

j=l 

i=l, ... ,n (2.7) 

It should be noted that a closed form of the solution to problem (HEe) 

has been obtained as a result of the separability of the problem 

functions. The solution contains m+l arbitrary constants, i.e., the m+l 

undetermined Lagrange multipliers. These multipliers must be chosen 

in such a way as to satisfy the equality constraints (2.3) and (2.4). 

When the Lagrange mUltipliers have been chosen. the entropy function S 

gives the maximum value consistent with the given data. and therefore 

it represents the least biased p.d. which is referred to as the maximum 

entropy distribution (MED) later. 

If we substitute Pi from (2.7) into the normality condition (2.3), 

lla can be expressed in terms of the multipliers llj: 

n m 
= ! exp[ ! 1l.g.(X.)] 

J J 1 

i=l j=l 

(2.8) 

On substituting (2.8) into (2.7), the probabilities p. are eventually 
1 

expressed in terms of the multipliers ll. only, i.e., 
J 

m 
Plo = exp[ r 1l.g.(X.)] / Q 

J J 1 

j=l 
i=l •...• n (2.9) 

54 



where 

m n 
= 1: exp [ 1: ].I. gj (x. ) ] 

J 1 

i=l j=l 

(2.10) 

which is referred in statistical mechanics to as the partition 

function. The remaining multipliers ].Ij are found by solving the m 

equations (2.4) following the substitution of the solution (2.9). The 

solution of the system of m equations in ].I. is, however, not easy as 
J 

these equations are nonlinear and can usually only be solved 

numerically. This point will be discussed in detail in Chapter 3. 

Problem (~1EC) and its solution (2.9) are written in terms of a 

discrete r.v. A similar formulation in the case of continuous r.v's now 

follows. The solution is obtained following the same process as for 

discrete r.v's. The equivalent forms for a continuous r.v. are, 

(MECC) 

~lax 

s.t. 

s = - k J f(x)~n[f(x)] dx 

J f(x) dx = 1 

j=l, ... ,m 

as the equivalent of problem (NEC) and 

£(x) 
m 

= exp[ 1: ].I.g.ex)] / J 
J J 

j=l 

m 
exp[ 1: ].I.g.(x)]dx 

J J 
j=1 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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as the form of its solution, f(x) is the density function of continuous 

r.v. x, and the integrations are carried out over the range of x. 

This thesis is concerned only with the discrete case. 

2.4 INTERPRETATION OF THE MAXIMUM ENTROPY CRITERION 

Tribus[99] has shown that analytical p.d. 's such as the normal, gamma 

and exponential distributions are merely different particularizations 

of the MED. For instance, if the mean value and the variance of some 

r.v. are given, the ~lEC gives a normal (Gaussian) distribution. Thus, 

the normal distribution contains the largest amount of uncertainty 

compatible with the observed data and is therefore a least biased fit 

to this data. One valuable aspect of the ~lEC is that it allows some 

well known distributions to be interpreted in new lights. 

The maximum entropy criterion may be regarded as an extension of 

Laplace's principle of "insufficient reason" to which it reduces in the 

case in which no information is given except the enumeration of the 

possible outcomes xi' In fact, the }lEC is a statement that, in a 

situation of limited knowledge, we will select the p.d. that is as close 

to a uniform distribution as our knowledge allo~'s; that is, applying 

the MEC, we select the most uncertain or "spread out" random 

distribution subj ect to the given data. Thus the concept of entropy 

56 



supplies a selection criterion and enables the least biased p.d. 's to 

be found which fit all available information. 

2.5 SOME APPLICATIONS OF THE MAXIMUM ENTROPY CRITERION 

Shannon's entropy measure and Jaynes' maximum entropy criterion have 

found applications in a variety of areas of science and engineering. 

We examine only a few of these areas such as thermodynamics, statistical 

mechanics, civil engineering, queueing theory, transportation 

planning, etc. Among them, the transportation problem together with 

other uses of entropy in an optimization context is left to the next 

section because of their particular relevance to the present study. 

As implied by Jaynes's paper[60], statistical mechanics has been the 

most fruitful discipline for applications of the NEe. Jaynes stresses 

that informational entropy is a primitive concept more fundamental even 

than energy, and he has derived many well-known relations in statistical 

mechanics in a very elementary way without consideration of "ensembles" 

or appeal to the usual arguments concerning "ergodicity" or equal ~ 

priori probabilities. Thus the principles and mathematical methods of 

statistical mechanics can be seen to be of much more general 

applicability than is suggested by conventional arguments. 
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Another field in which the Shannon's entropy and the Jaynes' NEC have 

found immediate applications is classical thermodynamics. Following 

Jaynes, Tribus demonstrated[97,98] that all of the laws of classical 

thermodynamics, and in particular, the concepts of heat and temperature, 

could be defined from Shannon's entropy using Jaynes' maximum entropy 

criterion. Classical thermodynamics is unsatisfactory in that it renders 

the axiomatic structure more complicated than it needs to be. Attempts 

to develop clean formulations of thermodynamics, based upon abstract 

axioms, were made by Caratheodory who succeeded in this objective only 

partially. It is Shannon's and Jaynes' work that makes it possible to 

improve the axiomatic structure. The particular formulations were given 

by Tribus[98] and Callen[17]. In their textbooks, the Shannon entropy 

measure and Jaynes' ~lEC are considered as axioms (or postulates) from 

which the laws of thermodynamics are derived. 

Recently, civil engineering has also become an active area in which 

there have appeared many applications of informational entropy. Basu 

and Templeman[5], and Siddall and Diab[87] have used the ~lEC in 

structural reliability analysis and probabilistic design. In 

traditional approaches to reliability analysis an analytical p.d. must 

be chosen by the analyst/designer to represent random loads or 

strengths. Any bias or lack of fit between the chosen distribution and 

the available data will be magnified in the extrapolation of the 

distribution to the tail regions which are important in reliability 

analysiS, as the probability of failure is heavily related to the 

overlapping tails of load and strength distributions. The HED, as the 

least biased p.d., is a more appropriate substitute for the analytical 
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distributions. Basu and Temp1eman [5] argue that by fitting a ~1ED to 

available data itself by means of the MEC a more logical and rigorous 

approach to structural reliability analysis results. 

Hunro and Jowitt(72] used the ~lEC in decision analysis in the 

ready-mixed concrete industry. The principal problem is that of making 

optimal decisions in the face of the uncertainty associated with the 

unknown state of future orders. They argued that the evaluation of prior 

probabilities for the order states should be made objectively and not 

be affected by any personal bias. Thus in their approach the MEC was 

used to produce the least biased p.d. associated with the orders for 

each mix. 

In addition Guiasu[55] has also used the MEC in queueing theory. 

For some single-server queueing systems, when the expected number of 

customers is given, the MEC gives the same p.d. of the possible states 

of the system as the birth-and-death process applied to an M/M/1 system 

in a steady-state condition. For other queueing systems, such as M/G/1 

for instance, the MEC gives a simple p.d. of possible states, while no 

closed-form expression for such a p.d. is known in the general framework 

of a birth-and-death process. In this work Guiasu argues that use of 

the MEC strengthens belief that fundamental assumptions in the 

birth-and-death process which is axiomatic to such queueing systems are 

correct and justifiable. Furthermore it strengthens some of the initial 

axioms and improves insight into the problems. 

59 



The MEC has also been applied to many diverse areas such as 

psychology, biology, population forecasting, medicine, search theory, 

etc. The reader is referred to the lecture papers collected in the book 

"The Maximum Entropy Formalism" [69]. 

2.6 APPLICATIONS OF ENTROPY TO OPTIMIZATION PROBLEMS 

Many researchers have used Shannon's entropy in the transportation 

problem, which is generally formulated as an LP problem (Refs. [23], 

[25], [28-30], [104]). A typical transportation problem is to predict 

values of a set of variables xij which represents some spatial 

interaction between zones i and j (trip distribution). Suppose we are 

given the totals of flows leaving each zone i, 0., and entering each 
1 

zone j, D., and the cost of travel between each zone, c .. , then an LP 
J 1J 

model to minimize the total travelling cost takes the form: 

(ST) 

Min C = U c .. x .. (2.15) 
1J 1J 

ij 

s.t. I x .. = o. (2.16) 1J 1 
j 

I x ij = D. (2.17) 
J 

i 

and 

x .. ~ 0 (2.18) 
1J 
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which is referred below to as the standard transportation (ST) problem. 

Er1ander[28,29], among others, adds an entropy constraint 

-!! xij~n(xij) ~ H 

ij 

(2.19) 

to the problem (ST) in order to preserve a desired level of 

"interactivity" (or "accessibility") in the solution to the trip 

distribution problem where H is a specified value of the entropy of the 

variables x... This modified problem with an entropy constraint is 
l.J 

referred to as the entropy-constrained transportation (ECT) problem. 

The procedures for solving problems (ST) and (ECT) are not repeated 

here but can be found in the aforementioned papers. It is interesting 

that by adding the entropy constraint (2.19), an analytical solution 

to problem (ECT) , expressed in terms of the Lagrange multipliers 

associated with the constraints (2.16)-(2.19), is obtained. It turns 

out that the analytical solution is of the well-known gravity model 

type. Evans[30] has formally proved that the solution to problem (ST) 

is the limit of the gravity model solution as the Lagrange multiplier 

associated with the entropy constraint (2.19) approaches infinity. 

Er1ander[29] has stressed some advantages of this modified model over 

problem (ST). First of all, the solution of problem (ST) is replaced 

by the "smoother" solution of problem (ECT). This character may be 

advantageous in some planning problems where the uncertainty of the real 
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world has been replaced in the models by deterministic relationships. 

The entropy constraint may in such cases be viewed as a substitute for 

lost complexity. The solution obtained has also high "accessibility" 

since all variables in the solution of problem (ST) that may be zero, 

become strictly positive in problem (EeT). Thus adding the entropy 

constraint has made the mathematical modelling more sensible. From a 

computational point of view, the obtainabi1ity of an analytical solution 

in terms of the Lagrange multipliers has provided an alternative means 

of solving more general LP probems. 

Erlander[29] has extended the entropy constraint approach to solve 

the following LP problem: 

(LP) 

Min 

s. t. 

n 

T 
c x 

Ax = b 

I x. = 1 
1. 

i=l 

and x ~ 0 

(2.20) 

(2.21) 

(2.22) 

where c is a given n-vector, x is an n-vector of variables, A is an mxn 

coefficient matrix and has full rank (=m), and b is an m-vector of 

resources. By adding an entropy constraint 

n 
I x. ~nx. ~ H 

1. 1. (2.23) 

i=l 
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to problem (LP), he examines the solution to this modified problem. It 

is obvious that the solution depends upon values of H. When H is less 

than a certain value H. the entropy constraint is slack and therefore m1n 

has no effect on the solution. For H>H ,the entropy constraint min 

becomes active and the objective function increases as H increases until 

some maximum value H is reached. A further increase of H makes the max 

problem infeasible. Hence, the values of H which are of interest lie 

in a certain interval [H . ,H ], where the entropy constraint is m1n max 

active and there are feasible solutions. For values of H in this range, 

an analytical form of the solutions can be obtained in terms of m+l 

Lagrange multipliers. Problem (LP) is then reduced to a dual problem 

in m+1 Lagrange multipliers. Er1ander proceeds to use Newton-type method 

to obtain an iterative procedure for the Lagrange multipliers. He has 

also shown that for proper choices of c, d and H, the entropy constrained 

problem is equivalent to the following entropy maximization problem: 

and 

where 

Max 

s. t. Ax = b 

n 
1: x. = 1 

1 

i=l 

T 
c x ~ d 

and x ~ 0 

~'r * T * -1:x. £nx. =H, c x =d and H . ~H~H 
1 1 m1n max 

(2.24) 

(2.21) 

(2.22) 

(2.25) 

In fact the equivalence 

can be easily verified if their Lagrangeans are examined. 

63 



Another use of entropy in an optimization context is given by 

Cerny[18]. He has proposed a }Ionte Carlo algorithm to approximately 

solve the travelling salesman problem. The algorithm simulates the 

behaviour of a thermodynamic system that is equivalent to the travelling 

salesman problem in the following sense. Each permutation of the 

stations on the travelling salesman trip is considered to be the 

configuration of the thermodynamic system. The length of the trip then 

corresponds to the energy of the system in that particular 

configuration. He argued that the thermodynamic system at a given 

temperature should spontaneously approach its equilibrium state 

characterized by a certain mean value of energy, and by simulating the 

transition of the system to equilibrium and decreasing the system 

temperature one could find smaller and smaller values of the mean energy 

(length of the trip). He has proposed a heuristic algorithm based on 

the above ideas. Several example problems are presented. Cerny's 

approach is very instructive in that it solves an optimization problem 

by analogy with thermodynamic equilibria. 

Ben-Tal[8] has used entropy in ~LP problems with stochastic 

constraints. The stochastic program is replaced by a deterministic 

program by penalizing solutions which are not feasible in the "mean". 

The penalty term is given in terms of a relative entropy functional and 

is accordingly called an entropic penalty. 

However, it should be noted that uses of entropy in the solution of 

optimization problems are still limited and some of these applications 

have little rigorous background. The major difficulties in extending 
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their applications in an optimization context lies in the fact that at 

present almost all optimization problems are viewed in terms of a 

geometric, deterministic topological domain. This has overshadowed any 

other possible interpretations and has so pervaded and preconditioned 

the thought processes that it is difficult to isolate logical arguments 

which lead rigorously to an alternative probabilistic and entropic 

interpretation. 

2.7 CONCLUSIONS AND RELEVANCE TO THE PRESENT WORK 

In the previous sections, Shannon's entropy measure, Jaynes' maximum 

entropy criterion (MEC) and their applications to several areas in 

science and engineering have been examined. In particular, emphasis 

has been placed on those applications which have been made in an 

optimization context. 

examination. 

Several conclusions can be drawn from this 

1. Shannon's informational entropy has wider applicability than both 

classical entropy and statistical entropy as it is defined in a more 

general context. 

2. Jaynes' maximum entropy criterion is indeed a powerful tool for 

inference on the basis of partial information and suggests a much 

more widespread potential for use of the MEC in more application 

areas than hitherto. 
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3. The use of entropy in an optimization context and the analogy 

between an optimizing process and thermodynamic equilibrium are 

subjectively sensible. 

The present study aims to explore the use of Shannon entropy and 

Jaynes' maximum entropy criterion in an optimization context. The first 

difficulty to be overcome is to generalize the concept of probability 

which is invariably required for the use of entropy; that is, 

appropriate quantities in optimization problems must be sought which 

could be reasonably interpreted as probabilities. 

The optimization problem to be studied in this thesis is the 

inequality constrained problem (P), as defined by (1.1) and (1.2). It 

is also assumed that at least one of the original constraints is active 

at the optimum solution; that is, it is a multi-constrained, 

non-degenerate NLP problem. 

It has been seen in Section 1.4 that if the optimum surrogate 

* * multipliers A are known, the solution x to problem (P) can be obtained 

by solving the corresponding surrogate problem (S) once. Unfortunately, 

it is impossible to predict these optimum multipliers in advance using 

conventional geometric arguments. The wide applicability of Shannon's 

entropy and Jaynes' maximum entropy criterion, as demonstrated by the 

previous applications described in this chapter, suggests that they 

could help to resolve this difficulty. To this end, the original problem 

is divided into m, the number of original constraints, subproblems of 

which each has the form: 
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(PJ) 

Min 

s. t. 

f(x) 

g.(x)~O 
J 

(2.26) 

(2.27) 

Each subproblem thus consists of minimizing the original objective 

function subject in turn to one of the original constraints. Each of 

these subproblems may be thought of as a micro-state of the whole 

thermodynamic system, which corresponds to the original problem (P). 

It is then argued that the most probable state of the system is one in 

which the entropy of the system achieves a maximum value. This approach 

is described in detail in Chapter 4. 
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CHAPTER 3 DUALS OF THE MAXIMUM ENTROPY PROBLEM 

SUMMARY 

This chapter constructs mathematical dual forms of the maximum entropy 

problem nfEC) considered in Chapter 2 and develops a computational 

approach which enables discrete or continuous maximum entropy 

distributions to be calculated relatively easily. The dual forms give 

additional insights into the nature of entropic processes. The 

relationships between informational entropy and experimental 

thermodynamic entropy are discussed. 

Much of the original material of this chapter has been published in 

a joint paper by the author and Dr.A.B.Templeman[92] entitled "Entropy 

Duals" which is reproduced as Appendix B of this thesis. 

3.1 INTRODUCTION 

Shannon's entropy measure and Jaynes' maximum entropy criterion have 

found throughout science and technology many and widespread 

applications, as described in Chapter 2, of which uses of entropy in 
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an optimization context are of particular interest in this thesis. 

Before examining this main theme, it is worthwhile examining further 

the nature of entropic processes. This may strengthen our understanding 

and thereby lead to the discovery of more application areas than 

hitherto. 

It has been pointed out in the last chapter that the Jaynes' maximum 

entropy problem (MEC), defined by (2.2)-(2.4), is a convex programming 

problem. This convex structure of problem (HEe) implies the existence 

of a mathematical dual form. In fact, many researchers(Refs.[l], [97], 

[98]) have used the dual function in either theoretical or computational 

aspects. To the author's knowledge, however, they have not formally 

recognized it as a dual form of entropy. Consequently this has led to 

some confusions between the two forms of entropy, the primal and the 

dual. 

Two ways of deriving the dual are presented of which one uses the 

classical Lagrangean Duality theory and the other makes use of the 

well-established duality theory of geometric programming. Although the 

two duals appear to be different, they are shown to be equivalent under 

variable transformation. The dual formulations given herein are in terms 

of discrete entropy but similar dual forms for continuous entropy are 

also presented on a pragmatic basis. 

An additional aspect of the dual forms is that they afford a simple 

means of calculating MED's for complex problems using only unconstrained 

minimization algorithms. A numerical example is presented. 
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3.2 DUAL FORMS OF THE MAXIMUM ENTROPY PROBLEM (MEC) 

As noted earlier, problem (~lEC) is a convex programming problem for 

which there must consequently exist a mathematical dual form. Two ways 

of deriving the dual are presented below one of which uses Lagrangean 

duality and the other uses geometric programming duality as described 

in Appendix A. 

3.2.1 LAGRANGEAN DUAL FORMULATION 

All the necessary ingredients for deriving a formal dual form of problem 

01EC) have been assembled in Section 2.3. A closed form of the solution 

of problem (MEC) , as expressed in Eq.(2.9), has been obtained in terms 

of m Lagrange multipliers l.l .. Because of the convex structure of the 
J 

problem, this solution is a global maximum. The solution procedure is 

not repeated here. 

We proceed in deriving the dual by directly substituting l.lOfrom 

Eq.(2.8) and Pj from Eq.(2.9) into the Lagrangean function (2.5). After 

algebraic manipulation, the dual problem (DE) is obtained as 
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(DE) 
m 

Min D(ll) = 2.nQ - r ll}[gj] (3.1) 

j=1 

where 

n m 
Q = r exp[ r lljgj(Xi )] (3.2) 

i=1 j=1 

Before examining problem (DE) and its relationship to problem (MEC) 

in detail, another way of deriving a dual problem for problem (MEC) 

using geometric programming is presented. 

3.2.2 GEOMETRIC PROGRAMMING DUAL FORMULATION 

Geometric programming was developed in the late 1960s and has become 

an established technique of mathematical programming. Appendix A to this 

thesis contains the mathematical forms of GP as used in this thesis. 

Duffin, Peterson and Zener[26] give a comprehensive background to the 

topic and full proofs of all the duality relationships which are used 

here without proof. 

To use the primal-dual relationships of GP as stated in Appendix A, 

a modified form of problem (MEC) is introduced which has a different 

form of the objective function. From problem (MEC), 
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n n n 

S = r Pi£nPi= r £n(l/Pi)Pi = £n[ IT (l/Pi)Pi] 

i=l i=l i=l 

Taking exponentials of both sides of Eq.(3.3) gives 

n 

exp(S) = IT (l/p.)Pi 
1 

i=l 

(3.3) 

(3.4) 

The function exp(S) replaces S to give a modified maximum entropy 

problem (EM) in which the constraint (2.4) has taken a slightly 

different form. 

(EM) 
n 

Max G(p) = exp(S) = IT (1/Pi)Pi 

i=1 

n 
s.t. rpi=l 

1=1 

n 
! p.(g.(x1)-E[g.]) = 0 

1 J J 
i=l 

It can be noted here that taking the exponential of the entropy 

function S in no way affects its concavity and both problems (MEC) and 

(EM) have the same solution probabilities. 

By comparing problem (EM) with the primal-dual pair of GP problems 

given in Appendix A, it can be immediately recognized that problem (EM) 

correponds very closely to problem (DG), the GP dual problem. 
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Consequently, it is now possible to use the GP duality relationships 

as given in the Appendix to construct a new problem (DEM) which bears 

the same relationship to problem (EM) as (G) does to (DG). 

(DEM) 

Min 

n m 
F(y) = L n (y )(gj(xi)-E[gj]) 

j 
i=lj=l 

Thus we have established two pairs of primal-dual problems: 

(MEC) - (DE) and (EM) - (DEM) 

(3.5) 

(3.6) 

Since problem (EM) is obtained from (NEC) simply by taking the 

exponential of the entropy function S, it is expected that the two dual 

problems (DE) and (DEM) are closely related. In fact problem (DEM) can 

be obtained from problem (DE) by setting 

= exp(ll.) 
J 

= exp[D(ll)] 

j=l, ... ,m (3.7) 

(3.8) 

It is therefore possible to calculate the least biased probabilities 

p. by solving either of the dual problems, (DE) or (DEM). 
J 
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3.3 INTERPRETATION OF THE ENTROPY DUALS 

In interpreting the duality relationships obtained in the last section, 

it should be noted that the primal and dual problems are defined in 

different spatial domains. The primal problems (MEC) and (EM) are the 

well-known entropy maximization problems in the n-dimensional space of 

the discrete probabilities Pi whereas the dual problems (DE) and (DEM) 

are function minimization problems in the m-dimensional space of dual 

variables ll. or y .. This distinction is important in that the only point 
J J 

at which primal and dual spatial domains meet is at the unique 

optimizing point where entropy reaches its constrained maximum value 

while the dual function reaches its minimum value, and they are equal. 

There is, therefore, no transformation in a horizontal sense between a 

general, non-optimal point in primal space and another point in dual 

space. At a non-optimal point, primal and dual objective functions have 

different values, and the former is always less than the latter; that 

is, 

n m 
S(p) = 1: p. 2.np. ~ 

l. l. 
2.nQ - 1: 1l.E[g.] = D(ll) 

J J 
(3.9) 

i=1 j=l 

where the equality holds only at the respective optimum points, i.e., 
,,: ,,: 

S(p )=D(ll ). 

There are many researchers who have missed this distinction between 

S(p) and D(ll). For example, Tribus[97,98] has related the function 
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D(~) to various thermodynamic functions without any reference to such 

a distinction. Jaynes was the first who indicated the importance of 

recognizing the difference between S(p) and D(~) in applying the maximum 

entropy criterion to irreversible processes. However, he did not 

appreciate the nature of the convex duality of S(p) and D(~), which the 

above work has demonstrated. He derived (3.9) by the ad hoc use of a 

mathematical inequality, and referred to the left-hand function and the 

right-hand function as =i~n=f=o=r.:.:;m:.::B:.::t:.::i:.::o=n:..::a:..::1=----=e~n:.::t=r:.::0.L:p:..L.y and expe r imen tal 

thermodynamic entropy, respectively. He presented this result in his 

Brandeis Lectures (See Ref.[63]). It is apparent that the relationship 

between these two entropies is shown more clearly through the present 

duality study than in Jaynes' work. 

Geometric programming duality relationships have been derived by 

means of the arithmetic-geometric mean inequality as presented by Duffin 

et a1[26]. The fact that problems (EM) and (DE~I) form a primal-dual 

pair of a GP problem suggests that the dual formulation of an 

unconstrained GP problem represent an entropic process. This yields new 

insight into the dual formulation of GP problems. This duality 

relationship between GP problems and entropy maximization problems has 

been noted by several authors[23,104]. 

75 



3.4 COMPUTATIONAL APPLICATION OF THE ENTROPY DUALS 

A computationally effective algorithm for calculating least biased 

discrete probabilities p. is very important in applying Jaynes' maximum 
1 

entropy criterion. There have been several ways of calculating the 

desired probabilities. Griffeath[53] solved problem (MEe) directly 

using constrained nonlinear programming (a feasible direction method). 

An alternative method is to solve the m expectation equations for the 

m unknown Lagrange multipliers llj and substitute values of these 

multipliers into the n equations (2.9) to give the desired 

probabilities. The difficulty in this method lies in solving the m 

equations. One way of doing this is to use least squares methods by 

writing the equations in residual form. This is the basis of the methods 

used by Siddall and Diab[87], and Basu and Templeman[5] for continuous 

r.v.'s although they are equally applicable to discrete r.v. IS. 

The above methods are cumbersome and require considerable care to 

be taken to avoid computational inaccuracies. A different approach, in 

the spirit of Agmon et al[l], is that of minimizing the dual function 

Dell) directly and using Eq.(2.9) to calculate the desired probabilities. 

This approach is discussed further below. 

Both dual problems (DE) and (DEH) are unconstrained nonlinear 

minimization problems. The number of dual variables is equal to the 

number of the expectation constraints m which is generally very small 

compared with the number of the primal variables n. Problem (DE) is here 
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chosen for study as the gradient of D(ll) has explicit expression 

obtained by substituting p. from (2.9) into the expectation constraints 
1 

(2.4). This means that efficient unconstrained minimization algorithms 

which employ gradients can be used. Another important feature is that 

it is always possible to specify a good starting point for the numerical 

search process. This consists of initially setting all the dual 

variables ll. to zero. It is easily seen from Eq.(2.9) that this starting 
J 

point is equivalent to making an initial guess that the probabilities 

p. are uniformly distributed. If the numerical optimization process 
1 

subsequently alters the values of the variables llj so as to minimize 

the dual function Dell), this reflects the fact that, and the extent to 

which, the extra information provided by the statistical data causes 

the uniform probabilities to change to a different distribution. The 

strictly convex nature of problems (DE) and (DEM) ensures that the 

globally optimum point will be reached whatever the starting point may 

be. 

A short program has been made to solve the dual problem (DE). A NAG 

library subroutine E04DFF, a modified Newton algorithm devised by Gill 

and Murray[45], is used for the unconstrained minimization of the 

function D(ll). A numerical example is calculated using this program and 

is presented next. 

Example 3.1 The example is based upon an imaginary die-rolling 

experiment using an unfair die. The test No.1 postulates that after many 

rolls the mean of the face-up value is E[x]=4.5 (instead of 3.5 for a 

fair die). The corresponding problem nlEC) for this case consists of 
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maximizing an entropy function S(p) over the variables Pi(i=1, .. ,6) 

subject to the normality condition (2.3) and one expectation constraint 

in the form 

6 
1: p.i = 4.5 

1 

i=1 

Table 3.1 Moment data used in test examples 
=============================================== 
Test No. 

1 
2 
3 
4 

E[x] 

4.5 
4.5 
4.5 
4.5 

22.75 
22.75 
22.75 

123.0 
123.0 690.0 

======================--====== 

The dual function D(~) involves only a single variable associated 

with the above constraint and is in the simplest form 

6 
D(~) = In[ 1: exp(~i)] - 4.5~ 

i=l 

which can be solved by anyone-dimensional search and has the optimal 
,tr 

solution ~ =0.371043. Substituting this value into Eq.(2.9) gives the 

desired probabilities for this case, shown in Table 3.2. 

In test No.2 it is assumed that both the mean and variance of the 

face-up values are known, E[x]=4.5 and E[x 2 ]=22.75 (instead of 15.666 
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for a fair die). In tests No.3 and No.4 hypothetical values for E[x 3 ) 

and E[X4) are given as shown in Table 3.1. For each test the underlying 

discrete probabilities which maximize entropy subject to the 

corresponding expectation constraints are found using the short program. 

Results are given in Table 3.2. 

Table 3.2 Resulting discrete probabilities 

Test No. 
Probs. 1 2 3 4 

PI .054354 .067414 .015168 .000030 

P2 .078772 .081046 .135295 .176936 

P3 .114161 .105414 .182140 .166814 

P4 .165447 .148336 .115131 .06220S 

Ps .239774 .225829 .106299 .166814 

P6 .347491 .371961 .445967 .427054 

---------------------------------------------------
S 1. 613581 1.60957S 1. 491612 1.440478 max 

============--===---======--========= 

Computational experience shows that the dual algorithm needs little 

programming effort and converges very quickly. Numerical accuracy is 

very high. 
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3.5 DUAL FORMS FOR THE CONTINUOUS CASE 

Dual forms similar in nature to (DE) and (DEM) can be derived for the 

continuous case in which the r.v. x is continuous-valued rather than 

discrete-valued. If f(x) represents the probability density function 

of the continuous r.v. x, the maximum entropy problem (MECC) paralleling 

problem (MEe) is defined by (2.11)-(2.13). 

Using the same approach as in Section 3.2 it can be shown that the 

dual forms are similar to problems (DE) and (DEM). One of them is derived 

using Lagrangean duality, and has the form: 

(DEC) 
m 

Min D (~) = 1n[Jexp( L ~.g.(x))dx] 
c J J 

(3.10) 

j=1 

Another dual form parallels problem (DEM) and is in the form: 

(DEMC) 
m 

Min F (y) = J IT (y.)(gj(x)-E[gj])dx 
c J 

j=1 

From a computational point of view, problems (DEC) and CDEMC) have 

all the attributes of their discrete counterparts. They are slightly 

more complicated in that they each involve a single integration to 

evaluate the dual function Dc(~) or FcCY) at each trial point in the 

minimization process. However, the alternative solution methods for 
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continuous entropy maximization described in Refs.[5] and [87] require 

m numerical integrations at each trial point. Consequently. obtaining 

maximum entropy p.d. 's via the dual forms (DEC) or (DE~lC) should be 

considerably simpler and more rapid than the alternative methods. 

3.6 CONCLUSIONS 

As shown in the previous sections, the dual forms of the maximum entropy 

problem have merit in respect of both theoretical and computational 

aspects. They cast new insights into the nature of entropic processes 

and clarify some ambiguities in the literature. The distinction between 

informational entropy and experimental thermodynamic entropy has been 

made clear through the dual formulations and is very important in 

non-equilibrium thermodynamics. It has been demonstrated that the dual 

formulation for an unconstrained GP problem is an entropic process. 

This shows that the arithmetic-geometric mean inequality also involves 

entropic processes. This recognition make it possible to formulate the 

dual forms of GP problems through entropic processes. 

The solution of the maximum entropy problem using the dual forms has 

shown considerable advantages over the primal approaches. This may 

promote more applications of Jaynes' maximum entropy criterion. 
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CHAPTER 4 ENTROPY IN OPTIMIZATION: DUAL METHODS 

SUMMARY 

This chapter studies the use of entropy in the solution of constrained 

nonlinear programming problems and is mainly concerned with developing 

dual solution methods. Through the surrogate Lagrangean, a constrained 

optimization problem is divided into a number of subproblems which are 

interpreted as the micro-states of a statistical thermodynamic system. 

Surrogate multipliers thus represent probabilities of the system being 

in each micro-state. An optimizing process is then compared with the 

transition of the system to an equilibrium state at which entropy of 

the system should attain a maximum value. Jaynes' maximum entropy 

criterion (NEe) is employed to formulate an entropy maximization model 

for calculating least biased probabilities, i.e., surrogate 

multipliers. A closed form of the solution is obtained which clearly 

demonstrates the interactivity among the multipliers. A primal-dual 

method is developed and a numerical example is presented. 

The idea of entropy augmentation is then proposed in which a term 

related to the multiplier entropy is added to a surrogate dual. Using 

Lagrangean stationarity conditions for the augmented surrogate dual 

problem, we derive a dual iterative method which is proved to be 

equivalent to the entropy maximization method. However, if an explicit 
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surrogate dual can be obtained this approach requires iterations over 

dual space only rather than alternate iterations over primal and dual 

spaces as in the previous primal-dual method. This approach has certain 

similarities to the penalty function approach as well as the augmented 

Lagrangean approach. 

4.1 INTRODUCTION 

It has been pointed out in the end of Chapter 2 that the optimization 

problem to be studied in this thesis is the inequality constrained 

problem (P), as defined by Cl.l) and Cl. 2). It is usually impossible 

for one to know in advance whether a particular constraint is active 

or not at the optimum, which has presented great difficulties in 

developing solution methods. Various active set strategies are usually 

employed to alleviate these difficulties. However, such a treatment 

destroys the relationships between the original constraints in the sense 

that even for a pratical problem, it is possible for an active set to 

vary during the course of an optimization process. This creates 

discontinuities of some functions and their derivatives and causes some 

algorithms to suffer from instability. The present study aims at 

examining the "interactivity" among the constraints, hence among the 

Lagrange multipliers, and developing solution methods which are 

effective without relying upon any active set strategy. 
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The difficulty of making a prediction about the activity levels of 

the constraints arises from many possible combinations of active and 

inactive constraints. When there is a single constraint, there can 

exist only two states: either active or inactive. For a problem with m 

m 
constraints, however, there are a total of 2 different combinations. 

It is obvious that a solution method will not be efficient if it solves 

m 
the original problem by solving 2 problems each of which corresponds 

to a particular combination. This combinatorial complexity for a 

constrained optimization problem has some similarity to a statistical 

thermodynamic system. For example ,. we cons ider a one-dimens ional 

lattice as shown below 

Fig.4.1 One-Dimensional lattice 

At each point of the lattice, there is a particle whose spin direction 

is denoted by a small arrow, pointing up or down. If the lattice has 

m points, there are 2
m 

different possibilities of how to arrange the 

orientation of the arro~s. Although it is difficult to predict the exact 

state of the system on the microscopic scale, the methods of statistical 

thermodynamics resolve this problem by estimating probabilities of the 

system being in each micro-state. Once these probabilities have been 

determined, some macroscopic thermodynamic quantities such as energy 

d h " "l h can be evaluate as t e mean va ues of t e corresponding thermodynamic 

quantities of individual micro-states. The combinatorial similarity 
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between a constrained optimization problem and a statistical 

thermodynamic system, such as the above one-dimensional lattice, 

suggests that the principles and methods of statistical thermodynamics 

could be used in the solution of constrained optimization problems. 

4.2 STATISTICAL THERMODYNAMIC SIMULATION OF OPTIMIZATION 

It seems to be natural that for an optimization problem with m 

inequality constraints, we divide it into m suboptimization problems 

(PJ), as defined by (2.26) and (2.27). Each of these subproblems is then 

interpreted as a micro-state of the simulated thermodynamic system which 

has a certain "energy" represented by the Lagrangean function for the 

corresponding subproblem (PJ): 

L.(x,a.) = f(x) + a.g.(x) 
J J J J 

(4.1) 

where a. is the Lagrange mUltiplier associated with a single constraint 
J 

j. The system energy is then the mean value of energies L. of all the 
J 

individual micro-states in a probabilistic sense. Suppose that at a 

particular equilibrium state, probabilities p. of each micro-state have 
J 

been assigned, then the mean energy of the system is 

m m 
L(x,p,a) = t p. L. ex, a.) 

J J J 
= L Pj[f(x)+ajgj(x)] (4.2) 

j=l j=l 
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or equivalently 

L(x,p,a) = f(x) + 
m 
! p.a.g.(x) 

J J J 
j=l 

because of the normalization of the probabilities Pj' 

(4.3) 

It should be noted that the mean energy function (4.3) has some 

disadvantages which prevent it from direct use in a thermodynamic 

system. Comparing Eq.(4.3) with the surrogate Lagrangean function (1.41) 

which is rewritten as follows 

L(X,A,ex) = f(x) + a 
m 
! A.g. ex) 

J J 
j=l 

(1. 41) 

we find that the m individual Lagrange multipliers a
j 

in (4.3) are 

replaced by a single scalar multiplier a in (1.41) associated with the 

surrogate constraint. It is therefore convenient to use Eq.(1.41) rather 

than Eq.(4.3) as the mean energy of the system. Some relationships among 

the vectors p, A and a, and the scalar a can be obtained by setting 

aA. = p.a. 
J J J 

j=l, ... ,m (4.4) 

Since A. satisfy the normality condition (1.40), the summation of both 
J 

sides of Eq.(4.4) over the index j from 1 to m yields 
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(4.5) 

It turns out that the Lagrange multiplier a associated with the 

surrogate constraint is the mean value of the individual Lagrange 

multipliers a. associated with each constraint. This has reflected the 
J 

fact that the surrogate constraint represents a certain "average" of 

the original constraints. The relationships between the vectors ~ and 

p can be derived by substituting a from (4.5) into (4.4) and are written 

as 

m 
/ t p.a. 

J J 
j=l, ... ,m (4.6) 

j=l 

which demonstrate a probabilistic interpretation for the surrogate 

multipliers ~ .. 
J 

Thus a slightly different statistical thermodynamic model is 

described as follows. For ease of explanation, the surrogate Lagrangean 

function (1.41) can be expressed in an equivalent form: 

m 

L(x,~,a) = t ~j[f(x)+agj(x)] (4.7) 

j=l 

using the normalization of the surrogate mul tipliers ~.. Then the 
J 

simulated thermodynamic system can be thought as consisting of m 

micro-states, each of which has energy 
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L.(x,a) = f(x) + ag.(x) 
J J 

(4.8) 

The surrogate multipliers A. then represent probabilities of the system 
J 

being in each micro-state. 

Statistical thermodynamics tells us that a thermodynamic system 

spontaneously tends to its equilibrium state at which the probabilities 

within the system are given by the Boltzmann-Gibbs distribution. As 

demonstrated by Jaynes, the same distribution can be generated using 

the maximum entropy criterion. Thus an optimization problem is related 

to a thermodynamic equilibrium problem which reduces to an entropy 

maximization problem of calculating the least biased probabilities. 

4.3 AN ENTROPY MAXIMIZATION APPROACH TO OPTIMIZATION 

Although the surrogate constraint approach has the disadvantage of 

requiring a sequence of surrogate problems (S) to be solved, a surrogate 

constraint depicts the interactivity between original constraints 

better than in other approaches. In some cases, this approach has 

demonstrated its usefulness (Refs.[2], [24], [44], [48] and [49]). In 

Section 1.4 we have described a possible solution procedure and 

introduced the concept of surrogate duality. The major snag in a 

surrogate iterative scheme lies in updating the surrogate multipliers 

A.. It is clear from the surrogate duality theory that the updates 
J 
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should maximize the surrogate dual function seX) subject to the 

normality condition (1.40). However, there is generally no explicit dual 

function seX). Surrogate algorithms have hitherto based the multiplier 

updates upon gradient information only which are similar to the Lagrange 

multiplier updates (1.34). It has been pointed out that these updates 

converge very slowly. 

By analogy with thermodynamic equilibria, the updates of these 

multipliers are governed by entropic processes. Jaynes's maximum entropy 

criterion is then employed to construct the following entropy 

maximization problem: 

(ME) 
m 

Max H(>') = - I X,tn>', (4.9) 
J J 

j=l 

m 
s.t. 1: X. = 1 (1. 40) 

J 
j=l 

m 
I >..g. = e (4.10) 

J J 
j=l 

where HC>') represents the entropy of the system, g. represent values 
J 

of the constraints g. (x) at the updating point and the scalar e 
J 

corresponds to a change in the mean energy of the system when the system 

changes from one configuration to another as discussed in the next 

section. 
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Applying the Lagrange multiplier method to the above maximum entropy 

problem (HE) (as was done to problem (HEe) in Section 2.3). we have a 

closed form of the solution to problem (HE) as 

m 
Xj = exp(~gj) / I exp(~gj) j=1, .. ,m (4.11) 

j=1 

where the scalar ~ represents the Lagrange multiplier associated with 

the constraint (4.10) and may be interpreted as a "temperature" 

parameter of the system. which is functionally related to the quantity 

e. Substituting (4.11) into (4.10) gives 

m m 
I gjexp(~gj) / I exp(~gj) = e (4.12) 

j=l j=1 

In the proposed algorithm, instead of specifying values for e and 

determining ~ through (4.12), we use the temperature parameter ~ as a 

control parameter whose value determines e. 

Eq. (4.11) is the update formula for surrogate mul tipliers ~. in a 
J 

surrogate solution procedure. Taking a closer look at it, some features 

can be seen. Firstly, this formula has a single parameter ~ upon which 

all the surrogate multipliers A. depend. Thus the problem to update the 
J 

m multipliers has become a much simpler single parameter problem. The 

nonnegativity and normality conditions required to be satisfied by the 

surrogate multipliers A. 
J 

are automatically satisfied by Eq.(4.11) 

itself. Once ~ is determined, the updates for the surrogate multipliers 
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follow automatically from (4.11). Secondly, consider two particular 

surrogate multipliers ~ and ~ for instance. From (4.11), the ratio p q 

(~ /~ ) is 
P q 

~ /~ = exp[~(g -g )] 
p q p q (4.13) 

which will be greater than unity if g >g and ~>O. This accords with p q 

the intuition that the greater the activity level of a constraint, the 

greater its surrogate multiplier will be. This suggests that 6 should 

be positive. For the given values of the two constraints, the ratio 

~ /~ is determined by the magnitude of 6, 1. e., the greater 6, the 
p q 

greater the updated surrogate multiplier associated with the constraint 

having the largest value will be. In other words, the constraint with 

the larger value will play a greater role in the next iteration for a 

surrogate constraint approach than it does for a smaller 6. It is 

therefore sensible to specify an increasing positive sequence for the 

parameter ~. Thus the effects of all of the constraints can be 

incorporated in the optimization process in the early stages and slack 

constraints can be discarded later as the solution of problem (S) 

approaches the solution of problem (P). 

The solution procedure is then proposed as follows: 

1. Set the iteration number k=O and ~=O, which amounts to setting all 

the surrogate multipliers to ~.=l/m. 
J 

2. Solve problem (S) for given ~ to yield the solution xk. 
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3. Check some convergence criteria, for example the feasibility of the 

original constraints and the algorithm stops if they are satisfied. 

4. Increase ~ by a positive value and update X. using (4.11). 
J 

5. Set k=k+1 and go to Step 2. 

A small example is chosen to illustrate the above algorithm. 

Example 4.1: The problem to be solved is chosen from Ref. [6) and takes 

the form 

f(x) -1 
Min = (x l xZx3) 

s.t. gl(x) = 2x1+x2+3x3-1 S 

g2(x) = x
1
+x

2
+x3

-1 ~ 0 

g3(x) = x1+3x2+2x3-1 S 

The corresponding surrogate problem is: 

Min 
-1 f(x) = (x

1xZx3) 

0 

0 

s.t. gs(x) = X1g1(x) + X2g2(x) + X3g3(x) S 0 

The surrogate constraint can be rearranged on collecting the terms as 

This surrogate problem is a zero degree of difficulty GP problem and 

can be analytically solved for a given set of X. by solving a system 
J 
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of linear equations (Ref.[26]). The solution is expressed in terms of 

the given multipliers A. (j=1,2,3) as 
J 

Xl = 1/[3(2A1+A 2+A 3)] 

x
2 

= 1/[3(A1+A 2+3A 3)] 

x3 = 1/[3(3A1+A 2+2A3)] 

The parameter ~ is specified as exp(k) in this example where k 

represents the iteration number. The computational results are presented 

in Table 4.1. After 4 iterations, the optimal solution of the original 

problem is reached which is as exact as the three decimal place accuracy 

permits. Convergence is very fast. 

Table 4.1 Results for Example 4.1 
===--================----================================================ 
k f 

----------------------------------------------------------------------
0 1/3 1/3 1/3 .250 .200 .167 .200 -.383 .183 120.00 
1 2.718 .463 .095 .442 .228 .177 .141 .056 -.454 .041 175.74 
2 7.389 .521 .012 .467 .219 .172 .133 .009 -.476 .001 199.61 
3 20.086 .540 .000 .460 .216 .174 .131 -.001 - .479 .000 203.11 
==================--=================================================== 

4.4 AN ENTROPY AUGMENTATION APPROACH TO OPTIMIZATION 

The entropy maximization approach presented in the last section is a 

primal-dual method which requires alternate iterations over both primal 

93 



and dual spaces. The iterations over the primal space involve solving 

a sequence of surrogate problems (S) while the iterations over the dual 

space involve the updates of dual variables X which are given by the 

solution of problem (ME), i.e., by Eq.(4.11). 

It is possible to replace the alternate iterations by iterations over 

a single space, either primal or dual space. This section examines a 

dual iterative method. The primal method is left to the next chapter. 

A surrogate dual problem (SD) is defined by (1.44)-(1.46). In 

general, seX) is an implicit function of the given surrogate multipliers 

X except for some separable problems. This makes it difficult to solve 

the primal problem by means of solving the surrogate dual problem. 

Furthermore, even if an explicit dual function seX) is obtainable the 

solution of problem (SD) is not as easy as it looks. Instead of solving 

problem (SD), we solve a modified problem (SDE) in which a term related 

to the multiplier entropy H(X), as defined by (4.9), is added to the 

surrogate dual seX). The entropy augmented surrogate dual problem (SDE) 

has the form: 

(SDE) 

Max s (X) = seX) + H(X)/p (4.14) p 

m 
s .t. I A. - 1 = 0 (4.15) 

J 
j=1 

X. ~ 0 j=l, .. ,m (4.16) 
J 

where 
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m 
HCX) = - L XjtnXj (4.9) 

j=l 

and p is a parameter which is specified as an increasing positive 

sequence. The problem (SDE) with the parameter p is later referred to 

as the pth entropy augmented surrogate dual problem. It is intuitively 

obvious that as the parameter p becomes sufficiently large the term 

s CX) will dominate the solution to problem (SDE). Thus it seems 

reasonable to suppose that seX) approaches the maximum of problem (SD) 

with p approaching infinity. 

At first, let us examine some properties of problem (SDE). It is 

apparent that the solution of problem (SDE) is a function of the 

parameter p which is denoted by X
p

. Then the entropy augmented objective 

function is denoted by 

(4.17) 

The following theorem describes some of important properties of 

problem eSDE). 

Theorem 4.1: Given O<p~q, if xP and X
q 

are the solutions of the pth 

and qth problems (SDE), respectively, then 

sOp) ~ scxq) (4.18) 

HOP) ~ H(X q) (4.19) 

s (XP) ~ s (xQ) (4.20) p q 
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Proof: since xP and Xq are the solutions of problems (SDE) for given 

P and q, respectively, the following inequalities hold: 

that is, 

S(Aq) + H(Aq)/p $ S(AP) + H(XP)/p 

s(XP) + H(XP)/q $ s(xq) + H(Aq)/q 

Eliminating H(XP) and H(Xq ) from (4.21) and (4.22) gives 

(4.21) 

(4.22) 

(4.23) 

from which (4.18) follows. Similarly eliminating S(AP) and S(Aq) gives 

from which (4.19) follows. As q~p and H(X)~O, 

and X is the solution of problem (SDE) for given P such that 
P 

(4.24) 

(4.25) 

(4.26) 
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from (4.25) and (4.26), (4.20) follows. This completes the proof. 

======--=============--============== ® 

The theorem implies that s (~p) will increase whereas H(~P) and 

sP(~ ) will decrease monotonically with increase of the parameter p. 
p 

It is also assumed that the surrogate dual problem (SD) is well defined. 

This assumption and Theorem 4.1 therefore mean that the limits of 

s(~p) and H(~P) exist as p tends to infinity, and are, respectively, 

the maximum of s(~) and the minimum of H(~). These properties ensure 

that the solution of the pth problem (SDE) converges to the solution 

of problem (SD) as the parameter p approaches infinity. 

The solution of the pth problem (SDE) can be found using the 

Lagrangean stationarity conditions. As the nonnegativity condition 

(4.16) is automatically satisfied by the solution itself, it will not 

be introduced into the Lagrangean function of problem (SDE) which thus 

takes the form: 

m 
L (~,~) = s(~) + H(~)/p + ~( L ~. - 1) 

p J 
(4.27) 

j=l 

The stationarity conditions are 

aL /a~. = as(~)/a~.+ [aH(~)/a~.]/p + ~ = 0 
P J J J 

j=1, .. ,m (4.28) 

where 
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aH(A)/aA. = -(1 + inA.) 
J J 

(4.29) 

Substituting (4.29) into (4.28) and then rearranging (4.28) give 

(4.30) 

The multiplier ~ can be eliminated by considering the normality 

condition (4.15) and A. eventually takes the form 
J 

m 
Aj = exp[pas(A)/aA j ] / ! exp[pas(A)/aA j ] j=l, ... ,m (4.31) 

j=l 

which is used as a recurrence formula for the surrogate multipliers 

>.. •• 
J 

For the case of an explicit sO), its derivatives, as(A)/aA
J

, may 

also have explicit forms so that AP can be iteratively found using 

* (4.31) and approaches A as the parameter p tends to infinity. 

A dual iterative solution procedure is as follows: 

1. Set p=O, which amounts to setting all Aj=l/m, and set an increment 

of p, 6p. 

2. Let p=p+6p and iterate A. using (4.31) until the process converges 
J 

to the solution AP . If the process converges very slowly or does 

not converge at all, set 6p=c6p (c<l) and repeat this step from the 

beginning. 
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3. Check global convergence criteria, and if satisfied the algorithm 

stops, otherwise return to step 2. 

From Theorem 4.1, a global convergence criterion may check if s(AP) 

remains increasing. Once s(AP) starts dropping, the algorithm has 

converged. The local convergence criteria. for Step 2 may check if 

specified errors for seA) and IIAII have been satisfied. 

The proposed dual iterative method has remarkable advantages over 

other methods. First of all, the normality and nonnegativity conditions 

(4.15) and (4.16) are automatically satisfied by Eq.(4.31). Secondly, 

this method is extremly simple because of the fact that only algebraic 

operations are required to reach the optimum solution. }!oreover, 

convergence will be assured if an appropriate positive sequence of p 

is specified. 

It is shown in Chapter 6 that for a class of structural optimization 

problems, an explicit surrogate dual can be derived so that the present 

method can be effectively used for solving these optimum design 

problems. 
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4.5 EQUIVALENCE RELATIONSHIP BETWEEN EQS. (4.11) AND (4.31) 

For the general case where an explicit surrogate dual s(l) cannot be 

found, Eq. (4.31) is still useful. The solution of problem (S) for a 

given vector 1 should satisfy the following conditions: 

m 
aL lax. = af(x)/ax. + a I 1.ag.(x)/ax

i 
= 0 

s 1 1 J J 
i=1 .. ,n (4.32) 

j=1 

m 
aL lan = I l.g.(x) = 0 

s J J 
(4.33) 

j=1 

The solution of problem (S) can then be obtained by solving Eqs.(4.32) 

and (4.33) which are expressed as x(l) and a(l). Thus the surrogate dual 

function s (1) is an implicit function of 1 obtained by substituting 

x(l) and a(l) into the surrogate Lagrangean (1.41). Using the implicit 

function theorem and noting Eqs.(4.32) and (4.33), the derivatives of 

s(l) w.r.t. lj are calculated as: 

as(l)/al. = ag.(x) 
J J 

j=1, ... ,m (4.34) 

Substituting (4.34) into (4.31) yields 

m 
l. = exp[pag.(x)] I I exp[pag.(x)] 

J J J 
j=l, .. ,m (4.35) 

j=l 
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If the product pa is replaced by a single parameter a, then Eq.(4.35) 

leads to the same updating formula as that given by Eq.(4.1l), i.e., 

Eqs.(4.ll) and (4.31) are equivalent. Consequently, we have proved that 

the entropy maximization approach is equivalent to the entropy 

augmentation approach. This justifies the previous entropy maximization 

approach as well as the statistical thermodynamic simulation. 

4.6 CONCLUSIONS 

Two entropy-based approaches to constrained optimization problems have 

been presented in the previous sections. By analogy with thermodynamic 

equilibria, Jaynes' maximum entropy criterion was employed to formulate 

an entropy maximization problem (ME) which yielded an update formula 

for surrogate multipliers. This formula is very simple and reflectes 

the interactivity between the surrogate multipliers. The problem of 

estimating many multipliers has been reduced to a single parameter 

problem, which greatly simplifies the updating problem and strengthens 

the surrogate constraint approach. A numerical example was given which 

showed that the updates using Eq.(4.ll) lead to fast convergence. 

The idea of augmenting a surrogate dual sO.) by the multiplier 

entropy was presented, which has resulted in the derivation of a dual 

iterative method. This method requires iterations over only dual space 

if an explicit surrogate dual can be obtained. For the more general 
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case, the equivalence between the entropy maximization approach and the 

entropy augmentation approach was proved. This has provided additional 

insights into the entropy maximization approach as well as the 

statistical thermodynamic model. 

In this chapter, the entropy augmentation approach was discussed in 

terms of the dual space to derive the dual iterative procedure. This 

approach has certain similarities to the penalty function approach. 

It can be also viewed as the augmented Lagrangean approach. This idea 

will be used in the next chapter to derive primal methods for 

constrained optimization. 
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CHAPTER 5 ENTROPY IN OPTIMIZATION: PRIMAL METHODS 

SUMMARY 

This chapter d.evelops further the idea of entropy augmentation, as 

presented in the last chapter, to derive a penalty-like function 

r (x,a) for general constrained optimization which is referred to as 
p 

the primal function of constrained optimization. The solution methods 

developed on the basis of this function are then referred to as the 

primal methods of constrained optimization. 

Some important properties of the primal function are further examined 

which either supply theoretical interpretations for the primal function 

or prove to be useful in developing numerical algorithms. It is 

essentially proved that the function r (x,a) is a natural logarithm of 
p 

the pth norm of a vector which consists of components L.(x,a), 
J 

the 

energy functions of the simulated thermodynamic system introduced in 

the last chapter. The present approach in fact converts a constrained 

optimization problem into a minimax optimization problem. The 

exponential-logarithmic transformations contained in the course of 

deriving the primal function make it easy to extend the present approach 

to a wide range of minimax optimization problems such as multicriteria 

optimization, curve fitting, etc. 
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There are many possibilities to use this function in the solution 

of optimization problems. Nice differentiability and monotonically 

decreasing properties ensure that many standard unconstrained 

minimization algorithms can be effectively applied to it and will 

converge to the solution of the original problem. An algorithm of the 

exact penalty function type is proposed and an example problem is 

presented. 

5.1 INTRODUCTION 

The entropy augmentation approach proposed in Chapter 4 is set in dual 

space and has demonstrated its usefulness both in deriving the dual 

iterative method and in justifying the entropy maximization approach 

as well as the statistical thermodynamic simulation of optimization. 

As noted there, however, the dual iterative method can be used only in 

the case where an explicit dual seA) can be obtained, and the 

primal-dual method based on the entropy maximization approach is 

essentially oriented towards providing efficient updates of surrogate 

multipliers and relies upon efficient algorithms to solve a sequence 

of problems (S). 

This chapter aims at further exploring implications of the entropy 

augmentation approach by developing solution methods for general 

constrained optimization problems. Here the framework of the surrogate 
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constraint approach remains to be used. To facilitate later 

presentations, we rewrite the surrogate Lagrangean as follows: 

m 
Ls(x,A,a) = f(x) + a t Ajgj(X) 

j=l 

(1.41) 

It has been noted in Chapter 4 that the surrogate dual function 

SeA) is obtained by first solving a surrogate problem (S) or, 

equivalently, by first minimizing the surrogate Lagrangean (1.41) with 

given A over x-space for a solution X(A), and then substituting the 

minimizer X(A) into the surrogate Lagrangean. The solution of problem 

(P) is then obtained by maximizing the derived surrogate dual SeA) over 

A-space which may be explicit or implicit. In this chapter we invert 

this process by first performing a maximization of the surrogate 

Lagrangean (1. 41) over A-space and then substituting the maximizer 

A(x,a) into the surrogate Lagrangean to obtain an explicit function of 

variables x and a. The resulting function is then minimized over 

x-a-space to obtain the solution of problem (P). 

It is unfortunate that the desired explicit function cannot be 

obtained by directly maximizing the surrogate Lagrangean (1.41) as it 

is impossible to find an explicit maximizer A(x,a). However, an explicit 

maximizer A (x,a) can be obtained by maximizing a modified surrogate 

Lagrangean, i.e., the entropy augmented surrogate Lagrangean. The 

procedure follows that for deriving Eq.(4.31). Since an explicit 

surrogate dual SeA) cannot be obtained, we replace SeA) in the entropy 

augmented dual Lagrangean (4.27) by the surrogate Lagrangean such that 
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the entropy augmented Lagrangean (4.27) is expressed in terms of both 

primal and dual spaces and has an alternative form 

L (x,A,a,l.I) 
p 

m 

= f(x) + a ! Ajgj(X) 

j=l 

m 
- (lip) I Aj£nAj 

j=l 

m 
+ \l( I A.-I) 

J 
j=l (5.1) 

The next section is devoted to deriving the desired function by 

maximizing (5.1) over A-space and to presenting some interpretations 

for this function. 

5.2 PRIMAL FUNCTION OF CONSTRAINED OPTIMIZATION 

It can be readily verified by examining the second derivatives of (5.1) 

w.r.t Aj that the entropy augmented surrogate Lagrangean is a concave 

function of the variables Aj . Its maximization over A-space can 

therefore be carried out using the Lagrangean stationarity conditions 

w. r. t. A. The procedure is exactly the same as that for deriving 

Eq. (4.31). As each stationarity equation involves a single surrogate 

multiplier, the explicit solution A(x,a) can be easily found as 

A,(x,a) 
J 

= exp[pagj(x)] I 
m 
I exp [ pag , ex) ] 

J 
j=l 

j=l, .. ,m (5.2) 
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where p is regarded as a control parameter. It can be recognized that 

the maximizing variables ~. have the same analytical expressions as 
J 

those given by Eq.(4.35) as a consequence of having used the implicit 

function theorem in deriving (4.35). Substituting the explicit solution 

~(x,a) into (5.1) yields 

m 
r (x,a) = f(x) + (l/p)~n I exp[pag.(x)] 

p J 
(5.3) 

j=l 

which is the desired explicit function and is, throughout this thesis, 

referred to as the primal function of the constrained optimization 

problem (P). 

An alternative form of (5.3) can be obtained by replacing the product 

pa with a parameter r and has the form: 

r (x,a) = f(x) + aG (x) 
r r (5.4) 

where 

m 
Gr(x) = (l/r)~n I exp[rgj(x)] (5.5) 

j=l 

The primal function rp or Gr may also be called the potential function 

of constrained optimization. The first term, the objective function 

f(x), may be thought of representing the internal potential " " energy 

of the system while the second term represents the external potential 
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or constraint potential "energy" of the system which incorporates the 

effects of all the constraints on the optimization. 

It should be emphasized that the key to deriving the primal function 

r or r explicitly expressed in terms x and a consists in the ability 
p r 

to find an explicit rnaxirnizer A(x,a) of the entropy augmented Lagrangean 

(5.1) over A-space. This approach becomes possible if and only if the 

surrogate Lagrangean (1.41) has been augmented by the mUltiplier entropy 

term H(A)/p. At this point, the distinction between the entropy 

augmented Lagrangean (5.1) and the surrogate Lagrangean (1.41) is made 

clear. 

Some implications of the function G (x) 
r are examined next by 

comparing the surrogate Lagrangean (1.41) with the entropy augmented 

surrogate Lagrangean (5.1). Collecting the second term and the third 

term of (5.1) together yields 

m 
a 1: Aj[gj(x) 

j=l 

- (l/pa) lnA .] 
J 

(5.6) 

from which it is easy to recognize that each original constraint gj in 

(1.41) has been replaced in (5.1) by 

gJ" = g.(x) - (l/pa)lnA. 
J J 

j=l, ... ,m (5.7) 

in which the second term is an additional term and is always nonnegative 

since p>D and A.~l. Therefore, if the original constraint inequality 
J 
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g .~O is replaced by g. '~O, each constraint becomes tighter than its 
J J 

unpenalized counterpart g.~O. This effect represents the penalty upon 
J 

each constraint, i. e., upon an optimization process. This type of 

penalty, referred later to as an entropy penalty, is completely 

different from conventional penalty approaches in which the penalties 

are imposed individually whereas the entropy penalty is imposed 

integratedly and consistently. In other words, the entropy penalty is 

imposed upon the whole constraint set rather than upon the individual 

constraints. This can be seen more clearly if the explicit solution 

A.(x,a) of (5.2) is substituted into (5.7), which leads to 
J 

m 
gj' = (l/pa)~n t exp[pagj(x)] j=l, .. ,m 

j=l 

or its equivalent form: 

m 
g.' = (l/r) ~n t exp[rg.(x)] 

J J 
j=l, .. ,m 

j=l 

(5.8a) 

(S.8b) 

where the entropy penalized constraints gj' have been expressed in terms 

of the primal variables. A remarkable thing happens in that the 

constraints g.' which appear to be different from each other in terms 
J 

of the variables A, x and a, as shown in Eq.(5.7), become all identical 

and equal to the function G (x). r This implies that the individual 

constraints are aggregated into and replaced by a single constraint 

G (x) ~ 0 
r (5.9) 
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where r is a control parameter. This result can be obtained only in the 

case where the A. 
J 

take the values (5.2) obtained by the entropy 

augmentation approach, i.e., the entropy penalty approach. It is then 

argued that the entropy penalty is the most consistent as it reflects 

the integrity and the interactivity of all the constraints and thus 

makes the obtained penalty function continuous and differentiable. 

If G (x) is regarded as a single parametric constraint, then the 
r 

primal function r r(x,a) of (5.4) can also be interpreted as the 

Lagrangean function of a constrained optimization problem 

(PP) 

Min f(x) 

s.t. G (x) S 0 
r 

(5.9) 

where G (x) is given by (5.5). Instead of optimizing r (x,a) over both 
r p 

x and a, one may find it advantageous to solve problem (PP). It is 

interesting to make a comparison of the parametric constraint G (x) with 
r 

the original constraint set. The feasible regions of this parametric 

constraint for different values of the parameter r are depicted in 

Fig.5.1 and compared with the primal feasible region. It can be seen 

that the smaller the parameter r, the smaller the feasible region of 

the parametric constraint Gr(x) ~ill be. Theoretically, the primal 

constraint set corresponds to a parametric constraint in which the 

parameter p approaches infinity. However, the primal constraint set can 

be satisfactorily simulated by a moderate parameter r, as shown in 

Fig.5.l. It is then possible to use a moderately large parameter r to 
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solve a constrained optimization problem for high accuracy. This has 

been supported by the computation of Example 5.1 presented later. This 

property is similar to that of the multiplier methods introduced in 

Section 1. 3.4. 

5.3 SOME IMPORTANT PROPERTIES OF THE PRIMAL FUNCTION 

Some important properties of the primal function r (x,a) are studied . p 

in this section. There are two main objectives in carrying out this 

study. The first is to further explore implications of the primal 

function r and the second is to discover some links between the present 
p 

approach and other well-established mathematical results. 

In Chapter 3, we have found that the dual formulation of an 

unconstrained GP problem is an entropic process. However the GP duality 

theory is based upon the arithmetic-geometric mean inequality (A. I) 

introduced in Appendix A. }Ioreover, the weights in the inequality play 

a role similar to that of the surrogate multipliers. It is consequently 

conjectured that an investigation into the relationship between the 

inequality and the entropy augmentaion approach should supply additional 

insights into the results we have obtained. The main results from this 

study are presented in Theorem 5.1. The arguments of some functions are 

omitted in the following presentations for the sake of clarity. 
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Theorem 5.1: The primal function r is an upper bound on both the 
p 

entropy augmented surrogate Lagrangean L of (5.1) and the surrogate 
p 

Lagrangean L of (1.41), i.e., r ~ L ~ L holds for all A. s pps 

Proof: To prove the above relation, the arithmetic-geometric mean 

inequality (A.!) is employed and rewritten as follows 

m m 

I u j ~ n (Uj/Aj)A j (A.!) 

j=! j=l 

where all u. are nonnegative, and A. are positive weights satisfying 
J J 

the following normality condition 

m 
I >.. = 1 

J 
(A.2) 

j=! 

The inequality (A.!) becomes an equality if and only if all u. are equal. 
J 

In Section 4.2, we have divided a constrained optimization problem 

(P) into m subproblems each of which has a "energyll function 

L.(x,a) = f(x) + ag.(x) 
J J 

j=l, ... ,m (4.8) 

which may have positive or negative value. However, by setting 

u. = [exp(L.)]P 
J J 

j=l, .. ,m (5.10) 
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where p>O, we ensure strictly positive components u. (j=l, .. ,m). Thus 
J 

the inequality (A. 1) can be used. Substituting u j from (5.10) into 

CA. 1) gives 

m m 

L [exp(L.)]P ~ IT {[exp(L.)]P/~.}Aj (5.11) 
J J J 

j=1 j=l 

Raising (5.11) to the power Clip) and then taking natural logarithms 

of both sides of the inequality, after some manipulation we have an 

inequality 

m m m 

(l/p)£n L exp(pLj ) ~ L ~jLj - (lip) L Aj£n~j (5.12) 

j=l j=l j=l 

It turns out that by substituting L. from (4.8) into (5.12) the 
J 

left-hand side becomes the primal function r (x,~) while the right-hand p 

side is a variant of the entropy augmented surrogate Lagrangean (5.1). 

We then have 

r (x,~) ~ L '(x,~,a) 
p p 

where L '(x,~,a) is given by 
p 

m m 
L '(x,A,a) = f(x) + a L ~.g.(x) - (lip) L ~.£n~. 

p J J J J 
j=l j=l 

(5.13) 

(5.14) 
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in which the last term of (5.1) related to the normality condition has 

been removed due to the normalization of the weights A .. Thus L of (5.1) 
J P 

is equivalent to L ' of (5.14), and may replace L ' in (S .13). As the 
p p 

inequality (5.13) holds regardless of values of the weights A., r ~ 
J p 

L ' = L holds for all A satisfying the normality condition. This 
p p 

completes the first part of the proof. 

The proof of the second part is trivial. As the additional entropy 

in L 
, 

is always positive, L = L 
, 
~ L simply follows. Together term p p p s 

with (5.13), we have r ~ L ~ L This completes the proof. p p s 

= -- --- ® 

From the proof procedure of Theorem (5.1), there are several 

important points to be noted. 

1. An "upper bound" means that for the same x and a, the pr imal function 

r is always greater than both Land L for all A. This conclusion, pps 

drawn from the arithmetic-geometric mean inequality, confirms and 

verifies the fact that the function r may be obtained by the p 

maximization of L over A-space as was shown earlier. Thus the two 
p 

different approaches have led to the same conclusion. This shows 

links between entropic processes and the arithmetic-geometric mean 

inequality as well as GP dualities. From a viewpoint of minimax 

optimization, the maximization phase has been realized by the 

maximization process over A. The minimization phase requires the 

function r to be minimized over primal space. 
p 
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2. It can be noted that the primal function r is the natural logarithm 
p 

of the pth norm of a vector, i.e., 

r = ~nQ (5.15 ) 
p p 

where 

m 

Q = { I [exp(L.)]P}(1/P) 
p J 

(5.16 ) 

j=l 

The vector, denoted by', consists of components 

j=1, .. ,m (5.17 ) 

which are the exponentia1s of "energy" functions (4.8) of the 

simulated thermodynamic system introduced in the last chapter. 

Therefore, minimizing r amounts to minimizing the pth norm of this 
p 

vector, and has the limit Min[max(L
j
)] as p~~, i.e., minimizing the 

maximum component of the energy functions L.(x,a) of the 
J 

thermodynamic system. Then the present approach is essentially a 

minimax optimization approach. It is similar to the so-called least 

pth optimization methods (Refs. [4], [19-21]). However, the 

exponential transformations contained in the present approach 

ensure strictly positive components and enable the maximum component 

to be approached quickly. This property may suggest that a small 

value of parameter p should be sufficient to obtain the solution 

to the original problem. 
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The following theorem shows a nice decreasing property of the primal 

function r (X,Cl) 
p 

which is very useful in developing numerical 

algorithms. It is further proved that the primal function r approaches 
p 

the maximum component of the energy functions (4.8) as p tends to 

infinity. Theorem 5.2 thus strengthens and refines the conclusions of 

Theorem 5.1. 

Theorem 5.2: If O<q~p, then r ~r holds for all x and Cl. Furthermore, 
p q 

r approaches max(L.) as p tends to infinity. 
p J 

Proof: According to Jensen's incquality[S7], if p~q, then the 

pth norm of a vector is always less than or equal to its qth norm. From 

Eq.(5.16), Q ~Q simply follows if p~q. 
p q 

As a natural logarithmic 

function increases monotonically with increase in its argument, it 

readily follows that 

r (X,Cl) ~ r (X,Cl) 
p q 

if p~q. (5.18) 

which means that the primal function r (x,a) decreases monotonically 
p 

as p increases. From the definition of the uniform (~) ~, we have 

£im Q = max[f.] = max[exp(L.)] 
p J J 

(5.19) 

so that 

£im r = £im £nQ = £n £im Q = £n[max(exp(L.))] = max(L.) 
p p p J J 

(5.20) 
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where we have used the continuity property of the natural logarithmic 

function which permits the two operations ~n and ~im to be exchanged. 

Eq.(5.20) means that r approaches the maximum component of the energy 
p 

functions as p tends to infinity. This completes the proof. 

® 

From Theorem 5.1 and 5.2, some important properties of the function 

r (x,a) are summarized as follows: 
p 

1. 

2. 

3. 

4. 

r ~ L ~ L for all A~O where Land L are the entropy augmented 
pps p s 

and unaugmented surrogate Lagrangeans, respectively. 

r may be regarded as a special pth norm, termed the pth logarithmic 
p 

~, as it can be obtained by taking the logarithm of the pth norm 

Q of a vector ,. 
p 

r monotonically decreases as p increases, and it approaches 
p 

max(L.)=max(f+ag.) as p~-. This then implies 
J J 

which means that solving problem (P) by means of solving a sequence 

of minimizations of r with increasing values of p is equivalent 
p 

to transforming problem (P) into a minimax optimization problem. 

r is continuous and differentiable as many times as are problem 
p 

functions f(x) and g.(x) (j=l, ... m). 
J 
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When devising numerical algorithms using r (x,a), these properties 
p 

ensure that efficient unconstrained minimization algorithms can be used 

and stable convergence can be expected. 

5.4 DEVELOPMENT OF NUMERICAL ALGORITHMS 

There are several ways of using the primal function r (x,a) or r (x,a) 
p r 

to develop numerical algorithms for solving the inequality constrained 

problem (P). They are briefly outlined below. 

1. Primal approach: Primal methods such as the feasible direction 

methods and the gradient projection methods introduced in Section 

1.3.1 can be applied to the single constrained problem (PP) defined 

in Section 5.2. The algorithms may start from a feasible point and 

approach the boundaries of feasible regions as the parameter r 

increases. They are therefore similar to the barrier function 

methods introduced in Section 1.3.2. 

2. Sequential unconstrained minimization approach: A sequence of the 

pth problems 

(Pth) 

m 
Min r (x,a) = f(x) + (l/p)~n L exp[pag.(x)] 

p J 
(5.3) 

j=l 
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is solved to approach the solution of problem (P) as p~-. In each 

pth minimization, the solutions xP and aP are obtained. It is 

expected that this sequence converges to the solution of problem 

(P). The procedure is as follows. An initial parameter p is 

specified. Problem (Pth) is then solved by an unconstrained 

minimization algorithm to obtain the solution xP and aP . They are 

then used as the initial points of the next minimization. The 

parameter p is increased by an increment 6p which does not have to 

be the same value in each minimization. Problem (Pth) with the 

parameter p+6p is solved again. 

convergence is reached. 

3. Exact penalty function approach: 

This process is repeated until 

The function r is regarded as p 

an exact penalty function so that only one unconstrained 

minimization is required to solve problem (P). This approach can 

also be viewed as a simplified version of the sequential 

minimization approach; that is, for a particular parameter p, 

problem (Pth) does not have to be completely solved. It is 

recommended that only one minimization step be taken for a 

particular p. Although this approach needs the parameter p to be 

frequently increased, the total computational effort can be 

considerably reduced. 

It should be noted that gradient-based algorithms can be easily 

adapted to the minimizations of the function r ex,a) because the first p 

derivatives of r (x,a) w.r.t. x and a can be easily evaluated by 
p 
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m 
ar jax. = afjax.+ tt I ~.(ag.jax.) 

p ~ ~ J J 1 
i=l, .. ,n (5.22) 

j=l 

and 

m 
ar jatt = I ~.g. 

P J J 
(5.23) 

j=l 

where~. (j=l, .. ,m) are defined by Eq.(5.2). Another attractive feature 
J 

of using the primal function r (x,tt) to develop numerical algorithms 
p 

is that as this function and its derivatives are expressed in simple 

and explicit forms, little programming effort is needed to incorporate 

the methods suggested above in a practical computer program. A basic 

numerical algorithm is developed to illustrate the use of the primal 

function r (x,tt) in the solution of a constrained optimization problem, 
p 

which is an exact penalty function algorithm. The algorithm is used to 

solve an example problem and is as follows: 

1. Set the iteration number k=O. Specify pO and o 
x • then 

estimated to make the residuals of the stationarity equations w.r.t. 

x small. 

2. Set k=k+l and use the negative gradient direction, i.e., -V rand 
x p 

car jatt), as the search direction. 
p 

3. Move along the above direction by a fixed small step-size to the 

k k 
point x and tt . 

4. Check convergence criteria, if satisfied, then stop. 

5. Set p=p+6p, go to Step 2. 
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In the present algorithm, a and x are given an equal status. This 

makes the algorithm converge stably. An example is calculated by this 

algorithm and presented below. 

Example 5.1: 

Min 

s.t. 

The problem to be solved is 

2 fex) = (x l -2) + 

2 
gl(x) = xl 

The point (2.0,2.0) 
o is chosen as a starting point x . o a is then 

estimated as aO=O.O. The parameter p starts from 0.0 and increases by 

0.1 at a time. The algorithm proceeds along the steepest descent 

directions by a fixed step-size of 0.1. In 20 steps, the solution point 

is near the optimum with the constraint g1 being slightly violated. 

After 22 steps, the two constraints are all satisfied, but a specified 

accuracy 10-4 is not reached. The solution continues to be improved and 

converges after 60 steps. The results are listed in Table 5.1. It can 

be seen from Table 5.1 that the solution point approaches the optimum 

very fast within the first 20 steps, and improves marginally afterwards. 

There are two possible ways in which faster rates of convergence may 

be achieved. One of them is to use conjugate gradient or quasi-Newton 

directions as the search directions instead of the steepest descent 

directions. The second involves a linear search along each search 

direction. 
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Table 5.1 Results of Example 5.1 
==--====--===--=======--===--========--=========== 

No p a xl x2 gl g2 f r 
p 

-----------------------------------------------------------------
0 0.1 0.000 2.000 2.000 2.000 2.000 1.000 
5 0.5 0.897 1.620 1.336 0.956 1.288 0.257 2.656 

10 1.0 1.252 1.175 1.118 0.293 0.262 0.695 1. 736 
15 1.5 1.335 1. 038 1.029 0.067 0.049 0.926 1.466 
20 2.0 1.350 1.002 1.004 0.006 0.000 0.996 1.347 
25 2.5 1.349 0.995 0.999 -0.007 -0.009 1.010 1. 277 
30 3.0 1.345 0.995 0.998 -0.007 -0.008 1. 010 1.231 
35 3.5 1.341 0.996 0.998 -0.006 -0.006 1.008 1.198 
40 4.0 1.339 0.997 0.999 -0.004 -0.004 1. 005 1.173 
45 4.5 1. 337 0.998 0.999 -0.003 -0.003 1.004 1.154 
50 5.0 1.336 0.999 0.999 -0.002 -0.002 1.002 1.139 
55 5.5 1.335 0.999 1.000 -0.001 -0.001 1.002 1.126 
60 6.0 1.334 1.000 1.000 -0.001 -0.001 1. 001 1.118 

5.5 DISCUSSIONS 

The function G ex) has appeared in the literature (Refs.[56], [66], 
r 

[89]) It was referred to in the paper by Kreisselmeier and 

Steinhauser [66]. They used the function as an approximation to the 

largest component of a vector, but gave no formal justification for it. 

Hajela[56] and Sobieski[89] used it without further examination in the 

solution of structural optimization problems to replace the original 

constraint set, and called it a cumulative constraint function. 

In Section 5.2, we have formally derived this function G (x) through 
r 

the entropy augmentation approach. The derivation given there could 
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serve as a formal justification for its uses as a cumulative constraint 

and as an approximation to the largest component of a vector in a vector 

optimization context. 

The present approach to solving problem (P) has some similarity to 

the least pth optimization methods proposed by Chara1ambous et 

a1CRefs.[4], [19-21]) where problem (P) is transformed into a sequence 

of minimizations of the pth norm of a vector which consists of m+1 

components 

f = f - f o opt (5.24) 

fj = f - f + a.g. opt J J 
j=l, .. ,m (5.25) 

where f
opt 

represents the optimum value of the objective function and 

a. (j=l, .. ,m) are the multipliers associated with the constraints. They 
J 

all need to be updated in the minimization of each pth problem. 

In the present approach, the m multipliers a j have been reduced to 

a single multiplier a so that the update of a becomes very simple and 

is made on an equivalent status level as the primal variables xi 

(i=l, .. ,n), as done in the algorithm proposed in Section 5.4. Moreover, 

the exponential transformations contained in the present method have 

eliminated the requirement for the parameter f to ensure positive opt 

values for each component. There are therefore considerable savings in 

computational and programming efforts. 
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The present approach can be easily adapted to solve general minimax 

optimization problems. If a minimax problem is posed as 

Nin[max(f.)] 
J 

then the minimax Lagrangean can be constructed as 

m 
L(x,A) = I A.f. 

J J 
j=1 

(5.26) 

(5.27) 

where Aj are the Lagrange multipliers which satisfy the normality 

condition. By adding an entropy term H(A)/p to Eq.(5.27) and minimizing 

the entropy augmented minimax Lagrangean, we obtain an explicit 

maximizer 

m 

Aj = exp(pf j ) / I exp(pf j ) 

j=1 

Substituting A. from (5.28) into (5.27), we have 
J 

m 
F = (1/p)tn I exp(pf.) 

p J 
j=1 

j=l, .. ,m (5.28) 

(5.29) 

which may be referred to as the minimax primal function. The solution 

of the minimax optimization problem can therefore be obtained by solving 

a sequence of pth minimization problems in which the minimax primal 
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function F is minimized over primal variables for an increasing 
p 

positive sequence of the parameter p. 

5.6 CONCLUSIONS 

In the previous sections, we have derived the primal function r (x,a) 
p 

and examined some of its properties. It is essentially proved that this 

function is a natural logarithm of the pth norm of a vector, and thus 

the present approach transforms problem (P) into a minimax optimization 

problem. The vector consists of the exponentials of the energy functions 

L = f + ago of the simulated thermodynamic system. This justifies the 
j J 

division of problem (P) into m subproblems as well as the thermodynamic 

simulation of constrained optimization. 

In the last section we have discussed how to use the present approach 

in solving general minimax optimization problems such as multicriteria 

optimization and curve fitting problems, etc. It has been shown that 

the approach presented herein handles this type of minimax problems 

quite easily. 

Several ways of using this function in the solution of constrained 

optimization problems have been outlined. Its differentiability and 

monotonically decreasing properties make the function easy to use in 

numerical algorithms. An exact penalty function algorithm has been 
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developed to illustrate its use and an example problem has been 

presented. The present algorithm found a near-optimal solution quickly. 

However, as the solution point approached the optimum, more iterations 

were required to obtain an accurate solution. More computational 

experiences are needed to enable the primal function to be used 

extensively. 
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CHAPTER 6 ENTROPY METHODS FOR STRUCTURAL OPTIMIZATION 

SUMMARY 

This chapter is concerned with the solution of a class of structural 

optimization problems which is restricted to the ,,'eight minimization 

of a finite element model with fixed geometry and material properties. 

Under some assumptions and with some simp1ifications, these structural 

optimization problems can be formulated as a separable convex 

programming problem so that the corresponding surrogate problem (S) can 

be analytically solved to obtain the solution in terms of surrogate 

multipliers. Thus, the whole problem hinges upon an appropriate update 

scheme for these multipliers. As presented in Chapter 4, the update 

formula (4.11) developed by the entropy maximization approach therefore 

fills in this need. A primal-dual algorithm is then developed for 

solving this class of structural optimization problems in which the 

entropy-based updates are combined with the analytical solutions of 

surrogate problems. 

The most important feature of this algorithm is that it does not 

require an active/passive set strategy, as most other algorithms do, 

so that all the constraints can be treated consistently throughout the 

optimization process. ~oreover, the algorithm is so sjmple that only 

some algebraic operations are needed to produce an optimum design and, 
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therefore, both the number of design variables and the number of 

constraints do not affect the computational efforts as dramatically as 

is the case with other algorithms. The present algorithm is thus very 

suitable for solving the optimization problems of large-scale 

structures. 

Several example problems are computed by the present algorithm and 

the results are compared with those previously reported. Computational 

experience shows that the performance of the entropy-based primal-dual 

algorithm is very satisfactory. 

An explicit surrogate dual for the class of structural optimization 

problems is then derived using both Lagrangean stationarity conditions 

and the geometric programming duality theory. It turns out that the 

derived dual problem is exactly the same as that proposed by 

Templeman[91]. The derivations presented here have demonstrated that 

the dual formulation bears a surrogate duality relationship between the 

primal and the dual problems. Furthermore, as the dual function has an 

explicit form, the dual solution method developed by the idea of entropy 

augmentation can be used to effectively solve the surrogate dual 

problem. This method no longer requires alternative iterations over the 

primal and dual spaces, as the previous primal-dual algorithm does, and 

can therefore save much computational effort. An algorithmic procedure 

of this dual method is suggested. 
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6.1 INTRODUCTION 

The structural optimization problem considered here consists of the 

weight minimization of a structure with fixed geometry and material 

properties. The transverse sizes of the structural members, such as bar 

cross-sections, plate thicknesses, etc., are the design variables 

denoted by a .. They are subjected to the size constraints 
1 

a. ~ a. i=l, ... ,n 
1 1 

(6.1) 

where a.' are lower bounds assigned to the design variables and n is 
1 

the number of independent design variables after linking. The behaviour 

constraints impose limitations on quantities describing the responses 

of the structure to the applied forces, such as stresses and 

disp1acements under multiple static loading cases, the natural 

frequencies, etc. They can be written as non1inear inequalities: 

u.(a) ~ u. 
J J 

j=1, ... ,m (6.2) 

where u. (a) denotes an implicit structural response function of the 
J 

design variables that has to be lower than a given limit U
j
'. The 

objective function to be minimized is the structural weight. It is a 

linear function of the design variables: 

n 
W = 1: p.£.a. 

111 

i=1 

(6.3) 
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where p. is the mass density and ~. is a geometrical parameter such that 
1 1 

the product ~.a. is the volume of the 
1 1 

ith linking group. The 

optimization problem thus consists in minimizing the objective function 

(6.3) subject to the constraints (6.1) and (6.2). It is a nonlinear 

mathematical programming problem. 

The difficulty in solving the problem arises from the fact that the 

u. (a) appearing in Eq. (6.2) are in general implicit functions of the 
J 

design variables that must be evaluated by executing a complete finite 

element analysis. This difficult implicit nonlinear programming problem 

is usually solved by transforming it into a sequence of simpler explicit 

problems. In these approximate problems, the real constraints are 

replaced with first-order explicit approximations 

n 
uj(a) = ! cij/ai j=l, ... ,m (6.4) 

i=l 

where the coefficients c .. are evaluated after each structural analysis. 
1J 

They are considered as constant in the optimization phase. Therefore, 

the explicit problem to be solved after each structural analysis has 

the following form: 

(PO) 

Min 

s.t. 

n 
W = I p.£.a. 

11.1 

i=l 

n 
I c .. /a. - u. S 0 

1.J 1 J 
i=l 

(6.3) 

j=l, ...• m (6.5) 
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a.' - a. SO 
1 1 

i=1, ... ,n (6.1) 

It should be noted that for a statically determinate structure 

subject to static stress and displacement constraints only, problem (PO) 

is the exact explicit form of the "real" problem, since in this case 

c .. remain constant coefficients. The minimum weight design is obtained 
1J 

in only one structural analysis as the solution of problem (PO). In 

the case of a statically indeterminate structure, the c
j

. are implicit 
J 

functions of the design variables and they can be knOl"n only numerically 

by means of a structural analysis. In this case, problem (PO) is solved 

after each structural analysis by considering as constant 

coefficients. The structure is then reanalysed and problem (PO) is 

updated and solved. This process is repeated until convergence is 

achieved. 

The explicit constraints (6.5) are, in fact, linearized forms of the 

original constraints (6.2), resulting from a first-order Taylor series 

expansion w.r.t. the reciprocal design variables x.=l/a .. Then, problem 
1 1 

(PO) can be further replaced by problem (P) in which the problem 

variables are the reciprocal design variables xi and the problem 

constraints are expressed in terms of the variables x. and rearranged. 
1 

Consequently, problem (P) takes the following form: 

(P) 

~!in 

n 

W = 1: Pi£/x i 
i=1 

(6.6) 
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n 
s. t. = I cijx/uj 

, - 1 ~ 0 j=l, ... ,m (6.7) gj 
i=l 

= 
, - 1 ~ 0 i=l, ... ,n (6.8) gm+i a. x. 

1 1 

which is a convex programming problem with only linear constraints. 

There have been many methods proposed to solve either problem (PO) or 

problem (P). They range from methematical programming techniques to 

optimality criteria approaches (Refs. [9], [40-43], [78)). It is now 

widely accepted that the special structure of this problem permits a 

dual formulation. The Lagrange multipliers associated with the 

constraints are the dual variables in terms of which an auxiliary and 

equivalent problem can be stated. In addition, the separable property 

of the problem functions leads the dual formulation to an efficient 

solution scheme since each primal variables can be independently 

expressed in terms of the dual variables. The derived dual problem can 

then be solved by the Kewton-Raphson method, as suggested by Fleury[40]. 

However, discontinuity planes for the second derivatives of the dual 

function exist in the dual space such that some precautions must be 

taken in order to avoid the singularity of the Hessian matrix. 

Furthermore, the dual algorithms are usually subject to instability in 

the convergence of the structural weight. In the author's opinion, the 

main cause of these difficulties consists of the fact that almost all 

the algorithms, including some primal algorithms, have invariably 

adopted the so-called "active set strategies"; that is, during the 

course of the optimization process constraints which appear to be slack 

are temporarily deleted within an iteration to reduce the problem size. 

On exit the deleted constraints are checked and if they are violated 
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by the current point a new "active set" of constraints is chosen and a 

new iteration is performed. For a practical problem, therefore, it is 

possible for the active constraint set to vary during the optimization 

process. In the present work an active set strategy is not necessary 

and some optimization methods are developed in which none of the 

constraints is deleted during the optimization process. The 

computational effort required remains the same or increases only 

marginally. 

In the next sections, several ways of solving the structural 

optimization problem under consideration are investigated. They employ 

the surrogate constraint ,approach and the entropy maximization or the 

equivalent entropy augmentation approach. As indicated in Chapter 4, 

whenever the surrogate problems can be effectively solved the 

primal-dual method developed on the basis of the entropy maximization 

approach can be used. Noreover, if an explicit surrogate dual is 

obtainable, the dual method based upon the idea of entropy augmentation 

can be applied. The structural optimization problem is such a case. 

The developments made in this chapter can, therefore, be viewed as 

applications of the methods presented in Chapter 4 to a particular class 

of optimization problems. 

The organization of this chapter is as follows. In Section 6.2, a 

primal-dual method is proposed in which problem CP) is solved by means 

of solving a sequence of surrogate problems combined with an appropriate 

update schme for the surrogate multipliers. Analytical solutions of the 

surrogate problems can be obtained using Lagrangean stationarity 
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conditions and expressed in terms of the surrogate multipliers, which 

are then updated by the entropy-based update formula developed in 

Chapter 4. Section 6.3 describes a primal-dual algorithm for solving 

the structural optimization problems. In Section 6.4, some example 

problems are presented and the computational results are compared with 

those previous ly reported by other authors (Refs. [43], [78], [85], 

[100]). Section 6.5 is devoted to deriving an explicit surrogate dual 

for the structural optimization problem by two ways, one of which uses 

the Lagrangean duality theory and the other makes use of geometric 

programming duality theory. Section 6.6 describes an entropy-based dual 

method to effectively solve the resulting dual problem, and hence the 

original problem (P). There is no doubt that the solution methods 

presented herein can compete with the best methods available for solving 

this class of structural optimization problems. 

6.2 PRIMAL-DUAL METHOD FOR STRUCTURAL OPTIMIZATION 

The method employs the concept of surrogate constraints. A surrogate 

problem (S) corresponding to problem (P) can be formulated as follows: 

(S) 

Min 
n 

W = L p.v.,/x
i 1. 1. 

i=1 

(6.6) 
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m n n 
s .t. ! A.( ! c .. x./u. '-1) + ! A +i(a.'x.-l) = 0 

J 1J 1 J m 1 1 
(6.9) 

j=l i=1 i=1 

where the surrogate multipliers satisfy the normality condition 

m n 
! A. + ! A +. = 1 

J m 1 
(6.10) 

j=1 i=l 

The surrogate constraint has been written as an equality because in 

almost all structural optimization problems, there will be at least one 

constraint active at the optimum and consequently the surrogate 

constraint must be active as indicated by Proposition 1.3.4. 

Introducing Lagrange multiplier a for the surrogate constraint (6.9), 

we have the surrogate Lagrangian of problem (S) as: 

n m n n 
L(x,A,a) = I p.~./x.+ 

111 
a[ ! Aj( r cijxi/uj '-1) + r Am+i (8 i 'Xi -1)] 

i=l j=1 i=l i=l (6.11) 

The solution of problem (S) must satisfy the following Lagrangean 

stationarity conditions w.r.t. xi 

m 

aL/ax. = _P.£./x.
2
+ a[ r C •• A./u.'+a.'A +i) = 0 

1 1 1 1 1J J J 1 m i=1, .. ,n (6.12) 

j=1 

and the stationarity condition w.r.t. a, aL/ila=O, which leads to the 

surrogate constraint, Eq.(6.9). The analytical solution of problem (S) 
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can be readily found from (6.12) and expressed as functions of the 

surrogate multipliers: 

i=1, ... ,n (6.13) 

where 

m 

Ui = 1: Cij~j/Uj' + ai'~m+i i=1, ... ,n (6.14) 

j=l 

To find the unknown a in Eq.(6.13), we substitute the xi from (6.13) 

into (6.9) so that a can be obtained as: 

a = 
n 
I v'p.£.U. ]2 

111 

i=l 

(6.15) 

which replaces the unknown a of (6.13) to yield the reciprocal design 

variables x. as 
1 

n 
x

1
' = v'p.£./U. / 1: v'p.£.U. 

11111 1 

i=l 

and the primal design variables then are 

___ n 

a i = v'Ui/Piti I v'Pi£iUi 
i=1 

i=l, ... ,n (6.16) 

i=l, ... ,n (6.17) 
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Thus we have derived the redesign formula in terms of the surrogate 

multipliers and, therefore, reduced the structural optimization problem 

to one in which an efficient update scheme for the multipliers is 

needed. 

To treat all the constraints consistently, as explained in Chapter 

4, the updates of the multipliers should follow an entropic maximization 

process which, for the structural optimization problem under 

consideration, leads to the following update formula 

m+n 
A. = exp(pag.) / I exp(pag.) 

J J J 
j=l, .. ,m+n (6.18) 

j=l 

where p is a control parameter "'hich increases ~dth the optimization 

process. The procedure for deriving (6.18) follows that illustrated in 

Chapter 4 and is not repeated here. 

A primal-dual method can then be developed in which alternate 

iterations are carried out over both x-space and A-space. The method 

starts with setting all the surrogate multipliers to be equal, i.e., 

A.=l!(m+n), which corresponds to setting the control parameter p=O. The 
J 

analytical solution xi of problem (S) are then evaluated by Eqs.(6.16). 

Values of ex and the constraints (j=1, .. ,m+n) are also calculated by 

Eqs.(6.15), (6.7) and (6.8). The surrogate multipliers A. are then 
J 

updated using Eq.(6.l8) accompanied by an appropriate increase of the 

parameter p. Thus, the process is ready for another analytjcal solution 
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given by Eq. (6.16). This procedure is repeated until convergence is 

reached; that is, the solution of problem (P) is found. 

6.3 PRIMAL-DUAL ALGORITHM FOR STRUCTURAL OPTIMIZATION 

This section is devoted to describing an entropy-based primal-dual 

algorithm which is devised on the basis of ·the primal-dual method 

presented in the last section and is, in fact, an application of the 

primal-dual algorithm, as developed in Chapter 4, to a particular class 

of nonlinear programming problems: the structural optimization of 

pin-jointed trusses. The algorithm is divided into two phases, 

structural analysis and structural optimization. The latter is further 

subdivided into two stages, the solution of problem (S) (primal) and 

the updates of the surrogate multipliers (dual). 

The primal-dual algorithm developed to solve the structural 

optimization problem in question is described as follows: 

1. Input geometrical and structural data, and set the global iteration 

number kk=O. 

2. Set kk=kk+1, and carry out a structural analysis by the matrix 

stiffness method to evaluate structural responses such as node 

displacements, member forces, etc. 

139 



3. Scale the current design: a l = la where l is a scaling coefficient 

to make the scaled design feasible and at least one of the 

constraints active. This ensures that a feasible design is always 

available whenever the design process terminates. 

4. Check global convergence criteria and if they are satisfied the 

algorithm stops. 

5. Enter the optimization phase in which there are alternate iterations 

over the two spaces of the design variables and the surrogate 

multipliers. The procedure within this phase is described below. 

a. Set the local iteration number k=O and the parameter p=O, i.e., 

). .=1/ (m+n) , U=l, .. ,m+n). 
J 

b. Set k=k+1 and evaluate the design variables Xi (i=l, .. ,n) by 

k Eq.(6.16); calculate the structural weight Wand the constraint 

values using Eqs.(6.6), (6.7) and (6.8) as well as a by (6.15). 

c. Check local convergence criteria and if they are satisfied the 

optimization phase (the local iteration) terminates. 

d. Increase the control parameter p by a positive increment and 

update the surrogate multipliers ).. by Eq.(6.18). 
J 

e. Go to Step b. 

6. Assign the design variables which are 

obtained from the optimization phase, and go to Step 2. 

Some explanations on the proposed algorithm are necessary. They are 

summarized as: 

1. The optimization problem to be solved is formulated at the scaled 

design point where the stress constraints are combined with the size 
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constraints to give the modified size constraints a.', and the 
1 

coefficients c .. 
1J 

appearing in the displacement constraints are 

calculated by the virtual work principle. The a.' and c .. all remain 
1 1.J 

constants in the optimization phase. 

2. The global convergence criteria used in the example problems are 

a. The algorithm terminates whenever the structural weight 

evaluated at the scaled design point is not less than that 

obtained in the last iteration, i.e., 

kk kk-1 . where ~ and W are the structural we1ghts of the current 

iteration and the last iteration, respectively. 

b. The relative improvement of the structural weights at two 

c. 

subsequent scaled design points is less than a specified value 

-4 
£ =10 for instance, i.e., 

1 

The relative error of the design variables is less than a 

-3 
specified value £2=10 , i.e., 

I
' kk kk-1

11 IX -x ~ £2 

3. The local convergence criteria are 
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a. The optimization phase terminates whenever the structural 

weight of the current iteration is not greater than that 

obtained in the last iteration, i.e., 

which is opposite to the global criterion (a) as the iterations 

within this phase correspond to the solution of a dual problem, 

i.e., the maximization over the dual variables (the surrogate 

multipliers) . 

b. The relative error of the surrogate multipliers is less than a 

-3 
specified value £2=10 ,i.e., 

c. The global criteria b) and c) are also used as the local 

criteria. 

4. The control parameter p increases by a small amount Op=O.Ol at a 

time. 

6.4 NUMERICAL EXAMPLES 

Three examples are selected such that the results can be compared with 

those previously reported CRefs.[43], [78], [85], [94], [101]). The 
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solution methods used there consist of optima1ity criterion methods and 

mathematical programming methods. The entropy-based primal-dual 

algorithm described in the last section is used to solve these example 

problems. Comparisons are made of results and iteration histories. 

Example 6.1: The first example is a ten-bar truss as shown in Fig. 6.1. 

Data required are also given in Fig. 6.1. The truss is designed to 

satisfy stress, displacement and prespecified minimum size constraints. 

No variable linking has been used in this example. Results are given 

in Table 6.1 along with some comparisons from the literature. 

The minimum ,"'eight obtained is 5075.1 lbs in 16 reana1yses. The 

iteration history is depicted in Fig.6.2 which shows that the present 

method has better convergence performance than the others, especially 

in the first few iterations. 

Example 6.2: The second example is a 25-bar space truss, the 

transmiss ion tower. The structure and the node as well as member 

numbering are illustrated in Fig.6.3 along with the design data. Table 

6.2 includes design variable linking and compression stress limits. 

Design variable linking is used to impose symmetry with respect to both 

the y-z and the x-z planes. The structure is subjected to two distinct 

load cases as given in Table 6.3. 

The results are summarized in Table 6.4 together with some 

comparisons with those previously reported. A minimum weight of 545.38 

is obtained in only 5 iterations. The iteration history is shown in 
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Fig.6.4 which features a great decrease of the weight in the first 

couple of iterations. 

Example 6.3: The third example is a 72-bar space truss. Fig.6.S shows 

the geometry of the structure, and the node and member numbering system 

are illustrated in detail for the uppermost tier. The loading systems 

are given in Table 6.5. The symmetry of the structure and its loading 

conditions are such that the number of independent design variables can 

be reduced to 16 using variable linking. The material properties, 

allowable stresses and minimum member sizes are given in Fig.6.S. The 

disp1acements of nodes 1-4 are limited to ±O. 25 in. in both x and y 

directions. 

The results are summarized in Table 6.6 along with comparisons with 

the other methods. A minimum ~'eight of 379.666 lbs is obtained in 6 

iterations. The iteration history is shown in Fig.6.6, and is, as with 

the first t~o examples, favourable to the present algorithm. 

It has been shm.;n, from the results and the comparisons made with 

the other algorithms for all the three example problems, that the 

entropy-based primal-dual algorithm is very efficient in solving this 

class of structural optimization problems. Especially in the first few 

iterations, the structural weights of feasible designs are reduced more 

quickly than those obtained by the other algorithms, as shown from the 

figures for the iteration history. The algorithm displays better 

stability than the usual dual algorithms. This is achieved through the 

consistent treatment of all the constraints in the optimization process. 
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Efficiency of the algorithm in the optimization phase is independent 

of both the number of design variables and the number of constraints. 

This makes the algorithm suitable for the optimum design of large-scale 

structures. The separable property of the problem functions, of course, 

is another reason for the success of the algorithm. For the case of 

general finite element optimization, it is unlikely that analytical 

solutions such as that obtained for the structural optimization problem 

under consideration could be obtained. Nevertheless, the updates of 

surrogate multipliers based upon entropic processes remain effective. 

6.5 SURROGATE DUAL FOR STRUCTURAL OPTIMIZATION 

The structural optimization problems considered in the previous sections 

have been formulated as convex separable programming problems for which 

the corresponding surrogate problems have analytical solutions in terms 

of the given surrogate multipliers, as shown in Section 6.2. It is then 

possible to derive an explicit surrogate dual problem. In this section 

two ways of deriving the dual are presented, one of which uses the 

Lagrangean stationarity conditions and the other makes use of GP duality 

theory. It turns out that the derived dual problem is exactly the same 

as that proposed by Templeman[91]. The solution of the derived dual 

problem is left to Section 6.6. 
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6.5.1 LAGRANGEAN DUAL FORMULATION 

In section 6.2, ~e obtained the analytical solution of problem (S) using 

Lagrangean stationarity conditions. The remaining work for deriving the 

surrogate dual is trivial. All we have to do is to substitute the 

analytical solution into the surrogate Lagrangean (6.11). On 

substituting the x. O=I, .. ,n) and Cl from Eqs.(6.16) and (6.15) into 
1 

Eq.(6.11), the surrogate dual seA) is obtained as the following explicit 

form: 

n 
L Ip.£..u. ]2 

l. 1 1 

i=1 

(6.19) 

where u. are given by Eq. (6.14). 
l. 

Consequently, the surrogate dual 

problem (SD) consists in maximizing seA) subject to a single normality 

constraint (6.10), i.e., 

(SD) 

~lax sO.) = 

s.t. 

n 
L Ip.L\). ]2 

l. l. l. 

i=1 

rn+n 
r A. = 1 

J 
j=1 

(6.19) 

(6.10) 

Alternatively, one may prefer using the square root yeA) of seA) as 

the dual objective function to be maximized. Thus an equivalent 

surrogate dual problem (SDI) is posed as 
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(SO') 

Max VCA) 

s.t. 

n 
= I v'p.l.U. 

111 

i=l 

m+n 
I A. = 1 

J 
j=l 

(6.20) 

(6.10) 

It is obvious that problems CSD) and (SD') have an identical solution 

so that they are used interchangably later. It is not difficult to 

recognize that problem (SD') is exactly the same as that proposed by 

Templeman[91] under some notational changes. Before describing the 

solution of problem (SD), we present an alternative way to derive the 

explicit surrogate dual seA). 

6.5.2 GEOMETRIC PROGRAMMING DUAL FORMULATION 

To derive the surrogate dual seA) by means of the GP duality theory, 

we have to first rearrange the terms in the surrogate constraint (6.9) 

by collecting the coefficients of the variables x. to 
1 

yield an 

alternative form of the surrogate constraint. The objective function 

(6.6) together ~ith the rearranged surrogate constraint poses an 

alternative form of the surrogate problem (S) as 
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(S') 

where 

~tin 

n 
\i = I p.t./x. 

1. 1. 1. 

i=l 

n 
I u.x. ~ 1 

1. 1. 

i=l 

u. are given by Eq.(6.14). Thus, 
1. 

(6.6) 

(6.21) 

the surrogate problem (S') 

consists in maximizing the objective function (6.6) subject to a single 

constraint (6.21) in ~hich both the objective and constraint functions 

have the standard form of posynomials required by GP theory. One can 

then employ GP duality theory[26] to establish the duality relationships 

between the surrogate problem (S') and its GP dual problem (DG) which 

is written as 

(OG) 

n n 

~lax (6.22) 

i=l i=l 

n 
s. t. I wOi = 1 (6.23) 

i=l 

n 
I w

li 
= w

10 
(6.24) 

i=l 

i=l, .. ,n (6.25) 

~here w
Oi 

and w1i (i=l, .. ,n) are the dual variables introduced for each 

term in the objective and constraint function, respectively. From 

(6.25), it follo~s immediately that 
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i=l, .. ,n (6.26) 

Substituting w
1i 

from (6.26) into (6.24) and noting (6.23) give 

= 1. (6.27) 

Substituting w1i and w10 from (6.26) and (6.27) into (6.22) and 

collecting the terms give 

where 

n 

dew) = IT (~./Wo.)2WOi 
l. l. 

i=l 

~. = Ip.It.\). 
l. l. l. l. 

Taking the logarithm of dew) in Eq.(6.28) yields 

n 
fn dew) = r 2wOi[ltn(~i) - fn(w Oi )] 

i=1 

(6.28) 

(6.29) 

(6.30) 

The GP dual problem defined by Eqs.(6.22)-(6.25) has reduced to a 

simpler problem in which the function (6.30) is maximized subject to 

the normality condition (6.23). The solution to this simplified GP dual 

problem can be obtained using its Lagrangean stationarity conditions 

as 
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n 

"'Oi = lP i / 1: lP i 
i=l 

i=l, .. ,n (6.31) 

which are then substituted into (6.28) to yield the surrogate dual as 

n 
seA) = 1: lP

i 
]2 (6.32) 

i=1 

which can be easily recognized to be the same as that given by Eq.(6.19) 

if considering Eq.(6.29). 

In the above derivation, several points are of interest. Firstly, 

the equivalent surrogate problem (S') has taken a surprisingly simpler 

form than problem (S). Secondly, the GP dual problem defined by 

Eqs.(6.22)-(6.25) can be analytically solved by simple algebraic 

operations. The third is that the Lagrangean duality and the GP duality 

once again produce an identical result as done in Chapter 3. 

6.6 ENTROPY-BASED DUAL METHOD FOR STRUCTURAL 

OPTIMIZATION 

It should be noted that although the surrogate dual problem (SD) or 

(SD') appears to be simple, there is no effective algorithm for solving 

them. The only algorithm available to date was proposed by Sindaha[88] 
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in which only the displacement constraints were considered in the early 

stages of the optimization process. The algorithm has less rigorous 

background and consequently suffers from instability. 

The developments in this chapter are towards providing not only 

alternative derivations of the dual problem but also its solution. As 

the derived surrogate dual function has an explicit form, the 

entropy-based dual method presented in Chapter 4 is prefered. In fact, 

the solution method to be described is merely an application of the 

entropy based dual method of Chapter 4 to a particular class of 

optimization problems, namely structural optimization problems. As 

indicated in Chapter 4, the entropy-based dual method will be very 

efficient if an explicit surrogate dual can be obtained. This is the 

case for the structural optimization problem (P). 

In ~hat follows, we give the formulas for developing entropy-based 

algorithms. A recurrence formula (4.31) for the surrogate multipliers 

~. has been derived and takes, for this structural optimization problem, 
J 

the form: 

m+n 
L pas(}.)/aA.) 

J 
j=l 

j=1, .. ,m+n (6.33) 

in ~hich P is a control parameter as before and the partial derivatives 

as(~)/aA. can be evaluated by 
J 
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n 
3S(A)/3A. = V(A) I (c .. /u.') Ip.t./u. 

J 1J J 1 1 1 j=1, .. ,m (6.34) 

i=1 

and 

3s(A)/3A. = V(A) a! Ip. tj /U j J J-m J-m -m -m 
j=m+1, .. ,m+n (6.35) 

where V(A) and Ui are given by Eqs.(6.20) and (6.14), respectively. 

Eq.(6.33) together with Eqs.(6.34) and (6.35) constitute a basis for 

developing numerical algorithms for solving the structural optimization 

problem (P). The solution to problem (SD) or (SD') includes two phases: 

a local iteration phase and a global iteration phase. The reason for 

requiring the local iterations lies in the fact that Eq.(6.33) is solely 

a recurrence formula rather than an analytical solution. Within the 

local iteration phase, the parameter p remains constant. An algorithmic 

procedure for solving the surrogate dual problem (SD) or (SD') is 

suggested as follows: 

1. Specify the maximum local iteration number N =10, for instance, max 

and op>O. 

2. Set the global iteration number kk=l and p=O, which corresponds to 

setting A.=1/(m+n). 
J 

3. Enter the local iteration phase by setting the local iteration 

number k=l. The procedure of this phase is described below. 

B. 

b. 

Update A. using the recurrence formula (6.33). 
J 

Check if k>N , if so, go to Step (e). max 
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c. Check the local convergence criteria, if they are satisfied, 

go to Step 4. 

d. Set k=k+l and return to Step (a) but with the updated A
j

. 

e. Set 6p=~6p (~<1) and reset k=l, and then go to Step (a). 

4. Check the global convergence criteria, if they are satisfied, the 

algorithm stops. 

5. Set kk=kk+l and p=p+6p, then go to Step 3. 

The global convergence criteria are suggested as 

kk kk-l 
1. The algorithm stops whenever s ~s . This criterion has been 

2. 

3. 

implied by Eq.(4.18), a result of Theorem 4.1. Since pkk>pkk-1 

it should follow that skk>skk-l according to (4.18). The case that 

skk~skk-l occurs only if the maximizer has been approached in the 

presence of numerical errors. 

, kk kk-l kk-l. 
The relative 1mprovement (s -5 )/5 1S less than a specified 

-4 
E

l
=10 . 

II ,kk_,kk-l ll 'I th 'f' d 10-3 
The norm A A lS ess an a speCl le E2= . 

The global convergence criteria (2) and (3) are used as the local 

convergence criteria, but different values of El and £2 may be 

specified. 

Generally speaking, a small 6p requires fewer local iterations and 

makes the convergence stable. A large 6p requires fewer global 

iterations, but the requirement for reducing 6p may take place. 
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However, as proved by Theorem 4.1, an appropriate sequence of p ensures 

the convergence of the algorithm. 

6.7 CONCLUSIONS 

In the previous sections, the structural optimization problem (P) has 

been solved by the entropy-based primal-dual algorithm proposed in this 

chapter, which has demonstrated fast and stable convergence as a result 

of the consistent treatment of the problem constraints. It can then be 

strongly argued that active set strategies guarantee neither stable 

nor fast convergence. Noreover, the present method does not require 

sophisticated mathematical operations so that it is very easy to program 

and both the number of variables and the number of constraints increase 

computational efforts only marginally. Thus, the present method is very 

suitable for the solution of optimum design problems of large-scale 

structures. 

An explicit dual problem for the structural optimization problem 

under consideration was then derived in terms of the surrogate 

constraint approach and first recognized as a surrogate dual problem. 

This has justified Templeman's dual formulation[91] and cast new 

insights into his work. The derivations presented here are simpler and 

more rigorous. 
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The explicit dual problem (SD'), as proposed by Templeman, has not 

been fully appreciated mainly because there is no efficient algorithm 

for solving it. The entropy-based dual method presented in Section 6.6 

has thus bridged the gap between the dual problem and its solution. 

This may attract more attention to the dual formulation. 

The structural optimization problem (P) has been investigated by many 

researchers and a great deal of solution methods have been proposed 

which are roughly divided into two categories, the mathematical 

programming approach and the optimality criteria approach. A long and 

bitter debate between advocates of the two approaches stopped only 

recently[40]. The present development has greatly simplified the 

problem presentations and the solution methods. There is no doubt that 

the solution methods presented herein are among the best available 

solution methods at the time of writing. 

It should be noted that the entropy-based dual method is more 

efficient than the primal-dual method as it does not require alternative 

iterations over both primal and dual spaces. It is unfortunate that this 

method has been a very late development in the present research so that 

the example problems have not been calculated by the corresponding 

algorithm. There is, however, no doubt about the efficiency and stable 

convergence of this method, as indicated by Theorem 4.1. 
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Table 6.1 Results for Ten-Bar Truss 
- -------------

No. of Final designCin2) 

member Schmit[85] Venkayya [101] Gellat1y[43] Qiao[78] The present 
----------------------------------------------------------------------

1 30.670 30.416 31.350 30.902 30.930 
2 0.100 0.128 0.100 0.100 0.100 
3 23.760 23.408 20.030 23.545 23.597 
4 14.590 14.904 15.600 14.960 14.964 
5 0.100 0.101 0.140 0.100 0.100 
6 0.100 0.101 0.240 0.297 0.287 
7 8.578 8.696 8.350 7.611 7.659 
8 21. 070 21. 084 22.210 21.275 21.282 
9 20.960 21.077 22.060 21. 156 21.162 

10 0.100 0.186 0.100 0.100 0.100 
----------------------------------------------------------------------
Weight 5076.85 5084.9 5112. 5069.4 5075.1(1bs) 
----------------------------------------------------------------------
Iters. 13 26 19 12 16 

--------------======================= 

Table 6.2 Compression Stress Limits 

Group Hembers Stress limitsCpci) 
-----------------------------------------

1 1 -35092 
2 2-5 -11590 
3 6-9 -17305 
4 10,11 -35092 
5 12,13 -35092 
6 14-17 -6759 
7 18-21 -6959 
8 22-25 -11082 

==--==--=================================== 
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Table 6.3 Loading Systems( kps) 
======================================== 

Load 

cases 

1 

2 

Node 

1 
2 
3 
6 

1 
2 

Direction 

x 

10 
10 
o 
o 

20 
-20 

y 

-5 
-5 
o 
o 

-5 
-5 

z 

1 
o 

0.5 
0.5 

o 
o 

=============--=========================== 

Table 6.4 Results for Twenty-Five Bar Truss 
====================================================================== 

Final designs(in 2 ) 

Group Members Schmit[85] Templeman[94] Gellatly[43] The Present 
----------------------------------------------------------------------

1 1 0.010 0.010 0.010 0.010 
2 2-5 1.964 2.022 2.007 1. 976 
3 6-9 3.033 2.934 2.963 2.994 
4 10,11 0.010 0.010 0.010 0.010 
5 12,13 0.010 0.010 0.010 0.010 
6 14-17 0.670 0.670 0.688 0.684 
7 18-21 1.680 1. 675 1. 678 1. 687 
8 22-25 2.670 2.697 2.664 2.663 

-------------------------------------------------------------------_.-
Weight (1bs) 545.23 545.32 545.36 545.38 
----------------------------------------------------------------------
Iterations 16 7 7 5 
=====--================================================================ 
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Table 6.5 Applied Loading Systems to 72-Bar Truss(lbs) 

Load 
cases Node x 

Direction 
y z 

---------------------------------------------------------.---
1 1 5000 5000 -5000 

-------------------------------------------------------------
2 1 0 0 -5000 

2 0 0 -5000 
3 0 0 -5000 
4 0 0 -5000 

= 

Table 6.6 Results for Seventy-Two Bar Space Truss 
===============--===============--====================================== 

Final designs(in 2
) 

---------------------------------------------------------------
Group Schmit[85] Venkayya[101] Gel1atly[43] Qian[78] The Present 
----------------------------------------------------------------------

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.1565 
0.5458 
0.4105 
0.5699 
0.5233 
0.5173 
0.1000 
0.1000 
1. 267 
0.5118 
0.1000 
0.1000 
1.8850 
0.5125 
0.1000 
0.1000 

0.161 
0.557 
0.377 
0.506 
0.611 
0.532 
0.100 
0.100 
1.246 
0.524 
0.100 
0.100 
1. 818 
0.524 
0.100 
0.100 

0.1492 
0.7733 
0.4534 
0.3417 
0.5521 
0.6084 
0.1000 
0.1000 
1.0235 
0.5421 
0.1000 
0.1000 
1.4636 
0.5207 
0.1000 
0.1000 

0.1564 
0.5457 
0.4106 
0.5692 
0.5237 
0.5171 
0.1000 
0.1001 
1.2683 
0.5116 
0.1000 
0.1000 
1.8862 
0.5123 
0.1000 
0.1000 

0.1571 
0.5356 
0.4099 
0.5688 
0.5067 
0.5200 
0.1000 
0.1004 
1.2801 
0.5148 
0.1000 
0.1000 
1. 8973 
0.5158 
0.1000 
0.1000 

----------------------------------------------------------------------
Weight 379.640 381. 2 395.97 379.62 379.666 
--------------------------------------------------_._-------------_._-
Iters. 9 12 9 8 6 
=============--==================--===================================== 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

7.1 INTRODUCTION 

This thesis has examined the use of Shannon's (informational) entropy 

measure and Jaynes' maximum entropy criterion in connection with the 

solution of constrained optimization problems. At first glance, the 

two concepts, entropy and optimization, seem to have no direct link as 

the Shannon entropy is essentially related to probabilities while 

optimization is usually viewed in terms of a deterministic topological 

domain. To explore possible links between them, an optimization problem 

has been simulated as a statistical thermodynamic system that 

spontaneously approaches its equilibrium state under A specified 

"temperature", which is then characterized by the maximum entropy. An 

attacking line: 

entropy ~ thermodynamic equilibrium ~ optimization 

was then postulated. In the simulated thermodynamic system proposed in 

this thesis, the Lagrangean L. 
J 

in Eq. (4.8) was interpreted as the 

"energy" of its jth micro-state while the surrogate Lagrangean (4.7) 

represented its total energy which was the mean value of the energies 

of each micro-state. The surrogate multipliers thus have a probabilistic 
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interpretation. An optimum point then corresponds to a thermodynamic 

equilibrium state under a specified temperature. The entropy of the 

system as a measure of uncertainty contained in this process should 

attain a maximum value at the equilibrium state, and hence at the 

optimum point. 

In the course of this study, the concept of entropy was further 

examined by presenting two dual forms. Several ways of using the entropy 

in an optimization context were investigated and their relations to some 

well-established results of optimization theory were studied. Some 

entropy-based optimization methods have been developed. A class of 

structural optimization problems was chosen to provide example problems. 

The main developments made in the present study are summarized as 

follows: 

1. Two dual forms of Jaynes' maximum entropy formalism were developed 

in terms of both Lagrangean duality theory and geometric programming 

duality theory. These dual formulations have provided additional 

insights into entropic processes as well as affording a simple means 

of calculating the least biased probabilities. 

2. An entropy maximization model was proposed to estimate the 

probabilities of the simulated thermodynamic system which were 

represented by surrogate multipliers. It is then possible to provide 

optimization with an information-theoretic basis. 

3. The idea of entropy augmentation was proposed, which justified the 

entropy maximization approach as well as the thermodynamic 
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simulation and provided a basis for developing a dual iterative 

method. 

4. The entropy augmentation approach was further developed to yield a 

primal function for general constrained optimization problems, 

which can be used to develop new optimization algorithms. 

5. Some properties of this primal function were studied by means of 

the arithmetic-geometric mean inequality and the concept of the norm 

of a vector. The differentiability and monotonically decreasing 

properties have suggested that good optimization algorithms could 

be developed using this function. 

6, An entropy-based primal-dual algorithm for solving a class of 

structural optimization problems was developed and three numerical 

examples were presented. 

7. An explicit surrogate dual for the above structural optimization 

problems was derived by means of both Lagrangean duality and 

geometric programming duality. An algorithmic procedure for a dual 

solution method was suggested. 

7.2 CONCLUSIONS 

The present work has shown that there are links between entropy and 

optimization. There is no doubt that good entropy-based optimization 

algorithms can be devised based upon the present development. Several 

conclusions, drawn from the present research, are summarized as follows: 
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1. The existence of the dual forms of the maximum entropy problem has 

provided not only an alternative convenient solution strategy but 

also additional insights into entropic processes. The recognition 

of a formal duality relationship is very important in using the 

maximum entropy criterion in nonequilibrium processes. 

2. Uncertainty contained in the solution of constrained optimization 

problems is so similar to that contained in thermodynamic systems 

that it is reasonable to employ a statistical thermodynamic 

approach, 1. e., the entropy maximization approach, to estimate 

surrogate multipliers. 

3. The entropy augmentation approach, which may also be referred to 

as the entropy penalty approach, has a rigorous theoretic 

background, as proved by Theorem 4.1, and therefore promises stable 

convergence of the corresponding algorithms. Whenever an explicit 

surrogate dual exists the dual iterative method presented in Chapter 

4 is very efficient. 

4. The derivation of the primal function has a significance far beyond 

the function itself. A fact which must be emphasized is that it is 

the entropy augmentation approach which has made this possible. In 

the process of deriving this primal function, a half of the 

saddle-point problem has been analytically solved. This has greatly 

simplified the original problem, and has an effect similar to that 

of deriving an explicit dual. In other words, the minimization 

process has been realized if an explicit dual is obtained while the 

maximization process has been realized if an explicit primal is 

derived. It should be noted, however, that whether or not an 

explicit dual can be obtained depends upon the problem functions. 
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The answer is negative for most cases. The explicit primal function 

no longer has the above dependence. It therefore has wider 

applicability. As it has demonstrated the intE:'grity and 

interactivity of the constraints it may have better performance than 

other penalty functions. Moreover, its differentiability and 

monotonically decreasing properties makes it easy to incorporate 

it in optimization algorithms. 

5. The derivations of an explicit surrogate dual and the developments 

of the entropy-based methods have enabled the structural 

optimization problems considered in this thesis to be solved very 

easily. The results from three examples have shown that the 

primal-dual algorithm has fast and stable convergence, but better 

algorithms can be expected which iterate over dua 1 space only. 

Through the developments made here, it can be seen that the 

surrogate dual formulation deserves to be more widely recognized 

than hitherto. 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

The present work is exploratory. However it has opened up new avenues 

in the study of some classes of optimization problems, such as general 

minimax optimization and multicriteria optimization problems. Some 

potential research topics, y;hich become poss ib le due to the present 

work, are summarized as follows: 
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1. The present research is mainly oriented towards providing a 

theoretical basis for using the Shannon entropy in an optimization 

context. It has left many aspects of practical algorithmic 

development to be explored, which is equally important to the 

present work and are certainly required. 

2. Further theoretical refinements are also required for more deeply 

understanding the present work and extending its applictions to more 

optimization areas. Further links between entropy and optimization 

remain to be explored. It is now clear that the entropy-based 

approaches have close relations to minimax optimization. Thus the 

entropy augmentation approach can be readily adapted to solving 

minimax optimization problems by minimizing the minimax prima 1 

function F , as discussed in Section 5.5. This approach may also 
p 

be used to solve other problems which are essentially of the minimax 

type, such as multicriteria optimization problems, curve fitting 

problems, equations and inequalities solving, etc. These remain to 

be explored. 

3. The present work may also be extended to solve LP problems. It is 

known that the "surrogate cuts" approach can make the remaining 

ellipsoid small in the ellipsoid algorithm originated by 

Khachiyan [65] . However, the surrogate multipliers are generally 

found by solving a quadratic programming problem. The entropy-based 

updates should therefore find an immediate application to this 

problem with potentially large savings in computational effort. 

In Karmarkar's algorithm[64], an improvement can be made by adding 

an entropy term to the objective function. The additional entropy 
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process helps take into account the interactivity between the 

variables. 

It may be possible for the primal function propo~ed in this 

thesis to be used to transform an LP problem into a sequence of pth 

problems which would then be solved by one of the three approaches 

proposed in Chapter 5. 

4. The dual of the maximum entropy problem may be viewed as a 

generalized potential function. It may then be conjectured that a 

minimum potential problem may be replaced by a milximum entropy 

problem which is, in some sense and circumstance, easier to solve 

than the former. The key to realizing this objective is, however, 

how to give the problem in question an appropriate probabilistic 

interpretation. Some clues may be found in the present work. 

5. Due to their minimax nature, the entropy-based approaches may be 

used to develop finite element methods, such as the least squares 

and penalty finite elements, along the line of the weighted 

residuals methods. 

In conclusion, the main contribution to knowledge contained in this 

thesis centres around the various demonstrations that informational 

entropy and optimization processes are closely linked. Through this work 

it is now possible to view the traditional deterministic, topological 

interpretation of optimization processes as not the only interpretation, 

but as just one possible interpretation. It is equally admissible to 

treat optimization processes in a probabilistic, information-theoretic 
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way and to develop solution methods from this interpretation. This new 

insight opens up new avenues for research into optimization methods. 
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APPENDIX A GEOMETRIC PROGRAMMING 

Geometric programming is generally used to optimize functions which are 

in the form of posynomia1s (positive polynomials) subject to constraints 

of the same type, and consists of a primal-dual pair of problems. In 

its original development, the generalized ari thmet:i c- gC'ometric metln 

inequality 

n n 
). 

t u i ~ IT (ui/).i) i 

i=l i=l 

(A.l) 

is employed to convert a GP primal problem to its dual where all u
i 

are 

nonnegative, and \ are positive weights satisfying the following 

normality condition 

n 
L ).. = 1 

l. 

i=l 

(A.2) 

The inequality (A.l) becomes an equality if and only if all u i Bre equal. 

In the present study, only the simplest form of GP problems is used 

which is concerned with the unconstrained minimization of a posynomial 

function consisting of n terms and having m variables denoted by y j' 

j=l, ... ,m. This minimization problem constitutes the GP primal problem: 
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(G) 
n m 

Min fCy) = I c. n (Yj)aji (A.3) 
1 

i=1 j=1 

where ci>O (i=1, .. ,n), Yj>O (j=l, .. ,m) and aji (i=l, .. ,n, j=l, .. ,m) are 

unrestricted in sign. 

Corresponding to problem (G) there is a GP dual problem (DG) which 

consists of maximizing a dual objective function over dual variables 

p. (i=1, .. ,n) subject to linear equality constraints. 
1 

(DG) 

Max 

where p.~O. 
1 

n 

dCp) = n (ci/Pi)Pi 

i=1 

n 
1: p. = 1 

~ 

i=1 

n 
1: a

jiPi 
= 0 

i=1 

j=l, ... ,m 

(A.4) 

(A.S) 

(A.6) 

The relationships between the primal and dual objective functions 

are that 

..,~ ..,,, 
fCy) ~ fCy ) = dCp ) ~ d(p) CA.7) 

in which the superscript asterisk denotes optimal values. The 

relationships between the primal and dual variables at the optimum are: 
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m 
* * ,\- a Pi = (c/.d(p )) 1I (Yj ) ji i=l, ... ,n (A.B) 

j=l 

Problems (G) and (DG) together with relationships (A.7) and (A.8) define 

the primal-dual pair of GP problems and can be rigorously provcd[26]. 
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The convex nature of Ja)nes's maximum entropy formalism implies the existence of mathematical duals. 
The paper derives two dual forms of entropy using classical lagrange saddle-point conditions and 
posynomial geometric programming. The dual forms are shown to be equivalent under tran,fmmallon. 
(nsights into the nature of entropic proces,es are explllrcd and possible interpretations nf the dual 
entropies are gi\en. Finally it is sho\\ n that the calculation of least bia,ed prnbabllit,cs undcr/)ing random 
statistical data can be done very easily using standard library subroutines for unconstrained nonhncar 
programming to solve the dual problem. 

KEYWORDS: Entropy, Jaynes's formalism. convex duals. geometric programming, 
random variables, computation 

INTRODUCTION 

The maximum entropy formalism. first published in 1957 by Jaynes" is recognized 
as a fundamental concept in information theory. It addresses the problem of determin­
ing least biased probabilities for the states of a random process and has found 
applications in many disciplines throughout science and technology. Much of the 
knowledge and research generated by the maximum entropy formalism has centred 
around its use as an interpretative tool for studying the nature of the information 
available in particular random processes. It has opened up new avenues of research, 
new ways of interpreting random process data. 

In this paper it is shown that the convex nature of the maximum entropy formalism 
implies the existence of a mathematical dual form of the problem. Two ways of 
deriving the dual of the maximum entropy problem are presented, the first using 
classical Lagrangian saddle-point criteria, the second using the well-established 
duality theory of posynomial geometric programming. Two dual forms are derived 
and are shown to be equivalent under variable transformation. Consideration is 
then given to possible interpretations of the entropy duals in relation to the primal 
maximum entropy formalism. The dual forms yield additional insights into the 
nature of en tropic processes in an information theory context and clarify some of 
the ambiguities in the literature. 
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The calculation of least biased probabilities from random data has always been 
hampered by the fact that the maximum entropy formalism is a rather awkward 
numerical tool to use in all but the simplest of examples. An additional aspect of 
the dual forms is that they afford a simple means of calculating such probabilities 
for complex problems using only standard unconstrained minimization algorithms. 
Examples are presented. 

2 THE MAXIMUM ENTROPY FORMALISM 

Consider a random process which can be described by a discrete random variable 
x which may take several discrete values Xr• r = I ....• R. Define Pr. r = I ....• R 
to be the probability that x has the value x" r = I •...• R. i.e. Pr == p(x = x r). The 
maximum entropy formalism is concerned with assigning least biased values to 
the probabilities Pr using only information which can be inferred from the random 
process. According to Jaynes: 1 

• 

"The least prejudiced or biased assignment of pr(lbability is that which maximizes 
the (Shannon) entropy subject to the given information." 

The informational entropy function defined by Shannon 2 is: 
R 

S = -K r. Pr In(p,) (I) 
r= I 

in which S is the (Shannon) entropy and K is a positive constant. 
Jaynes refers to the above statement as the maximum entropy pr;/Idp/e. the use 

of which word has led to heated debate. In this paper it is referred to as the maximum 
entropy formalism. in line with much recent literature. 

The maximum entropy formalism casts the problem of determining the discrete 
probabilities Pr into the form of an optimi.zation problem. Equation (I) must be 
maximized over variables p,. r = I ..... R. subject to any available information 
on the random process. Precisely what constitutes this information. what can 
logically be inferred and how it can be encoded in constraint form clearly depends 
upon the particular random process under examination. However. onc constraint 
is axiomatic; the normality condition. 

R 

r. Pr = I 
r= I 

Maximization of Eq. (I) subject only to Eq. (2) is a simple calculation which yields 
uniform probabilities. Pr = IIR. r = 1 •...• R. and an entropy ratio Sm .. /K = In(R). 
This result is derived using no information whatsoever from the random process. 

Suppose now that some information is available about the random process in the 
form of M expectation functions of the form. 

R 

r. Prfjr(x) = E[fJ j= I •...• M (3) 
r= 1 

for which values offjr(x) and E[fj]. j = I ..... M; r = 1, .... R are known (it is 
assumed that M < R - 1). Then the required probabilities must maximize Eq. (I) 
and also satisfy Eq. (2) and the M Eq. (3). This problem. named problem El is 
stated below for future reference. 



• 

Problem El 
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R 

Maximize: (S.K) = - I p, In(l',} 

p,. ,. = I. .... R 

R 

Subject to: I p, = I 
,=1 

I! 

,= 1 

L p,!j'(X} = ELtj ] 
,= 1 

j = L ... M 

In problem E I it is axiomatic that p, {: O. ,. = I •...• R. 

3 DUAL FORMS OF ENTROPY MAXIMIZATION 
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If Lagrange multipliers (I + A) for the normality constraint and JI). j = I •...• M 
for the M expectation constraints are defined for problem E I the Lagrangian function 
L(p. A. Ji} has the form: 

L(p. A.. Ji) = - J.", In(p,) + (l + ).)(J.", - 1) + JI jlJct.", h, - ELt}]) (4) 

Necessary conditions for a stationary point of L(p. A. Ji) are that 

and 

tL 
-::;- = O. 
Cl', 

The first of these yields 

r = I. .... R: 

j = 1. ...• M 

r = 1. ...• R (5) 

The second yields the normality condition. Eq. (2). which, on substituting result (5), 
gives 

(6) 

and 

_ exp(L~ 1 Jl) ./j,) 
p, - ,R (,M ' 

L.r=l exp L,j=l Jl)./j,) 
r = I, ... , R (7) 
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The third necessary stationarity condition yields the M expectation constraints, 
Eqs. (3), which on substituting (7) have the form 

j = 1, .. " M (8) 

Sufficiency conditions for the stationary point to correspond to a solution of problem 
El can be seen to be satisfied if the second derivatives of the Lagrangian function (4) 
are examined. Thus, 

a2L -1 
ep; = Pr 

e2L 
--=0 
ePr epk 

r = 1 •... , R 

r= 1 ..... R;k(#r)= I, .... R 

(9) 

(10) 

Relationships (9) and (10) show that the Hessian matrix of the Lagrahgian function 
is diagonal with negative elements (since Pr ~ 0, r z:: 1. .. ,. R). This is characteristic 
of a strictly concave function. Consequently it is deduced that the stationary point 
must correspond to a global maximizing point of problem El. 

The above analysis is well-known and has appeared frequently in the literature 
(see, for example, Tribus3

). However, previous work has not explicitly pursued the 
analysis beyond this stage to construct a formal mathematical dual problem to 
problem El. This will now be done. The construction of a dual problem hinges upon 
the Lagrangian saddle-point condition. The following theorem encapsulates the 
essential material. 

Theorem 

If problem A consisting of a maximization over variables x has a Lagrangian function 
L(x, (1) which is strictly concave such that L(x·. 11"') ~ L(x, 11"'). where superscript 
asterisk denotes an optimal value. then its dual problem. problem B. is strictly 
convex such that L(x·. ex·) $ L(x"'. ex) and consists of a minimization over dual 
variables 11. 

The above theorem is central to the theoretical conditions for optimality and is 
proved in many texts (see Lasdon.~ McCormick 5 ). The proof does not require 
L(x. ex) to be either continuous or differentiable. 

The previous analysis has shown that problem El satisfies all of the conditions 
of problem A of the theorem and therefore that they are in correspondence. The dual 
problem corresponding to problem B of the theorem must therefore be such that 

L(p"'. ;,"', p"') $ L(p"', A, p) 

The dual problem of problem El is then: 

Minimize: D()', p) = L(p"', A. p) 

A, Jlj • .i = 1. .... At 
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Substituting r:. r = 1 •...• R given by Eq. (5). A. given by Eq. (6) into the Lagrangian 
function (4) and using relationships (8) yields. after algebraic manipulation, the dual 
problem as: 

p,.oblem E2 

Minimize: D(Ji) = - J.'ljE[Jj] + In{.tl exp(J/lj.!j,)} 

Jlj.j = I ..... M 

Before examining problem E2 and its relationship to problem E I in detail, another 
way of deriving a dual problem for problem E I using geometric programming is 
presented. Geometric programming was developed in the late 1960s and has become 
an established technique of mathematical programming. The Appendix to this 
paper states the mathematical forms of geometric programming as used in this paper. 
Duffin. Peterson and Zener" give a comprehensive background to' the topic and 
full proofs of all the duality relationships which are here used without proof. 

First. a modified form of problem E I is introduced which has a different form of 
the entropy ratio objective function. From problem El 

I! 

S K = - I p, In(p,) 
,= 1 

) In -R (I )pr 
,71 p, 

i.e. . 
S K = In{ri (~)",} 

,= 1 p, 
(11 ) 

Taking exponentials of both sides of Eq. (11) gives 

R (I )pr 
exp(SK) = n -

,= 1 p, 
(12) 

Equation (12) replaces the objective function (S· K) in problem E! to give a modified 
maximum entropy problem (ME!). 

p,.oblelll ,\1 E J 

Maximize: G(p) == exptSiK) = ,Q_
I! 1 (pi,) Pr 

p,.I'=I ..... R 
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R 

Subject to: I p. = I 
.= 1 

R 

I P.{fj. - E[jj]} = 0 .= 1 

j = I, ... , M 

It can be noted here that taking the exponential of the entropy function in no way 
affects its concavity. Values of P:, r = I, ... , R which uniquely solve problem El 
must also uniquely solve problem MEI. 

If problem MEI is now compared with the pair of primal-dual geometric pro­
gramming problems given in the Appendix it can immediately be seen that it 
corresponds very closely to the geometric programming dual problem. problem G2. 
Indeed the problems MEI and G2 are identical if the following equivalences are 
defined. The dual function name. G, in G2 is equivalent to exp(S/K) in MEI; all the 
coefficients c. in G2 must be set to unity for all ,. to correspond to ME I, and all the 
quantities OJ.,j = I, ... , M:,. = I •...• R in G2 must be set to equal the quantities 
{f .• - E[fj]}, j = I, .... M: ,. = I ..... R, in MEt. Also. now, the dual variables p.: r = I •... , R in problem G2 can be seen to be identical to the variables in problem 
MEI which are the discrete probabilities. • 

Having established that problem M E I corresponds to a particular case of 
problem G2 in which the above equivalences are made. it is now possible to use 
the duality relationships of geometric programming as given in the Appendix to 
construct a new problem. ME2 which bears the same relationship to MEI as Gl 
does to G2. This new modified maximum entropy dual problem turns out to be: 

Problem ME2 
R .\1 

Minimize: F(.\) = ') n r:f,.-I.l{,I: 
'-- • J 

r::.:: 1 ;= I 

.rj' j = I. ..... \1 

Appendix Eqs (AI) and (A2) then give the formal relationships which exist between 
the objective functions and variable values in problems M E I and M E2 at the 
optimizing points. . .. 

This section has now established two pairs of primal-dual problems: 

El =- E2 

and (13) 

MEI =- ME2 

Furthermore, MEI is obtained from El simply by taking the exponential of the 
entropy ratio objective function. Consequently it is to be expected that the two dual 
problems E2 and ME2 are also closely related. In fact problem ME2 can be obtained 
from problem E2 by putting 

J"j == exp(JI) j = 1. ... , M 
F(y) == exp[D(JI)] 

(14) 

It is therefore possible to obtain the probabilities P •• r = I •...• R which solve the 
maximum entropy problem. El. by solving either of the dual problems. E2 or ME2, 
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and using the transformations and duality relationships shown below in relation­
ships (15) 

PRIMAL PROBLEMS 
(MAXIMIZE) 

(S, K)~ .. = D("")m,n 

~ 

n·w )"r. 
• J = loT-'-J--:r-

Pr = ,R --[1\1 ),.fJr 
"::"'r= I J= I J 

4 INTERPRETATION OF THE ENTROPY DUALS 

DUAL PROBLEMS 
(MINIMIZE) 

11 .1', = e~p(ll,) lr(» = c~p(D( .. » 

(IS) 

In interpreting the results expressed by the relationships (15). an important feature 
is that the primal and dual problems exist in different spatial domains, The primal 
problems E I and M E I are the well-known problems of entropy IIlC/X;m;:ut;oll in the 
R-space of the discrete probabilities Pr. but the dual problems E2 and ME2 are 
problems of function m;ll;m;:ar;on in the A-I-space of the dual variables J.Jj or )'j' 

There is no transformation in a horizontal sense in relationships (\ 5) between a 
general. non-optimal point in primal space and another point in dual space, The 
only point at which primal and dual spatial domains meet is at the unique optimizing 
point where entropy reaches its constrained maximum value and the dual function 
reaches its minimum value. at which point corresponding primal and dual objective 
functions have the same numerical value, The spatial dimensionality of the primal 
and dual problems is interesting: the R-space of the primal problems is that of the 
discrete probabilities, the M-space of the dual problems is that of the available 
information (M is the number of statistical averages or moments which are known). 
It is therefore clear that whatever the dual function D(JI) (or its alternative form 
F(y» represents. its is definitely not entropy. 

The function D(Il) in problem E2 appears frequently in the literature but has not, 
to the authors' knowledge, been specifically identified as the formal convex dual of 
problem E \. Agmon, Alhassid and Levine8 introduce the exact form of D(JI) which 
they call a "potential function," They note that minimizing D(JI) over variables 
11). j = I •...• M produces optimal values J.Jj* which are equal to the Lagrange 
parameters of problem El. Neither in that paper,8 nor in earlier work 9 which uses 
the potential function is there any reference to the fact that SI K and D{JI} are the 
elements of a primal-dual pair, although all the necessary ingredients are present. 
Agmon et al. 8 suggest only that D(Il) might be useful in a numerical algorithm to 
calculate the Lagrange parameters in the maximum entropy formalism. 

That the general function D(JI) is not a measure of entropy is clear: precisely 
what D(JI) measures is not so clear. A clue is found in Jaynes's statement of the 
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formalism given earlier: the probabilities which maximize the entropy subject to the 
given information are least prejudiced or least biased assignments. This suggests that 
the dual of entropy maximization is prejudice or bias minimization. and that D(Jl) 
is a direct measure of the prejudice or bias contained in the information. The term 
"potential function" used by Agmon et al. 8 implies that D(Jl) represents the usefulness. 
value or potential of any information that a message may contain. In order to assume 
nothing more than is strictly justifiable, it is necessary to extract only the minimum 
core of intrinsic information by minimizing the potential function. 

5 NUMERICAL SOLUTION METHODS 

The purely numerical problem of calculating least biased discrete probabilities 
Pr. r = 1, ... , R from available random data is now addressed. A~suming that 
expected values of statistical moments can be calculated from the data. E[jj].j = I • 
. . .• AI and jjr' j = I •...• M. ,. = I. ...• R will be' known. There are then several 
ways of calculating the desired probabilities. Griffeath lO solved problem El directly 
using constrained non-linear programming (a feasible directions method). An 
alternative method is to solve the M non-linear Eqs (8) for the M unknown Lagrange 
multipliers Il j • j = I •... , M and substitute values of these multipliers into the R 
Eqs (7) to give the desired probabilities. The difficulty in this method lies in solving 
the ...,1 non-linear Eqs (8). One way of doing this is to write the equations in residual 
form and use numerical optimization to minimize the sum of the squares of the 
residuals. This is the basis of the methods used by Siddall and Diab ll and Basu and 
TempJcman 12 for continuous random variables although they are equally applicable 
to discrete random variables. 

The above methods are cumbersome and require considerable programming 
care to avoid computational inaccuracies. rhey are all directed towards solving 
the primal problem El. A different approach. in the spirit of Agmon et £//.,8 is that 
of solving numerically the dual problem (E2 or M E2) and using the simple primal­
dual relationship (15) to calculate the desired probabilities. This approach is discussed 
further here. 

Both dual problems. E2 and ME2. are unconstrained non-linear minimization 
problems over M variables. Neither has any marked advantage over the other in 
respect of ease of numerical solution: problem ME2 is chosen here as it has a more 
concise functional form. Generally the number of variables 1H will be small. perhaps 
between one and four. This gives an advantage over Griffeath's method lO in which 
the number of variables is R. since in most cases R > AI and the computational 
efficiency of optimization algorithms depends largely upon the number of variables: 
the fewer the better. Also. unconstrained minimization problems such as M E2 
are in the simplest class of all optimization problems to solve numerically, especially 
with few variables. Problem E I as solved by Griffeath is a constrained problem and 
consequently is inherently more difficult to solve. 

The dual problem ME2 has other attributes which help in its rapid solution. 
Firstly the function F(y) is differentiable and closed-form algebraic derivatives can 
be specified very easily. This means that the most efficient unconstrained optimiza­
tion algorithms which employ first (and sometimes second) derivatives can be used. 
A second important feature is that it is always possible to specify a good starting 
point for the numerica~ search process. This consists of initially setting all the 
variables }"j. j = I ..... M III problem ME2 to unity. (In problem E2 the corresponding 
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TABLE 1 

Mom~nt data used in test examples 

Test no. E[x] E[x!] E[.~J] E[x"] 

4.5 
2 4.5 22.75 
3 4.5 22.75 123.0 
4 4.5 22.75 123.0 690.0 

initial values are Jlj = O. j = I. ...• M.) It is easy to show from relationships (15) 
that this starting point is equivalent to making an initial guess that the probabilities 
Pr'" = 1 •...• M in problem El are uniformly distributed. If the numerical optimiza­
tion process subsequently alters the values of the variables .\j so as to minimize 
F(y). this reflects the fact that. and the extent to which. the extra information provided 
by the statistical data causes the uniform probabilities to change to a different 
distribution. It can also be noted here that if no informational constraints (3) exist 
in problem El then At = 0 and problems E2 and ME2 do not exist. They only exist 
when information is present and can therefore be thought of as modelling the effect 
which that information has upon uniformly distributed probabilities. The strictly 
convex nature of problems E2 and ME2 ensures that the globally optimal point 
will be reached whatever the starting point may be. 

The computational solution of the dual problem E2 or ME2 is simple and rapid. 
A NAG library subroutine was used for the unconstrained minimization, the 
remainder of the short program consisting of data input and output statements 
and details of the function to be minimized. its gradients and starting point. The 
NAG library subroutine used in the examples here was E04DFF. a modifled-Newton 
algorithm devised by Gill and Murray!3 . 

The numerical example is based upon an imaginary die-rolling experiment using 
an unfair die. Test number one postulates that after many rolls the mean of the 
face-up value is E[x] = 4.5 (instead of 3.5 for a fair die). In test number two it is 
assumed that both the mean and variance of the face-up values are known, 
E[x] = 4.5 and E[x 2

] = 22.75 (instead of .15.666 for a fair die). In tests three and 
four hypothetical values for E[xJ] and E[X4] are given as shown in Table I. For 
each test the underlying discrete probabilities which maximize entropy are found by 
using E04DFF to minimize the unconstrained entropy dual problem. Results are 
given in Table 11. 

TABLE 11 

Resulting di'crete probabilities 

~ ~ 2 3 4 

PI 0.054354 0.067414 0.015168 0.000030 

pz 0.078772 0.081046 0.135295 0.176936 

PJ 0.114161 0.105414 0.182140 0.166962 

P. 0.165447 0.148336 0.115131 0.062205 

P5 0.239774 0.225829 0.106299 0.166814 

P. 0.347491 0.371961 0.445967 0.427054 

(S K)m_ 1.613581 1.609575 1.491612 1.440478 
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Little comment on the results is necessary. The hypothetical die which led to the 
expected value data is clearly grossly unfair. Probabilities and entropies are stated 
to six decimal places only: the computational accuracy was higher. The results 
of test one can be verified by hand calculation. Results for the other tests were obtained 
rapidly and with minimal programming effort. 

6 ENTROPY DUALS FOR CONTINUOUS RANDOM VARIABLES 

Dual forms similar in nature to E2 and ME2 can be derived for the case in which 
the random variable x is continuous-valued rather than discrete-valued. If p(x) 
is the probability distribution function of the continuous random variable x the 
maximum entropy problem parallelling problem El has the form: 

Problem CEl 

Maximize: (S,K) = - J p(x) In[p(x)] dx 

p(x) 

Subject to: J p(x) dx = 1 

j= 1, ... ,M 

in which integration is performed over the range of variable x. 
Using the 'same mathematical approach' as in Section 3 it can be demonstrated 

that the dual form of CE 1 is similar to problem E2: 

Problem CE2 

Minimize: D(J!) = - J/ljEU;J + In{J exp(J/j!iX») dX} 
Jli,j=I, ... ,M 

Solving problem eE2 over variables JI yields D(JI*) and JI* from which (SIK);:', •• 
and p*(x) are found using: 

( 16) 

and 

*( ) exp(If= 1 JIJl'<» 
p x = S ,M 

exp(L-j= 1 J1ih(x» dx 
(17) 

By use of the transformations (14) a more concise dual formulation which parallels 
problem ME2 can be obtained as: 

\ 
I 

\ 
l 



\ , 

\ 
,. 

Problem CM E2 
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Minimize: F(y) = f jOt )')'llx'-£1I111 dx 

)j.j = 1 •... , M 
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The maximum entropy based probability function p·(x) can be recovered from 
relationships (14), (16) and (17) after solving the unconstrained minimization 
problem CM E2. 

From a numerical solution viewpoint the continuous dual problems CE2 and 
CM E2 have all the attributes of their discrete counterparts. They are slightly more 
complicated in that they each involve a single integration to evaluate the dual function 
at each trial point in the numerical minimization process. Because of the nature of 
the integrand, numerical integration must be used. However, the alternative soluti,>n 
methods for continuous entropy maximization described in References 11 and 12, 
which attempt to solve problem CEl directly require M numerical integrations at 
each trial point. Consequently, obtaining maximum entropy probability distributions 
via the dual forms CE2 or CME2 should be considerably simpler and more rapid 
than the alternative methods. 

Finally. it may be noted that objections have be~n raised in the literature to the 
use of the continuous entropy form (S/K) = S p(x) In[p(x)] dx on the grounds 
that it is not invariant under variable transformation. Nevertheless, this is the form 
most often used in practical applications and this Section is therefore presented on a 
pragmatic basis. 

7 CONCLUSIONS 

A dual formulation has been developed using the Lagrangian saddle-point condition 
for estimating discrete and continuous probability distributions which satisfy 
expectation-constrained maximum entropy criteria. 

It has been demonstrated that the dual entropy problems have distinct advantages 
in respect of their ease of use in numerical algorithms for estimating least biased 
probabilities. Computer programs employing dual entropy formulations are small 
and easy to program. They can use standard library subroutines for unconstrained 
minimization (and numerical integration) and are very rapid in execution. 
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Appendix-Geometric ~rogramming6' 

Geometric programming consists of a primal-dual pair of problems and is here 
used in its simplest form which is concerned with the unconstrained minimization 
of a posynomial function (a polynomial function with strictly positive coellicients). 

Consider the problem of minimizing a posynomial function consisting of R 
terms r = I, ...• R and having M variables denoted by .rj' j = I ....• M. This 
notation is deliberately chosen to be identical to notation already defined for 
maximum entropy problems to facilitate subsequent demonstrations of equivalence. 
This constr~ined minimization problem constitutes the geometric programming 
primal problem (G I). 

Problem G 1 
R .\t 

Minimize: F(y) = L er n .\';'" 
r = t j = t 

.rj'.i = I. .... . \1 

in which: er> 0 r = I ..... R 
.\'j > 0 .i = I. .... M 

(ljr is unrestricted in sign. r = 1.. ... R:j=I. .... M 

Corresponding to problem G 1 there is a geometric programming dual problem. 
G2, which consists of maximizing a dual objective function G(p) over dual variables 
Pr' r = 1 •. _ .• R. subject to linear equality constraints. Here Pr. r = I, ...• R is used 
simply to name or identify dual variables. Equivalence between the dual variables 
and discrete probabilities Pr. r = I. .... R are demonstrated in the main text. 

Problem G2 

Maximize: G(p) = rD! (~r 
Pro" = I ..... R 

• 



• 
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R 

subject to: L Pr = I 
r= I 

R 

L ajrPr = 0 
r= I 

j = I, ... ,M 

in which: Pr ~ O. r = I, ... , R 

The relationships between the primal and dual objective functions are that: 
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F(yl .... 'yM) ~ F(r!, .... yt,) = G(p!, .... p~) ~ G(PI ..... PR) (AI) 

in which the superscript asterisk denotes optimal values. The relationships between 
the primal and dual variables. y and p. at the optimum are: 

r = I ..... R (A2) 

Problems G I and Gl together with relationships (A I) and (Al) define geometric 
programming and can be rigorously proved.1> . . 
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INTRODUCTION 

This paper presents some new insights on meth'Ods for solving the general constrained 
non-linear programming problem: 

Problem A 

Minimize f(x) (1) 
%1.1= 1, ... ,N 

Subject to gJx) ~ 0 j = 1 ..... M (2) 

Problem A has many and widespread applications. and literature on solution 
methods for its many forms and variants is well known. Engineering design applica­
tions usually involve non-linear functions f and/or g and almost invariably have 
active constraints at the optimum. This is the case to be studied here. 

The present work is part of a research program exploring a possible information­
theoretic basis for a wide variety of engineering synthesis and analysis problems. The 
research is motivated by subjective appreciations on the part of the authors from two 
directions. These are, firstly. that the methods of engineering optimization currently 
available all originated in the 1960's and early 1970's and seem to have entered a 

191 

,-



192 A. B. TEMPLEMAN AND LI XINGSI 

diminishing returns phase in respect of further research potential. Some radically 
different directions and new approaches are needed for the further development of 
engineering optimization techniques. Secondly, the authors believe that information 
theory concepts such as the Shannon measure of uncertainty and the Jaynes 
maximum entropy formalism are immensely powerful and fundamental, and may 
have far wider significant applications than research to date has shown. 

The paper is essentially exploratory. At present the methods of mathematical 
programming contain no information-theoretic basis. They all view optimization 
problems in terms of a topological domain defined deterministically by function 
hypersurfaces. Information theory appears to be incompatible with this as it is 
essentially concerned with probabilities. The current topological, deterministic view 
is, however, only an interpretation of mathematical programming. This paper is a first 
step towards providing a possible alternative interpretation couched in probabilistic, 
information-theoretic terms. Problem A has been chosen for study because the 
authors have found that it is possible to develop a solution method for it which uses 
the Shannon/Jaynes entropy formalism. Consequently it is possible to construct an 
information-theoretic, probabilistic interpretation of problem A. The.paper describes 
the new solution method for problem A and its interpretation and explores some new 
insights which the information theory approacli yields on some other aspects of 
mathematical programming. 

2 SURROGATE NON-LINEAR PROGRAMMING 

In problem A, x denotes the vector of real, continuous-valued variables XI' i = 1, ... , 
N, and the constraint functions gj,j = I, ... , M comprise constraint vector g. Problem 
A has an equivalent surrogate form: 

Problem B 

Minimize f(x) 
'x1.i= 1 •..• ,N 

M 

Subject to L A.jgJ{x) = 0 (3) 
j~1 

In problem B, the A. j , j = 1, ... , M are non-negative multipliers, termed surrogate 
multipliers, forming a vector 1... We are here concerned with solving problem A for 
instances in which at least one of the constraints is active at the optimum. 
Consequently the surrogate constraint (3) in problem B, which in its most general 
form should be written as SO, must be satisfied as an equality at the optimum and is 
stated here as a strict equality. Also, since its right-hand side is zero, the surrogate 
multipliers A. may be assumed to be normalized without loss of generality, i.e. 

(4) 

The desired solution x· of problem A will here be sought indirectly through a 
sequence of solutions of problem B. This approach assumes, therefore, that problems 
A and B are equivalent at the solution point; specifically that a set of multipliers 1... 
exists and can be found such that x· which solves problem B with 1... also solves 
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problem A. Previous work by Everett,l Brooks and Geoffrion,2 Gould,3 and 
Greenberg and Pierskalla4 have studied this assumption, establishing conditions on 
its validity. The proof is not repeated here but is similar to existence and optimality 
proofs for Lagrange multipliers in non-linear programming. An essential condition to 
be satisfied is that (x·, )..., (X.) should be a saddle point of the Lagrangean, La of 
problem B. La has the form 

'" L,t..x, ).., IX) = /(x) + IX L A)gj.X) (S) 
)-1 

where (X is the Lagrange multiplier associated with constraint (3) in problem B. The 
saddle point (x·, l·, IX·) must be such that 

LB(x,)..·, IX·) ~ LB(x·, )..., a·) ~ LB(x·, ).., (X) (6) 

In (6) the left-hand inequality implies minimization over variables x for specified ).. 
and IX; the right-hand inequality implies maximization over).. and IX for specified x. In 
fact x, ).. and (X are functionally related, for example through the stationarity of LB with 
respect to x: 

aL 0 '" o· 
_B (x,).., IX) = -;- /(x) + IX L )..j"~- gJ{x) = 0 i == 1, ... , N (7) 
oX j UXj j-l ux/ 

Thus the saddle point (6) represents a duality relationship which can be generally 
expressed as 

Min J. (x) ~ Max ",(l, IX) 
"J ~.~ 

(8) 

In a few special cases, for example when/(x) and g(x) are convex separable functions, 
it is possible to construct functions § and/or'" in (8) and the primal-dual nature of the 
saddle point then leads to practical solution algorithms. In most cases, however, (8) is 
not of direct value: § or '" in (8) cannot. be established explicitly since relationships 
such as (7) relate x, l and Of implicitly. This more general case is addressed here. 

The saddle point condition (6) is written in terms of the Lagrangean, L B, of problem 
B. This is notationally convenient. It may be satisfied, however, by iterative means 
using problem B itself, with alternative iterations in x-space and )..-space. A typical 
scheme is as follows. An initial set of multipliers).. ° is chosen and problem B is solved 
to yield corresponding values of XO (by minimization, corresponding to the left-hand 
inequality in (6». The multipliers are then updated to )..1 (by a maximization process 
for fixed xc, corresponding to the right-hand inequality in (6» and problem B is 
solved again to give Xl. The process is repeated until the sequence ()..o, XC), 
()..1, Xl), ... , ()..t, Xl), ... converges upon a solution of problem B, and hence also of 
problem A, at ()..., x·). 

The major snag in this iterative scheme lies in updating the multipliers )... It is clear 
from (6) that the updates should satisfy some maximization criterion, but there is no 
explicit criterion to govern this process. Surrogate algorithms have hitherto based 
multiplier updates upon gradient information only. Thus, if at iteration k of the 
algorithm Xl has been found by solving problem B for multipliers).. l, it is evident that 
updated multipliers).. l + 1 for the next iteration should be such that 

{ 

>)..~ if gJ{xl
) > 0 

Ay 1 = l~ if gJ{xl
) = 0 

< l' if gJ{x
l
) = 0 

(9) 
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with 

(10) 

It is easy to see whether each multiplier should increase or decrease in value but no 
information is available to determine the magnitudes of the changes. This paper 
presents a method for determining an efficient update formula for the multipliers A­
based upon the maximum entropy formalism. 

3 THE MAXIMUM ENTROPY FORMALISM 

The maximum entropy formalism published by Jaynes 5 in 1957 is a fundamental 
concept in information theory. In general terms it is concerned with establishing what 
logical. unbiased inferences can be drawn from available information. Its use. 
however. has been limited to only a few areas of research specifically concerned with 
statistical inference, typically in establishing priqr probabilities in a range of practical 
applications in science and engineering. In such applications the maximum entropy 
formalism is used to determine the probabilities underlying a random process from 
any available statistical data about the process. The prior probabilities thus establ­
ished may then be incorporated into decision-making or control strategies for the 
process. References [6] to [8] typify this use of the maximum entropy formalism. 

Another related area of research has been the use of the formalism to justify and 
validate some of the implicit assumptions and axioms in the mathematical modelling 
oftechnological processes.9 The use of the formalism in this way can sometimes reveal 
additional insights and assumptions which may initially be made, thus sharpening the 
results of subsequent analysis. 

Exploration of the axioms of science and engineering leads into what is perhaps the 
most potentially important, and certainly. is the most controversial, area of applica­
tion of the maximum entropy formalism. This concerns the question of whether 
informational entropy is axiomatic to the accepted principles and laws of mechanics 
and physics. Jaynes consistently refers to informational entropy maximization as a 
principle, implying that all else is consequent upon its fundamental nature. This view 
has many adherents including Tribus 10 who has attempted to show that the principles 
of thermostatics and thermodynamics may be derived from the informational 
maximum entropy principle. The converse view, also widely held, is that informa­
tional maximum entropy is merely a very useful formalism-a convenient means of 
understanding and representing a physical principle in mathematical terms. Whatever 
judgement the future might make. it is true to say that informational entropy 
maximization is a very powerful concept which is as yet relatively unexplored. The 
following exposition is couched in probabilistic terms for conciseness and convenience 
although a slightly different interpretation of it will later be made. 

Consider a random process which can be described by a discrete random variable x 
which can have several discrete values xr, r = 1, ... , R. Define Pr. r = 1 •...• R to be the 
probability that x has the value Xr, r = 1, ...• R, i.e. Pr == P(x = xr). The maximum 
entropy formalism is concerned with assigning least biased values to the probabilities 
Pr using only information which can be inferred from the random process itself. 
According to Jaynes: 5 

"The least prejudiced or biased assignment or probability is that which maximizes the 
(Shannon) entropy subject to the given inronnation." 
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The informational entropy function defined by Shannon 11 is 

R 

S = - K L Pr In(Pr) (tl) 
r-l 

in which S is the (Shannon) entropy and K is a positive constant. 
The maximum entropy formalism casts the problem of determining the discrete 

probabilities Pr into the form of an optimization problem. Equation (11) must be 
maximized over variables Pr' r = 1, ... , R, subject to any available information on the 
random process. Precisely what constitutes this information, what can logically be 
inferred and how it can be encoded in constraint form depends upon the particular 
random process under examination. However, one constraint is axiomatic; the 
normality condition, 

R 

LPr = 1 (12) 
r-l 

Maximization of Eq. (11) subject only to (12) is simple and yields uniform probabili. 
ties, P, = (1/ R), r = 1, ... , R and an entropy S' = K In(R). Thus far no information 
from the random process has been used and the formalism has shown that in the 
absence of information equal probability must be assigned to all possible outcomes. 

Suppose, now, that some information is available about the random process in the 
form of T expectation functions of the form 

R 

L p,h,(x,) = E[h.(x)] t=I, ... ,T (13) 
,=1 

for which values of h,(x,) and E[h,(x)] are known for r = 1, ... , Rand t = 1, ... , T. 
E[·] denotes the expected value of the function·. It is assumed that T < R - 1. Then 
the desired least-biased probabilities must maximize Eq. (11) and also satisfy Eqs (12) 
and (13), i.e. . 

Problem C 

R 

Maximize S = - K L p, In(p,) 
p~.'= 1 •...• R ,-1 

R 

Subject to L Pr = 1 
,-1 

R 

L p,h,(x,) = E[h,(x)] 
,= 1 

t = 1, .... T 

In problem C it is axiomatic that p, {: O. r = 1, ... , R. 
The solution of problem C can be shown to be (see Tribus 10

) 

p, = exp[ f v,h,(x,)]/{ f exp[ f v,h,(x,)]} 
'-1 ,-1 .-1 

r = 1 ..... R (14) 

in which v,. t = 1, ...• T are the Lagrange multipliers associated with the expectation 
constraints (13) in problem C. 
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The T Lagrange multipliers v can, in theory, be found by substituting result (14) 
into the T expectation constraints (13) and solving uniquely for v. Solution is not easy 
as these equations are non-linear and can usually only be solved numerically. 
Templeman and LP2 have shown that the Lagrange multipliers v may be found more 
easily by solving problem D which is the convex dual of problem C. 

Problem D 

Problem D is an unconstrained minimization over the variables v. At the solution 
point, D(v*) = S(p*)/K. 

This concludes the brief survey of the maximum entropy formalism:We are now in 
a position to re-examine the problem of how best t9 update the surrogate multipliers 
in an iterative solution scheme for problem B. 

4 ENTROPY-BASED SURROGATE MULTIPLIER UPDATES 

Suppose that we have somehow assigned values to the surrogate multiplier set 1... and 
have solved problem B with I.. k over variables x to yield x·. Suppose that the constraint 
function values giXk), j = I, ... , M have been calculated and that at least one of the 
set gk is positive (indicating a constraint violation in problem A, and consequently 
that Xk oF x*). We now wish to continue iterations by updating A· to AH 1 and solving 
problem B again with I.. H lover variables x. How can we update A.. to I.. HI? 

The new multipliers I..H I must clearly satisfy the normality condition (10) and the 
surrogate constraint in problem B. Thus, 

M 

~>rl = 1 (10) 
j= 1 

M 

L;Y'gixH')=O (15) 
j=1 

These two linear equations are generally insufficient to yield a unique assignment of 
the M multipliers I..k+ I and no explicit objective function in I.. HI is available to 
provide such an assignment. Also, Eq. (15) requires values for g Ix· + I), j = 1 •...• M 
and these are not yet known. The best current estimates for g(XH I) are the values of 
g(Xl) which are available and must be used in their place. Consequently. Eq. (15) is 
modified to 

M 

L A~+lgJ{X·) = £ 
j= 1 

(16) 

where l represents the unknown error introduced by using g(Xl) in place of g(xH I). 
Bearing in mind that we wish A' + 1 and l' to satisfy the relationship (9) it may be 
deduced that the error term £ in (16) must be positive. Furthermore we would expect £ 
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to approach zero as the sequence oC iterative results xt, xH 1, ... approaches x*. We 
are thereCore Caced with the Collowing assignment problem: 

Assign j= I, ... ,M 
M 

Subject to L l' + 1 = 1 (10) 
l-l 

M 

L lrlg):xt) = l (16) 
i-I 

with l - 0+. 

Only the cases Cor M ~ 2 are oC interest (surrogation has no meaning Cor a single 
constraint, M = 1). For the special case M = 2 equations (10) and (16) yield a unique 
assignment: 

l~+ 1 = [l - g2(Xt)]/[gl(Xt) - gixt)] 

;.~+ 1 = [gl(xt) _ £]/[gl(xt) _ gixt)] 
(l7a) 

(l7b) 

which depends upon the unknown error term £. For the general case M > 2 (10) and 
(16) are insufficient to yield a unique assignment )..t+l, yet one is required. In the 
absence oC any explicit criterion of )..-maximization (necessary to satisfy the saddle 
point condition (6» which would lead to a unique assignment, an artificial criterion 
must be imposed. However, on the basis of the information available, there is no 
logical justification Cor a criterion which unduly favours one specific assignment 
rather than another. The artificial criterion should correspond to a maximization 
process in l-space, assignments resulting from it should satisfy (10) and (16) and 
should be in accordance with the directional requirements (9), but otherwise the 
criterion should introduce minimum bias or prejudice into the assignment )..H 1. 
Hence, in the spirit of the maximum entropy formalism, it is entirely logical to 
maximize the entropy of the multipliers l t + I. The unsolveable assignment problem is 
thereCore replaced by the solveable problem E: 

Problem E 
M 

Maximize S()")/K = - Llr1In(;',+1) 
.. ~+ '.lz 1 •.••• M l- 1 

M 

Subject to L ;.~ + 1 = I 
lzl 

M 

L ;.r 19ixt) = C 
l& I 

(18) 

(10) 

(16) 

Problem E is similar in form to problem C, the classical form of the maximum entropy 
formalism. The surrogate multipliers )..t+ I play the role oC the discrete probabilities p. 
Equation (16) has the Corm oC a single expectation constraint (13) with an expected 
value oC c. By virtue of (14), the solution of problem E gives the following assignment, 
). t+ I: 

M 

;.r I = exp[pgJ{xt )]/ L exp[pg):xt)] j= I, ... ,M (19) 
)-1 
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in which P is the Lagrange multiplier associated with constraint (16) in problem E. 
Equation (19) is proposed for use as the updating relationship for the multipliers in 
the iterative algorithm described in Section 2 of this paper. 

The Lagrange multiplier P in (19) is of course unknown but is closely related to (. 
Substituting (19) into (16) gives 

M M 

L gJ.xk
) exp[pgJ.xk

)]/ L exp[pgJ.xk
)] = ( (20) 

jzl )-1 

However, ( is also unknown but should approach zero from the positive side as 
iterations approach the optimum, as noted earlier. P may therefore be considered as a 
control parameter whose value should be chosen at each iteration such that ( displays 
the behaviour desired. It may be deduced from (20) that for l to display the required 
behaviour P must be chosen positive and increasingly large at each iteration. The 
reasoning is as follows: each constraint in problem A contributes.a term to the 
numerator summation and a term to the denominator summation in (20). Constraints 
in problem A which are slack as the optimum is approached may in theory be deleted 
from the problem so in (20) their contributed terms should approach zero as ( 
approaches zero. For such a slack constraint gjxk

) must be negative and the terms 
corresponding to such a constraint only approach zero if p is positive and increasingly 
large. If terms in (20) corresponding to active constraints are examined with this p it 
can be seen that numerator terms approach zero and denominator terms are positive. 
Hence (. approaches zero from above as positive p increases. 

In the special case of problem A with two constraints (M = 2) Eqs (17) represent a 
unique updating formula for 11 and 12 quite independently of the maximum entropy 
formalism. It may be noted that for M = 2 the entropy-based update formula (19) 
yields the same results (17) after solving (20) for p, substituting in (19) and 
simplification. This is not surprising. but it does permit the I. update formula (19) to 
be viewed as a least-biased extension of the unique result (17) for M = 2 into the more 
general realm of M > 2. 

This concludes the derivation of an entropy-based update formula for the surrogate 
multipliers. Problem solving may use the algorithm described in Section 2 with 
alternative I.-space and x-space iterations. Iterations in I.-space use (19) with a 
sequence of user-specified, increasing values of p. 

S NUMERICAL EXAMPLE 

The example is taken from Beightler and Phillipsll and was chosen because an 
analytical solution for the x-phase minimization is available for any set of values of).. 
Consequently, the example focusses attention on the I.-phase iterations which are the 
subject of this paper. The example is: 

Minimize I(x) = (XI X2 XJ)-I 

Subject to gl == 2xI + X 2 + 3xJ - 1 ::5: 0 

g2 == XI + X2 + Xl - 1 ::5: 0 

g3 == XI + 3x 2 + 2xJ - 1 ::5: 0 

X 1,X2,Xl>O 
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Table 1 

k {J AI Al A] XI Xl X] gl g2 g] / 

0 1 ! 1 0.250 0.200 0.167 0.200 -0.383 0.183 120.00 
I 2.718 0.463 0.095 0.442 0.228 0.177 0.141 0.056 -0.454 0.041 175.74 
2 7.389 0.521 0.012 0.467 0.219 0.172 0.133 0.009 -0.476 0.001 199.61 
3 20.086 0.540 0.000 0.460 0.216 0.174 0.131 -0.001 -0.479 0.000 203.11 

The surrogate constraint (3) becomes 

A. ,(2x 1 + X2 + 3X3 - 1) + ..l.ix, + Xl + X3 - 1) + ..l.3(X1 + 3X2 + 2X3 - 1) = 0 

which rearranges to 

(2A. 1 + ..1.2 + A3)X I + (AI + ..1.2 + 3).3)xl + (3).1 + ..1.2 + 2..l.)X3 - 1 = 0 

199 

For given A, minimizing f(x) subject to this constraint is a simple geometric 
programming problem yielding the result: 

x! = !(2A I + ).2 + i) 
x! = !().I + ..1.2 + 3..1.3) 

x! = !(3).1 + )'2 + 2A. 3 ) 

A sequence of increasing values of p must be specified for A iterations. The main thrust 
of this paper is not towards algorithmic implementation or fine-tuning, so the 
sequence chosen is not necessarily the best one but it does demonstrate how the 
method works. p was specified to be tt where k is the iteration number. Table 1 gives 
the iterative results. 

Iterations commence by setting )'1 = ).2 = )'3 = i. Note that the Jaynes maximum 
entropy formalism generates this starting set for )..: in the absence of any extra 
information about the problem the least-biased assumption we can make is that all 
three constraints are equally weighted. The rest of Table 1 then follows iteratively. The 
solution in the bottom row of Table 1 is as exact as the three decimal place accuracy 
permits. Convergence is very fast. 

6 DISCUSSION AND INTERPRETATION 

The example confirms that entropy based updates for the surrogate multipliers lead to 
a fast and accurate solution of problem A. It is freely admitted that the example is a 
relatively simple and convex problem, and that the convergence rate is dependent 
upon the sequence of increasing values specified for p. Other sequences than that used 
above have been tested and all converged, with a final {J of approximately 20 to 30. 
The entropy maximization basis of the method appears, therefore, to be quantitatively 
sound. 

One feature of the method which may be noted here is that updates for A do not 
require any gradient evaluations or first-order information. In order to predict A 1+ 1 

for the (k + I)th iteration, only values of the constraint functions themselves, 
9 )Xlc), j = I, ... , M, evaluated in the previous iteration are required. This feature leads 
conveniently into a physical interpretation of the surrogate multipliers as probabili­
ties. 

E.O.-D 
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In Section 3, the maximum entropy formalism was developed and stated in a 
probabilistic form. yet the application described subsequently was to a problem which 
is conventionally and almost universally interpreted and solved as a deterministic 
mathematical programming problem. The use of a probabilistic method in a 
deterministic context is suspect unless it can be justified. We now address this problem 
and argue that the deterministic interpretation of problems A and B is not the only 
possible interpretation. Problems A and B can be explained in a probabilistic context 
in which informational entropy maximization is both natural and justified. 

To do this a non-frequentist view of probability is taken. The probability p, of some 
event r represents a measure of certainty or confidence in event r. High p, in the range 
o ~ p, ~ 1 indicates high certainty. This removes any connotations of repeated 
experiments and frequency of occurrence of event r from the interpretation. 

The solution process is set in a probabilistic context by considering Problem A as 
posed initially and estimating what level of certainty (probability) should be assigned 
to the event that each constraint is active at the problem solution. Denoting these 
probabilities by Aj • j = I •... , M. it is known (from the definition of the problem) that 
at least one of the constraints must be active. so (4) must hold. However. in the 
absence of any numerical information about problem A. there is no logical reason to 
assign a higher certainty to anyone constraint rather than another. All the constraints 
are equally likely to be active at the optimum. thus the probability assignments 
Aj = IjM.j = I ..... M must be made. Although this result is intuitively obvious. it is 
also a direct consequence of solving the maximum entropy problem 

M 

Maximize (SjK) = - L )'j InO) 
Aj. JE 1. .... M j& 1 (21) 

M 

Subject to L AJ = I; AJ ~ 0 for all j 
j;1 • 

as noted earlier. This)' ° now permits the postulation of a probabilistic optimality 
condition for problem A: the solution will be found at a point at which all constraints 
are equally likely to be active. This condition may be expressed in expectation form 
(13): with probabilities). ° the expected value of all constraints g(x) must be zero. Thus 

M 

L AJgJ{X) = 0 (22) 
j= 1 

Now a vector X
O must be sought which satisfies (22) and also minimizes f(x). This 

corresponds to problem B with fixed surrogate multipliers (probabilities) ).0. Solving 
problem B with ).0 therefore represents solving a probabilistic approximation to 
problem A by satisfying the most likely and least biased constraint optimality 
condition which could be constructed using available information. 

Generally X
O will not correspond to x·, the solution of problem A. because the 

optimality condition (22) is not usually exact. The i.. ° contained in (22) are only best 
currently available estimates which are not necessarily accurate yet. x· will be located 
only when each of the terms AjgjX) in the summation in (3) is zero. This is the 
complementary slackness condition which. interpreted probabilistically, states that 
for a strictly positive probability that a constraint is active at the solution. the 
constraint function must have value zero. and if the constraint function is non-zero the 
probability that it is optimally active must be zero. 
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The current solution point XO will usually satisfy (22) with gjxO) ~ 0, j = I, ... , M. 
However, these values of g(XO) give new information about problem A which can be 
used in the maximum entropy formalism to improve the probability assignments;" ° to 
;..1. It is clear that if gjxO) > 0 for some j then this should increase our certainty that 
constraint j will be active at the optimum, and vice versa, thus 

).] >).J if gjxO) > O} . 
).J <).7 if gjxO) < 0 J = I, ... , M (23) 

which, it can be noted, is the form of (9). This can be codified in expectation form as 
follows. Equation (22) must be satisfied exactly at xO. Thus 

M 

L ).°gJ{XO) = 0 (24) 
J~I 

In view of (23), it can be deduced that 

M M 

L ).JgJ{XO) > L lJgjxO) (25) 
jal j~1 

Thus we can write 

M 

L ).JgJ{XO) = l (26) 
j= 1 

where l is the expected value of the left-hand side of inequality (25). l should logically 
be small, positive, and should tend towards zero as our certainty (represented by the 
sequence ).0, ).1, ).2, ... ) increases. Equation (26) therefore encodes the extra informa­
tion provided by the trial XO. It may be appended as an extra constraint to (21) which 
can be solved to yield least biased estimates of constraint probabilities ).1. 

Using these new certainty estimates). I, a new probabilistic constraint optimality 
criterion (Eq. (22) with ;} replacing ;"0) can be formed. Solving problem B with ;"1 
locates a new point x I which satisfies the constraint criterion and minimizes/ex). This 
yields new information on constraint function values g(x I) which can be encoded into 
a form similar to (26), and the iterations continue thus until ).. and x· are found. 

The above has shown that it is possible to interpret the iterative surrogate solution 
method in a probabilistic context, and to justify the use of the maximum entropy 
formalism. In the context of surrogate constraints several authors including 
Glover l4•IS have used the concept of surrogate constraint strength. A surrogate 
constraint (3) with), III is defined to be stronger than a surrogate constraint with).· if 
/(Xlll) > /(x·), where XIII and x· both solve problem B with ).111 and ).. respec­
tively. The results in Table 1 therefore show iterations of increasing surrogate 
constraint strength, culminating in a solution to problem A when surrogate constraint 
strength is maximum. Since the). updates given by Eq. (19) maximize the entropy of 
the available constraint information, this suggests that constraint strength and 
constraint entropy are synonymous. In this light, the approach used in this paper to 
solve problem A can be generally expressed as: 

Minimize the objective function over x such that the constraint entropy is maximized over 1.. 

Viewed in this context, the entropy based surrogate method may be extended and 
developed further into alternative functional representations and models. These 
extensions are now addressed. 

" 
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7 EXTENSIONS 

The entropy based surrogate method of the previous sections is useful in allowing a 
probabilistic. information-based interpretation to be developed for constrained non­
linear optimization: each x-space minimization represents an attempt to satisfy a 
probabilistic constraint optimality criterion (3) whilst minimizing! The result of each 
attempt provides new information on constraint values g which can be used to modify 
the constraint activity probabilities A in a least biased way so that an improved 
constraint optimality criterion (3) can be set up for the next iteration. 

Having justified the approach and having established the validity of using the 
Shannon entropy/Jaynes formalism in a mathematical programming context. we now 
turn to extensions and refinements of the formulations. A logical extension of the two­
phase. x-space/A-space iteration scheme is to examine whether the phases could 
somehow be combined together. To do this we recognize that the two-phase scheme is 
essentially trying to satisfy the Lagrangean saddl~ point condition of the surrogate 
problem B. This saddle point condition is a surrogate duality relationship which 
establishes a surrogate primal (x-space) and a surrogate dual (A.-space) formulation of 
problem B (inequality (8». To develop a single-phase method we must re-examine the 
surrogate duality relationship. We therefore return to problem B. 

If the normality condition (4) and the A non-negativity condition are formally 
incorporated into problem B (their earlier omission merely simplified the treatment 
and did not affect its generality) the full form of problem B becomes: 

Problem B' 

and its Lagrangean is 

Minimize I(x) 
.1'0 i= 1 ••..• N 

M 

Subject to L ;.jgJ{x) = 0 
j = 1 

j = 1 •...• M 

j = I ..... M (27) 

The stationarity of L~ with respect to Xj. i = I •... , N leads to Eq. (7), as before. 
Equation (7) relates x and A implicitly and so cannot be used to express X(A) and A(X) 
which are necessary to set up the surrogate primal and dual problems expressed 
explicitly by (8). 

However, in the two-phase method described earlier we overcame the absence of an 
explicit surro~ate. dual. objective function by introducing the Shannon entropy as a 
means of forcmg IteratIOns towards the saddle point. We can use the same approach 
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here if we augment the Lagrangean L~ with an entropy term. Equation (27) then 
becomes 

L'B = f(x) + Of ~ Ajgix) + / ~ AJ - 1) -! ~ AJ In(A)) 
)-1 ~-I P J-I 

(28) 

The negative sign of the entropy term in (28) is necessary because of the negativity of 
the summation. p is a positive constant. Note that the A. non-negativity condition in 
(27) is no longer necessary as the entropy term ensures it. 

Stationarity of L'B with respect to XI' i = 1 •... , N leads to (7), as before. but 
stationarity with respect to A., k = 1, ... , M gives 

k = 1, ... ,M (29) 

Equation (29) may be used to separate out the primal and dual variables explicitly. 
Solving (29) for A •• k = 1 •...• M gives 

A. = exp[p(Ofg.(X) + Il) - 1] k = 1 •...• M (30) 

Stationarity of L'B with respect to Lagrange multiplier Il yields the nermality condition 
(4). On substituting A. from (30) into (4) we obtain 

At 
exp(PIl - I) L exp(PGlg".(x» = 1 (31 ) 

The term exp(PIl - 1) may be eliminated between (30) and (31) to give 

A. = eXP(PGlg.(Xn/ ~ exp(pOfg".(X» k = I •...• M (32) 
)21 

It can be seen that (32) is identical to the I.-update formula (19) used in the two-phase 
surrogate algorithm if P = pOf. In the earlier algorithm we required {J to be an 
increasing positive number. 

Stationarity of L'B with respect to Of· gives the surrogate constraint (3) which. 
together with (7). remain to be solved. Substituting I. from (32) into (3) and (7) gives 
N + 1 equations in the N + 1 variables x and GI. Though these may in theory be 
solved they are non-linear and intractable so. instead. we return to the Lagrangean L'B 
itself. Substituting A. from (32) into (28) gives 

L'B = f(x) + GI{ r gJ{x) eXP[Pocg".(X)]}/ ~ exp[pocg".(x)] 
ja I J- I 

1 LAt_1 (exp[pOfg".(x)]ln{exp[pocgix)]/I;"_1 exp[pGlgix)]}) 

- p LAI_I exp[pOfgix)] 

After much algebraic simplification this reduces to 

1 AI 
L'B = I(x) + -In L exp[pOfg,,{X)] 

p J-I 
(33) 
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We have already noted that p in (33) is an arbitrary positive constant associated with 
the entropy augmentation term in Eq. (28) and that pa. should be an increasing 
positive quantity. Thus for fixed positive p, a. should be increasing positive. This is in 
the spirit also of the duality relationship (8), and so leads to a single-phase 
formulation as: 

~:~~~.~~; f(x) + ~ In JI exp[pa.gjX)]} 

with an increasing, positive a.. 

(34) 

8 COMMENTS 

Problem (34) has not yet been studied in depth in respect of i~s algorithmic 
performance. Nevertheless, some comments on it are warranted. The unconstrained 
function is a curious hybrid between augmented i;agrangian, penalty function, and 
exact (single iteration) penalty function and several different algorithmic treatments of 
it seem possible. Choosing a constant value for p and minimizing over x with 
occasional updates ofthe increasing positive O! is one possibility, as indicated in (34). It 
also seems possible to treat (34) as a straight-forward multi-iteration penalty function, 
choosing a fixed a. and minimizing over x with a sequence of increasing positive p. 

The "penalty" term in (34) is worth examining. For high positive pO! it clearly 
penalises constraint violations (gj(x) > 0), whilst inactive constraints (9)(X) < 0) 
contribute negligibly small amounts to the total penalty. The In L exp form of the 
penalty term is particularly interesting as, to the authors' knowledge, it has not 
appeared before among the many suggested penalty functions in the mathematical 
programming literature. However, in 1979, Kreisselmeier and Steinhauser16 intro-
duced this precise form . 

1 M 
-In L exp[pagjx)] 
p ja I 

(35) 

without any indication of its derivation or origins except that it displayed some 
desired characteristics, in a multi-criteria optimization context. The form (35) has 
subsequently been used to considerable effect as a type of cumulative constraint by 
Sobieski l7 and Hajela,l8·19 citing Kreisselmeier and Steinhauser l6 as its source. It is 
particularly interesting that, unknown to those who have used it, the Kreisselmeier 
-Steinhauser function (35) turns out to be so closely linked by virtue of this present 
work to entropy maximization processes. Further papers by the present authors will 
address these links. 

9 CONCLUSIONS 

This paper h~s ~xp~ored the possibility that information theory and informational 
entropy maxlmlzat~on processes may have a place in the development of new 
algonthms for sol~tn~ ~athema~ical programming problems. In this introductory 
~aper entropy maXlmlzatlon was !ncorporated into non-linear constrained optimiza­
t~on thro~gh ~ sur.r0gate co~stratnt approach, An information-theoretic interpreta­
tion and JusttficatlOn for thiS was presented which sheds some new light on old 
methods, 

.' 
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Extensions of the surrogate entropy method were presented which resulted in some 
interesting links with other recent developments in engineering optimization. Much 
further work remains to be done, but this paper has shown that informational entropy 
processes and mathematical programming are closely linked and that further study is 
warranted. The need for some radically different and improved optimization tech­
niques is now urgent in the area of large-scale engineering design. The present work 
represents one new direction which might possibly result in improved techniques in 
the future. 
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