AUTOMATION OF SOME ASPECTS OF TIG WELDING

•

Automation of some aspects of TIG Welding

by

Colin C.M. TAN

Department of Electrical Engineering and Electronics

September 1988

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy

ABSTRACT

The objective of this project was an investigation into the feasibility of automating the TIG (Tungsten-inert-gas) welding of aluminium, under the severe transient electric noise interference conditions which prevail. The principles of TIG welding, both d.c. and a.c., and the requirements for automating the welding process were studied, resulting in the design of a single-axis system which was used for the control of aluminium welding. A systematic approach to transient noise suppression was followed in the design.

For effective control of the TIG welding process, it is necessary not only to carry out welding using robotic and microcomputer techniques, but also to perform feedback control by using sensors in order to ensure high precision and hence high quality welds. This led to the design and development of two low cost sensors. Both sensors are suitable for seam tracking.

The developed systems have been implemented and tested successfully. Details are given of each system's operating features and the hardware and software necessary to achieve the designs. Computer simulations are carried out for comparison with experimental results. Experimental results are presented demonstrating the capabilities of these designs.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Professor J.Lucas, for his continuous guidance and encouragement. I also wish to thank the present and previous Heads of the Department, Professor W.Eccleston and Professor J.D.Parsons, for providing laboratory facilities. Thanks are also due to the staff, in particular to Dr.A.B.Parker, Mr.J.S.Smith and Mr.S.O'Leary, for their useful discussions and assistance.

The project has been supported financially by the Science and Engineering Research Council and Plessey Electronics Systems Ltd. under the CASE award scheme.

CONTENTS

CHAPTER 1 INTRODUCTION	•	•	•	•	•	•	1
1.1 Automated Welding	•	•	•	•	•	•	1
1.2 Robots for Welding	•	•	•	•	•		2
1.3 Requirements of Robotic Welding	•	•	•	•	•	•	3
1.4 Sensors in Automatic Welding	•		•		•	•	4
1.5 Project Aspects	•	•		•			5
1.6 Overview of The Thesis	•		•	•	•	•	5
CHAPTER 2 TIG WELDING AND AUTOMATION	•		•	•		•	7
2.1 Introduction		•	•	•	•	•	7
2.2 Principles of TIG Welding	•	•	•	•	•	•	7
2.2.1 DC TIG Welding	•	•	•	•	•	•	8
2.2.2 AC TIG Welding	•		•	•		•	9
2.3 Applications of TIG Welding	•				•	•	10
2.4 TIG Welding System	•	•		•	•	•	11
2.4.1 Welding Torch	•	•	•	•		•	11
2.4.2 Shielding Gas	•		•		•	•	12
2.4.3 Welding Power Supply		•		•	•	•	13
2.5 Weld Joint Preparations	•	•					13
2.6 Operation Process and Automation Requirements			•	•	•	•	14
2.7 Preliminary Experiments	•	•	•	•	•		15
2.7.1 The DC Welding Machine	•			•	•		16
2.7.2 The Linear Traverse	•		•			•	17
2.7.3 The Microcomputer Controller			•		•		19
2.7.4 Experimental Welds and Results			•	•		•	23
2.8 Discussion		•				•	24

CHAPTER 3 SUPPRESSIONS OF TRANSIENT INTERFERENCE	36
3.1 Introduction	36
3.2 Type of Interference	37
3.3 Interference Coupling	38
3.3.1 Conductive Coupling	39
3.3.2 Free Space Coupling	40
3.3.3 Common Impedance Coupling	43
3.4 Methods for Interference Suppression	44
3.4.1 Filtering	44
3.4.3 Grounding	48
3.4.4 Isolation	50
3.4.5 Shielding	51
3.4.6 System Orientation	53
CHAPTER 4 AN EXPERIMENTAL ALUMINIUM WELDING SYSTEM	59
4.1 Introduction	
4.1 Introduction	59
4.2 Concept	59 59
4.2 Concept	59 60
4.2 Concept	59 60 61
4.2 Concept	59 60 61 62
4.2 Concept	59 60 61 62 64
4.2 Concept	59 60 61 62 64
4.2 Concept	59 60 61 62 64 64
4.2 Concept	59 60 61 62 64 64 65 67
4.2 Concept	59 60 61 62 64 64 65 67 67
4.2 Concept	59 60 61 62 64 65 67 67 68

4.5.2 Effect of Timing	70
4.5.3 Operation	70
4.6 Experimental Setting	71
4.7 Experimental Welds and Results	72
4.7.1 Weld Tests	72
4.7.2 Welded Samples	73
4.7.3 Welding Speed	74
4.7.4 Weld Parameters	75
4.7.5 Electrode Dimensions	76
4.7.6 Welding Control	76
4.8 Discussion	77
CHAPTER 5 WELDING SEAM TRACKING	91
5.1 Introduction	91
5.2 Positioning Errors in Robotic Welding System	92
5.3 Analysis	93
5.3.1 Welding Seam Positions	94
5.3.2 Feedback System	95
5.4 Seam Tracking	96
5.4.1 Seam Tracking System	96
5.4.2 Seam Tracking Methods	97
5.4.3 Seam Tracking Application	97
5.5 Review of Seam Trackers	98
5.5.1 Tactile Sensing	98
5.5.2 Through-the-Arc Sensing	99
5.5.3 Vision-based Sensing	100
5.6 Practical Considerations	100
5.7 The Experimental Seam Trackers	102

CHAPTER 6 INFRA-RED SEAM TRACKER	105
6.1 Introduction	105
6.2 Concept	105
6.3 Hardware	107
6.3.1 Sensing Mechanism	107
6.3.2 Sweep Motion Controller	108
6.3.3 Transmitter Circuit	111
6.3.4 Receiver Circuit	112
6.3.5 Sensor Processor	113
6.3.6 Communication Link	115
6.4 Software	117
6.4.1 Sensor Sweep Control	117
6.4.2 Data Capture	118
6.4.3 Data Analysis	119
6.4.4 Guidance of Welding Robot	121
6.5 Experiments and Results	123
6.5.1 Seam Extraction	123
6.5.2 Seam Deviation Detection	125
6.5.3 Seam Tracking Trials	125
6.5.4 Effect of Interference during Welding	127
6.5.5 Effect of Torch Speed	128
6.5.6 Effect of Surface Conditions	129
6.6 Discussion	129
CHAPTER 7 ULTRASONIC SEAM TRACKER	152
7.1 Introduction	152
7.2 Design Considerations	153
7.2.1 Transit Time Method	154

7.2.2 Signal Attenuation Method	155
7.2.3 Phase Comparison Method	156
7.2.4 Principles of Ultrasonic Sensing	158
7.3 Hardware	159
7.3.1 Sensing Head Design	159
7.3.2 Motor Controller	160
7.3.3 Generation and Detection of Ultrasonic Waves	161
7.3.4 Phase Comparator and Counter Circuit	162
7.3.5 Averaging Circuit	163
7.3.6 Interface to the 1MHz Bus	164
7.4 Software	166
7.4.1 Data Capture	166
7.4.2 Data Interpretation	167
7.4.3 Seam Position Determination	168
7.4.4 Communication to Robot Controller	169
7.5 Experiments and Results	170
7.5.1 Seam Profile Detection	171
7.5.2 Analysis of the detected signals	173
7.5.3 Deviation Measurements	175
7.5.4 Temperature effect	176
7.6 Discussion	177
CHAPTER 8 ROBOT POSITION CONTROL	197
8.1 Introduction	197
8.2 TIM-3 Robot Configurations	198
8.2.1 Axes Geometry	198
8.2.2 Controller	199
8.2.3 Drive Systems	199

8.2.4 Accuracy	200
8.3 Path Control Algorithms	200
8.3.1 Torch Position Algorithm without Sensor	200
8.3.2 Sensor Guidance	201
8.4 Model Representation	202
8.4.1 Seam Path Modelling	202
8.4.2 Searching and Tracking	203
8.5 Results and Assessments	205
8.5.1 Response to Step Change	205
8.5.2 Effect on Sensor Variables	206
8.6 Discussion	207
CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS	217
9.1 Conclusions	217
9.2 Recommendations for Future Work	219
REFERENCES	222
Appendix I	228
Appendix II	234
Appendix III	238
Appendix IV	279
Appendix V	313

ABSTRACT

The objective of this project was an investigation into the feasibility of automating the TIG (Tungsten-inert-gas) welding of aluminium, under the severe transient electric noise interference conditions which prevail. The principles of TIG welding, both d.c. and a.c., and the requirements for automating the welding process were studied, resulting in the design of a single-axis system which was used for the control of aluminium welding. A systematic approach to transient noise suppression was followed in the design.

For effective control of the TIG welding process, it is necessary not only to carry out welding using robotic and microcomputer techniques, but also to perform feedback control by using sensors in order to ensure high precision and hence high quality welds. This led to the design and development of two low cost sensors. Both sensors are suitable for seam tracking.

The developed systems have been implemented and tested successfully. Details are given of each system's operating features and the hardware and software necessary to achieve the designs. Computer simulations are carried out for comparison with experimental results. Experimental results are presented demonstrating the capabilities of these designs.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Professor J.Lucas, for his continuous guidance and encouragement. I also wish to thank the present and previous Heads of the Department, Professor W.Eccleston and Professor J.D.Parsons, for providing laboratory facilities. Thanks are also due to the staff, in particular to Dr.A.B.Parker, Mr.J.S.Smith and Mr.S.O'Leary, for their useful discussions and assistance.

The project has been supported financially by the Science and Engineering Research Council and Plessey Electronics Systems Ltd. under the CASE award scheme.

CHAPTER 1 INTRODUCTION

1.1 AUTOMATED WELDING

In a rapidly developing welding industry, there is a constant demand for modern welding systems capable of producing high quality welds with improved production rate and lower cost. The wide range of modern welding makes it necessary for research on the automation of welding to be carried out for individual needs. In particular, Tungsten Inert Gas (TIG) welding is still widely used as a manual welding process in industry, including the joining of aluminium alloy parts.

For several years a group has been carrying out research at The University of Liverpool into the requirements for fully automating the TIG welding process [1-3]. The aspects reported so far include, pulsed and d.c. TIG welding of stainless steel, the design and construction of a five-axis robot, and the development of vision-based systems for seam tracking and weld inspection. These were all concerned with the welding of stainless steel.

Manual welding of aluminium is an unhealthy job. The smoke and fumes can cause many respiratory problems. Some of the fumes are toxic or carcinogenic. Precautions are also necessary in welding aluminium alloys which contain small amount of magnesium, because magnesium radiates harmful ultraviolet light when heated. Generally, it is difficult to achieve the high quality standards together with a reasonable production rate by manual welding. In the past few years, industrial robots have become available for automating the welding process, mostly these are dedicated to a specific type of welding, such as the spot welding of car bodies or the MIG welding of pipe lines. TIG welding is used mainly for

Chap. 1 Introduction

the joining of accurately made metal components, and it is the most commonly used method of welding aluminium today. The shortcoming of TIG welding process include low efficiency, high cost and intensive use of highly skilled labour. This has led to the need for the automation of aluminium welding, using robotic techniques.

1.2 ROBOTS FOR WELDING

The main reasons for converting a manual welding operation to a robotic welding system include safety, quality, and productivity. One benefit is the removal of the welder from the immediate vicinity of the arc. The environmental conditions resulting from the welding process are hazardous to the welder. When the robot is applied to do a certain weld job, it continues to reproduce the programmed instructions independent of the environmental conditions. Smoke and harmful ultraviolet radiation from the arc are no longer a constraint on the welding process. In addition, a programmable welding operation provides higher accuracy and greater flexibility. The use of a robotic welding system results in higher arc-on time, hence higher productivity and lower production cost than for manual welding.

A robotic welding system also allows better process control. The optimisation of welding parameters can be determined in advance by the operator and stored in the welding software in the robot's controller. The repeatable position and speed of the robot coupled with the proper weld parameters allow for more consistent and higher quality welds than are possible with manual welding. A desirable feature of robotic welding is the control of the weld parameters by the robot, using feedback techniques. Repeatable results can then be produced.

Chap. 1 Introduction

The type of welding robot available may be classified according to the methode of positioning the torch:

- (a) systems based on cartesian coordinates x, y, z, which describe a cube situated on one side of the robot.
- (b) systems based on cylindrical coordinates, i.e. the linear axes x, and y are constructed using cartisian coordinates and the rotary axis z using polar coordinates.
- (c) systems based on spherical coordinates, i.e. the linear x axis is constructed using cartesian coordinates and the rotary axis y and z using polar coordinates.
- (d) systems based on polar coordinates using a radial or articulated arm.The working area is all around the robot.

The number of movements possible in a given system is known as the number of degrees of freedom, and the mechanical devices causing these movements are called axes. Each axis does not necessarily correspond to a degree of freedom, and so the degree of freedom is a nominal quantity which has a maximum value of six, and the axes of a system determine the size and configuration of the working area.

1.3 REQUIREMENTS OF ROBOTIC WELDING

It is now an accepted fact that a computer controlled robot has the manipulation and logic capabilities for automating the welding process, but other factors which were non-existent with manual welding must now be taken into consideration. Some problems relate to interfacing the robot with peripheral welding equipment such as the weld power supply and the workpiece positioner. Software must also be written specifically for the control of the welding process.

Chap. 1 Introduction

TIG welding process can be carried out by either d.c. or a.c. welding power sources. Different types of welding require different approaches to system design and construction. In d.c. welding the current flows continuously in one direction without changing the polarity of the tungsten electrode, and is useful for welding alloy steels, such as stainless steel, which requires deep penetrations. However, in a.c. welding the current alternates its direction of flow (100 times per second for a 50Hz supply). This means that the arc is extinguished each half cycle as the current approaches to zero. To ensure the re-ignition of the arc a high frequency, high voltage signal is injected every half cycle. This type of welding is particularly useful for metals having refractory surface oxides, e.g. aluminium and its alloys, which requires an a.c. arc to break the oxide layer. The major problem involved in a.c. welding is the high frequency re-ignition unit which produces transient interference in electronic equipment, thus a systematic approach to electrical noise reduction is required when designing robotic systems for a.c. TIG welding.

1.4 SENSORS IN AUTOMATIC WELDING

In many cases the automation of TIG welding process cannot be realised because the permissible workpiece tolerances are exceeded. The workpiece may be distorted during welding, and as the torch is preprogrammed to follow a set path, the torch may deviate from the metal joint. To achieve the optimum results in automated welding, the weld seam must be followed by the torch. i.e. the robot must work under conditions that cannot be exactly given before welding. It is widely accepted that many potential robot applications for welding require some level of positional

adaptation. The robot must be equipped with a sensor for measuring the actual position of a welding seam in relation to the welding torch. According to this sensory information, the control system needs to correct the robot position.

1.5 PROJECT ASPECTS

The objective of research covered in this thesis is to investigate the possibility of automating the welding of aluminium and to design sensors for TIG welding. As a first stage, straight line welding was considered, leading to the development of a linear welding system. It was decided to first use the system to weld stainless steel, in order to test its capabilities without having transient interference. Once this was proved to be working satisfactorily it would then be converted for welding aluminium. When the welding process for aluminium was successively controlled by microcomputer, the second stage would be to develop sensors to ensure quality welds for TIG welding. In this project, two low cost sensor systems were developed, namely, the Infra-red and Ultrasonic seam trackers. Both sensors were tested in conjunction with a three-axis cartesian robot.

1.6 OVERVIEW OF THE THESIS

This thesis consists of nine chapters and five appendices.

The principles of TIG welding and the requirements for automating the welding process are described in Chapter 2. Also in that chapter a possible method of constructing an automatic welding system using microcomputer is described. Experimental tests indicate that the use of a mi-

crocomputer can greatly reduce the system cost and provide greater flexibility. Chapter 3 outlines the problems of transient interference which is encountered in the development of the aluminium welding system. A systematic approach to the suppression of transient interference becomes essential in the design. An experimental system for aluminium welding is described in Chapter 4. Chapter 5 reviews the application of sensors in automated welding. This leads to the design and development of two low cost sensors. Hardware and software development of both sensors is presented in Chapters 6 and 7. Chapter 8 describes the experimental robot controller. The robot position control algorithms are described using computer models in comparison with experimental results. The concluding section includes recommendations for future work.

The appendices contain detailed information such as the program listings and essential technical data.

CHAPTER 2 TIG WELDING AND AUTOMATION

2.1 INTRODUCTION

Arc welding is a term applied to a group of welding methods in which an electric arc is formed and maintained between the work surface and an electrode held by a torch. The heat resulting from the arc created between the work surface and the electrode may be effectively concentrated on the area to be welded.

There are several different types of arc welding process [4]. TIG welding is an arc welding process using a fixed tungsten electrode and an argon gas shield.

The practical operation of TIG welding can be divided into two main parts:

(a) The control of welding conditions, particularly the arc length.

(b) The movement and guiding of the torch along the weld seam.

In the automation of TIG welding, (a) and (b) can be controlled by means of a welding robot.

This chapter outlines the principles of TIG welding and describes a method of constructing a single axis welding robot. This is based on a microcomputer controlling a linear traverse and a welding power supply.

2.2 PRINCIPLES OF TIG WELDING

In TIG welding the arc is sustained between a tungsten electrode and the workpiece within a shield of the inert gas. The gas shield excludes atmospheric oxygen and nitrogen and prevents contamination of electrode and molten metal. The shielding gas is supplied through the welding torch. The tungsten electrode serves only as a focal point for

the arc and is not intended to furnish any material to the weld pool. On joints where filler metal is required, a welding rod or filler wire is fed into the weld zone and melted with the base metal. Fig.2.1(a) illustrates the inert gas shield of TIG welding and (b) shows the cross section of a finished weld sample.

TIG welding can be carried out using either d.c. or a.c. welding sources. The characteristics of the arc are changed considerably with change of direction of flow of current, that is with electrode polarity

2.2.1 DC TIG WELDING

When d.c. is used, the polarity of the electrode can be set to positive or negative depending upon applications as summarised in fig.2.2.

With a positive electrode, the electron stream is from workpiece to electrode while the positive ions travel from electrode to workpiece. The electrons streaming to the tungsten electrode generate greater heat, which can cause overheating, with the consequent vaporisation of the tungsten and the possibility of tungsten being transferred to the molten pool and contaminating it. Thus electrodes with large diameters and hemispherical tips are used. Very much less heat is generated at the molten pool and it is therefore wide and shallow. For this reason TIG welding with a positive electrode is seldom used.

For a negative electrode the electron stream is from electrode to the workpiece with the zone of greatest heat concentrated in the workpiece, thus penetration is deep and the weld pool is narrower. The electrode is near the zone of lesser heat and may be of reduced diameter and use a conical tip.

2.2.2 AC TIG WELDING

When a.c. is used on a 50Hz supply, voltage and current reverse direction 100 times a second which produces welding conditions between those of the electrode being positive and electrode being negative, the heat being fairly evenly distributed between electrode and workpiece. Depth of penetration is between that of electrode positive and electrode negative modes and the electrode tip shape is between the previous diameters. This type of welding is particularly useful for the welding of aluminium alloys where a thin layer of refractory oxide with a melting point around 2000°C is present over the surface. During the positive half-cycle, the positive ions in the TIG arc bombard this oxide and this, together with the electron emission from the plate, break up and disperse the oxide film. During the negative half-cycle weld penetration takes place.

In a.c. welding the reversals of voltage and current introduce the problem of arc re-ignition as the arc is extinguished twice in every cycle. When the electrode is negative the arc requires a low voltage for re-ignition due to the greater electron emission from the tungsten, but when the voltage is reversed so that the electrode becomes positive the arc will not re-ignite unless there is a sufficient voltage available at the arc gap.

One way to ensure re-ignition of the arc is to inject high frequency, high voltage between the electrode and workpiece on both positive and negative half-cycles when the current approaches to zero. The injected signals are generated by a spark gap oscillator, which can give rise to considerable transient interference on electronic devices. Adequate

suppression and screening must be provided to eliminate this interference in automated welding.

The choice of either a.c. or d.c. welding depends on the metal to be welded. For metals having refractory surface oxides, a.c. is used while d.c. is used for carbon and alloy steels, heat-resistant and stainless steels, copper and its alloys, nickel and its alloys, titanium, zirconium and silver.

2.3 APPLICATIONS OF TIG WELDING

In any type of welding, the quality of a weld is determined by the surface contaminants, particularly oxides, which should be prevented from accumulating on the metal surface. The cleaner the surface, the better the weld. To obtain such conditions, the molten weld metal must be protected from the atmosphere during the welding operation. Otherwise, atmospheric oxygen and nitrogen, or other contaminants, will combine readily with the molten weld metal and result in a weak porous weld. The basic principle of TIG welding process provides an ideal solution, ensuring quality welding.

The TIG welding process is used with welding currents normally from 5A up to 800A and is one of the most versatile methods of welding. The process is most suitable for welding single-pass or double-sided close butt joints, edge joints or outside corner joints. It is less suitable for fillet welds in which care must be taken to obtain good fusion into the root. Because it can be easily mechanised and gives high quality welds, the process is greatly favoured for precision welding.

2.4 TIG WELDING SYSTEM

The basic features of a TIG welding system is shown in Fig. 2.3. The major equipment components required for TIG welding are:

(a) the welding torch.

(b) the shielding gas.

(c) the welding power supply.

2.4.1 WELDING TORCH

A TIG welding torch is designed to deliver both the electric current and the shielding gas to the point of welding as well as providing passages within the torch for cooling purposes. The tungsten electrode is firmly held in the torch by a collet holder. At the end of the torch there is a shielding gas nozzle which controls the direction and amount of inert gas covering the weld. The nozzles are made of ceramic and easily removable for cleaning and replacement. Because of the intensive heat of the arc, cooling by water or air is required to protect the torch body and power cables.

The arc temperature is dependent on the amount of current applied, as the thickness of the workpiece increases the size of the electrode diameter must also increase to deal with the larger welding currents required. The electrode may be of pure tungsten but more generally it is alloyed with thorium oxide (up to 2.2%) or zirconium oxide (up to 0.4%) Tungsten has a melting point of 3380° C. In comparison with the melting points of the base metal, e.g., 658° C for aluminium and up to 1420° C for steel, there is very little tungsten vaporisation in the welding arc and the tungsten retains its hardness when red hot [5].

Pure tungsten electrodes are generally used for ordinary quality welds. The thoriated tungsten electrodes give easier starting, a more stable arc and a smaller possibility of weld contamination, and in addition they have a greater current carrying capacity for a given diameter than pure tungsten. However, it is difficult to maintain a hemispherical end when they are used for a.c., as a result zirconiated electrodes are often selected for a.c. welding because of the high resistance to tungsten contamination and good arc starting characteristics. They are used therefore for high quality welds in aluminium, and like pure tungsten they produce a hemispherical end.

TIG welding torches are available in a variety of sizes based on their amperage rated capacity. Table 2.1 shows the electrode current ratings.

2.4.2 SHIELDING GAS

Shielding gas for TIG welding can be argon, helium, or a mixture of both. Argon is used more extensively because it is less expensive than helium. Since argon is heavier than air it provides a better shield for the weld. Moreover, there is less fume during the welding process with argon and consequently it permits better control of the weld pool and arc.

Argon normally produces a better cleaning action especially in welding aluminium with alternating current. With argon there is a smoother and quieter arc action. The lower arc voltage characteristics of argon are particularly advantageous in welding thin material because there is less tendency for the arc to burn through the metal.

2.4.3 WELDING POWER SUPPLY

Welding power supplies can be chosen to give d.c. or a.c. or both d.c. and a.c. from one unit.

A d.c. power supply consists of a step-down transformer and a bridge rectifier. The principle feature of this type of power supply is the rectification of the transformer output to d.c. welding power. Two types of transformers are normally used, single-phase and three-phase transformers. The smaller welding units can be used on single-phase supplies and the larger ones require a three-phase supply.

An a.c. power supply usually consists of a transformer that takes the single- or three-phase mains and transforms the voltage to about 80V for open circuit outputs. Current control is by tapped inductor and the auxiliary devices include the high frequency oscillator.

A d.c. and a.c. power supply can be used for either d.c. or a.c. welding. It is connected to the single- or three-phase 50Hz mains, fed into a step-down transformer and then into a controlled rectifier which may also act as a contactor. The rectifier can be switched under load. Current can be supplied for TIG welding and output switched for electrode positive or negative or a.c. by means of the controlling circuit.

2.5 WELD JOINT PREPARATIONS

The quality of the weld deposit is heavily dependent on the consistency of many factors, including: torch speed, welding current, joint preparations etc.

For maximum joint strengths, the full thickness of the metal must be fused together. This often requires some method of joint preparations.

The joint should be formed by compatible materials. If filler metal is needed for weld reinforcement, it must be compatible with the base materials. A good joint design provides for easy cleaning. A small amount of oil, grease, moisture, or other foreign matter between two accurately placed parts can cause weld metal porosity.

2.6 OPERATION PROCESS AND AUTOMATION REQUIREMENTS

The practical operations in making a weld can be considered as following this sequence:

- 1. Assemble parts. Tack, jig or mount parts in a fixture.
- 2. Present the workpiece to the welding torch.
- 3. Initiate welding.
- 4. Create relative movement between the welding source and the workpiece.
- 5. Control the welding variables.
- 6. Stop welding.
- 7. Remove work.
- 8. Re-position welding source ready for the next weld.

The process can be performed either manually or automatically. Manual welding is understood to be that in which the welding variables are continuously controlled by the operator and the means for welding are held in the operator's hand. With automatic welding the welding parameters and the movement of the workpiece need to be maintained by the control system.

To convert a manual TIG welding operation into an automatic welding system, a robotic system suitable for TIG welding is required. In some situations sophisticated robotic systems can be economically justified but in many cases such expense would be inappropriate. Currently, computing systems have become widely available at reasonable cost because of the advent of microcomputers. Such microcomputers not only have considerable computing power, but are simple to use. It is possible to use a low cost microcomputer to facilitate parameter setting and control of mechanised TIG welding equipment for the support of welding process.

The following section will describe the development of a linear (single axis) welding system which is based on microcomputer control of the weld parameters and workpiece movements.

2.7 PRELIMINARY EXPERIMENTS

In preliminary experiments it was decided to construct a microcomputer controlled welding system using a linear axis together with sensors for simple weld tests, such as the straight line welds. It was shown in section 2.2.2 that a.c. welding needs a high frequency re-ignition voltage at each half cycle of the welding current, and this is likely to produce spurious signals which could affect the microcomputer. For this reason, preliminary tests carried out for welding of stainless steel using d.c. TIG welding without the danger of transient interference which occurs in welding of aluminium. The purpose was to investigate the feasibility of using microcomputer applications in TIG welding in order to gain basic knowledge in welding automation, and more importantly, to consider possible solutions in reducing the system cost for suitable welding application. If the main aspects of the automation of TIG welding was accomplished using a d.c. power source, then the automation of the welding of aluminium using a.c. power source could be considered, and this will be discussed in chapter 3 and 4.

A block diagram of the d.c. welding system is shown in fig.2.4. It consists of three units:

(a) Welding Power Supply.

(b) Linear Traverse with Motor Drives.

(c) Microcomputer Controller.

The three units are linked to provide control of welding current, speed, and direction of a simple straight line weld.

2.7.1 THE DC WELDING MACHINE

Preliminary experiments were conducted on the project requirement of welding 0.7 mm - 3 mm thick metal plates. Tests on welding stainless steel plates were carried out using the Welding Institute Polypack d.c. Welding Supply which is outlined in fig.2.5. This power supply is transistor controlled with 50A current rating. The transistor bank consists of fifty bipolar transistors in parallel and the base of this transistor bank is driven by an differential amplifier. The output current can be controlled by varying the reference voltage which is input to the error amplifier. Although a 300A version is also available, the 50A power supply was considered to be suitable for the experiment.

The power supply can be easily interfaced to the microcomputer using an 8-bit digital-to-analogue converter (DAC) which translates a digital current demand into an analogue signal for the power source error amplifier. This allows current levels to be set between 0 and 50A as shown in Table 2.2.

The sequence control unit provides a convenient means of initiating and terminating the welding current. When the START/STOP signal is activated, a preset argon gas purge is carried out and the pilot arc supply

is enabled. Once the arc is established the arc ignition unit and the pilot supply unit is disabled, and the main current supply enabled. If the START/STOP signal is deactivated the arc supply is cut off and the argon gas post-purge will be carried out for a preset time.

2.7.2 THE LINEAR TRAVERSE

The TIG welding process requires the robot to accurately position and orientate the workpiece in relation to the welding torch. Then, while maintaining these coordinate relationships, the robot must control the desired welding speed of the workpiece. A single-dimensional robot which provides a linear movement for the workpiece may be used for preliminary straight line welds.

An experimental system which is equivalent to a one-degree of freedom robot consisting of a linear traverse, which moves the position of the workpiece in a forward or backward direction, a fixed position vertical micrometer, which supports the torch and may be adjusted to set the arc length between the torch and the workpiece, and a stepping motor drive unit, which is interfaced to a BBC microcomputer for software control.

The traverse has an eleven inches square metal table mounted on to parallel steel rods by four brass bushes. It is driven by a shaft screw which goes through a tapped bush under the centre of the table. The supporting rods are mounted in two steel end plates. The shaft screw has a bearing at one end and the other end is fixed directly on the driving shaft of the stepping motor which is mounted on the end plate at that end.

Down the centre of the table there is a slot into which a perforated copper bar can be fitted for distributing the backing gas if required.

On each side of the slot there is a plate fixed by four screws. These plates are used to clamp the workpiece into position and also to restrict warping during the welding process. On the same side as the stepping motor there is a connector block for wiring extensions from the stepping motor drive unit. On each side of the table there is a push button switch clamped on the steel rod. It is used to stop the movement when the table hits the switch.

The stepping motor drive unit consists of a Unimatic UDB-053/1 drive card, a power supply (12V, 8A) and source current limiting resistors. An internal wiring diagram is shown in fig.2.6. The stepping motor used is a Sigma 20-2220D200-E033 motor [6]. Each pulse to the drive unit is translated to a change of current in the motor windings and produces a 1.8° movement of the rotor. The drive unit is designed to be operated either manually or controlled by the BBC microcomputer. The unit has several useful features including acceleration and deceleration modes. The front panel of the unit is shown in fig.2.7. On the front panel there are seven switches and a DIN socket; one of these switches (S6) is for power on/off. The HALF/FULL STEP switch (S1) determines the mode of operation of the stepping motor. In the half step mode all the motor speeds, whether driven by fast, slow or by the microcomputer are halved. Half step operation was found to be effective in eliminating resonance and reducing acoustic noise on the motor shaft. When running, the operation is smoother. Half step performance can be equivalent to the full step operation by doubling the input pulse rate. Two of the switches marked FAST (S4) and SLOW (S5), when turned on will move the traverse at speeds preset on the drive board. The FAST control can be used for coarse position of the traverse and the SLOW can be used for the fine position. Both the FAST and SLOW modes are used only for manual settings. In automatic control operations, the speeds are controlled by the pulses sent from the microcomputer. The DIRECTION (S3) control determines whether the traverse table moves from right to left or vice versa. The direction of motion can also be controlled by the microcomputer. If the microcomputer is used, the DIRECTION switch should be on the LEFT (off state) mode, and the MANUAL/MICROCOMPUTER switch (S2) to the MICROCOMPUTER mode. In this case the DIN socket is connected to the external pulse input of the drive board, and this allows communication with the Microcomputer console. This input has an active pull up resistor and is driven by an open collector opto-isolator.

The traverse speed is proportional to the input frequency. The AUTO_STOP/CONTINUE control (S7+S8) is mainly designed for manual operations. If it is set to AUTO-STOP, the traverse table will stop automatically when it hits the push button switch which can be adjusted to provide the required travel distance. The CONTINUE mode is used for the reverse movement after the traverse is stopped.

At the rear panel of this unit there is a D-type socket which allows extension to the terminal block on the traverse. The connections from the terminal block to the motor is shown in fig.2.8.

2.7.3 THE MICROCOMPUTER CONTROLLER

The controller used is based on the BBC model B microcomputer [7]. It has a four channel 12-bit analogue-to-digital converter, serial and parallel printer interface, an 8-bit user port, and the 1MHz bus which allows additional input and output ports to be added. It has also a fast version of BASIC plus a built in 6502 assembler which makes it easy to use machine code when high speed operation is essential. The user port and the 1MHz bus are selected for circuit interface.

Both the parallel printer and the user port provided by a 6522 Versatile Interface Adapter (VIA). This is a very flexible I/O control device. It contains a pair of 16-bit interval timers, a serial-toparallel/parallel-to-serial shift register and input data latching on the peripheral ports.

The user port consists of eight lines which can be individually programmed to act as inputs or outputs under the control of a Data Direction Register. The polarity of the output pins are controlled by an output register and input data may be latched into an internal register under the control of the handshake control line (CB1). Besides, the MSB of output pins (PB7) can be controlled by one of the interval timers for generating programmable frequency square waves. This is particularly useful for the speed control of a stepping motor.

An 8-bit user port is obviously very useful, but it was found that more inputs or outputs were required. The simple solution to this problem is to use the 1MHz Bus port as it offered a greater scope for expansion.

For peripheral interfacing the user port was chosen to control the linear traverse and the 1MHz bus port to provide the required 8-bit current command to the digital-to-analogue converter in order to control the welding power supply. The hardware design is shown in fig.2.9.

The direction and speed of the linear traverse are determined by the outputs of the user port, PB1 and PB7 respectively. Since the stepping motor drive card has active pull-up resistor inputs, it must be driven by open collector logic gates. In the design, opto-isolators were used to provide grounding isolation and the open collector logic gates. The microcomputer input/output signals are configured as inputs after reset with the quiescent condition being high. Inverters connected directly to the user port ensures no signal goes into the peripheral circuits at rest condition. Only if a particular line is programmed to low, the corresponding inverter output will become high which activates the appropriate control line.

The outputs from D0 to D7 of the 1MHz bus port provide an 8-bit current command which is latched by the 74LS273 and converted into an analogue form by the ZN425E DAC. The DAC output gives a reference voltage from 0-2.5V. This provides full control of the welding current from 0-50A with a resolution of 195mA.

Accesses through the 1MHz bus are performed within the address range &FC00-&FCFF. &FC00 is the address which is decoded by the 74LS138 to enable an 8-bit command accessing to the DAC. When an access is made to &FC00 the NPGFC control line will become active low and the appropriate address will appear on the eight address lines.

On the BBC microcomputer the 6502 CPU normally operates with a 2MHz clock for the synchronisation of signals throughout the computer system. As most processing is carried out at the maximum clock speed the processor must slow down when accessing the 1MHz extension bus. When addresses on the bus change, the 2MHz clock will be low but there is no guarantee that the 1MHz signal on the bus will also be low. This may result in rogue glitches on the NPGFC control line. This problem can be obviated by using a clean up circuit as shown in fig.2.10 so that when an appropriate address decode signal indicates that the 1MHz extension bus has been accessed the microcomputer clock signal will coincide with the extension bus clock.

Prior to starting operation, the system must be programmed by software. Detail of software is shown in Appendix I. This program is written in BASIC. For system initialisation all data lines of the user port are set as outputs and the speed and direction control lines are reset to the rest condition.

Once the system is programmed, the traverse speed, s_t , is determined by a continuous square wave output from PB7 whose frequency is derived from a counter number, N, input to the interval timer. As N increases the output frequency decreases, thus the speed of the traverse decreases. That means N is inversely proportional to s_t , or:

$$N = \frac{k}{s_{+}}$$
(2.1)

where k is an arbitrary constant.

By measuring the distance that the traverse moved in every 10 seconds, which correspond to a particular counter number input to the interval timer within the speed range, a calibration curve can be obtained as shown in fig.2.11. This curve may be represented as:

$$\log(N) = \log(k) - \log(s_{+})$$
(2.2)

When $s_t = 1$ (or $log(s_t) = 0$), k = 15, and $N = 15 / s_t$. Thus any number of s_t input from the console must be converted to a value of $15/s_t$ in order to produce the actual speed control.

With reference to the current table (Table 2), an input of 00000000 (binary) gives zero output current while an input of 11111111 gives fifty amps, thus any number input from the console representing a current value,

I, will be converted to a value of 255 I / 50 to produce the actual current command to the DAC.

2.7.4 EXPERIMENTAL WELDS AND RESULTS

Fig.2.12 shows the setting up of the linear welding system. This experimental system is an open-loop welding system. Each test weld can be carried out using preset values of speed, direction and current level. The user is allowed to enter the required welding parameters to program a test weld. The pulsed TIG welding technique was used for the test welds.

Pulsing the welding current is a powerful technique for increasing the tolerance of TIG welding to fit-up or geometrical variations in the workpiece. The welding current is varied in a regular manner between a background level and a pulse level. Between pulses the weld pool is allowed to solidify and the weld seam is, therefore, a series of separate spots which normally overlap by about 50% of the spot diameter. Relative movement between the torch and the work can be halted during the pulse periods, which results in over lapping circular spots.

An example of a set of test weld parameters for a 1mm thick stainless steel is shown as follows:

(a) Background current	=	10A		
(b) Pulse on time	=	0.6sec		
(c) Pulse off time	=	0.7sec		
(d) Pulse on current	=	50A		
(e) Welding speed	=	lmm/sec		
(f) Direction of job	÷	Right to Left		

The background current level and duration are not critical as they are chosen to maintain a stable arc without forming a weld pool. The pulse current and pulse duration are significant process variables. Background currents are usually less than 15% of the pulse current and are commonly 5-10A. The amplitude of the current pulse needed is related to the material being welded and is influenced by its thermal diffusibility. Pulse duration varies as the thickness squared ranging from 100ms for metal of 0.7mm up to several seconds for metal over 3mm in thickness. The product of current and time is a constant.

A gradual reduction of current at the end of each weld is helpful in controlling workpiece warping. When the current is cut off and the arc extinguished the electrode and weld pool begin to cool, and an adequate flow of argon must be maintained until the danger of oxidation is past.

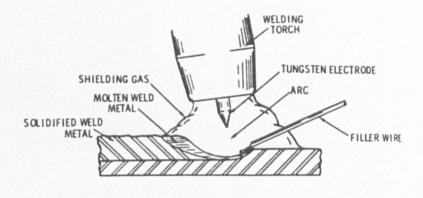
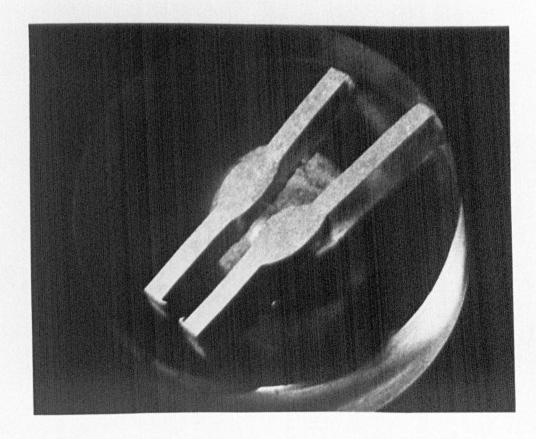

The main use of pulse TIG is for joints in which there is a difference of thickness as when dissimilar metals or circumferential welding where continuous current results in a build up of heat as the weld progresses. With pulsing, the heat diffuses away during the background periods resulting in a consistent penetration.

Fig.2.13 showing the result of a test weld on a lmm thick stainless steel plate, which was welded with 40% overlap and good penetration. This experimental evidence demonstrates the successful use of microcomputer for TIG welding control. The microcomputer based system is easy to use, allows accurate control, and also ensures the quality of the weld.


2.8 DISCUSSION

This experiment provides an overview of the basic requirements of automating TIG welding process, using a BBC computer and a linear traverse to achieve full automation on open loop mode. Clearly the process can be fully automated if a robot, with three degree of movements or more, is used instead of a linear traverse, and also the BBC microcomputer is replaced by a faster speed and bigger memory computer controller, e.g. IBM PC-AT, plus on-line sensors to provide close-loop control. Above all, computer control can be used in automating TIG welding processes.

It has been shown that the use of microcomputer is feasible in controlling d.c. TIG welding, and it is desirable to test the ability of these techniques for a.c. TIG welding. Investigations in a.c. TIG welding are concentrated on welding aluminium components, and this will be described in the next chapter as it requires different approaches in system design.

(a) The inert gas shield of TIG welding.

(b) The cross section of a finished TIG welding.

Fig.2.1 Illustration of TIG welding

Current type DC DC AC Electrode polarity +ve -ve O electrons Ð Θï Θ **`**@ Θ Θ ions/ letectrons electrons ions Penetration characteristics ions θ¥ 9/ Ð. work +ve work -ve Once every Oxide cleaning No Yes half cycle action Penetration Deep & narrow Shallow & wide Medium

Fig.2.2 Characteristics of current types of TIG welding.

27

.

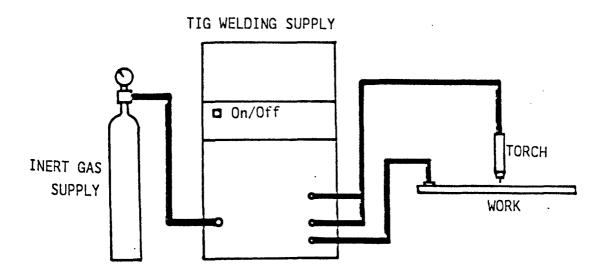


Fig.2.3 Basic features of TIG welding system.

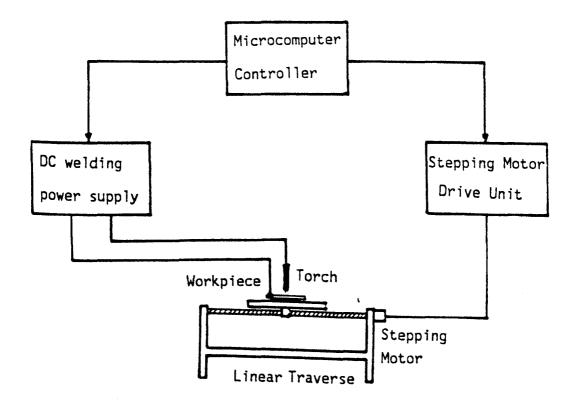
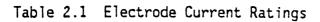
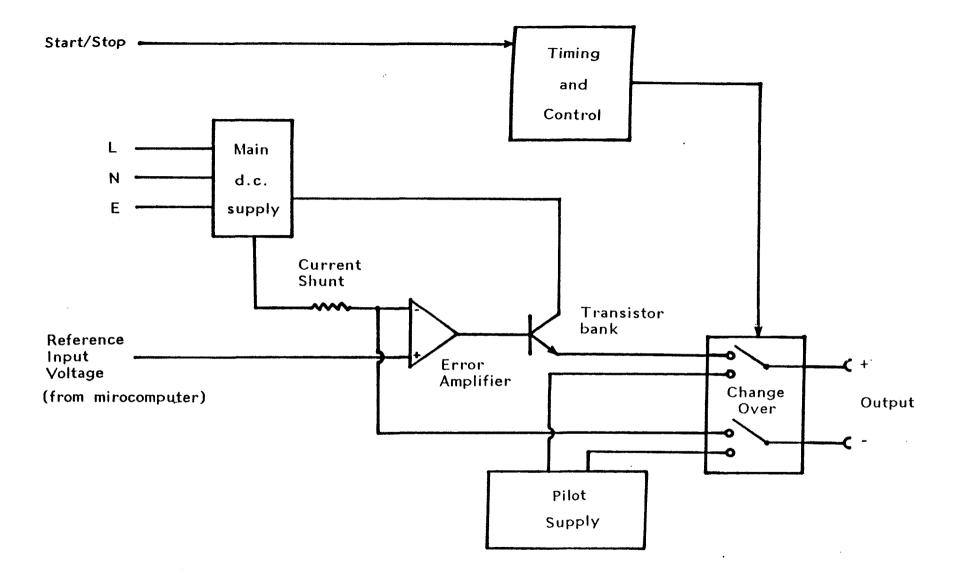



Fig.2.4 Microcomputer controlled d.c. TIG welding.

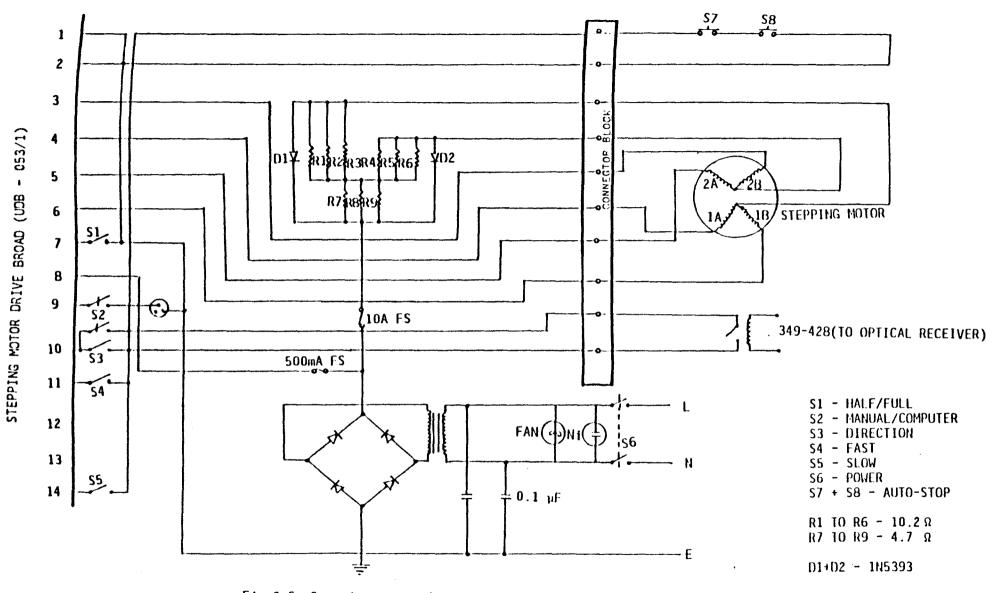

Electrode Diameter	d.c.	a.c.
(mm)	(Thoriated)	(Zirconiated)
1.2 1.6 2.4 3.2 4.0 4.8 6.0	70 150 240 380 400	30 60 90 150 210 275 350

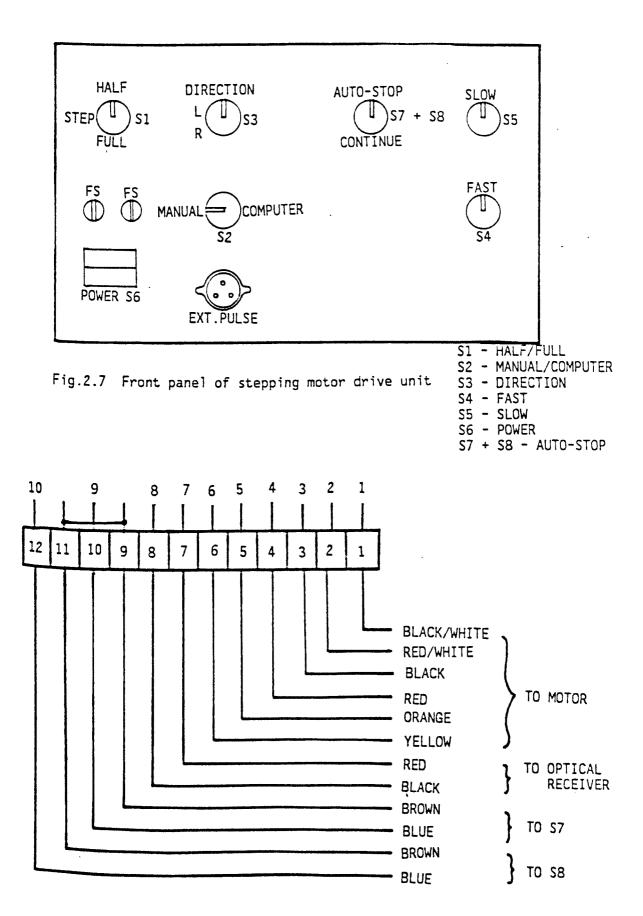
Reference Voltage	Welding Current
Input	Output
(V)	(A)
0	0
0.5	10
1.0	20
1.5	30
2.0	45
2.5	50

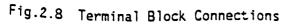
ŧ

Table 2.2 Welding Current Conversions

2.5 The experimental d.c. welding supply.




Fig.2.6 Stepping motor drive unit connections


31

Chap.

Ν

TIG Welding and Automation

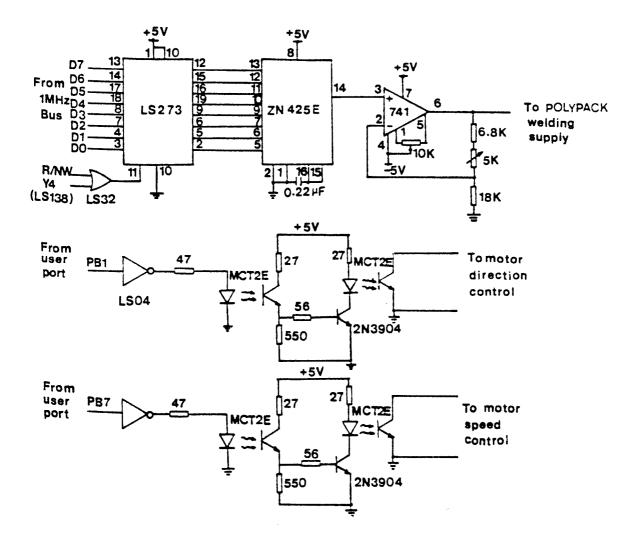


Fig. 2.9 Interface Circuit

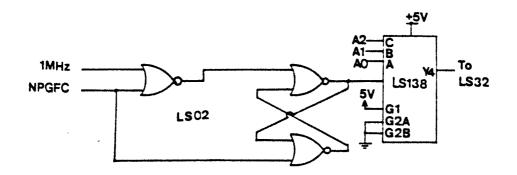


Fig. 2.10 NPGFC Clean up Circuit

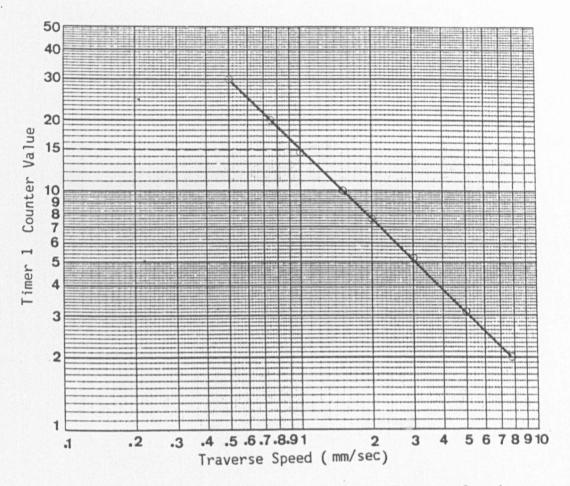


Fig.2.11 Graph of Counter Value Agains Traverse Speed

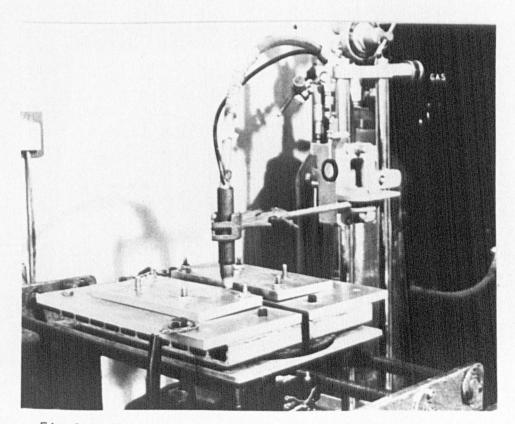
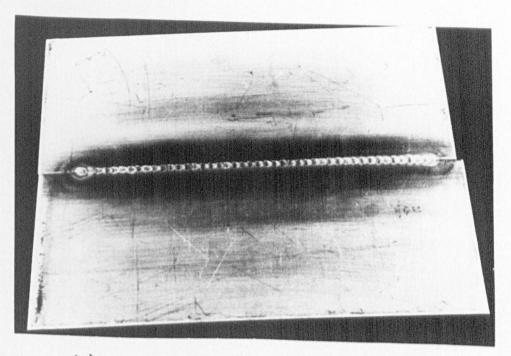
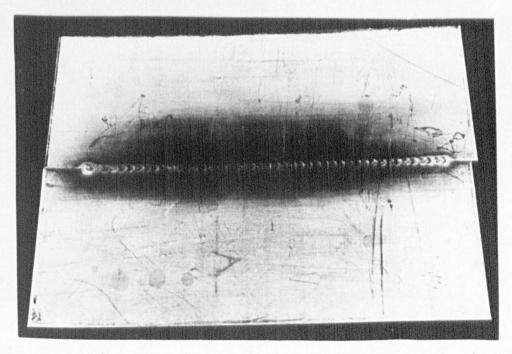




Fig.2.12 The Linear Welding System

(a) Test Weld - Front Face (40% overlapped)

(b) Test Weld - Back Face (proper penetrations)

Fig.2.13 Result of A Pulsed TIG Weld

CHAPTER 3 SUPPRESSIONS OF TRANSIENT INTERFERENCE

3.1 INTRODUCTION

It was shown in chapter 2 that a microcomputer can be interfaced to a welding system to control the welding process. Those initial tests were carried out on stainless steel plates which required only pulsed d.c. TIG welding. When these plates are replaced by aluminium plates, a.c. TIG welding is required. Due to the nature of a.c. TIG welding as described in section 2.2.2, the arc is maintained by means of a train of sparks generated by high frequency voltages, which produce destructive transient interference. It is this interference that can cause destruction, or malfunction, of small signal electronic circuits, such as the microcomputer and the peripheral devices.

Because small signal electronic circuits are designed for low switching levels to conserve power and reduce heat dissipation problems, they often cannot distinguish between a spurious transient and a legitimate signal. In an a.c. welding environment electronic devices can pick up interference by conduction, coupling, direct radiation, or any combination of the above. For these devices to operate reliably in such a noisy environment, the severe transients induced on power lines and cables or impinging directly on the facility must be reduced to an acceptable level. For this reason, a systematic approach to interference control is required in constructing an automatic welding system for a.c. TIG welding.

This chapter will describe the background theory of interference and propose a systematic approach to interference control.

3.2 TYPE OF INTERFERENCE

Interference is any extraneous electrical or electromagnetic disturbance that tends to interfere with the reception of desired signals or produces undesirable response in electronic systems. Interference can be produced by both natural and man-made sources either external or internal to the electronic system.

Interference is categorised as radio frequency interference (RFI) having high frequency, possibly high amplitude but low energy, and electromagnetic interference (EMI) characterised by low frequency and high energy [8].

Signals up to about 30MHz with a measurable high frequency voltage with respect to earth are conducted; above this frequency they can also be radiated as electromagnetic waves in free space.

Interference can be generated and distributed in a number of ways. Apart from the high frequency generator of an a.c. welding machine interference is also caused by switching surges generated when relays and switches are tripped, power dips from momentary power interruptions or a drop in voltage at the power source, and also transient voltage spikes from motor drivers, etc. This noise can enter equipment through routes other than the power cable. For example, it may come through signal cables or ground wires, or, indirectly, through the equipment case.

Elimination or reduction of interference to acceptable levels may be achieved by optical isolation, filtering, screening, grounding and careful routing of cables and layout of components.

3.3 INTERFERENCE COUPLING

The correct operation of electronic equipment depends on the frequencies and amplitudes of both the signals utilised in the system and the interference signals present in the facility. If the frequency of an undesired signal is within the operating range of the system, noise may be induced into the system. The extent of the system response is a function of the amplitude of the undesired signal relative to that of the desired signal. For example, in systems operating with high level signals, undesired signals with amplitudes of the order of volts may be tolerable, while in low level systems noise of the order of volts may produce intolerable errors in the response of the system.

Interference coupling is the stray coupling between circuits which produces an error in the response of one of the circuits. The possible sources of spurious signals and the mechanisms by which this interference is coupled into a susceptible circuit must be understood in order to guard against interference pickup by sensitive signal circuits.

The techniques for reducing pickup depend on the type of interference present. Interference is broadly classified by its coupling means, i.e., as either being conductive or free-space. Conductive coupling occurs when the interfering and interfered circuits are physically connected by a conductor and share a common ground. Free-space coupling occurs when a circuit or source generates an electromagnetic field that is either radiated and then received by a susceptible circuit or inductively or capacitively coupled to a susceptible circuit.

3.3.1 CONDUCTIVE COUPLING

Electrical cables entering an equipment provide good conductive coupling paths from interference sources external to the equipment. This interference can easily be conducted into a particular unit via the mains supply. There are two types of interference on the a.c. power lines, one is known as the common-mode (interference between either line and ground), and another is known as the transverse-mode (interference between live and neutral) [9].

Also, interference can be conductively coupled between the various circuits inside the equipment and the common d.c. power lines. If one d.c. power supply is utilised with several circuits operating over various signal voltage and frequency ranges, the operation of one circuit may adversely affect the operation of other circuits.

Another set of paths for conductive coupling of interference is offered by the signal lines. Signal lines can conductively couple interference into equipment and circuits as readily as power lines, particularly, when small signal circuits are interfaced to heavy current machines. Small variations in the relatively large current drawn by the machine can produce severe interference to electronic circuits.

The signal reference ground is another potential coupling path for unwanted signals between circuits. Since practical signal reference grounds do not exhibit a zero impedance, any current flowing in a signal reference ground will produce potential differences between various points on the reference ground. Interfacing circuits related to these various points can experience conductively coupled interference as shown in fig.3.1.

The signal current i_1 flowing in circuit 1 of fig. 3.1 returns to its source through signal reference impedance Z_R producing a voltage drop, E_{n1} in the reference plane. The impedance Z_R is common to circuit 2, hence E_{n1} appears in circuit 2 as a voltage in series with the desired signal voltage source, E_{s2} . This undesired source produces an interference voltage, V_{n2} , across the load of circuit 2. Similarly, the desired current, i_2 in circuit 2 will produce interference in circuit 1.

3.3.2 FREE SPACE COUPLING

Free space coupling is the transfer of electromagnetic energy between circuits not directly interconnected by a conductor [10]. The characteristic of an electromagnetic field are determined by the source. the media surrounding the source, and the distance between the source and the point of observation. At a point close to the source, the field properties are determined primarily by the source characteristics. Far from the source, the properties of the field depend mainly upon the medium through which the field is propagating. Therefore, the coupling is usually defined as either near field or far field. Near field coupling can be subdivided into inductive and capacitive coupling according to the nature of the electromagnetic field. In inductive coupling, a magnetic field linking the susceptible circuit is set up by the interference source. Capacitive coupling is produced by an electric field between the interference source and the susceptible circuit. Far field, or radiation coupling, is the transfer of energy from a interference source to a susceptible circuit by means of electromagnetic waves propagating through space at a distance greater than half the wavelength, $\lambda/2\pi$

(1) Near Field Coupling

When wires are located near to each other, currents and voltages on one wire will be inductively and capacitively coupled to the other wire. The wire acting as the interference source for this near field coupling may be any conductor such as a power line, a control line, or a signal line. The current or voltages induced into the other wires can further be conductively coupled into susceptible circuits.

(a) Inductive Coupling

With reference to Fig.3.2 the magnetic field H surrounding a long, straight current carrying wire is the means for inductive coupling. The magnetic field strength surrounding the wire carrying the current, i, is inversely proportional to the distance, r, from the wire, i.e. H decreases as the distance from the wire increases. The magnetic field will induce a voltage into a nearby circuit.

(b) Capacitive Coupling

When signal conductors of two circuits are near each other a capacitance, C_c , exists between the conductors. The value of this capacitance is a function of the geometry of the signal lines. The interference source voltage produces a current flow through the mutual capacitance between the two signal conductors and develops an induced voltage in the susceptible circuit. This is illustrated in Fig 3.3(a) and the equivalent circuits for Fig.3.3(a) are given in Fig.3.3(b), (c) and (d).

(2) Far Field Coupling

The ratio of the electric field (E) to the magnetic field (H) is the wave impedance. In the far field, this ratio E/H equals the charac-

teristic impedance of the medium (e.g. $E/H=377\Omega$ for air or free space) [10]. In the near field, the ratio is determined by the characteristics of the source and the distance from the source to where the field is observed. If the source produces a high current and low voltage (E/H < 377 Ω) the near field is predominantly magnetic. Conversely, if the source has low current and high voltage (E/H >377 Ω) the near field is predominantly electric.

For a predominantly magnetic field the wave impedance is low. As the distance from the source is increased, the magnetic field attenuates at a rate of $1/r^3$ and the electric field attenuates at a rate of $1/r^2$.

For a predominantly electric field the wave impedance is high. As distance increases, the electric field loses some of its intensity as it generates a complementary magnetic field. The electric field attenuates at a rate of $1/r^3$ whereas the magnetic field attenuates at a rate of $1/r^2$.

In the far field, both the electric and magnetic fields attenuate at a rate of 1/r. Outside the near field region, radiated energy that has escaped is propagating away from the antenna, or source, through space. Energy radiation can be visualised by considering the finite time required for the electromagnetic fields to propagate between two points in space. Current flows through an antenna at the frequency of the applind signal, and the polarity of the field produced by this current is reversed at the same frequency. When positive charge is present at one end of the antenna, an equal negative charge is present at the other end and an electric field in the vicinity of the antenna will be established between the charges.

As the current changes directions, the charges will reverse positions, the electromagnetic field will collapse and be re-established in the opposite direction. If the frequency of the applied signal is low,

sufficient time will exist between reversals for practically all the energy stored in the field to be returned to the circuit and very little radiation will occur. If however, the frequency is high and the charges reverse quickly, a field in the opposite direction is formed near the wire before a substantial amount of the field energy can return to the circuit. This part of the field is thus separated from the antenna and propagates outward through space as an electromagnetic wave.

In a reciprocal manner, wires and conductors located in a radiated field have currents induced in them and act as receiving antennas for incident electromagnetic energy. These induced currents in the wires can then be conducted into associated signal circuitry as interference. The amplitude of the resulting interference depends on the strength of the electromagnetic field in the vicinity of the wire and on the efficiency of the wire as an antenna.

3.3.3 COMMON IMPEDANCE COUPLING

Common impedance coupling occurs when currents from two different circuits flow through a common impedance. The voltage drop across the impedance seen by each circuit is influenced by the other. An example of this type of coupling is shown in Fig.3.4. The ground currents 1 and 2 both flow through the common ground impedance. As far as circuit 1 is concerned, its ground potential is modulated by ground current 2 flowing in the common ground impedance. Some noise signal, therefore, is coupled from circuit 2 to circuit 1 through the common ground impedance.

3.4 METHODS FOR INTERFERENCE SUPPRESSION

When there is an interference problem, there is always a source of the noise. In order for a noise source to cause interference there must be a coupling path between the noise source and the susceptible device. Therefore, interference can be reduced by isolating the source of noise, by filtering the interference out of the susceptible device, and by reducing the coupling between signal systems by modifying the signal systems in such a manner that interaction between the systems does not produce interference in either one.

The primary methods available for combating interference are listed below:

- (1) Filtering
- (2) Isolation
- (3) Shielding
- (4) Grounding
- (5) System Orientation

3.-.1 FILTERING

Although interference may be manifested in several ways, in most ca os the resulting interference currents are the major sources affecting the system. Unfortunately, it is virtually impossible to prevent interference current from flowing between two points which are connected by a conductor, so a possible approach to the problem is to divert the interference current away from the signal paths using filters.

An interference filter is intended to act as an impedance mismatch network which filters out high frequency signals and absorbs transient energy. It generally consists of a set of passive components which provide

unwanted interference signals with a high series impedance into the equipment and low shunt impedance to the ground.

Resistor-capacitor (RC) and inductor-capacitor (LC) decoupling networks can be used to perform filtering actions between circuits, or to keep power supply noise from entering the circuit. The bandwidth of a filter is depended upon the values of R and C, or L and C.

The RC filter is a dissipative filter, in which the undesirable noise voltage is converted to heat and eliminated as a noise source. The LC filter is a reactive filter, in which the noise voltage is just removed from across the load impedance. The LC filter, however, has a resonance frequency,

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$
(3.1)

at which the signal transmitted through the filter may be greater than if no filter was used. Thus, it can attenuate the noise voltage by keeping this resonant frequency well below the passband of the circuit connected to the filter. The amount of attenuation in an LC filter at resonance is inversely proportional to the damping factor

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}}$$
(3.2)

where R is the resistance of the inductor.

There are various type of filters available and they need to be carefully selected for particular applications.

(a) Mains Filter

Mains filters are interposed between the power input to the equipment and subsequent circuits so that they prevent interference energy being fed from the supply and also to prevent interference generated within the equipment from being fed back to the supply line.

There are two ways in which an interference signal can be propagated. In the symmetrical or differential mode, the interference signal travels down one line of the supply mains and returns via the other line. In the asymmetrical or common mode the interference signal flows down both the live and neutral lines as if they were one, and returns via the earth.

A basic mains filter generally consists of a inductor in series and a capacitor in parallel across the supply line forming a low-pass filter network. The network attenuates interference energy above 10KHz, while passing the 50Hz power to the equipment.

In a basic mains filter of fig.3.5 the inductor behaves as a low impedance to low frequencies and a high impedance to high frequencies, effectively blocking them and absorbing their energy. The capacitor acts in a reverse way and blocks low frequencies whilst passing high frequency currents. Both inductance and capacitance are related to frequency and hence the performance of the filter increases as the frequency increases.

Better performance mains filters normally employ toroidal wound inductors having balanced winding connected, so their currents produce opposing flux in the core preventing saturation and reducing their effects of any out of balance signal. Filters with this feature (fig.3.6) provide better filtering action by returning differential mode signal to the supply path and dissipating common mode signal to earth through capacitors.

Mains filters as described will protect against most spikes and interference noise. Occasionally, however, a very high voltage spike can saturate the inductors in a filter and so get through. This can be prevented by selecting filters with built-in transient suppressors at the filters input terminals.

Transient suppressors are solid state voltage dependent resistors. They let no current pass under normal conditions, but will conduct at high voltages. If such a suppressor is fitted to a filter, it will conduct the high voltage part of a spike to earth, effectively clipping its peak. The filter then deals with the remainder of the spike.

Care must be taken in locating the mains filter in an equipment. Filters need to be as close as possible to the power cable entry. Ideally, the filter should be the first component the power cable encounters when it passes through the equipment frame. The filtered output wiring should be kept from the input wiring, and a perfect grounding of the filter case is necessary. Filters fitted with transient suppressors need to be installed so that the suppressors face the source of noise. Normally this means that the suppressors face the mains, but if the filter is being used to isolate noisy equipment, such as an a.c. welding supply, the suppressors should face the equipment.

(b)Signal Filter

Apart from power line pollution, interference picked up by other control cables or signal lines can also cause problems for computer and other digital circuits because certain kinds of extraneous electrical pulses can be interpreted as data or instructions, causing errors in operation. The degree of sensitivity depends somewhat on the type of equipment and the type of disturbances. In the a.c. welding environment high frequency noise can be either radiated through air from the welding arc or conducted directly through the power cables and control lines. Digital electronic equipment becomes a prime receiver of high frequency

noise. In order to ensure clean signals flow in a noisy environment, as well as using mains filters, small signal filter are also required for the input and output of a signal link between equipments. This type of filters, either active or passive, is often in the form of a RC circuit.

3.4.3 GROUNDING

In the welding environment, grounding serves as not only to establish a ground reference level, but also to minimise unwanted noise and pickup of interference. Proper use of grounding and shielding, in combination, can solve a lot of interference problems. A good grounding system must be designed just like the rest of the circuit. The grounding principles are just as applicable to large complex electronic systems as they are to individual circuits on a single wiring board. Grounding, if used improperly however, can become a primary source of interference coupling [11].

There are two basic objectives involved in designing a system grounding. The first is to minimise the noise voltage generated by currents from two or more circuits flowing through a common ground impedance. The second is to avoid creating ground loops which are susceptible to magnetic fields and differences in ground potential.

Generally, signal circuits are grounded for safety and to provide an equipotential reference for signal voltages. There are two main types of grounding options: (i) single point grounds, and (ii) multipoint grounds. These schemes are shown in figs. 3.7.

(A) SINGLE POINT GROUNDING

A single point grounding is one in which separate ground conductors extended from one point on the earth electrode to the numerous circuits (fig.3.7(a)). An important advantage of this configuration is that it helps control conductively coupled interference. As long as wiring distance are less than $\lambda/10$ at RFI frequency the single point ground is desirable [12].

The limitation of this configuration occurs if long conductors are required in a large installation. Long conductors introduce large selfimpedances at high frequencies and produce inductive coupling between the ground conductors. Stray capacitance between the ground leads also allows coupling between grounds.

When single point grounding connections are employed, ground leads should always be kept as short as possible to prevent inductive or capacitive interference coupling.

(B) MULTIPOINT GROUNDING

Multipoint grounding uses many conductive paths from the earth counterpoise to the various system. With each system, circuits are multiply connected to the nearest available low impedance ground. Multipoint grounding frequently simplifies the circuit construction inside complex equipment. This method can be used to minimise the ground impedance at high frequencies, particularly above 10MHz [13]. However, it suffers from an important disadvantage. Because of the large number of closed loops in a multipoint ground, the 50Hz power currents flowing through the ground system can conductively couple into signal circuits to create intolerable interference.

Normally at frequencies above 10MHz a multipoint grounding system is preferable; below 10MHz, a single point grounding system can be used provided the length of the longest ground conductor is less than $\lambda/10$.

In the a.c. welding system the noise source is at about 5MHz which gives λ =300,000/f KHz = 51m. If the ground leads are kept less than 10m, single point grounding can be used.

3.4.4 ISOLATION

It has been mentioned previously, interference signals not only come from the mains supply but also are coupled from control cables and ground loops. It is, therefore, necessary to apply isolation methods to prevent interference signals flow between each system units.

(a) Isolation Transformer

Because of the interference threat that stray power currents pose to control circuits, steps must be taken to isolate these currents from signal return paths. Obviously, one way of reducing the effect is to configure the power return using an isolation transformer, so that the neutral does not share a path in common with the signal system.

Isolation transformers are best suited for controlling power line common mode noise. These interference signals are generated between the power line conductors and the ground plane. They can be both high frequency and low frequency. The control process consists of directing noise current flow by using an interposing electrostatic shield tied to the ground. Another way to break the ground loop between circuits and prevent interference coupling is to use fibre optics and optical couplers. In an optical system, signals are transmitted in the form of photons which have no electrical charge and, therefore, cannot be affected by the electromagnetic fields as experienced in EMI environments.

Fibre optics can offer solutions to EMI coupling and crosstalk problems associated with electrical hard wired systems (fig.3.8). It is ideal to use fibre optics as a communications medium between the noisy equipment such as the welding power supply and the microcomputer. The command signals from the microcomputer can be converted into light waves by a light emitting diode (LED) which sends the light down the fibre optic cable. At the other end of the cable, a detector converts the light waves back into electrical signals for controlling the welding power supply. Thus, the welding power supply and the microcomputer are electrically isolated and conductive interference coupling from the communications link is precluded.

Optical couplers are especially useful in digital circuits. The basic optical coupler consists of a LED optically coupled to a photo transistor. Both devices are contained in the same package (fig.3.9). This type of circuit gives almost perfect isolation against any difference in ground potential.

3.4.5 SHIELDING

In solving conductive interference coupling problems, radiation should also be considered. According to the a.c. welding specifications, the space all around the weld zone at a distance of 50 feet in all directions is referred to as the high field intensity zone. To minimise unwanted noise pickup from radiation all equipment and signal links in this zone should be shielded. Shielding provides a barrier between the external environment and the internal environment; when properly designed and implemented, it offers significant wideband protection against radiation.

(a) Shielding of Devices

An ideal shielded enclosure should be a conductive seamless construction with no openings, in order to prevent outside fields from penetrating equipment and to prevent internally generated noise from escaping the enclosure. Unfortunately, an ideal shield enclosure is never achieved, because of ventilation openings, doors and covers, cablethrough holes, and connectors. The effectiveness of a device depends upon a number of parameters, the most notable of which are the frequency and impedance of the impinging wave, the shield materials, and the number and shape of shield discontinuities. For practical considerations in designing an enclosure, the following need to be noted:

- The number and size of openings should be kept to the minimum compatible with their functions.
- (2) Ventilation openings or slots need to be covered with perforated grids.
- (3) Continuous electrical contact should be maintained between grids and chassis.

Metal covers are normally considered to be the best shielding material. Steel is preferable to aluminium or copper due to good absorption loss provided its thickness is greater than 1mm. Below that thickness, aluminium or copper make equivalent or better shields, because of their superior conductivity.

(b) Shielding of Lines

Shielding is required not only for device enclosures, but also for many of the cables which connect the various devices. Interference may be radiated from a cable or transferred by radiation or common impedance circuit elements into a cable circuit. It can be conducted through interconnecting cables to the other devices. Because of close proximity in cable runs, inter-cable crosstalk may occur as a result of electromagnetic transference between cables.

Several types of shielded cables are available. These include: shielded signal wire, shielded multiconductor, shielded twisted pair, and coaxial. Cables are also available in both single and multiple shields in many different forms and with a variety of physical characteristics. In practice, where a high degree of shielding is needed, cables with multiple shields separated by insulation should be used. Overall shields for multipair cable should not be used for signal return paths. All individually shielded signal circuits should have insulating sleeves or coverings over the shields. Coaxial cables carrying high energy level signals should not be bundled with unshielded cables or shielded cables carrying low level signals. Grounding a number of conductor shields to a connector by means of a single wire should be avoided. Such a single wire acts as a common impedance element across which an interference voltage can be developed and transferred from one circuit to another.

3.4.6 SYSTEM ORIENTATION

There are three major considerations for interference control in the system orientation.

- 1. Suppressing Source of Interference
- (a) Ensure the welding power supply is properly shielded.
- (b) Filter the power supply cables connecting to the mains.
- (c) Shield the welding cables.
- 2. Eliminating Interference Coupling.
- (a) Twist low level signal leads.
- (b) Place low level leads near chassis.
- (c) Shield signal leads using coaxial cables.
- (d) Shielded cables used to protect low level signal leads should be grounded at one end only.
- (e) Keep the length of signal leads as short as possible.
- (f) Avoid common ground leads between the welding supply and electronic devices.
- (g) Keep ground leads as short as possible.
- (h) Separate signal leads from the welding cables.
- (i) Place electronic circuit boards in shielded enclosures.
- (j) Filter or decouple any leads entering enclosures containing sensitive devices.
- (k) Use fibre optics to break ground loops.
- 3. Reducing Interference at Equipment
- (a) Use mains filters or isolation transformers for power supplies.
- (b) Separate signal and hardware grounds.
- (c) Use filters and optical couplers when applicable.
- (d) Use shielded enclosures.

It should be realised that noise voltage usually needs to be minimised to the point where it is no longer comparable with the signal. In all but the simplest cases, a single unique solution to the noise reduction problem may not exist. Compromises are generally required, and there is usually more than one technique by which the noise objective can be met.

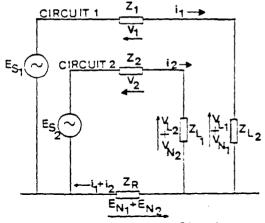


Fig.3.1 Coupling Between Circuits by Common Return Path Impedance

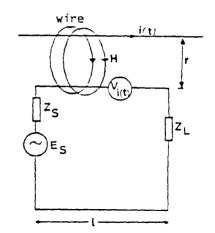


Fig.3.2 Inductive Coupling

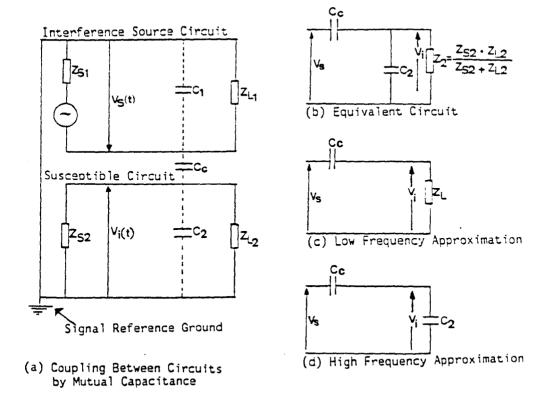
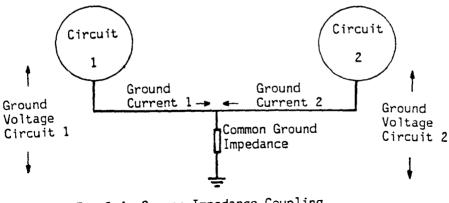
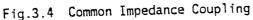




Fig.3.3 Capacity Coupling

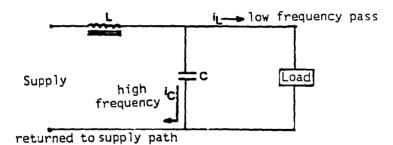


Fig.3.5 Basic Features of a Mains Filter

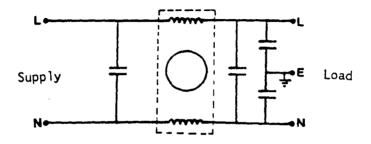


Fig.3.6 Mains Filter with Inductors using Balanced Windings on a Toroid Core

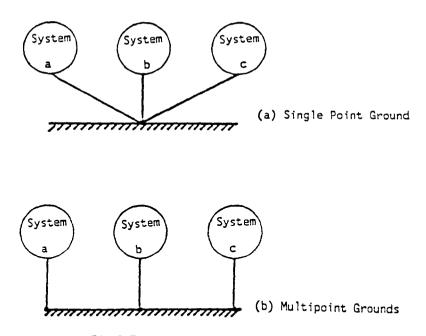


Fig.3.7 Grounding Connections

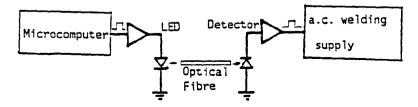


Fig.3.8 OpticalFibreLink

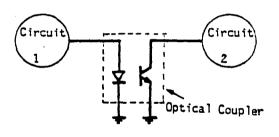


Fig.3.9 Optical Isolator

CHAPTER 4 AN EXPERIMENTAL ALUMINIUM WELDING SYSTEM

4.1 INTRODUCTION

The causes of EMF interference and some methods for the suppression of that interference have been presented in Chapter 3. This chapter shows how these methods can be implemented and also describes experiments on aluminium welding.

4.2 CONCEPT

The first steps in solving interference problems include determining the source of the interference and then how the source of the interference and the susceptible devices are coupled.

It has been pointed out that the main source of interference in an aluminium welding system is the high frequency generation unit in the welding power supply [14]. This device enables the arc to be ignited without touching the electrode onto the workpiece, thus preventing electrode contamination. It also maintains the a.c. arc by continuous reignition when zero crossing occurs at every half cycle of a.c. current.

The high frequency generator of an a.c. welding power supply consists of an iron-cored transformer with a high voltage secondary winding, a capacitor, a spark gap between oscillatory circuits, and an air core transformer, one coil of which is in the high voltage circuit and the other is in the welding circuit (Fig.4.1(a)). The capacitor is charged every half cycle to 3000-5000V and discharged across the spark gap. The discharge sets up oscillatory currents in the welding circuit and these are superimposed on the welding current (fig.4.1(b)) thus maintaining the arc. It is this oscillatory current which is a source of electrical noise. Once the high frequency unit is turned on, noise is coupled back to the mains as well as to other circuits; thus, any sensitive electronic equipment which shares the same mains supply, is interfaced to the welding machine, or placed nearby, may be subjected to damaging spurious voltages. Interference can also be coupled by direct radiation from the a.c. arc. To overcome these problems, several methods in reducing interference were considered.

A block diagram of the a.c. welding system is shown in fig.4.2. It is similar to the system described in Chapter 2, but, the differences are the welding machine is replaced by an a.c. welding source and the microcomputer is electrically isolated from the high current equipment using fibre optics. This experimental system was designed with the objective of finding methods to suppress interference, in order to ensure computer control of the welding process in the a.c. welding environment. Once these methods are considered to be acceptable a more complex automatic welding system, using a three or more axis robot with larger memory controller and adaptive sensors, may be developed using the same principles.

4.3 EVALUATION OF INTERFERENCE PROBLEMS

Prior to starting system development, preliminary tests were undertaken to locate the sources of interference, in order to use a systematic approach for the evaluation of interference problems.

4.3.1 PRELIMINARY TESTS

To confirm the assumptions of interference problems which may encountered in an a.c. TIG welding system, the system was first set up without any methods of interference suppressions. Preliminary tests were performed by switching on both the microcomputer control unit and the stepping motor drive unit, whilst keeping the a.c. welding power supply off, to confirm correct operation of the system. The two units were then switched off and only the a.c. welding power supply was switched on, in order to ensure that the system could be used at least for manual welding. The next step for the test was to use the microcomputer to control the a.c. welding power supply in such a way that, if a 'START' command is typed in, the a.c. welding power and the high frequency generator were switched on, and this will continue to be the case until a 'STOP' command is entered.

Prior to starting tests, the torch was clamped away from the workpiece to prevent arc ignitions. Hence, if the a.c. welding power supply is switched on, no welding current will flow without the arc being ignited, and only the high frequency generator can produce oscillatory signals to the torch. It is these oscillatory signals which are of interest for finding out the source of interference problems.

When the test was started, the welding rig began vibrating and produced mechanical noise as soon as the a.c. welding power supply was switched on. The monitor screen showed 'snow' effects and unexpected characters. The 'STOP' command was not able to terminate the a.c. welding power supply as the control program had been destroyed. The system was eventually switched off manually. It was evident that the high frequency generator acted as the source of interference to those electronic circuits. It was obvious that the interference could couple through power cables and signal lines and cause problems, but the effect of the radiated interference also needed to be investigated.

To evaluate the severity of the radiated interference a battery operated digital counter with LED display was placed close to the torch but with no physical connections to the system. The counter was set for continuous display in the sequence from 0 to 9. When the high frequency generator was switched on, the counter display jammed and ceased to operate in sequence. However, after the counter was reset and placed into a screened diecast box, it operated correctly.

Preliminary tests proved that the approaches to transient interference problems must be considered before carrying out any welding of aluminium. Considerations for the suppression of transient interference included the selection of mains filter, the design of system grounding and device isolation, and the use of shielding technique.

4.3.2 REDUCING POWER DISTURBANCE

One of the major interference problems with the system was the a.c. power supply disturbance. If power disturbance was not considered in the basic design, the effect of mains-borne noise could cause system malfunctions. One way to reduce power supply disturbances is to use mains filters, which prevent transients being fed onto the mains and also supplying filtered power to the equipment.

In this experiment, three different types of mains filters were used, one connected to the welding supply unit which suppressed transient signals feeding back to the mains power supply, and the other two connected to the microcomputer control unit and the stepping motor drive unit to prevent transients from reaching the equipment.

The filter used for blocking transients feeding back to the mains is a high performance power filter (type no. L1826TS) produced by Belling Lee Intec Ltd. It is a 2-line filter fitted with transient suppressors providing 100dB attenuation at frequencies from 200KHz to 10GHz and protection against transient interference. The maximum operating current is 100A which is compatible with the AAC350 welding supply having a maximum input current of 98A. The effect of introducing this filter on the mains signal is shown in fig.4.3. These results were taken at a phase line input to the welding machine. Fig.4.3(a) shows the high frequency signal at the frequency of about 5MHz with the amplitude of $\pm 200V$ of the mains voltage, where (b) and (c) are the results of before and after filtering. It is clear that adding a filter to the power input effectively suppresses high frequency transient signals being outputted from the welding machine, thus protecting the other equipment sharing the same mains supply.

In practice, power line disturbances also come from many other sources which cause interference. The fluctuations of the mains voltage often cause problems with electronic equipment. It is, therefore, necessary to protect such equipment using the same technique of filtering and transient suppressing. In the welding control system, a 15A 2-line mains filter (Y20947) was fitted for the microcomputer control unit protecting the BBC microcomputer and its peripherals. This filter is suitable for general purpose suppression over a wide frequency range from 80KHz to 100MHz and also incorporates a transient suppression device in the form of a voltage dependant resistor. Another mains filter fitted to the stepping motor drive unit is a 10A mains filter (RS 238-441) designed to filter mains borne interference in a frequency range 150KHz to 30MHz. The above filters were selected to meet individual application requirements. The selection of filters was based on the frequency bandwidth of the interference, input current, attenuation, permissible leakage current, construction preference, and the cost for the application.

4.3.3 SYSTEM GROUNDING

Another way to reduce transient interference is the consideration of proper grounding. While grounding techniques can solve some transient interference problems, many transient interference troubles occur because of uncontrolled grounding configurations which create ground loops. Fig.4.4 shows the grounding configuration of the a.c. welding system.

The design of the system grounding was based on the concept of single grounding as the main components of the system were connected close together. With this concept, the three system units are all referenced to a single point, and this single point is then connected to the facility ground. Thus, closed path for interference currents in the signal ground network are avoided, and the interference voltage in the a.c. welding unit ground is not conductively coupled into other signal circuits via the signal grounds.

A ground loop can be formed when both ends of a circuit are grounded, as in the example of fig.4.5. The loop can be broken by using isolation methods.

4.3.4 ISOLATION AND SHIELDING

For isolating the computer and other electronic circuits from the noise source, isolating transformers, fibre optics and opto-isolators were used.

To achieve a greater degree of interference reduction, shielding techniques were applied. Fig.4.6 shows that the optical transmitter and receiver were housed in two separated diecast boxes which were earthed. The stepping motor drive board and switching control circuit were placed inside an earthed aluminium cabinet with ventilation holes screened by a copper wire mesh. The stepping motor drive unit was placed very close to the welding rig to provide easier operation for the welder. Therefore, it must be shielded correctly against radiation from the welding arc.

The welding current supply and current return cables are typical examples of interference radiators, and other signal and logic cables are the receivers of interference. In order to ensure system operation within the high field intensity zone, shielding of cables and devices is essential.

4.4 HARDWARE

Fig.4.7 shows the system hardware, in which the welding unit is the AAC350 Argonarc a.c. welding power supply. The unit has a self-contained high frequency generator, argon and water valves, fitted with a delay control, and a welding contactor. The welding contactor controls the various circuits for welding inert gas, water flow, welding current, high frequency and auxiliary equipment. It is normally operated using a footswitch in manual welding. In order to switch the welding power supply on or off by the BBC microcomputer a relay was connected to the welding contactor. This relay was controlled by the information received from the optical receiver via the fibre optic link from the BBC microcomputer. There are three fibre optic links between the optical transmitter and receiver. One is for switching the welding power supply, and the other two are for controlling the speed and direction of the welding rig.

The direction of the welding rig is determined by the input signal to pin 10 of the stepping motor drive board (Unimatic UDB-053/1). The welding table traverse to the left when pin 10 is set high and traverse to the right when pin 10 is low. Thus, connecting a relay to this input will allow the microcomputer to control the direction of the workpiece movement.

The speed of the welding rig is determined by the pulse rate applied to the stepping motor drive board. Since the external pulse input of the drive board has an active pull up resistor, it must be driven by an open collector logic gate. An opto-isolator was selected to provide the required open collector logic.

Both the welding power supply and welding rig are controlled from program running in the BBC microcomputer. If the program was written so that the welding rig starts moving at a given velocity just after switching on the welding power supply and keeps moving until the end of a weld, it would normally give an acceptable weld provided that the torch was set in position and the arc was immediately ignited in response to the power on. In practice, however, for the same setting of welding parameters, the delay time for an arc to be initiated and settled differs from job to job due to the variations in the aluminium surface. In this case, if the delay time takes longer than is preprogrammed, the welding rig will start moving before an arc is formed, and the weld will be out of position. It is for this reason, that an arc ignition detector was designed to obtaining a feedback signal to the microcomputer in order to provide synchronisation between arc ignition and the movement of the welding rig.

4.4.1 PERIPHERAL INTERFACING

Peripheral electronic circuits were interfaced to the user port of the microcomputer. The user port consists of eight lines which can be individually programmed to act as inputs or outputs under the control of a Data Direction Register. For controlling the a.c. welding system, four signal lines were used (pins PB0, PB1, PB2, and PB7). PB0 was used to switch the welding power supply on or off, PB2 was the signal received from the arc detector described in section 4.4.3, and PB1 and PB7 were used to set the direction and speed of the welding rig.

The eight lines of the user port are configured as inputs after reset with pull up resisters pulling the signal high. To ensure that no signal was transmitted to the control circuitry when welding was not taking place, TTL logic inverters were connected directly to the user port. Once a particular line is programmed to be low, the inverter output becomes high which enables the optical transmitter to send information down the fibre optical cable, and therefore, commands the rest of the controlling circuits.

4.4.2 OPTICAL TRANSMITTER AND RECEIVER

The purpose of using optical transmission is to isolate the microcomputer from the electrically noisy welding power supply and the stepping motor drive unit which is placed very close to the welding rig. The principle of optical transmission is to convert electrical signals into light waves by the use of an optical transmitter. These light waves can then be sent down an optical fibre to the destination. The optical power output is controlled by the applied current. In the case of a LED operating under a binary pulse code modulation, this involves switching between OV and 5V. A general interface circuit of the optical transmitter and receiver is shown in fig.4.8.

There are two reasons for using an opto-isolator in the design. One is to provide current amplification for the LED, the other is to provide isolation between the microcomputer and the peripheral circuits. Since the microcomputer acts as a central controller, and it contains many electronic devices which are sensitive to interference, it should be given maximum protection against interference coupling.

The basic operation of the optical receiver is the conversion from light intensity to electron current. The detector converts the optical power into an electrical current. This current is small and must be amplified by a low noise amplifier designed to work with the detector. In the circuit (fig.4.8) the two transistors (BC109) and an op-amp (741) are acting as a current amplifier and a voltage controller respectively. To ensure that the correct information was sent to the welding unit and the motor drive unit, filters and transient suppressors were built into the optical receiver for the elimination of noise interference, which could be coupled from the links between the optical receiver and the two units.

4.4.3 ARC IGNITION DETECTOR

The arc ignition detector works on the principle of converting arc light into electric current and give a threshold voltage to the microcomputer indicating whether the arc is on or off. It consists of a photo detector, a differential amplifier, a low-pass filter, a comparator and an opto-isolator (fig.4.9). The photo detector converts the light into electric signal which is then amplified by a differential amplifier. This differential amplifier is also used for backing off the background signal to provide a true signal representing the arc light. The low-pass filter is designed to eliminate the noise produced by the arc. The comparator converts the signal to TTL compatible in order to be interfaced to the microcomputer. The opto-isolator in the design is to isolate the peripheral circuits from the microcomputer, in order to reduce interference which may be picked up in the system.

4.5 SOFTWARE

Software written for the experimental system is in the form of a command control program. It responds to user input commands and generates control signals to the peripheral circuits. Since the computer processing speed in this experiment was not critical in respect to the welding speed, the program was written in BASIC language for convenience.

4.5.1 CONTROL SEQUENCE

Details of the software structure are shown in Appendix II. It can be summarised in the following six steps:

- (a) Wait for weld parameter inputs.
- (b) Convert welding length and speed into time, so that the weld process can be controlled by the internal timer of the microcomputer.
- (c) Request for start operation command. Once it is instructed by the user, energise the contactor relay to switch on the welding power supply.

- (d) Wait until the arc ignition signal is received, and produce a delay in order to ensure a molten pool is produced, then enable the internal timer to control the speed and direction of the welding rig.
- (e) Increase speed gradually to compensate for temperature effect on the weld.
- (f) At time up, reset system, acknowledge the user, and return to the initial state for the next weld.

4.5.2 EFFECT OF TIMING

The control parameters such as the welding speed and the welding length are dependent upon timing. The welding speed can be varied by changing the counter number which is input to the internal timer as described in Chapter 2. Total time taken for the preset welding length is calculated from:

Where the welding length is set by the operator and the welding speed is derived from the average speed for the operation. The value of welding time is calculated for a moving weld. For stationary welds the timing relies on the welding time set by the operator.

4.5.3 OPERATION

Once programmed the user is prompted to define the weld parameters. These include, the direction of movement (left or right), the initial speed of the welding rig (0 - 7 mm/s), and the required length of weld.

Only when valid values for these have been entered will the screen display:

Welding system standby

Press SPC bar to start

To start welding, an active low signal is output to the user port, PBO, commanding the welding power supply to be switched on. Port PB2 is then polled to detect if the arc has been ignited. Before a valid input signal is obtained, the program will produce a message:

Waiting...

When a stable arc is formed, the program will output values to move the rig in the required direction at the preset speed, and the screen will show:

Welding in progress

After a weld is performed, the user will be instructed by:

Job completed

Press SPC bar to start again

and the system is reset to the initial state for new welds.

4.6 EXPERIMENTAL SETTING

A few operational procedures were essential when carrying out an experiment.

- (a) Before switching on the mains supply of the AAC350 Argonarc Welder, all electronic equipments must be switched off and the traverse correctly earthed.
- (b) The Argonarc/Metal arc switch was turned to the 'Argonarc' position. If welding at currents below 70A, the high frequency switch was set to the 'continuous' mode.

- (c) The argon gas and cooling water supplies were turned on. The 'purge' button was pressed and the flow of cooling water and argon gas adjusted to the required level. Release the 'purge' button. The 'Gas Delay' control was set to the time required for the post weld gas flow.
- (d) The 'Current Selector' switches were set to obtain the required welding current. The values for Argonarc Welding currents were printed in red on the indicator plates.
- (e) The 'Argonarc/Metal Arc' switch was turned to 'off' position, and the torch and weld job positions setup.
- (f) Other equipment was turned on, and the stepping motor drive unit was set for computing control. The 'Manual direction' switch was set to off. 'Auto-stop' mode was used for automatic operations.
- (g) The required welding parameters were entered and the welding machine was switched on again ready for weld operations.

4.7 EXPERIMENTAL WELDS AND RESULTS

This section describes the experimental welds carried out in order to assess the feasibility of automating aluminium welding.

4.7.1 WELD TESTS

The experimental welding system is open-loop. All welds were carried out using pre-set welding parameters, which meant that the torch position, gas, welding current, welding length, and the direction and speed of the welding rig had to be predetermined. The system was programmed for straight line welds.

The shielding gas used was pure argon. The surfaces of the plates to be welded were first scraped to remove the oxide layer. They were then clamped on a jig which was designed for holding the workpiece and also as backing for the workpiece to remove the excess heat built up during welding. After switching on the gas, water, welding current and the high frequency unit the arc was struck by bringing the tungsten electrode near the workpiece. The high frequency sparks jumped the gap and the welding current flowed. The arc length was manually set to about 3mm. The arc was held in one position on the plate until a molten pool was obtained and welding then commenced, proceeding at the preprogrammed speed and direction. As the weld proceeded, temperature build up on the plates increased with respect to time, and this resulted in the changing of the weld bead size and penetration. Possible ways of overcoming this effect include varying the welding current or the welding speed. Since the AAC350 a.c. welding power supply could only provide manual preset currents and was not able to be switched to different levels by the computer, the alternative method of programming the welding rig to move at an increasing speed, whilst keeping the welding current constant was used. The gas flow rate was set depending on the plates to be welded. A chalky white appearance of the weld indicated excessive current and overheating, while a black appearance on the weld metal indicated insufficient argon supply.

4.7.2 WELDED SAMPLES

Weld tests were carried out using corner joints. A jig was used to mount the plates together at right angles. The electrode was aligned to the centre of the corner at 70° to the line of weld. The jig was held by the welding rig and traversed smoothly along the joint line. Fig.4.10 shows the experimental results, in which sample (a) was welded using a preset welding current of 77A and a constant welding speed of 0.8mm/s, sample (b) was welded using a preset welding current of 71A and a ramped welding speed from 0.8mm/s to 3.5mm/s for the welding length of 115mm, and sample (c) was welded manually using 75A preset welding current. Both (a) and (b) were 1mm thick and (c) was 0.7mm thick.

It is evident that for a given welding current, the welding speed determines the amount of energy that is delivered per unit length of weld. Changes in energy per unit length have a strong effect on the finished welds. As in the cases of (a) and (b), the different control of welding speed resulted in the different finished weld qualities. Since the welding speeds can be controlled by the microcomputer controller, the result of welds are predictable. For manual welding, however, the quality of a weld can vary from time to time depending upon the welder's ability.

All the welds were fusion welds, employing TIG welding without using filler materials. This form of welding was particularly useful for welding thin plates. The welds were of high quality and provided the necessary strength properties for structural components. The finish weld seams were spatter-free, smooth and flat and needed no further treatment. In the automated welding system the results can be made consistent by proper control of the speed.

4.7.3 WELDING SPEED

Welding conditions and metal temperature exerted a considerable influence on the weld. The characteristics of a weld may be determined by the following expression [15]:

$$Q = 8k.T_{m} \left(\frac{1}{-++----} \right)$$
(4.2)

where Q is the rate of heat per unit area input to the workpiece, k is the thermal conductivity, T_m is the melting temperature, α is the thermal diffusivity, ν is the welding speed, and d is the fused diameter.

Since k, T_m , and α are constant values, by keeping the welding speed, ν , constant the fused diameter, d, increases as heat. Q, building up in the workpiece. Thus, to ensure a fine weld finish which maintains the same fused diameter, the welding speed needed to be increased in order to compensate for the temperature effect on the weld.

The welding speed of the linear system ranges from 0 to 7mm/sec. In the experiment the welding speed was set to increase by 10% of its previous value after each period of 2 seconds. Fig.4.10 (a) and (b) show the results of a constant welding speed and a ramped welding speed, respectively. In comparison the latter method was proved to be acceptable.

4.7.4 WELD PARAMETERS

To achieve acceptable weld quality the weld parameters should be chosen with regard to the geometry and position of the joint. In the welding procedure the following parameters were specified:

- (a) welding current,
- (b) arc length,
- (c) initial welding speed,

(d) electrode diameter,

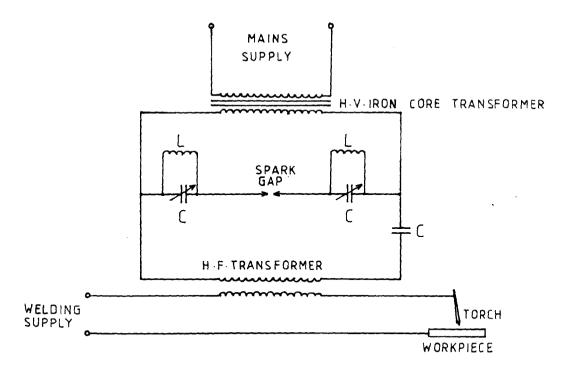
- (e) rate of flow of shielding gas, and
- (f) length of weld.

The optimum welding conditions derived from this experiment are shown in Table 4.1. All the parameters are suitable for fusion welds of corner joints from 1 to 3mm thick aluminium plates.

4.7.5 ELECTRODE DIMENSIONS

To ensure a quality weld in thin plate welding, the electrode needed grinding to a point. The dimensions of the electrode may affect the behaviour of an arc and thus affects the result of a weld. For thicker plates the electrode should be properly broken and ground tapered by following the supplier's suggested procedures. Improper breakage may cause a jagged end or a bent electrode which usually results in a poorly shaped arc and electrode overheating. Fig.4.11 indicates suitable preparations for both d.c. and a.c TIG weldings [5,16].

4.7.6 WELDING CONTROL


There are two basic factors affecting the weld quality. These are the heat factor and the welding factor, as shown in fig.4.12.

The heat factor is a balance between effective heat input and heat sink in the workpiece [17]. Effective heat input depends on welding current, arc voltage, welding velocity and efficiency factor, that is, the share of the total arc heat energy received by the workpiece. Heat sink is a portion of effective heat that is not utilised for melting the workpiece. Arc voltage depends on the electrode extension, shielding gas flow rate, and the stability of the welding power supply. All these variations may cause considerable fluctuations in weld penetration, and thus affecting the quality of a weld. The welding factor is a balance between the arc pressure displacing the molten metal under the arc and the flow of the molten metal [18]. There is a layer of molten metal under the arc, in which the temperature gradient, according to depth in the weld pool, approximates in value to the temperature gradient in the region of transition from the forward to the rear part of the weld pool. The thicker the layer, the slower the heat transfer to the base metal. If the flow rate is high enough, a relatively cold molten metal flows under the arc, and reducing penetrating ability of the arc. If the flow rate is slow, the workpiece is exposed to the arc under pressure and the arc penetrates deeper. In this regard, welding speed is a good example of the complex interrelationship between welding variables and welding results.

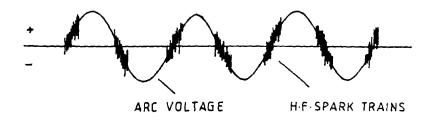

4.8 DISCUSSION

Fig.13 shows the experimental setting of the welding rig and the welding supply for a.c. welding. Both units were controlled by a microcomputer. It was evidence that the welding system was capable of welding aluminium under the high frequency interference conditions and produced better finish welds at higher welding rate than those performed by manual welding. However, a noticeable limitation of the system is its open loop operation. In many cases, the workpiece may be distorted resulting from the intense heat built up, and the torch may deviate from the joint. To ensure weld qualities, the addition of sensory feedback is required in order to form a closed loop operation system.

As the objective of this experiment was to investigate the possibility of automating aluminium welding process, the experimental results successively show that the automation of aluminium welding is feasible provided a proper EMI control is included in the system design. Applying the same principle of design, more sophisticated systems, such as the closed-loop automatic welding systems can be developed to give a higher degree of reliability and better quality of welds. In particular, using a robot with more degrees of freedom and with adaptive sensory control fully automated welding becomes possible.

(a) H-F- OSCILLATOR

(b) ARC VOLTAGE WITH SUPERIMPOSED H-F-SPARK TRAINS

ŧ.

FIG 4-1 A-C-WELDING SOURCE

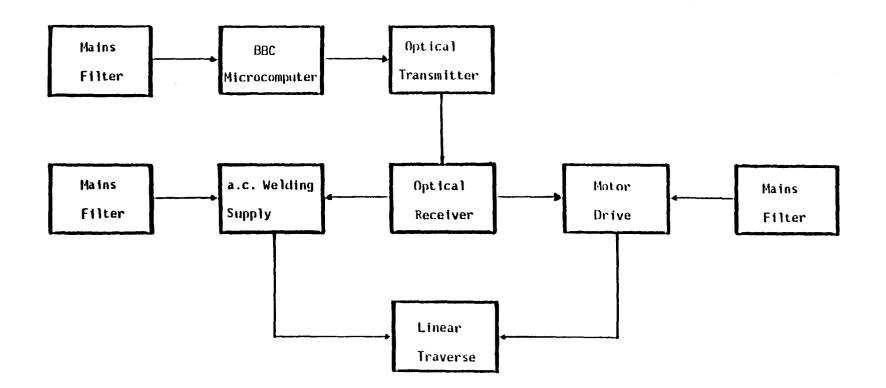
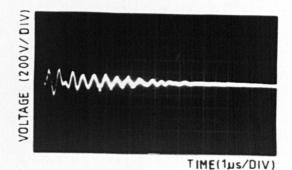
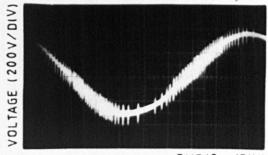
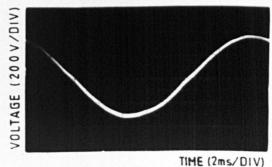




Fig.4.2 Block Diagram of The a.c. Welding System

.



(a) H.F. SIGNALS

TIME (2ms/DIV)

(b) SIGNALS FEEDING BACK TO THE MAINS WITHOUT FILTERING

(c) SIGNALS MEASURED AFTER FILTERING

FIG. 4.3 EFFECT OF USING MAINS FILTER

.

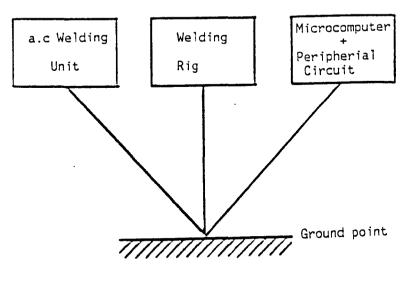


Fig.4.4 System Grounding Configuration

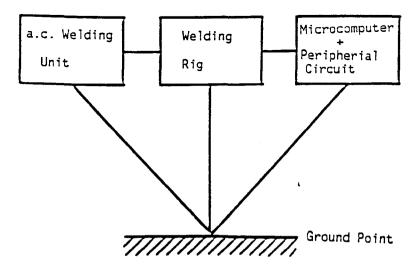
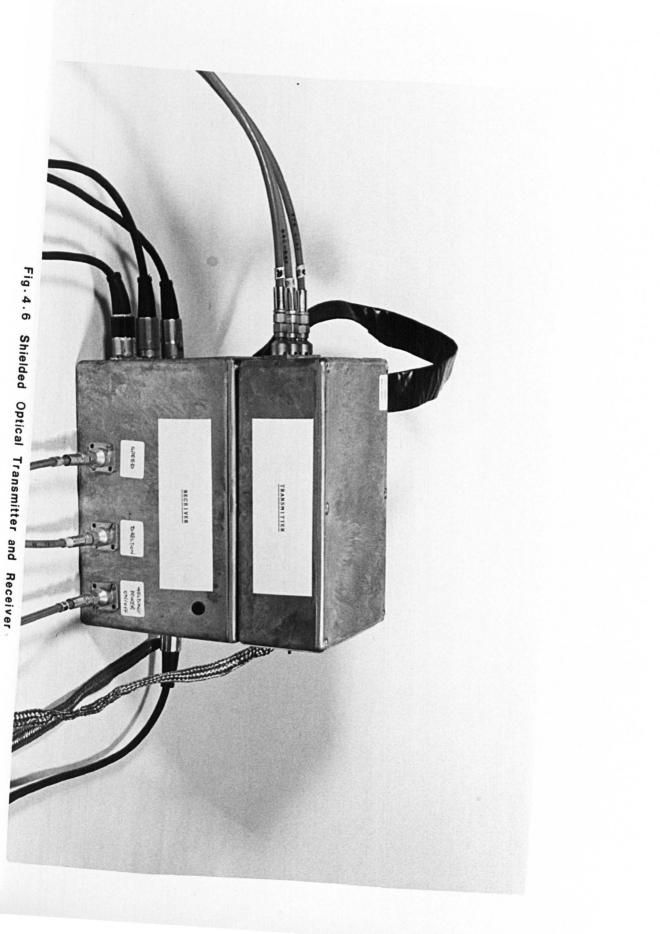



Fig.4.5 Ground Loop Configuration

÷

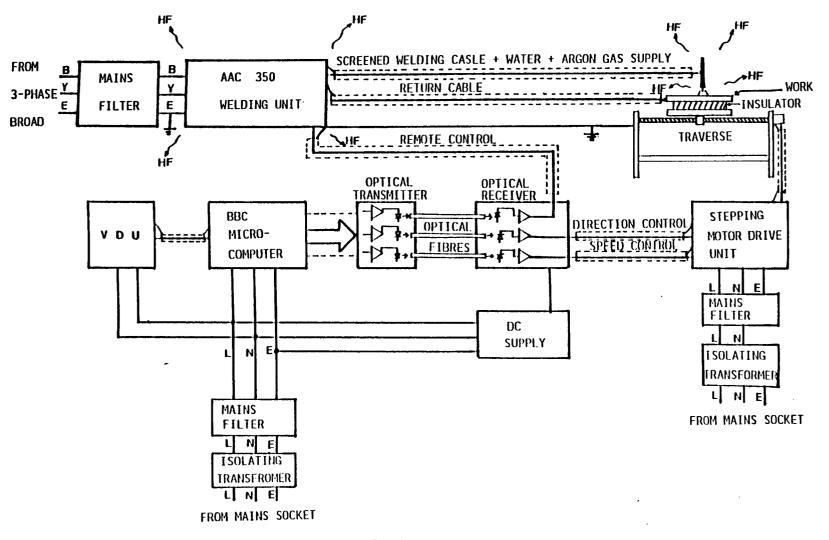


Fig.4.7 System Wiring Configuration

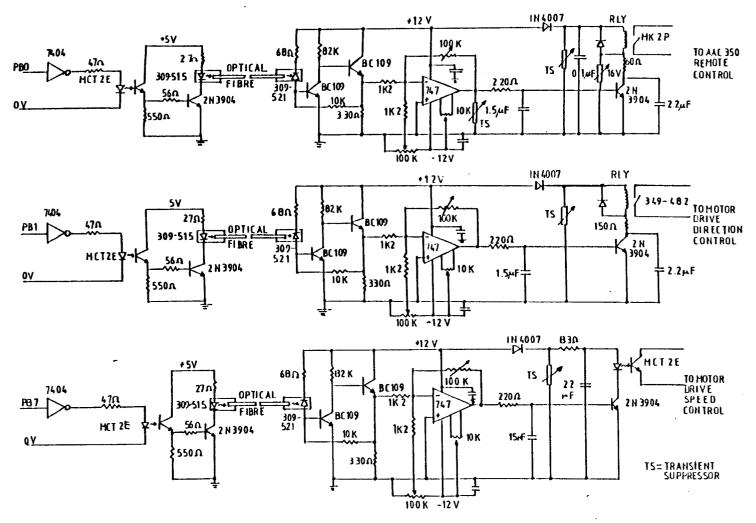


FIG. 4.8 OPTICAL TRANSMITTER AND RECEIVER CIRCUITS

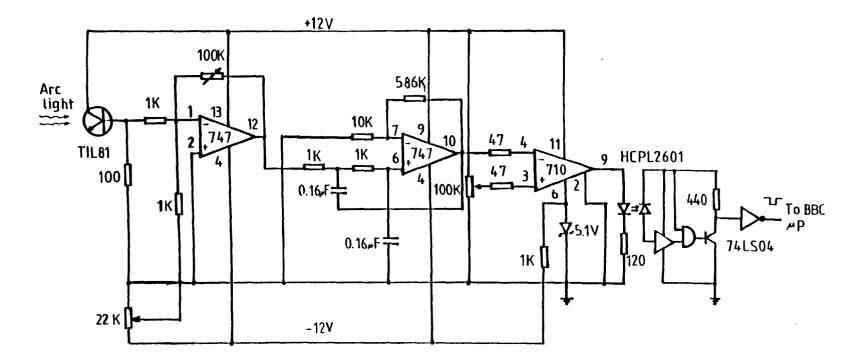
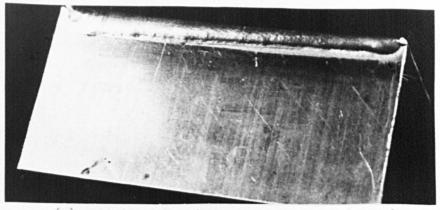
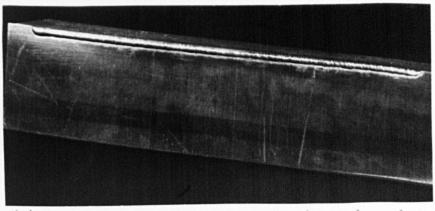
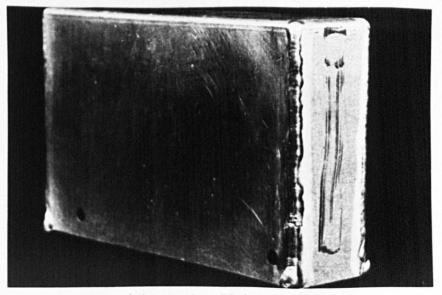




Fig.4.9 Arc Ignition Detector


.

(a) Welded sample of constant current and speed

(b) Welded sample of constant current and ramped speed

(c) Manual welded sample

Fig.4.10 Experimental results

Workpiece thickness (mm)	1	2	3
Welding current (A) Argon pressure (bar) Electrode diameter (mm)	64 . 20 2.4	78 20 2.4	88 20 2.4
Arc length (mm)	2.5	2.5	2.5
Initial welding speed (mm/s)	0.8	0.7	0.6

Table 4.1 Welding parameters for the experiment

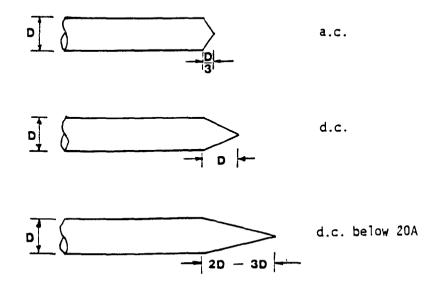


Fig.4.11 Electrode preparation

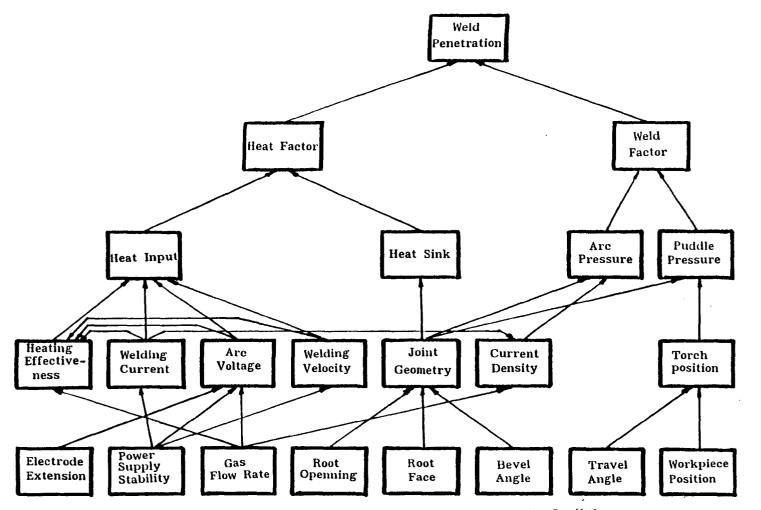
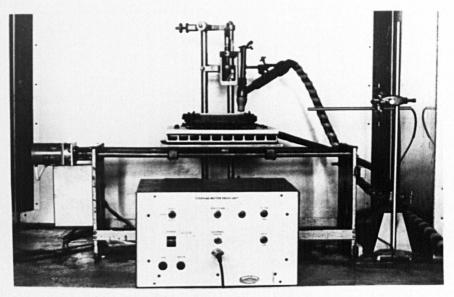



Fig.4.12 Effect of Welding Variables and Operating Conditions on The Depth of Weld Penetration

(a) The welding rig

(b) The welding power supplyFig.4.13 Experimental settings

CHAPTER 5 WELDING SEAM TRACKING

5.1 INTRODUCTION

Robots are now widely used for automatic welding [19]. Applications include those needing no feedback information and those where fit-up variation, or metal distortion occurs, and constant monitoring and real time adjustment of the operation are required [20]. A host of variables add uncertainty to the process and sensory feedback is required to keep the welding torch on the seam for an effective weld. Uncertainty is introduced by parts or fixtures that deviate from the standard, poor fitting of parts, or warping part caused by heat gradients of the welding process itself.

It is for these positional uncertainties that the need arises for seam tracking in automated welding.

In this chapter, the nature of the positioning errors and the principles of a seam tracking system are described. The information concerning the positioning errors is important in determining how to track the seam for an effective weld. It also outlines the requirements for the seam tracking system developments. Present commercially available seam trackers are reviewed. Because of the wide variety of joint configurations and metal surface conditions no one seam tracker will provide all solutions. This led to the investigations of two different type of seam trackers, each with its own advantages. The adaptation of seam tracker to robotic welding provides a closed-loop control for automating the welding process. Experimental data indicates the importance of seam tracking in automating welding, and this is covered in Chapter 6 and Chapter 7.

Chap. 5 Welding Seam Tracking

5.2 POSITIONING ERRORS IN ROBOTIC WELDING SYSTEM

A robotic welding system needs to position the welding torch above the centre of the weld seam, while maintaining a programmed welding speed and torch orientation. Allowable positioning error depends on the process involved. There are many factors which can cause positioning errors.

(a) Mechanical Vibrations

A robot normally is driven along several axes by motors. Depending on the natural frequencies, traverse vibrations, etc., the welding torch may oscillate while welding is being carried out, particularly during sudden starts and stops.

(b) Backlash

Backlash affects accuracy when drive torque changes direction. Backlash is usually unspecified and is highly dependent on wear and adjustment of the mechanisms.

(c) Temperature Effects

Robot system accuracy specifications usually assume constant temperature. If the temperature varies significantly, the effects can be severe enough to require the path to be reprogrammed. For example, the welding arc may heat up the robot's wrist joints producing positioning errors. Thermal expansion caused by heat input to the workpiece holding fixture can also cause the seam to deviate from the preprogrammed path [21]. The torch position can shift because of accidental contact of the electrode tip with the molten weld pool, or after the electrode is changed.

(e) Workpiece Holding Fixture Tolerance

Fixtures necessary to hold the workpiece during welding may need to be slightly oversized to accommodate size variation from part to part. Therefore, there is a corresponding uncertainty in workpiece location.

Weld spatter and other problems on the fixture can cause errors in workpiece location. Fixture wear is another potential factor. However, thermal expansion due to progressive heat input is perhaps the most significant source of fixture error.

(g) Workpiece Tolerance

Locating the weld joint accurately depends on the workpiece having surfaces a fixture can hold, which are accurately located with respect to the weld joint. To ensure positioning accuracy, an acceptable dimensional tolerance between suitably located and oriented surfaces and the weld joint location must be provided.

5.3 ANALYSIS

The capability of the robot to position a torch properly on the welding seam is affected by the tolerances on the movements of the torch in x,y and z directions and the drifts of the seam during welding. The torch position tolerance depend upon the features of the robot as outlined above. If taking the robot tolerance into account and measuring the

seam drifts at the beginning of each cycle, then the state of the torch can be easily determined.

5.3.1 WELDING SEAM POSITIONS

If we assume that the shifts of the robot's position in x, y and z directions occur independently of one another, a mathematical model can be formulated to describe the position of the welding seam. The model should also take into account the inaccuracies in the sensor (e.g. seam tracker) measuring the position of the seam. A linear dynamic system [5.3] described by equations (5.1) and (5.2) has the desired characteristics.

$$Ui(n) = Ui(0) + Wi(n)$$
 (5.1)

$$Gi(n) = H*Ui(n) + Vi(n)$$
(5.2)

Where i = x, y, z, the standard cartesian axes. In these equation, Ui(n) is the actual position of the torch in direction i with respect to some reference position, at the beginning of the nth cycle. Ui(0) is the initial taught position. Wi(n) represents the drifts in the position of the seam. Gi(n) is the reading obtained from the sensor measuring device, which represents the position of the seam at the nth cycle, with respect to some reference point. H is the factor converting the distance to measuring units. Vi(n) represents the error signal due to seam tracker tolerance.

Equation (5.1) gives the position of the seam, in terms of the initial position and the drift at nth cycle. Equation (5.2) deals with the measurement error of the sensor. The behaviour of the process Vi can be studied by taking the difference between Gi(n) and H*Ui(n) from a set of repeated measurements. Then a mean value of Vi(n) can be obtained. Let this mean value be Vmi. Now, replacing Vi(n) by Vmi in equation (5.2) we obtain

$$Ui(n) = [Gi(n) - Vmi]/H$$
 (5.3)

and the drift of the seam can be defined by

$$Wi(n) = Ui(n) - Ui(0)$$
 (5.4)

Using this equation the actual seam deviation can be calculated and this value can be fed back to the robot controller for error corrections. The ability of tracking the seam is based on the information feedback from the sensor and the response of the robot controller.

5.3.2 FEEDBACK SYSTEM

The idea of a feedback system is that the output of a process is observed and compared with what is desired. If there is a difference, or error, the process inputs are changed in such a way as to cause the error to be reduced. For seam tracking, the location of the centre of the seam from previous passes, is compared with the current position. A correction is then made to maintain the torch on the joint between the plates to be welded.

Fig.5.1 shows a feedback system which operates in a closed loop sequence. The desired and the actual seam positions are compared, and a measure of the difference is generated to inform the controller to drive

Chap. 5 Welding Seam Tracking

the robot in order to reduce the error. The sequence is such that if the seam is shifted to the right, for example, the controller will be instructed to direct the robot torch to the left.

In summary, feedback systems improve positioning accuracy and provide self-tracking of the welding seam.

5.4 SEAM TRACKING

The basic requirement for a seam tracking system is the ability to determine the position of the part to be welded relative to the welding torch. The position of the torch must be controlled to within the centre of the seam. In general, seam tracking enables the robot to adapt to the work environment, i.e. to modify the path of the torch tip to produce offset from the sensed path.

5.4.1 SEAM TRACKING SYSTEM

Fig.5.2 shows the basic structure of a seam tracking control system which is based on three functional modules. These modules are the tracking sensor, tracking processor and robot controller. The tracking sensor should provide spatial information describing the seam relative to the torch. It should include its own data acquisition and filtering capability. It should be able to present the unprocessed data to the tracking processor. The tracking processor takes data from the sensor and converts it to the position commands required to redirect the torch path. The robot controller receives position information in the coordinates of the workpiece and converts them to commands to drive the individual joints of the robot.

5.4.2 SEAM TRACKING METHODS

There are two approaches for seam tracking known as two-pass and one-pass systems.

Two-pass systems involve an initial trial run when the robot passes along the expected seam route monitoring any deviations of the workpieces from their expected positions. During the second run the robot performs an accurate weld with its sensors disabled. Such a system is not able to compensate for errors in the workpiece if it moves after the first run, for instance due to thermal distortion during the welding process.

In one-pass systems the robot senses the seam during the welding process and dynamically adjusts the robot's position to follow it.

5.4.3 SEAM TRACKING APPLICATION

The addition of a seam tracker to a welding system directs the robot to keep the weld seam within the field of sensing area. Torch position information may be extracted from several different types of sensors which require varying degrees of signal processing.

Because low tolerances in the dimensions of the components to be welded lead to a loss of quality in the welded product, at present automated welding can only be used for manufacturing finished products when high cost seam trackers are used, For instance, while a vision based sensor system can provide an effective solution to the seam tracking problem, its cost may limit its use in many robotic welding applications. It is for this reason research has been carried out on the development of low cost sensors, such as the infra-red and ultrasonic seam trackers.

Chap. 5 Welding Seam Tracking

5.5 REVIEW OF SEAM TRACKERS

Seam tracking devices range from simple to extremely complex [22 - 25]. It is technically appealing to try to develop a general purpose seam tracker to meet a wide variety of needs. Practical limitations, however, show the need for a range of seam trackers, each satisfying particular requirements.

The development of seam trackers has so far resulted in the emergence of three major types of commercially available seam trackers [26]. Each type is classified by the type of sensor used.

5.5.1 TACTILE SENSING

The original seam tracking devices actually used on robot systems were tactile sensors. Typical designs used a mechanical probe equipped with strain-gauge devices to follow the weld seam. Signals are produced proportional to positional deviations of the probe. These signals are used to modify the torch position.

The major advantage of this type of tracker is its relatively simple design and, therefore, low cost. However, since physical contact is required, they cannot generally differentiate between a change in seam area and a change in seam height. Also, they are not adaptable to suit a variety of seam geometries and further more there is a tendency for the probe to lose contact with the seam. Because of these limitations, they are not a practical solution for many robot welding applications.

5.5.2 THROUGH-THE-ARC SENSING

A another method used to correct torch position is through-the-arc sensing. In operation, this tracking technique makes use of an oscillating torch which acts as a sensor to obtain arc voltage and welding current information in the joint. To track across the weld seam, the torch is oscillated from side to side within the joint. The oscillations of the torch causes changes in current sensed at the joint sidewalls. These changes are proportional to fluctuations in distance between the workpiece surface and the electrode tip. By monitoring these changes, signals can be generated to guide the torch path so that the oscillating pattern is centred on the groove.

To maintain a constant arc length, a preset voltage that represents the desired electrode extension is programmed into the robot controller. Feedback signals originating at the electrode tip constantly sense this voltage value and adjust the torch's position accordingly from the robot controller. By combining cross-seam tracking and arc length control, through-the-arc sensing can keep the arc in the root of the joint and the torch at the proper standoff distance. Fig.5.3 illustrates the principle method.

Although through-the-arc sensing has the potential to produce complete topographical information describing the seam by making current and voltage measurements across the entire profile, it is not applicable to thin metals and many weld joint geometries, and linear welding speeds are limited by the oscillation requirements. This method also requires a very stable welding power supply.

Chap. 5 Welding Seam Tracking

5.5.3 VISION-BASED SENSING

More sophisticated and specialised seam trackers include visionbased sensors, using either white light TV monitoring or laser illuminated techniques. This method normally uses a camera to view the welding seam and generate a digital image. Information extracted from this image concerning the size, shape and relative position of the seam can be used with suitable algorithms to provide guidance of the torch on the required path.

A television camera generates a two-dimensional image of a scene. Additional information must be encoded in the scene if three-dimensional measurements are to be made from a TV image. Structured light, in the form of a cone of laser light, is used in many systems to resolve this ambiguity. As shown in fig.5.4, when the light is projected on the metal surface, a light stripe appears on the illuminated seam. The weld joint profile can then be captured, since each point on a stripe will lie both on the known light structure and the line-of-sight determined by the image of the point.

Vision systems can be considered as extremely good seam trackers, as they have demonstrated both speed and flexibility. However, the hardware required for vision-based seam tracker is often expensive, it is for this reason that its use is limited in robot welding applications.

5.6 PRACTICAL CONSIDERATIONS

An effective seam tracker should provide a tracking signal to adapt weld process variables to produce the desired weld for conditions of varying seam geometry. In accommodating a wide range of practical welding conditions the following requirements should be considered in seam tracking design:

- Tracking is performed during the welding process to correct for real time distortions due to temperature gradients.
- (2) No contact between sensor and workpiece.
- (3) The tracker should be unaffected by the high electromagnetic interference environment associated with arc welding.
- (4) A tracker operating in real time must be immune to smoke, spatter, heat, UV radiation and intense light.
- (5) The sensor head should be compact and with minimal extensions beyond the dimensions of conventional torches.
- (6) The tracker design should meet the objectives at minimum cost.

Tactile sensors provide a seam tracking technique at relatively low cost. Unfortunately, they cannot easily be adapted to suit a variety of seam geometries because of their physical contact requirements. This technique is not viable for most robotic welding applications that require adaptive control sensing. Despite the advantages of through-the-arc sensing, it is not suitable for this research as the method relies on relatively thick metals with well defined joint sidewalls. This technique can track only during welding, and cannot search for the seam before welding. Vision-based sensors were considered to be ideal for adaptive control sensing for the aluminium welding system, but the only drawback is that hardware costs are relatively high. For this reason research was concentrated on investigations of alternative seam trackers, which fulfil the basic requirements but also keeping the system cost to a minimum.

5.7 THE EXPERIMENTAL SEAM TRACKERS

Considering the practical requirements of the experimental system, two low cost seam trackers were developed [27]. Each device includes a sensor which gathers the seam information just ahead of the weld pool. Each is attached to the torch and measures the distance of the sensor from the workpiece, and by including a sweep motion it is able to map out the contour of the gap to be welded.

The first sensor uses an infra-red transmitter and receiver, whilst the second uses an ultrasonic transmitter and receiver. Both sensors are able to work in close proximity to the torch and accurately record gaps greater than 1mm and overlapping plates with thickness greater than 0.5mm. The ultrasonic sensor has higher resolution than the infra-red sensor and is less dependent on the surface condition. The infra-red sensor however can be operated at higher sweep rate.

Both systems provided non-contact sensing and low cost construction. They were used with the TIM robot to produce TIG welds. They directly communicate via a RS-232 interface with the TIM controller and supply an 8-bit message word, which gives both the direction and the amount of offset of the torch from the seam.

Descriptions of these seam trackers will be presented in the next two chapters.

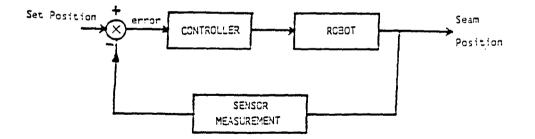


Fig.5.1 Basic Feedback System

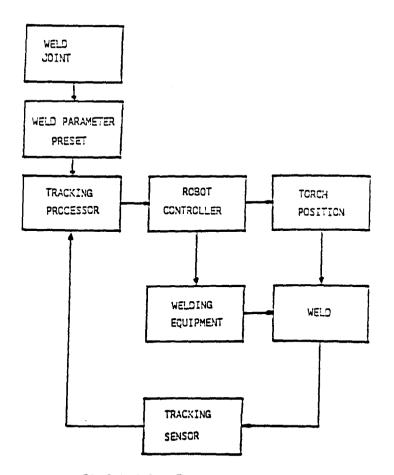
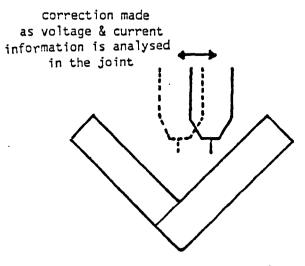
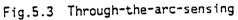




Fig.5.2 A Seam Tracking System

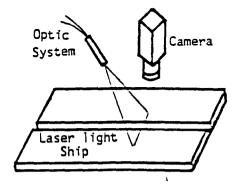


Fig.5.4 Vision - Sensing

CHAPTER 6 INFRA-RED SEAM TRACKER

6.1 INTRODUCTION

In general, one of the principal problems in maintaining weld quality is the control of the torch position relative to the seam. The operation and control of all parameters necessary for joining by TIG welding are well understood, and the welding robots have been demonstrated as suitable for automatic operation. Nevertheless, good welding depends on the torch following the welding seam, and the seam tracking problem must be resolved in each case, to suit particular conditions of geometry, precision of parts, desired quality level, and production requirements.

An ideal robot would cater for all these problems but such a robot would be complex and the cost would easily exceed practical economic levels. Therefore a lower price robot fitted with low cost application specific sensors is a more realistic solution for robotic welding. Therefore the use of a low cost infra-red sensor for seam tracking was investigated.

In this chapter the hardware and software development of an infra-red seam tracker is described. Experimental results are given. This is a realisation of preliminary work [28] at Liverpool University, relating to the development of low cost sensors for robotic welding.

6.2 CONCEPT

The concept is based on the idea of range finding using pulsed infra-red light. The sensor consists of a simple infra-red transmitter and receiver and measures signal variations as a function of sensor to workpiece spacing. By sweeping the sensor across the seam, 256 depth meas-

urements are taken and a contour of the seam can be reconstructed since a reduction in signal occurs when the light passes over the seam.

Fig. 6.1 shows the configuration of the developed sensor. This design used an infra-red light emitting diode as the transmitter and an infra-red detector as the receiver. The infra-red light is pulsed at 1KHz to provide a synchronisation signal to the sensor processor and also to reduce noise pick up from the welding arc. The strength of this light is inversely proportional to the distance travelled as it hits the workpiece and is reflected to the receiver. The received signal amplitude which contains the information of the seam is then converted into a digital form for data processing.

The centre of the seam is determined by the interpretations of the sensed pattern obtained from the 256 data samples. If the sensor is attached onto the torch in such a way that, the torch is originally pointed at the centre of the seam, then the calculated centre value should occur in the middle of a sweep.

However, if the seam is distorted or the torch strays away from the seam during welding, the sensed pattern will be shifted in position and the centre value will occur off the centre of a sweep. In this case, the seam tracker will signal the robot controller and provide error calculations for correcting seam position offsets.

The rate of the sweeping motion of the sensor is controlled by a stepping motor and the initial position of the sensor relative to the seam position is detected using a slotted opto-switch.

6.3 HARDWARE

Hardware development of the infra-red seam tracker consists of six sections as shown in fig.6.1. It was designed as a target system, which contains its own processor for operation control and data analysis, and can be directly interfaced to the robot controller. The overall design was based upon the requirement of keeping the system cost as low as possible.

6.3.1 SENSING MECHANISM

The sensory head was designed to be compact and easy to attach to the robot torch. The main components of the sensor consisted of an infra-red LED (RS 306-077) and an infra-red detector (RS 306-083). Fig.6.2 shows the configuration of the sensor mechanism. The infra-red LED and detector were mounted closed to each other, so that the receiver was 20mm above the electrode tip and 10mm away from the torch, and the transmitter was fixed at an angle of 6° from the receiver and pointing to the surface directly below the receiver. A fibre optic glass of 5mm in diameter and 50mm long was mounted on the receiver, in order to ensure the capture of data when exposed to the intense heat during welding.

It is obvious that the signal amplitude of the receiver which receives the reflected infra-red light spot from the surface indicates the distance from the workpiece to the sensor. To extend this scheme to determine the profile of a seam, the sensor was swept across the seam by a stepping motor which was mounted on the top of the torch. The stepping motor does not make complete revolutions, but performs a to and fro sweeping motion over an angle of $\pm 14^{\circ}$. The sensor was placed at a radius of 20mm away from the axis of the motor shaft. If the motor turned at $\pm 14^{\circ}$ about the centre of the seam then the sensor scribes an arc of length 10mm across the seam. For each sweep, some 256 depth measurements were taken and a surface profile was obtained. The reference position of the seam was calculated based on the initial position of the sensor relative to the seam. The initial position of the sensor was determined using a slotted opto-switch (RS 306-061). This switch comprises an infra-red emitting LED and integrated photodetector housed in a slotted moulding. The photodetector responds to the infra-red beam being broken as an object passes through the slot. The switch was mounted in such a way, that the beam would be broken when the sensor made the first sweep across the seam. This initialised the sweep controller. Thereafter the number of stepper motor pulses are counted until a preset value is reached. Then the counter is re-initialised and the motor direction reversed. Thus the sensor makes continuous sweeps, back and forth across the seam.

6.3.2 SWEEP MOTION CONTROLLER

The sweep motion controller was designed using a SIGMA 20-2220D200-E003 stepping motor [6], a DIGIPLAN 1054 stepping motor drive [29], and an INTEL 8253 programmable counter [30].

The stepping motor used is a two-phase motor with permanent magnet rotors. It moves through discrete angular steps with resolution of 1.8° in response to voltage pulses applied to the motor drive.

The stepping motor drive from DIGIPLAN is based on the design using a bipolar, bilevel bridge with current regulation. The bipolar system gives the high torque per watt from the motor since all the windings are fully utilised, i.e., current is always flowing in one direction or the other in each winding. The use of bilevel switching is largely responsible

for the high overall efficiency and there is an absence of the audible noise associated with chopper regulated drives at stand still. The drive uses both high and low voltage power supplies, the high voltage supply being used to overcome winding inductance and ensure a rapid build-up of motor current. When the current reaches the required level the high voltage supply is switched off and the low voltage supply takes over, minimising the drive current losses. The motor drive is controlled by an INTEL 8253 programmable counter together with two opto-isolators (RS307-963) which supply the required interface signals to the Motor Clock In and the Motor Direction inputs of the stepping motor (fig.6.3). The Motor Clock In responds to a low-going transition which causes the motor to advance one step. This input should remain at logic 0 for not less than $5\mu s$ and not more than 30us and another low-going pulse should not occur within 50us. The direction of the motor rotation is dependent upon the logic level at the Motor Direction input. The inputs have built-in pull-up resistors greater than $4k\Omega$ and 12V for logic 1.

The 8253 consists of three counters and a control word register. Each counter is a 16-bit with a count rate up to 2.6MHz. The counters are fully independent and each can have separate mode configuration and counting operation. The complete functional definition of the 8253 is programmed by the system software. The counter input and output are configured by the selection of modes stored in the control word register. There are six modes which can be selected for operation as follows:

MODE DEFINITION

- 0 Interrupt on Terminal count.
- 1 Programmable One-Shot.
- 2 Kate Generator.

3 Square Wave Rate Generator.

4 Software Triggered Strobe.

5 Hardware Triggered Strobe.

For controlling the speed and direction of the sweep motion, only mode 2 and 3 were used. Both modes are based on the principle of generating accurate time delays.

The Rate Generator is a divide by N counter which generates a series of pulses. The output period equals the number of input counts in the count word register. The counter starts counting when the gate input is set high, and disables counting when the gate goes low (fig.6.4). This mode is used for controlling the sweep speed by programming the input counts together with the synchronisation of the gate input to produce the required frequency signal.

Operation of the Square Wave Rate Generator is similar to the Rate Generator except that the output remains high until one half the count has been completed and goes low for the other half of the count. This is accomplished by inputting even numbers for the count. If the count is odd, the output will be high for (N+1)/2 counts and low for (N-1)/2 counts. This mode is used for setting the sweep length in both to and fro directions of sweep motion.

Since the 8253 operates with a 5V power supply whilst the stepping motor drive required 12V for the logic 1, an interface circuit is needed. This is achieved by using an open-collector transistor type of opto-isolator, which not only supplies the required interface signals but also isolates the stepping motor drive from the processor board.

6.3.3 TRANSMITTER CIRCUIT

The transmitter was constructed using few components as shown in fig.6.5. The 555 timer forms the basis of a pulse generator which supplies transmitting signals to the infra-red LED. It operates in a form of a monostable with adjustable frequency circuits.

A pulse is generated by first charging the timing capacitor C2 to two-thirds of the supply potential via both R2 and VR2, and during this time the output goes high. C2 is then discharged rapidly and drives the output to its low state. When the voltage on C2 falls to one-third of the supply voltage, the circuit remains in this state until the set time elapsed. The time that the output is in the high state is known as pulse width and given by [31]:

$$t = 1.1 (R2 + VR2) C2$$
 (6.1)

where both R2 and VR2 are in the unit of Ω and C2 in F, thus t is in sec.

The frequency of the output pulses is defined from the adjustable frequency circuit. When the circuit is switched on, C1 charges until TR1 begins to turn off, cutting off TR2 and discharging C1 through R1 and VR1 until TR1 is turn on and cycle repeats. The output of TR2 charges from high to low and triggers the 555 to initiate a monostable timing. The pulse repetition frequency is determined by:

$$T = (R1 + VR1) C1$$
 (6.2)

Both pulse width and frequency can be controlled by choice of values for C2, R2, C1 and R1, and by adjusting VR2 and VR1. Taking (R1 + VR1)

about hundred times higher in value than (R2 + VR2) the required output waveform with a mark and space ratio of about 1 to 100 is obtained. The transmitter operates at a frequency of about 1kHz. The pulses pass via a current amplifier, which consists of TR3 and TR4, and transmit through the infra-red LED. As well as generating pulses for the LED the transmitter also extracts trigger signals for the receiver.

6.3.4 RECEIVER CIRCUIT

Fig.6.6 shows the receiver circuitry. The infra-red detector responds to the reflected radiation from the infra-red LED. The pulses of infra-red energy from the transmitter therefore cause small pulses of current to flow through the infra-red detector and the $1K\Omega$ resistor, generating small voltage variations.

The signal generated from the detector is inputted to an adjustable amplifier (Differential a.c. Amplifier 9454) which provides signal filtering and voltage amplification. The amplifier is used to calibrate the received signal levels for sensor position settings. Output from the amplifier is then fed to an RS3300 fast ADC (analogue to digital converter) for data processing.

The 3300 is a high speed 'flash' 6-bit device with an operating frequency up to 15MHz. The conversion is performed in a parallel manner by 64 auto-balanced comparators with resistor ladder networks. An internal voltage reference is featured and the outputs are via tri-state latched buffers. The operating sequence consists of the 'Auto Balance' phase ϕ 1 and the 'sample unknown' phase ϕ 2 (fig.6.7). Each conversion takes one clock cycle. With the phase control low, the 'Auto Balance' phase ϕ 1 occurs during the high period of the clock cycle.

The 3300 can be operated in the continuous clock mode or the pulse mode. The former is used for continuous sampling and the later for sampling taking place only during the pulse period which applied to the converter. As the received signal is a series of pulses the 3300 is set to operate in a pulse mode. The method is to keep the converter in the ϕ 1 phase during the standby state. A conversion is initiated by strobing the clock input with two ϕ 2 pulses. The analogue value captured in the comparator latches on the trailing edge of the first ϕ 2 pulse. Data is then transferred into the output registers on the leading edge of the second ϕ 2 pulse. Both the conversion rate and the repetition rate depend on the input clock to the 3300.

The conversion rate is derived from a 74S124 clock generator which gives 1 μ s clock period for ϕ 2 pulses. To ensure conversion occurs during the trigger pulse, a divided-by-8 counter is constructed using a 74LS393. The counter is enabled by the trigger pulse. The counter output is the result of dividing the clock signal by eight and it is then ANDed with the clock signal forming an input clock for the 3300. In such a way the conversion takes place around the centre of each trigger pulse.

6.3.5 SENSOR PROCESSOR

The task of analysing and interpreting the received signals was performed by the processing unit. This unit consists of two parts, one for the capture and analysis of data and also communication with the controller for deviation corrections, and the other for the control of the speed and direction of the sensor sweep motion. Both parts are based on the lntel 8085 microprocessor which contains the essential memory and communication facilities. One of the reasons for choosing the lntel

113

processor was due to the support facilities, such as the development systems, debugging systems and etc., which were already available in the research group.

Fig.6.8 shows the circuitry of a microprocessor system. The 8085 is an 8-bit parallel CPU (Central Processing Unit). It has a multiplexed address and data bus. The memory section consists of two 1420s and two 2764s giving 4K byte of RAM (Random-access Memory) and up to 8K byte of EPROM (Erasable Programmable Read-Only Memory). An Intel 8155 provides 22 lines of I/O comprising two 8-bit ports (A and B) and one 6-bit port (C). Each port can be programmed as input or output. An 8251A USART generates an RST 5.5 interrupt to the CPU upon receiving a full character. The remaining circuitry has an address decoder (74LS138), an address latch (74LS373), a frequency divider (consisting of a 74LS90 and two 74LS393s), and a wait state generator (74LS74). Bus expansion is also available via five buffers (two 8216s and three 74LS244s).

The system uses the lower 32K byte address space of the 8085 and leaves the upper 32K byte for expansion. The lower half of the address bus is demultiplexed by latching the address on the trailing edge of ALE with the 74LS373. The latch outputs together with the CPU lines A8-A15 provide the required memory address signals. IO/M/ is only used by the 8155 and all other devices are memory mapped. RD/ and WR/ are pulled high by 4.7K Ω pull-up resistors to prevent spurious memory accesses during the CPU reset cycle when these lines go into tri-state. When addresses in the upper 32K are accessed, the output from the wait state generator is enabled by A15. This output pulls the CPU READY line low for one state. Direction of transfer for the bi-directional buffers is set by A15 and RD/.

Two microprocessor boards were built for the experiment. The receiver circuit and an RS-232C communication port (as describe in the following section) were interfaced to one of these boards to perform data capture, data analysis and communications to the robot controller, whilst the other board was modified by the addition of a sweep motion control circuit to provide control signals to the stepping motor drive. The second board provided a large space for further expansion if required. Both boards communicate to each other in order to perform the task.

6.3.6 COMMUNICATION LINK

Communications between the seam tracker and the robot controller is carried out via an RS-232C serial link, which is the EIA (Electronics Industry Association) standard which covers the electrical specifications for bit-serial transmission. The standard uses nominal $\pm 12V$ pulses to effect information transfer. The main signal lines are TxD (transmit data) and RxD (receive data), RTS/ (request to send), and CTS/ (clear to send). These lines are used to provide handshaking and information transfer between the two systems. The baud rate is set to 4800 with full duplex transmission.

After data capture and analysis, if correction is required, the seam tracker sends a deviation value in a single byte to the robot controller. Communications to the robot controller is driven by software which is written for the 8251A USART (fig.6.9). It serves as the interface between the parallel data processing CPU and the RS-232C serial link.

The USART has five internal registers: receive data, transmit data, mode, status, and control. Upon reset, the first byte sent to the USART as control sets the MODE. The next byte sent as control is latched in as CONTROL. The MODE determines whether the USART is to be used in synchronous, or asynchronous, mode. The CONTROL indicates the word length and other transmit parameters.

Although the 8251A supports basic data transfer, it does not provide the voltage levels required by RS-232C since it is TTL compatible. To accomplish the interface between TTL and RS-232C special line drivers and receivers are needed. This is achieved by using the CMOS 1488 for TTL to RS-232C line driver and the CMOS 1489 for the RS-232C to TTL line receiver.

An asynchronous transmission format is used, in which numbers (or characters) are send one at a time without necessarily having any fixed time relationship between one number and the next. When the USART wishes to send a number, it precedes the number with a start bit by switching the state of the line from the high (idle) condition to the low (active) condition for one bit time. The data bits are sent out following the start bit. After the data has been transmitted a parity bit may be added before one or more stop bits. The purpose of using a start bit is to allow the robot controller to identify the first bit of each number. The parity bit is used for error detection by making the number of '1' bits even or odd. After the byte is read, a new parity is generated by the controller. If the regenerated parity bit does not match the recorded parity bit, there is an error of at least one bit. The stop bits provide a well defined time for the controller to get ready for the next number. When no information is being transmitted, it is conventional to leave the line in the idle state.

6.4 SOFTWARE

The performance of the system control depends on software support. This is accomplished by:

- controlling the sensor sweep length in order to obtain sufficient data.
- (2) capturing data.
- (3) analysing the data and deducing the seam position.
- (4) guiding the robot for seam tracking.

The language used is the Intel 8085 assembler and details of software listing is shown in Appendix III.

6.4.1 SENSOR SWEEP CONTROL

Upon power on, the sensor sweep control board waits for a ready signal from the data processing board which detects the starting signal from the robot controller. It is then initialised by setting up the I/O section of the 8155 as follows:

PORT I/O DESCRIPTION

A OUTPUT Provide motor control signals.

B INPUT Reserved for data transfer from data processing board.

C INPUT Detect synchronisation signal from data processing board.

The sensor sweep motion is controlled by counter 0 and 1 of the 8253, initially these counters are disabled to ensure the stepping motor is stationary. Before starting the motor, the position of the sensor relative to the seam needs to be found. This is done by programming counter 0 in mode 2 operation, so that the speed of the stepping motor is set up, and the sensor moves in one direction only until the slotted opto-switch is enabled, then a synchronisation signal is obtained to start the main program.

During operation the speed of sweep motion is determined by counter 0 in mode 2 operation, and the sweep length is controlled by counter 1 in mode 3 operation. All control words are sent to the control word register of the 8253 via Port A. Counter 0 is driven by a 4.8KHz clock and a number of 1024 counts is set for mode 2. A slower clock of 150Hz is used for counter 1 and a number of 2756 counts is set for mode 3.

For experimental purposes this sweep length is set to scan weld joints from a closed gap to 6mm gap. However, the sweep length can be varied with respect to the variation of the weld gap. If the weld gap is small, then the sweep length together with the number of sampling data can be reduced, and this could effectively increase the sensor sweeping rate.

6.4.2 DATA CAPTURE

Before capturing data there is an initialisation procedure. The I/O section of the data capture board is defined as follows:

PORT	I/0	DESCRIPTION
Α	INPUT	Receive data from ADC.
В	OUTPUT	Send ready signal to the sensor sweep control board
		and deviation commands to the robot controller.
С	INPUT	Detect synchronisation signal from the slotted
		opto-switch and the change of direction from the
		sensor sweep control board.

After initialisation, a ready signal is sent to the sensor sweep control board for starting operations. When the synchronisation signal is detected from the slotted opto-switch, a synchronisation signal is sent to enable the direction of the sensor sweep. The processor waits until the sensor moves to one extreme position by detecting the transition from low to high of the motor's direction control line, and then starts capturing data based upon the ADC's trigger signal which denotes the start of data conversion. The captured data are stored in a 256 byte data table which is set for later data analysis.

Prior to starting seam tracking, a reference value which corresponds to the centre of a seam is needed, and this is taken from two initialisation sweeps across the seam.

6.4.3 DATA ANALYSIS

Data captured from the sensor contains various noise as well as information which represents the weld seam. In order to interpret the data correctly, data analysis is required which discriminates the weld seam signal from the unwanted noise, and hence find the centre of the seam for effective seam tracking. If the seam is a V-prep, the analysing procedures are as follows (fig.6.10):

- All the data stored in the data table is summed up and divided by the number of samples. This gives the average value of the infra-red light intensity over a complete sweep.
- (2) A threshold level for reducing noise distortion is taken as three quarters of the average value.
- (3) Transition points of the sensed pattern to the threshold level are then obtained by comparing each stored data and the threshold value. These transition points are used for determining the position of a seam. No transition points means no seam has been detected.
- (4) If there are more than two transition points, which means possibly more than one groove pattern is obtained, a method to deal with this problem is to compare each minimum value and groove width to extract the most probable groove and delete the others, thus forming a single seam pattern.
- (5) Using the single seam pattern, a desired central point of the seam is regarded as the mid-point between the two transition points.

After data capture noise reduction is carried out by using the following expression:

$$t_{h} = \frac{3}{4n} \sum_{i=0}^{i=256} d_{c}$$
(6.3)

where t_h is the threshold level, n is the number of samples and d_c is the captured data. This process provides the essential conditions for extracting the true weld seam from the sensed pattern.

By use of data analysis, the required weld seam can be detected correctly even if the received signals are disturbed by various sources of noise. This method is known as threshold and is also applicable to other weld joints such as butt-joints.

6.4.4 GUIDANCE OF WELDING ROBOT

The system described above is capable of measuring the position of a weld seam from a sensed pattern reflected from the seam. This capability has been integrated into a robot control algorithm so that the infra-red sensor can provide feedback to the robot controller to follow a weld seam. Real-time guidance of a welding robot consists of data processing to analyse the sensed pattern of the seam and locate its position, and the robot control algorithms that redirect the robot to follow the seam.

The robot control algorithms are available in the controller system. Parameters required from the seam tracker are the deviation value and the direction of deviation. This deviation value is obtained by comparing the reference centre value with the newly calculated centre value, and is stored in a single byte number in eight bits two's complement notation ranging from -128 to 127. Each number represents the amount of deviation from the centre of the seam and the sign represents the direction of deviation. In the two's complement representation, the negative of a number is the logical complement plus one. Normally, the most significant bit is used for the sign; that bit is zero if the number is positive and is one if the number is negative.

The robot used is capable of correcting position errors in the units of 0.1mm. If zero deviation is received, there would be no correction taking place by the robot. However, if it exceeds the limit of 0.1mm, the robot starts correction until the welding torch is on seam again.

The control operation of seam tracking is based on the communications between the seam tracker and the robot controller. When tracking is commenced, the seam tracker sends the deviation command to the robot controller. In the reverse direction the robot controller can send one of the following five values to the seam tracker. Each value represents the current state of the robot controller:

VALUE DESCRIPTION

- 01 Acknowledgement after processing the last deviation value.
- 02 Indicate the start of welding and seam tracking.
- 03 Indicate the end of welding.
- 04 Debug request to the robot controller and the seam tracker.
- 05 Reset system.

Normally the robot controller and the seam tracker control programs are "boot up" upon power on or reset. Once the systems are running, both the robot controller and the seam tracker cannot be accessed by the terminal. However, a DEBUG command on the host computer may cause a debug request to be issued to the robot controller which then sends the value 04 to the seam tracker. By checking if the value 04 has been received, the seam tracker can drop into it's operating system command line interpreter so that software can be debugged.

During operation the seam tracker waits for value 02 to commence tracking. If a deviation command has been sent out, the seam tracker should not send the next command until a value 01 is received, so as to

ensure the last deviation value has been processed. This continues to be the case until value 03 is received indicating the end of tracking.

6.5 EXPERIMENTS AND RESULTS

A series of experiments was conducted on both the scanning and tracking of a weld seam. Scanning included weld seam extraction and deviation measurements, whilst tracking was carried out on various types of weld seam samples. Results obtained from these experiments provide valuable references to explore the usefulness and limitations of the seam tracking system.

6.5.1 SEAM EXTRACTION

The first step in seam tracking process is to extract the weld seam location from each recorded scan. The weld seam geometry is described according to the seam shape by features such as cross-section area, gap width, and edge displacement, etc. To obtain this information, a series of static scanning tests were carried out corresponding to three types of weld joints, namely overlap, butt, and V-prep (fig.6.11). In each case, the test plates were arranged so that the sensor could scan across the seam with the same sweeping rate and the same number of capturing data. These results are shown in figs. 6.12, 6.13, and 6.14, where the whole range of the sweep displacement represents a single sweep for the sensor to move from one extreme to another, and the received signals correspond to the intensity variations in the reflected infra-red light.

Static scans on three sets of different thickness's of overlapping plates were carried out with the same sensor height, i.e. distance between

the sensor to the lower plate was set to be 12mm. Fig.6.12 (a), (b) and (c) are the results taken from these tests, and the shapes of the overlap joints are clearly extracted. Using any of these detected patterns, the position of a seam can be located as the transition point of the pattern to the average level of the received signals. With reference to these results, it is evident that the strength of infra-red light is inversely proportional to the distance it travelled as the upper plate reflected stronger light than the lower plate. However, some information was lost at the seam edges, due to the fact that, some of the light was reflected to the receiver and some scattered away when the sensor moved across the seam. The thicker the workpiece, the bigger the scattering effect at the seam edge. Although the sensed pattern can be affected by many terms, such as the weld joint dimensions and surface conditions, the principle method for seam tracking still applies.

More scattering effects can be seen in fig.6.13. These results were obtained by scanning across the gap between two similar plates with thickness of 6mm. These plates were arranged to give three different gap widths for individual tests. The closed gap butt joint shows the scattering effects on those rounded corners of the joint which forms a shallow seam. The perceived seam became wider as the gap was increased. To locate the centre of this type of joint, algorithms designed for the V-prep can be applied, since their sensed patterns are similar in shape.

Three pre-machined V-prep samples were used for static scanning. They differ only in sample thickness, and thus, provide different groove dimensions. Fig.6.14 shows the corresponding results. One aspect common to each set of results, is that the information corresponding to the centre position of each V shape groove is lost due to the scattering ef-

fects. However, the system had managed to capture sufficient data for the supporting software to extract the seam position.

6.5.2 SEAM DEVIATION DETECTION

Seam deviation detections were made on a V-prep sample using dynamic scans. The sample had a straight line seam of lmm wide. It was cut into a few sections, across the seam, so that they could be arranged to form the desired seam deviations as shown in fig.6.15 (a). The sensor mounted on the torch was programmed to follow a straight line path along the seam of one of the two sections. When the sensor reached the end of the first section, it continued to move in a straight line, but the seam of the remaining section was at a preset angle to the first. The sensor output then indicated deviations from the preprogrammed path.

Fig. 6.16 shows the results of two sets of deviation measurements. Each data sample from the graph represents a calculated centre value of the seam from a recorded scan. Both plots were based on 40 seam location values along 40mm distance within the seam deviation area. Plot (a) was obtained from a test run on a seam with 20° deviation. Plot (b) shows the results of a similar test but on a seam with 45° deviation.

It is obvious that the seam tracker is capable of extracting the seam from each scan and measuring the seam position, thus giving the correct deviation value to the robot controller for seam tracking.

6.5.3 SEAM TRACKING TRIALS

In any real welding processes, a weld seam path may be distorted causing deviation or off-line, due to the reasons of thermal expansion, mechanical vibrations, fixture tolerance, and system errors, etc. Seam deviation may happen suddenly or gradually building up. To simulate these situations and perform seam tracking, two sets of experiments were carried out using the same sample as described in section 6.5.2. One experiment was on the tests of a weld seam off-line tracking, whilst the other on the tracking of a seam with various corners. The first was to simulate a sudden deviation, and the latter was catered for the gradual change of weld seam path.

Fig.6.15 (b) shows the arrangement of a test sample. The sample consisted of two sections of straight line seam. A seam tracking test was first carried out by attaching the two sections with zero offset between the two seams. The torch together with the sensor was programmed to follow the seam path, and the results obtained are as shown in fig.6.17 (a). By varying the offset for the same test, (b), (c) and (d) were obtained. Each graph represents a plot of seam deviation against tracking distance. A total of 160mm tracking distance was recorded close to the area where deviation occurred. During seam tracking, each deviation value was calculated by comparing the newly detected centre value with the previous seam location. If any deviation occurred, the robot would direct the torch to the actual seam position and then take the latest seam location as a new reference for the next scan. This can clearly be seen from the graphs, which show that as the torch following the seam, deviations are small. When the torch reaches the offset point, a rapid change occurs and the magnitude of deviation is proportional to the distance of offset. After the torch is directed back on seam, deviation values become smaller.

Another experiment was carried out with the same tracking procedure. The sample used in this experiment consists of three sections of straight line seams. The three sections were arranged to form two different seam features as shown in fig.6.15 (c) and (d). Fig.6.18 (a) and (b) are the corresponding results. In case (a), the robot corrected the seam positions twice as the torch followed through the two corners. In case (b), significant deviations can be observed at the points where the seam turned away from its previous path, and the direction of deviation with respect to the centre of previous seam path is indicated by the plus and minus signs in the graph.

All these results confirm that the system is capable of performing seam tracking.

6.5.4 EFFECT OF INTERFERENCE DURING WELDING

As mentioned in Chapter 3 and 4, interference plays an important part in welding automation process. In addition to the suppression of transient interference from high frequency source, power supply, and other unwanted electrical noises, the radiation spectrum of a welding arc needs to be considered, particularly when an optical sensor is used. The radiation spectrum of the welding arc ranges from ultra-violet, through the visible range as far as the infra-red range (fig.6.19) [32]. Ultraviolet radiation shown in the spectrum is particularly strong. From the visible to the infra-red range less intense radiation is emitted from the arc. In order to obtain the best signals possible a waveband with as little radiation emission as possible in the spectrum should be selected · For this reason, the infra-red diodes of 940nm wavelength were used to minimise the effect of the welding arc and thus to ensure the efficiency of the sensor system. Furthermore, a suitable optical filter with narrow bandwidth might be used to reduce the interference of the arc, but the disadvantage in using optical filters is their relatively low transmissibility which would result in part of the reflected light energy

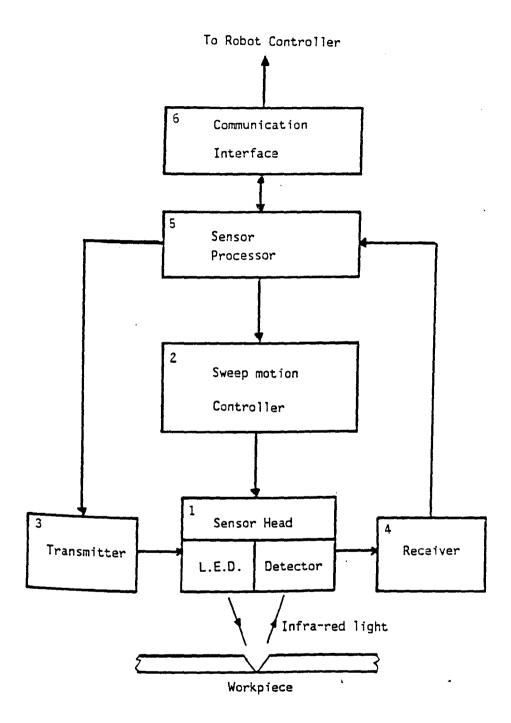
being absorbed by the filter and reducing the capabilities of the sensor. The possible way to overcome this problem is either by using infra-red laser diodes to raise the light strength, or by the use of electrical filters together with data processing techniques to replace the optical filter. The latter method was chosen because at that time laser diodes were comparatively expensive.

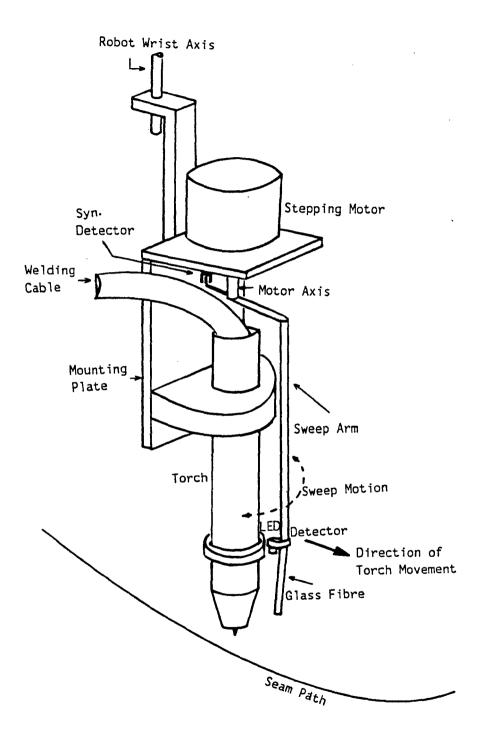
However, the developed sensor system was tested with and without welding, and both results indicated that the system is suitable for seam tracking. Limitations exist, such as the speed dependance and workpiece surface conditions.

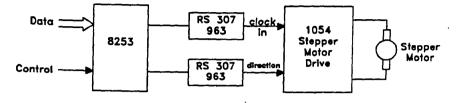
6.5.5 EFFECT OF TORCH SPEED

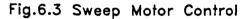
Various tests were carried out to analyse the effect of torch speeds on the system. Some of the results are shown in fig.6.20 (a) and (b). In each case, three different torch speeds were tested, and they were: lmm/sec, 5mm/sec, and 10mm/sec. Results shown in each figure were obtained from tests similar to that described in section 6.5.2, in which the samples have seam paths with a 20° and a 45° bends at the second sections, respectively. Seam deviations were measured with respect to the first section of the path. As the torch speed increases, the loss of information at the corner of the bend becomes more significant, which indicates a possible tracking failure at the portion where deviation occurs. In addition, as the torch speed increases, the amplitude of deviation increases as the sensor scans at the position further away from the corner. Beyond about 10mm/sec, it is likely that the second section of the seam could be out of the preset sweep range, and thus result in tracking failure. This may be overcome by increasing the sweep length, but this would slow

down the system further. Therefore, a compromise is required in setting up the range of the sensor sweep.


6.5.6 EFFECT OF SURFACE CONDITIONS


Another limitation of the system is its dependence on the workpiece surface conditions. Fig.6.21 shows the experimental results of surface scanning; (a) was obtained from a polished plate with a thick black line drawn at the centre, (b) from a plate with half section polished and the remaining half painted in black, and (c) from a rusty plate with half section being polished. It is clear that the sensed patterns are affected by the surface conditions of the workpiece being scanned. Workpieces are usually prepared by cleaning the weld join sections before welding, but in worst cases, dust may cover some part of a workpiece causing unfavourable reflective characteristics, or if two plates are to be joined together with one plate cleaner than the other, then the sensed pattern may be altered resulting in difficulty in finding the centre of the seam.


6.6 DISCUSSION


The infra-red seam tracker works on the principles of range finding and sweeping the sensor across the seam. Hardware development was based on low cost and compactness. Software design was mainly concentrated on data processing to provide a measure of seam deviations to the robot controller. Programs were written in Intel 8085 assembly language, providing high speed for real time control. The system is capable of locating the seam position from each scan and producing a deviation value relative to the previous seam position. It also has as an available output, an RS-232C interface, thereby providing simple means for transmitting seam deviation and direction of deviation to any robot controller which can accept real time information via this interface.

Seam tracking can be performed by either two-pass or single-pass methods. Experimental results provided evidence of the sensing abilities. Although the seam tracking system is affected by high speed operations, it is generally acceptable as normal welding speeds are relatively slow in comparison with the speed limit of the system. The main disadvantage, probably, is the dependence of workpiece surface cleanness which requires more control of workpiece preparation and constantly monitoring of the working environment. Nevertheless, the infra-red seam tracker provides a solution for general seam tracking to ensure weld quality with low cost. Fig.6.22 shows the seam tracker in action for TIG welding.

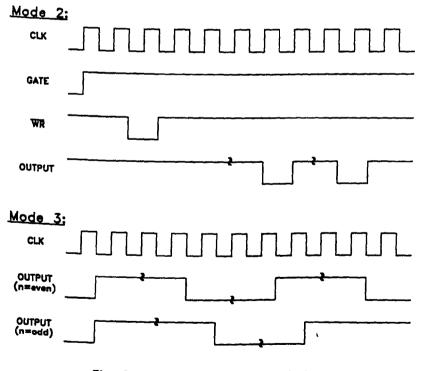


Fig 6.4 Operation Modes of 8253

133

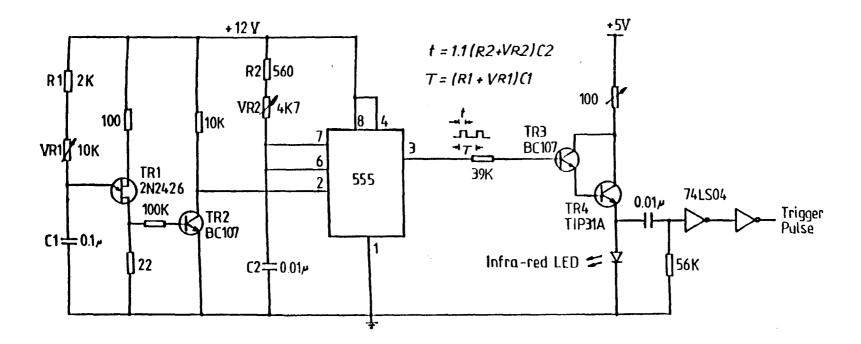
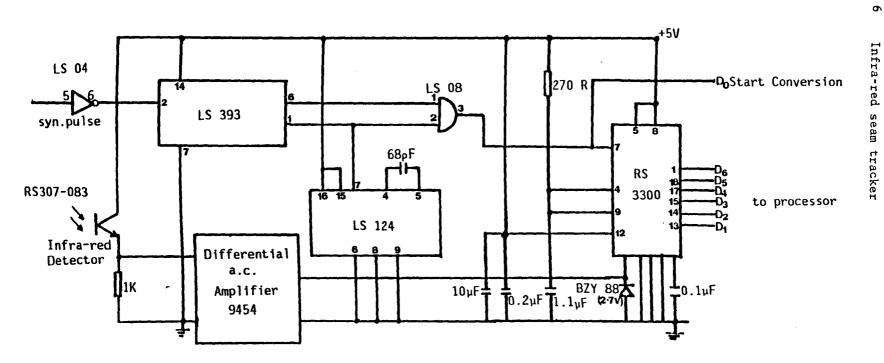
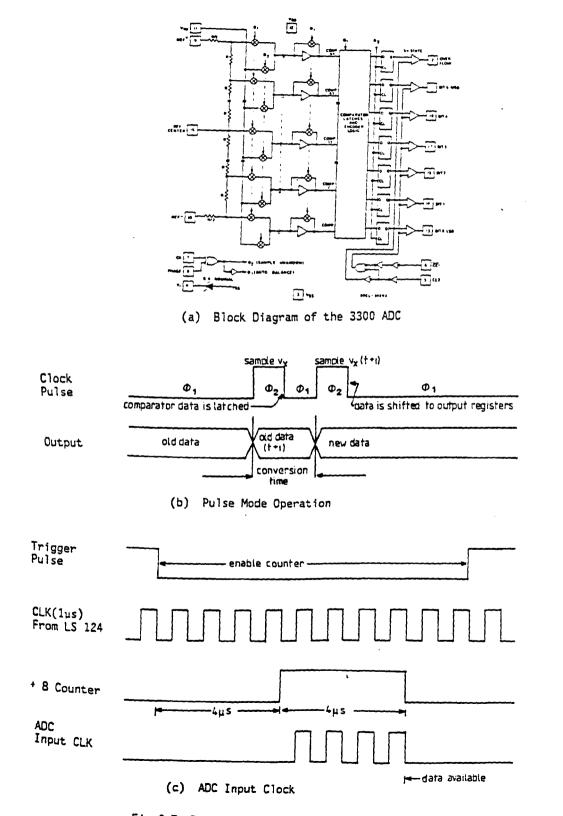
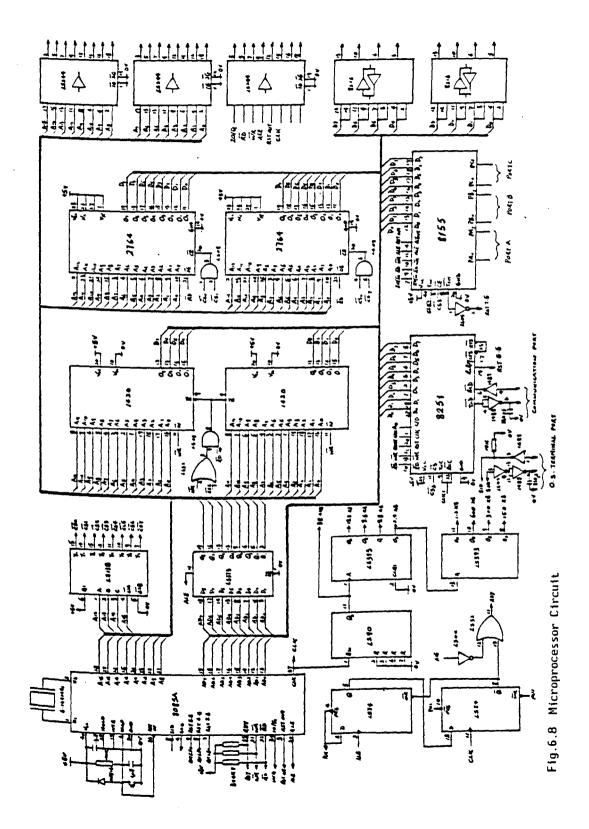
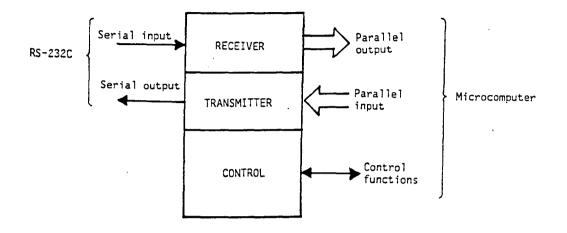
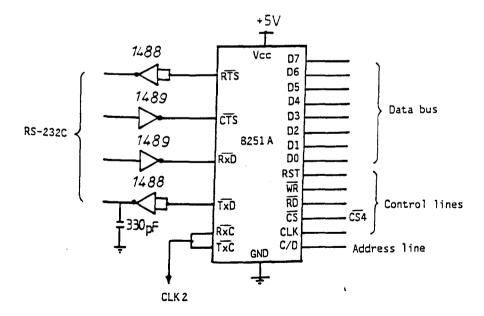




Fig.6.5 Infra-red Transmitter Circuit


.



Chap.



(a) Block Diagram of the USART

(b) Interface Circuit

Fig.6.9 Communication Interface

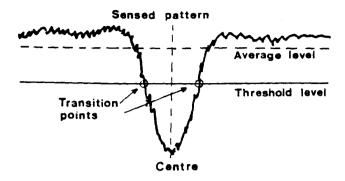
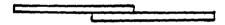



Fig.6.10 Algorithm Representation

Overlap joint

Butt joint

V-prep joint

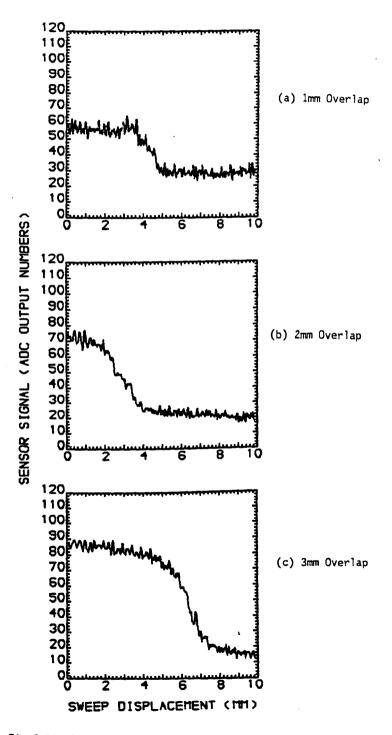


Fig.6.12 Static Scans Over Overlapping Plates

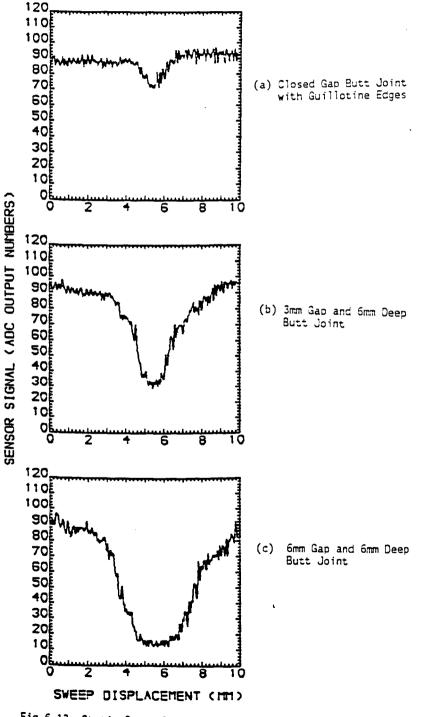


Fig.6.13 Static Scans Over Butt Joints

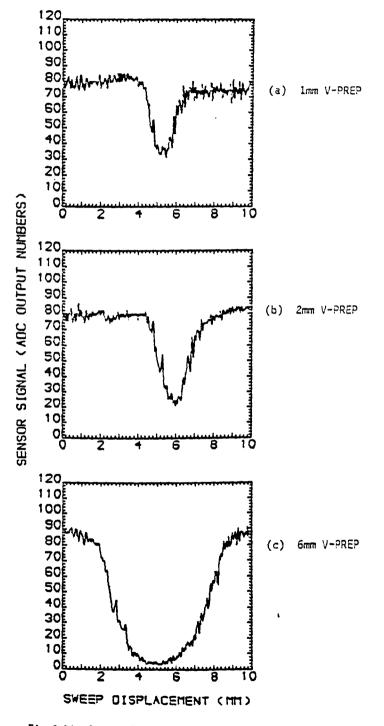
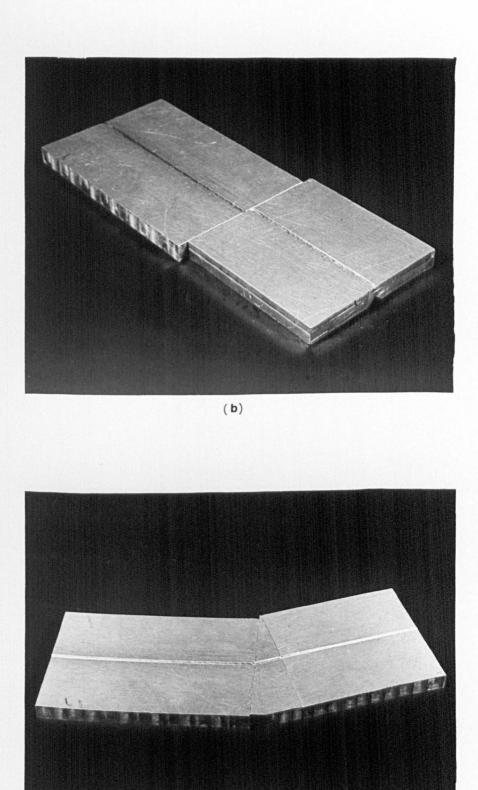
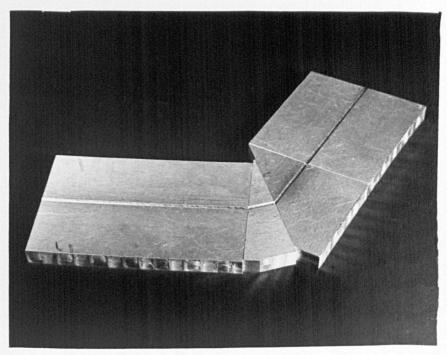
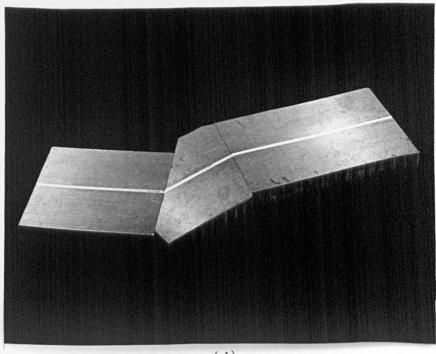
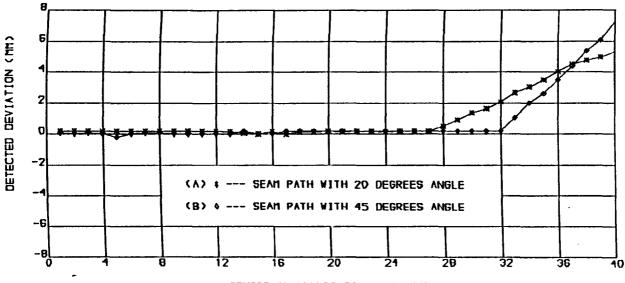




Fig.6.14 Static Scans Over V-PREPs



(a)

Fig. 6.15 Seam Deviation Arrangements


(c)

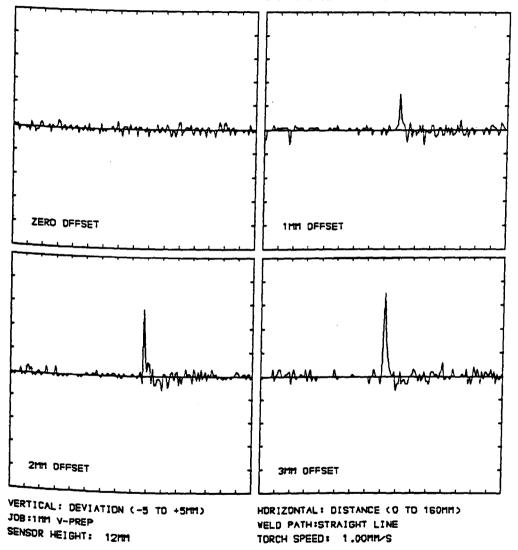
(d)

Fig.6.15 Seam Deviation Arrangements

GRAPH OF DETECTED DEVIATION AGAINST SENSOR TRAVELLED DISTANCE

SENSOR TRAVELLED DISTANCE (MM)

TYPE OF WORK: 1MM THICK V-PREP

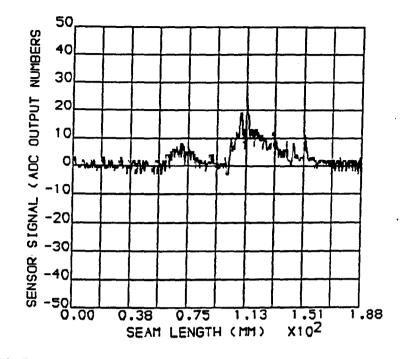

SENSOR HEIGHT: 12HH

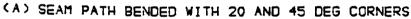
NUMBER OF DEVIATION VALUES: 40

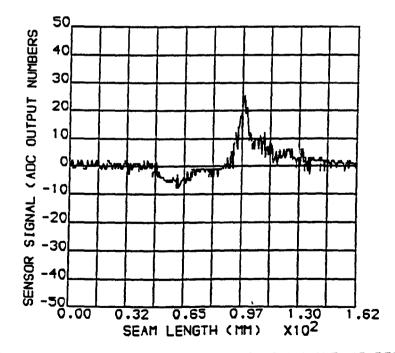
TORCH SPEED:

1.0000/5

145




DEVIATION SIGNALS DURING SEAM TRACKING


Fig.6.17 Sensor Signals During Tracking of Offset Seam Paths

· · ...

4

(B) SEAM PATH BENDED WITH 20 DEG DOWN AND 45 DEG UP

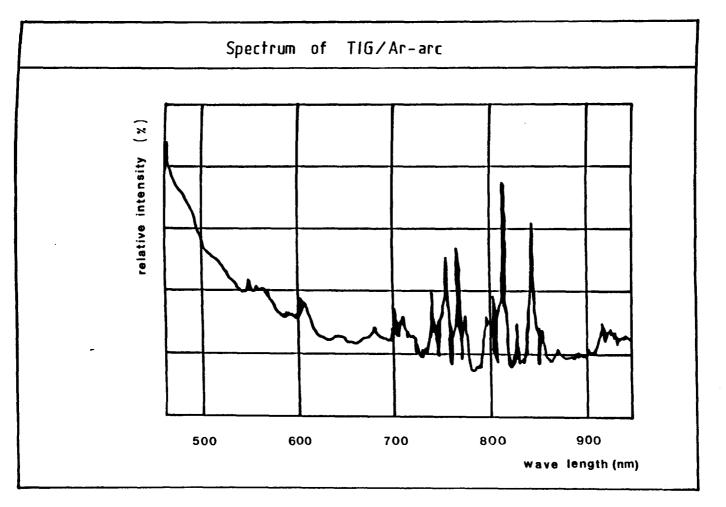
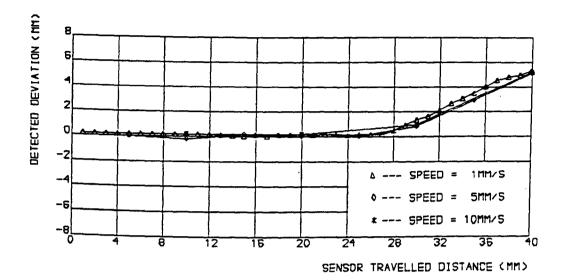
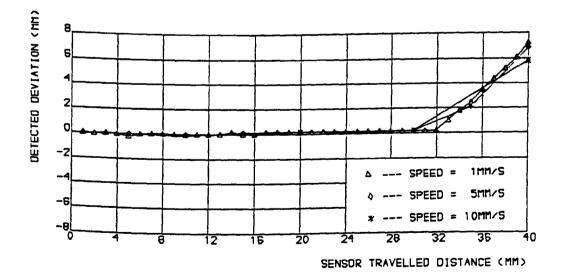




Fig.6.19 Radiation Spectrum of TIG Welding Arc

(A) 1MM THICK V-PREP WITH 20 DEGREES CORNER PATH

(B) 1MM THICK V-PREP WITH 45 DEGREES CORNER PATH

FIG. 6.20 DEVIATION DETECTIONS AT VARIOUS SPEEDS

Fig.6.21 Surface Scan Tests

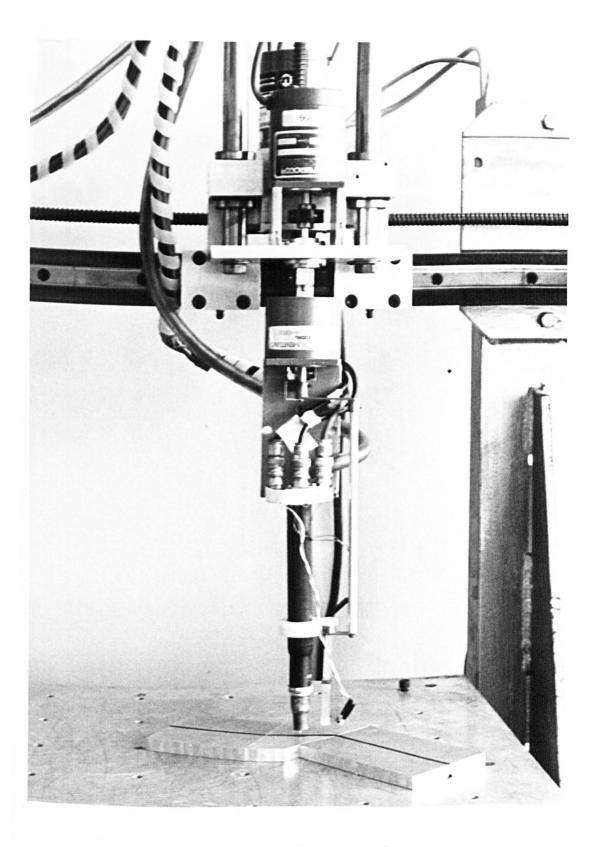


Fig.6.22 The Infra-red Seam Tracker

CHAPTER 7 ULTRASONIC SEAM TRACKER

7.1 INTRODUCTION

One important aspect of any automated high quality welding system is the provision of on-line sensor for seam tracking to ensure weld quality. As this is one of the major objectives of the research project, investigations were carried out on the design of seam tracking systems. The seam trackers considered are in the group of preview sensors. Based on different physical principles, one common factor is that the information is gathered just ahead of the weld pool. They do not rely on the welding process to generate feedback signals to the robot controller as in the case of through-the-arc sensing. They are relatively low cost and compete with the popular, but expensive vision seam tracking systems.

The previous chapter described the development of an infra-red seam tracker and analysed its sensing abilities. This chapter will present another approach in designing a seam tracker using ultrasonic transducers.

The intention was to develop a system which could overcome the problems encountered in the infra-red seam tracker. The infra-red seam tracker is based on analysing the intensity variations of the received light when reflected from the workpiece being scanned. The method is very much dependant on the workpiece surface conditions for maintaining consistent reflective characteristics. The ultrasonic seam tracker, however, works on the principle of measuring the phase difference between the transmitted signal and the received signal. Because ultrasonic waves are pressure waves which are less sensitive to the workpiece cleanliness, they can be used for displacement measurements. The operations of the ultrasonic seam tracker are similar to that used for the infra-red seam

tracker. By sweeping the transmitter and receiver pair across the seam, the phase difference and hence the path difference between the transmitted and the received signals can be measured. Both seam tracking systems were designed to meet the requirement of sensing thin plates, particularly in the range of thickness from 0.8 to 3.3mm.

7.2 DESIGN CONSIDERATIONS

This work was initiated to explore the feasibility of ultrasonic sensing for seam tracking of thin workpieces. The requirements were similar to the infra-red seam tracker which provided remote sensing abilities with relatively low cost. Ultrasonic sensing, ranging in frequency from about 18KHz to the megahertz region, has been widely used in industry and most of the developments, which has been concerned with non-destructive testing, use high frequency transducers with contact sensing methods. For remote sensing, it is often advantageous to use the lower range of ultrasonic frequencies to reduce absorption effects [33 - 34] and provide directional sensing through air. Ultrasonic sensing has characteristics that make it advantageous in some situations when compared with infra-red sensing. For the detection of the mechanical shape of a weld seam it is necessary to use a means that interacts with the mechanical outline. Both the infra-red and ultrasonic sensing methods use this principle, however, the infra-red sensing may sometimes be confused by irrelevant changes in surface properties such as grease or dirt on the workpiece. For high resolution it is preferable to use ultrasonics.

Ultrasonic sensing techniques are often employed for the measurement of object displacement [35]. The concept of measurement is based on the determination of echo signals from the object. Most of the progress

153

in this field has been in the area of transit time and signal attenuation measurements rather than phase measurement. Preliminary tests were carried out on the possible suitability of transit time, signal attenuation, and continuous phase comparison methods using 40KHz ultrasonic transducers. The results of such tests were used to decide the most likely solution to the problem of seam tracking.

7.2.1 TRANSIT TIME METHOD

The principle of the transit time method is simply to place the transmitter and receiver transducers together to form a sensor, and measure the time elapsing from the moment the ultrasonic pulse is transmitted to the moment the echo is received. The total time taken to travel from the transmitter to the workpiece and back to the receiver is obviously twice the time taken between the sensor and the workpiece. As the velocity of sound is known and the time taken is a linear function of the distance, the distance between the sensor and the workpiece can be calculated by

$$x = c t/2$$
 (7.1)

where x is the distance, c is the velocity of sound and t is the total time taken. With this method, the accuracy of distance measurements rely mainly on the accuracy of time measurement, which depends on what sensor frequency is used for the required sensing resolution.

When a voltage pulse is applied to the electrodes of the transmitting transducer, the transducer vibrates with an amplitude which gradually increases until a steady value is reached. At the instant when the pulse is removed, the oscillations of the transducer do not cease immediately but decreases in amplitude to zero in an exponential manner. Fig.7.1(a) shows the form of oscillations of the transmitting and receiving transducers and fig.7.1(b) gives the block diagram of the experimental set up.

The received signal shows that, once activated by a voltage pulse, the oscillations in a transducer build up gradually to a steady state, reaching their maximum amplitude after a finite period of time, and then trail off at the end of pulse. It was found that, if the applied pulsing time was too short, the vibrations of the transducer did not have enough time to reach their maximum possible amplitude, the wave amplitude in air could not reach its steady values and this introduced jittering effects due to the pulse shape building up and trailing off. Thus, for maximum detectability the applied pulse should be wide enough to obtain steady maximum amplitudes of the oscillations. As the transducers chosen have an operating frequency of 40KHz, the pulse applied should be a multiple factor of 1/40K seconds (= 25µsec) in order to obtain accurate results. This means that the method is useful only for sensing resolutions above centimetres and because a wave travels 1cm in 30µsec not suitable for detecting weld seams formed by plates of 1 or 2mm thick.

7.2.2 SIGNAL ATTENUATION METHOD

Another test was carried out with the signal attenuation measurement. Similar to the transit time method, a pulse of ultrasonic waves was emitted by a transducer, travelled in air and was reflected from the surface of the workpiece. The echo came back to the receiver and its level was measured. Measurements were made using a boxcar detector [36]. The boxcar detector is basically a sample-and-hold system whose time of sam-

pling is determined by a reference pulse which is related to the signal of interest. It arranges the timing and duration of the sampling 'window' such that it looks at the signal. Thus, only the signal and the noise occurring within the window contribute to the output. The noise, however, is reduced by the low-pass filter at the output (fig.7.2a). The output is a d.c. voltage proportional to the mean signal pulse amplitude and can be applied directly to the X-Y recorder. The boxcar detector comprises two instruments, the 9415 linear gate and the 9425 scan delay generator. The linear gate provides the sample and hold, and averaging functions and the scan delay generator provides the gating pulse of suitable width, position etc. to open the gate at the correct time. In this test the amplitudes of the signal received at various distance from the reflecting surface were measured and the amplitude variation depicted in fig.7.2b was obtained. It can be seen that neighbouring maxima and neighbouring minima are one half-wavelength apart and that the distance between a maximum and its neighbouring minimum is a quarter-wavelength. It is obvious that the received signal amplitude depends both on distance travelled and the phase angle of the ultrasonic wave. Using $40 {
m KHz}$ as the operating frequency, this method is limited in the measuring range up to only 2mm in displacement, which is considered to be too small for the application.

7.2.3 PHASE COMPARISON METHOD

The last test was carried out by the phase comparison method. A signal of 40KHz was fed from a continuous sinusoidal wave oscillator to the transmitting transducer and, at the same time, to a phase meter in order to provide a reference for phase comparison. The ultrasonic vi-

brations generated by the transmitter travelled towards a flat metal plate and were reflected back to the receiving transducer. The vibrations were then changed into electrical signals. These latter signals were fed to the other channel of the phase meter. By comparing the two signals, a phase difference was obtained. As the transducers were moved away from or towards the metal surface, the phase between the transmitter and the receiver signals changed accordingly. If the transmitted signal is defined as $f_t(t)$ and the received signal as $f_r(t)$, the phase of $f_r(t)$ lags behind the phase of $f_t(t)$ because of the finite time of travel of the ultrasonic waves through the air. This can be shown as follows:

$$f_{t}(t) = a_{1} \sin \omega t \qquad (7.2)$$

$$f_{r}(t) = a_{2} \sin \omega (t - 2x/c)$$

$$= a_{2} \sin (\omega t - \phi) \qquad (7.3)$$

where a_1 and a_2 are the respective amplitudes, ω is the angular velocity, t is the time, x is the distance between the sensor and the metal surface, c is the velocity of sound, and ϕ is the phase difference. Taking λ as the wavelength, then

$$\phi = \omega \frac{2x}{c} = \frac{4\pi x}{\lambda}$$
(7.4)

Clearly, the phase between the transmitted and the received signals is a measure of path covered by ultrasonic waves and, consequently, of the reflecting surface distance. The wavelength of about 8mm used corresponds to 360° phase difference which provides a measuring range for about 4mm from the reflecting surface displacement. This phase difference method doubles the measurement range when compared with the resolution of the boxcar detector and is within the range for seam tracking of 0.7 - 3.3mm thick plates. Therefore, it was decided to concentrate effort on the method of phase measurement for the development of the ultrasonic seam tracker.

7.2.4 PRINCIPLES OF ULTRASONIC SENSING

The ultrasonic sensor operates using the principle of obtaining dimensional information of a seam by sweeping the sensor across the seam. Fig.7.3 shows the arrangement for the actual operation of the sensor. Both the transmitting and receiving transducers were housed in a mechanised sensor head. The sensor head was mounted on an axle which was connected to the d.c. motor by means of an extension arm. The sweep motion is driven by the d.c. motor and the sweep distance is controlled by a slotted opto-switch which was placed on the top of the d.c. motor. As the sensor scans across the seam, 100 phase difference measurements between the transmitter and the receiver are recorded, and each phase value is converted into a count number. By interpreting these numbers a seam profile can be reconstructed, from which the centre of a seam can be determined. During operation, each scan produces a value representing the centre of the seam and each centre value is taken as a reference of the seam position for the next scan. The difference between a reference and a currently detected centre value gives a deviation error which is then sent to the robot controller for positioning correction. This continues to be the case as the sensor moves along the seam.

7.3 HARDWARE

A block diagram (fig.7.4) shows the hardware configuration of the ultrasonic sensing system. Developments include the construction of the sensor head and sweep controller, the generation and detection of ultrasonic waves, and the logic circuit which enables the system to operate as a seam tracker. Since the objective of this experiment was to investigate the method of ultrasonic sensing for seam tracking rather than building a ranging system, the development of the microprocessor as for the infra-red seam maker was not necessary. A commercially available BBC microcomputer was used to serve for data processing and system control.

7.3.1 SENSING HEAD DESIGN

The transducers used are the piezoelectric type (RS 307-351 and RS 307-367) having dimensions of 16mm diameter and 12mm height, with an angle divergence of about 20°, and a resonant frequency of 40KHz. By placing the transmitting and receiving transducers together above a metal surface, finite surface displacement of a fraction of a millimetre can be detected using the phase comparison method. The detection is normally reliable for a flat metal plate which has an area greater than the detectable zone of the receiving transducer. However, if the object is small such as a small portion of narrow seam, the ultrasonic waves received contains components partially reflected from the object and partially from the area surrounding the object. Then, phase cancellation occurs which results in confusing measurements, causing difficulties for the interpretation of the object position. One of the ways to overcome this problem is to reduce the detecting area. For this reason, it was necessary to design a mechanical housing for the transducers capable of de-

tecting small object. Various types of sensor housing design were tested and the best results were obtained from the configuration as shown in fig.7.3. In this design the receiving transducer was housed in an aluminium shell, which was extended by a metal tube, reducing the receiver's diameter from 16mm to 3mm. The transmitter mounting was designed in such a way that it provided the maximum signal transmission by keeping the transmitter diameter to 16mm, and also allowed the receiver to plug through just besides the transmitter keeping the dimensions of the sensor head to a minimum. The sensor head was connected to a sweeping arm which was extended 40mm from the axis of a d.c. motor (RS 336-309). The d.c. motor was mounted above the welding electrode. Because the sweep motion is relatively slow for the required welding application, the d.c. motor was geared down from 6000 r.p.m. to 37.5 r.p.m.

7.3.2 MOTOR CONTROLLER

A motor control circuit was designed to provide bi-directional movement control of the 6V precision servo d.c. motor. The circuit shown in fig.7.5 comprises a slotted opto-switch (RS306-061), two monostable timers (555), and a single-pole changeover reed relay (RS349-399). The slotted opto-switch provides a negative transition pulse, to trigger the monostables for the timing of sweep displacement, and at the same time, to signal the microcomputer for start scanning. The first monostable provides a 12V signal down a wire of five metre length to the microcomputer which was placed away from the robot, and the second controls the relay to be switched between plus and minus 6V in order to drive the servo d.c. motor in the required sweep direction. As the time delay generated by the monostable is dependent on the RC value, the length of each sweep can

be varied by adjusting the $1M\Omega$ variable resistor. When a trigger pulse is detected by the monostable, the delay operation is started and the output of the monostable goes high which allows the motor to be driven by the +6V supply. Once the time delay is up, the output of the monostable falls to 0V, thus applying -6V to the motor, forcing it to rotate in the opposite direction. When the sensor return to its initial position, the light beam of the slotted opto-switch is again broken, and the sweep motion is repeated.

7.3.3 GENERATION AND DETECTION OF ULTRASONIC WAVES

A signal generator (Variable Phase Oscillator TYPE VPO230) supplies a continuous sinewave to the transmitter and also provides a reference signal to the phase comparator. The supply frequency is adjusted to 40KHz as this is the point at which the transducer reaches its maximum efficiency. The receiver is a combination of op-amps designed to amplify and filter the received signals.

Ultrasonic signals transmitted to the surface are reflected and only a fraction of signals are captured by the receiver. The transmitter and receiver are matched pairs which means that the receiver has a greater affinity for detecting signals transmitted by the transmitter than for those produced by other sources. Because the sensor is required to work in the welding environment, filtering is essential to avoid mechanical vibrations and electrical noise interference.

Referring to the circuit diagram of Fig.7.6, ICla is used to remove unwanted r.f. signals present at the input. This stage has a gain of 100, and high rejection of signal above the ultrasonic band. IClb is a second-order active RC bandpass filter whose centre frequency is tuned at 40KHz. The circuit gives a Q at about 8, which means the filter bandwidth is about 5KHz, and hence only allows signals at 40 ± 2.5 KHz to passing through to the phase comparator. Any unwanted signals outside the filter band can be removed.

7.3.4 PHASE COMPARATOR AND COUNTER CIRCUIT

Signals from the receiver circuit together with the reference signals are input to the phase comparator for extracting phase differences between the two signals. A circuit timing diagram of Fig.7.7(a) shows the method of phase extraction where the output pulses correspond to the resultant phase differences.

The output pulse from the phase detector may be read and counted directly by a computer. Resolution of the phase measurement mainly relies on the clock rate applied to the counter. The maximum possible phase value produced by the phase comparator is 12.5µs which corresponds to 180° phase difference between the transmitter and the receiver signals. If the phase is counted by the 1MHz clock of the BBC microcomputer, then each count from the counter represents 14.4° of phase difference and only about 12 counts for the whole range of measurements. In order to increase the resolution, a 10MHz crystal oscillator was used to generate high frequency pulses which were modulated with the outputs from the phase detector forming a series of bursts so that a maximum of 125 counts can be obtained for 360° phase measurement. A separate 8-bits counter was built to count the 10MHz bursts. The timing diagram of fig.7.7(b) denotes the differing pulses present at various points in the circuit.

Fig.7.8 shows the interfacing circuit of the sensor system. The phase comparator is based on the detection of zero-crossings of the in-

coming signals. Zero-crossing comparators (IC1a,b) are used to provide a simple and effective means of performing such an operation. These comparators produce output signals that changes state each time the analog input signals pass through a reference voltage of OV. The input sine waves are therefore converted into square waves, and the resultant zero-crossing intervals are provided for phase comparison.

Phase comparison is perform by IC4 together with IC2a and IC3a. IC4 is a D-type positive edge triggered flip-flop and its output, Q, depends on the inputs of CK and CLR by connecting PR and D to high. The required input signals to CK and CLR are provided an OR gate and a NAND gate of IC2a and IC3a respectively.

A flip-flop of IC6 and a few logic gates were used in the circuit to synchronise the various stages. The 8-bit counter formed by IC9 and IC10 starts counting with the arrival of a negative going edge at the reset input and the latch (IC11) is held at the previous state while the counter is counting. Once counting is complete, the corresponding phase count is obtained, the latch becomes transparent and performs latching operation again as soon as the reset signal goes high. Each output from this latch is taken as the number of phase counts.

7.3.5 AVERAGING CIRCUIT

Because the sensor system is designed for seam tracking, it must be capable of operating in the welding environment. In the inevitably electrically noisy environment produced in TIG welding, certain amounts of instability occurs in the received signal because of interference disturbances of the transmission path. The resulting instability in the received signal is referred to as 'phase jitter'. The system was tested by placing the sensor closed to the torch. Once an arc is struck, phase obtained from the phase comparator showing jitter, which results in the microcomputer failing to identify the true phase count. As the sensor was brought away from the arc, the phase reading became stable. It was observed that the jitter was mainly due to the interference from the welding arc, particularly the a.c. arc.

An approach to obtain jitter tolerance led to the addition of a signal averaging circuit which is shown as part of the interfacing circuit in fig.7.8. The averaging circuit consists of a digital-to-analog converter (IC12), a low-pass filter (IC13a), and an analog-to-digital converter (IC15). IC12 is used to convert the phase count into a d.c. level which corresponds to the distance travelled by the ultrasonic waves. When jitter occurs, the IC12 produces alternating signal outputs which oscillate above and below the previous d.c. level. By taking the average value of these alternating signals using a low-pass filter, the required d.c. level can be obtained. Since the rate of sweep of the sensor is relatively slow compared with the jitter frequency, the IC13a was designed with a cut-off frequency at 500Hz in order to filter out random oscillations. The purpose of using an analog-to-digital converter was to interface the sensor circuit to the BBC microcomputer. Experimental trials showed that satisfactory results could be obtained by adding the averaging circuit.

7.3.6 INTERFACE TO THE 1MHZ BUS

A BBC model B microcomputer was used for analysing data captured by the sensor circuitry and to provide deviation values to the robot controller. The sensor circuitry was interfaced to the 1MHz bus of the microcomputer.

This is also shown in fig.7.8 where IC21 is a line receiver which is enabled by the decoded address and converts the 12V sweep synchronisation signal into 5V for TTL compatibility. IC4a and IC14b are the tristate latches which latch the phase lead or lag transitions and hence provide information for phase comparison.

The 8-bit data outputs from the ADC of IC15 are interfaced directly to the data bus as they are already tri-state buffered. IC17 latches the asynchronous start of conversion request from the CPU, and generates the required start of conversion signal (SOC), synchronised with the low level period of the ADC clock as required. At the end of conversion, EOC goes high. This state is detected by the CPU which then enables the output of the ADC on to the data bus thus reading the data in the normal way. As the output enable time of the ADC is 500ns, it is necessary to include one wait state in reading the ADC.

IC19 transfers the data from the microcomputer after computation and IC20 converts the digital number into an analog signal which is outputted to a X-Y recorder by IC13b. IC8 is used for decoding the read/write actions and other logic circuits are used for the synchronisations of various stages.

After data processing, the calculated deviation values are sent to the robot controller via an RS423 serial interface which is provided by the BBC microcomputer. The serial interface offers both input and output serial data transfers, and both have 'handshaking' capabilities. A single byte word, which contains both the direction and the amount of seam position offset, is sent at each time.

165

7.4 SOFTWARE

Software was written for analysing the data obtained by the phase measuring system, and then to give the correct information to the robot controller for seam offset corrections (Appendix IV). The language used is the 6502 assembler which is provided with the BBC microcomputer.

7.4.1 DATA CAPTURE

Although the sensor sweep motion is set by hardware in order to reduce the software processing time, data capture and analysis still require software support. Each scan across the seam is recorded, based on the synchronisation signal supplied from the slotted opto-switch which acts as a start scanning indicator. Once a synchronisation signal is detected through bit 2, data storage is set up allowing 100 pieces of data to be read during each scan. Before capturing data, initial phase lead or lag between the transmitter and receiver signals is read and stored for later reference. The conditions of phase lead or lag are determined by the values obtained from bit 0 and bit 1 as shown in the timing diagram of fig.7.9(a). If bit0=1 and bit1=0, the transmitter signal is leading the receiver signal, or if bit0=0 and bit1=1, the transmitter signal is lagging the receiver signal.

To start data capture, a zero is written to location &FCC2. This generates the asynchronous start of conversion signal. When a logic '1' in the most significant bit is polled from location &FCC0., the conversion is complete and the data can be read from location &FCC1.

7.4.2 DATA INTERPRETATION

The captured data require suitable interpretations to make them meaningful. As illustrated in fig.7.9(b), the number of phase counts, N, is directly proportional to the phase difference ϕ , between the transmitter and receiver signals, as long as the phase ϕ is less than π . If ϕ is greater than π and less than 2π , phase lead changes into phase lag, then N is inversely proportional to ϕ . One way to obtain linear measurements of ϕ from zero to 2π is to carry out data conversion once a phase lag is detected. The expressions for data conversion are shown as follow:

where 250 is the maximum phase count for $\phi = 2\pi$.

Using these expressions, a linear curve was obtained as shown in fig.7.10(a) by holding the transmitting and receiving transducers together and measuring the surface. When the transducers were housed in the mechanised sensor head, experimental results as shown in fig.7.10(b) indicates that only a linear approximation of phase counts may be obtained. The sensor housing geometry introduces extra scattering and multiple reflections, which affect the transmission and reception path and thus causing non-linearities. However, the characteristics of (b) showed stay consistent as long as the same sensor head is used.

As shown in (a), the linear curve is in fact the average plot of (b). Using this relationship some software support can make the sensor system produce linear measuring characteristics. This is achieved by setting up a look up table which stored the 250 data from curve (b), each

data representing the number of phase counts corresponds to a data on the linear curve (a) at the corresponding displacement. The 250 data values of (a) are equivalent to the counting numbers of the 250 data locations.

7.4.3 SEAM POSITION DETERMINATION

The evaluation algorithm for the determination of the seam position is based on the analysis of the sensed pattern. In general, the detection of different weld seam geometries results in different seam profiles being obtained and this requires different algorithms for each of the individual needs. Software developed in this experiment was concentrated on the evaluation of a groove pattern, which may represent either a V-prep or a butt joint as both have similar characteristics. Fig.7.11 shows a particular sensed pattern and the method for seam position evaluation. The evaluation mainly comprises of four steps:

- (1) First the maximum, \$\phi_{max}\$, and minimum, \$\phi_{min}\$, values of \$\phi\$ over the whole range are extracted. Then the mean value, \$\phi_{mean}\$, of \$\phi\$ is captured by
 (\$\phi_{max} + \$\phi_{min}\$) / 2. This gives a reference level to deduce the transition points in the sensed pattern.
- (2) The upper portion of the sensed pattern is 'smoothed' by threshold, so that, any distortion occurring at the edges of a seam due to scattering or multiple reflections can be eliminated. Hence only the groove portion is used for determining the seam position.
- (3) By searching through the data storage, transition points x_1 and x_2 are obtained as the interceptions of the sensed pattern to the mean reference level. The seam centre is therefore the mid-point between the two transition points, i.e. $x_c = (x_1 + x_2)/2$.

(4) Upon starting operation, the first sweep across the seam produces a centre value which is stored for seam location reference. After initialisation, each centre value is compared with the previous one to deduce a deviation value and also the direction of deviation, and the reference centre is refreshed by the current centre value.

Although the method is designed for V-prep and butt joints, it can be easily converted for overlap joints. In the case of welding an overlapped joint, the weld point is regarded as the crossing point joint of the sensed pattern to the medium line.

7.4.4 COMMUNICATION TO ROBOT CONTROLLER

Communications between the seam tracking system and the robot controller is carried out by a serial link from the RS-423 port. Interfacing to the serial port can be achieved either via the operating system or writing directly to hardware. Making access through the operating system may require relatively simple software programming, but longer processing time. Since timing is important for real time control, it was decided to write directly to hardware.

The RS-423 port (fig.7.12) is implemented through a 6850 ACIA and a customised ULA chip. Sending and receiving data through the RS-423 port is performed by taking account of the status register and accessing the input and output data buffers [37].

When receiving serial data, it is necessary to check on bit0 of the status register. This bit goes 'high' when a byte is received. If the input data buffer is not read before the input logic has successfully collected a second byte, then the original one will be lost, because it will be overwritten in the buffer.

When sending data, two conditions need to be considered. Firstly bit 3 in the status register must be 'low', as this indicates clear to send or the external device is willing to accept data. A data byte should not be sent to the data output buffer if bit 3 is 'high'. Secondly, bit 1 also needs to be checked once a 'low' is detected from bit 3. When the internal logic transfers a byte from the output buffer to the serial output register, this bit 1 goes 'high' signifying that a subsequent byte is loaded into the output buffer. Ignoring either bit 3 or bit 1, may cause bytes of data to be lost from the output stream.

The control operation between the robot controller and the seam tracker is similar to that as described for the infra-red seam tracking system in section 6.4.4.

7.5 EXPERIMENTS AND RESULTS

The course of the actual seam tracking is determined from the positions of those features which are normally located in a definite geometrical relationship to the seam. As these position detections become the basic requirement for the development of a seam tracker, the major concern in this experiment is the task of obtaining seam profiles and hence determining deviation errors. Various tests were conducted initially using seam scanning methods to assess the abilities of the system in detecting different seam geometries. Position sensing of the seam was then carried out for deviation measurements.

7.5.1 SEAM PROFILE DETECTION

A direct way to obtain dimensional information of the seam geometry is to sweep the sensor across the seam. To assess the ability of seam profile detection, a series of tests were conducted using both static and dynamic scanning across the seam. Three types of prepared weld joints known as the overlap, butt and V-prep samples were used for the static scanning tests. These samples were made from 1 to 3 mm thick aluminium plates which were arranged to allow the sensor scanning across the seam. Dynamic tests were carried out using a welded sample. The sample was set moving along the welded line whilst the sensor was scanning across. For all these tests, the signals obtained from the sensing system corresponded to the phase count distribution in the scanned area of the seam. Hence, sensor signals were available whose amplitude had a characteristic shape related to the seam image picked up. The results are shown in fig. 7.13 to 7.17. It is convenient to present the phase counts of each result in the form of ADC readings obtained for comparison purposes. These readings correspond to the phase variations in the reflected wave when the sensor is swept across the seam. Each result was taken from the same sweeping rate of 1 sample/s. The sweep length was adjusted to 10mm and the sensor height was set to 17mm.

Three sets of static scanning test results are shown in figs. 7.13, 7.14, and 7.15. In each case, the whole range of sweep displacement represents a single sweep for the sensor to capture 100 data of phase counts within the area across the seam. Fig. 7.13 shows the sensed patterns obtained from scanning three different thickness's of overlapping weld joint samples. Each pattern represents its corresponding seam profile. The greater the phase differences that occur on the graph, the thicker

the overlapped plates sensed. Fig.7.14 shows other sensed patterns obtained from scanning across different gap width of a lmm thick butt joint sample. These results illustrate the effects of gap variations. In the case of the closed gap test, the received signals contain insufficient information to define where the seam occurs. As the gap width increases, a better defined seam profile is obtained. Fig.7.15 shows the results from scanning different sizes of V-prep samples.

Dynamic scanning tests were carried out by moving the welded samples at the speed of 9mm/s along the line of finished welds, whilst the sensor was sweeping across the welds. Fig.7.16(a) shows a welded sample which was fused with various welding currents along the centre line of a 2mm thick stainless steel plate. The welded line contained various groove depths as the weld was conducted using ramped currents. Using the dynamic scanning method, a sensed pattern was obtained as shown in fig.7.16(b), in which the detected phase counts are plotted with respect to time. Each groove pattern in the plot represents the results of a sweep across the welded line. Fig.7.17 shows the back face of another welded sample and its corresponding sensed pattern. The sample was a well penetrated finished weld and no cleaning was applied for the scanning test. Experimental procedure was repeated as for the previous dynamic scanning test.

Experimental results show that the sensor was capable of capturing a seam profile by both static and dynamic scanning. It could also obtain surface information from uncleaned metal workpieces, such as those were used in the dynamic scanning tests. This proved to be the advantage over the infra-red seam tracker.

7.5.2 ANALYSIS OF THE DETECTED SIGNALS

It is evident that the seam profile can be extracted by the phase comparison method from each scan across the seam. However, as well as the cross section geometries of the seam, the disturbed signals are also shown in each sensed pattern. These are particularly noticeable at the edges of the butt or V-prep seam. This may be explained that the ultrasonic signals transmitted from the transmitter are not only subject to the propagation path losses, but are also subject to the scattering and multiple reflection effects which can cause signal disturbances. Fig.7.18 is an example of scattering and multiple reflections at the seam edge. The effects occur primarily in the following three situations.

(1) Where the sensor and the workpiece are all still.

(2) Where the sensor is still and the workpiece is moving, and

(3) Where the sensor and the workpiece are both moving.

In the first static situation the received signal coming from a number of signal paths is in the form of a standing wave. In this case, the received signal phase remains unchanged, as long as the sensor and the workpiece are all standing still.

In the second situation, where the sensor is held stationary and the object is moving, the time delay is different at any instant of time along the multipath. It is difficult to isolate and identify each path of a reflected wave while the object is in motion.

In the third situation, where the sensor and the object are moving, the resultant received signal is the sum of all reflected waves from different angles, depending upon the momentary attitude of the seam and whether or not the direct signal transmission path is blocked.

The last situation is the experimental situation where results were obtained. Suppose the received signal is the sum of all reflected waves from different angles, then the vibrations due to the several waves are superposed and form a series of wave trains, which may be written as

$$f_1(t) = a_1 \sin(\omega t - \theta_1)$$
(7.7)

$$f_2(t) = a_2 \sin(\omega t - \theta_2)$$
(7.8)

where a's are the amplitudes of the reflected signals at the receiver, and θ 's are the corresponding phase shifts of the reflected signals from different reflecting path.

$$f_{r}(t) = f_{1}(t) + f_{2}(t) + \dots$$

$$= a_{1} \sin \omega t \cos \theta_{1} - a_{1} \cos \omega t \sin \theta_{1}$$

$$+ a_{2} \sin \omega t \cos \theta_{2} - a_{2} \cos \omega t \sin \theta_{2} + \dots$$

$$= \sin \omega t \Sigma a \cos \theta - \cos \omega t \Sigma a \sin \theta \qquad (7.9)$$

put $\Sigma a \cos \theta = A \cos \phi$ and $\Sigma a \sin \theta = A \sin \phi$

$$f_{r}(t) = Asin\omega t \cos \phi - A \cos \omega t \sin \phi$$
$$= Asin(\omega t - \phi)$$
(7.10)

Thus the resultant vibration is simple harmonic and its amplitude is

$$A = \sqrt{\{(\Sigma a \sin \theta)^2 + (\Sigma a \cos \theta)^2\}}$$
(7.11)

and its phase angle ϕ is

$$\phi = \tan^{-1} \frac{\Sigma a \sin \theta}{\Sigma a \cos \theta}$$
(7.12)

It is clear that the resultant phase is a measurement of the phase change of each reflected signal from its corresponding reflecting path. Fig.7.14(c), where the sensed pattern shows less distortions at the beginning and the end of a scan, shows that the sensor is at the position where the flat portions of the sample are being detected. As the sensor moves near to the seam, scattering and multiple reflections occur causing a and θ to change depending on the seam geometries. The variations of a and θ result in signal disturbances. When the seam occurs, direct reflected signals are much stronger than those multi-reflected signals and it is clearly shown in the sensed patterns. Using threshold technique for software programming, signal disturbances can be eliminated and the seam position can be determined.

7.5.3 DEVIATION MEASUREMENTS

The main objective of using a seam tracking system is to detect the presence of the seam and provide deviation values to the robot controller in order to perform closed loop control for automated welding. To investigate the abilities of the sensor in position sensing, an experiment was carried out on seam deviation measurements. A straight line seam of 1mm wide V-prep was originally placed below the torch with the electrode pointing directly to the centre of the seam. The sensor was mounted 15mm from the torch and 17mm from the surface of the workpiece. By sweeping the sensor across the seam, the position of the seam was detected. When the seam was shifted away from its original position, an offset in seam

position was detected from the following sweep and a deviation value was then obtained from the RS-423 port. Fig.7.19 shows the sensing linearity to the V-prep seam. The abscissa indicates the seam position offset from the original position of the seam, and the ordinate is the deviation value obtained from the RS-423 port. The sign of each value in the graph represents the direction of seam deviation. These results confirm that the deviation values sent to the robot controller are linearly proportional to the seam position offsets.

7.5.4 TEMPERATURE EFFECT

When the sensor is used for seam tracking during welding, temperature build up around the sensor area must be considered as the velocity of sound varies with temperature. The relationship between the velocity of sound and temperature is given in the following expression [38]:

$$c = \sqrt{r} r T_k$$
(7.15)

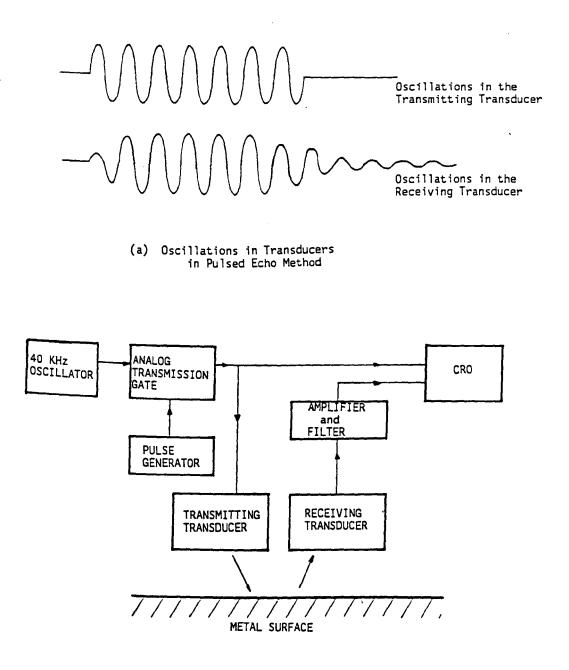
where c is the velocity of sound in m/s, δ is the ratio of specific heat (for gas) at constant pressure to the specific heat at constant volume, r is a constant whose value depends on the particular gas involved, and T_k is the absolute temperature in degrees of kelvin.

It can be shown that, for an ideal gas, i.e. one obeying Boyle's law, the velocity of sound varies with temperature t (in degrees celsius) as follows:

$$\frac{c}{c_0} = \sqrt{1 + \frac{t}{273}}$$
 (7.16)

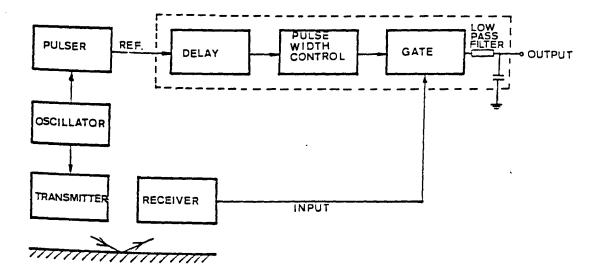
c and co represent the velocities of sound at temperatures t and 0°C, respectively. Values of co for number of gases are given in Table 7.1 [39].

It was found from experiment that the reflected wave amplitude and the phase angle decreased as temperature increased. However, over the comparatively short range of the system the seam was detectable when the sensor was swept across the seam. The effect of temperature variations may result in the sensed pattern shifting upper or lower compared with its previous state, but the location of the seam still can be extracted using threshold methods.

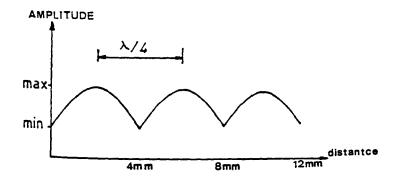

7.6 DISCUSSION

The ultrasonic seam tracker was designed based on the phase comparison between the transmitted and received signals. The system was implemented successfully in use with the TIM 3 cartesian robot. Fig.7.20 shows a VDU display of a V-prep seam profile which was obtained during real time operation. The graph was plotted after threshold of the sensed pattern. It is evident that signals reflected back from the seam reveal its presence and position. Using this information, deviation values which correspond to the seam offset from its previous position can be deduced, and thus provide feedback signals to the robot for closed loop control to ensure weld quality.

When comparing the infra-red and ultrasonic techniques, the former can be operated at higher sweep rates but suffers mainly in dirty and dusty environments and is sensitive to the colour of the workpiece or to its optical transparency. The ultrasonic seam tracker, however, has higher resolution and is less dependent on the surface cleanliness of the


workpiece. The system was developed at lower cost as the sensor sweep mechanism was designed using a precision d.c. servo motor instead of a relatively expensive stepping motor and the stepping motor drive system which were used in the infra-red seam tracking system. The addition of an averaging circuit in the ultrasonic seam tracking system provided an effective technique for obtaining better defined sensed patterns.

The ultrasonic seam tracker has the advantages, common to most of the electronic sensors, of real time control and contactless operation. It is also compact, with simple circuitry, and easy to use.



⁽b) Experimental Setting for Pulsed-Echo Method

Fig.7.1 Transit Time Method

(a) Experimental setting

L.

(b) Variation of Amplitude with Distance from the Source

Fig.7.2 Signal Attenuation Method

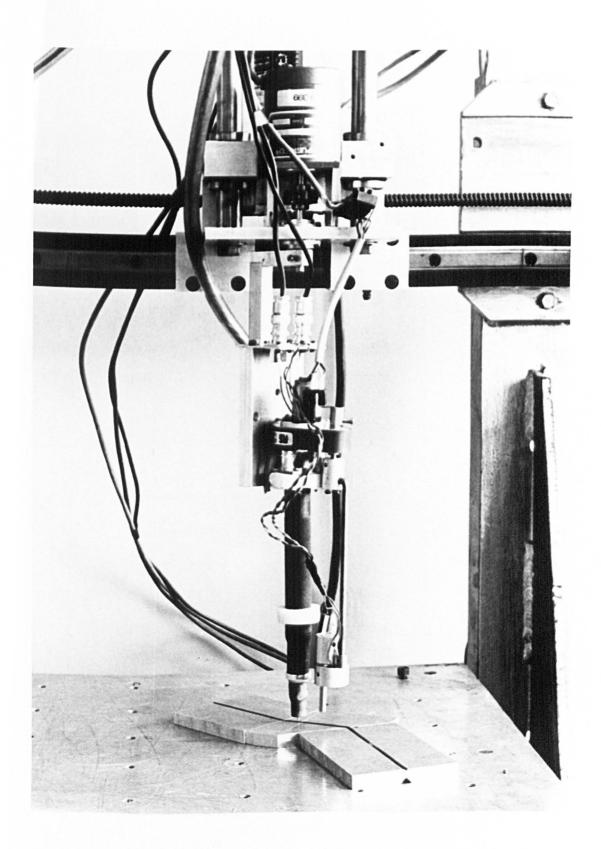


Fig.7.3 The Ultrasonic Sensor

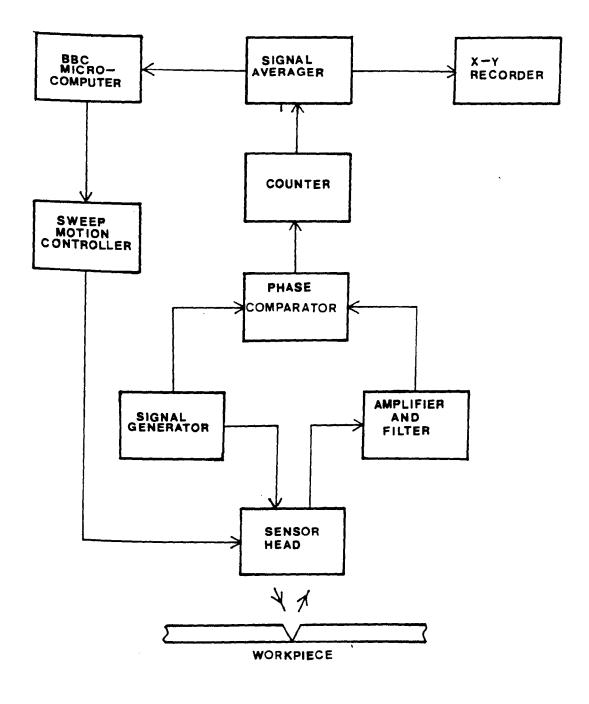


Fig.7.4 Block Diagram of Ultrasonic Seam Tracker

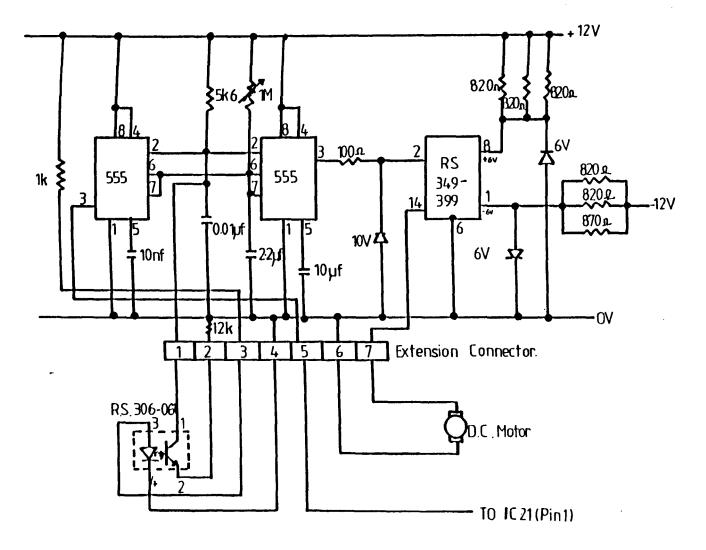
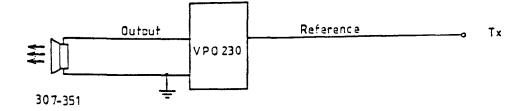



Fig.7.5 Sweep Motion Drive Circuit

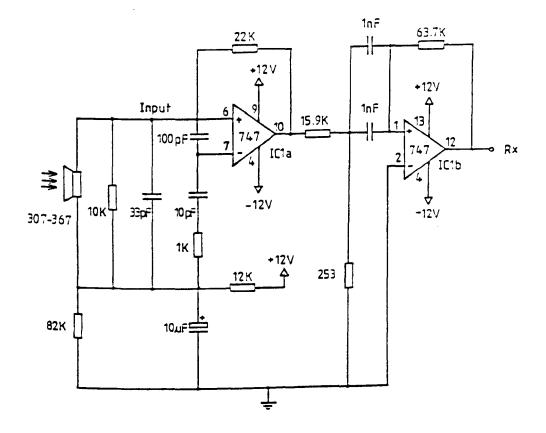
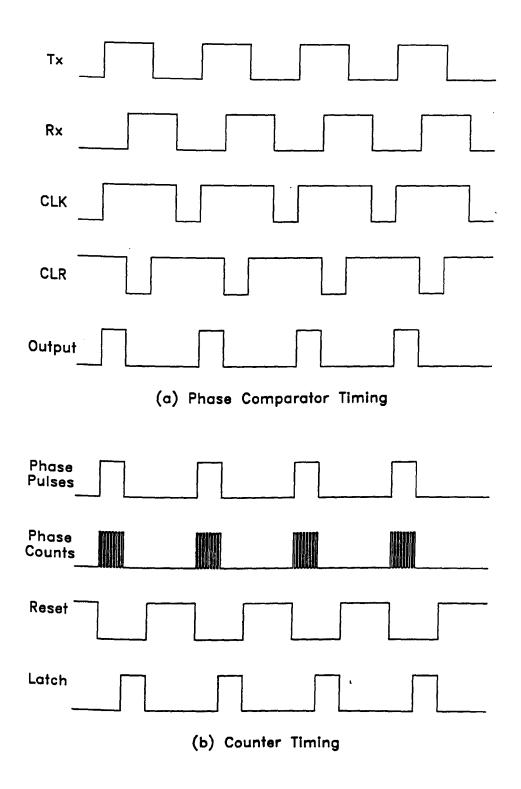
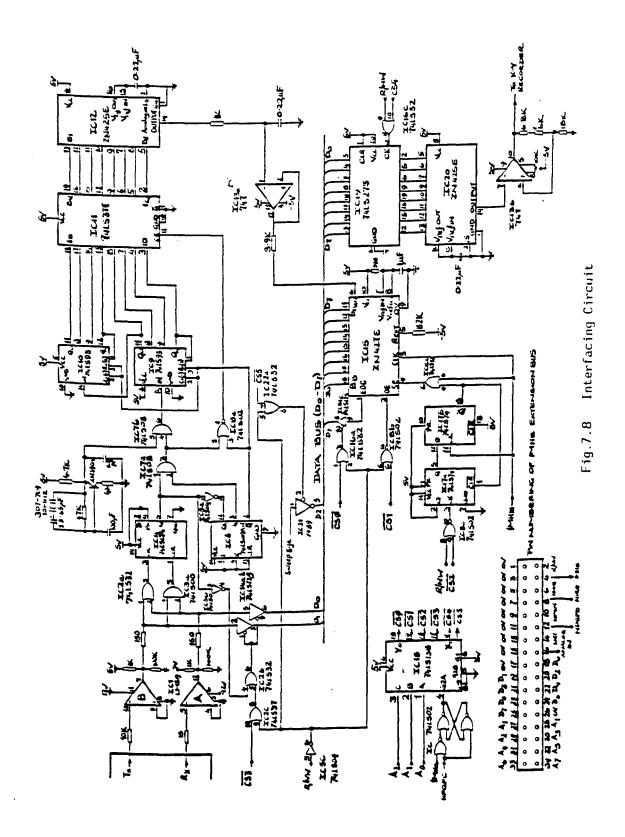
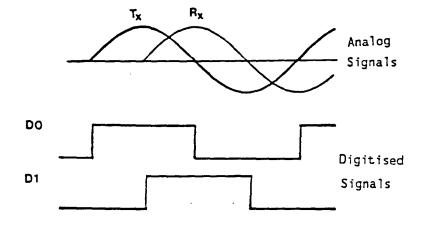


Fig.7.6 Transmitter and Receiver

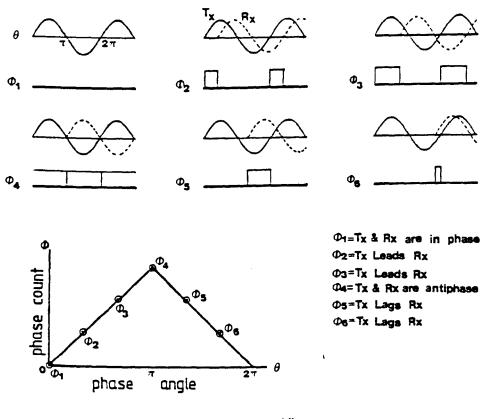
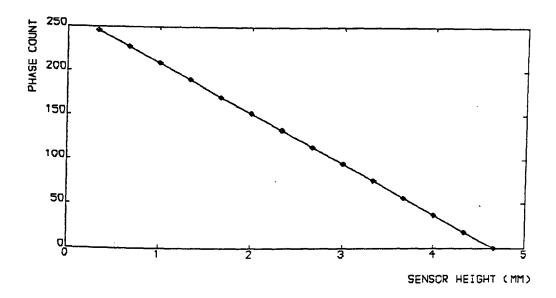
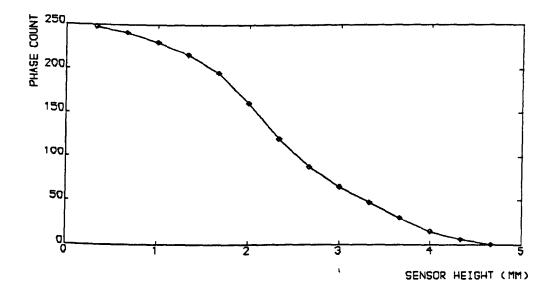


Fig.7.7 Circuit Timing Diagram





(b) Phase Lead/Lag

Fig.7.9 Relationship Between Phase Count and Phase Angle

(a) Receiver signals without using sensor housing

(b) Receiver signals from housed sensor head

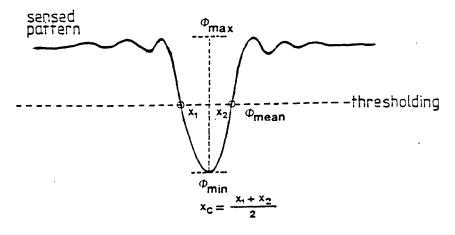


Fig.7.11 Seam Position Determination

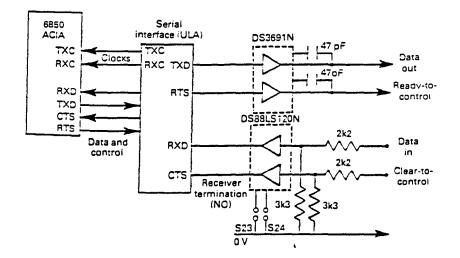


Fig.7.12 RS-423 Serial Interface

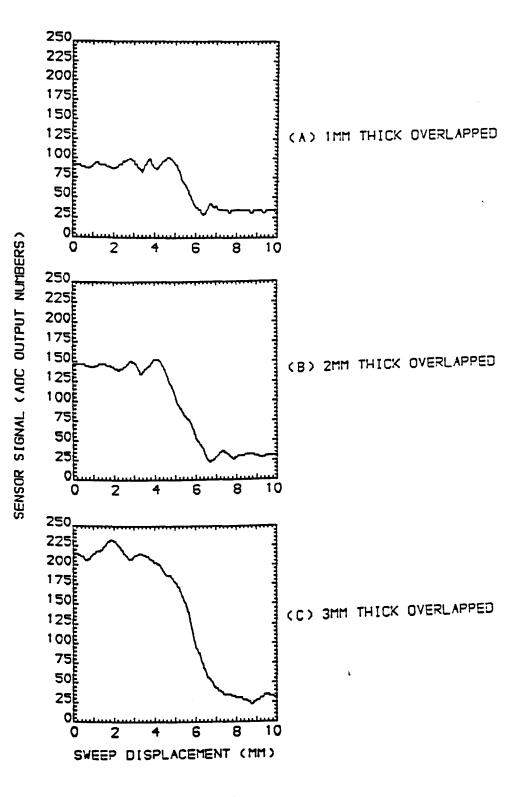


Fig.7.13 Overlapping Joints

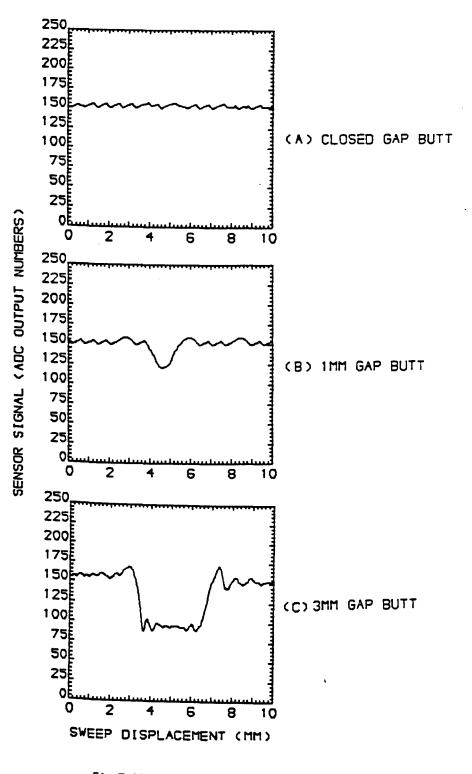


Fig.7.14 Butt Joints

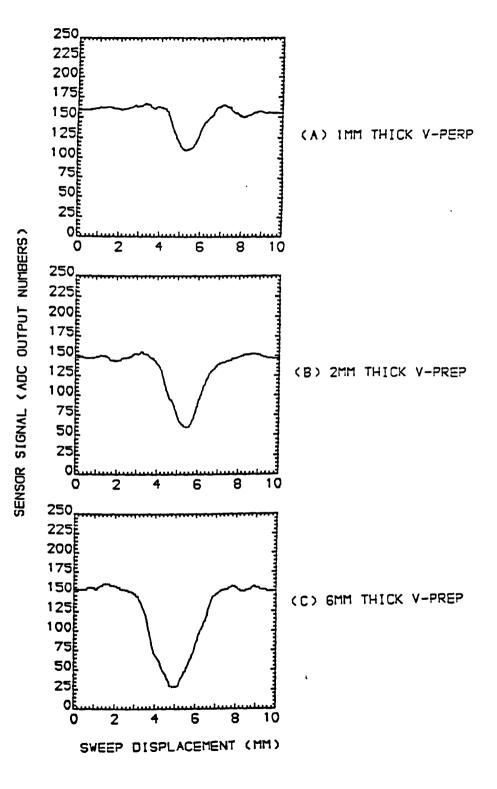
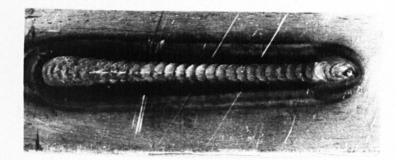
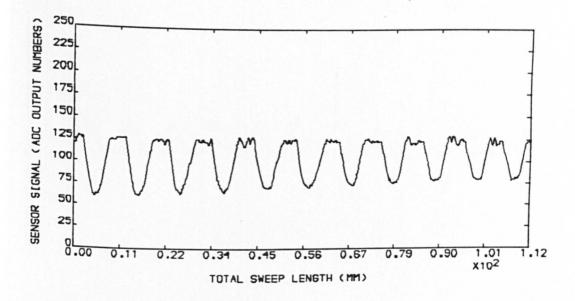
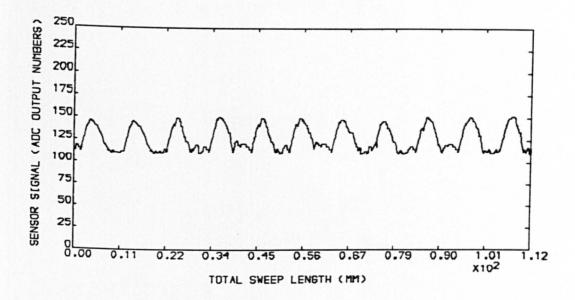




Fig.7.15 V-prep Joints


TYPE OF WORK: FRONT FACE SENSOR HEIGHT: 17MM TORCH SPEED: 1.00MM/S

(b) Scanning test

Fig.7.16 Front face of a welded sample

(a) Welded sample

TYPE OF WORK: BACK FACE SENSOR HEIGHT: 17MM TORCH SPEED: 1.00MM/S

(b) Scanning test

Fig.7.17 Back face of a welded sample

)

î

,

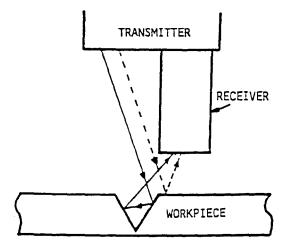
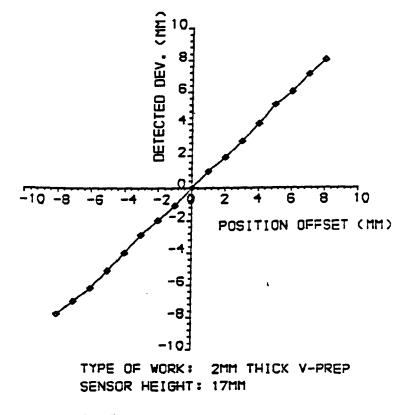



Fig.7.18 Multiple Reflection Situation

Gas	Velocity c _o (m/s)
Air	330
Argon	320
Helium	970
Hydrogen	1300
Nitrogen	310
Oxygen	330
Carbon dioxide	260
Neon	430

Table 7.1 Velocities of sound for some common gases at 0° and atmospheric pressure

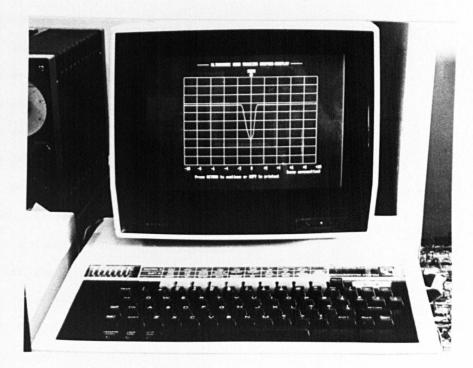


Fig.7.20 Graphic display of a seam profile

CHAPTER 8 ROBOT POSITION CONTROL

8.1 INTRODUCTION

ł

The advances made in robotics over the past decade have resulted in the production of industrial robots and sensors which may be employed cost-effectively in a wide variety of welding applications. The ability of an industrial robot system to follow a preprogrammed, continuous trajectory results in increasing levels of productivity and weld quality. These robots, which exhibit their characteristics in motion and geometry, may be grouped into four basic motion-defining categories [40] :

(a) Cartesian coordinates (three linear axes).

(b) Cylindrical coordinates (two linear and one rotary axes).

(c) Spherical coordinates (one linear and two rotary axes).

(d) Polar or articulated coordinates (three rotary axes).

Fig.8.1 illustrates these categories. The movements of axes and wrist are shown by arrows. Each of these configurations offers a different shape of work envelope. For different applications, different configurations may be appropriate. However, in spite of the many advantages of using robots, the positional accuracy requirement of the welding torch with respect to the seam is one of the major concern in welding automation. The positional variations that exist in typical welding situations are simply too large to permit anticipatory preprogramming of the weld trajectory. A desirable solution, as described in previous chapters, is to incorporate real-time sensory feed back into the robot system and employ feedback control techniques to compensate for unexpected changes in the seam position relative to the torch. This approach is dependent on the robot position control algorithm. Chap. 8 Robot Position Control

In this chapter, the fundamental features of robot position control algorithm are discussed. Several computational models are developed for the searching and tracking of various seam paths. Experimental results are used to assess the positional control ability.

8.2 TIM-3 ROBOT CONFIGURATIONS

Both the infra-red and ultrasonic seam trackers were tested in conjunction with a robot controller based upon an Intel 8085 microprocessor system which controls the TIM-3 cartesian coordinate system robot.

8.2.1 AXES GEOMETRY

The TIM-3 robot is a three-axis machine. It consists of a table (Y-axis) for the support and movement of the workpiece, and a track system (X-axis and Z-axis) for moving the torch. A wrist action (RO and RI) allows the torch to be prepositioned at any request angle prior to welding the seam. Although there are five motions, the robot is referred to as having three degrees of freedom since the wrist movements are only used to position the torch and are not varied during welding. the TIM-3 robot is shown schematically in fig.8.2. The mechanical range of the system is approximately :

X axis = 500mmY axis = 600mmZ axis = 200mmR0 axis = 360° RI axis = 180° Support table = 550mm x 550mm

The top section of the table is separated from the lower section by a tufnol middle section. This provides electrical isolation of the welding return path from the machine earth. The surface of the table has a matrix of tapped holes used for attaching workpieces or jigs.

8.2.2 CONTROLLER

The controller is the heart of the robot system. It communicates with the seam tracker and other devices in order to perform positional control for precision welding. It is based upon a Quarndon microcomputer and consists of :

(a)A QMS 8511-85B 8085 based microcomputer board.

(b)A QMS 00-1419-2 AM9511 based arithmetic processor board.

(c)A QMS 00-1201-D 32K-byte dynamic random access memory.

(d)A BBC model B microcomputer.

Fig.8.3 shows the Memory and Input/Output maps of the controller.

8.2.3 DRIVE SYSTEMS

All axes are driven by permanent magnet stepping motors, giving a resolution of ± 0.01 mm on the linear axes. Digiplan 1054 bi-level/bi-polar drivers are used to power the motors. The motors are driven directly by the controller. Each motor has associated with it a DIVIDER, COUNTER and ENABLE. The DIVIDER controls the speed at which the motor moves whilst the COUNTER determines the distance moved. The ENABLE enables and disables movements of its associates motor.

Thus, when the controller requires a linear movement, it loads the DIVIDER register with the speed value and the counter register with the

distance value. The motion is started by activating the ENABLE signal whereupon the appropriate number of stepping pulses will be generated at the required rate. When the motion is complete an interrupt signal is generated to inform the processor.

8.2.4 ACCURACY

The robot has a positional accuracy of better than 0.1mm at any position within its working envelope, and a speed accuracy of better than 1% in the range from 10mm/s to 0.5mm/s [41]

The robot has the rigidity and accuracy required for TIG welding operations which are often difficult to achieve in a robot arm.

8.3 PATH CONTROL ALGORITHMS

The control algorithms are of great importance in an automated welding system. As the seam trackers described in chapter 6 and 7 are capable of detecting the position of a seam by sweeping the sensor across the seam, these capabilities have to be integrated into the robot control algorithm so that the seam tracker can provide feedback to the robot controller to follow a seam.

8.3.1 TORCH POSITION ALGORITHM WITHOUT SENSOR

The control algorithm employed for torch position control is an enhancement of the torch position algorithm used for blind robotic welding, i.e. welding without sensor guidance. In blind welding applications, the operator leads the robot through the trajectory required to weld a part and fixes a set of points through which the torch is required to pass. The torch trajectory between taught points is typically specified to be a straight line. Since the robot controller requires a position update at some small fixed time rate, intermediate positions between the taught points must be determined. Therefore, in order to generate a straight line path, the distance between two taught points is divided into a number of points separated by the distance that can be travelled in the time interval at the requested speed. Positions are determined by straight line interpolation between the two taught points. Robot motion, in principle, consists of commanding the robot to go to consecutive interpolation points at the fixed time interval.

8.3.2 SENSOR GUIDANCE

A sensor guided robot path is taught in same way as a blind welding path, by leading the robot through the key points on the part. The seam tracking system determines where the sensor sweep path intersects the taught path. By knowing where the seam is, relative to the torch, and what the torch's position was when the current deviation value was received from the seam tracker system, the location of the seam can be determined. Finally, the torch position is compared with the taught path to find out which interpolation point it most nearly corresponds to, and how far from the taught path the torch is at that interpolation point. This information is stored in a buffer.

As the torch moves along the taught path from interpolation point to interpolation point, it checks the buffer of path corrections generated by the seam tracking system to see if a trajectory correction offset exists. The sensor processing algorithm runs asynchronously with the robot and generates offsets for positions that the robot will arrive at in the future. The robot control algorithms, however, redirects the torch to follow the seam.

8.4 MODEL REPRESENTATION

In order to obtain the features of a seam path and the robot's response due to path deviations, seam path modelling and seam tracking simulations were carried out by means of a simulation program. This program was written in FORTRAN language (Appendix V). Path models included a straight line, a curve and a step change of seam path.

A path is represented as a set of points, defined by their x, y and z coordinates. The order of the points determines the direction of motion. For seam deviations, the seam is offset from its original path and so causes the torch to move off the seam. This results in a change in x and y coordinates. Therefore, x and y coordinates are the major concerns in the modelling.

8.4.1 SEAM PATH MODELLING

During a welding process, any variation of seam path depends upon a variety of positional uncertainties of the welding environment. A straight line seam path may remain straight during welding, or it may be distorted due to temperature effects, resulting in a curved seam path, or it may be offset from its original position by mechanical forces. To simulate these situations, three different path modelling were performed, namely straight line, curve, and step function.

The features of a seam path may be simulated by the following function:

Chap. 8 Robot Position Control

$$y = a_1 x^3 + a_2 x^2 + a_3 x + a_4 \sin(a_5 x) + a_6$$
(8.1)

where a_1 , a_2 , a_3 , a_4 , a_5 and a_6 are the arbitrary constants. By fitting suitable values into these constants, a function which represents the desired seam path may be obtained.

The three seam path models were generated by the following parameters.

(1) For a straight line path

$$a_1 = a_2 = a_3 = a_4 = a_5 = 0$$

 $a_6 = 2 \times 10^{-3}$

(2) For a curved path

 $a_1 = a_4 = a_5 = 0$ $a_2 = 0.1$ $a_3 = -0.02$ $a_6 = 2 \times 10^{-3}$

(3) For a step function path

 $a_{1} = a_{2} = a_{3} = a_{4} = a_{5} = 0$ $a_{6} = 2 \times 10^{-3} \qquad \text{for } 0 < x \le x_{1}$ $= 2 \times 10^{-3} + d_{\text{os}} \qquad \text{for } x_{1} < x \le x_{2}$

where x_1 is the distance the step change occurs, x_2 is the total distance the torch travelled, and d is the offset distance.

8.4.2 SEARCHING AND TRACKING

Fig.8.4 to 8.6 show the three models and their corresponding sensor responses. In each figure, the solid line pattern represents the seam path which was obtained from function (8.1), and the broken line represents the torch movements along the seam path. The plot of sensor deviation against seam distance simulates the sensor response with respect to seam path variations.

Various procedures were carried out for the computation. These included:

(1) Find the torch position with respect to the seam path.

(2) Find the interception of the sensor sweep path and the seam.

(3) Calculate the angle of the torch, $\boldsymbol{\theta}$

(4) Calculate the perceived angle, β

(5) Determine the new angle of the torch by the feedback control function:

$$\theta_{n} = \theta_{n-1} + G_{p}\beta_{n} + G_{d}(\beta_{n} - \beta_{n-1})$$
(8.2)

where n represents the present state, n-1 represents the previous state, G_p is the product gain, and G_d is the differential gain.

Results shown in these figures were based upon the following assumptions:

(a) The centre position of a sensor sweep represents the seam.

(b) Distance of the sensor in front of the torch = 20 mm

(c) Torch/sensor velocity = 1 mm/sec.

(d) Time between each sensor sample = 1 sec.

(e) Sweep length = 10 mm

(f) Step length for iterations along the seam = 0.1 mm

Fig.8.4 simulates the situation in which the torch and sensor are originally 5mm away from a straight line seam. When searching starts the torch moves towards the seam and the sensor deviation gradually becomes smaller. The zero deviation indicates the torch is on seam.

Fig.8.5 shows a curved seam path. The torch and sensor are assumed to be originally on the seam. As the seam gradually deviates from the straight line path, the torch follows and the sensor deviation can be hardly observed in this graph.

In the case of fig.8.6, where the straight line seam has a step change in position at the centre of the seam path. The torch and sensor are again assumed to be originally on seam. When the step change occurs, the sensor deviation rises and the torch begins to move towards the new seam path. When the sensor deviation reduces to zero, the torch is again on seam.

8.5 RESULTS AND ASSESSMENTS

The above models show that the robot's response to seam tracking is dependant on the sensor deviations which correspond to the seam offset in positions. In practice, the performance of seam tracking is affected by whether the seam tracker can supply the correct deviation signals to the robot controller. If the deviation signals generated from the seam tracker are proportional to the seam position offsets, the correct seam tracking process can be performed.

8.5.1 RESPONSE TO STEP CHANGE

Fig.8.7 shows the simulations and experimental results of seam deviations during seam tracking. The experimental results were obtained by the infra-red seam tracker from tracking seam path offset experiments and were given in section 6.5.3. One set of results was taken from the experiment for zero seam path offset, and the other for a 3mm seam path offset. The tracking performance of the system demonstrates coordinated compensation for deviation errors in twist angle and position lateral to

205

Chap. 8 Robot Position Control

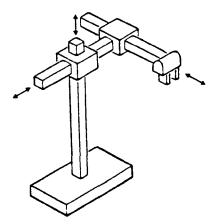
the seam path. All the results were subject to the constrain of constant torch velocity. In comparison with the computer model, experimental results show evidence that the seam tracker was working properly.

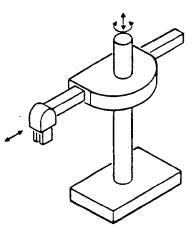
8.5.2 EFFECT ON SENSOR VARIABLES

Although it is clear that the robot position control depends upon the deviation signals supplied from the seam tracker, the effects of changing sensor variables such as the sensor sweep length, the sensor sweep rate and the sensor distance in front of the torch also need to be considered. For example, if the infra-red seam tracker is replaced by the ultrasonic seam tracker, all the sensor variables as mentioned above may not be exactly the same as in the case when the infra-red seam tracker was being used.

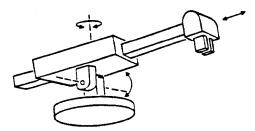
Fig.8.8 shows the effects on varying the sensor sweep length from 5 to 20mm by keeping the other variables constant. It is obvious that the variation on sensor sweep length can hardly affect the robot position control.

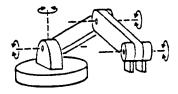
Fig.8.9 also shows no significant changes in robot position control as the sampling time (or the sensor sweep rate) changes from 0.6 to 1.2 seconds.


The changes in robot position control can only be observed in fig.8.10, where the sensor deviation response changes slightly as the sensor distance increases from 15 to 30mm. If this variable is kept within ± 2 mm as tolerance, then, even if the infra-red seam tracker is replaced by the ultrasonic seam tracker, the robot position control should remain unaffected.


8.6 DISCUSSION

TIG welding processes are generally applied to high precision welds. The dimensions of practical weld seams can be down to less than 1mm and the arc lengths can be less than 2mm. This means that the torch is needed to be positioned within an accuracy better than 0.1mm. The cylindrical, spherical and polar arm configuration robots suffer from the fact that accuracy varies with position, and it is difficult to achieve the required value throughout the working environment. However, the TIM-3 cartesian robot has the rigidity and accuracy required for TIG welding operations.


The fundamental features of robot position control algorithm have been presented. Various models of sensor responses and torch movements with respect to the variations of seam path demonstrated that the robot position control is mainly dependant on sensor deviation values. In other words, the TIM-3 robot is capable of performing TIG welding with seam tracking if used with the seam tracker, which generates deviation signals corresponding to the actual variations of the seam path.


Both the infra-red and ultrasonic seam tracking systems were implemented successfully with the TIM-3 cartesian robot.

(a) Cartesian Coordinates (b) Cylindrical Coordinates

(c) Spherical Coordinates

(d) Polar or Articulated Coordinates

L.



Fig.8.2 TIM-3 Robot Configurations

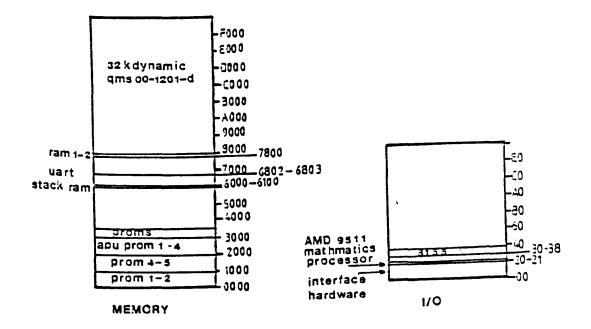
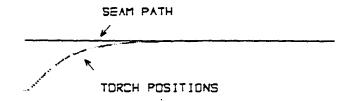



Fig.8.3 Memory and I/O maps of TIM-3 Controller

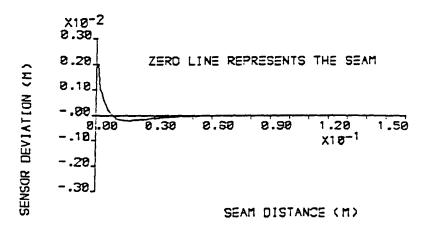
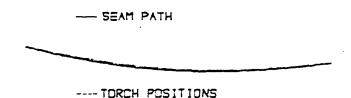



Fig.8.4 Searching for a straight line seam

.

SIMULATED SEAM PATH AND TORCH POSITIONS

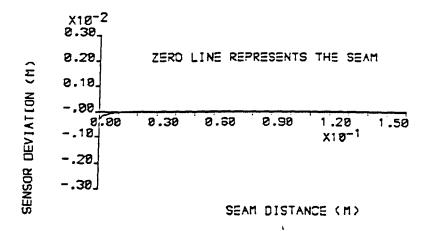
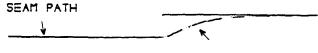
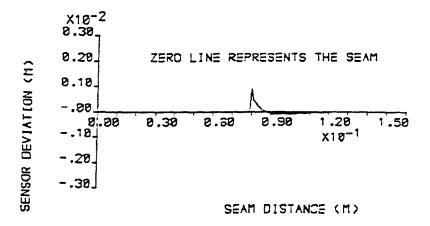



Fig.8.5 Tracking of a distorted seam

TORCH POSITIONS



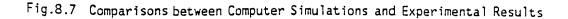
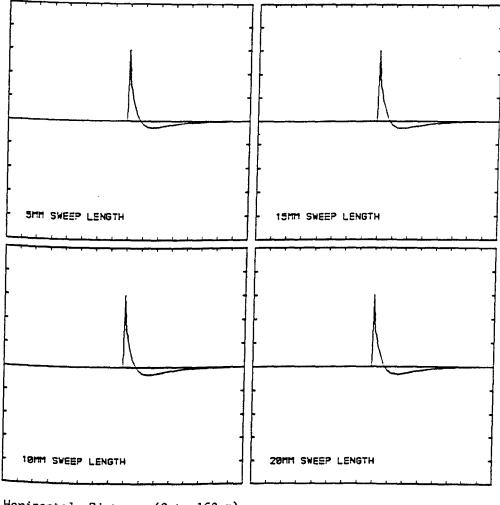
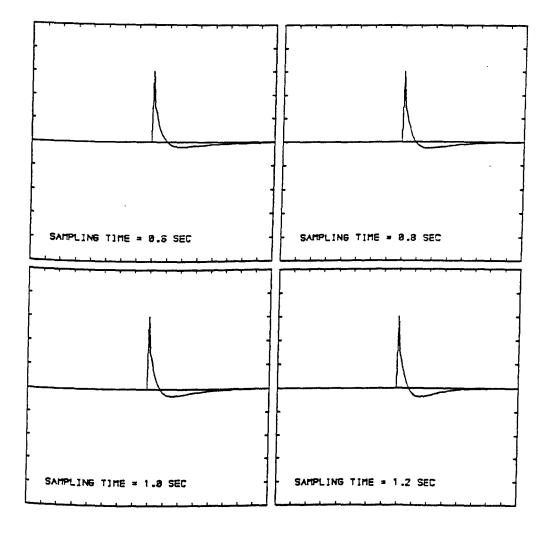
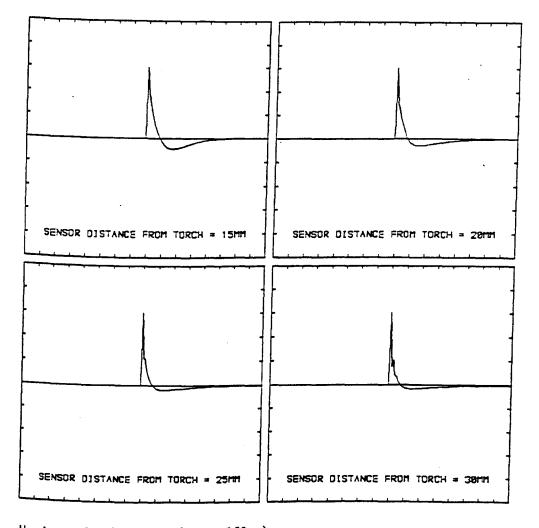



Fig.8.6 Tracking of an offset seam


Vertical: Deviation value (-100 to +100)

Horizontal: Distance (0 to 160mm) Vertical: Deviation value (-100 to +100)


Fig.8.8 Effects of Sweep Length Variations

Horizontal: Distance (0 to 160mm) Vertical: Deviation value (-100 to +100)

Fig.8.9 Effects of Sweep Rate Variations

÷

Horizontal: Distance (0 to 160mm) Vertical: Deviation value (-100 to +100)

Fig.8.10 Variations of Sensor Distance in front of the Torch

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

This research project has demonstrated the feasibility of automating TIG welding of aluminium under the high frequency (h.f.) electric transient interference conditions. In addition, for effective control in TIG welding it is necessary not only to carry out welding using robot and microcomputer techniques, but also to implement feedback control in use with sensors in order to ensure high precision and hence high quality welds.

A linear welding system was developed to investigate the feasibility of using microcomputers in controlling the TIG welding process. The welding system was first used for d.c. welding of stainless steel to test its capabilities without having h.f. transient interference. It was then converted to carry out a.c. welding of aluminium under h.f. transient interference conditions.

Interference suppressions was the major concern in automating aluminium welding. The objective was to suppress the source of interference, to eliminate interference coupling, and to reduce interference at equipment. The techniques used include filtering, isolation, shielding and grounding. The prototype which is operative showed merit of system design and construction.

In automated welding using the TIG process, high quality, high integrity welding of a joint seam requires precise seam tracking. This led to the investigation of sensors for robot guidance. Many commercially available seam trackers are vision-based systems which can achieve the required tracking performance for both speed and reliability. However, vision-based systems are normally very expensive. As one of the major considerations for system design was to minimise the cost, two low cost seam tracking systems were developed, namely the infra-red and ultrasonic.

Tests using the infra-red seam tracker demonstrated its capability performing seam tracking. Although the seam tracker may be affected by high speed operations, it is generally acceptable as normal welding speeds are relatively slow in comparison with the speed limit of the system. The infra-red seam tracker provided a solution to the problem of low cost precision welding.

A different approach to seam tracker design using ultrasonic techniques produced an alternative low cost sensor. The ultrasonic and infra-red seam trackers have the advantages common to most of the electronic sensors such as real time control and contactless operation. In comparison with the infra-red seam tracker, the ultrasonic seam tracker produces better defined sensed patterns and is less dependant on the surface cleanliness of the workpiece.

Both seam trackers were tested in conjunction with the TIM-3 cartesian robot. The TIM-3 robot has the rigidity and accuracy required for TIG welding operations. Computer simulations of robot position and sensor behaviour with respect to the variations of seam path showed evidence that the results obtained from experiments were correct.

The methods and techniques presented show considerable potential in automating the TIG welding process (d.c. or a.c) and performing seam tracking with closed loop control, at a low cost.

9.2 RECOMMENDATIONS FOR FUTURE WORK

In the automation of welding processes some further aspects need to be considered :

1) The TIM-3 robot used is a three-axis machine suitable for TIG welding. The robot has the capability to follow general weld joint paths, to store a wide range of welding parameters, and by monitoring the performance of the system, to take corrective actions. However, when more complex joint paths are involved, the robot requires more degrees of freedom to manipulate the torch or the workpiece to perform the required tasks. In recent research at Liverpool University a more advanced welding machine has been developed. It is known as the TIM-5 robot which contains the basic X-Y-Z axes as described for the TIM-3 machine, plus a wrist action. As the wrist action is an integral part of the welding operation, this system provides a further two degrees of freedom. In addition, a rotary table may also be attached to the TIM-5 robot to hold the workpiece and provide additional degrees of freedom. Alternatively, commercially available industrial robots may be used such as the PUMA 260/560/760 series robots manufactured by Unimation Inc. [42]. All these robots have the required rigidity and abilities to follow complex joint paths.

2) In the automation of aluminium welding the major problem encountered was the h.f. transient interference, which was caused by superimposing the welding current and the high frequency signals from the spark generator. Although applying interference suppression methods is one solution to the problem, it is generally considered to be expensive to achieve effective screening, especially when a large system such as a welding cell is concerned. One way to deal with this problem is to eliminate the source of interference by using other types of welding supply which provides the same performance but without using the spark generator. This may be achieved by converting the welding current from mains frequency into a fixed higher frequency of 1 to 10KHz, for example, since the arc will stay on if the welding current having a frequency of greater than 500Hz [43]. In this way, high frequency transients can be greatly reduced and system screening will become easier and less expensive. Obviously, this requires more investigation in future research work.

3) Both the infra-red and ultrasonic sensor systems can be modified to extend their applications from seam tracking to surface detection. For example, they can be used for detecting whether there is any missed welds or missed fillers by scanning the sensor across the finished weld line. Another area where the sensor systems can be used is guidance for polishing finished welds. The only alteration required is a modification of the software.

4) In terms of low cost, a new technique may be used for circuit designs in future work. This technique involves the design philosophy of Algorithmic State machines (ASM's) and some Erasable Programmable Logic Devices (EPLD's).

The concept of ASM is to apply a software approach to perform hardware digital circuit designs [44]. The technique has the advantage of providing synchronous operation as it uses processing states, which are generated by the same clock. This makes designs easier and safer when circuit timings are important.

EPLD's were produced by a combination of CMOS and EPROM erasable cell technologies [45]. These devices provide a convenient, low cost means of integrating many TTL and CMOS SSI/MSI logic gates into a small number of packages. EPLD's are one of many families of the user-defined Application-Specific Integrated Circuit (ASIC). Using EPLD's the benefits are: Chap. 9 Conclusions and Recommendations

- (a) low design cost.
- (b) ease of design changes.
- (c) multiple programming, if necessary.
- (d) low power dissipation.
- (e) high density products that maximise function, integration, and quality.
- (f) maximum flexibility in each chip that comes from programmable architecture, and the ability to erase and reprogram.

Applying the ASM method in conjunction with EPLD's, circuit designs will become more flexible and cost effective.

REFERENCES

- Sloan, K. and Lucas, J. "Microprocessor Control of TIG Welding System ". Proc. IEE, 129, Pt. E, (1) January 1982, pp128.
- [2] Morris, E. and Lucas, J. "Microcomputer Controlled Robotic Equipment for Precision TIG Welding System". Trans. Inst. MC vol.9, No.2, April-June 1987.
- [3] Clark, S. Lucas, J. and Parker, A.B. "Seam Tracker for TIG Welding". Proc. IEE D, July 1985, 132, pp164-167.
- [4] Houldcroft, P.T. "Weld Process Technology". Cambridge University Press, 1977.
- [5] Davies, A.C. "The Science and Practice of Welding". Cambridge University Press, 1972.
- [6] "SIGMA Stepping Motors". Unimatic Engineers Ltd., Granville Road Works, Cricklewood, London NW2.
- [7] Coll, J. "The BBC Microcomputer User Guide". British Broadcasting Corporation.
- [8] Gresham, R. "RFI Suppression and Mains Interference Filters: a review". Electronics Industry, January 1985, pp37-42.
- [9] Mager. G. "A Guide to Guarding Against Glitches". Power Protection, Aug. 1985. Vol.14, Part No.8, pp49-54.

- [10] Krans and Carver, "Electromagnetics". Second Edition, McGraw-Hill 1981, pp378.
- [11] Ott, H.W. "Noise Reduction Techniques in Electronic Systems". Wiley-Inter Science 1976.
- [12] Ciarcia, S. "Keep Power-Line Pollution Out of your Computer". BYTE, December 1983, pp36-44.
- [13] Greenwood, A. "Electrical Transients in Power Systems". Wiley Interscience, New York, 1971.
- [14] "AAC 350 Argonarc A.C. Welding Unit". BOC Welding Products Division and Export Department, North Circular Road, Cricklewood, London NW2, 1968.
- [15] Roberts, D.K. and Wells, A.A. "Fusion Welding of Aluminium Alloys". British Welding Journal, December 1954, pp553-560.
- [16] Kearns, W.H. "Welding Handbook, Fundamentals of Welding". Serventh Edition, Volume 2, American Welding Society, 1978.
- [17] Malin, V. " Designer's Guide to Effective Welding Automation ".Welding Journal, June 1986, pp43-52.
- [18] Rabkin, D.M. "Temperature Distribution Through the Weld pool in the Automatic Welding of Aluminium". British Welding Journal, March 1959, pp132-137.

- [19] Moore, G. "Robots in Arc Welding". Electronics and Power, April 1985, pp279-282.
- [20] Fenn, R. "Welding Robotics, Currently and in the Future". Welding Review, February 1985, pp28-33.
- [21] Schweppe, F.C. "Uncertain Dynamic Systems". Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- [22] Richarsion, R.W. "Robotic Weld Joint Tracking Systems Theory and Implementation Methods". Welding Journal, November 1986, pp43-51.
- [23] Clocksin, W.F. Barratt, J.W., Davey, P.G., organ C.G, and Vidler, A.R. "Sensory Control of Fixed Arm Robots for Continuous Path Fusion Welding of Vehicle Bodies". Paper 12 Proc. Int. Symp. Industrial Robotics, Paris, 1982, pp225-229.
- [24] Sweet, L.M. "Sensor-Based Control Systems for Arc Welding Robots". Rob. Comput. Integer Manuf. V2, N2, 1985, pp125-133.
- [25] Smith, J.S. Parker, A.B. and Lucas, J. "A Vision Based Seam Tracker for TIG Welding". Proceedings of the first international conference on computer technology in welding. The Welding Institute, London, U.K. 3-5 June 1986.
- [26] Grannan, D. "The New Weld Joint Trackers Their history and technologies". Welding Journal, March 1986, pp49-51.

- [27] Tan, C. and Lucas, J. "Low Cost Sensors for Seam Tracking in Arc Welding ". Proceedings of the first international conference on computer technology in welding. The Welding Institute, London, U.K. 3-5 June 1986.
- [28] Ford, P.C. "Low Cost Sensors for Robotic Welding". Ph.D Thesis, The University of Liverpool, 1985.
- [29] "DIGIPLAN 1054 Stepper Motor Drive Instruction Manual". Unimatic Engineers Ltd., Granville Road Works, Cricklewood, London NW2.
- [30] "INTEL Microsystem Components Handbook Microprocessor and peripherials". Vols. 1 and 2, Intel Corporation (U.K.) Ltd., Piper's Way, Swindon, Wiltshire SN3 1RJ.
- [31] "RS Components". RS Components Ltd., P.O. Box 99, Corby, Northants, NN179RS.
- [32] Drews, P. Frassek, B. and Willms, K. "Optical Sensor Systems for Automated Arc Welding". Robotics 2, 1986, pp31-43, Elsevier Science Pulishers B.V. (North - Holland).
- [33] Szilard, J. "Ultrasonic Testing". John Wiley and Sons Ltd., 1982.
- [34] Crawford, A.E. "Ultrasonics". Proc. IERE Conf. Ind. Loughbrough, 27, 1986.

References

- [35] Filipczynski, L. " Ultrasonic Methods of Testing Materials". Butterworths, London, 1966.
- [36] "Boxcar Detector 9415/9425". Brookdeal Electronics Ltd., Doncastle Road, Bracknell RG12 4PG, Berkshire, U.K.
- [37] Opie, C. "Interfacing the BBC Microcomputer". McGraw-Hill Book Company (U.K.) Ltd., 1984.
- [38] Kinsler, L.E. Frey, A.R. Coppens, A.B. and Sanders, J.V. "Fundamentals of Acoustics". 3rd Edition, John Wiley and Sons, 1982.
- [39] Blitz, J. "Ultrasonics Methods and Applications". Butterworths, London, 1971.
- [40] Engelberger, J.F. "Robotics in Practice". Avebury Pulishing Company, 1980.
- [41] Morris, E. "An Investigation into the Automation of TIG Welding". Ph.D thesis, The University of Liverpool, 1984.
- [42] Lee, C.S.G. Gonzalez, R.C. and Fu, K.S. "Tutorial on Robotics".2nd Edition, IEEE Computer Society Order Number 658.
- [43] Rider, G. "Measurement of Weld Pool Size by Scanned Photodiode Arrays" IEE Conference, 1975.

References

- [44] Winkel, D. "The Art of Digital Design: An introduction to top-down design". Prentice-Hall, Englewood Cliffs (N.J.), 1987.
- [45] "ALTERA Data Book". 1988, Ambar Cascom Ltd., Aabans Close, Aylesbury, Bucks. HP19 3RS.

APPENDIX I

(Program listing for Chapter 2)

.

```
*
 20 REM *
             ---- PROGRAM FOR THE D.C WELDING CONTROL UNIT ---- *
 30 REM *
                                                                      *
 40 REM *
                                                                      *
                This program controls the POLYPACK welding
 50 REM *
             machine and the linear traverse. It provides four
                                                                     *
 60 REM *
             options for the experimental and also synchronises *
 70 REM *
             the X-Y recorder for data recording such as sensor *
 80 REM *
                                                                      .....
 90 REM *
             signals.
                                                                      *
100 REM *
120
130 REM Reset speed.
130 s=0
140 PROCspeed
150 ?&FC00=0
160 REM Display title page,
170 CLS
180 PRINTTAB(1,6);
     "TYPES OF CURRENT PULSING FOR THE DC WELDING EXPERIMENT"

190 PRINTTAB(3,11); "1. CONSTANT CURRENT PULSING"
200 PRINTTAB(3,12); "2. SELECT CURRENT PULSING"
210 PRINTTAB(3,13); "3. INCREASE CURRENT PULSING"
220 PRINTTAB(3,14); "4. INC.AND DEC.CURRENT PULSING"

230 PRINT TAB(0,20); CHR$(136); CHR$(157); CHR$(132)
240 INPUT TAB(5,20); "PLEASE ENTER SELECTION(1-4)"; N
250 IF N<1 OR N>4 THEN 370
260 PROCtitle
270 REM Main program entries.

280 INPUT TAB(3,6); "Pulse on time in sec";tp
290 INPUT TAB(3,7); "Pulse off time in sec";tb
300 INPUT TAB(3,8); "Background current in amp";ib

310 IF N=1 THEN 350
320 IF N=2 THEN 360
330 IF N=3 THEN 370
340 IF N=4 THEN 380
350 PROCconstant
355 RUN
360 PROCselect
365 RUN
20 Fullin ease
375 RUN
380 PROCreturn
385 RUN
390
400 REM Subroutine for title characters.
410 DEF PROCtitle
420 CLS
430 PRINT CHR$(141); CHR$(157); CHR$(129); SPC(7); "WELDING CONTROL UNIT"
440 PRINT CHR$(141); CHR$(157); CHR$(129); SPC(7); "WELDING CONTROL UNIT"
                       "WELDING PARAMETERS:";
450 PRINT TAB(3,4); "WELDING PARANETERS:
TAB(3,5);"-----";
            TAB(3,15); "WORK MOVEMENT:";
TAB(3,16); "-----"
460 ENDPROC
```

```
470
480 REM Subroutine for display.
490 DEF PROCdisplay
500 PROCtitle
    PRINT TAB(3,6);"Pulse on time.....";tp"sec";
           TAB(3,7);"Pulse off time......;tp sec";
TAB(3,7);"Pulse off time......;tb"sec";
TAB(3,8);"Background current.....";ib"amp"
510
520
     ENDPROC
530
540 REM Subroutine for constant pulse current.
550 DEF PROCconstant
560 INPUT TAB(3,9); "Constant pulse current in amp"; ic
570 PROCdisplay
580 PRINTTAB(3, 9); "Constant pulse current..."; ic "amp"
590 PROCtraverse
600 PROCstart
605 i=ic
610 REPEAT
620 PROCpulsing
630 PRINTTAB(3,22);"PRESS RETURN TO START AGAIN"
640 UNTIL INKEY(20)=13
650 ENDPROC
660
670 REM Subroutine for 2 different levels of pulse current.
680 DEF PROCselect
690 INPUT TAB(3,9);"Pulse current level 1 in amp",i1
700 INPUT TAB(3,10); "Pulse current level 2 in amp", i2
710 PROCdisplay
     PRINT TAB(3,9); "Pulse current level 1....";il"amp";
720
           TAB(3,10);"Pulse current level 2....";i2"amp"
730
740 PROCtraverse
750 PROCstart
760 a=0
770 REPEAT
780 IF a=0 THEN
        i=i1
     ELSE
        i=i2
790 PROCpulsing
008
     IF i=i1 THEN
        a=1
     ELSE
        a=0
810 PRINT TAB(3,22);"PRESS RETURN TO START AGAIN"
820 UNTIL INKEY(20)=13
830 ENDPROC
840
     REM Subroutine for ramped current pulsing
850
860
     DEF PROCincrease
     INPUT TAB(3,9);"Step pulse current in amp",1
870
     INPUT TAB(3,10); "Maximum pulse current in amp", im
880
890 PROCdisplay
     PRINT TAB(3,9); "Step pulse current.....";1"amp";
900
           TAB(3,10); "Maximum pulse current...."; im "amp"
910 PROCtraverse
```

```
920 PRINT TAB(0,21); SPC(50); TAB(0,22); SPC(50)
 930 PROCstart
 940 i=ib
 950 IF i<=im THEN 970
      ELSE i=im
 960 PRINT TAB(3,21);"PRESS Y TO REPEAT";
            TAB(3,22);"PRESS RETURN TO START AGAIN"
 970 PROCpulsing
 980 i=i+1
 990 IF INKEY$(10)="Y" THEN 920
1000
     IF INKEY(10)<>13 THEN 950
         ELSE ENDPROC
1010
1020 REM Subroutine for inc. and dec. currnet pulsing.
1030 DEF PROCreturn
1040 INPUT TAB(3,9); "Step pulse current in amp", 1
1045 INPUT TAB(3,10); "Maximum pulse current in amp", im
1050 PROCdisplay
1060 PRINT TAB(3,9); "Step pulse current.....";1"amp"
            TAB(3,10); "Maximum pulse current...."; im "amp"
1070 PROCtraverse
1080 PRINT TAB(0,21);SPC(50);TAB(0,22);SPC(50)
1090 PROCstart
1100 c=1
1110 i=ib
1120 IF i>im THEN
         i=im
1130 PROCpulsing
1140 IF i<im AND c<3 THEN
         i=i+1
      ELSE 1160
1150 GOTO 1120
1160 c=c+1
1170 IF c>3 THEN i=i-1
1180 IF c>3 AND i<ib THEN 1190
      ELSE 1120
1190 PRINT TAB(3,21);"PRESS Y TO REPEAT";
TAB(3,22);"PRESS RETURN TO START AGAIN"
1200 IF INKEY$(20)="Y" THEN 1080
1210 IF INKEY(20)<>13 THEN 1200
1220 ENDPROC
1230
1240 REM Subroutine for starting welding operattion.
1250 DEF PROCstart
1260 x=ib*255/50
1270 ?&FC00=x
1280 PRINT TAB(3,12); "Operating current....."; x*50/255 "amp";
            TAB(2,22); CHR$(136); "PRESS G WHEN THE RECORDER IS READY"
      IF GETS="G" THEN
1290
      PRINT TAB(0,22); SPC(50)
     ELSE 1260
1300 ENDPROC
1310
1320 REM Subroutine for current pulsing.
1330 DEF PROCpulsing
```

```
1340 d=d
1350 PROCdirection
1360 t=tb*100
1370 IF s=0 THEN 1400
1380 s=0
1390 PROCspeed
1400 x=ib*255/50
1410 ?&FC00=x
1420 PRINTTAB(21,12);"....";x*50/255"amp";SPC(8)
1430 TIME=0
1440 REPEAT
1450 UNTIL TIME=t-200
1460 s=2
1470 PROCspeed
1480 TIME=0
1490 REPEAT
1500 UNTIL TIME=50
1510 s=0
1520 PROCspeed
1530 TIME=0
1540 REPEAT
1550 UNTIL TIME=100
1560 IF d=1 THEN
        d=0
     ELSE
        d=1
1570 PROCdirection
1580 s=2
1590 PROCspeed
1600 TIME=0
1610 REPEAT
1620 UNTIL TIME=80
1630 s=0
1640 PROCspeed
1650
     TIME=0
1660 REPEAT
1670 UNTIL TIME=100
1680 s=2
1690
     d≃d
1700 PROCdirection
1710 PROCspeed
1720 TIME=0
1730 REPEAT
1740 UNTIL TIME=30
1750 s=0
1760 PROCspeed
1770 TIME=0
1780 REPEAT
1790 UNTIL TIME=100
1800 s=s
1810 PROCspeed
1820 PROCrecorder
1830 x=i*255/50
1840
     ?&FC00=x
1850 FRINT TAB(21,12);"....";x*50/255"amp";SPC(8)
```

```
1860 TIME=0
1870 REPEAT
1880 UNTIL TIME=tp*100
1890 ENDPROC
1900
1910 REM Subroutine for traverse control.
1920 DEF PROCtraverse
1930 INPUT TAB(3,17); "Traverse speed in mm/sec";s
1940 INPUT TAB(3,18); "Direction (L /R)";d$
1950 IF d$="L" THEN
         d$="Left"
      ELSE
      IF d$="R" THEN
         d$="Right"
      ELSE 1930
      PRINT TAB(3,17); "Traverse speed....."; s"mm/sec";
TAB(3,18); "Direction....."; d$
1960
      IF d$="Left" THEN
1970
          d=0
      ELSE
           d=1
1980
      IF s=0 THEN 2000
1990 s=15.4/s
2000 ENDPROC
2010
2020 REM Subroutine for traverse speed setting.
2030 DEF PROCspeed
2040 ?&FE6B=&C0
2050 ?&FE64=s
2060 ?&FE65=s
2070 ENDPROC
2080
2090 REM Subroutine for traverse direction setting.
2100 DEF PROCdirection
2110 ?&FE62=&FF
2120 ?&FE60=d
2130 ENDPROC
2140
2150 REM Subroutine for switching on the X-Y recorder.
2160 DEF PROCrecorder
2170 ?&FE62=&FF
2180 IF d=1 THEN
          r=3
      ELSE
         r=2
2190 ?&FE60=r
2200 ENDPROC
```

APPENDIX II

(Program listing for Chapter 4)

```
10
     20 REM *
                                                             *
  30
     REM * ---- PROGRAM FOR THE AC WELDING CONTROL UNIT ---- *
  40 REM *
                                                             *
  50 REM *
               This program is written for the control of the *
  60
      REM * AC welding system. Once the system starts opera-
                                                            *
  70
      REM * tion, the program searches for the arc ignition
                                                            *
  80
      REM * signal and then controls the movements of the
                                                            *
  90
      REM * linear traverse in ramped speeds.
                                                            *
 100
     REM *
                                                            مارد
 110
     120
 130
      REM Main program
 140
     REM switch to text mode.
 145
     MODE 7
 150
     REM initialisation.
 155
     ?&FE62=&FB
 160 REM reset.
 165
     ?&FE60=&83
 170 REM control workpiece movements.
 175 PROCtraverse
180 REM switch welding power supply.
 185
     PROCpsu
190
     REM repeat.
 195
     RUN
 200
210
220
     REM Subroutine for title display.
230
     DEF PROCtitle
240
     CLS
250
     PRINT'
260
     PRINT CHR$(141);CHR$(157);CHR$(129);SPC(7);
           "AC WELDING CONTROL UNIT "
270
     PRINT CHR$(141);CHR$(157);CHR$(129);SPC(7);
           "AC WELDING CONTROL UNIT "
     PRINT TAB(3,6); "WORK MOVEMENT:";
TAB(3,7);"_____;
TAB(3,12); "WELDING PARAMETER:";
280
           TAB(3,13);"
290
     ENDPROC
300
310
     REM Subroutine for traverse control.
320
     DEF PROCtraverse
330
     CLS
340
     PROCtitle
350
     INPUT TAB(3,8);"Traverse speed in mm/sec";s
360
    IF s>0 THEN
       INPUT TAB(3,9); "Direction(L/R)";d$
    ELSE
       dS="L"
370
    IF ds="L" THEN
       d$="Left"
    ELSE
       IF ds="R" THEN
          d$="Right"
```

```
ELSE 330
    PRINT TAB(3,8); "Traverse speed(0-7mm/sec)..."; s"mm/sec"
380
390
    IF s>0 THEN
       PRINT TAB(3,9); "Direction.....";d$
    ELSE
       PRINT TAB(3,9); "Direction.....Statinary"
    IF d$="Left" THEN
400
       D=1
    ELSE
       D=0
410 IF s=0 THEN
       INPUT TAB(3,14); "Welding time in sec";t;SPC(5)
    ELSE 440
420 PRINT TAB(3,14);"Welding time.....";t"sec"
430 S=s
440 IF s>0 THEN
       S=15.4/s
    ELSE 470
450 INPUT TAB(3,14); "Welding length in mm"; 1
460 PRINT TAB(3,14); "Welding length....."; 1"mm"
470 ENDPROC
480
490 REM Subroutine for welding power switching.
500 DEF PROCpsu
510
    IF D=1 THEN
       A=&83
    ELSE
       A=&82
520 IF s=0 THEN
       T=t*100
    ELSE
       T=1/s*100 DIV 1
530 PRINT TAB(3,18);"PRESS SPC TO SWITCH ON"
540
    IF GET=&20 THEN
        ?&FE60=D
    ELSE 530
550 PRINT TAB(3,18); "WAITING....."; SPC(12)
560 count=0
570 x=?&FE60 AND &04
580 IF x=0 THEN
       count=count+1
    ELSE 560
590
    IF count=160 THEN
       PRINT TAB(3,18); "WELDING IN PROGRESS"; SPC(30)
    ELSE 570
    IF s=0 THEN
600
       ?&FE6B=&40
    ELSE
       ?&FE6B=&C0
610 set=TIME
620 REPEAT
630
    REM time for
635
     ?&FE64=S
640S REM speed setting.
645
     ?&FE65=S
```

650 S=S/1.001 660 REM set delay. 665 FOR y=1 TO 200 670 NEXT y 680 UNTIL TIME>=set+T 690 ?&FE60=A 700 ?&FE6B=&40 710 PRINT TAB(3,18);"JOB COMPLETED";SPC(23); TAB(3,19);"PRESS SPC TO START AGAIN" 720 IF GET=&20 THEN 730 ELSE 710 730 ENDPROC

APPENDIX III

(Program listing for Chapter 6)

•

ROMAS Assembler (C)1985 TBK Associates

0000		0000 "*	·····*				
0000		0001 TAB 12					
0000		0002 WIDTH 82					
0000		0003 PROC '808	5'				
0000		0004 TITLE 'Th	e infra-red main processor'				
0000		0005					
0000							
0000		0007 *******	***************************************				
0000		ooos 🚓 Thi	s program deals with the capturing "				
0000		0000 it of dat	a and the conversion of analogue to "				
0000		anto in diaito	the signals It also determines the "				
0000		0011 1% centre	is centre of the seam by analysing the sensed				
0000		0012 :* natter	and hence commands the robot to *				
0000		· · · · · · · · · · · · · · · · · · ·					
_		0015 .** correc	;* correct seam offsets. ************************************				
0000							
0000		0015					
0000		0016	erating system calls				
0000			erating system ourse				
0000		0018	equ O				
0000	(0000)	0019 reset	equ 1				
0000	(0001)	0020 crlf	equ 2				
0000	(0002)	0021 error	equ 3				
0000	(0003)	0022 interf					
0000	(0004)	0023 rd_chr	equ 4				
0000	(0005)	0024 wt_chr	equ 5				
0000	(0006)	0025 message	equ 6				
0000		0026					
0000		0027					
0000		0028 ;operatin	g system equates				
0000		0029	6.01				
0000	(0001)	0030 err_tp	equ &01				
0000	(0002)	0031 set_ip	equ &02				
0000	(0003)	0032 set_op	equ &03				
0000	(000A)	0033 set_pt	equ &Oa				
0000	(000B)	0034 set ex	equ &Ob				
0000	(000C)	0035 set_hd	equ &Oc				
0000	(0011)	0036 en rst65	equ &11				
0000	(0014)	0037 dis rst65	equ &14				
0000	(001D)	0038 pnt nmer	equ &ld				
0000	(001C)	0039 pnt_hx	equ &1c				
0000	(001F)	0040 pnt_sg	equ &lf				
0000	(0030)	0041 in uar	equ &30				
0000	(0050)	0042					
0000		0043					
0000		0044 ;stream e	guates				
0000		0045	1				
0000	(0001)	0045 0046 com stm	equ &01				
0000	(0001)	0040 COm_stm 0047 dbg stm	equ &00				
0000	(0000)	0047 (dbg_stm 0048	-				
0000							
0000		0049 0050 ;hardware	equates				
0000		-	cymmetrice.				
	(0001)	0051 0052 mont 2	equ &21				
0000	(0021)	0052 port_a	cdo ant				

ROMAS Assembler (C)1985 TBK Associates

0000	(0022)	0053	port b	equ &22
0000	(0023)		port_c	equ &23
0000	(3001)		uar ad	equ &3001
0000	(0001)	0056		
0000		0057		
0000			;step board equates	
0000			,step board equates	
	(0001)	0059		equ 1
0000	(0001)		find_sync	equ 2
0000	(0002)		on_sync	equ 3
0000	(0003)		sta_spl	-
0000	(0004)	0063	stp_spl	equ 4
0000	(0005)	0064	take_data	equ 5
0000	(0006)	0065	debug	equ 6
0000		0066		
0000		0067		
0000		0068	;controller equates	
0000		0069	,	
0000	(0002)		sta sg	equ 2
0000	(0002)			equ 3
-	(0003)		stp_sg	equ 4
0000	(0004)		dbg_rq	equ 5
0000	(0005)		rst_sg	equ 6
0000	(0006)	0074	min_width	equio
0000		0075		
0000		0076	_	
0000		0077	;memory workspace	
0000		0078		
0000	(5100)	0079	mem_base	equ &5100
0000	(5200)		table	equ &5200
0000	(5300)		tabmin	equ &5300
0000	(5400)		array	equ &5400
0000	(5500)		breadth	equ &5500
0000	(5600)		array_pos	equ &5600
0000	(3000)	0085	<u></u>	
0000		0086		
5100		0087	org mem_base	
5100		0088	018	
5100		0000	;define workin space	
5100			,derine workin	
	0000	0090	men etri	ds 2
5100			rou_etr:	ds 2
5102			stk_pr:	ds 2
5104	0000		stp_stk:	ub L
5106		0094	1 letter ve	wirenace
5106			;centre calculation wo	rkspace
5106		0096		1- 1
5106			end_va:	ds 1
5107			ref:	ds 1
5108			tot_ct:	ds 2
510A	0000		thresh:	ds 2
510C			trans:	ds 1
510D			pairs:	ds 1
510E			index:	ds 1
510F			min err:	ds 1
5110			cen va:	ds 1
			······································	

ds 1 5111 00 0106 ref ce: ds 1 5112 00 0107 the err: 5113 0108 org &6000 6000 0109 6000 0110 0111 ;******--- MADOS ROM HEADER ---****** 6000 6000 0112 db '(C)W',0,10,13 6000 28432957000A 0113 db 'Adc Board V1.0',0 ;title. 6007 41646320426F 0114 ret 6016 C9 0115 6017 0116 org &6020 6020 0117 6020 0118 0119 ;********--- PROGRAM ENTRY ---********* 6020 6020 0120 ;program entry lxi h,beg 6020 214560 0121 ;set return from error call set er 6023 CD2960 0122 ;as beg 6026 C34560 jmp beg 0123 6029 0124 ;set routine for error 0125 set_er: shld rtn_et 6029 220051 ;vector exit lxi h,fai_rn 602C 213D60 0126 ;which errors to trap mvi a,err_tp 602F 3E01 0127 ;error exit vector rst interf 6031 DF 0128 db set hd 6032 OC 0129 lxi h,0 6033 210000 0130 dad sp 6036 39 0131 inx h 6037 23 0132 ;sort out stack ptr inx h 6038 23 0133 ;clean up 6039 220251 shld stk_pr 0134 603C C9 ret 0135 603D 0136 ;gets here on an error 0137 fai_rn: lhld stk pr 603D 2A0251 sphl 6040 F9 0138 ;after error vectors lhld rtn et 6041 2A0051 0139 pchl 6044 E9 0140 6045 0141 0142 ;*******-- INITIALISE SYSTEM --******** 6045 0143 ; Set up input/output ports, counters, 6045 0144 ;indirection vectors and flags etc. 6045 0145 ;*********************************** 6045 6045 0146 ;set port B as output mvi a,&42 6045 3E42 0147 beg: ;and A as input rst interf 6047 DF 0148 db set pt 6048 OA 0149 ;reset output port 6049 3EFF mvi a,&ff 0150 out port b 604B D322 0151 mvi a, com stm 604D 3E01 0152 rst interf 604F DF 0153 db set_ip 6050 02 0154 6051 C35460 0155 jmp sta_sy 6054 0156 6054 0158 ; This routine sends a reset signal to the 6054

					1 b Gauge the		
6054		0159) ; stepping motor drive board before the) ; commands from the robot controller can be				
6054		0160	; comma	nds from the robo	t controller call be		
6054		0161	; ident	ified.	٠		
6054		0162	; ******	*********************	******************		
6054		0163					
6054	F7	0164	sta_sy:	rst message	1 0		
6055	0A0D57616974		_	db 10.13. Waiting	g,0		
6062	3E04	0166		mvi a,stp_spl	;send signal		
	CD7C60	0167		call wrt_sb	;to second processor.		
6067	E7	0168		rst rd_chr	;read input		
6068	FE02	0169		cpi sta_sg	;port and		
	CA8E60	0170		jz sta_pg	;identify		
	FE04	0171		cpi dbg_rq	; command.		
	C25460	0172		jnz sta_sy			
6072	020400	0173		5			
6072		0174					
	3E06	0175		mvi a,debug			
	CD7C60			call wrt_sb			
		0176		mvi a,dbg_stm	;here do debug		
	3E00	0177		rst interf			
6079		0178		db set ip			
607A		0179		ret	;return to debug		
607B	C9	0180					
607C		0181		UDITE TO THE SECO	ND PROCESSOR****		
607C		0182	,******	WRITE TO THE BECC	mmand to the second		
607C							
607C		0184	; proces	sor through prot	D. 		
607C		0185	, 2626262626263 ,	2373737373737 X X X X X X X X			
607C		0186	-	576	;mask msb		
	E67F	0187	wrt_sb:	ani ¢/i	;take strobe low		
	D322	0188		out port_b	;read strobe		
	DB23	0189	wai_hg:	in port_c	;on pc3		
	E608	0190		ani &08	;wait		
	CA8060	0191		jz wai_hg	;read output data		
	DB22	0192		in port_b	;take strobe high		
	F680	0193		ori &80	, take strobe high		
	D322	0194		out port_b	;and return		
608D	C9	0195		ret	, and recurn		
608E		0196		WITH PROCEAM			
608E		0197	• *************** ?	** MAIN PROGRAM			
608E		0198					
608E	3E01	0199	sta_pg:	mvi a,find_sync	;send sign		
	CD7C60	0200		call wrt_sb	;second processor.		
6093		0201		rst message	;message for		
6094	0A0D66696E64	0202		db 10,13, find sy	nc ,0		
60A0	3E03	0203		mvi a,sta_spl	;indicate start		
	CD7C60	0204		call wrt_sb	;sampling.		
60A5	F7	0205		rst message			
	0A0D73746172			db 10,13, start s	sampling',0		
60B7	3E80	0207		mvi a,880	;take 128 as the		
	320651	0208		sta end_va	; initial reference.		
	3E42	0209		mvi a,&42	;switch off		
	D320	0210		out &20	;timer.		
	CD2161	0211		call chg di	;generate two sweeps		
				0_			

60C3 CD2161	0212	call chg_di	; for initialisation.
60C6 CD4A61	0213	call sample	;start sampling.
60C9 CD9361	0214	call fin_cn	;determine centre.
60CC 3A1051	0215	lda cen_va	
60CF 321151	0216	sta ref_ce	
60D2	0217		
60D2 3A0130	0218 rpt_lp:	lda uar_ad	;check for
60D5 E602	0219	ani &02	;from the robot
60D7 CAE560	0220	jz no_inp	;controller.
60DA E7	0221	rst rd_chr	;if it is a
60DB FE03	0222	cpi stp_sg	;stop or a reset
60DD CA5460	0223	jz sta_sy	;command, return
60E0 FE05	0224	cpi rst_sg	;to the initial
60E2 CA5460	0225	jz sta sy	;stage.
60E5	0226	5 2 -	
60E5 CD2161	0227 no_inp:	call chg di	;if not,
60E8 CD4A61	0228	call sample	;start
60EB CD9361	0229	call fin_cn	;operation.
60EE 3A1051	0230	lda cen va	;current
60F1 47	0230	mov b,a	;centre value.
60F2 3A1151		lda ref_ce	previous
60F5 90	0232	sub b	centre value.
	0233	cma	compare the
60F6 2F	0234	inr a	two values and
60F7 3C	0235	sta the_err	deduce an error.
60F8 321251	0236	call pnt_nm	;print.
60FB CD0964	0237	call commu	;commu with
60FE CD0761	0238	jz sta_sy	;robot controller.
6101 CA5460	0239	jz sta_sy jmp rpt_lp	;repeat.
6104 C3D260	0240	Jub thc th	j = - F
6107	0241	COMMUNICATION	IS******
6107	0242 ;*******	routine communic	ates with
6107	0243 ; 1h1s	obot controller.	
6107	0244 ; the r	0000 0000101101 *******	יאר אר א
6107			
6107	0246	lda the_err	;send erro
6107 3A1251	0247 commu:	call wrt_rb	;robot controller.
610A CD1461	0248	rst rd_chr	;check for
610D E7	0249	cpi stp_sg	;commands
610E FE03	0250	-	;from the
6110 C8	0251	IZ	;robot controller.
6111 FE05	0252	cpi rst_sg	,10000 00000000000
6113 C9	0253	ret	
6114	0254	UDITE TO DODO	restriction - T
6114	0255 ;*******	WRITE TO ROBO	commands to
6114	0256 ; This	routine writes of	onmands to
6114	0257 ; the r	obot controller.	****
6114			
6114	0259		
6114 F5	0260 wrt_rb:	push psw	
6115	0261		
6115 3A0130	0262 rd_agn:		
6118 OF	0263	rrc	
6119 D21561	0264	jnc rd_agn	

611C F1	0265	pop psw				
611D 320030	0266	sta uar_ad-1				
6120 C9	0267	ret				
6121	0268					
6121	0269 :*****	** DIRECTION	****			
6121	0270 : This	routine waits fo	r the			
6121	0271 : dire	ction to change f	rom a			
6121	0272 · high	· high to a low before passing				
6121	0273 ; cont	rol to the next s	ection			
6121	0274 · of c	odes				
6121	0275 ;*****	*****	26.26.26.26.26.26			
6121	0276		and ment of			
6121 DB23	0277 chg_di	: in port_c	;read port c.			
6123 E601	0278	ani &01	;LSB is direction.			
6125 CA2161	0279	jz chg_di	;repeat till high.			
6128 OE10	0280	mvi c,&10	unad anain			
612A DB23	0281 not_dn	: in port_c	;read again			
612C E601	0282	ani &01	;to avoid ;hardware			
612E CA2161	0283	jz chg_di	;nardware ;glitches.			
6131 OD	0284	dcr c	;glitches.			
6132 C22A61	0285	jnz not_dn				
6135	0286					
6135	0287					
6135	0288		;read port c			
6135 DB23	0289 wat_lw	: in port_c	;untill low.			
6137 E601	0290	ani &01	, untill low.			
6139 C23561	0291	jnz wat_lw				
613C 0E10	0292	mvi c,&10	;repeat			
613E DB23	0293 ndn_ag	ani &01	;to ensure			
6140 E601	0294	jnz wat_lw	;positive			
6142 C23561	0295		;reading.			
6145 OD	0296	dcr c jnz ndn_ag	,			
6146 C23E61	0297	ret				
6149 C9	0298	IEL				
614A 614A	0299	* DATA SAMPLING				
614A	ADA1 . This	routine performs	data			
614 <u>A</u>	0307 · camp	ling by waiting I	or a low			
614A		I are mulice on the	LUC.			
614A	0304 *****	10w purse on one	ארארארארארארארארארארארארארארארארא			
614A	0305					
614A 210052	0306 sample	: lxi h,table	;data base.			
614D 0E00	0307	mvi c,00	;counter numb=256.			
614F CD5E61	0308 nxt_pn		;capture data			
6152 47	0309	mov b,a	;number of sample			
6153 CD5E61	0310	call get_da	;capture data.			
6156 80	0311	add b	;sum up number.			
6157 77	0312	mov m,a	;store data.			
6158 23	0313	inx h	;inc. addr.			
6159 OD	0314	der e	;dec. counter.			
615A C24F61	0315	jnz nxt_pn				
615D C9	0316	ret				
615E	0317					

615E	0318		
615E DB21	0319 get_da:	in port_a	
6160 E602	0320	ani &O2	
6162 CA5E61	0321	jz get_da	;wait for high
6165 DB21	0322	in port_a	
6167 E602	0323	ani &02	
6169 CA5E61	0324	jz get_da	;wait for high
616C	0325		
616C DB21	0326 not_lw:	in port_a	
616E E602	0327	ani &02	
6170 C26C61	0328	jnz not_lw	;wait for low
6173 DB21	0329	in port_a	
6175 E602	0330	ani &O2	
6177 C26C61	0331	jnz not_lw	
617A	0332		
617A	0333		
617A DB21	0334 not_hg:	in port_a	
617C E602	0335	ani &02	
617E CA7A61	0336	jz not_hg	;wait for high
6181 DB21		in port_a	
6183 E602	0338	ani &02	
6185 CA7A61	0339	jz not_hg	;wait for high
6188	0340	5	
6188 DB21	0341	in port a	
618A CD8E61	0342	call div_4	
618D C9	0343	ret	
618E	0344		
		rar	;divide accumulator by
618E 1F	0345 div_4:		;divide accumulator by ;four
618E 1F 618F 1F	0345 div_4: 0346	rar	-
618E 1F 618F 1F 6190 E63F	0345 div_4: 0346 0347		-
618E 1F 618F 1F 6190 E63F 6192 C9	0345 div_4: 0346 0347 0348 0349	rar ani &3f ret	-
618E 1F 618F 1F 6190 E63F 6192 C9 6193	0345 div_4: 0346 0347 0348 0349	rar ani &3f ret	;four
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193	0345 div_4: 0346 0347 0348 0349	rar ani &3f ret	;four
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 "	rar ani &3f ret extend 'adc2' .*	;four
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353	rar ani &3f ret extend 'adc2' .*	; four
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;*****	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th</pre>	; four *" ********
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 : of da	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th ta elements and t</pre>	; four *" ******* ne number cransition
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 : point	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th ta elements and t s for the determine </pre>	;four *" ******* he number transition ination of
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the C	<pre>rar ani &3f ret extend 'adc2' .*</pre>	; four *" ******* he number transition ination of a.
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the C	<pre>rar ani &3f ret extend 'adc2' .*</pre>	; four *" ******* he number transition ination of a.
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;*****	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th ta elements and t s for the determine </pre>	; four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;*****	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th ta elements and t s for the determi entre of the seam ************************************</pre>	;four *" ***********************************
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn:	<pre>rar ani &3f ret extend 'adc2' .* * FIND CENTRE - routine counts th ta elements and t s for the determi entre of the seam ************************************</pre>	;four ;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four *" ***********************************
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four ;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6195 6195 6195 6195 6196 6196 6196 6196 6196 6196 6196 6196 6196 6196 6196 6197	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;******* 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365 0366 ;******	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four ,*
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6193 6193 6193 6193 6193 6193 619	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;******* 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365 0366 ;*******	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four *
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6195 6195 6195 6196 761 6196 761 6196 761 6197 79 610061 6197 6197 79 6100 610 6107	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365 0366 ;*******	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four ,*
618E 1F 618F 1F 6190 E63F 6192 C9 6193 6195 6196 70061 6196 70061 619F C9 61A0 61A0 61A0 61A0 61A0 61A0 61A0 61A0	0345 div_4: 0346 0347 0348 0349 0350 0351 " 0352 0353 ;****** 0354 ; This 0355 ; of da 0356 ; point 0357 ; the c 0358 ;****** 0359 0360 fin_cn: 0361 0362 0363 0364 0365 0366 ;*******	<pre>rar ani &3f ret extend 'adc2' .*</pre>	;four ,*

61A0	0071		
	0371 0372 counts	lxi b,table	;point to data table
61A0 010052	0372 count:	lxi h,0	;clear sum.
61A3 210000	0373	lxi d,0	;clr de for 16-bit add.
61A6 110000	0374		;get first parameter.
61A9 OA	0375 nxt_in:	Idax D	;move data to de.
61AA 5F	0376	mov e,a	; add the data.
61AB 19	0377	dad d	; move to next byte.
61AC 03	0378	inx b	;check for end table.
61AD 79	0379	mov a,c	;&c0 points.
61AE FEOO	0380	cpi &00	;repeat.
61B0 C2A961	0381	jnz nxt_in	store the total.
61B3 220851	0382	shld tot_ct	;store the total.
61B6 C9	0383	ret	
61B7	0384		
61B7	0385 ;******	** THRESHOLDIN	$\frac{1}{2} = \frac{1}{2} $
61B7	anac . This	routine deduce the	ne threshol
61B7	0387 ; level	from (total cou	nt / total
61B7			
61B7	0389 ******	er) X J. ************************	************
61B7	0390		
61B7 2A0851	0391 fin th:	lhld tot_ct	;get the total count.
61BA 44	0392	mov b,h	;move to bc prior to
61BB 4D	0393	mov c,1	division by number;
_		lxi d,&100	of sample (256).
61BC 110001	0394	call dv	;division (bc/de).
61BF CD3164	0395	call mul_3	;multiplication (x3).
61C2 CD2664	0396	lxi d,4	proportional to thres
61C5 110400	0397	call dv	value returned
61C8 CD3164	0398	mov a,c	in a and store
61CB 79	0399	sta thresh	as thres. value.
61CC 320A51	0400	ret	,
61CF C9	0401	let	
61D0	0402	TRANSITION PO	INTS****
61D0	0403 ;******	routine finds the	e number of
61D0	0404 ; This	ition points and	hence to
61D0	0405 ; trans	mine the centre p	position of
61D0			
61D0	0407 ; a sea	lm . .***********************************	אר א
61D0			
61D0	0409	Ind h tabla	;data base
61D0 210052	0410 fin_tn:	lxi h,table	;array address.
61D3 110054	0411	lxi d,array	;threshold level.
61D6 3A0A51	0412	lda thresh	, threshord rever.
61D9 B7	0413	ora a	
61DA 47	0414	mov b,a	
61DB 0E00	0415	mvi c,&00	
61DD	0416		Jana suith
61DD 7E	0417 fin_hg:		; compare data with
61DE B8	0418	cmp b	;threshold value.
61DF D2FB61	0419	jnc high	;if data > thres.,
61E2 23	0420 arrnd:	inx h	; jump to f
61E3 7D	0421	mov a,l	;check for
61E4 FE00	0422	cpi &00	;last
61E6 CA1962	0423	jz column	;column.

61E9	C3DD61	0424		jmp fin_hg	
61EC		0425			10 1 to o three
61EC		0426 fin_	<u>lw:</u>	mov a,m	;if data < thres.,
61ED	B8	0427		cmp b	;jump to
61EE	DAOA62	0428		jc low	;found-low.
61F1		0429		inx h	; inc. column addr.
61F2		0430		mov a,l	;check for
	FEOO	0431		cpi &00	;last
	CA1962	0432		jz column	;column.
	C3EC61	0433		jmp fin_lw	
61FB	035001	0435		J	
61FB	FD	0434 0435 high		xchg	;store +ve
61FC				mov m,e	;transition
61FD		0436		xchg	;locatio
		0437		inx h	; increament
61FE		0438		inx d	column address.
61FF		0439		mov a,l	check for
6200		0440			;last
	FEOO	0441		cpi &00	; column.
	CA1962	0442		jz column	; inc. counter.
6206		0443		inr c	;go for -ve trans.
6207	C3EC61	0444		jmp fin_lw	,go ioi ve trans.
620A		0445		_	estara -NO
620A	EB	0446 low:		xchg	;store -ve
620B	73	047		mov m,e	;transition
620C	EB	0448		xchg	;location
620D	23	0449		inx h	; increament
620E		0450		inx d	;column address.
620F	7D	0451		mov a,l	;check for
	FEOO	0452		срі &00	;last
	CA1962	0453		jz column	;column.
6215	00	0454		inr c	; inc. counter.
	C3DD61	0455		jmp fin_hg	;go for next +ve trans
6219		0456			
6219		0457			
6219		0458 colu	mn:	mov a,c	
621A		0439		inr c	
	3EFF	0460		mvi a,&ff	
621D		0400		xchg	
021E		(mov m,a	
621E		04c3 was_	he:		;store the number
	320C51	0464		sta trans	;of trans. points
6220	CD0964	0464		call pnt_nm	; and print.
	CD0964			ours Pro	
6226		0466	c + •	lda trans	;if trans. < 4,
6220	3A0C51			cpi &04	assume glitches only
	FE04	0468		jc no_sm	;i.e. no seam.
0228	DAF563	0469			; if trans. < 6,
ozze	FE06	0470		cpi &06	assume one seam.
0230	DABF62	0471		jc one_sm	; if trans. < 8,
6233	FE08	0472		cpi &08	assume two seams.
6235	DACB62	0473		jc two_sm	; if trans. < 10,
6238	FEOA	0474		cpi &Oa	;assume three seams.
623A	DA2F63	0475		jc thr_sm	; if greater, find pair
623D	C34062	0476		jmp fwd_pr	in greater, time burn

6240	0477				
6240	0478		exte	end 'adc3'	. "
6240	0479	"	.*		.*"
6240	0480				
6240 3A0C5	1 0481	fwd_pr:			;find out
6243 E601	0482			&01	;trans. is even
6245 C24C6				is_odd	;or odd.
6248 3A0C5	1 0484		lda	trans	; if even,
624B 3C	0485		inr		;width_pairs=trans+1-2
624C 3D	0486	is_odd:	dcr	а	; if odd,
624D 3D	0487		dcr		;width_pairs=trans-2
624E 320D5	1 0488			pairs	;restore width_pairs
6251 4F	0489		mov	c,a	;as counter.
6252	0490				
6252 21005			lxi	h,array	; refer to trans arr
6255 11005	5 0492			d,breadth	;locate breadth addr.
6258 46	0493	repeat:	mov	b,m	;load trans value.
6259 23	0494		inx		;load next
625A 7E	0495		mov	a,m	;trans value.
625B 90	0496		sub	b	;cal. breadth
625C EB	0497		xch	3	;and
625D 77	0498		mov	m,a	;store.
625E EB	0499		xch	g	;repeat
625F 13	0500		inx	d	;to find
6260 OD	0501		dcr	с	;the next one.
6261 C2586	2 0502		jnz	repeat	
6264 C3676.				fin mi	
6267	0504		• •	-	
6267 21005.	5 0505	fin mi:	lxi	h,breadth	;locate breadth addr.
626A 1E00	0506	<u>_</u>	mvi	e,&00	;reset reg. e.
626C 3A0D5	1 0507		lda	pairs	;use width pair
626F 4F	0508		mov	c,a	;as counter.
6270 3EFF	0509		mvi	a,&ff	;max no for init value.
6272	0510				
6272 BE	0511	rep_ag:	\mathtt{cmp}	m	;if m is g
6273 DA786	0512			try_nt	;try next one.
6276 7E	0513			a,m	;if smaller, swop.
6277 53	0514		mov	d,e	;record number.
n:271	0515				
6278 1C	0516	try_nt:			;repeat for
6279 23	0517		inx		;all counts
627A OD	0518		dcr		;and a no. of min
627B C2726.				rep_ag	;values is found.
627E C3816	2 0520		jmp	del_pr	
6281	0521				
6281 3A0C5		del_pr:			;delete a
6284 D602	0523		suí		;pair of
6286 32005				trans	;transition points.
6289 4F	0525			c,a	use new trans
628A 42	0526			b,d	;number and the
628B 78	0527		mov		;number of mins.
628C 320E5				index	store in index.
628F 21005	4 0529		1 x i	h,array	;refer to

6292	110054	0530	lxi d,array	;trans array.
6295	CDA762	0531	call mov_pt	;ponit to
6298	3A0E51	0532	lda index	;min location.
629B	47	0533	mov b,a	;rearrange
629C	79	0534	mov a,c	;transition
629D	90	0535	sub b	;array.
629E	23	0536	inx h	
629F	23	0537	inx h	
62A0	47	0538	mov b,a	
	CDB162	0539	call mov_bl	
	C32662	0540	jmp chk ct	
62A7		0541		
62A7	78	0542 mov_pt:	mov a,b	;number
62A8		0543	ora a	;of
62A9		0544	rz	;min.
62AA		0545		
62AA	23	0546 next:	inx h	;inc. array
62AB		0547	inx d	;address.
62AC		0548	dcr b	
	C2AA62	0549	jnz next	
62B0		0550	ret	
62B1	0)	0551		
62B1	78	0552 mov_b1:	mov a,b	
62B2		0553	ora a	
62B3		0554	rz	
62B4	00	0555		
62B4	7E	0556 nxt_mv:	mov a,m	;rearrange
62B5		0557	xchg	;array.
62B6		0558	mov m,a	
62B7		0559	xchg	
62B8	23	0560	inx h	
62B9	13	0561	inx d	
62BA	05	0562	dcr b	
	C2B462	0563	jnz nxt_mv	
62BE	C9	0564	ret	
62BF		0565		14.1
	210054	0566 one_sm:	lxi h,array	;seam position
6202		0567	inx h	;=(t1+t2)/2.
⊳_03		0568	mov a,m	
62C4		0569	inx h	
62C5	86	0570	add m	
62C6		0571	rar	
62C7	C9	0572	ret	
62C8		0573		
62C8		0574 mke_po:	cma	
62C9		0575	inr a	
62CA	C9	0576	ret	
62CB		0577		
62CB		0578 two_sm:		;set counter.
62CD	CDC863	0579	call do_wd	;consider width
62D0		0580	mvi c,&02	;and consi
	CDB363	0581	call do_pos	;positions.
62D5		0582		

62D5 0E00	0583	mvi c,&00	;reset cou
62D7 3EFF	0584	mvi a,&ff	;set initial
62D9 320F51	0585	sta min_err	;min_err. ;consider breadth
62DC 210055	0586	lxi h,breadth	; and posit
62DF 110056	0587	lxi d,array_pos	; if breadth is
62E2 7E	0588	mov a,m	;smaller than min
62E3 FE06	0589	cpi min_width	;smaller than min ;width, jump
62E5 DA0063	0590	jc small1	;subroutine.
62E8 EB	0591	xchg	;check for
62E9 46	0592	mov b,m	the last
62EA EB	0593	xchg	;value.
62EB 3A0651	0594	lda end_va	,vaiue.
62EE 90	0595	sub b	
62EF FCC862	0596	cm mke_po	;compare
62F2 47	0597	mov b,a	;with min
62F3 3A0F51	0598	lda min_err	;error.
62F6 B8	0599	cmp b	;error.
62F7 DA0063	0600	jc small1	;if smaller,
62FA 78	0601	mov a,b	;store new value.
62FB 320F51	0602	sta min_err	;Store new varue.
62FE 0E01	0603	mvi c,1	
6300	0604		;first
6300 23	0605 small1:	inx h	;consider
6301 13	0606	inx d	;vidth.
6302 7E	0607	mov a,m	;width.
6303 FE06	0608	cpi min_width	
6305 DA2063	060 9	jc small2	
6308 EB	0610	xchg	;second
6309 46	0611	mov b,m	;consider
630A EB	0612	xchg	;position.
630B 3A0651	0613	lda end_va	,posteron.
630E 90	0614	sub b	
630F FCC862	0615	cm mke_po	;last
6312 47	0616	mov b,a lda min_err	;consider
6313 3A0F51	0617		;error.
6316 B8	0618	cmp b jc small2	,011011
6317 DA2063	0619	mov a,b	
631A 78	0620	sta min_err	
631B 320F51	0621	mvi c,2	
631E 0E02	0622	μv1 C,2	
6320	0623	motr # C	;consider
6320 79	0624 small2:	ora a	;the
6321 B7	0625	jz too_sa	;second
6322 CADE63	0626	lxi h,array_pos	
6325 210056	0627		,
6328 7E	0628 again1:	dcr c	
6329 OD	0629		
632A C8	0630	rz	
632B 23	0631	inx h	
632C C32863	0632	jmp againl	
632F	0633	merci a \$-0.3	;set count
632F 0E03	0634 thr_sm:		for three
6331 CDC863	0635	call do_wd	, LOL UNLOG

6334	0E03	0636	mvi c,&03	;seams the
6336	CDB363	0637	call do_pos	;do width,
6339		0638		
6339		0639	mvi c,&00	;position,
633B	3EFF	0640	mvi a,&ff	;and error.
633D	320F51	0641	sta min_err	
	210055	0642	lxi h,breadth	
	110056	0643	lxi d,array_pos	
6346		0644	mov a,m	;compare with
6347		0645	cpi min_width	;min_width.
6349	DA6463	0646	jc_too_s1	
634C		0647	xchg	
634D		0648	mov b,m	
634E		0649	xchg	;consider
	3A0651	0650	lda end_va	;position.
6352		0651	sub b	, posicion.
	FCC862	0652	cm mke_po	
6356		0653	mov b,a	;compare with
6357	3A0F51	0654	lda min_err	;min err.
635A		0655	cmp b jc too_sl	,0
	DA6463	0656	mov a,b	
635E		0657	sta min_err	
635F	320F51	0658	mvi c,1	
6364	0E01	0659	mvi C,i	
- + .		0660	iny h	
6364		0661 too_s1:	inx d	
6365 6366	13	0662	mov a,m	;consider
	FE06	0663 0664	cpi min_width	;width.
	DA8463	0665	jc too_s2	
636C	FR	0666	xchg	
636D		0667	mov b,m	;get
636E		0668	xchg	;position.
	3A0651	0669	lda end va	
6372		0670	sub b	
	FCC862	0671	cm mke_po	
6376		0672	mov b,a	
6377	3A0F51	0673	lda min_err	;compare with
637A	B8	0674	cmp b	;min_err.
	DA8463	0675	jc too_s2	
637E	78	0676	mov a,b	
	320F51	0677	sta min_err	
	0E02	0678	mvi c,2	
6384		0679		
6384		0680 too_s2:	inx h	
6385		0681	inx d	compare with
6386		0682	mov a,m	;compare with
6387	FE06	0683	cpi min_width	;min_width.
6389	DAA463	0684	jc_too_s3	
638C		0685	xchg	
638D		0686	mov b,m	
638E		0687	xchg	· ant
0201	3A0651	0688	lda end_va	;get

6392	90	0689	sub b	;position.
	FCC862	0690	cm_mke_po	· •
6396		0691	mov b,a	
	3A0F51	0692	lda min err	;compare with
639A		0693	cmp b	;min_err.
	DAA463	0694	jc too_s3	
639E		0695	mov a,b	
639F	320F51	0696	sta min_err	
63A2		0697	mvi c,3	
63A4		0698		
63A4	79	0699 too_s3:	mov a,c	
63A5		0700 -	ora a	
63A6	CADE63	0701	jz too_sa	
	210056	0702	lxi h,array_pos	;consider
63AC		0703 try_rp:	mov a,m	;position.
63AD	OD	0704	dcr c	
63AE	C8	0705	rz	
63AF	23	0706	inx h	
63B0	C3AC63	0707	jmp try_rp	
63B3		0708		
	210054	0709 do_pos:	lxi h,array	
	110056	0710	lxi d,array_pos	
63B9		0711	inx h	;rearrange
63BA		0712 agn_nx:	mov a,m	;position
63BB		0713	inx h	;array.
63BC		0714	add m	, array.
63BD		0715	rar	
63BE		0716	xchg mov m,a	
63BF		0717	xchg	
6300		0718	inx h	
63C1 63C2		0719	inx d	
63C3		0720 0721	dcr c	
	C2BA63	0722	jnz agn_nx	
63C7		0723	ret	
63C8	0)	0724		
	210054	0725 do_wd:	lxi h,array	
	110055	0726	lxi d,breadth	
63CE		0727	inx h	
63CF		0728 nxt_tm:	mov b,m	;rearrange
63D0	23	0729	inx h	;breadth
63D1	7E	0730	mov a,m	;array.
63D2	B7	0731	ora a	
63D3	90	0732	sub b	
63D4		0733	xchg	
63D5		0734	mov m,a	
63D6		0735	xchg	
63D7		0736	inx h	
63D8		0737	inx d	
63D9		0738	dcr c	
	C2CF63	0739	jnz nxt_tm	
63DD	69	0740	ret	
63DE		0741		

2

-	0A0D416C6C20 3E00		too_sa:	rst message db 10,13,'All mvi a,&00 ret	too small ',O
	0A0D4E6F2073 3E00		no_sm:	rst message db 10,13,'No s mvi a,&00 ret	
6409 640A 640B 640C 640E 640F	C5 E5 2600 6F	0752 0753 0754 0755 0756 0757 0758	pnt_nm:	<pre>push psw push b push h mvi h,00 mov l,a ora a jp no_ext</pre>	;print ;sign ;and ;number.
6413 6414 6416 6418 6419 641A	25 060A 3E03 DF 1F F7 202020202020 E1	0761 0762 0763 0764	no_ext:	<pre>dcr h mvi b,&0a mvi a,&03 rst interf db pnt_sg rst message db ' ',0 pop h pop b</pre>	
6423 6424 6425 6426 6426 6426 6426 6426	F1	0768 0769 0770 0771 0772	; This ; number	pop psw ret - MULTIPLICATION routine multipl: r by three.	ies the
6426 6427 6427 6428 6428 6420 6420 6422 6427 6427 6430	210000 09 09 44 4D E1	0775 0776 0777 0778 0779 0780 0780 0781 0782 0783 0783	mul_3: I c c c n n F		;multiply ;value ;by ;three. ;result ;return ;to bc.
6431 6431 6431 6431 6431 6431 6431 6431	2F	0785 0786 0787 0788 0789 0790 0791 0792 0793 0794	; This i ; number; bc and ; ******* dv: r	www DIVISION routine divides rs which are con d de. www.www.www. mov a,d cma mov d,a	two 16-bit ntained in

61.01	75	0705		
6434		0795	mov a,e	
6435		0796	cma	
6436		0797	mov e,a	;for two's complement.
6437		0798	inx d	; init remainder.
	210000	0799	lxi h,0	; initialise counter.
643B		0800	mvi a,&11	;save remainder
643D		0801 dv0:	push h	;subtract divisor.
643E		0802	dad d	;store, restore HL.
643F	D24364	0803	jnc dv1	;store, restore nil.
6442		0804	xthl	
6443		0805 dv1:	pop h	
6444	F5	0806	push psw	;save counter (A).
6445	79	0807	mov a,c	;4 reg. left shift
6446	17	0808	ral	;with carry.
6447	4F	0809	mov c,a	
6448		0810	mov a,b	
6449		0811	ral	
644A		0812	mov b,a	
644B		0813	mov a,l	
644C		0814	ral	
644D		0815	mov l,a	
644E		0816	mov a,h	
644F		0817	ral	
6450		0818	mov h,a	
6451		0819	pop psw	;restore counter (A)
6452		0820	dcr a	;decrement it
	C23D64	0821	jnz dv0	;keep looping
6456	020204	0822	5	
6456		0823		;post-divide clean up
6456		0824		;shift remainder right
6456		0825		;and return in DE
6456		0826		
6456	B7	0827	ora a	
6457	7C	0828	mov a,h	
6458		0829	rar	
6459		0830	mov d,a	
645A		0831	mov a,l	
645B		0832	rar	
645C		0833	mov e,a	
645D	-	0834		;average value in BC.
645D	C9	0835	ret	
645E		0836		
645E		0837	end	

No error(s) found

Symbol table:

IN_UAR0030 INDEX510E IS_ODD624C END_VA5106
--

MESSAGE0006 MIN_WIDTH0006 MEM_BASE5100 MIN_ERR5	10F
MOV_PT62A7 MOV BL62B1 MKE PO62C8 MUL 364	426
NO_INP60E5 NOT DN612A NDN AG613E NXT PN61	14F
NOT_LW616C NOT_HG617A NXT_IN61A9 NEXT62	200
NXT_MV62B4 NXT_TM63CF NO_SM63F5 NO_EXT64	1/
ON_SYNCO002 ONE_SM62BF PNT_NMERO01D PNT_HXO0	10
PNT_SGO01F PORT_AO021 PORT_BO022 PORT_CO0	10
PAIRS510D PNT_NM6409 RESET0000 RD_CHR00	23
RST_SG5100 ROU_ETR5100 REF5107 REF_CE51	11
RPT I P. (ODD RD EN COLOR REF	11
RPT_LP60D2 RD_AGN6115 REPEAT6258 REP_AG6258 SET_LP AGN6115 REPEAT6258 REP_AG6258	12
SET_IP0002 SET_OP0003 SET_PT000A SET_EX00	OB
SET_HD000C STA_SPL0003 STP_SPL0004 STA_SG00	02
STP_SG0003 STK_PR5102 STP_STK5104 SET_ER60	29
STA_SY6054 STA_PR608E SAMPLES614A SMALL263	20
TOO_S26384 TAKE DATA0005 TABLE5200 TABMIN530	00
TOT_CT5108 THRESH510A TRANS510C THE_ERR51	12
TRY_NT6278 TWO SM62CB AGAIN16328 THR_SM6328	2F
TOO_S363A4 TRY RP63AC UAR_AD3001 WR_CHR000	35
WRT_SB607C WAI_HG6080 WRT_RB6114 WAT_LW613	35
WAS_HG621F	

0000		0000		.*	••••••••••
0000			TAB 12		
0000		0002	WIDTH 82		
0000		0003	PROC '8085	1	
0000		0004	TITLE 'The	inf	ra-red second processor'
0000					
0000		0006	********	****	*********************************
0000		0007	.* Thic	nrng	ram mainly concentrate on the "
0000		0000	in control	of	the sweeping motor. It is syn- "
0000		0000	,* chronis	ed w	ith the adc processor board *
0000			1 1 4 1	h	ot controller.
0000		0010	, ************************************	****	*************
		0012	,		
0000					
0000		0013	Mador one	ratio	ng system calls
0000				1001	ag by the second s
0000		0015		equ	0
0000	(0000)		reset	equ	
0000	(0001)		crlf		
0000	(0002)		error	equ	
0000	(0003)		interf	equ	
0000	(0004)		rd_chr	equ	
0000	(0005)		wt_chr	equ	5
0000	(0006)	0022	message	equ	6
0000		0023			
0000		0024	;operating	syst	tem equates
0000		0025			
0000	(0001)	0026	err_trp	equ	
0000	(0002)	0027	set_ip		&02
0000	(0003)	0028	set_op		&03
0000	(000A)		set_pt		&0a
0000	(000B)		set_ex		&0b
0000	(0000)	0031	set_hd		&0c
0000	(0011)	0032	en_rst65		&11
0000	(0014)	0033	dis_rst65		&14
0000	(001D)	0034	pnt_nmb		&1d
0000	(001C)	0035	pnt_hx		&1c
0000	(001F)		pnt_sgn		&1f
0000	(0030)		uart	equ	&30
0000	(0050)	0038			
0000		0039	;hardware	equat	tes
0000		0040	,	-	
0000	(0021)		port_a	equ	&21
0000	(0022)		port_b		&22
0000	(0022)		port_c		&23
0000	(0025)	0043	port_c	1	
0000		0044			
0000			;memory wo	rksp	ace
0000		0048	,memory wo	P	
0000	(5100)		mem_base	ean	&5100
0000	(5100)	0048	mem_pase	uqu	
5100		-		0.000	mem_base
5100		0050		OLS	
2100		0051			

5100 0000 ds 2 0052 rou ety: ds 2 5102 0000 0053 stk ptr: 0054 stp_stk: ds 2 5104 0000 5106 0055 ds 1 5106 00 0056 trans: ds 1 5107 00 0057 pairs: ds 1 5108 00 0058 index: ds 1 5109 00 0059 min err: ds 1 0060 end va: 510A 00 510B 0061 510B 0062 org &6000 6000 0063 6000 0064 0065 ; rom header for mados 6000 6000 0066 db '(C)W',0 ;rom entry db 10,13,'Stepper Motor Control',0 6000 2843295700 0067 6005 0A0D53746570 0068 ret 601D C9 0069 601E 0070 org &6020 6020 0071 6020 0072 0073 ;set up ports 6020 6020 0074 ;Set up Port A mvi a,&01 0075 set_st: 6020 3E01 ;as Output. rst 3 6022 DF 0076 ; db set pt 6023 OA 0077 ;stop motors mvi a,00 6024 3E00 0078 ;take busy low out port a 6026 D321 0079 6028 0080 0081 ;****-- PROGRAM INITIALISATION --**** 6028 0082 ; This section performs the requir 6028 0083 ; initial settings prior to receiv 6028 0084 ; a command from the adc board. 6028 0085 ;*********************************** 6028 6028 0086 lxi h,set_st ;initial 6028 212060 0087 sta_pg: call set ers ;settings. 0088 602B CD4E61 shld stp stk 602E 220451 0089 jmp beg 6031 C33460 0090 6034 0091 ;Disable 8253 mvi a,00 6034 3E00 0092 beg: ;with a low. out port_a 6036 D321 0093 ;Set up 8253 timer. call intsy 6038 CD8461 0094 ;(Sync only.) 603B 0095 603B 0096 rst 6 603B F7 0097 db 10,13, 'Waiting',0 603C 0A0D57616974 0098 rst 3 ;Disable 6046 DF 0099 db dis_rst65 ;RST 6.5. 6047 14 0100 6048 0101 ;command interpreter. call intptr 6048 CD4E60 0102 loop: 604B C34860 jmp loop 0103 604E 0104

604E		0105	; ********	 COMMAND INTEL 	RPREPTER*******				
604E		0106	. This rou	. This routine gets a command word from the					
604E		0107	, add board wis the 8155, decodes it and						
604E		0108	· then cal	is the relevent	t routine. The com-				
604E		A1 AA		+ havo a numbel	r less than o.				
604E		0110	*********	***********	*****************				
604E		0111							
604E			intptr:						
604E	CDB861		com er:	call rd_bol	;get				
6051		0114		ora a	; command.				
	CA4E60	0115		jz com_er					
6055		0116		cpi 8					
	D24E60	0117		jnc com_er					
605A		0118		dcr a	;when a				
605B		0119		rlc	;command				
605C		0120		mov c,a	; is received,				
605D		0120		mvi b,0	;refer to the				
	216860	0121		lxi h,com_tb	;command table				
6062				dad b	; and identify				
		0123		mov e.m	;the correct				
6063		0124		inx h	;command.				
6064		0125		mov d,m	,				
6065		0126		xchg					
6066		0127		pch1					
6067	E9	0128		peni					
6068		0129		COMMAND TABLE -	-****				
6068		0130	;;;;;;;;;;;;== (civ commands	and				
6068		0131	; There are	e six commands ects the progra	and to				
6068			• • • • • •		-OUT THE.				
6068		0133	; the its o		*****				
6068			• 98989898989898989898989898989898989						
6068		0135	. 1	dw fin sy	;1				
6068			com_tb:	dw on syn	;2				
606A		0137			;3				
606C		0138		dw sta_sp dw stp sp	;4				
606E		0139		dw stp_sp dw tak da	;5				
6070		0140			;6				
6072	7560	0141		dw debug	,0				
6074		0142		al data antiviti	****				
6074				tak_data****					
6074		0144		- +					
6074			tak_da:	ret					
6075		0146			_ مارد مارد مارد				
6075		0147	;****** I(eturns to os					
6075		0148			l's alls the				
6075		0149	debug:	mvi a,&00	;disable the				
6077		0150		out port_a	;motor.				
6079		0151		rst 6	1.0				
	0A0D64656275	0152		db 10,13, 'debu	1g ,U				
6082	2A0251	0153		lhld stk_ptr	;find correct exit				
6085	F9	0154		sphl	;point				
6086		0155		ret					
6087		0156							
6087		0157	********	on_sync -~*****	**				
				-					

6087		0158		rst 6	
6087			on_syn:	db 10,13, 'on a	sync'.0
	0A0D6F6E2073			call stp_mt	•disable the
	CD4961	0161			;motor.
6095	C9	0162		ret	,
6096		0163	1.1.1.1.1.1.1.1.	the compline	****
6096			; ******	stop_sampling	
6096		0165			
6096			stp_sp:	rst 6 db 10,13,'sto	n motor' O
	0A0D73746F70			call stp_mt	disable the
60A5	CD4961	0168			;motor.
60A8	C9	0169		ret	Juotori
60A9		0170		مارد باد م	
60A9		0171	*******	park_arm****	ho.
60A9		0172	; drives t	he sensor to th	iie
60A9		0173	; initial	position.	الدماله والد
60A9		0174	*******	************	
60A9		0175		11	;set up 8253.
	CD8461	0176	pk_arm:	call intsy	;disable both
60AC		0177		mvi a,&00	;counters.
60AE		0178		out port_a	;set motor
60B0	3E80	0179		mvi a,&80	;speed.
60B2	320340	0180		sta &4003	
60B5	3E00	0181		mvi a,&00	;lsb.
60B7	320140	0182		sta &4001	mah
60BA	3E20	0183		mvi a,&20	;msb.
	320140	0184		sta &4001	;enable
	3E02	0185		mvi a,&02	;direction.
	D321	0186		out port_a	,ulleeellen
	0E10		rp_int:	mvi c,&10 in port_c	
	DB25		rep_in:	ani &01	
	E60 1	0189		jnz rp_int	
	C2C360	0190		dcr c	;wait for
6000		0191		jnz rep_in	direction low.
	C2C560	0192		Juz rep_m	,
60D0		0193		mvi a,&03	;enable both
	3E03	0194		out port_a	;counters.
	D321	0195		Out port	,
60D4		96			
60D4		0197	wai_lw:	mvi c,&10	;set timer.
	0E10			in port_c	detect
	DB23		wlw_gl:	ani &02	for low.
	E602 C2D460	0200		jnz wai_lw	
60DD		0201		dcr c	;repeat to
	C2D660	0202 0203		jnz wlw_gl	avoid glitches.
60E1	620000			J	
	0E40	0204	wai_h2:	mvi c,&40	;reset timer.
6051	DB23		wh2 gl:	in port_c	;detect
	E602	0208	w112_B1.	ani &02	for high.
	CAE160	0207		jz wai_h2	
60EA	000	0208		der c	;repeat until
	CAE360	0210		jz wh2_g1	;time up.
0000	OUPDOO	0210		J0-	

60EE		0211			disable both
	3E00	0212		mvi a, & OO	;disable both ;counters.
	D321	0213		out port_a	, councers.
60F2	C9	0214		ret	
60F3		0215		a alasha	to also also
60F3		0216	******	find sync**	
60F3		0217	; starts the	he stepper moto	br
60F3		0218	; running a	and waits for	
60F3		0219	; interrup	from sync.	Labore
60F3		0220	• ************************************	נאראנ אראר אר אראראראראראראראראראר	
60F3		0221			
60F3	F7	0222	fin_sy:	rst 6	
60F4	0A0D66696E64	0223		db 10,13, 'find	i sync ,0
6100	CDA960	0224		call pk_arm	
6103	CD8461	0225		call intsy	;enable 8253 with a
6106	3E01	0226		mvi a,01	;high. (speed only)
6108	D321	0227		out port_a	;nigh. (speed only)
610A		0228			1
610A	CD1F61	0229	start:	call init	;detect on
	CD3461	0230			;detect off sync.
6110	F7	0231		rst 6	
	0A0D6F6E2073	0232		db 10,13, 'on s	sync ,0
611B		0233			
611B	CD4961	0234		call stp_mt	
611E		0235		ret	
611F		0236			
611F		0237	;*** on S	sync detection	
611F		0238			
611F	DB23	0239	init:	in port_c	;wait for
	E602	0240		ani O2	;chopper
6123	C21F61	0241		jnz init	;sync.
6126	0E20	0242		mvi c,&20	;short ;glitch check
6128		0243	glit:		
6128		0244			;delay. ;try
	DB23	0245		in port_c	;again.
	E602	0246		ani O2	;OK?
612C	C21F61	0247		jnz init	; OK:
612F		0248		dcr c	
6130	C22861	0249		jnz glit	
6133	C9	0250		ret	
6134		0251		1	
6134		0252	;*** off	sync detection	1
6134		0253			;wait for
6134	DB23	0254	init_2:	in port_c	;chopper
6136	E602	0255		ani O2	
6138	CA3461	0256		jz init_2	;sync. ;short
	0E20	0257		mvi c,&20	;glitch check
613D		0258	glit_2:		;delay.
613D		0259			
613D	DB23	0260		in port_c	;try
61.3F	E602	0261		ani O2	; again.
6141	CA3461	0262		jz init_2	;OK?
6144	OD	0263		dcr c	

6145	C23D61	0264		jnz glit_2	
6148		0265		ret	
6149		0266			
6149		0267	******	stop_motor**	*****
6149		0268			
6149	3E00	0269	stp_mt:	mvi a,&00	;disables
614B	D321	0270		out port_a	;the motor.
614D	C9	0271		ret	
614E		0272			
614E		0273	; ****** - =	set_error***	22,22,22
614E		0274			
614E	220051	0275	set_ers:	shld rou_ety	;routine
6151	216261	0276		lxi h,fai_rn	;entries.
6154	3E01	0277		mvi a,err_trp	
6156	DF	0278		rst interf	
6157	00	0279		db set_hd	
6158	210000	0280		lxi h,O	
615B	39	0281		dad sp	
615C	23	0282		inx h	
615D	23	0283		inx h	
615E	220251	0284		shld stk_ptr	
6161	C9	0285		ret	
6162		0286			a laada a haafa aha
6162		0287	. ****** ,	error_handler -	
6162		0288			
	2A0451	0289	fai_rn:	lhld stp_stk	
6165		0290		sphl	
	2A0051	0291		lhld rou_ety	
6169		0292		pchl	
616A		0293			
616A		0294	alashalashi m+	art sampling	*****
616A		0295	This roll	tine sets the n	otor
616A		0007	. amond an	d direction 201	ng,
616A 616A		0297	, speed an	******	*****
616A		0298	,		
	CD9461		sta_sp:	call inter	
616D		0301	JudF	rst 6	
	0A0D73746172			db 10,13,'star	t sampling',0
617F	3E03	0303		mvi a,&03	;enable 8253
	D321	0304		out port_a	;both counters
6183	= =	0305		ret	
6184		0306			
6184		0307	********	synchronisatio	on*******
6184		0308	• This rou	tine sets up th	le interval
6184		0309	. timor (8	253) for synchi	onisation.
6184		0310	*******	***********************	*************
6184		0311	-		
6184	3E34		intsy:	mvi a,&34	;mode 2.
6186	320340	0313		sta &4003	;(motor speed)
6189	3E00	0314		mvi a,00	;LSB count.
	320040	0315		sta &4000	;
618E	3E04	0316		mvi a,04	;MSB count.

l

(100				-+-	&4000	3
	320040	0317			a 4000	•
6193		0318		ret		•
6194		0319			1	_ showing the start of
6194		0320	; ****** ;	inter	val timer	
6194		0321	; This rout	tine	programs t	
6194		0322	; to contro	ol th	le speed an	la the
6194		0323	; sweep rat	te.		
6194		0324	, sweep 10	*****		
6194		0325				1 0
6194	3E34	0326	inter:	mvi	a,&34	;mode 2.
	320340	0327			&4003	;(motor speed)
	3E00	0328		mvi	a,00	;LSB count.
	320040	0329			&4000	;
	3E04	0330		mvi	a,04	;MSB count.
	320040	0331		sta	&4000	• 3
	3E80	0332		mvi	a,&80	;mode 3.
	320340	0333		sta	&4003	;(reverse)
	3E5A	0334		mvi	a,&5a	;LSB count. (2D)
	320140	0335			&4001	9
		0336			a,&16	;MSB count. (OB)
	3E16				&4001	3
	320140	0337		ret		3
61B2		0338		100		
61B3		0339	; *********	- che	ck data	かっか かっかっかっかっか
61B3		0340	; checks fo	or da	ta from ot	her
61B3		0341	; board, i.e	o is	strobe lo	w and
61B3		00/0	- moturne 7	7010	if data av	allable
61B3		0343	; returns 2	2010	********	***
61B3			,			
61B3		0345	able da.	in p	ort_b	;check msb of port b
	DB22		chk_da:	ani	&80	•
	E680	0347		ret		
61B7		0348		100		
61B8		0349	, ******* 1 ,	read	board1*	*****
61B8			;	Lead_		
61B8		0351	ad holy	push	Ъ	;save registers used.
61B8			rd_bo1:		ort_a	;read status of.
	DB21	0353		ani	&03	stepper enables.
	E603	0354			port_a	;clear busy.
	D321	0355	ad athe	in n	ort_b	;check port_b bit seve
	DB22		rd_stb:	ani		;as is strobe.
	E680	0357			rd_stb	;wait for low strobe.
	C2BF61	0358				;read status.
	DB21	0359		ani	ort_a	;clear false bits.
	E603	0360				;set busy bit.
	F604	0361		ori		;set busy high.
6100	D321	0362			port_a	;get data.
	DB22	0363			ort_b	;clear msb (strobe).
	E67F	0364		ani		;store in b.
61D2		0365		mov	D,a	; check strob.
	DB22		wait_high:		ort_b	;check for strobe high.
	E680	0367			&80	;repeat for strobe hig
61D7	CAD361	0368			ait_high	;repeat for strobe mag ;read 8254 status.
61DA	DB21	0369		in p	ort_a	jreda ozo4 status:

61DC E603 61DE D321 61E0 78 61E1 C1 61E2 C9 61E3 61E3	0370 0371 0372 0373 0374 0375 0376	ani &03 out port_a mov a,b pop b ret	;put busy ;low. ;get data. ;restore b ;and return.
61E3 61E3	0376 0377	end	

No error(s) found

Symbol table:

 BEG------6034
 CRLF----0001
 INTPTR----604E
 COM_ER----604E

 COM_TB-----6068
 CHK_DA----61B3
 DIS_RST65---0014
 DEBUG-----6075

 ERROR------0002
 ERR TRP----0001
 EN_RST65----0011
 FIN_SY----60F3

 FAI_RN-----6162
 GLIT-----6128
 GLIT_2----613D
 INTERF----0003

 UART-----0030
 INDEX-----5108
 INIT-----611F
 INIT_2----6134

 INTSY-----6184
 INTER-----6194
 END_VA-----510A
 LOOP-----6048

 MESSAGE-----0006
 MEM_BASE-----5100
 MIN_ERR-----5109
 ON_SYN-----6087

PROGRAM ORPROF * THIS PROGRAM IS USED FOR PRODUCING SEAM * * PROFILE PLOTS. IT CAN BE USED FOR CHAPTER * * * SIX OR SEVEN. PARAMETER(NSAMP=300) DIMENSION YARRAY (NSAMP), XARRAY (NSAMP) INTEGER LAB(11) CHARACTER TITLE*60, TYPE*60 READ(7,100) TITLE, TYPE 100 FORMAT(A60) DO 200 J=0,15 READ(7,*) (YARRAY(I), I=(16*J)+1, (16*J)+16) 200 CONTINUE DO 300 J=1,NSAMP XARRAY(J)=J300 CONTINUE С C THE GRAPHICS BIT CALL GINO CALL SAVDRA С CALL DEVDAP(280.0,280.0,0) CALL WINDO2(0.0,280.0,0.0,280.0) CALL SOFCHA CALL CHASIZ(3.0,3.0) С X0 = 40.0YO=60.0 YL=Y0-4.0 CALL AXIPOS(1,X0,Y0,70.0,1) CALL AXIPOS(1,X0,Y0,70.0,2) CALL AXISCA(3,10,0.0,260.0,1) CALL AXISCA(3,12,0.0,120.0,2) CALL GRID(-2,0,1)CALL AXILAB(LAB, 11, 3, 1, YL, 1) CAL GRAMOV(-50.0,0.0) CALL CHAANG(90.0) CALL CHASTR('SENSOR SIGNAL (ADC OUTPUT NUMBERS)') CALL GRAMOV(30.0, -20.0) CALL CHAANG(0.0) CALL CHASTR('SWEEP DISPLACEMENT (MM)') CALL GRAMOV(30.0,140.0) CALL CHASTR(TITLE) CALL GRAMOV(-26.0,-30.0) CALL CHASTR('TYPE: ') CALL CHASTR(TYPE) CALL GRAPOL (XARRAY, YARRAY, 256) CALL DEVEND CALL GINEND DATA LAB/2H 0,2H 1,2H 2,2H 3,2H 4,2H 5,2H 6,2H 7,2H 8,2H 9,2H10/ STOP END

PROGRAM ANG2045

***	******
*	THIS PROGRAM READS THE DATA FILE C2045 AND PLOTS *
*	THE DATA ON THE GRAPH OF DETECTED DEVIATION AGAINST *
*	SENSOR TRAVELLED DISTANCE. THE OBJECTIVE IS TO SHOW *
*	THE SENSOR'S ABILITY IN DETECTING SEAM DEVIATIONS *
*	WHEN MOVING ALONG A STRAIGHT LINE PATH (CHAPTER 6). *
***	***************************************
	DIMENSION ERR1(600), ERR2(600), ENUM(600), DIST(600)
	INTEGER HEIGHT
	CHARACTER TITLE*70, TYPE*70
	READ (7, '(A)') TITLE, TYPE
	READ (7,*) HEIGHT, SPEED
	J=0
	MAXN=0
10	0 READ (7,*) (ENUM(I), I=(J*10)+1, (J*10)+10)
•	D0 1 $I = (J*10)+1, (J*10)+10$
	IF (ENUM(I).EQ.9999.) MAXN=I-1
С	1 CONTINUE
U	SEPERATE TWO SETS OF DATA.
С	MIDNUM=MAXN/2
č	SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS, NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED.
Ŭ	IF (MAXN.GT.0) GO TO 200
	J=J+1
	GO TO 100
20	DO 2 I=1, MAXN
С	ONE SWEEP = 10MM IN 1S AND 256 SAMPLES
С	ERROR FROM SEAM = ERROR SIGNAL * (SWEEP RATE / SAMPLE RATE)
	J=I-MIDNUM
	IF (I.LE.MIDNUM) THEN
	ERR1(I) = ENUM(I) * 16.5/256
	DIST(I)=I*SPEED
	ELSEIF (I.GT.MIDNUM) THEN
	ERR2(J)=ENUM(I)*16.5/256 ENDIF
	CONTINUE
	CONTINUE
С	PRINTOUT INPUT PARAMETERS
	PRINT*, 'END OF DATA FILE .'
	PRINT*, 'NUMBER OF ERRORS =', MIDNUM
	PRINT*, 'SENSOR HEIGHT =', HEIGHT, 'MM'
	PRINT*, 'SPEED OF TORCH =', SPEED, 'MM/S'
~	
С	THE GRAPHICS BIT
	CALL GINO
	CALL SAVDRA
	CALL DEVPAP(280.0,280.0,0)
	CALL WINDO2(0.0,280.0,0.0,280.0)
	CALL SOFCHA CALL CHASIZ(3.0,3.0)
	VALUE (0110) (0,0,0,0)

С

```
SET CO-ORDINATES
XO=30.0
YO=100.0
XR=250.0
YR=110.0
TX=65.0
TY=Y0+YR+20.0
YS1=90.0
YS2=80.0
YS3=70.0
YS4=60.0
YS5=50.0
YS6=40.0
CALL AXIPOS(1,X0,Y0,XR,1)
CALL AXIPOS(1,X0,Y0,YR,2)
CALL AXISCA(3,10,0.0,DIST(MIDNUM),1)
CALL AXISCA(3,8,-8.0,8.0,2)
CALL GRID(3,1,1)
CALL CHAANG(90.0)
CALL MOVTO2(15.0,130.0)
CALL CHASTR('DETECTED DEVIATION (MM)')
CALL CHAANG(0.0)
CALL MOVTO2(110.0,85.0)
CALL CHASTR('SENSOR TRAVELLED DISTANCE (MM)')
CALL MOVTO2(TX,TY)
CALL CHASTR(TITLE)
CALL MOVTO2(X0,YS3)
                               1)
CALL CHASTR('TYPE OF WORK:
 CALL CHASTR(TYPE)
CALL MOVTO2(X0, YS4)
CALL CHASTR('SENSOR HEIGHT: ')
CALL CHAINT(HEIGHT,3)
 CALL CHASTR('MM')
 CALL MOVTO2(X0,YS5)
                              ')
 CALL CHASTR('TORCH SPEED:
CALL CHAFIX(SPEED,5,2)
 CALL CHASTR('MM/S')
 CALL MOVTO2(X0, YS6)
CALL CHASTR('NUMBER OF DEVIATION VALUES: ')
 CALL CHAINT (MIDNUM, 4)
 CALL MOVTO2(X0,10.0)
CALL CHASTR('FIG. 6.18 DEVIATION DETECTIONS ALONG A STRAIGHT LINE
/ PATH OF TORCH MOVEMENTS')
 CALL MOVTO2(X0+120.0, YS3)
                    --- SEAM PATH WITH 20 DEGREES ANGLE')
 CALL CHASTR('(A)
CALL MOVTO2(XO+120.0,YS4)
                    --- SEAM PATH WITH 45 DEGREES ANGLE')
CALL CHASTR('(B)
CALL GRASYM(DIST, ERR1, MIDNUM, 8,0)
CALL GRAPOL(DIST, ERR1, MIDNUM)
CALL GRASYM(DIST, ERR2, MIDNUM, 6.0)
CALL GRAPOL(DIST, ERR2, MIDNUM)
CALL DEVEND
CALL GINEND
STOP
```

END

PROGRAM ER4SET

*	THIS PROGRAM IS USED TO PLOT 4 SETS OF
*	EXPERIMENTAL RESULTS FOR COMPARISON
*	PURPOSES. THE CORRESPONDING DATA FILE IS
*	SL1V (CHAPTER 6).
****	***************************************
	DIMENSION EDD ((AA) ENUM ((AA) DIST((AA))
	DIMENSION ERR(600), ENUM(600), DIST(600)
	CHARACTER TITLE*60, TYPE*60, JOB*60, PATH*60
	INTEGER HEIGHT
	READ (7, '(A)') TITLE, JOB, PATH
~	READ (7,*) HEIGHT, SPEED
С	SET UP GRAPHIC CO-ORDINATES
	X0=30.0
	YO=25.0
	XR=118.0
	YR=118.0
	TX=103.0
	TY = 272.0
	CALL GINO
	CALL SAVDRA
	CALL DEVPAP(280.0,280.0,0)
	CALL WINDO2(0.0,280.0,0.0,280.0)
	CALL SOFCHA
	CALL CHASIZ(3.0,3.0)
	CALL MOVTO2(TX,TY)
	CALL CHASTR(TITLE)
	DO 1000 ISET=1,4
	READ $(7, '(A)')$ TYPE
	J=0
	MAXN=0
100	READ $(7,*)$ (ERR(I), I=(J*10)+1, (J*10)+10)
	DO 200 I=(J*10)+1,(J*10)+10
	IF (ERR(I).EQ.9999.) MAXN=I-1
	IF (MAXN.EQ.O) DIST(I)=I*SPEED
200	CONTINUE
	SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS,
2	NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED
	IF (MAXN.GT.O) GO TO 300
	J=J+1
	GO TO 100
300	PRINT*, 'END OF DATA FILE', ISET
	PRINT*, 'NUMBER OF ERRORS =', MAXN
	PRINT*, 'DISTANCE TRAVELLED=', DIST(MAXN)
	PRINT*, 'OFFSET=', ISET-1
	TAININ, OFISEI-,ISEI I
THE	GRAPHICS BIT
	IF (1SET.EQ.1) THEN
	XSHIFT=0.0 YSHIFT=YR+4.0

С

```
IF (ISET.EQ.2) THEN
           XSHIFT=XR+4.0
           YSHIFT=YR+4.0
        ENDIF
        IF (ISET.EQ.3) THEN
           XSHIFT=0.0
           YSHIFT=0.0
        ENDIF
        IF (ISET.EQ.4) THEN
           XSHIFT=XR+4.0
           YSHIFT=0.0
        ENDIF
        ORX=X0+XSHIFT
        ORY=Y0+YSHIFT
        XS1 = XO + XR + 4.0
        YS1=15.0
        XS2=X0
        YS2=YS1
        WX=ORX+10.0
        WY = ORY + 10.0
        DX=XS2
        DY=8.0
        PX=XS1
        PY=DY
        HX=XS2
        HY=1.0
        SX=XS1
        SY=HY
        CALL AXIPOS(1,ORX,ORY,XR,1)
        CALL AXIPOS(1,ORX,ORY,YR,2)
        CALL AXISCA(3,16,0.0,DIST(MAXN),1)
        CALL AXISCA(3,10,-50.0,50.0,2)
        CALL LINCOL(3)
        CALL GRID(2,0,0)
        CALL LINCOL(1)
        CALL MOVTO2(WX,WY)
        CALL CHASTR('TYPE OF WORK: ')
        CALL CHASTR(TYPE)
        CALL GRAPOL(DIST, ERR, MAXN)
1000 CONTINUE
     CALL MOVTO2(XS2,YS2)
     CALL CHASTR('VERTICAL: DEVIATION (-5 TO +5MM)')
     CALL MOVTO2(XS1,YS1)
     CALL CHASTR('HORIZONTAL: DISTANCE (0 TO 160MM)')
     CALL MOVTO2(DX,DY)
     CALL CHASTR('JOB:')
     CALL CHASTR(JOB)
     CALL MOVTO2(PX, PY)
     CALL CHASTR('WELD PATH:')
     CALL CHASTR(PATH)
     CALL MOVTO2(HX,HY)
     CALL CHASTR('SENSOR HEIGHT: ')
     CALL CHAINT (HEIGHT, 3)
     CALL CHASTR('MM')
     CALL MOVTO2(SX,SY)
```

CALL CHASTR('TORCH SPEED: ') CALL CHAFIX(SPEED,5,2) CALL CHASTR('MM/S') CALL DEVEND CALL GINEND STOP END

PROGRAM ORERR

```
*********************
 *
            THIS PROGRAM IS USED TO PRESENT THE RESULTS
                                                               ÷.
 *
       OF SEAM DEVIATION ERROR SIGNALS ALONG THE ROBOT
                                                              *
 *
                                                              \star
       TORCH PATH CONTAINING TWO CORNERS (CHAPTER 6).
 *
       DATA FILES ARE ANGL305 AND ANGL405.
                                                              -1-
 DIMENSION ERR(600), ENUM(600), DIST(600)
       INTEGER HEIGHT
       CHARACTER TITLE*70, TYPE*70, FIGURE*70
       READ (7, '(A)') TITLE, TYPE, FIGURE
       READ (7,*) HEIGHT, SPEED
       J=0
       MAXN=0
   100 READ (7, *) (ERR(I), I=(J*10)+1, (J*10)+10)
       DO 1 I = (J*10)+1, (J*10)+10
         IF (ERR(I).EQ.9999.) MAXN=I-1
         IF (MAXN.EQ.0) DIST(I)=I*SPEED
    1 CONTINUE
С
      SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS,
С
      NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED.
      IF (MAXN.GT.0) GO TO 200
      J=J+1
      GO TO 100
  200 PRINT*, 'END OF DATA FILE ...'
      PRINT*, 'NUMBER OF ERRORS =', MAXN, DIST(MAXN)
PRINT*, 'SENSOR HEIGHT =', HEIGHT, 'MM'
PRINT*, 'SPEED OF TORCH =', SPEED, 'MM/S'
C
C THE GRAPHICS BIT
      CALL GINO
      CALL SAVDRA
      CALL SOFCHA
      CALL CHASIZ(3.0, 3.0)
С
      X0=40.0
      Y0=80.0
      XR=100.0
      YR=100.0
      XS=XO-(XR-XO)/5.0
      YS=Y0+YR+10.0
     XS1=XO-(XR-XO)/5.0
     YS1=YO
     XS2=XO+(XR-XO)/3.0
     YS2=Y0-10.0
     YS3=Y0-20.0
     YS4=YS3-8.0
     YS5=YS4-8.0
     YS6=YS5-8.0
     YS7=YS6-16.0
     CALL AXIPOS(1,XO,YO,XR,1)
     CALL AXIPOS(1,XO,YO,YR,2)
```

```
CALL AXISCA(3,10,0.0,DIST(MAXN),1)
CALL AXISCA(3,10,-50.0,50.0,2)
CALL GRID(3,1,1)
CALL MOVTO2(XS1,YS1)
CALL CHAANG(90.0)
CALL CHASTR('SENSOR SIGNAL (ADC OUTPUT NUMBERS')
CALL MOVTO2(XS2,YS2)
CALL CHAANG(0.0)
CALL CHASTR('SEAM LENGTH (MM)')
CALL MOVTO2(XS,YS)
CALL CHASTR(TITLE)
CALL MOVTO2(X0,YS3)
CALL CHASTR('TYPE OF WORK: ')
CALL CHASTR(TYPE)
CALL MOVTO2(X0, YS4)
CALL CHASTR('SENSOR HEIGHT: ')
CALL CHAINT(HEIGHT, 3)
CALL CHASTR('MM')
CALL MOVTO2(X0,YS5)
CALL CHASTR('TORCH SPEED: ')
CALL CHAFIX(SPEED, 5, 2)
CALL CHASTR('MM/S')
CALL MOVTO2(X0, YS6)
CALL CHASTR('NUMBER OF DEVIATION VALUES: ')
CALL CHAINT(MAXN,4)
CALL MOVTO2(5.0,YS7)
CALL CHASTR(FIGURE)
CALL GRAPOL(DIST, ERR, MAXN)
CALL DEVEND
CALL GINEND
STOP
END
```

PROGRAM ANGSPEED

```
*************************
                                                           *
*
       THIS PROGRAM READS THE DATA FILE C20 OR C45 AND
                                                           *
*
      PLOTS THE DATA ON THE GRAPH OF DETECTED DEVIATION
                                                           *
*
      AGAINST SENSOR TRAVELLED DISTANCE. THE OBJECTIVE
                                                          *
*
      IS TO SHOW THE EFFECTS OF CHANGING TORCH TRAVELLING
*
                                                           *
      SPEED (CHAPTER 6).
DIMENSION ERR1(100), ERR2(100), ERR3(100)
      DIMENSION DIST1(100), DIST2(100), DIST3(100)
      DIMENSION ENUM(100)
      INTEGER HEIGHT
      CHARACTER TITLE*70, TYPE*70
      READ (7, '(A)') TITLE, TYPE
      READ (7,*) HEIGHT, SPEED1, SPEED2, SPEED3
      J=0
     MAXN=0
     NT1 = 40
      NT2 = 48
  100 READ (7, *) (ENUM(I), I=(J*10)+1, (J*10)+10)
      DO 1 I = (J*10)+1, (J*10)+10
        IF (ENUM(I).EQ.9999.) MAXN=I-1
    1 CONTINUE
С
      SEPERATE THREE SETS OF DATA.
С
      SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS,
С
     NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED.
     IF (MAXN.GT.0) GO TO 200
     J=J+1
     GO TO 100
  200 DO 2 I=1,MAXN
С
     ONE SWEEP = 10MM IN 1S AND 256 SAMPLES
     ERROR FROM SEAM = ERROR SIGNAL * (SWEEP RATE / SAMPLE RATE)
С
     J=I-NT1
     K=I-NT2
     IF (I.LE.NT1) THEN
        ERR1(I)=ENUM(I)*16.5/256
        DIST1(I)=I*SPEED1
     ENDIF
     IF (I.GT.NT1.AND.I.LE.NT2) THEN
        ERR2(J) = ENUM(I) * 16.5/256
        DIST2(J)=J*SPEED2
     ENDIF
     IF (I.GT.NT2) THEN
        ERR3(K)=ENUM(I)*16.5/256
        DIST3(K)=K*SPEED3
     ENDIF
   2 CONTINUE
С
     PRINTOUT INPUT PARAMETERS
     PRINT*, 'END OF DATA FILE .'
     PRINT**, 'NUMBER OF ERRORS =', NT1
```

```
С
      THE GRAPHICS BIT
      CALL GINO
      CALL SAVDRA
      CALL DEVPAP(280.0,280.0,0)
      CALL WINDO2(0.0,280.0,0.0,280.0)
      CALL SOFCHA
      CALL CHASIZ(3.0,3.0)
С
      SET CO-ORDINATES
      X0=30.0
      YO=100.0
      XR=200.0
      YR=90.0
      TX=50.0
      TY=Y0+YR+20.0
      YS1=90.0
      YS2=80.0
      YS3=70.0
      YS4=60.0
      YS5=50.0
      YS6=40.0
      CALL AXIPOS(1,X0,Y0,XR,1)
      CALL AXIPOS(1,XO,YO,YR,2)
      CALL AXISCA(3,10,0.0,DIST1(NT1),1)
      CALL AXISCA(3,8,-8.0,8.0,2)
      CALL GRID(3,1,1)
      CALL CHAANG(90.0)
      CALL MOVTO2(15.0,130.0)
      CALL CHASTR('DETECTED DEVIATION (MM)')
      CALL CHAANG(0.0)
      CALL MOVTO2(140.0,85.0)
      CALL CHASTR('SENSOR TRAVELLED DISTANCE (MM)')
      CALL MOVTO2(TX,TY)
      CALL CHASTR(TITLE)
      CALL MOVTO2(X0,YS3)
                                    ')
      CALL CHASTR('TYPE OF WORK:
      CALL CHASTR(TYPE)
      CALL MOVTO2(X0, YS4)
      CALL CHASTR('SENSOR HEIGHT: ')
      CALL CHAINT (HEIGHT, 3)
      CALL CHASTR('MM')
      CALL MOVTO2(X0,10.0)
      CALL CHASTR('FIG. 6.22 DEVIATION DETECTIONS AT VARIOUS SPEEDS')
      CALL MOVTO2(XO+120.0, YS4)
                         --- SPEED = 1MM/S')
      CALL CHASTR('(A)
      CALL MOVTO2(X0+120.0, YS5)
                        --- SPEED = 5MM/S')
      CALL CHASTR('(B)
      CALL MOVTO2(X0+120.0, YS6)
                         --- SPEED = 10MM/S')
      CALL CHASTR('(C)
      CALL GRASYM(DIST1,ERR1,40.1,0)
      CALL GRAPOL(DIST1,ERR1,40)
      CALL GRASYM(DIST2,ERR2,8,6,0)
      CALL GRAPOL(DIST2,ERR2,8)
      CALL GRASYM(DIST3, ERR3, 4, 8, 0)
```

CALL GRAPOL(DIST3,ERR3,4) CALL DEVEND CALL GINEND STOP END

APPENDIX IV

(Program listing for Chapter 7)

0000 0000 0000 0000 0000 0000 0000 0000 0000		0000 TITLE'The Ultrasonic Seam Tracker' 0001 TAB 10 0002 WIDTH 90 0003 "***	* * * * * * * * * *
0000		0016 ;operating system equates.	
0000		0017	
0000	(0220)	0018 EVNTV EQU &220 ;event vector	
0000	(FFEO)	0019 OSRDCH EQU &FFE0 ; read single character	
0000	(FFEE)	0020 OSWRCH EQU &FFEE ;write character	
0000	(FFF1)	0021 OSWORD EQU &FFF1 ;read string	
0000	(FFF4)	0022 OSBYTE EQU &FFF4 ;OS operation	
0000		0023	
0000		0024 ;memory workspace.	
0000		0025	
0000	(2710)	0026 JOB EQU &2710 ;metal thickness 0027 MODEL EQU &278E ;command for modelling	
0000	(278E)		
0000	(278F)		
0000	(2790)		
0000	(2791)		
0000	(2792)		
0000	(2793)		
0000	(2794)		
0000	(2795)		
0000	(2796)		
0000	(2797)		
0000	(2798)	0007 HBBC Det all the helew counter	
0000	(2799)		
0000	(279A)		
0000	(2800)		
0000	(2900)		
0000			
0000		0043 ;data capture equates.	
0000	(0044 0045 INPH EOU &70 ;initial phase	
0000	(0070)		
0000	(0071)		
0000	(0072)		
0000 0000	(0073)	John Dorn Eqt Con	
0000	(0074)		
0000	(0075)	0050 PRED EQU &75 ;previouse data 0051	
0000		0031	

0000		0052	;graph	ic d	ispl	ay equa	tes.
0000		0053					
0000	(0076)	0054	VDU		&76		;VDU number
0000	(0078)		LENG		&78		;character length
0000	(0079)		LARGE		&79		;graphic enlargement
0000	(007A)	0057			&7A		; interrupt key number
0000	(007B)		MULTR		&7B		;multiplier
0000	(007C)		MULTD		&7C		;multiplied
0000	(007D)	0060	RES	EQU	&7D		;result
0000		0061					
0000			;count	er e	quate	es.	
0000		0063			c		;loop counter
0000	(0080)		LPCT		&80		; number
0000	(0082)	0065			&82		;input address
0000	(0085)		IADD	EQU	&85		; input address
0000		0067					
0000		0068			0.00	&1400	
1400		0069			UKG	α1400	
1400		0070		tuala	סמת	יסאש דאס	PDV
1400		0071	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PROU	stine or	rry*******
1400		0072	; Prio:	r to	Star	trac to	peration, the
1400		0073	; prog	ram :	requ.	ttes co	enter para- up the screen
1400			; mete	rs I		ttial n	rocedures.
1400		0075	; and (otne:	[]]]] 	triai bi	********
1400							
1400		0077	-+ -++		TSR	entry	;enter parameters.
	201D1A	0078	start	•			;set up screen.
	205E16	0079 0080				init	; initialisations.
	20F014	0080				event	enable event.
1409	205D17	0081					-
1400		0082	estestesteste	* M	AIN I	ROGRAM	
140C		0000	, : This	sec	tion	shows t	the main
140C		0085		ctur	e of	the pro	ogram.
140C		0086	*****	****	*****	**********	****
140C		0087	,				
	ADC5FC	0088	sweep	:		&FCC5	;read direction
	2904	0089	-		AND		;from D2.
	FOF9	0090			BEQ	sweep	;wait for idle.
1413		0091					_
1413	ADC5FC	0092	idle:			&FCC5	;detect
	2904	0093			AND		;falling edge.
1418	DOF9	0094				idle	;wait until change.
	A965	0095				#101	;set no. of counts
	8573	0096				DCTR	; for data storage.
	209814	0097				data	;read & store data.
	AD9627	0098				GREG	; check graphic register.
	F003	0099				comp	; jump if not plotted.
	203015	0100			JSR	plot	;rub out priviouse plot.
1429		0101					aff cat data
	20ED15	0102	comp:				;off set data. ;find average position.
	208117	0103				postn	; rind average position: ; send deviation error.
142F	202202	0104			JSK	send	joing acting on crie-

Appendix IV - The ultrasonic seam tracker

1432	203015	0105		JSR	plot	;plot graphic.
	A57A	0106		LDA	ESC	; if interrupt
	C91B	0107		CMP	#&1B	;stop scanning
1439	D009	0108			ichk	; and
143B	205714	0109			comd	;get command.
	203015	0110			plot	;clear plot.
1441	CE9627	0111		DEC	GREG	;reset graphic register.
1444		0112			_	
1444	A579	0113	ichk:		LARGE	;check
	F006	0114			rsm	; counter.
1448	EE8E27	0115		INC	MODEL	;increament counter.
144B	4C0C14	0116		JMP	sweep	;repeat operation.
144E		0117				
144E	A900	0118	rsm:	LDA		;reset model
	8D8E27	0119		STA	MODEL	;counter.
	4C0C14	0120		JMP	sweep	;repeat.
1456		0121		RTS		
1457	•••	0122				
1457		0123	********	-INPL	JT COMMA	ND********
1457		0124	• This rou	tine	reads t	che keyboard
1457		0125	. buffer.	inder	itifies	the correct
1457		0126	; command	and (lirects	to the
1457			1		ring	
1457		0128	***********	,e	יר יזר יזר אר אר אר אר אר אר	***********
1457		0129	,			
	A900	0130	comd:	LDA	<i>‡</i> #0	;clear key
	857A	0131	000.0		ESC	;number.
	AOOE	0132			#14	;rub out
	202519	0133		JSR	load	;command message.
	A010	0134		LDY	#16	;display 2nd
	202519	0135		JSR	load	;command message.
	A200	0136		LDX	#0	;flushes
	A915	0137		LDA	#21	;the keyboard
	20F4FF	0138		JSR	OSBYTE	;buffer.
146C		0139				
	20E0FF	0140	incom:	JSR	OSRDCH	; input command.
	C90D	0141		CMP	#13	;if RETURN,
	FOIA	0142		BEQ	mess	;continue.
	C920	0143		CMP	#&20	;if SPC,
	F013	0144				;store centre value.
	C909	0145		CMP	#&9	; if TAB,
	FOOA	0146		BEQ	mod	;switch to modelling.
	C987	0147		CMP	#135	;if COPY,
	DOED	0148		BNE	incom	;print
	20211B	0149		JSR	сору	;screen.
1482	4C8D14	0150			mess	;get message.
1485		0151				
	E679	0152	mod:	INC	LARGE	;inc. counter.
	4C8D14	0153			mess	3
148A		0154				
-	202A18	0155	inposn:	JSR	centre	;track centre position.
148D		0156				
	A010	0157	mess:	LDY	#16	3
•						

Appendix IV - The ultrasonic seam tracker

148F	202519	0158			load	;change
1492	AOOE	0159		LDY	#14	;messages.
1494	202519	0160		JSR	load	;
1497		0161		RTS		
1498		0162				
1498		0163				
1498		0164 .	******	DAT	A CAPTUR	E*****
1498		0165	This rout	tino	reads d	lata from
		0105;		000110	rter ar	d fetches
1498		0100;	the A/D C		alvos fr	com the
1498		016/;	equivaler		for a	nstructing
1498		0168;	look_up t			onstructing
1498		0169;	a seam pa	atte	[]] . Lulaissi shababababa	
1498		0170 ;	***********	*******	57575757575757575757575757575757575757	******
1498		0171				;save hold time.
	AD9827	0172	data:		LBDC	
149B	48	0173		PHA		;LB.
149C	AD9927	0174		LDA	HBDC	;
149F		0175		PHA		;HB.
	A204	0176		LDX	#4	;set delay.
14A2		0177				
	A9FF		tmos:	LDA	#255	;load
	8D9827	0179		STA	LBDC	;delay
	8D9927	0180		STA	HBDC	;counter.
	201E15	0181			delay	;direct to
14AD		0182		DEX		;delay routine.
	DOF2				tmos	• •
14B0		0183		PLA		reload
	8D9927	0184			HBDC	:counter.
14B1 14B4		0185		PLA		
		0186			LBDC	
	8D9827	0187		LDY		;reset mem.location
	A000	0188		1001	<i>"</i> -	, -
14BA	1000	0189		LDA	#0	;command ZN427E
	A900		sc:		&FCC2	to START CONVERSION
	8DC2FC	0191		DIN	41002	,
14BF		0192		T T) A	&FCC0	;check EOC from D7.
	ADCOFC		eoc:		#&80	; i.e. MSB only
	2980	0194				;wait until EOC.
	F0F9	0195			eoc	;read data from ZN427E.
14C6	AEC1FC	0196			&FCC1	;comp. with the
14C9	E07E	0197			#126	;max.counting no.
	BOED	0198		BCS		;max.counting no. ;save data.
14CD	8672	0199			STORE	
14CF	201215	0200			phase	;determine phase
14D2	C570	0201			INPH	;LEAD/LAG.
14D4	F006	0202		-	fetch	;fetch data if same.
14D6	A9FA	0203			#250	;max. no.for data conv.
14D8	38	0204		SEC		;set carry flag.
14D9	E572	0205		SBC	STORE	;A=250-X.
14DB		0206		TAX		; X=A.
14DC	-	0207				
14DC	BD1323		fetch:	LDA	table,X	;look-up table.
14DF	990028	0209		STA	BLK1,Y	;store data .
14E2	8DC4FC	0210		STA	&FCC4	;output to X-Y recorder.
						-

14E5	C8	0211		INY		;locate to next data.
14E6	201E15	0212		JSR	delay	;hold sample.
14E9		0213		DEC	DCTR	;decrement data counter
14EB	F002	0214		BEQ	retn_d	
14ED	DOCB	0215		BNE	sc	;read again
14EF		0216				
14EF	60	0217	retn_d:	RTS		
14F0		0218	-			
14F0		0219	;**** I	NITI	ALISATIC)N****
14F0		0220	• This rou	tine	perform	ns system
14F0		0001	. initiali	satio	on proce	edures.
14F0		0222	; INICIALI.	*****	*******	******
14F0		0223	,			
	201215	0224	init:	JSR	phase	;store initial
14F3		0225			INPH	;phase
	A900	0225			<i>#</i> 0	;clear
	8574	0227			PHOS	counters.
	8D9027	0228			RCST	•
					LCST	
	8D8F27	0229			MODEL	;reset modelling
	8D8E27	0230			LARGE	;counter.
1502		0231			GREG	;reset graphic
	8D9627	0232			#50	;register.
	A932	0233			SEAM	;seam ref.
	8D9127	0234			#26	;defind
	A01A	0235			load	;character.
	202519	0236		RTS	1040	, character (
1511	60	0237		RIS		
1512		0238	-b-bababababab]	סטאכו		210N******
1512		0239	, www.www.e=]	r indi	decides	whether the
1512		0240	; phase con	odit:	ion is 1	eading or
1512		~~ / ~	1			
1512		0242	; lagging.	*****	******	זיר זיר זיר איר איר איר איר איר איר איר איר איר א
1512			,			
1512		0244	1	τDΔ	&FCC3	;read phase
1512	ADC3FC	0245	phase:	AND		;from D0 & D1.
	2903	0246			phase	;read again if A=0.
	F0F9	0247		CMP	#3 #3	;A-3, compare.
	C903	0248			phase	;read again if A>=3.
	BOF5	0249		RTS	phase	,1000 080111 11 11 11
151D	60	0250		N10		
151E		0251	; ****** [TTME	DETAV -	*****
151E		0252		itur	DELAI Lou rout	ine for
151E		0253	; This is a	a de.	nghroni	
151E		0254	; the timin	ng sy /D av	munton	-
151E			; of the A	/ _) _ C(DIVELLEI	- • Here de de de de de
151E		0256	• • • • • • • • • • • • • • • • • • • 			
151E		0257		T D A	TRDC	;set lower byte
	AD9827	0258	delay:		LBDC	
1521	8D64FE	0259			&FE64	;delay counter.
	AD9927	0260			HBDC	;set higher byte
	8D65FE	0261		STA	&FE65	;delay counter.
152A		0262		n • •		
152A	2C6DFE	0263	wait:	RTL	&FE6D	;wait until

•

						_
152D	50FB	0264		BVC	wait	;delay executed.
152F		0265		RTS		
1530		0266				
1530		0267	· ******* (GRAPI	HIC PLOT	[*****
1530		0207	; This rou	tine	deals v	vith the
		0208	; real time		anhic di	isplays of
1530		0209	; the sense	- 5-1 - 6-1	am natt	ern on
1530					cam put	
1530		0271	; the scre	en.	ارد بارد بارد مارد مارد مارد ما	
1530		0272	, the sere,	******	*****	
1530		0273				- h - olt
1530	AD8E27	0274	plot:			; check
1533	D025	0275			+	; counter.
	A000	0276		LDY		;set to origin.
	A965	0277			#101	;set 101 counts
	8573	0278		STA	DCTR	; for data counter.
	A919	0279		LDA	#25	;VDU
	20EEFF			JSR	OSWRCH	;number.
		0280		LDA		,PLOT
1540		0281		TCP	OSWRCH	;number.
	20EEFF	0282			cal	;MOVE x,y coordinates.
	20AF15	0283		JOV	Car	,
1548		0284			"0 F	
1548	A919	0285	draw:	LDA	#25	;VDU
154A	20EEFF	0286				;number.
154D		0287		LDA	#5	; PLOT
	20EEFF	0288				;number.
	20AF15	0289		JSR	cal	;PLOT x,y.
1555	C8	0290		INY		;move to next data.
	C673	0291		DEC	DCTR	;dec.data counter.
	DOEE	0292		BNE	draw	;repeat until 100 counts.
1558 155A	DOFF	0292				
	100107		smpn:	LDA	SEAM	;check range.
	AD9127	0294	Smpn.		# &FF	; compare with
	C9FF	0295			arw	;max range.
1221	D008	0296			<i>#</i> 28	;display
	A01C	0297			load	;warning
	202519	0298		TMD	rotn 14	;message.
	4CA915	0299		JHE	Tecu ⁻ r ₄	,mebbaget
1569		0300			#0E	;draw an
	A919	0301	arw:		#25	
	20EEFF	0302			OSWRCH	
156E	A904	0303		LDA		;pointing
	20EEFF	0304				;at the
	AD9127	0305			SEAM	;seam
	857B	0306		STA	MULTR	;position.
	A90B	0307		LDA	#11	;
	857C	0308			MULTD	•
	204816	0309			mult	;scale.
157E	204010			CLC		
		0310			RES	:
	A57D	0311			#92	, ,
1582		0312				3
	9002	0313		BCC	-	3
	E67E	0314		INC	RES+1	3
1588		0315				•• • •
1588	20EEFF	0316	pt:	JSR	OSWRCH	;display

					554	
	857D	0317				;graphic
	A57E	0318				;points.
	20EEFF	0319			OSWRCH	3
1592	A9BC	0320		LDA	#188	;
1594	20EEFF	0321		JSR	OSWRCH	;
	A903	0322		LDA	#3	\$
	20EEFF	0323		JSR	OSWRCH	
	A018	0324		LDY	#24	
	202519	0325		JSR	load	;display arrow
				LDA	MODEL	check
	AD8E27	0326		DEU	rotn 14	; counter.
	F003	0327			mol	
	207718	0328		JSK	mor	,
15A9		0329			<i></i>	indicate plotted
	A901	0330	retn_14:	LDA	#1 ~~~~~	;indicate plotted
15AB	8D9627	0331			GREG	,
15AE	60	0332		RTS		
15AF		0333				
15AF				ext	end 'ust	-2'
15AF		0335		.*		**
15AF		0336				
		0220		nd Y	CO-ORDI	INATES***
15AF		0337	; This rou	tina	calaula	tes the
15AF		0338	; Inis rou ; relevent			linates of
15AF		0339	; relevent	х,	y co-orc	
15AF		0340	; each dat	a io	r grapm	
15AF		0341		******		*******
15AF		0342				
15AF	847B	0343	cal:			;count.
	A90B	0344			#11	;time scale.
	857C	0345		STA	MULTD	\$
	204816	0346		JSR	mult	;X=count*11.
15B8	18	0347		CLC		;
	A57D	0348		LDA	RES	;LSB of
	695C	0349		ADC	#92	;off-set X.
	9002	0350		BCC	offX	
					RES+1	
	E67E	0351				
1501		0352	- FEV.	TSR	OSWRCH	;X co-ord.
1501	20EEFF	0353	offX:	TDA	DES+1	;MSB of
	A57E	0354		TUD	NED II	;X co-ord.
15C6	20EEFF	0355		JSK	DIVOV	;fetch data.
	B90029	0356		LDA	BLK2,I	ilecti data.
15CC	20ED15	0357				;threshold.
15CF	857B	0358			MULTR	;
	A906	0359		LDA	<i></i> #6	;amplitude.
	857C	0360		STA	MULTD	;
	204816	0361		JSR	mult	;Y=data*3.
15D8		0362		CLC		, ,
	A57D	0363			RES	;LSB of Y co-ord.
	6980	0364			#128	;off-set Y.
	9002				offY	,
		0365				, ,
	E67E	0366		THO	NHC I I	,
15E1		0367	C (1)	100	OCLIDOU	
1281	20EEFF	0368	offY:		OSWRCH	
15E4	A57E	0369		LDA	RES+1	;MSB of

15E6	38	0370		SEC		;
	E902	0371		SBC		;
	20EEFF	0372		JSR	OSWRCH	;Y co-ord.
15EC		0373		RTS		
15ED		0374				
15ED		0375	;**** DA	FA 01	FFSET	****
15ED		0376	: This rout	tine	offsets	; the
15ED		0377	; data arra	ay fo	or displ	ay.
15ED		0378	, *********	****	*******	*****
15ED		0379				1
	A006	0380	offset:	LDY		;select
	B90028	0381			BLK1,Y	;initial ;value.
15F2		0382		SEC	""	
	E932	0383			# 50 ∡NDT	; ;initial data.
	8571	0384			INDT	; previousdata.
	8575	0385			PRED	;clear reg.
	A000	0386		LDY		;set data
	A965	0387			#101	;counter.
	8573	0388		SIA	DCTR	,counter.
15FF		0389	. .	TDA	ע ואזם	;fetch data.
	B90028	0390	locate:	SEC	DLKI,I	;threshold
1602		0391			<i></i> #50	;data.
	E932	0392			STORE	store result.
	8572	0393			PRED	;data>=pre.data?
	C575	0394			less	; if yes,
	9005	0395			PRED	;data-pre.data.
	E575	0396 0397			edge	;
1610	4C1516	0398		•	0	
	A575	0399	less:	LDA	PRED	;if data <pre.data,< td=""></pre.data,<>
1612		0400	1002	SEC		• 9
	E572	0401		SBC	STORE	;pre.data-data.
1615	2072	0402				
1615	C9B4	0403	edge:		<i>‡</i> 180	;result>180?
	9013	0404			small	;if greater,
	A574	0405			PHOS	; check
	D013	0406			set	; PHOS=0.
	A901	0407		LDA		; if zero,
161F	8574	0408		STA	PHOS	;reset PHOS=1.
1621		0409			amonr	land data
	A572	0410	change:		STORE	;load data.
1623		0411		SEC	TNIDT	5
	E571	0412			INDT	;
1626		0413		SEC	450	, ;data-INDT-50.
	E932	0414			#50	
	4C3B16	0415		JHP	swap	3
162C		0416		τnλ	PHOS	;check
	A574 D0F1	0417	small:	BNE	change	
162E	DUP1	0418		DUL	Change	,
	A900	0419 0420	set:	LDA	#0	;reset
	8574	0420	301.		PHOS	; PHOS.
1634	5977	0421		~		
1004		U742				

	A9FA	0423	same:		#250	;max. phase
1636		0424		SEC		;number.
	E571	0425			INDT	
	6572	0426		ADC	STORE	;data+(250-INDT).
163B		0427				, Jota
	990029	0428	swap:			;store data
	A572	0429			STORE	;for graphic
	8575	0430			PRED	;plot.
1642		0431		INY		;
	C673	0432			DCTR	;
	DOB8	0433			locate	;
1647	60	0434		RTS		
1648		0435				ORT attacks balants
1648		0436	·*******]	AULT.	IPLICATI	ON = - * * * * * * *
1648		0437	; This rout	tine	is used	I for o-bit
1648		0438	; multiplie	catio	ons.	
1648		0439	, ************************************	*******	********	יל ז'ל ז'ל ז'ל ז'ל ז'ל ז'ל ז'ל ז'ל ז'ל ז'
1648		0440			" •	-less megult
1648	A900	0441	mult:	-	#0 DD0	;clear result
	857D	0442			RES	;register.
164C	A208	0443		LDX	#8	;8-bit counter.
164E		0444		+ 00		;shift first
	467B	0445	loop:		MULTR	;number right
	9003	0446			zero	; and add
1652		0447		CLC		;second number.
	657C	0448		ADC	MULTD	;second number:
1655		0449		DOD	٨	;rotate
1655		0450	zero:	ROR	RES	;result.
	667D	0451		DEX	RES	;decreament
1658		0452			loop	;counter.
	DOF3	0453			RES+1	;store high_byte.
	857E	0454		RTS	KDD - 1	,50010
165D	60	0455		N10		
165E		0456	, statestatestatestatesta	SET	UP SCRE	EN******
165E 165E		0457	. This rout	ine	sets up	the screen
165E			fan dien'	0 37		
165E		0439	, 101 010p	*****	****	*******
165E		0460	,			
	AOOC	0462	screen:	LDY	#12	;set scrreen
1660	202519	0463	30100		load	;mode.
	A000	0465		LDY	<i></i> #0	;set origin
	A25C	0465		LDX	#92	;at 92,128.
	8473	0466		STY	DCTR	;set DB counter.
1669	0475	0467				
	A919	0468	vert:	LDA	#25	;VDU
	20EEFF	0469		JSR	OSWRCH	; and
166E	A904	0470		LDA	<i>‡</i> #4	; PLOT
1670	20EEFF	0471		JSR	OSWRCH	;numbers.
1673	8A	0472		TXA		;
1674		0473		PHA		;save X.
	20EEFF	0474		JSR	OSWRCH	;
1678		0475		TYA		;

1679	20EEFF	0476		JSR	OSWRCH	;
167C	A96E	0477				;MOVE x,110.
167E	20EEFF	0478		JSR	OSWRCH	3
1681	A96E 20EEFF A900	0479			<i></i> #0	
1683	20EEFF	0480		JSR	OSWRCH	\$
1202		0/01				
1686	A673 E673 BD9C25 C9FF	0482	hlab:	LDX	DCTR	;get counter
1688	E673	0483		INC	DCTR	;number.
168A	BD9C25	0484		LDA	scale,X	;detect
168D	C9FF	0485		CMP	#&FF	;terminator.
168F	C9FF F006 20EEFF	0486		BEQ	next_1 OSWRCH	
1691	20EEFF	0487		JSR	OSWRCH	;draw.
1694	4C8616	0488		JMP	hlab	3
1697		0489				
1697	4919	0490	next_1:	LDA	<i>‡</i> 25	3
1699	20EEFF A904	0491	—	JSR	OSWRCH	;
169C	A904	0492			#4	
169E	205555	0493		JSR	OSWRCH	;
16A1	68	0494		PLA		;return X.
16A2	AA	0495		TAX		;
16A3	205555	0496		JSR	OSWRCH	;
1646	68 AA 20EEFF 98 20EEFF	0497		TYA		;
1647	20EEFF	0498		JSR	OSWRCH	;
1644	A980	0499		LDA	#128	;MOVE x,128.
16AC	205555	0500		JSR	OSWRCH	\$
16AF	20EEFF A980 20EEFF A900 20EEFF A919	0501		LDA	#0	•
16B1	20EEFF	0502		JSR	OSWRCH	;
16B4	A919	0503		LDA	#25	;VDU number.
16B6	20EEFF	0504		JSR	OSWRCH	;
1689	A919 20EEFF A905	0505		LDA	<i>‡</i> 5	;PLOT number.
16BB	20EEFF	0506		JSR	OSWRCH	\$
16BE	8A	0507				;
16BF	20EEFF 98	0508		JSR	OSWRCH	;
16C2	98	0509				;
	20EEFF	0510			OSWRCH	
1606	A978	0511		LDA	#120	;
16C8	20EEFF A903	0510 0511 0512				;DRAW x,888.
16CB	A903	0513			#3	
16CD	20EEFF	0514			OSWRCH	;
16D0	8A	0515		TXA		;
16D1		0516		ADC	#110	;add interval.
		0517		BCS	cyone	9
16D5	C916	0518			#22	;
	FOOA	0519			reset	;
16D9	AA	0520		TAX		;
16DA	4C6916	0521		JMP	vert	;
16DD		0522				1 1 1 1 1 1 1 1 1 1
16DD		0523	cyone:	INY		;inc. higher byte.
16DE		0524		TAX		;
	C916	0525			<i>‡</i> 22	;x=1192?
	D086	0526		BNE	vert	;
16E3		0527			" •	
16E3	A000	0528	reset:	LDY	<i>‡</i> #0	;reset high byte.

		0529		LDX	<i>#</i> 128	;orig.at 92,128.
16E7		0530			"05	. WDU
	A919			LDA	#25	;vDU number.
	20EEFF			JSR	OSWRCH	; DIOT mumber
16EC	A904	0533		LDA	#4	;PLOT number.
16EE	20EEFF	0534 0535			OSWRCH	
TOLI	A900	0535			#0 	
16F3	20EEFF	0536		JSR	OSWRCH	;
16F6	20EEFF	0537		JSR	OSWRCH	;MOVE 0,y. ; ;save X.
16F9	8A	0538		TXA		;
16FA	48	0539		PHA		;save X.
16FB	8A 48 20EEFF 98 20FFFF	0540		JSR	OSWRCH	;
16FE	98	0541		TYA	OSWRCH	;
16FF	20EEFF	0542		JSR	OSWRCH	;
1702		0543				-
1702	A673	0544	vlab:	LDX	DCTR	;get scale .
1704	E673	0545		INC	DCTR	;
1706	BD9C25	0546		LDA	scale,X	;detect
1709	COLL	0547		CMP	#&FF	; ;detect ;terminator.
170R	FOOS	0548		BEQ	next_2	;
1700	C9FF F003 4C0217	0549		JMP	vlab	;
		~ ~ ~ *				
1710	A919 20EEFF	0551	next 2:	LDA	#25	;VDU number.
1710	A919 20FFFF	0551	next	JSR	OSWRCH	;
1715	206677	0553		LDA	#4	;PLOT number.
1717	A904	0555		JSR	OSWRCH	; ;PLOT number.
1714	20EEFF A95D 20EEFF	0555		LDA	<i>#</i> 93	•
1710	A950 205555	0555		JSR	OSWRCH	•
1710	20EEFF A900	0557		LDA	#0	•
1701	A900 20EEFF 68 AA 20EEFF 98 20EEFF	0558		JSR	OSWRCH	
1724	20EEFF 20	0550		PLA		•
1725	00 A A	0560		TAX		;MOVE 93,y.
1725	20FFFF	0561		JSR	OSWRCH	•
1720	20EEFF	0562		TYA		3
1724	20EEFF	0563				
1720	2010 A010	0564		LDA	#25	;VDU number.
1725	A919 20EEFF	0565		JSR	OSWRCH	;
				τnλ	#21	• PLOT number.
1734	205555	0567		JSR	OSWRCH	;
1737	A915 20EEFF A9A8	0568		LDA	#168	;
1730	20EEFF	0569		JSR	OSWRCH	5
	A904			LDA		;
	20EEFF				OSWRCH	
1741	ZUEEFF	0571 0572		TXA		DRAW 1192,y.
	20EEFF	0572			OSWRCH	· · · ·
1742				TYA		
		0574			OSWRCH	
1740	20EEFF	0575		TXA		
1749		0576			#76	;add interval.
	694C	0577			cytwo	:
	B008	0578			#196	, ,
1750	C9C4	0579			back	2 • •
1750	FOOA	0580		TAX	DACK	
1752	AA	0581		140		;

1753 4CE716			JMP	horiz	5
1756	0583		TNY		;inc.higher byte.
1756 C8		cytwo:	TAX		;
1757 AA	0585		CMP	<i>#</i> 196	;y=888?
1758 C9C4	0586		BNF	horiz	, , , , , , , , , , , , , , , , , , ,
175A D08B	0587		DIAD	1101 1-	,
175C	0588	1	RTS		
175C 60		back:			
175D	0590	, ;;;;;;;;;;;;; = -	FNART.	E EVEN	[******
175D	0591	; This rou	tine	deals v	with event
175D					
175D	0593	; enable h ;*******	****	****	ייני אינ אינ אינ אינ אינ אין א
175D		, ****************			
175D	0595		T.D∆	#0	;low byte address
175D A900	0596	event:	STA	EVNTV	tor incertupe routine.
175F 8D2002	0597			11000	shigh hyte address
1762 A923	0598		CTA	FVNTV+1	:for interrupt routine.
1764 8D2102	0599		T.DX	#6	:enable LSCAFE
1767 A206	0600		TDA	#14	pressed event.
1769 A90E	0601		ענן	OSBYTE	:
176B 20F4FF	0602		TDY	#2	enable character
176E A202	0603			#14	
1770 A90E	0604			OSBYTE	
1772 20F4FF			TDA	40	•
1775 A900	0606			FSC	;clear key number.
1777 857A	0607			41 	;disable
1779 A201	0608			17⊥ 464	;cursor
177B A904	0609		ואטבן	OSBYTE	;editing.
177D 20F4FF			RTS	000112	,
1780 60	0611		RID		
1781	0612				
1781	0613		exte	nd 'ust	3' "
1781	0614		*		
1781					
1781	0616	;**** FI	ND AV	ERAGE M	1IN****
1781		The roll	tine (gerermi	1163 0110
1781	0610	; the cent	re po	sition	of the
1781	0620	; seam.	-		
1781	0620	; seam.	******	וראראראראראראראל	********
1781	0622	,			
1781	0623	postn:	LDA 1	RCST	;check for
1781 AD9027	0624	politic	ORA	LCST	; initialisation
1784 0D8F27 1787 F03B	0625		BEQ	retn_6	:
1789 204019	0626		JSR		;find turning points
178C AD9227	0627		LDA	AMIN	;determine
178F CD9427	0628		CMP	MID	;left or
1792 9006	0629		BCC	less_6	;right.
1794 20F017	0630		JSR	right	;go for right.
1797 4C9D17	0631		JMP	scoff	;
179A	0632				
179A 200A18	0633	less 6:	JSR	left	;go for left.
179D	0634				

				01/D		man agam ag ard
	C946		scoff:		# 70	
	BO1B	0636			outrg	; min.seam co_ord.
	C91E	0637			# 30	
	9017	0638			outrg	; offset.
	E914	0639			#20	;orrset.
17 A 7	857B	0640			MULTR	j
	A903	0641		LDA		;max-min.
17AB	857C	0642			MULTD	;
17AD	20081A	0643			div8	;result return to MULTR.
17BO	A905	0644		LDA		;
17B2	857C	0645			MULTD	;MULTD=5.
17B4	204816	0646			mult	;
17B7	A57D	0647			RES	;SEAM=(Y-20)*5/3.
	4CBE17	0648		JMP	reslt	;
17BC		0649				
	A9FF	0650	outrg:	LDA	#&FF	;out of range .
17BE	1911	0651	0			
	8D9127	0652	reslt:	STA	SEAM	;store result.
	207419	0653	10010	JSR	topcut	;threshold.
1701	207419	0654			-	
	60	0655	retn 6:	RTS		
1704	60		1661 0.			
1705		0656	· ********	יעדם	ISTON	******
1705		0657	; This is a	a 16.	-hit div	vision
17C5		0658	; Inis is a	a 10	DIC GI	10100
17C5		0659	; routine. ;******	وجاوحا مبامط	ורארארארארארארא	******
17C5			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
17C5		0661	1	τDA	#0	;clear A (low byte rem.)
	A900	0662	div:		LPCT	;clear high byte rem.
	8580	0663			#16	; defind 16-bit division
	A210	0664		עתת	<i>¶</i> 10	, defina io più anticica
17CB		0665	1	ACT	NUM	Attended to be the last to A
17CB						Shift one bit left to A
		0666	100p_3:	ASL	NUM+1	;shift one bit left to A
	2683	0667	100p_5.	ROL	NUM+1	;rotate higher byte
17CF	2683 2 A	0667 0668	1009_5.	ROL ROL	NUM+1 A	;rotate higher byte ;rotate A
17CF 17D0	2683 2A 8572	0667 0668 0669	100b_2.	ROL ROL STA	NUM+1 A STORE	;rotate higher byte ;rotate A ;temp. storage
17CF 17D0 17D2	2683 2A 8572 2680	0667 0668 0669 0670	1009_5.	ROL ROL STA ROL	NUM+1 A STORE LPCT	;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem.
17CF 17D0 17D2 17D4	2683 2A 8572 2680 C57C	0667 0668 0669 0670 0671	1009_5.	ROL ROL STA ROL CMP	NUM+1 A STORE LPCT MULTD	;rotate higher byte ;rotate A ;temp. storage
17CF 17D0 17D2 17D4	2683 2A 8572 2680	0667 0668 0669 0670 0671 0672	1009_5.	ROL ROL STA ROL CMP LDA	NUM+1 A STORE LPCT MULTD LPCT	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ;</pre>
17CF 17D0 17D2 17D4 17D6	2683 2A 8572 2680 C57C	0667 0668 0669 0670 0671 0672 0673	1009_5.	ROL ROL STA ROL CMP LDA SBC	NUM+1 A STORE LPCT MULTD LPCT MULTR	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte</pre>
17CF 17D0 17D2 17D4 17D6 17D8	2683 2A 8572 2680 C57C A580	0667 0668 0669 0670 0671 0672 0673 0674	1009_5.	ROL STA ROL CMP LDA SBC BCC	NUM+1 A STORE LPCT MULTD LPCT MULTR less_2	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ;</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA	2683 2A 8572 2680 C57C A580 E57B	0667 0668 0669 0670 0671 0672 0673	1009_5.	ROL ROL STA ROL CMP LDA SBC BCC LDA	NUM+1 A STORE LPCT MULTD LPCT MULTR less_2 STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC	2683 2A 8572 2680 C57C A580 E57B 900E	0667 0668 0669 0670 0671 0672 0673 0674	1009_5.	ROL STA ROL CMP LDA SBC BCC LDA SBC	NUM+1 A STORE LPCT MULTD LPCT MULTR less_2 STORE MULTD	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17D8 17DA 17DC 17DE 17E0	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572	0667 0668 0669 0670 0671 0672 0673 0674 0675	1009_5.	ROL STA ROL CMP LDA SBC BCC LDA SBC STA	NUM+1 A STORE LPCT MULTD LPCT MULTR less_2 STORE MULTD STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17D8 17DA 17DC 17DE 17E0	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C	0667 0668 0669 0670 0671 0672 0673 0674 0675 0676	100 ² 3.	ROL STA ROL CMP LDA SBC BCC LDA SBC STA LDA	NUM+1 A STORE LPCT MULTD LPCT MULTR less_2 STORE MULTD STORE LPCT	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ;</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DC 17DC 17E0 17E2	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572	0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677	100 ² 3.	ROL ROL STA ROL CMP LDA SBC BCC LDA SBC STA LDA SBC	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE MULTD STORE LPCT MULTR	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17E0 17E2 17E4	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580	0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678	100 ² 3.	ROL STA ROL CMP LDA SBC BCC LDA SBC STA LDA SBC STA	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE MULTD STORE LPCT MULTR LPCT	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ;rem.(H)-divisor(H)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17E0 17E2 17E4 17E6	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B	0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679	100 ¹ 2.	ROL STA ROL CMP LDA SBC BCC LDA SBC STA LDA SBC STA	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE MULTD STORE LPCT MULTR	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ; ;rem.(H)-divisor(H)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17E0 17E2 17E4 17E6	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580	0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680	100 ¹ 2.	ROL STA ROL CMP LDA SBC SBC SBC STA LDA SBC STA INC	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE LPCT MULTD STORE LPCT MULTR LPCT NUM	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ;rem.(H)-divisor(H)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17E0 17E2 17E4 17E6 17E8 17E8	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580	0667 0668 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681	less_2:	ROL STA ROL CMP LDA SBC SBC SBC STA LDA SBC STA INC	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE MULTD STORE LPCT MULTR LPCT	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ;rem.(H)-divisor(H)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17E0 17E2 17E4 17E6 17E8 17E8	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580 E682 A572	0667 0668 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682		ROL ROL STA ROL CMP LDA SBC SBC SBC STA LDA SBC STA INC LDA DEX	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE LPCT MULTD STORE LPCT NUM STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ; ;</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17DC 17E2 17E4 17E6 17E8 17EA 17EA 17EA	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580 E682 A572	0667 0668 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683		ROL ROL STA ROL CMP LDA SBC SBC SBC STA LDA SBC STA INC LDA DEX	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE LPCT MULTD STORE LPCT NUM STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ;rem.(H)-divisor(H)</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17DC 17E2 17E4 17E6 17E8 17EA 17EA 17EA	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580 E682 A572 CA D0DC	0667 0668 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684		ROL ROL STA ROL CMP LDA SBC SBC SBC STA LDA SBC STA INC LDA DEX	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE LPCT MULTD STORE LPCT NUM STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ; ;</pre>
17CF 17D0 17D2 17D4 17D6 17D8 17DA 17DC 17DE 17DC 17E2 17E4 17E6 17E8 17EA 17EA 17EC 17ED	2683 2A 8572 2680 C57C A580 E57B 900E A572 E57C 8572 A580 E57B 8580 E682 A572 CA D0DC	0667 0668 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685		ROL ROL STA ROL CMP LDA SBC BCC LDA SBC STA LDA SBC STA INC LDA DEX BNE	NUM+1 A STORE LPCT MULTD LPCT MULTR 1ess_2 STORE LPCT MULTD STORE LPCT NUM STORE	<pre>;rotate higher byte ;rotate A ;temp. storage ;rotate high byte rem. ;comp. low byte ; ;comp. high byte ; ;release A ;rem.(L)-divisor(L) ; ; ;</pre>

17F0 06	88 ;**** R]	GHT POSITIONS****
17F0 06	89 : This rou	tine deals with the
17F0 06	90 : seam pos	itions shifted to
17F0 06	91 ; the righ	t from the reference
1750 06	07 · contre	
17F0 06	93 :*******	****************
	94	
	95 right:	LDY AMIN ;reference.
	96	
	97 loop_11:	CPY #100 ;check for
	98	BCS addy ;data range.
	99	DEY ;
	00	LDA BLK2,Y ;
	01	CMP LMID ; comp. with
	02	BCC loop_11 ;lower case.
	03	CMP UMID ; comp. with
	04	BCS loop_11 ;upper case.
	05	
		TYA ;
	-	ADC RCST ; Y=Y+const.
	07	RTS
· · · · · · ·	08	RID
180A 07	09	FT POSITIONS****
180A 07	10 ; ****= <u>II</u>	tine deals with the
180A 07	11; Inis rou	itions shifted to
180A 07	12; seam pos	om the reference
		the reference
180A 07	14 ; centre.	*************
	16	LDY AMIN ;reference.
	17 left:	
	18 19 loop_12:	CPY #0 ; check for
		BNE ctu ;data range.
	20	LDA #0 ;
	21	JMP retn_15;
	22	5m 100m_20 ,
	23 24 of 111	INY ;
	24 ctu:	LDA BLK2,Y;
	25	CMP LMID ; lower case.
	26	BCC loop_12;
	27	CMP UMID ;upper case.
	28	BCS loop_12;
1822 BOE9 07		TYA ;
	30	SEC ;
	31	SEC LCST ;Y=Y-const.
	32	5BC 1051 ,1 1 Compet
	33	DTS
	34 retn_15:	K10
182A 07	35	CENTER TEACY *******
182A 07	36 ; ***********	CENTRE TRACK******
182A 07	37; This rou	tine deals with the
		position of the sensed
182A 07	39; pattern.	****
182A 07	40 ; *************	

182A		0741				
		0742	centre:	τ.nA	LARGE	;check
	A579		centre.		magn	;counter.
	F007	0743		LDA		
	A900	0744			TAPOF	; ;reset counter.
	8579	0745				
	4C7618	0746		JMP	retn_20	,
1835		0747				-11
1835	204019	0748	magn:		mag	;calculate
	AD9227	0749			AMIN	;mid_point.
	8D9427	0750		STA	MID	;
	8D9A27	0751		STA	PRESM	;initial seam
	AC9427	0752		LDY	MID	;position.
1844		0753				
			loop_10:	T.DA	BLK2,Y	;reload data.
	B90029	0754	1000_10.	INY	,	find
1847		0755			LMID	;lower case
	CD9527	0756		DAC	100p_10	
	90F7	0757		BUU	1000_10	;upper case.
184D	CD9327	0758				
1850	BOF2	0759			100p_10	
1852	98	0760		TYA		;
1853	38	0761		SEC		;left
	E932	0762				;reference.
	8D8F27	0763		STA	LCST	;constant.
	AC9427	0764		LDY	MID	;
185C	AC9427	0765				
	D 00000		loop_16:	T.DA	BLK2.Y	;reload data.
	B90029	0766	1000_10.	DEY		
185F		0767			LMID	find
	CD9527	0768		BCC	loop_16	
	90F7	0769		CMD	UMID	; and
	CD9327	0770		DOG	loop_16	
	BOF2	0771		DUD CTV	RCST	;limits.
	8C9027	0772				;right
186D	A932	0773			<i>#</i> 50	;reference.
186F	38	0774		SEC		; leterence.
1870	ED9027	0775		SBC	RCST	j
1873	8D9027	0776		STA	RCST	;constant.
1876		0777				
1876	60	0778	retn_20:	RTS		
1877		0770	_			
1877		0700	*********	- MOI	DEL DISP	LAY********
1877		0781	• This rout	ine	models	seam dimension
1877		0782	; and posit	ion	for exp	erimental
1877						
		0784	, parada a series a s	******	****	יצי אב אר
1877			3			
1877	40.00	0785		DA #	425	;VDU
	A919	0786	mol: I	י אתר לא		;number.
1879	20EEFF	0787		LDA		; MOVE
	A904	0788		LUA	#4 OSWRCH	
	20EEFF	0789				Jou huto
	A95C	0790			#92	;low byte
	20EEFF	0791				;x co-ord.
1886	A900	0792		LDA	#0	;high byte
1888	20EEFF	0793		JSR	OSWRCH	;x co-ord.

					"100	less best a
	A982	0794			#130	;low byte ;y co-ord.
	20EEFF	0795				;high byte
	A902	0796			#2	
	20EEFF	0797		JSR	USWRCH	;y co-ord.
	A919	0798			#25	;VDU
	20EEFF	07 99				;number.
	A915	0800			#21	; PLOT
189C	20EEFF	0801			OSWRCH	
189F	A57D	0802			RES	;load
18A1	A47E	0803			RES+1	;data.
18A3	38	0804		SEC		;get to
18A4	E96E	0805			#110	;display
18A6	B001	0806			pt3	;position.
18A8	88	0807		DEY		;
18A9		0808				
	20EEFF	0809	pt3:	JSR	OSWRCH	;low byte x.
18AC		0810	-	TYA		;
	20EEFF	0811		JSR	OSWRCH	;high byte x.
	A982	0812		LDA	#130	;
	20EEFF	0813		JSR	OSWRCH	;low byte y.
	A902	0814		LDA		;
	20EEFF	0815		JSR	OSWRCH	;high byte y.
	A919	0816		LDA	#25	;
	20EEFF	0817		JSR	OSWRCH	;VDU number.
	A905	0818		LDA	#5	;
	20EEFF	0819		JSR	OSWRCH	;
	A57D	0820		LDA	RES	;low byte x.
	20EEFF	0821		JSR	OSWRCH	;
	A57E	0822		LDA	RES+1	;high byte x.
	20EEFF	0823			OSWRCH	
	A964	0824		LDA	#100	;low byte y.
	20EEFF	0825		JSR	OSWRCH	
	A901	0826		LDA	#1	;high byte y.
	20EEFF	0827		JSR	OSWRCH	
	A919	0828			#25	;VDU number.
	20EEFF	0829		JSR	OSWRCH	;
	A905	0830		LDA	#5	;
	20EEFF	0831		JSR	OSWRCH	;
	A57D	0832		LDA	RES	;
	A47E	0833		LDY	RES+1	;
	696E	0834		ADC	#110	;
	9001	0835		BCC	pt2	;
18EA		0836		INY		;
18EB	00	0837				
	20EEFF		pt2:	JSR	OSWRCH	;low byte x.
18EE		0839	-	TYA		;
	20EEFF	0840		JSR	OSWRCH	;high byte x.
	A982	0841		LDA	#130	;
	20EEFF	0842		JSR	OSWRCH	;low byte y.
	A902	0843		LDA	#2	;
	20EEFF	0844				;high byte y.
	A919	0845			#25	;
	20EEFF	0846			OSWRCH	;
				-		

1901	A915	0847			#21	
1903	20EEFF	0848			OSWRCH	;
1906	A9A8	0849			#168	;
	20EEFF	0850			OSWRCH	\$
190B	A904	0851		LDA		; 9
190D	20EEFF	0852			OSWRCH	3
1910	A982	0853			#130	;
1912	20EEFF	0854			OSWRCH	;
	A902	0855		LDA		;
1917	20EEFF	0856			OSWRCH	
191A	A2FA	0857		LDX	#250	;delay
191C	AOFF	0858		LDY	#255	;counter.
191E		0859				
191E	88	0860	delay2:	DEY		;delay
191F	DOFD	0861				;routine.
1921	CA	0862		DEX		;
1922	DOFA	0863			delay2	;
1924	60	0864		RTS		,
1925		0865				<i>.</i> 1
1925		0866		exte	end 'ust	-4 11
1925		0867	"	.*		*
1925		0060				
1925		0869	;**** LO.	AD VI	DU NUMBE	IRS
1925		0070	· This roll	itne	tetches	s the VDU
1925		0871	; numbers	for o	lefine w	ord and
1925		0872	; define b	yte.		and a standard standards
1925		0873	; derine D	*******	************	
1925		0874				
1925	B90E24	0875	load:	LDA	word, I	;define word
	8576	0876			VDU	store lower byte
192A	C8	0877		INY	V I	2
192B	B90E24	0878		LDA	word,Y	; store higher byte
192E	8577	0879		STA	VDU+1 #0	;clear Y
1930	A000	0880		ТΩХ	<i>¥F</i> O	, cieat i
1932		0881		T D 4		7 ;load VDU no.
1932	B176	0882		LDA		;detect terminater
	C9FF	0883				, detect torminator
	F007	0884			term OSWRCH	3
	20EEFF	0885			OSWACH	,
193B		0886		INY		3
	4C3219	0887		Jrip	mem	,
193F		0888		DTC		
193F	60	0889	term:	RTS		
1940		0890				
1940		0891	, **** ***		TETCATI	N *******
1940		0892	; This rou	MAGN.	ie veor	for the
1940		0893	; Inis rou	cille	IS used	
1940		0894	; display	ماريل کا کا کا معار مار مار مار	こ 100001	- • ***************
1940			• 26 26 36 26 76 76 26 26 26 26 \$			
1940	4000	0896		T.D.A	#&FF	;set min
	A9FF	0897	mag:		STORE	; in temp. storage
	8572	0898		LDA		;set max
1944	A900	0899		PUN	10	,

1946	8580	0900		STA	LPCT	;
1948	A064	0901		LDY	#100	;no. of data
194A		0902				
	B90029	0903	loop_7:	LDA	BLK2,Y	;fetch data
	C580	0904	• _	CMP	LPCT	;max?
	9002	0905			min	;
	8580	0906		STA	LPCT	;store new max
1953	0500	0907				
	C572	0908	min:	CMP	STORE	;min?
	B006	0909		BCS	next 6	
	8572	0910		STA	STORE	;if smaller, store new min
1959		0911		TYA		;
		0912			AMIN	;
	8D9227			0111		,
195D	• •	0913	novt 6.	DEY		;
195D		0914	next_6:		loop_7	
	DOEA	0915			STORE	
	4672	0916			LPCT	;max/2
	4680	0917			LPCT	· ·
1964	A580	0918			STORE	; ;(max+min)/2
1966	6572	0919				
1968	6905	0920			# 5	;
196A	8D9327	0921			UMID	;upper value
196D	38	0922		SEC		3
196E	E90A	0923			<i>#</i> 10	;
1970	8D9527	0924			LMID	;lower value
1973	60	0925		RTS		
2213						
1974		0026				a startartartarta
		0926	· ******	THRES	SHOLDING	*******
1974		0926 0927	This rout	ine	set up	a fixed
1974 1974		0926 0927 0928	; This rout	ine 1 lev	set up vel for	a fixed cleaning
1974 1974 1974		0926 0927 0928 0929	This rout threshold	ine l lev	set up vel for voise si	a fixed cleaning gnals.
1974 1974 1974 1974		0926 0927 0928 0929	This rout threshold	ine l lev	set up vel for voise si	a fixed cleaning gnals.
1974 1974 1974 1974 1974		0926 0927 0928 0929	; This rout	ine l lev ed r	set up vel for noise si	a fixed cleaning gnals. ****
1974 1974 1974 1974 1974 1974 1974		0926 0927 0928 0929 0930 0931	This rout threshold	ine l lev	set up vel for noise si	a fixed cleaning gnals.
1974 1974 1974 1974 1974 1974 1974	A000	0926 0927 0928 0929 0930 0931 0932	This rout threshold up unwant	LDY	set up vel for noise si ******* #0	a rixed cleaning gnals. ********** ;clear counter.
1974 1974 1974 1974 1974 1974 1974 1974	A000	0926 0927 0928 0929 0930 0931 0932 0933	This rout threshold up unwant ************************************	LDA	set up vel for noise si ******* #0 BLK2,Y	a rixed cleaning gnals. ;clear counter. ;data elementes.
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029	0926 0927 0928 0929 0930 0931 0932 0933 0934	This rout threshold up unwant ************************************	LDA CPY	set up vel for noise si ******** #0 BLK2,Y #101	a rixed cleaning gnals. ;clear counter. ;data elementes. ;check
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936	This rout threshold up unwant ************************************	LDA CPY	set up vel for noise si ******* #0 BLK2,Y	a rixed cleaning gnals. ;clear counter. ;data elementes.
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935	This rout threshold up unwant ************************************	LDY LDA CPY LNY	set up vel for noise si ******* #0 BLK2,Y #101 loref	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ;</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938	This rout threshold up unwant ************************************	LDY LDA CPY LNY	set up vel for noise si ******** #0 BLK2,Y #101	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939	This rout threshold up unwant ************************************	LDY LDA CPY BCS INY CMP	set up vel for noise si ******* #0 BLK2,Y #101 loref	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940	This rout threshold up unwant ************************************	LDY LDA CPY BCS INY CMP	set up vel for noise si ******** #0 BLK2,Y #101 loref UMID	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941	This rout threshold up unwant ************************************	LDY LDY LDA CPY BCS INY CMP BCC DEY LDA	set up vel for noise si ******** #0 BLK2,Y #101 loref UMID cut UMID	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level.</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942	This rout threshold up unwant ************************************	LDY LDY LDA CPY BCS INY CMP BCC DEY LDA	set up vel for noise si ******** #0 BLK2,Y #101 loref UMID cut UMID	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level.</pre>
1974 1974 1974 1974 1974 1974 1974 1976 1976 1976 1978 1970 197E 1981 1983 1984 1987	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943	This rout threshold up unwant ************************************	LDY LDY LDA CPY BCS INY CMP BCC DEY LDA	set up vel for noise si ******** #0 BLK2,Y #101 loref UMID cut	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level.</pre>
1974 1974 1974 1974 1974 1974 1974 1976 1976 1976 1977 1978 1970 197E 1981 1983 1984 1987 1988	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944	This rout threshold up unwant ************************************	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY	set up vel for noise si ******** #0 BLK2,Y #101 loref UMID cut UMID	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level.</pre>
1974 1974 1974 1974 1974 1974 1974 1976 1976 1976 1977 1978 1970 1978 1981 1983 1984 1988	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945	This rout threshold up unwant ************************************	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ;</pre>
1974 1974 1974 1974 1974 1974 1974 1976 1976 1976 1977 1978 1970 1978 1981 1983 1984 1988 1988 1988	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8 4C7619	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946	This rout threshold up unwant ********* topcut: cut:	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY JMP	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level.</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947	This rout threshold up unwant ************************************	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY JMP	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ;</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8 4C7619 AC9227	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948	This rout threshold up unwant topcut: cut: loref:	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY JMP LDY	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ; ;reference min.</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8 4C7619 AC9227 B90029	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0944 0945 0946 0947 0948 0949	This rout threshold up unwant ********* topcut: cut:	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY JMP LDY LDA	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ;reference min. ;search</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8 4C7619 AC9227 B90029 C8	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0944 0945 0946 0947 0948 0949 0950	This rout threshold up unwant topcut: cut: loref:	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY LDY LDY LDY	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ;reference min. ;search ;for</pre>
1974 1974 1974 1974 1974 1974 1974 1974	A000 B90029 C065 B011 C8 CD9327 90F3 88 AD9327 990029 C8 4C7619 AC9227 B90029	0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0944 0945 0946 0947 0948 0949	This rout threshold up unwant topcut: cut: loref:	LDY LDA CPY BCS INY CMP BCC DEY LDA STA INY LDY LDA INY CPY	set up vel for hoise si ************************************	<pre>a rixed cleaning gnals. ;clear counter. ;data elementes. ;check ;amplitude. ; ;compare ;with ;threshold ;level. ; ;reference min. ;search</pre>

1999	CD9327	0953		CMP	UMID	;
	90F3	0954		BCC	usch	;
199E		0955				
	8C9727		uesc:	STY	REF	;upper ref
	AC9227	0957			AMIN	;
19A4	AU7227	0958				
	POADO		lsch:	T.DA	BLK2.Y	;search
	B90029		ISCH.	DEY		for
19A7		0960		CPY		;lower
	C000	0961				;umid values.
	F005	0962			lesc	
19AC	CD9327	0963			UMID	;
19AF	90F3	0964		BCC	lsch	;
19B1		0965				1
19B1	98	0966	lesc:	TYA		;lower ref.
19B2	6D9727	0967			REF	;
19B5		0968		LSR		; $(1 \text{ ower rf} + \text{ upper rf})/2$.
	8D9727	0969			REF	\$
	CD9127	0970				;compare
	9006	0971		BCC	uoff	;with
	20C819	0972		JSR	lroff	;centre
	4CC719	0973		JMP	stop	;position.
1901	400719	0974			-	
	20E419	0975	uoff:	JSR	uroff	;
	206419	0976	40111			
1907	()	0977	ston.	RTS		
19C7 19C8	60	0978	3000			
	ED0107		lroff:	SBC	SEAM	;consider
	ED9127	- · · ·	11011.	STA	REF	;positions
	8D9727	0980			<i>‡</i> 0	;below
	A200	0981		LDY		center
	AC9727	0982		- 10		·
19D3	D OOOOO	0983	ltran:	T.DA	BLK2.Y	;reference.
	B90029	0984	ILI dil.	INY	,-	3
19D6	68	0985		1		,
19D7	0.0000	0986	letr:	STA	BLK2,X	:
	9D0029	0987	lett.	INX	,	
19DA		0988			#101	•
	C065	0989			ltran	•
	90F4	0990			#102	•
	E066	0991			letr	3 • 3
	90F4	0992			lett	,
19E3		0993		RTS		
19E4		0994		ana		;consider
19E4		0995	uroff:	SEC	CEAM	;positions
	AD9127	0996			SEAM	
	ED9727	0997			REF	;higher
	8D9727	0998			REF	;than
19EE		0999		SEC		;the centre
	A965	1000			#101	;reference.
	ED9727	1001			REF	;
19F4	A8	1002		TAY		;
19F5	A265	1003		LDX	#101	\$
19F7		1004				
19F7	B90029	1005	utran:	LDA	BLK2,Y	;

				55 17		
19FA		1006		DEY		,
19FB		1007			DIVO V	
	9D0029	1008	uetr:		BLK2,X	3
19FE		1009		DEX		9
	C000	1010		CPY	#0 utran	9 •
	DOF4	1011				•
	E000	1012			#0	9
1A05	DOF4	1013			uetr	,
1A07	60	1014		RTS		
1A08		1015				$ION = - \frac{1}{2} \frac{1}$
1A08		1016	,******	8-RT	I DIVIS.	[ON = -******
1A08		1017	; This rout	tine	is used	l for 8-bit
1A08		1018	; divisions	5.	ادمادها داده است	
1A08		1019	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******	******	***********
1A08		1020				1
1A08	A900	1021	div8:		# 0	;clear
1A0A	A208	1022		LDX	#8	; counters.
1A0C		1023				
1A0C	067B	1024	100p_8:		MULTR	;rotate first
1A0E		1025		ROL		;number and
1AOF	C57C	1026		CMP	MULTD	;compare with
	9004	1027		BCC	less_3	;the second
	E57C	1028		SBC	MULTD	;one.
	E67B	1029		INC	MULTR	;
1A17		1030				
1A17		1031	less_3:	DEX		;check
	DOF2	1032	_			;counter.
	A57B	1033		LDA	MULTR	;reload first number.
1A1C		1034		RTS		
1A1D		1035				
1A1D		1036				
1A1D		1037	. ******* - =]	LITLI	E PAGE -	
1A1D		1038	; This rout	ine	sets up	o the
1A1D		1039	; title pag	ge fo	or progr	am
1A1D		1040	; entry rec	quest	ts.	
1A1D		1041	, enery rec ;*******	******	***********	2626262626262
1A1D		1042				
1A1D	A000	1043	entry:		<i></i> #0	;set up screen
		1044		JSR	load	;mode.
	A002	1045		LDY	#2	;print title.
	202519	1046		JSR	load	;
	A004	1047		LDY	#4	;move cursor.
	202519	1048		JSR	load	3
	A002	1049		LDY	# 2	;
	202519	1050		JSR	load	;
1A31		1051				_
	A006	1052	keyin 1:	LDY	# 6	;enter metal
	202519	1053		JSR	load	;thickness
	20EF1A	1054			line	;from keyboard.
	A000	1055		LDY	<i>‡</i> #0	;
1A3B		1056				
	B185	1057	tran:			Y ;transfer input
		1058		STA	JOB,Y	;to memory.
1A3D	991027	1000				

				TNV		•
1A40		1059		INY		; ;detect end char.
	C90D	1060			#13	
	DOF6	1061		BNE	tran	;
1A45		1062		T 737	110	;enter recording
	A008	1063	keyin_2:			•
1 A 47	202519	1064		JSK	load	;interval
1A4A		1065			• •	Correction the and
1A4A	20EF1A	1066	DtoH:		line	; from keyboard
1A4D	A900	1067			# 0	; and convert
1A4F	A202	1068		LDX	#2	;decimal to hex.
1A51		1069		_		1
1A51	9582	1070	spc:			;clear space
1A53	CA	1071		DEX		;for 24-bits no.
1A54	10FB	1072		\mathtt{BPL}	spc	3
	A000	1073		LDY	# 0	3
1A58		1074				-
=	B185	1075	char:	LDA	(IADD),	Y ;load input char.
	C90D	1076		CMP	#13	;detect end char.
	F042	1077		BEQ	check	;go for overflow check
	20181B	1078		JSR	mult2	;mult.by 2.
	A202	1079		LDX	#2	• •
1A63		1080				
	B582		stack:	LDA	NUM,X	;save number
1465		1082	00401	PHA		;into stack.
1A66	· •	1082		DEX		•
	10FA	1085		BPL	stack	
	20181B	1085		JSR	mult2	;multiply
	20181B 20181B	1086		JSR	mult2	; by 4.
	A200	1087		LDX		3
	A903	1088		LDA	#3	;set loop
	8580	1089		STA	LPCT	;counter.
1475		1090		CLC		; ;
1476		1091				
1A76		1092	xten:	PLA		;re-load number.
	7582	1092	AUCHI			;calculate
	9582	1094			NUM, X	
		1094		INX		;i.e. 10xNUM.
1A7E		1095			LPCT	•
	C680	1090		BNE	xten	:
	D0F6	1098		BVS	del 2	;exit if bit_23 overflow.
	7034			LDA	(TADD).	Y ;load input char.
	B185	1099		SEC	(,	; convert it
1A84		1100			<i>#</i> &30	;to a digit
	E930	1101			del 2	;from 0-9.
	902D	1102			#10 #10	
	C90A	1103			de1_2	exit if not 0-9.
	B029	1104			NUM	; add the
	6582	1105			NUM	; converted
	8582	1106			nocy	;digit to
	900A	1107		CLC	nocy	• · · · · · · · · · · · · · · · · · · ·
1A93		1108			NUM+1	; the current
	E683	1109				; contents of
	9005	1110			nocy	
1A98	18	1111		CLC		3

Appendix IV - The ultrasonic seam tracker

ROMAS Assembler (C)1985 TBK Associates

1A99	E684	1112		INC	NUM+2	;NUM.
	3019	1113		BMI	del_2	;exit if overflow.
1A9D		1114				
1A9D	C8	1115	nocy:	INY		;go for
	DOB8	1116	•	BNE	char	;next char.
1440		1117				
	A584		check:	LDA	NUM+2	;check overflow.
	D012	1119		BNE	del 2	start again if ovreflow.
	A583	1120		LDA	NUM+1	;load high byte
	8D9927	1121		STA	HBDC	; for delay counter.
1449		1122		T.DA	NUM	;load low byte
	8D9827	1123		STA	LBDC	; for delay counter.
	C900	1124		CMP	<i>‡</i> 0	;if NUM is not zero,
		1124		BNE	kevin 3	;enter next parameter.
	D015	1125		CMP	NUM+1	; if NUM & NUM+1
	C583			BNE	kevin 3	;are both zero.
	D011	1127		DIAL		,
1AB6		1128	4-1 2.	t DV	# 8	
	A008	1129	de1_2:		load	
	202519	1130		JOK	Tuan	\$
1ABB		1131	•	T T) A	1122	;backspace
	A920	1132	spc_2:		WDCH	; and delete.
1ABD	20EEFF	1133				
	C678	1134			LENG	-
1AC2	DOF7	1135		BNE	spc_2	i
1AC4	4C451A	1136		JMP	keyin_2	;key in again.
1AC7		1137	_			
1AC7	AOOA	1138	keyin_3:	LDY	#10	;graphic plot
	202519	1139		JSR	10ad	; inquiry.
1ACC	20EF1A	1140			line "O	3
1ACF	A000	1141		LDY		3 V .
1 A D1	B185	1142			(IADD),	
1AD3	C959	1143			<i>‡</i> &59	
1AD5	F015	1144		BEQ	rec	, No 2
1AD7	C94E	1145			#&4E	
1AD9	F011	1146		BEQ	rec	; ;if not Y/N,
1ADB	AOOA	1147		LDY	#10	; If not 1/N,
1ADD	202519	1148		JSR	load	;delete and
1AEO		1149				
1AEO	A920	1150	spc_3:		#32 • • • • • •	
1AE2	20EEFF	1151				;again.
1AE5	C678	1152			LENG	, ,
1AE7	DOF7	1153			spc_3	
1AE9	4CC71A	1154		JMP	keyin_3	;
1AEC		1155				· · · · · · · · · · · · · · · · · · ·
1AEC	8579	1156	rec:	STA	LARGE	;store input.
1AEE	60	1157		RTS		
1AEF		1158				
1AEF		1150		exte	end 'ust	:5' "
1AEF		1160 '	•	*		*
1AEF		1161				
1AEF		1162	******]	(EYBC	DARD ENT	`RY*****
1AEF		1163	This rout	tine	detects	i the input
1AEF		1164	; character	rs fo	or the k	eyboard.

.

1AEF		1165	;**********	****	*******	יר שלב
1AEF		1166				
1AEF	A93F	1167	line:		#&3F	
1AF1	20EEFF	1168				;? prompt.
1AF4	A980	1169		LDA	<i>‡</i> &80	;&2780 MOD 256
1AF6	8585	1170		STA	IADD	;LSB.
1AF8	A927	1171			#&27	
	8586	1172		STA	IADD+1	;MSB.
	A905	1173		LDA		;max.length of
	8587	1174		STA	IADD+2	;input char.
	A900	1175		LDA	#0	;min.ASCII value.
	8588	1176		STA	IADD+3	;
	A97F	1177		LDA	#&7F	;max.ASCII value.
	8589	1178			IADD+4	
		1179		LDA		:
	A900	1180				LSB of input address.
	A285				#0	
	A000	1181			OSWORD	-
	20F1FF	1182			LENG	
	8478	1183			LENG	
	E678	1184			LENG	2
1B15	E678	1185			LENG	;
1B17	60	1186		RTS		
1B18		1187				\ _!!~!
1B18		1188	;*** MUL	TIPL	Y BY IWC	. 1
1B18		1189	; This rou	tine	doubles	s the
1B18		1190	; 24-bit n	umber	r.	
1B18		1191	,	*******	************	*****
1B18		1192				
1B18	0682	1193	mult2:			;multiply
1B1A	2683	1194			NUM+1	
1B1C	2684	1195			NUM+2	
1B1E	30A7	1196			keyin_3	;exit if overflow.
1B20	60	1197		RTS		
1B21		1198				
1B21		1199	;*** PRI	NT OU	UT SCREE	IN XXXX
1B21		1200	; This rou	tine	prints	out the
1B21		1201	; display	on tl	he scree	en.
1B21		1202	******	*****	נ אר אר אר אר אר אר אר אי	*****
1B21		1203				
	A582	1204	copy:	LDA	&82	;save NUM.
1B23		1205		PHA		,
	A583	1206		LDA	&83	• •
1B24		1207		PHA		5
	40 A584	1208			&84	•
1B29		1209		PHA		;
	A012	1210			#18	enable and
	202519	1210			load	;set up printer.
					#&FF	;set low byte for Y axis
	A9FF	1212			£82	at Y low(&82)
	8582	1213			#3	; and high byte
	A903	1214			#5 &83	; at Y high $(\&83)$.
	8583	1215		DIN	005	In Interlegal
1B37	4000	1216		τnλ	<i>#</i> 0	;set low byte for X axis
1837	A900	1217	row:	LDA	460	'Set TOW DALE TOL Y WYTE

Appendix IV - The ultrasonic seam tracker

				074	&80	;at X_low (&80)
1B39	8580	1218			&80 &81	;and at X_high(&81).
1B3B	8581	1219				;640 dots/line image mode.
1B3D	20701B	1220			duel	;next to printer.
1B40	A901	1221			#1	
1B42	20EEFF	1222			OSWRCH	
1B45	A90D	1223			#13	;return.
1B47	20EEFF	1224			OSWRCH	;
1B4A	38	1225		SEC		;
1B4B	A582	1226			&82	;check minimum
	E920	1227			#32	;value for
	8582	1228			&82	;Y_low.
	B002	1229			Echeck	;
	C683	1230		DEC	&83	;decrement Y_high.
1B55	0000	1231				
	A583	1232	Echeck:	LDA	&83	;check for
		1233		CMP	#&FF	;finish.
	C9FF	1234		BNE	row	;
	DODC				&82	;
	A582	1235			#&FF	3
	C9FF	1236			row	:
	DOD6	1237			#20	reset and disable
	A014	1238			load	;printer.
1B63	202519	1239			IUdu	
1B66	68	1240		PLA	c e /.	
1B67	8584	1241			&84	,
1B69	68	1242		PLA	c 0 0	•
1B6A	8583	1243			&83	و -
1B6C	68	1244		PLA		5
1B6D	8582	1245			&82	;
1B6F	60	1246		RTS		
1B70		1247				;set 640 dots per line
1B70	A016	1248	duel:		#22	; in bit image mode.
1B72	202519	1249		JSR	load	;in bit image mode.
1B75		1250				
	A900	1251	Nbyte:	LDA	#0	;set bits
	8586	1252		STA	&86	;at &86.
	A980	1253			#128	;set byte
	8585	1254		STA	&85	;at &85.
1B7D		1255				. V
	A280	1256	pixel:		#&80	;set X coordinate.
	A000	1257	-	LDY	<i>‡</i> #0	;set Y coordinate.
	A909	1258		LDA	<i></i> #9	;read current screen.
	20F1FF	1259				;pixel details.
	A584	1260		LDA	&84	;get result after
	29FF	1261			#&FF	;OSWORD call.
	F006	1262		BEQ	step4	;
	A585	1263		LDA	&85	;get byte
	0586	1264			&86	;byte OR bits.
	8586	1265			&86	;
	0000	1266				
1892	26	1267	step4:	SEC		;
1B92		1268			&82	;get Y_low.
	A582	1269			#4	;step 4.
	E904	1270			\$82	store back.
1831	8582	12/0			, - - -	-

1B99	B002	1271			rotate		
1B9B	C683	1272		DEC	&83	;decrement Y_high.	
1B9D		1273				() (, he mototing it	
1B9D	18	1274	rotate:	CLC		;sent byte by rotating it	
1B9E	6685	1275			&85	;through carry flag into A.	
1BA0	90DB	1276			pixel	;	
1BA2	A901	1277		LDA		;print	
	20EEFF	1278			OSWRCH		
	A586	1279			&86	;bits.	
	20EEFF	1280		JSR	OSWRCH	;	
1BAC		1281		CLC		;	
	A582	1282		LDA	&82	;get Y_low.	
	6920	1283		ADC	#32	;check overflow.	
	8582	1284			&82	ć	
		1285			over	, 9	
	9002				&83	; increment Y_high.	
	E683	1286		1110	•••	· _	
1887		1287		CLC		:	
1BB7		1288	over:	LDA	£80	;get X_low.	
	A580	1289		ADC			
1BBA	6902	1290					
1BBC	8580	1291			&80	9	
1BBE	9002	1292			frog	; increment X_high.	
1BC0	E681	1293		INC	&81	; Increment A_hight	
1BC2		1294					
1BC2	A581	1295	frog:	LDA		;	
1BC4	C905	1296		CMP		;	
1BC6	DOAD	1297			Nbyte	;	
1BC8		1298		RTS			
1BC9		1299					
0222		1300		ORG 8	222		
0222		1301					
0222		1302	- ****	- COM	IMUNICAT	'ION******	
0222		1203	• This routine enables the tracker				
0222		130/	to communicate with the controller				
0222		1305	• and sends out deviation errors to				
0222		1306	; the controller for position error				
0222			; corrections. ;***********************************				
0222		1308	*****	*****	*****	****************	
0222		1309	•				
0222	1.0	1310	send:	PHA		;save flags.	
		1311	0011-	TXA		•	
0223		1312		PHA		•	
0224		1313		TYA			
0225				PHA			
0226		1314		LDA	#5	;select output	
	A905	1315		LDX		;type.	
	A203	1316			#5 OSBYTE		
	20F4FF	1317		LDA		;set baud rate	
	A908	1318			#o #7	; to 9600.	
	A207	1319					
	20F4FF	1320			OSBYTE	-	
	A906	1321		LDA		; suppress	
	A200	1322			#0	;linefeed.	
0239	20F4FF	1323		JSR	OSBYTE	;	

023C	A996	1324		LDA	#&96	;check
	A208	1325		LDX		;serial port
	20F4FF	1326		JSR	OSBYTE	;busy.
0243		1327		TYA		;
	2908	1328		AND	#8	;CTS bit low?
	D020	1329		BNE	sx	;no, so exit.
0248		1330				
	A996	1331	outw:	LDA	<i>#</i> &96	;check
	A208	1332		LDX	#8	;serial
	20F4FF	1333			OSBYTE	;port.
024C 024F		1334		TYA		;
		1335		AND		;wait for
	2902	1336			outw	· · · · · ·
	FOF4			•	PRESM	;retrieve character.
	AD9A27	1337			SEAM	
	ED9127	1338		TAY		;deviation.
025A		1339			SEAM	;renew position.
	AD9127	1340				
025E	8D9A27	1341			PRESM	;
0261	A997	1342			#&97	;send
0263	A209	1343		LDX	#9 0000000	;charater
0265	20F4FF	1344		JSR	OSBAIF	;from Y.
0268		1345				• • • • • • • • •
0268	18	1346	sx:	CLC		;leave routine active.
0269		1347		PLA		;restore
026A		1348		TAY		;registers.
026B		1349		PLA		;
0260		1350		TAX		;
026D		1351		PLA		;
026E		1352		PLP		;
026F		1353		RTS		
0270		1354				
0270		1355				
2300		1356		ORG	&2300	
2300		1357				
2300		1358	;*** KEYI	BOARI) INTERF	(UPT***
2300		1359	; This rout	tine	detects	input
2300		1260	· commands	for	interru	ipt.
2300		1361	,	とっとっとっとっ	יר אר אר אר אר אר אר אר אר	אראראראראראראראראראראראר
		1362	,			
2300	~~	1363		PHP		;save
2300				PHA		;registers.
2301		1364		TXA		:
2302		1365		PHA		•
2303		1366				
2304		1367		TYA		• •
2305		1368		PHA	41 C 1 D	, ;detect key.
	CO1B	1369			#&1B	; if not ESC, return.
	D002	1370			retn	
	847A	1371		STY	ESC	;save key number.
230C		1372				
2300		1373	retn:	PLA		;restore
230D	AS	1374		TAY		;registers.
230E		1375		PLA		;
230F	AA	1376		TAX		;

PLA ; 2310 68 1377 PLP ; 1378 2311 28 RTS 1379 2312 60 1380 2313 1381 ;*****-- LOOK UP TABLE --****** 2313 2313 1382 DB 2313 0011171C1F23 1383 table: 0,17,23,28,31,35,38,41,45,48,51,53,56,58,62,65,68,72 DB 2327 50525356575A 1384 80,82,83,86,87,90,92,93,95,96,100,101,103,104,105,10 DB 2338 6D6F70717273 1385 109,111,112,113,114,115,116,117,118,119,120,121,12 DB 2346 7C7D7E808283 1386 124,125,126,128,130,131,132,133,134,135,136,137,138, DB 2355 8D8E8F919293 1387 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 153, DB 2364 9B9C9D9D9E9E 1388 155, 156, 157, 157, 158, 158, 159, 159, 160, 160, 161, 161, 162, DB 163,163,163,164,164 1389 2373 A3A3A3A4A4 DB 2378 A4A5A5A5A6A6 1390 164, 165, 165, 165, 166, 166, 167, 167, 168, 168, 169, 169, 170, DB 2387 ACACADADAEAF 1391 172, 172, 173, 173, 174, 175, 175, 176, 176, 177, 177, 178, 178, DB 2396 B4B4B5B5B6B6 1392 180,180,181,181,182,182,183,183,184,184,185,185,186, DB 187,187,188,188,188 1393 23A5 BBBBBBCBCBC DB 23AA BDBDBDBDBEBE 1394 DB 23B9 COCOC1C1C1C1 1395 192,192,193,193,193,193,193,194,194,194,194,194,195, DB 23C8 C4C4C4C5C5C6 1396 196, 196, 196, 197, 197, 198, 198, 199, 199, 200, 200, 201, 201, DB 202,202,203,203,203 23D7 CACACBCBCB 1397 DB 23DC CCCCCCDCDCE 1398 204,204,204,205,205,206,207,208,209,209,210,210,211, DB 23EB D6D7D8D9DADB 1399 214,215,216,217,218,219,220,221,222,223,224,225,226, DB 23FA E5E6E6E7E7E8 1400 229,230,230,231,231,232,232,233,234,235,236,238,240, DB 246,247,248,249,250 1401 2409 F6F7F8F9FA 240E 1402 1403 ;******-- DEFINE WORD --****** 240E 1404 240E DW mode word: 240E 2C24 1405 DW hline 1406 2410 4024 DW move 2412 6624 1407 DW par 1 2414 6A24 1408 DW par 2 1409 2416 8F24 DW par_3 2418 B424 1410 DW disp 241A D924 1411 DW com 1 2410 3325 1412 DW com 2 241E 4E25 1413 DW print_ 2420 8125 1414 1 DW print 2 2422 8B25 1415 DW print_3 2424 9325 1416

2426 BE25 1417 DW arrow 3060 2428 CB25 1418 DW chara 242A E025 1419 DW warn 242C 1420 1421 ;******-- DEFINE BYTE --****** 242C 242C 1422 242C 16071F000385 1423 mode: DB 22,7,31,0,3,133,157,129,' ',31,0,6,133,157,129,' ' 243C 1F0004FF 1424 DB 31,0,4,&FF 2440 1425 2440 859D81208D83 1426 hline: DB 133,157,129,' ',141,131,157,129,'ULTRASONIC SEAM TRA 2461 859D8120FF DB 133,157,129,' ',&FF 1427 2466 1428 2466 1F0005FF 1429 move: DB 31,0,5,&FF

Appendix IV - The ultrasonic seam tracker

ROMAS Assembler (C)1985 TBK Associates

246A 1430 246A 1F000C283129 1431 par 1: DB 31,0,12,'(1) Metal thickness(mm).....',&FF 248F 1432 248F 1F0010283229 1433 DB 31,0,16, (2) Recording interval(1par 2: 65535)..',&FF 24B4 1434 DB 31,0,20,'(3) Scale 24B4 1F0014283329 1435 par 3: enlargement(Yes/No)....',&FF 24D9 1436 24D9 160005120401 1437 DB 22,0,5,18,4,1,25,4,200,0,254,3 disp: 24E5 2D2D2D2D2D2D 1438 DB '----- ULTRASONIC SEAM TRACKING GRAPHIC DISPLAY ---251B 1904B2034600 1439 DB 25,4,178,3,70,0, 'Sweep movement(mm)' 2533 1440 2533 1904AA012000 1441 com 1: DB 25,4,170,1,32,0, 'Press ESCAPE to hold'.&FF 254E 1442 254E 1904B4002000 1443 DB 25,4,180,0.32,0 com 2: DB 'Press RETURN to continue or COPY to 2554 507265737320 1444 printout',&FF 2581 1445 2581 02011B014101 1446 print 1: DB 2,1,27,1,65,1,8,1,10,&FF 258B 1447 258B 010C011B0140 1448 print 2: DB 1,12,1,27,1,64,3,&FF 2593 1449 2593 011B014C0180 1450 print 3: DB 1,27,1,76,1,128,1,2,&FF 259C 1451 259C 2D3130FF2D38 1452 DB '-10',&FF, '-8',&FF, '-6',&FF, '-4',&FF, 'scale: 2',&FF,'0',&F 25AE 2B32FF2B34FF 1453 DB '+2',&FF, '+4',&FF, '+6',&FF, '+8',&FF, '+10',&FF 25BE 1454 DB 8,8, 'SEAM', 10,8,8,8,224,225,&FF 25BE 08085345414D 1455 arrow: 25CB 1456 DB 23,224,&OF,&OF,&OF,&OF,&7F,&1F,&07,&01 25CB 17E00F0F0F0F 1457 chara: 25D5 17E1F0F0F0F0 1458 DB 23,225,&F0,&F0,&F0,&F0,&FE,&F8,&E0,&80,&FF 25E0 1459 DB 25,4,92,0,180,3, WARNING: Out of 25E0 19045C00B403 1460 warn: range!',7,&FF 25FE 1461 25FE 1462 END

No error(s) found

307

Symbol table:

AMIN2792	ARW1569	ADDY1805	ARROW25BE
BLK12800	BLK22900	BACK175C	COMP1429
COMD1457	CAL15AF	CHANGE1621	CYONE 16DD
CVTU01756	CTU1816	CENTRE 182A	<i>CUT</i> 1976
CIIW0=====1/30	CHECK1AA0	COPV 1821 (COM 12533
CHAR1A58	CHECKIAAO		- LJJJ

COM 2	Е СИАРА ОССР		
DELAV151	E CHARA25CB	DCIR00/3	DATA1498
	E DRAW1548		
	8 DTOH1A4A		
DISP=======24D	9 EVNTV0220		LEOC14BF
	5 EVENT175D		ECHECK1B55
	C FROG1BC2	GREG2/96	HBDC2799
	6 HORIZ16E7		
	1 IADD0085		
	C INPOSN148A		
	1 KEYIN_21A45		
	5 LBDC2798		
	0 LOCATE15FF		
	A LOOP_317CB		
LEFT180.	A LOOP_12180D	LOOP_101844	LOOP_16185C
	5 LOOP_7194A		
	1 LROFF19C8		
	C LESS_31A17		
	+ MULTR007B		
	D MULT1648		
	2 MAG1940		
	C MOVE2466		
NEXT_21710) NEXT_6195D	NOCY1A9D	NBYTE1B75
	OSWRCHFFEE		
	OFFY15E1		
OVER1BB7	OUTW0248	PRESM279A	PHOS0074
PRED0075	PHASE1512	PLOT1530	PT1588
	PT318A9		
	PAR_2248F		
	PRINT_32593		
	RSM144E		
RESET16E3	RESLT17BE	RETN_617C4	RIGHT17F0
	RETN_201876		
	RETN230C		
	SWEEP140C S		
	SET1630 \$		
	SCOFF179D \$		
	SPC_21ABB S		
SEND0222	SX0268 S	SCALE259C	TMOS14A2
	TOPCUT1974 7		
	USCH1991 U		
	UTRAN19F7 U		
VERT1669	VLAB1702 W	AIT152A	WORD240E
WARN25E0	XTEN1A76 Z	ZERO1655	

```
PROGRAM CHARAC
      DIMENSION ERR(2000), ENUM(2000), DIST(2000)
      HEIGHT=17
      SPEED=1.33
      J=0
      MAXN=0
  100 READ (7,*) (ENUM(I), I=(J*8)+1, (J*8)+8)
      DO 1 I = (J*8)+1, (J*8)+8
         IF (ENUM(I).EQ.9999.) MAXN=I-1
         IF (MAXN.EQ.0) DIST(I)=I*SPEED
    1 CONTINUE
      SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS,
С
      NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED.
С
      IF (MAXN.GT.0) GO TO 200
      J=J+1
      GO TO 100
  200 DO 2 I=1,MAXN
          ERR(I)=ENUM(I)
    2 CONTINUE
      PRINT*, 'END OF DATA FILE .'
              , 'NUMBER OF ERRORS =', MAXN, DIST(MAXN)
      PRINT*, 'NUMBER OF ERRORS =', MAXN, DIST(
PRINT*, 'SENSOR HEIGHT =', HEIGHT, 'MM'
PRINT*, 'SPEED OF TORCH =', SPEED, 'MM/S'
C
C THE GRAPHICS BIT
      CALL GINO
      CALL SAVDRA
      CALL DEVPAP(280.0,280.0,0)
      CALL WINDO2(0.0,280.0,0.0,280.0)
      CALL SOFCHA
      CALL CHASIZ(3.0,3.0)
С
      XO=30.0
      YO=100.0
      XR=200.0
      YR=100.0
      TX=100.0
      TY=Y0+YR+10.0
      YS1=Y0+60.0
      YS2=Y0-15.0
      YS3=YS2-20.0
      YS4=YS2-30.0
      YS5=YS2-40.0
      YS6=YS2-50.0
      CALL AXIPOS(1,XO,YO,XR,1)
      CALL AXIPOS(1,XO,YO,YR,2)
      CALL AXISCA(3,5,0.0,5.0,1)
      CALL AXISCA(3,5,0.0,250.0,2)
      CALL GRID(2,1,1)
      CALL MOVTO2(X0-15.0,YS1)
      CALL CHAANG(90.0)
      CALL CHASTR('PHASE COUNT)')
      CALL MOVTO2(X0+150.0, YS2)
```

```
CALL CHAANG(0.0)
CALL CHASTR('SENSOR HEIGHT (MM)')
CALL MOVTO2(XO,YS4)
CALL CHASTR('SENSOR HEIGHT: ')
CALL CHAINT(HEIGHT,3)
CALL CHASTR('MM')
CALL GRASYM(DIST,ERR,MAXN,6,0)
CALL GRAPOL(DIST,ERR,MAXN)
CALL DEVEND
CALL GINEND
STOP
END
```

.

```
PROGRAM DEPLOT
*
         THIS PROGRAM PRODUCES A PLOT OF DETECTED SEAM
                                                         *
*
      DEVIATION AGAINST SEAM POSITION OFFSET. IT IS
                                                         *
*
                                                         *
      INTENTED TO ASSESS THE SENSING ABILITY OF THE
*
      ULTRASONIC SENSOR (CHAPTER 7).
                                                         *
PARAMETER(NSAMP=30)
      DIMENSION YARRAY(NSAMP), XARRAY(NSAMP)
      INTEGER LAB(11)
      CHARACTER TITLE*70, TYPE*70, HEIGHT*70
      READ(7,100) TITLE, TYPE, HEIGHT
  100 FORMAT(A60)
      DO 200 J=0,3
         READ(7,*) (YARRAY(I), I = (5*J)+1, (5*J)+5)
  200 CONTINUE
     X=-8.0
      DO 300 J=1,17
        XARRAY(J)=X
        X = X + 1.0
  300 CONTINUE
С
C THE GRAPHICS BIT
     CALL GINO
     CALL SAVDRA
     CALL WINDO2(0.0,280.0,0.0,280.0)
     CALL SOFCHA
     CALL CHASIZ(3.0,3.0)
С
     X0=100.0
     YO=110.0
     YL=Y0-4.0
     CALL AXIPOS(0,X0,Y0,115.0,1)
     CALL AXIPOS(0,X0,Y0,115.0,2)
     CALL AXISCA(3,10,-10.0,10.0,1)
     CALL AXISCA(3,10,-10.0,10.0,2)
     CALL AXIDRA(2,1,1)
     CALL AXIDRA(-2, -1, 2)
     CALL CHAANG(90.0)
     CALL MOVT. 2(90.0,120.0)
     CALL CHASTR('DETECTED DEV. (MM)')
     CALL CHAANG(0.0)
     CALL MOVTO2(110.0,95.0)
     CALL CHASTR('POSITION OFFSET (MM)')
     CALL MOVTO2(30.0,190.0)
     CALL CHASTR(TITLE)
     CALL MOVTO2(60.0,40.0)
     CALL CHASTR('TYPE OF WORK:
                                ')
     CALL CHASTR(TYPE)
     CALL MOVTO2(60.0,30.0)
     CALL CHASTR('SENSOR HEIGHT: ')
     CALL CHASTR(HEIGHT)
     CALL MOVTO2(60.0,10.0)
     CALL CHASTR('FIG. 7.19 SEAM DEVIATION MEASUREMENTS')
```

CALL GRAPOL(XARRAY,YARRAY,17) CALL GRASYM(XARRAY,YARRAY,17,6,0) CALL DEVEND CALL GINEND STOP END

APPENDIX V

(Program listing for Chapter 8)

Appendix V - SERROR

A2=0.0

* يارد * PROGRAM TO EVALUATE THE DEVIATION ERRORS FROM THE * * SEAM TRACKER, AND TO MODEL THE BEHAVIOUR OF VARIOUS * * FEEDBACK GAINS WITH RESPECT TO DIFFERENT SEAM PATHS * * (CHAPTER 8). * * * C MAIN PROGRAM ENTRY COMMON A1, A2, A3, A4, A5, A6 C DIMENSION MAIN POINT ARRAY DIMENSION PT(0:2000,5) DIMENSION TORCHX(2001), TORCHY(2001), DEVIAT(2001), 1PATHX(2001), PATHY(2001) C ELEMENTS ARE C 1 = X POSITIONC 2 = Y POSITIONC 3 = ANGLE AT THAT POINTC 4 = ERROR AT THAT POINTC 5 = PERCIEVED ANGLE AT THAT POINT (SENSOR DEVIATION) C SET UP VARAIBLES C VELOCITY OF TRACKER = 1.0MM/SVELOC=1.0E-3 C TIME BETWEEN SAMPLES OR THE RATE SWEEP = 1S SAMTIM=1.0 C DISTANCE OF LINE IN FRONT OF TORCH = 20MM DFRONT=20.0E-3 C LENGTH OF SWEEP = 10MMSLINE=10.0E-3 C DEFINE STEP LENGTH FOR THE ITERATIONS STEPLE=1.0E-4 C DEFINE STARTING POINT C START WITH PREVIOUS PERCIEVED ANGLE OF ZERO PT(0,1)=0.0E-3PT(0,2)=0.0E-3PT(0,3)=0.0E-3PT(0,4)=0.0E-3PT(0,5)=0.0E-3C SET UP FUNCTION PARAMETERS A1 = 0.0

314

A3=0.0 C PARAMETERS FOR CURVE: A2=1.0E-7, A3=-2.0E-6, A6=2.0E-3 С A2=+0.1 С A3=-0.02 A4=0.0 A5=0.0 A6=+2.0E-3 C SET UP FEEDBACK GAINS PGAIN=15.0 DGAIN=10.0 C START AT X = 0 MM PT(1,1) = 0.0E-3C START AT Y = 2 MM PT(1,2) = 2.0E-3C START AT ANGLE OF OO DEGREES IN RADIANS PT(1,3) = 0.0E-3C START OF PROGRAM YPOS ANGLE ERROR WRITE(7,*)' N XPOS С С 1 PERCIVED' C NUMBER OF STEPS NUM = 160C OFFSET POSITION XOS = NUM/2C OFFSET DISTANCE (MM) DOS = PT(1,2) + 3.0E-3C REPEAT FROM THE FIRST POINT N=1 UNTILL ARRAY FULL DO 1000 N=1,NUM IF (N.LT.XOS) THEN A6 = PT(1,2)ELSEIF (N.GE.XOS) THEN A6 = DOSENDIF С WRITE(6,*)N C FIND THE ERROR FOR THIS POINT C FIRST CHECK IF POINT ON LINE POINTY = EVALU (PT(N, 1))E = PT(N, 2) - POINTYIF (E .NE. 0.0) THEN C SET THE ERROR AT THAT POINT LARGE PT(N,4)=1E70

```
TPX = PT(N,1)

RNG = ABS(PT(N-1,4)) + (1.2*SAMTIM * VELOC)

ESTEP = STEPLE

CALL ERROR(TPX,RNG,ESTEP,PT(N,1),PT(N,2),PT(N,4))

RNG = 1.0*ESTEP

ESTEP = ESTEP/10.0

CALL ERROR(TPX,RNG,ESTEP,PT(N,1),PT(N,2),PT(N,4))

RNG = 1.0*ESTEP

ESTEP = ESTEP/100.0

CALL ERROR(TPX,RNG,ESTEP,PT(N,1),PT(N,2),PT(N,4))

RNG = 1.0*ESTEP

ESTEP=ESTEP/1000.0

CALL ERROR(TPX,RNG,ESTEP,PT(N,1),PT(N,2),PT(N,4))
```

ELSE

PT(N,4) = 0.0

ENDIF

```
YPT=EVALU(PT(N,1))
VALUE=YPT-(PT(N,2))
IF (VALUE .LT. 0.0) THEN
PT(N,4)=-1.0*PT(N,4)
ENDIF
```

C EXIT WITH THE MINIMUM ERROR FOR THIS POINT STORED

C NEXT FIND THE POSITION OF THE LASER LINE C POINT GIVEN BY POSITION AND ANGLE OF THE TORCH CLX=PT(N,1)+(DFRONT*(COS(PT(N,3)))) CLY=PT(N,2)+(DFRONT*(SIN(PT(N,3))))

C WRITE(6,*)'CLX,CLY',CLX,CLY

IF ((EVALU(CLX)-CLY) .NE. 0.0) THEN

C REPEAT THIS LOOP TO FIND THE POINT ON THE LINE

```
OLDDIF = 1.0E70
BASEL = (DFRONT**2)
TPX = CLX
RNG = SLINE
TSTEP = STEPLE
CALL POINT(TPX,RNG,TSTEP,CLX,CLY,PT(N,1),PT(N,2),BASEL,
C OLDDIF)
RNG = 1.0*TSTEP
TSTEP = TSTEP/10.0
CALL POINT(TPX,RNG,TSTEP,CLX,CLY,PT(N,1),PT(N,2),BASEL,
C OLDDIF)
RNG = 1.0*TSTEP
```

```
TSTEP = TSTEP/10.0
          CALL POINT(TPX, RNG, TSTEP, CLX, CLY, PT(N, 1), PT(N, 2), BASEL,
       C OLDDIF)
          RNG = 1.0*TSTEP
          TSTEP = TSTEP/100.0
          CALL POINT(TPX, RNG, TSTEP, CLX, CLY, PT(N, 1), PT(N, 2), BASEL,
       C OLDDIF)
 C CALCULATE LENGTH BETWEEN SEAM AND CENTRE OF LINE
          X = TPX
          Y = EVALU(X)
          ALENGT=SQRT((((CLX-X)**2)+((CLY-Y)**2))
       ELSE
         X = CLX
         Y = CLY
         ALENGT = 0.0
       ENDIF
       PT(N,5) = ALENGT
 C FIND GRADIENT BETWEEN TORCH AND POINT ON THE SEAM W.R.T.X
       GRAD1=((CLY-PT(N,2))/(CLX-PT(N,1)))
       GRAD2 = ((Y-PT(N,2))/(X-PT(N,1)))
       IF ((GRAD2-GRAD1).LE.0.0) THEN
         PT(N,5) = -1.0 * PT(N,5)
       ENDIF
       TRAV = SAMTIM * VELOC
       PT(N+1,1) = PT(N,1) + (TRAV * (COS(PT(N,3))))
       PT(N+1,2) = PT(N,2) + (TRAV * (SIN(PT(N,3))))
       PT(N+1,3) = FEEDBA(PT(N,3),PT(N,5),PT(N-1,5),PGAIN,DGAIN)
 1000 CONTINUE
C PRINT OUT THE RESULTS
      DO 2000 N=1,NUM
С
      WRITE(7,1050) N, PT(N,1), PT(N,2), PT(N,3), PT(N,4), PT(N,5)
      IF (N.LT.XOS) THEN
          A6 = PT(1,2)
      ELSEIF (N.GE.XOS) THEN
         A6 = DOS
      ENDIF
      PATHX(N)=N * SAMTIM * VELOC
С
      DEVIAT(N) = PT(N, 4)
      DEVIAT(N) = PT(N,5)
      PATHY(N) = EVALU(PATHX(N))
      TORCHX(N) = PT(N, 1)
      TORCHY(N) = PT(N, 2)
```

```
Appendix V - SERROR
```

```
C1050 FORMAT(I4,5E13.6)
 2000 CONTINUE
      WRITE(7,191) (DEVIAT(I), I=1, NUM)
      FORMAT(4(E13.6,','), E13.6)
 191
C THE GRAPHICS PART
С
      CALL GINO
      CALL SAVDRA
      CALL DEVPAP(280.0,280.0,0)
      CALL WINDO2(0.0,280.0,0.0,280.0)
      CALL SOFCHA
      CALL CHASIZ(3.0,3.0)
      CALL AXIPOS(0,30.0,190.0,118.0,1)
      CALL AXIPOS(0,30.0,190.0,60.0,2)
      CALL AXISCA(3,16,0.0,PATHX(NUM),1)
      CALL AXISCA(3,6,0.0E-3,6.0E-3,2)
      CALL LINCOL(10)
      CALL GRAPOL (PATHX, PATHY, NUM)
      CALL BROKEN(2)
      CALL LINCOL(1)
      CALL GRAPOL(PATHX, TORCHY, NUM)
      CALL BROKEN(0)
      CALL MOVTO2(30.0,220.0)
      CALL CHASTR('SEAM PATH')
      CALL MOVTO2(100.0,200.0)
      CALL CHASTR('TORCH POSITIONS')
      CALL MOVTO2(30.0,150.0)
      CALL CHASTR('SIMULATED SEAM PATH AND TORCH POSITIONS')
      CALL AXIPOS(0,30.0,70.0,118.0,1)
      CALL AXIPOS(0,30.0,70.0,60.0,2)
      CALL AXISCA(3,16,0.0,PATHX(NUM),1)
      CALL AXISCA(3,6,-3.0E-3,3.0E-3,2)
      CALL AXIDRA(1,1,1)
      CALL AXIDRA(-1,-1,2)
      CALL LINCOL(1)
      CALL GRAPOL(PATHX, DEVIAT, NUM)
      CALL CHAANG(90.0)
      CALL MOVTO2(5.0,30.0)
      CALL CHASTR('SENSOR DEVIATION (M)')
      CALL CHAANG(0.0)
      CALL MOVTO2(80.0,30.0)
      CALL CHASTR('SEAM DISTANCE (M)')
      CALL MOVTO2(50.0,90.0)
      CALL CHASTR('ZERO LINE REPRESENTS THE SEAM')
      CALL MOVTO2(5.0,10.0)
                            SEARCHING FOR A STRAIGHT LINE SEAM')
      CALL CHASTR('FIG.8.1
      CALL CHASTR('FIG.8.1 TRACKING OF A DISTORTED SEAM')
С
      CALL CHASTR('FIG.8.1 TRACKING OF AN OFFSET SEAM')
      CALL DEVEND
      CALL GINEND
      STOP
```

С

```
END
 С
 С
       SUBROUTINE ERROR(X1,X2,D,X0,Y0,E0)
 C SET SAMPLING RANGE
       EMIN = X1 - X2
       EMAX = X1 + X2
 C FIND ERROR
       DO 30 X=EMIN,EMAX,D
       Y = EVALU(X)
       E = SQRT(((Y-Y0)**2) + ((X-X0)**2))
       IF (E .LT. EO) THEN
          EO = E
          X1 = X
       ENDIF
    30 CONTINUE
       END
       SUBROUTINE POINT(X1,X2,D,CX,CY,X0,Y0,BL,OD)
C SET SAMPLING RANGE
       TMIN = X1 - X2
       TMAX = X1 + X2
C FIND POINT ON THE SEAM
       DO 40 X=TMIN, TMAX, D
       Y = EVALU(X)
       RX = X0 - X
       RY = YO - Y
       RLENGH = (RX^{**2}) + (RY^{**2})
      SX = CX - X
       SY = CY - Y
       SLENGH = (SX^{**2}) + (SY^{**2})
      DIF =ABS(RLENGH - BL - SLENGH)
       IF (DIF .LT. OD) THEN
        OD = DIF
        X1 = X
      ENDIF
   40 CONTINUE
      END
С
      FUNCTION EVALU(X)
      COMMON A1, A2, A3, A4, A5, A6
C THE FUNCTION THAT DESCRIBES THE LINE OR PATH TO TRACK
      EVALU=(A1*X**3)+(A2*X**2)+(A3*X)+(A4*SIN(A5*X))+A6
      RETURN
```

END

C THIS ROUTINE CALCULATES THE NEW ANGLE

FUNCTION FEEDBA(OLD,PER,OLDPER,PGAIN,DGAIN) FEEDBA=OLD+PGAIN*(PER)+DGAIN*(PER-OLDPER) RETURN END

Appendix V - SERROR

```
*
                                                        *
*
        THIS PROGRAM PRODUCES PLOTS FOR THE COMPUTER
                                                        *
*
      SIMULATIONS AND EXPERIMENTAL RESULTS.
                                                        *
*
                                                        *
С
     PROGRAM OSROT
     DIMENSION ERR(600), ENUM(600), DIST(600)
     CHARACTER TITLE*60, TYPE*60, JOB*60, PATH*60
     INTEGER HEIGHT
     READ (7, '(A)') TITLE, JOB, PATH
     READ (7,*) HEIGHT, SPEED
     PRINT*, TITLE
     PRINT*, JOB
     PRINT*, PATH
     PRINT*, HEIGHT
     PRINT*, SPEED
С
     XO=30.0
     YO=25.0
     XR=118.0
     YR=118.0
     TX=103.0
     TY=272.0
     CALL GINO
     CALL SAVDRA
     CALL DEVPAP(280.0,280.0,0)
     CALL WINDO2(0.0,280.0,0.0,280.0)
     CALL SOFCHA
     CALL CHASIZ(3.0, 3.0)
     CALL MOVTO2(TX,TY)
     CALL CHASTR(TITLE)
     DO 1000 ISET=1,4
        READ (7, '(A)') TYPE
        PRINT*, TYPE
        J=0
        MAXN=0
        READ (7,*) (ERR(I), I=(J*5)+1, (J*5)+5)
  100
        DO 200 I=(J*5)+1, (J*5)+5
           IF (ERR(I).EQ.999.) MAXN=I-1
           IF (MAXN.EQ.0) DIST(I)=I*SPEED
        CONTINUE
 200
        SINCE ERROR PER SWEEP TAKES ONE SECOND, THUS,
С
        NUMBER OF ERRORS * SPEED = DISTANCE TRAVELLED.
С
        IF (MAXN.GT.0) GO TO 300
        J=J+1
        GO TO 100
        PRINT*, 'END OF DATA FILE ...,', ISET
 300
        PRINT*, 'NUMBER OF ERRORS =', MAXN
        PRINT*, 'DISTANCE TRAVELLED=', DIST(MAXN)
        PRINT*.'OFFSET=', ISET-1
```

```
C THE GRAPHICS BIT
С
         IF (ISET.EQ.1) THEN
            XSHIFT=0.0
            YSHIFT=YR+4.0
         ENDIF
         IF (ISET.EQ.2) THEN
            XSHIFT=XR+4.0
            YSHIFT=YR+4.0
         ENDIF
         IF (ISET.EQ.3) THEN
            XSHIFT=0.0
            YSHIFT=0.0
         ENDIF
         IF (ISET.EQ.4) THEN
            XSHIFT=XR+4.0
            YSHIFT=0.0
         ENDIF
         ORX=X0+XSHIFT
         ORY=Y0+YSHIFT
         XS1=X0+XR+4.0
         YS1=15.0
         XS2=X0
         YS2=YS1
         WX=ORX+10.0
         WY=0RY+10.0
         DX=XS2
         DY=8.0
         PX=XS1
         PY=DY
         HX=XS2
         HY=1.0
         SX=XS1
         SY=HY
         CALL AXIPOS(1,ORX,ORY,XR,1)
         CALL AXIPOS(1,ORX,ORY,YR,2)
         CALL AXISCA(3,16,0.0,DIST(MAXN),1)
         IF (ISET.LT.3) THEN
         CALL AXISCA(3,10,-5.0E-3,5.0E-3,2)
         ENDIF
         IF (ISET.GE.3) THEN
          CALL AXISCA(3,10,-50.0,50.0,2)
         ENDIF
         CALL LINCOL(3)
         CALL GRID(2,0,0)
         CALL LINCOL(1)
         CALL MOVTO2(WX,WY)
         CALL CHASTR(TYPE)
         CALL GRAPOL(DIST, ERR, MAXN)
1000 CONTINUE
     CALL MOVTO2(XS2,YS2)
     CALL CHASTR('VERTICAL: SENSOR DEVIATION (-5MM TO +5MM)')
     CALL MOVTO2(XS1,YS1)
     CALL CHASTR('HORIZONTAL: DISTANCE (0 TO 160MM)')
     CALL DEVEND
```

Appendix V - OSROT

.

CALL GINEND STOP END