
THE ANALYSIS AND COMPARISON

OF

SYSTEM DEVELOPMENT METHODOLOGIES

IN

SOFTWARE ENGINEERING

Thesis s~itted in accordance with the requirements of
the University of Liverpool, United KingdaB, for the

degree of Doctor in Philosophy

By

llaqbool Uddin Shaikh

December 1986.

DEDICATION

This Thesis is dedicated to my late parents Siraj Uddin,

Khurshed Begum, my wife Khalida and my childern Saima

and Uzair for their love, support and patience.

ACKNOWLEDGEMENTS
I wish I could know the special words to thank

Professor Michael Anthony Hennell who always found
confidence in me, since I was doing M.Sc. with him, and
giving me a chance to work on his projects as a Research
Assistant at the University of Liverpool, UK. am
grateful for his unwavering patience, guidence and
supervision throughout my student life at the university
of Liverpool.

I am also thankful to the European Research
Office, Science and Engineering Research Council, UK., and
Liverpool Data Research Associates, for financing this
research.

My special thanks to Mrs. Margret Hennell, the
Managing Director of Liverpool Data Research Associates,
for reading this thesis. It was her kindness to offer
valueable comments and help me with patience to make the
language and presentation of the thesis better and better.

I would like to express my gratitude to my late
parents for their influence, guidence and support which
they offered in their life time. They gave me training in
how to adopt the cognitive style in acquiring knowledge. {
wish they were alive to see their desire come true.

Finlly I want to thank to my wife Khalida who
always encouraged and gave moral support to me all long
my path to the Ph.D.

CONTENTs.
Page

CHAPTER1 1

1.1 lntroduction 2

CHAPTER2.. 19

2.1 Introduction 20

2.2 The Life Cycle 26

1 * Project Proposal Phase 26

1.1 Study of Proposal 2'/

1.2 Initial Investigation 21

1.3 Initial Feasibility study 29

2 * strategy Phase 31

3 * Analys is Phase 33

3.1 Analysis of Environment 34

3.2 Requir ement Ana1ysis 36

3.3 Prepare Requirements Specification 38

3.4 Check for Consistency 42

3.5 Search for EXisting Available Systems 43

3.6 Feasibility Analysis & Detailed Proposals 44

4 * System Specifications Phase 48

5 * Des19n Phase 52

5.1 Planning and Decision 56

5.2 conceptual Design 5'/

5.3 Phys ical Design 59

6 * Implementation Phase 63

'/ * Transition Phase 68

V * Verification & Validation Phase 11

S * Spec ial Cases ·/1

S1 * I!:nhancement 17

S2 * Maintenance 79
S3
S4

* Prototyping .. .84

* Quality Plan 89
2.3 The Life Cycle in Formal Notation 9G
2.4 The Summary of the Life Cycle l03
2.5 Glossary. •. lOG

CHAP"l"ER 3 . .. 118

3 Summary of Results of the Analysis & Comparison ..119
CHAP"l"ER 4 ••••••••••••••••••••••••••••••••••••.•••.••.• 136

4 .1 Summary 13"'
4.2 Suggestions. . 152

................ 15'/Appendix A •.........
Introduction. 158A.l

A.2

A.3
A.4

ETHICS Method. 159
JSD Method185
LSDM Methodology.205

A .5 MASCOT Method.....228
A.6 SADT Methodology •................•............. 251
A • ., SASD Methodology. .2'/4

Appendix B . .303

B.l Introduction .304
B.2 Definltlons•............. 305
B .3 ETH ICS•..........326
B•4 JSD •• 334

B.5 LSDM .343

B.6 MASCOT•..........•.•............. 348
B. 1 SAI1r •••••••••••••••••••••••••••••.••••••••••••• 365

B .8 SASD... 3.,1
REPPERENCES. • • . • • • • . • • • • . • • . . • • • • • . • . • . • • • • • • • . • • . . • . . 3., 9

.' a.wa••••

1.1 Introduction

In recent years many Systems Analysis & Design
Methodologies have been developed as a result of market
Requirements
engineering.

in different problem
These Methodologies

areas of software
differ widely in

features such as approach, concepts, coverage,
complexity, terminology, tools etc.. They are mainly
problem and environment oriented and therefore are very
good for certain types of problenw, but unsuitable for
other classes. In spite of the commercial claims most of
these Methodologies do not cover the whole span of System
development and completely ignore certain Phases or
activities of System development. For example MASCOT which
is called a Methodology by its authors totally ignores any
Analysis activities.

It is difficult for the Analyst/Designer and the
User/Management to decide which Methodology should be
adopted to solve their problems. The reason for this is
that:.

1. These Methodologies were initially
developed for certain specific purposes,
usage, environments etc. and later, due to
commercial reasons, were modified to be
used in other areas.
These Methodologies use different2.

terminology for the same things, and use

2

similar names for different things. Such
discrepencies
confusion.

3. More often these Methodologies use certain

in terminology cause

terms such as function, process,
event, entity etc.procedure, action,

without explicit definition.

To compare & evaluate these Methodologies their
features, facilities, etc. is not an easy job. The
following are a few possible approaches; some of them were
applied previously and others are applied in this study:.

1. Use the Methodologies to solve a model
problem related to a particular
environment and compare how successfuly
the features and facilities of these
Methodologies can be applied to solve that
problem.

2. Develop a list of model questions and apply
it on selected Methodologies to identify
and study their characteristics and
features. Use the selected important
characteristics & features to compare &
evaluate the individual Methodologies.

3. Carry out a feature Analysis of the
Methodologies by using a set of questions
uniformly on each selected Methodology
with out doing a comparative Analysis, and
express these features in uniform

3

terminologies.
4. Compare the Methodologies against an ideal

one. A Methodology which is commonly used
and applicable to all different types of
the problems.

5. Compare
1.e. in

the Methodologies quantitatively
terms of metrics, indices,

statistical measures, etc..
6. Develop a set of questions and apply them

to the individual Methodologies to
determine their objectives, scope,
characteristics, features, etc.. Use the
Phases of the Life Cycle as standard
activities to examine, determine and
evaluate the extent to which each
Methodology covers the Phases of the Life
Cycle i.e. cover the span of System
development tasks. Compare the
characteristics, features, etc.. of the
Methodologies with each other as far as
possible. This comparision is of a
relative nature. This approach is a
modification of the second approach and is
one of the two approaches which are adopted
in our study.

7. Study how the terminologies are defined
and used by the selected Methodologies.
Further compare their definitions with the
IEEE standard definitions, the glossary

4

developed here and the definitions given
by the other Methodologies for such terms
as function, procedure, process,
state, entity etc.. This is the
approach adopted in this thesis.

The first approach in this list was adopted 1n

action,
second

the early eighties by a large research group whose members
were from various selected organizations [78]. One of the
purposes of this group was to study the existing
Methodologies and identify the most suitable and
beneficial Methodologies for the Ada environment. Two
model examples were created by the group for partial
development using the selected Methodologies. The first
example was an aircraft monitoring system. CORE, MASCOT,
JSD, SARA & CSS were applied to develop a number of
subsystems. The second problem was to develop a I<APSE
database by using VON, (software development ideas given
by Jones) [30] and also abstract data types. The output
systems for the above problems could not be implemented
due to lack of access to suitable compilers. So it is
difficult to assess the success of this study. The span of
the Life Cycle model used by the group has limited scope
and coverage. Many elements covered in the sample and
referred to as a Methodology are not a Methodology
according to the defination in the glossary. In fact these
are a subset of a Methodology because they do not cover
the whole span of the System development tasks. For
example, the authors of JSD call it a Method, not a
Methodology.

5

A generalised form of the above approach was
adopted by IFIP WG. 8.1 during 1982 [63]. The working
group developed a model problem about a hypothetical
conference organisation to be solved by various existing
Methodologies. The aim of the organization was to find the
strong and weak points of each Methodology and compare
their solutions of the model problem. The WG. decided to
send an open invitation along with a brief Requirement
Specifications for having a computerised System of the
model problem; to the various Methodology authors. The
authors were asked to submit a paper explaining how they
can apply and solve the model problem which was also
called a standard test case. Authors of twenty-five
Methodologies submitted their papers in the conference. A
review committee compared these submissions, without
attempting to be too analytic, and examined the facilities
of the Methodologies which they applied to solve the model
problem. Later the committee selected seven Methodologies
which best cover the existing spectrum of Methodologies.
The spectrum was defined informally as the
process/functions to be performed and the Analysis of data
to be used in the System. Then thirteen out of twenty-five
Methodologies were selected for inclusion in the
proceedings of the first conference. The proceedings show
the similarities and differences among the Methodologies
which came into prominence after applying the test case.
This approach had many drawbacks. For example practically
it was difficult to develop a problem which could equally
be used by these Methodologies to show their facilities

6

and capabilities to solve the particular problem. The term
Methodology itself was not defined so the authors of
Methods were also able to take part in the study. There
was a great risk that the model problem no matter how
carefully it was designed may be biased towards or against
a particular Methodology. The reason for this is that all
these Methodologies are more or less problem oriented and
are not suitable to all types of problems. Also the model
problem was found to be too well defined and did not
include the development of the Requirements
Specification. This limited the coverage of the System
development tasks, ignoring important Phases. Hence it
becomes inadvisable to use a model problem to compare the
features of the Methodologies. Such an approach will not
be used in this study.

The second approach was adopted by several
groups separately. First it was also adopted during 1981
by the research group mentioned above whose main purpose
was to study an Ada based System development Methodology
[78]. A framework was developed to identify a set of 13
characteristics against which 21 Methodologies or their
variants were examined. One of these characteristics was
to study Ada compatibility ie. how Ada might be used by
these Methodologies. Further this group also studied how
successfully these Methodologies can solve problems
related to Ada environments. Later during 1982, Wasserman
and his group conducted a similar survey of 24 'software
development methodologies' [82]. One of the purposes of

7

this study was to determine which •methodologies', if
there were any, could be integrated with the Ada language,
and the related Ada programming support environment. The
framework of this study was objective and was provided by
the Ada joint program office. A questionaire was used to
obtain basic information on the existing 'software
development methodologies', particularly as they may be
used in conjunction with programs to be written in Ada
[83). In this sample they also included some elements
which according to their own definition of 'methodology'
[p37-92) are Methods such as JSD, SD. As these two studies
were purposive and biased towards Ada, their results may
not be fair and general.

A similar approach to study the Methodologies
was also adopted by IFIP. In their 2nd. conference of WG.
8.1, during July 1983 (64). The aim of the second
conference was "to carry out a feature analysis of some of
the methodologies from the first stage, plus any other
methodologies that contributors might wish to include"
(79). In this conference the solutions of the model
problem of the 1st. conference, given by different
Methodologies were compared and analysed by various
participants. The comparision and Analysis of these
Methodologies was done against a number of features and on
the basis of the information about their goals,
applicibility, origin, experience, representation means
etc.. This information was specified in their submission,
for the first conference. In this second conference

8

different participants tried to compare and analyse the
features of the Methodologies without having a connon
framework or a list of features. It is therefore,
difficult to relate their work with each other and find
common points of interest on which all the researchers can
agree. The definition of Methodology, what constitute a
Methodology, was not defined by the organisors. 'ftle
following is a brief description of the studies which were
done by several participants separately.

Brandt [SO] selected thirteen Methodologies to
do a feature Analysis. These Methodologies were selected
from the twenty-five Methodologies which appeared in the
proceedings of the 1st. IPIP WG S.l working on the
Comparative Review of Information System Design
Methodologies Conference [63]. His study was based on the
assumptions, goals and main application areas stated in
the proceedings. Efforts were made to study the stated
objectives of these Methodologies and tried to attain an
overview of the eight selected major features such as
origin & experience, development Phases, tools,
documentation, etc.. This study was based on the
assumptions, goals and main application areas stated in
the 1st conference, so it had an impact of all the
previous drawbacks. Brandt conments that -an exhaustive
Analysis has not been attempted- [p-9,SO]. This study did
not cover each Methodology in depth. For example how the
Methodologies achieve their objectives were not
considered. Selected features to do the Analysis were not

9

sufficient and did not cover the complete span of System
development tasks. The selected Methodologies were mainly
concerned with or limited to the theoretical university
academic environment, without practical experience. some
of them were found to be still in the research stage. No
Methodology from their sample is included in our study.

The survey conducted by Wasserman and his group
also studied the selected 'methodologies' according to the
second approach [Sl]. In this survey efforts were also
made to study the 'methodologies' against certain selected
parameters concerned with the software development, and
determine to what extent these parameters are covered by
the 'methodologies'. The scope of the survey was
therefore, biased towards compatibility with the Ada
language. Wasserman et al have themselves commented on the
study as "the objective questions, while designed to be
easier to report, did not provide as much useful
information as we had hoped. We often felt that our terms
were misinterpreted or that the developer of the
methodology did not relate accurately to a question".
........."the loosely structured answers made the job
of reporting the results more difficult." [p-Sl, S3].
Further the information about the 'methodologies' were
provided by the authors of those 'methodologies', so due
to commercial reasons the honesty, accuracy and
reliability of their answers cannot be guaranteed. Of
course no one will like to answer negatively exposing the
weak points of his 'methodology' when they are in the

10

market. The group has admitted that "we made little effort
to evaluate the claims of the respondents" [p-4l, 81]. The
entries in most of the tables are according to the way the
terminologies have been defined by the 'methodologies'.
This is another weak point of their study because these
terminologies and their use differ from 'methodology to
methodology'. Porcella et al., have admitted that "another
problem was confusion about understanding whether what we
meant by 'requirement' and 'specification' in the
questionaire was what the respondent meant" [p-84, 83]. In
this study only three out of the 24 'methodologies'
referred to by Wasserman are covered.

Olive [84] proposed a frame work to do a
comparative Analysis of two of the aspects of the System
Design Methodologies i.e. level of abstraction and type of
Methodologies. The term abstraction is closely related to
the hierarichal decomposition of a complex System. Five

external,different levels of abstraction
conceptual, logical, architectural and
used in this study. The information

Le.
physical,
Systems

were
were

classified as data base Systems, decision support Systems,
etc.. The main purpose of this framework was to find
common points Le. similarities among the Methodologies
rather than differences. The evaluation of the
Methodologies was out of the scope of this study. This
approach was therefore, incomplete. Only eleven
Methodologies were covered, all of them were presented in
the proceedings of the 1st. conference [63]. None of these

II

Methodologies is covered in our study.

A similar study based on feature Analysis was
also made by Iivari and his group (85). A frame work based
on a sociocybernetic interpretation of System Design,
human action and System Design Methodologies was prepared
for this purpose. Features like scope & content, support &
usability, assumptions, etc.. were studied. The feature
Analysis was done only for the EON,ISAC, NIAM & REMORA
Methodologies out of the 25 which were in the proceedings
of the 1st. conference (63).ln this study they could not
find any observation or evidence which could show the
potential ineraction between different features of the
Methodologies.

Falkenberg and his group of 9 persons spent a
total of one man year in analysing various Methodologies
which appeared in the proceedings of the 1st. conference
[63). The group selected the best four Methodologies
according to certain criteria, (not stated explicitly), to
do a further study and comparision. ACM/PCM, ClAM, ISAC
and NIAM were the selected Methodologies. In this study
the major principles, concepts, strong & weak pornt.eof
the Methodologies were studied and suggestions for
improvements were also made. F.ffortswere made to find
data Analysis and process Analysis aspects of these four
Methodologies. They developed a matrix to show how
different concepts and their names have been used by these
four Methodologies. The authors did not show any framework

12

and the criteria they used for assesing the Methodologies.
Their comments about the good and bad points seems to be
with respect to the particular purpose without having
wider considerations. The authors have not shown in their
paper the criteria for calculating these tables. No
argument has been mentioned.

Since this approach was based on very little
observation, evidence and limited information, it is
difficult to determine adequately and suffiCiently how
successful these Methodologies are in the real world. How
effectively these Methodologies can be used in different
environments and the appropriate class of problems. It was
not revealed adequately how & to what extent the
Methodologies can cover the Span of the System Development
Life Cycle. Most of the Methodologies which were selected
to do the feature Analysis had a theoretical background
with little practical experience.

The third approach was adopted by Maddison and
his group during 1983. Efforts were made collectively to
find, examine and document the features & the essentials
of the Methodologies and to know how these match up to
various System development activities. Their objective
was "to create from assesment of every methodology
descriptions that were similar in content and format"
[p-6, 65]. One hundred questions were selected to do a
feature Analysis of nine Methodologies with their
important variants. Four of those were chosen from the

13

seven selected Methodologies in the first conference
orgaqised by IFIP WG 8.1. The group did not mention the
criteria for the selection of the Methodologies. Their
definition of Methodology is very wide, and is not related
with the span of System development tasks. For example,
according to
Methodology.
aspects in
Maintenance,

their definition JSD is considered as a
They gave most emphasis to the
their experiment. other aspects
Enhancement, Quality Factors were

Analysis
such as
ignored.

Little effort was made to cover Prototyping.

The fourth approach is infeasible because at
present there is no Methodology which is commonly used and
applicable to all different types of problems &

environments. Though many authors make this claim.

The fifth approach at present seems to be
unrealistic, because so far software engineering has not
been developed to have specific metrics and indices to
measure or compare the various feature of the
Methodologies quantitatively. Though efforts in this
direction are being made.

The sixth approach is the modification of the
second and third ones, and is one of the two approaches
adopted in this thesis. In this study we are using a
common global framework and a set of questions to do the
feature Analysis. The feature Analysis is done by the same
individual to get commercially unbiased and consistent

14

results, i.e. results free from strong personal belief in
support or against a particular Method/Methodology. In
this approach the Phases of the global System Development
Life Cycle are used as standard tasks for comparison. This
comparison is of a relative nature. Due to the problem of
terminology, we are covering both Methodologies and
certain important Methods in our study. Each
Method/Methodology is examined to find how and to what
extent it covers the Phases of the Life Cycle. Six
Methods/Methodologies have been chosen on the basis of
their popularity, significant beneficial effect,
contr ibut ion to System development tasks and usage in
commercial, academic and scientific environments over the
past few years. Several questionaires were prepared to be
applied to these Methods/Methodologies according to the
global framework i.e. the Life Cycle model, to do feature
Analysis. Efforts were made to use the terminologies
consistently in a way which is very close to that of the
IEEE standard and a locally developed glossary. During the
study it was realized that most of the questions related
to different Phases were common and also the Methodologies
do not cover the whole span of the System development
tasks. Due to this it was found that the answers to most of
the questions were blank. Therefore, it was felt necessary
to revise the questlonalre. Finally a revised questionaire
having 34 questions was selected to apply to the
Methods/Methodologies.

The seventh approach is the second one which is

15

applied in this study.

1.2 Objectives
The study

Methods/Methodologies
of the System development

is designed to achieve the
following objectives:.

a. to do a comparative study of the
Methods/Methodologies and determine their
objectives, scope, technical and
Management aspects, tools/supports and
other major features,

b. to achieve a detailed and comprehensive
review of these Methods/Methodologies,

c. to determine the strong and weak points of
the Methods/Methodologies,

d. to determine how and to what extent the
Methods/Methodologies incorporate the
facilities such as documentation,
Enhancement, Maintenance, Prototyping,
Quality Plan, re-usibility of a System,
etc.,

e. to develop a framework which can be used as
a standard & systematic way to analyse the
Methods/Methodologies,

f. to develop a better, complete and global
description of System development, called
the System Development Life Cycle,

g. to determine the suitability of the global
Life Cycle by examining it analytically to

16

1.3 Scope

discover how successfully
can be fitted

the
inMethods/Methodologies

this Life Cycle,
h. to determine the possibility and means of

developing tools which may help in
developing economical, better Quality,
error free, reliable, re-usable and
maintainable software Systems.

The following are the scope of this study:
a. Examine in an analytical, critical manner

the Methods/Methodologies which are
commonly used in commercial, industrial,
and scientific environments,

b. Methods/Methodologies whichstudy the
cover and consider the human and
Management aspects of the problem during
the System development and determine the
extent to which these aspects are covered,

c. study and examine the selected set of
Methods/Methodologies on the basis of
their referenced materials, published
literature, and direct correspondence and
arrange discussions with the authors, if
needed,

d. Study and compare the
definitions used
Methods/Methodologies,

terms and

by
their

the

17

e. Develop an un-ambiguous, comprehensive and
global set of terminologies and their
definitions for possible future use by the
Methods/Methodologies. Use these
terminilogies during the study of the
Methods{Methodologies in order to be
consistent,

f. Identify and define clearly the complete
span, Phases and tasks which must be done
during System development,

g. Recommend the feasible approaches which
can be adopted in future to improve the
deficiencies of the Methods/Methodologies.

18

•••••••
.. WI.

19

·System Development Life ~~~

2.1 Jntroduction

The term "System Development Life Cycle" is used
to identify the main Phases which occur in the development
of a System from initial conception to final realization.
A glossary of terms used in this thesis is included at the
end.

There are several System Development Life
Cycles, sometimes called System Development Processes.
These Life Cycles are used by various System development
Methodologies as an integral part, mostly without
definition, e.g., SASD [5,18], LSDM_LBMS [16], NIAM [14],
HaS [31] and SADT [11], etc. There are also some System
Development Life Cycles defined by Enger N. L. [36], Biggs
C.L. [37], Blum B. [38], Ramamoorthy C. V. & Ma Y.N. [39],
O'Neill D. [40], Freeman P. [41], and many others. These
Life Cycles have several problems in common, for example,
not covering the whole span of System development. They
are suitable only for certain types of problems and have
lengthy Phases which may increase the probablity of
committing errors. Their lack of by_pass options for the
separate Phases may increase the overall costs for
particular projects, after all, unnecessary Phases will
cost money. The most critical deficiency is the lack of
knowledge about the Requirements of the User/Management,

20

since they do not in general have Phases devoted to this
problem.

In real world problems it is a common practice
in developing any System to start from some vague idea,
some proposal, some 'wants'. At the beginning of a
development the actual Requirements are usually
incomplete, at least for a short period and possibly for
ever in a complex System.

In computer software Systems, it is a well
recognized problem that Users of software frequently
cannot state clearly and completely what they want until
they see a finished System running. Due to this incomplete
knowledge of 'wants' and their specification a large
number of problems solved by computers are initially
ill-defined.

Some explanations for this inconsistency as
mentioned above are the present dominating, but inadequate
System Development Life Cycles. Mostly these Life Cycles
are based on the assumption that the User can express
his/her 'Requirements' in a complete and comprehensive
way. It has been shown [1], that the most frequently
occuring problems arise through (a) incorrectly specified
Requirements, (b) inconsistent and incompatible
Requirements and (c) unclear Requirements. Past
experience reveals that the Requirements of the
User/Management cannot be stated fully at the beginning

21

because the User/Management are unable to articulate their
wants and expectations completely. l"urther, they cannot
forsee clearly the directions into which further
Requirements will develop. "Requirements specification
languages are supposed to enable the developers to state
their understanding of user's ideas in a form
comprehensible to the user.....but the User himself has
only very vague ideas of what he/she wants" [2]. The study
of present System Analysis and Design
Methods/Methodologies reveals that these
Methods/Methodologies do not cover the whole span of the
System Development Life Cycle in the way we generally
solve other problems. Furthermore they do not contain
clear definitions of the starting and end pOints of their
Phases. Peter Freeman points out that "repeatedly 1
encounter life cycles in use that do not fit the 'natural'
flow of work that should take place for a given
application" [3]. In present Methods/Methodologies there
is no check to ensure that the User/Management understands
his/her problems and further that what he/she 'wants',
really will solve his/her problems. There is no mechanism
by which to enquire why there should be a new System, what
this System will actually do and how it will do its tasks.

Different Systems Development Life Cycle models
given by these Methods/Methodologies have several common
features and steps, and use the same terms but for
differing concepts, and frequently different terms for the
same concepts. These terminologies and freqently used

22

common words are used carelessly and without proper
definitions. This causes communication problems
especially when two different Methods/Methodologles are
used in the same organization. For example, the term
ACTION is used in ACM/PCM [23] to update an OPERATION on
an information base. The same term ACTION is used in JSD
[21J to represent an EVENT in which one or more entities
participate by performing or suffering the action. The
term ~ in LSDM-LBMS [16J is used for PROCESS. In SADT
[llJ the similar term ACTIVITY, identified by a verb in a
natural language, is used to represent a happening, which
may be performed by a computer or people, etc., in a
System. In NIAM [14], and ISAC [25], the term ACTIVITY is
used for an ~ION taking time and resources. In MASCOT
[22J, the term ACTIVITY represents a process. The term
~_1~ in 02S2 [28], LSDM_LBMS (16] and SYSOOC [27] is
used for an OBJECT which is actually occuring as a
concrete thing of interest in a System. The same term in
JSO is used for an OBJECT in the real world which
participates in a time_ordered set of actions i.e.
entities perform and suffer actions. In SADT, the term
~T~ is used to represent OBJECTS or THINGS working
together to perform functions in a System. Furthermore in
ACM/PCM, ISAC and NIAM, the term OBJECT is used to
represent an ENTITY. The term ,UNCTION is used in SYSDOC
in a general sense, i.e., to represent any mathematical or
business function, where as in JSD the term FUNCTION
represents an action or set of actions performed by the
System and resulting in the production of output. FUNCTION

23

in MASCOT represents an action. These
Methods/Methodologies start from a Phase which identifies
the problems to be solved and give a solution for the
problem with the assumption that output will satisfy the
Requirements of the User/Management.

The above mentioned problems compelled us to
develop a new "System Development Life Cycle", the aim of
which is to build a global framework which can help to
develop a System in a way which is similar to that which is
used to develop Systems for solving other problems. It is
an amalgam of all cycles currently found in the
literature. All such cycles are incorporated into it on
the grounds that they are probably suitable to at least
one class of problems. This Cycle consists of a set of
Phases, which are generalised. It will be appropriate for
all classes of problems and different environments. It is
not restricted to any software Design Method or
Methodology. This Cycle starts from the project proposal,
i.e., the User's 'wants', not from 'Requirements'. There
is a difference between 'wants' and 'Requirements' [4].
The 'Requirements' should ideally be targeted towards the
'needs' of the User/Management. The Cycle attempts to
identify the true 'wants' and gives a better understanding
of the problem. The major purpose of this System
Development Cycle is to help the Analyst and the Designer
to analyse, Design, implement, and maintain a System in an
evolutionary manner. This Cycle therefore covers all
aspects of System development such as Project Proposal,

2.4

strategy, Analysis, System specifications, Oesign,
Implementation, Transition, and Verification &
Validation. The cycle also has facilities to deal with the
special cases such as Enhancement, Maintenances,
Prototyping and Quality Plan. These cases are optional and
can be applied when needed. It is based on the active
participation of the User/Management who can help the
Analyst in understanding clearly what they (the
User/Management) 'want'. This approach provides a
conceptual framework for developing a System by using
existing powerful and widely used System development
Methods/Methodolog ies and allows the use of established
programming Methods such as JSP [42], Top_down, Bottom-up
[43, 44], etc.

This Cycle gives clear but flexible Phases which
can be bypassed or modified according to the environment
and type of problem. In a sense it is a global but at the
same time standardized System Development Life Cycle. It
offers guide lines and gives some ideas on how to proceed
when developing and implementing a System. Any step can be
by-passed if found unnecessary. Iteration facilities and
Prototyping are regarded as integral parts of the Cycle.

25

2.2 The Life ~1e

In the following the first figure in the heading

is the principal Phase number, the second is the subphase

number. The special cases of the Life Cycle start with the

letter'S' followed by the number. The star indicates the

Phase name.

J * Project Proposa1 Phase

* Study of Proposal

* Initial Investigation

* Initial Feasibility study

Before starting any System development task the

User/Management will first have to consider how such a

System might improve their work and make extensions in

their organization. They then prepare a proposal in this

regard. In this proposal they may 'want' to have some

modifications in the existing System or to have a complete

new System which mayor may not be computerised. Usually

such a proposal is prepared by the Management in

consultation with the User. It gives some description of

the project and the objectives to be achieved, together

with preliminary estimates of manpower and cost involved.

26

The main objective of this step is to study the
proposal given by the Management. There is no doubt that
Management and User always face difficulties, as in other
fields, in expressing correctly and precisely what they
'want'. In fact in most cases they are not clear
themselves what is their exact Requirement.
propose something ambitiously, thinking

They either
'bigger is

better' or some times, underestimate the problem and hence
their needs. In this Phase the Analyst will study the
proposal, recording possible benefits that can be
accomplished with it, taking into consideration the size
and working capacity of the organization, budgetary and
manpower constraints, annual recurring Systems,
operating, Maintenance and training costs which may be
involved. The Analyst will try to understand at an initial
level what the User/Management actually 'needs'.

The possible outcome of this subphase will be in
the shape of some comments or notes recorded by the
Analyst for his/her own convenience, better understanding
and memory.

~.2 Initial Investigation

Objectives of this subphase are:.
1. to study the most frequent problems likely

to occur in the System, in the opinion of

27

the User/Management,
2. to investigate the proposal and check for

correctness, completness and redundancy of
wants,

3. to find out possible benefits or
disadvantages that can be obtained from
the Proposal,

4. to review 'wants' and seek out actual needs
and objectives because it is likely that
the proposal will not cover the actual
'needs',

b . to select from the proposal any radical
changes that may positively effect the
working of the organization and decrease
costs.

The Analyst assigned to study the proposal will
discuss it with User/Management in a number of meetings to
achieve these steps. The output of the Initial
Investigation subphase should be a statement postulating
actual 'needs' including preliminary identification of
cost & benefits.

28

The basic purpose of this step is to find out
possible ways to implement the output of the Initial
Investigation step, i.e., the User's/Management's
'needs'. The Analyst has to collect basic information that
will be required to implement these 'needs'. The Analyst
will then write his/her reconvnendations about the
selection of a particular Analysis Method{Methodology
such as SADT [11], SSA [12], PSL/PSA [13], NIAM [14),
STRADIS [24] and LSDM_LBMS [16], etc., suitable for this
particular problem. The selection of a particular Method
or Methodology is not an easy job and, "it is often
difficult to determine whether a given methodology applies
in a given situation. It is even more difficult to select
one methodology from among all those that might be used"
L 1"']. It is not possible to say that a particular Method
or Methodology is superior to others in an overall sense
even though it is better than others in a particular
situation. Therefore, the criteria for the selection of a
particular Method or Methodolohy or a combination of them,
should depend on the type of problem, the environment and
working area and finally the personal experience of the
Analyst. Furthermore the Analyst will also write a brief
plan expressing estimated cost, manpower required,
tentative completion date, equipment required and finally
the potential benefits from these changes. The
deliverables of this step will be used as a basis for
setting detailed objectives and developing strategies for

29

System development. This report will be submitted to the

User/Management for consideration.

30

strategy means a proposed set of actions clearly

des igned to achieve certain well def ined goals over a

period of time.

In the domain of Systems development Strategy

means choosing between practices, guidelines,

recommmended sets of act ions and the order ing of

development decisions. In general the Strategy adopted to

solve a particular problem, depends on the size and

complexity of the problem. In a similar way the strategy

to develop a software System will depend on its size,

complextiy and environment. This is because a software

System for a complex problem cannot be developed in a

similar way to one for simple problems.

In this Phase the output from the Initial

l"easibility Study subphase will be used to develop a

strategic plan discussing how the Company will proceed

with the project. Whether some aspects will be pursued

further than others, who will undertake the task and

accept the consequences and responsibility of:

1. the changes in personnel, hardware, etc.,

2. the effects of Implementation, Transition

and possible delay,

3. the arrangements for formal training and

development of new manuals, etc ..

31

This strategic plan should be developed in the

light of Managements long term policies.

32

3 * Analysis Phase

Subphases

* Analysis of Environment

* Requirements Analysis

* Prepare Requirement Specifications

* Check for Consistency

* Search for Existing Available Systems

* Feasibility Analysis & Detailed Proposal

Analysis means to decompose something (which is

under study) into its component parts for identification,

examination and interpretation. The term Systems Analysis

is used to break, an old System (if it exists), or an idea

for a new one into its components in an attempt to reveal

and examine how those components work and interact with

each other in order to accomplish the purpose. In general

it is a job whose purpose is to show 'what is in' the

System and 'how it works' within the environment of the

User/Management. "In the specific domain of computer

system development, analysis refers to the study of some

business or application area, usually leading to the

specification of a new system- [5]. The term 'Analysis' is

used in this System Development Life Cycle in a different

way. It is used for the purpose of Systematic study and

examination of 'needs', (obtained in Phase 1), in order to

find, determine and identify the causes of the problems

and the Requirements of the User/Management. The results

of this AnalYSis are represented in detailed proposal(B)

33

·together with the feasibility report(s) for developing the

System Specifications. In these proposals the Analyst

develops a definition of the Requirements and Requirements

Specification, important parameters, and the environment

in which the System will work. Emphasis should be given to

the Analysis Phase in order to get a better understanding

of User's/Management's Requirements and expectations.

~_~_~~lys is of Environmnt

In general, no Designer designs a System badly

by choice, but at present many Systems which are working

in different environments are either working badly or are

total failures. One of the possible reasons for that is

that both Analyst and Designer are unaware of the problem

area and its environment.

During the tasks of System development the

Analyst often does not have much information about the

User and the environment for which the System will be

designed. Hence an outcome of the development tasks may be

something over which the User/ Management disagree with

the Analyst, resulting in dissatisfaction and

frustration. An Analyst who does not have a thorough

understanding of the environment, working area and its

terminology cannot communicate effectively with the

User/Management and convince them if required. Brown G.L.

mentiones that "A high quality of system design will be

very difficult to produce unless systems designers have an

34

adequate understanding of the industry in which the
organization does business (and the) technical
environment in which the system must be implemented" [6).
Unfortunately in present existing cycles too little
emphasis is given to the importance of collecting
information about the environment in which the System will
be working.

Objectives of this subphase are:

1. to collect and understand information
about the environment in which the System
will work,

2. to know about the application area for
which the System will be designed,

3. to develop a dictionary of all different
terms, concepts, notations and definitions
which are used in the establishment, in
order to avoid misinterpretation of words
and communication problems,

4. to investigate factors which may effect
the System environment, Le., factors
which are responsible for the occurrence
of incorrect data, creating inefficient
processes or functions, and

5. to investigate factors which cause the
System to be less portable, create
security and integrity problems, etc..

35

The output of this subphase is a small report
showing adequate information about the environment and
working area for which the System is being designed. This
report will be used by the Analyst in subphase 3.2, i.e,
Requirements Analysis.

3.2 Requirements Analysis

"Requirements analysis deals with the
difficulties of understand.ing the problem and of
communicating that understanding among the concerned
individuals and organizations" (7). In short, Requirement
Analysis encompasses all aspects of the System and yields
the results from which Requirements Specification can be
build. Its main objectives are:

1. to decide clearly whether or not those
identified needs will actually be required,

2. to collect further information about
'needs' and formulate its structure,

3. to consider the social, legal, security,
privacy, managerial,
impacts which may come
fulfilling the above

and, financial
as a result of
'needs'. These

aspects may impose additional Requirements
on the System.

4. to consider the environment where the
System will work,

b. to communicate all the above information

36

to User{Management.

A part of this work can be done best by using
the "Participative approach to System Design Method" [8]
[9], which gives emphasis to the need for meeting the
human needs of staff when designing computer Systems. This
Method is supported here because the User is likely to be
the most appropriate person inside the organization, who
may know something about the 'needs' and predict any
further changes in these User 'needs' which may possibly
occur during the tasks of System development. This is
because the 'needs', may not be stable throughout the
entire System development tasks. The tasks of Requirements
Analysis performed in the above way can help the User,
Management and Analyst to learn from each other and thus
to write a better Analysis report.

The product of Requirements Analysis must be a
clear statement of the
some sound results

User's{Management's
from which the

Requirements
Requirements

Specification can be built. "The evidence is overwhelming
in industry regarding the dramatic consequences of
incorrect or inefficient problem definition work. The
causes are misunderstanding of the problem and
insufficient analysis to decompose the problem" [10]. Some
essential properties of the Requirements must be:

Completeness,
Consistency,
Unambiguity and

37

Modifiability.

~.3 Prepare Regyiraments Specification

It is diff icult but desirable to have a clear

definition of the Requirements Specification. The problem

in formulating a clear definition is that different

authors have different concepts about 'Requirements' and

'Specification' and hence of 'Requirements

Specification'. We are proposing a definition which is a

general one. To specify is to state particularly and

precisely. Hence a specification is a particular and

precise statement of something. A Requirement is something

which is deemed to be needed. A Requirements Specification

is therefore a particular and precise statement of those

things which are deemed to be needed. Note that this

perception of needs is from the viewpoint of the User,

their Management and the environment.

The main objectives in preparing a Requirements

Specification are:.

1. to define clearly what the System or part

of it must do in accordance with agreed

Requirements, i.e., the output of the

subphase for Requirements Analysis,

2. to help in transforming the Requirements

into a System specifications by providing

a well defined starting point,

3. to act as an initial model which can

38

exhibit, as much as possible, relevant
information for forming a Design,

4. to specify initially the data, processes
or functions which might be required in the
System,

b. to act as a basis for System assessment.

The preparation of a Requirements Specification
is a complex and time consuming job. Its success depends
to a great extent on the QuaJ.ity of the Requirements
Analysis. This job needs high Quality, intellectual,
creative and experienced Analysts.

The output of Requirements Specification must
be expressed in a clear and comprehensive report. This
report will be used further as a basis to prepare detailed
proposals for the new System and can either be prepared by
using a specification language or a natural language
supported by diagrams.

following
Quality.

A Requirements
properties can

Specification
be considerd to

having
be of

the
high

Requirements Specification which are developed
in such a way that they are capable of being used
successfuly and are according to the agreed needs and

39

constraints mentioned in Phase 1, are said to be feasible.
It is difficult but important to develop such Requirements
Specification. Lack of feasibility may cause serious
Implementation problems and hence increases cost and
frustration.

Understandabi1ity

Requirements Specification which are developed
in such a manner that they are clear, unambigious and
difficult to misinterpret are said to be understandable.
During the tasks of System development some Requirements
Specifications are ignored intentionally or
unintentionally by the Designer because of these problems.
It is, therefore, necessary to avoid errors and omissions
in the Requirements Specification and to develop them in
such a manner that they are understandable. The
understandability of Requirements Specification can be
obtained by imposing constraints on the style of writing
in natural language and using diagramatic help.

Re1iabi1ity

A Requirements Specification having a high
probability of being complete, correct, and consistent and
which can lead towards successful development and
Implementation of a software System over a period and
under predefined conditions, is called a Reliable
Requirements Specification. Unreliable Requirements

40

Specification leads towards uncertainty as to whether or
not the System can be successfully implemented. To get a
reliable specification it is essential to verify
consistency between Requirements and Requirements
Specification. This can be done, as mentioned earlier, by
using the participative Method of Systems Design in which
the Requirements Specification is shown to the
user/Management to avoid complications, chances of
misunderstanding and to reduce discrepancies, before
Implementation.

Eva1uation

The Requirements Specification should reflect
the Requirements of the UserfManagement which may not be
static and may change whenever they want. These changes
may be due to improvement, elaboration, specialisation and
generalization. It is, therefore, necessary to develop a
Requirements Specification which is evolvable. In our
System Development Life Cycle any changes or modifications
should compel the Analyst/Designer to go to the start of
Phase 3 and repeat the same excercise. It will be easier
to do this as the previous skeleton or model for the
System can be re-used.

lJaintainabi1ity

final
Inevitably errors

product which have
will be introduced in

not been trapped during
the
the

41

previous stages. If It is important to the User that the

System be corrected then the ability to maintain the

System will be a Requirement. Transporting the System to

other machines may also be a part of this Requirement. The

criteria by means of which this Requirement can be

enforced must be considered and Implementation
anticipated .

.3 .4 Checkfor consistency

By consistency we mean to examine critically in

order to locate any contradictions in the Requirements

Specification which may be due to:

1. a difference between the Requirements

Specification and what the User/Management
,intended' ,

2. modification of the Requirements

Specif ication, which may happen from time

to time,

3. contradiction and incompatibilities

between Requirements,

4. missing

etc ..

components, undefined entries,

After every modification care must be taken to

ensure that consistency is maintained. For these reasons

it is essential to have frequent consistency checks. These

checks should be made before moving to further steps of

the System Development Life Cycle, especially before the

42

Search for gxisting Available Systems and writing
Feasibility Analysis and Detailed Proposals. Any error at
this level may cause many problems in future steps. To
eliminate contradiction at this stage is not an easy job
and becomes more difficult when the System being modelled
gets bigger and more detailed. This problem can be greatly
simplified if a detailed cross_reference is available.

~.S Search for Existing Available Syata.s

Shortage of skilled and experienced
Analyst/Designers and their cost of employment is becoming
a serious administrative problem. For example, it is
estimated that up to 90 percent of the data processing
intellectual effort in a large corporation is devoted to
developing and Maintenance of software [45]. "It is
commonly recognized that software reusability could
provide powerful leverage for reducing future software
development cost" [55]. Therefore this problem can be
eased by making use of available proven Systems from the
System market. This involves detailed searching of
software System banks/catalogues to pick up a System
suited to the Requirements Specification, or otherwise
modify one of the Systems which is similar to the required
one and involves a minimal degree of changes. In such an
approach the Analyst has to make sure that the System
which is being selected is sufficiently free from bugs,
has sufficient good documentation and is acceptably User
friendly etc. This information can be obtained in a number

43

of ways, e.g. by submitting a number of questions to
various establishments using the chosen System. After this
selection the Analyst can move directly to the
Implementation step by-passing all intermediate steps of
the cycle which are discussed below. Before this the
Analyst has to satisfy the User/Management that the
Implementation is consistent with the Requirements
Specification. Purchasing Systems in the above manner will
cost less money and time than creating it by oneself
because the development cost of a System available
commercially is spread over a number of purchasers.

It may be that a System can be found which is
close to the required System. In this case convnercial
consideration may force the omission of these missing
Requirements. Clearly some considerable thought must be
given to finding these missing Requirements and then
studying the implications of these omissions.

.l.§._le....ibility Analysis and Detailed Propoaa1s

Feasibility Analysis means studying how the
Requirements Specification can be implemented within the
given constraints such as technical, operational and
economic factors. It is useless and painful to Design a
System which cannot be implemented under given
constraints. In this subphase the Analyst will prepare a
detailed report, the purpose of which is to give
Management:

44

1. a detailed review of the Requirements and
Requirements Specification and surety that
there are no redundant factors and that its
Implementation is feasible,

2. the expected Implementation, running and
Maintainence costs of the new System,

3. a detailed plan with which to develop,
implement, and test the new System,

4. estimates about completion time, staff
needed and hardware required,

o. cost benefit Analysis for the new System,
6. information about essential changes in

poliCies, environment, status of
personnel, organizational changes and
effects thereof.

The Analyst should select first those
Requirements which may cause major changes in the existing
System (if there is one), and are relatively expensive to
implement. On the basis of this selection the Analyst will
recommend whether it is advisable to implement those
Requirements or not. This report should also justify the
Implementation of the rest of the Requirements for the new
System, keeping under consideration the Implementation,
running, and Maintenance costs against possible benefits
which Management may get from the new System.

The Analyst should inform the Management in the
report about the expected results which may come after

45

implementing the new System, and possible effects if the
old System is continued.

Systems which are developed purely to achieve
certain technical objectives may have unpredictable human
consequences, because technical decisions may cause
changes in policies, Strategy, environment, status of
personnel, and organization. These changes may result in
serious industrial relations problems. It is, therefore,
necessary that the Analyst in the Feasibility Analysis and
Detailed Proposals should avoid chances of developing
human aggravation and provide a way to gain the User's
confidence.

Sometimes changes may occur during the
development tasks which cannot be ignored. These changes
may be due to the time factor and a better understanding
of the Requirements, or earlier communication failures and
their correction. It is recommended to submit more than
one complete proposal with the Analyst's recommendations,
and conclusions, giving summarized statistics about,
cost, time, etc. and comparisons between the present and
the new System and the possible benefits thereof. These
proposals should be discussed, before any move, by
User/Management or a committee on their behalf. They will
decide accordingly which proposal should be accepted and
approved for further progress. However, if
User/Management or their committee is unable to decide and
does not agree with any proposal then it will be essential

46

to repeat the Cycle, do all t.he excercises again, and

submit new proposals or otherwise terminate the project.

47

4 .. Srat .. Specif icationa Phase__4.

System specifications should state clearly and
unambiguously, what a System must do. It is a precise
statement of the Requirements in a form which is
meaningful to the Designer. There are three main
description Methods for System specifications. Firstly
the use of formal notation Methods, such as VDM [30], HOS
[31], and AFFIRM [35] etc.. Secondly Methods like PSL/PSA
[13] and SREM [15], etc., which emphasize Management and
documentation aspects. These previous Methods are not
widely used in industry. Thirdly, and most commonly, there
are specifications expressed in natural language.

The System Specifications Phase represents an
interface between Analysis and Design Phases. This Phase
separates completely the Design work from the Analysis and
refers to that information which must be delivered from
the Analysis to the Design Phase. It converts the
terminology and pragmatics of the application area into
the terminology and pragmatics of computing. For example a
User's Requirement that a System should be reliable to a
given extent must be transferred into constraints which
are relevant to computing, such as appropriate values for
reliability metrics. Another example would be that a
Requirement for completion of a document for a particular
task would lead to a precise definition of the contents of
that document in terms of the inputs to the computer
System. This Phase separates the User's{Management's and

48

Analyst's view of the problem, and its solution, from the
Designer. Without such an interface it will be difficult
to know how to represent the output of the Analysis
results technically. Further such an interface helps to
determine, up to a reasonable extent, that proposed
changes will not have any adverse effect on the present
System (if there is one). This interface will also help in
providing flexibility in System Design, enabling the
Designer to execute easily the changes which may occur
from time to time. System Specifications can be considered
as a basic source from which alternate Design decisions
can be made.

The main purposes of System Specifications are:

1. to express in precise and consistent form
what the System will do, according to the
User's/Management's and Analyst's agreed
proposal,

2. to define the objectives and constraints
which the System must satisfy, e.g.,
System boundaries, System interface, etc.,

3. to specify details about processes,
functions and operations of a System,

4. to specify provisions for error handling
and recovery thereof,

b . for use as a standard against which an
Implementation can be verified,

6. for use later to support system

4~

Maintenance,
7. in some cases for use in building a

prototype.

The Quality of a System depends to a great
extent on the way System Specifications are developed. in
this Life Cycle, System Specifications are developed from
a selected detailed proposal, Le., output of Analysis
Phase-3. In the System Specifications Phase the
Analyst/Designer elaborates the proposal into a set of
different clear steps which are used as a basis for System
Design. This elaboration can be based either on functions,
processes or data, and some times on both. It may lead
towards one or more concepts of System Design such as
Structured Design [18], Top-down Method, Bottom-up Method
[43, 44], JSD [21], MASCOT [22], etc., as the case may be,
according to the type of problem. It is, therefore,
recommended that System Specifications should not be
described in accordance with a particular Design
Method/Methodology. Again here at this point we are not
ranking one Design Method or Methodology above an other.
We consider System Specifications as the foundation of
Design, therefore, it is essential that User and
Management must agree and confirm that these System
Specifications represent their Requirements and serve
their purpose. This will help and encourage the Designer
in making further steps.

Many Implementation and Maintenance problems

50

are due to incomplete specifications. Incompleteness in
specifications implies that the Analysis work and its
output are incomplete and, therefore, may require a return
to the Analysis Phase (Phase-3). Paying sufficient
attention during the development of System Specifications
can result in reducing Maintenance cost of the System.

51

5 * Design Phase

~ub Phases

* Planning and Decision

* conceptual Design

* Physical Design
"Design is the process of transforming what has

to be done into a means of doing it" [18). In this Phase

emphasis will be given to the application of the System

Specif ications, rather than understanding the needs and

Requirements of the User/Management. "Design is concerned

with what might be in the future if the design be

implemented, and hence is concerned with what is not yet

or does not yet exist" [19). In this Life Cycle the term

Design is used both as a verb and a noun. As a verb it is

used as conceiving & planning by using an agreed

proposal(s) and its specifications as input and converting

the plan into an unambiguous executable model, called a

System frame or System skeleton to perform its purpose(s)

i.e. function(s). As a noun it is used as a tool set which

accepts the human proposal(s) and its specif ications as

input and can develop an unambiguous executable System

frame or System skeleton to provide the information to the

User/Management and serve his purpose(s) i.e.

function(s). The Design Phase starts after finalising the

System Specif ications which are in fact a plan for the

detailed proposal expressed in technical terms. This Phase

must preceed and not be confused with Implementation, i.e.

52

its scope is up to Implementation point. The Oesign tasks,
if performed carefully, converts this plan into an
unambiguous model, (although there may be more than one
model). It involves devising ways which lead to the
attainment of the required goals, Le., to solve the
problem in a way which is according to the proposal and
its specifications and satisfies the User/Management.
Usually experienced Designers have certain assumptions,
beliefs and tricks and they develop a Design with the help
of this known-how, i.e., their past experiences. They use
these as a theory consciously or unconsciously. Such
assumptions, beliefs and tricks are usually correct and
worth using, if the resulting Design is passed through
well prepared testbeds. The recent study of System
development Methods/Methodologies revealed that in
general there is no Method/Methodology or tool which is
suitable for building a System for all different types of
problems and environments and is capable of satisfying or
likely to satisfy different User's/Management's needs,
Requirements and corresponding specifications. Any Design
problem can be solved in an infinite number of ways. This
number eventually is reduced by deciding to adopt a single
or a set of particular Methods or Methodologies. There are
several Design Methods or Methodologies suitable for
different fields and environments, such as Structured
Oesign [20], SADT [11], JSD [21], MASCOT [22], ACM/PCM
[23], ISAC [25], LSI»4-LBMS [16] and STRADIS [24], etc.,
each one having many drawbacks. These Design Methods or
Methodologies, can be classified according to four

53

distinct main approaches, i.e.

1. Building a System by giving emphasis to
functions and processes. This is called
functionally or process based Design such
as ISAC, NIAM, SASD, etc..

2. Designing a System by giving emphasis to
the flow of data to be used, i.e.,
describing the System in terms of data.
This is called a data driven System, such
as SYSDOC, D2S2, LSDM-LBMS, etc..

3. Designing a System by developing a model of
the real world. This is done without
initially mentioning the functions to be
performed by the System, but introducing
these functions explicitly at a later
stage, by using verbs in the
specification. The JSD Method is of this
type.

4. Designing a System based on the States of
entities and processes or their behaviour
and changes in any combination within the
environment. Designs based on SOL [32, 33]
are of this type.

Criteria for the choice of a particular Method
or Methodology, as in the Analysis Phase, should be based
in the Feasibility Analysis and the Detailed proposal. To
obtain a good Design the following are some general

54

guidelines and recommendations; but of course as mentioned
above, the final selection must be based on considerations
of the type of problem under study.

1. Similar to the Analysis
dictionary of all the
concepts, notations,

Phase develop a
different terms,

and definitions,
which are to be the in the System in order
to avoid misinterpration of words and
communication problems.

2. Decompose the overall problem and its
specifications successively into smaller
and smaller subproblems, posslbly called
modules or sUbsystems. This decomposition
continues till a point is reached from
which the Design looks relatively easy.
The criteria for this decomposition
depends on the type of problem,
environment and experience of the Designer.

3. The modules or subsystems must be able to
be conveniently and coherently connected.

4. Each major module or subsystem must be
further investigated with a view to
finding out its main functions, processes,
entities, actions, and their
relationships, etc..

5. Each module or subsystem must be tested to
make sure it is performing its functions
and processes up to a satisfactory level.

55

6.

This needs the development of suitable
test data having acceptance criteria and
possibly mentioning the time dependence
between modules or sUbsystems.
Each module or subsystem should
protected against the possibility
incorrect input data. This needs

be
of

the

" .

development of certain constraints to
prevent incorrect input.
Modules or subsystems
integrate, manage and
which can easily

must be easy to
perceive, i .e. ,

be implemented,
maintained and amended.

As the Design is decomposed it may be necessary
to use the Life Cycle recursively. This is because further
Requirements relevent to a subsystem may need to be
determined or clarified. In this case many of the
subphases need not be performed.

The detailed subphases for Design are as
fol.l.ows.

5.1 P1ann~ and Decision

"Design involves both making decisions about
what precisely a system will do and then planning an
overall structure for the software which enables it to
perform its task" L26]. The Planning and Decision tasks

56

involve using the System Specifications to develop the
System. In this subphase crucial decisions about the basic
structure of the System Design and how to convert them
into a series of hierarchical steps are made. At this
stage, great care is needed as these decisions have great
impact on the final System Design and can have
consequential effects for the later Maintenance Phase.
This job needs consideration and it is probably of an
iterative nature.

with
The Designer must establish, in consultation

the Analyst and the User/Management, clear
definitions, main functions and general processes of the
System, operating parameters, nature of data to be stored,
and patterns of output. The Designer must prepare a list
of instructions and formulae, if there are any, depicting
how to solve the problem. Clear definitions of functions
and the general processes of the System will help the
project team in understanding and deciding which functions
and process are to be taken and which are to be by-passed.
It will further help in making decisions about which tool,
Method or Methodology should be implemented.

~.2 Conceptual Design

The Conceptual Design or visualized model means
an appropriate image of the actual Design, its information
flows, processes network, entities, functions, modules,
subsystems, their relationships, and interactions in the

57

Designer's mind.

In this subphase the Designer will make certain
basic assumptions about the Design to be built based on
the decisions and planning made in the previous subphase,
the environment, nature of the selected proposal and
System Specifications thereof, developed in Phase_4, and
of course his/her experience. The Designer will produce
ideao for creating modules, subsystems, databases, etc.,
for example:

1. The Designer can assume that it will be
better to develop a conceptual model of the
real world, based on the results of
Analysis and System Specifications Phases;
and later introduce functions. Thus the
Designer uses the JSD Method with the
essential required knowledge about the
Systems environment, Analysis results, and
System Specifications, i.e., some extra
items which are missing in the JSD Method.

2. The Designer can build a Conceptual Design
or model about entities types,
relationship types and data element types
using the Analysis results and System
Specifications e.g., using the SYSDOC.

3. .i'~ora Real time System the Designer can
make a Conceptual Design based on the
Analysis results and the System
Specifications showing that changes in the

58

computer System will occur in the same
sequence as changes in the environment,
e.g., SDL Method.

4. A Conceptual Design of a System consisting
of object and activity classes and rules
can be developed by using the information
obtained from the Analysis results and the
System Specifications. The description of
this Conceptual System is called an
abstraction System by NIAM, and it can be
expressed by using a conceptual grammer.

b. If the Structured Design approach is
followed, then a Conceptual Design can be
built by developing concepts about data,
data structure, data flow diagrams, a data
dictionary, hierarchies of modules, etc.
based on the Analysis results and the
System Specification.

The output of Conceptual Design should be
documented properly after consulting with the Analyst and
the UserfManagement for further use in developing Physical
Design .

.5",3_~ ica1 Des ign

By Physical Design we mean designing details of
data, data format, data structure, data base, data
dictionary, functions, processes, modules, subsystems,

59

etc., according to the selected ilesign Method or
Methodology which can be represented and implemented
physically, (like actual things) at a particular time in
a System.

In Physical Design each module or subsystem will
be physically or actually identified along with its
interfaces with other modules or sUbsystems.

To develop a Physical Design in this Life Cycle
the output of Conceptual Design will be used. In this
subphase modules or subsystems, data dictionaries, data
bases, etc. conceived in earlier subphases will be
developed physically in detail.

The Physical structure of data, data
dictionaries, modules or subsystems etc., for example, can
be described by charts, diagrams, tables, and coding
formats. This involves the development of:

1. dataflow diagrams,
2. structure charts, decision tables, etc.,
3. modules or subsystems as a part of a

hierarchy and showing their points of
entry and exit,
input details,
example, the

4. and the layout of, for
data format, the data

structures, the input variables, and their
points of entrance into the module or

60

subsystem etc.,
5. output details and their layout e.g.

output, output structure of files
exit

or
fromdatabases, their point of

modules
thereof,

or subsystems
format of error

and conditions
messages, and

6.
physical source of output etc.,
Details about file structures,
procedures to retrieve and
indicating which files are
permanently kept.

and the
update,
to be

The Physical structure of processes,
procedures, activities, and functions can be described by
using structured English, pseudocode, machine processable
language, diagrams, charts etc.

The Physical Design of User interface can be
developed from User options, clerical routines, available
or proposed hardware. This interface will assist the
User/Management in the selection of the report option.

The output of the Physical Design subphase will
be a Design in which each System module or subsystem will
be physically available along with all its interfaces to
other modules or subsystems, and will be matched.

It is important to mention that the tasks of
developing the Physical Design like other subphases is of

61

an iterative nature, and needs frequent consultation with
the Analyst and the User/Management. The output of this
subphase will be available for the Implementation Phase.

The details about modules or subsystems, their
control, dataflow, output layout, different constraints
etc., elaborated in the different Design subphases, will
be integrated to form a frame or skeleton of a System to be
used in the Implementation Phase.

On the
Analyst/Designer

basis of
will be

this frame or
able to estimate

skeleton the
the program

development, installation, and Implementation cost of the
System. This cost estimate will be submitted, along with
the Design frame, to the User/Management for their
approval prior to any further move.

6:L

6 * Impla.entation Phase

The IEEE defines Implementation as, (1) itA

realization of an abstraction in more concrete terms; in
particular, in terms of hardware, software, or both". (2)

nA machine executable form of a program, or a form of a
program that can be translated automatically to machine
executable form". (3) "The process of translating a design
into code and debugging the code." They also define the
Implementation Phase as, "The period of time in the
software life cycle during which a software product is
created from design documentation and debugged." [34]

Implementation means the tasks which are
concerned with giving practical effect to the Design or
System skeleton: the manipulation & translation into code
of a software System frame developed earlier in the Design
Phase, to fit it to the hardware and also in some cases to
the other software. It is also concerned with debugging
the code, if necessary.

By Implementation Phase means the period of time
in the System Life Cycle, during which the Implementation
tasks expressed below in this section, are performed. The
value of this frame or skeleton can decrease if a
systematic approach is not followed.

There
implement that

are a
frame

number of ways or
or skeleton such

strategies to
as JSP [42],

63

Top-down [43], Bottom-up [44] , structured [50,51],
Stepwise refinement [52], and Modular [53], Progranwning
approaches. Criteria for using a particular approach
should depend on the type of the problem, the Design
Method used earlier and the environment.

For example:
1. a Strategy to implement a System based on

MASCOT will be different from that of SOL,
2. for the processes having sequential input

and output data streams JSD might be used
to develop the Design frame. So it will be
appropriate to use JSP for developing the
Program,

3. for a Design developed based on SASD
Methodology, structured Programming might
be suitable, etc..

This frame or skeleton is converted into the
detailed Program statements by coding into a suitable
Programming language and developing it's documentation.
The choice of proper Programming language and
documentation technique needs due consideration [46].
Because some languages and documentation techniques are
not suitable for certain class of problems and machines.
Selection of improper Programming language and
Programming Method can make Implentation difficult.

The Implementation task in this Cycle varies
from System to System, on the Design Method or Methodology

64

adopted during the Design Phase, and the hardware which is
being used, for example:

1. In JSD where most of the Design decisions
are taken at Implementation level [21,
P-25], it's Implementation task will be
different than if the same problem is
developed by using SASD.

2. Implementation of a real time system such
as an air traffic control System where an
immediate response of an event is needed,
will be different from that of a simple
accounting System.

3. Due to rapid development in hardware and
it's low cost, it is now possible to
implement in hardware certain functions
which generally used to be Implemented by
using software

Briefly the Implementation tasks include the
following:

1. preparation of an Implementation schedule
in consultation with the User/Management,

2. development of accurate & reliable
computer programs based on the System
frame or System skeleton from the Design
Phase.

3. scheduling of modules, subsystems,
processes and their mechanisms for

65

invoking and suspension,
4. checking that the required hardwaJ:e and

software (in some cases) are available and
aJ:ein wOJ:kingcondition,

5. development of operating procedures,
manuals, and documentation in a clear and
understandable way,

6. training of the end User/Management in the
use of the System and the interpretation of
the output etc.,

7. helping and guiding the User/Management in
developing the organisation and
administrative structure of the data
processing centre,

8. ensuring that all the
have been implemented
missing or is ambiguous.

required changes
and nothing is

The success of Implementation depends on how
well the frame or skeleton has been developed. A good
frame can save much time and money, which is usually spent
on debugging etc.. It will be better to implement the
System, initially on a pilot study basis. This Strategy
will help in evaluating the deficiencies, if there are
any, and making the changes before final acceptance, if
necessary.

Ouring Implementation effort must be made to
ensure that the System has been implemented according to

66

the Design and can perform it's objectives set in the

earlier Phases. The User/Management should attest that the

System has been implemented properly and it's performance

is satisfactory to the extent that no serious problems are

occuring.

During this Phase V & V Phase must be applied to

complete the System testing up to a reasonable level.

67

1 * Transition Phase

Transition tasks are defined in the Life Cycle

as the evolution and change from one System to another and

hence occur only in situations where both exist.

Trans ition tasks are concerned with how the new System

should replace the old one and deals with all the problems

which may occur dur ing the tasks of switchover from the

old to the new System, such as:.

L switchover tasks may effect the existing

working System due to changes in the normal

routine.

2. deciding which function or procedure

should be introduced first.

3. having an interface between the new and the

old System.

4. training the User/Management and also

increasing their motivation.

5. effects on the organizational structure

which may create serious adverse effects.

This Phase may involve the following:

1. User/Management training,

2. Data Conversion,

3. Parallel Operation,

4. Operational Documentation,

5 . Acceptance.

68

In this task efforts must be made to train and
guide the concerned staff and increase their motivation.
In certain cases their work and performance should be
examined carefully during the Transition Period.

Existing data, datafiles, data structures,
entities, etc. must be copied and converted according to
the input Requirements of the new System. It must be
decided which existing files will be needed in the new
System. This task could have been in parallel to the
previous Phases. This transformation may involve extra
cost especially when the organisation is decentralised.

Ideally the new and old Systems should run in
parallel for the purpose of experimentation, observation
and training the staff. This should be continued until the
new System is accepted formally by the User/Management.

In some cases the results of the Transition
Phase indicate that the System may require Maintenance or
Enhancement. This may be required to eliminate errors,
omissions and improvement in the efficiency and
performance of the new System. This may force the
Analyst/Designer to go back to the approproate point in
the Life Cycle and re-do the required things again. This
can easily be done by activation of any suitable special
cases of the Life Cycle.

The Transition tasks needs close involvement by

69

trained and experienced staff for the supervision and
examination of the performance critically. Before
accepting the new System the staff concerned should wait
for consistent results from the operation of the new
System.

This Phase differs from environment to
environment and System to System and is of problem
oriented. In this Phase certain possible tasks may start
in parallel to the Phases after the Analysis. For example:

1. After developing specifications about the
processes, functions etc. the Tarnsition
Phase may be started by elaborating the
details about the processes or functions
to be developed.

2. If the Design decision is that the JSD will
be used then the Transition tasks may be
started by making efforts to develop the
model of the real world.

3. If the Design decision is that a state base
System will be developed then details
about these states must be made.

4. Efforts to develop the data dictionary,
terms, notations, definitions etc. can be
started much earlier during the Phases
after the System AnalysiS.

etc..

70

V * Verif ication & Va1idation Phase _

Verification is defined variously by IEEE as:_

1. "The process of determining whether or not
the products of a given phase of the
software development cycle fulfill the
requirements established during the
previous Phase.n

2. "Formal proof of program correctness.n

3. "The act of reviewing, inspecting,
testing, checking,
establishing and

auditing, or otherwise
documenting whether or

not items,
documents

processes,
conform to

services or
the specified

requirements" [34].

Verification implies to the establishment the
correctness of something by comparing it against some
standard. For example to compare the developed System with
its Requirements, System Specifications, etc.

Validation is defined by IEEE as:
"the process of evaluating software at the end

of the software development process to insure compliance
with software requirements· [34].

Thus Validation ensures that the output of a
Phase complies with a standard such as the Requirements,

71

the Detailed Proposals, the System Specifications, etc..

The purpose of a V & V Phase in this Life Cycle
is to:

1. guide the Analyst/Designer and the
User/Management in making decisions about
their next move, which may be to go ahead
or abandon the project,

2. satisfy that the System Specifications are
developed according to the result of the
Analysis Phase and serve its purpose,

3. satisfy oneself and the User/Management
that the System Design is developed
according to the Requirements and the
System Specifications,

4. check the output of the Design Phase
against the basic rules of the selected
Design Method or Methodology, such as.rules about input/output data structure,
criteria to build modules or subsystems,
their connections and calling or exit
procedures, etc, and

5. ensure that its result satisfies the test
data.

The V & V Phase may be activated at any time and
in any Phase of the Life cycle, if needed. Specifically it
is activated after having:

1. Requirements Specification,

72

2. Detailed Proposals,
3. System Specifications,
4. Design output,
5. Implementation,
6. Prototyping.

For example.

1. The V & V Phase should be called during the
Analysis Phase to ensure that the
Requirements Specification and the
Detailed proposal(2) have been developed
properly, because any error at this Phase
can create major effects in terms of
complexity, time, and cost.

2. The V & V Phase should be used during the
Design Phase to ensure that the modules or
subsystems are complete, cohesive and
minimaly coupled. That the combined effect
of the modules or subsystem, data flow,
control flow etc. is according to the
Requirements & System Specifications.
Furthermore it must be documented that the
software is feasible to implement and can
serve the purpose and the environment for
which it was designed.

3. The V & V Phase must also be applied during
Implementation to ensure that the Program
is an appropriate representation of the

73

Design output and no unapproved changes
were introduced by the Progranuner during
the Phase. It will be better to use another
V & V Phase after integration of modules or
subsystems to check their combined effect.

4. The V & V Phase can be used for detecting
unperformed Requirements and mistakes,
which later can be traced back to find the
source of error.

The V & V Phase can be achieved by,
1. Testing or Auditing,
2. Inspecting & Reviewing,
3. Implementing & Running the Phase.

Tasks such as testing the output of a Phase,
must be based on testing against certain pre-selected
factors and constraints to ensure that the Requirements
and the System Specifications have been implemented
properly.

The goals of the V & V Phase can be achieved by
inspecting and reviewing the selected factors which
according to the User/Management may effect the
performance of the System. There are several types of
human inspection available including walkthrough, review
and inspection [10].

Many of the V & V activities for any Phase can

74

also be achieved by running and implementing the System or
by using a Prototype variant of the Life Cycle.

Great care must be taken in preparing the list
of the important factors and constraints which might be
used for the above purposes. This list must depict the
sequence and level of extent up to which the V & V Phase
will be done. The output of the above tasks must be
documented for possible future use.

If the User/Management or anyone concerned is
not happy with the output of the Validation Phase, it
means that perhaps:

2.

1. UserjManagement have changed their mind
about what they 'want'.
The Analysis was not done properly.
The System Specifications were not3.

developed carefully.
4. The selected detailed proposal, the basis

of System Specifications does not reflect
the Requirements of User/Management or is
not suitable for that particular problem
and the environment.

5. The Design tasks were not done properly.
6. The selection of the Design Method or

Methodology is not appropriate and cannot
solve the problem properly, etc..

75

Hence due to any of the above reasons it will

become necessary to go back to the appropriate Phase and

do the whole excercise again using the recursive property

of the cycle.

This re-useability of a V & V Phase in the Life

Cycle can certainly increase the Quality of the output for

the particular Phase in which it is being used and as a

direct result the overall Quality of the System.

76

Special cases

The following are the special cases of the Life
Cycle.

SI * Enhancement
S2 * Maintenance
S3 * Prototyping
S4 * Quality Plan

S_L_~_~ancement

This is a special case of Lhe Life cycle.
Enhancement means changing t.he System due to the
development of additional or changed Requirements. This
task is dependent to some extent on; how the System being
enhanced has been developed; the Method or Methodology
adopted, and the System environment.

The reason for Enhancement may be the
User/Management want to have more facilities, increase
performance, improved Quality Factors and other
attributes of the System. All these require changes in the
Requirements.

When the complete Requirements are finalised
then it is known that a System which nearly satisfies
these new Requirements already exists (it is the present
System). The remainder of the Life Cycle therefore,
involves changing the existing System Specifications,

77

Design, and Implementation to reflect the new

Requirements.

Usually the Enhancement tasks starts after

completion of the System. To perform these tasks the

Analyst/Designer have to proceed in a similar way as in

the main Cycle starting from the User's Proposal until the

last Phase of the Life Cycle, bypassing those Phases which

are not necessary.

The difference between Maintenance and

Enhancement at times is small. Correcting errors can often

involve a complete pass through the product of the whole

Life Cycle in order to discover the corrections to these

errors.

78

92 • lfaintenance

The IEEE defines Maintenance as:.
1. "Modification of a software product after

delivery to correct faults,
2. Modification of a software product after

delivery to correct faults, to improve
performance, or other attributes, or to
adopt the product to a changed
environment· [34].

Where as:.
1. Adaptive Maintenance is defined as

"maintenance performed to make a software
product usable in a changed environment".

2. Corrective Maintenance is defined as
"maintenance performed specially to
overcome existing faults".
Perfective Maintenance i.3. defined as
"maintenance performed to improve
performance, maintainability,
software attributes· [34].

or other

"In the software context this (maintenance)
means the removal of errors found after acceptance
(debugging), the improvement of performance by revised
design and implementation, and the development and
modification of facilities as operational experience is
gained or the requirement changes· [22].

79

JSD uses the word Maintenance to denote the

activity of changing the system to meet these changes (1.

e. changes in functional requirements, changes to the real

world, etc.) in specification [21, p.352].

In this Life Cycle Maintenance means the changes

incorporated into the system at any point from

Requirements Specification in the Life Cycle onwards, to:-

1. rectify faults, bugs etc. which may appear

from time to time,

2. make the System workable for a particular

environment and hardware.

System Maintenance is very often a reccur ing

problem. This problem effects both the User/Management and

the Analyst/Designer. There are several well known reasons

which can force changes and improvements. The most obvious

ones are due to basic Analysis and Design errors. These

changes may be due to the addition of certain functions,

processes or modules, to introduce more facilities and

Quality Factors. Such changes sometimes may happen during

the tasks of System development. In such cases the

Analyst/Designer has to modify the proposal or change the

Design frame or skeleton. However if the User/Management

want to make the changes to fix defects in the existing

working System, SUbsystem, module, etc., such changes

become very diff icult to incorporate, may conf lict with

efficiency and reduce the life and utility of the system.

80

Any attempt to incorporate the changes and to rectify the
defects locally without invoking the essential Phases of
the Life Cycle may repair the local and obvious defects by
creating other defects. A possible reason for this may be
that these modifications usually have ripple effects which
may result in introducing other defects. Brooks [54]
states that a computer program modification carries with
it 20 to 50 \ chance of introducing a second error. These
effects become worse, if the System under Maintenance was
not developed by using an appropriate Analysis and Design
Method or Methodology.

There is also an another problem. These existing
Methods or Methodologies generally have no specific or
universal measure or metric for Maintainability, or
something similar to it, which can help to determine the
extent to which the tasks of Systems modification,
correction, and debugging should be continued. There is no
specific or universal criteria or standard which can
measure the efforts required to locate and debug an error
or can determine when it is essential to rebuild a System.
There is no clear indicator to show when System
Maintenance is not feasible. All these usually depend on
personal decisions.

There may be several reasons which can cause
Maintenance tasks, such as:.

1. Changes in the Requirements Specification.
2. Changes in the System Specifications.
3. Changes in the environment.

4. Errors in the Design frame or skeleton.
5. Changes in the hardware.
6. Typographical errors.

The Maintenance is perhaps the most expensive
(costly) Phase of System Development Life Cycle, with
respect to other Phases. "The greatest portion, often more
than 50 \ of the life cycle cost, is spent on maintenance
and modification of System to make them do what users had
in mind in the first pLace " [49, P 196]. There is more
strong evidence from, "With the majority of the out-of
pocket expense to government going into something we call
maintenance (60 percent verses 40 percent)· [47,p 21-27].
One reason for these expenses is that Maintenance is
concerned with all the Phases of System Development Life
Cycle. The Maintenance job is a special case of the Life
Cycle, and may have Phases similar to the main Life Cycle
starting from Project Proposal for Maintenance, using
Analysis & Design tasks, till the last Phase of the Cycle.
This work is very similar to that of 'Search for Existing
Available Systems'.

The Maintenance generally involves:
1. Addition of certain facilities.
2. Correction of Bugs and operational

deficiencies.
3. Making changes in the Requirements

Specification which may occur by passage
of time. In this case there will be need to
start with the Project Proposal similar to

82

the main Cycle.
4. Making changes in the hardware.
~. Improvement or extension in the System..

The above changes or improvement will involve
starting this tasks similarly to the main Cycle. This can
be achieved by preparing the Project Proposals and
selecting the best feasible one and proceeding as in the
main Life Cycle. Any Phase which is not relevent can be
bypassed.

The original Design and Implementation Method
or Methodology should be used during the Maintenance
tasks.

A Maintenance manual should be prepared by the
Analyst/Designer together which should describe how carry
out the System Maintenance work.

83 * Prototyping

Prototyping means the construction of a System
or a part of a System, with limited goals and selected
Requirements, in order to establish some principles,
experiment with concepts, determine feasibility or
otherwise explore aspects which are not understood.

nPrototyping may be carried out either
informally or formallyn [68]. A formal Prototype can be
developed by using computer and formal System
Specifications. An Informal Prototype involves building
the Prototype manually (48).

By using a Prototype the User/Management can
evaluate and validate some of their Requirements. It can
also give to the Analyst/Designer a chance for
experimentation and learning with the achievement of
specified goals and Requirements in a short period. The
successful performance of a Prototype can give confidence
to the Analyst/Designer, increasing the chances of
successfully ending the project.

Prototyping is a special case of the Life Cycle.
It has Phases similar to those of the main Life Cycle.
This special Life Cycle can be invoked at any point in the
main Cycle, and for a given project many Prototypes may be
build. nprototyplng tend to produce a smaller product,
with roughly equivalent performance, using less efforts"

84

[48]. However, this claim is not necessarly true. For
example: an operating System prototype for a personal work
station could be built from a multiuser mainframe
operating System in order to determine which functions or
modes of operations were really wanted. Normally the input
to the Prototype Cycle is a subset of the currently known
Requirements. The further Analysis which may be performed
will usually be specific to some aspects of the
established Requirements and normally contain small
volumes of data. When developing a Prototype these aspects
may be examined in depth, without involving Quality
measures such as security, accuracy, efficiency,
relibility, performance etc..

This Prototype Cycle may continue recursively,
bypassing those Phases which are not needed at any
particular point. This simple Life Cycle which is often
based on trial and error principles usually gives sketchy
but informative output. This output can further be
improved by using the Cycle recursively especially using
the V & V Phase, until the output achieved is acceptable
upto reasonable satisfaction. The resultant product then
can be used for completing that particular Phase, and
continuing development using the main Cycle.

Possibly a suitable testbed and Quality Matrics
can be applied to verify a Prototype to improve the
Quality. For example a testbed can be applied to access
the Requirements, environment, System Specifications,

85

Design etc.. This can possibly be done by evaluating
Requirements, Conceptual Design, algorithms, input,
output etc.. Quality Matrics can be used to access timing,
utilisation of resources, performance, efficency etc..

The following are some specific examples which
illustrate where and when to develop a prototype.

1. In all cases a prototype can be developed
from a set of available information such as
main decisions and constraints. The
decisions and constraints which may have
global effects should be implemented first
in the prototype, before the minor or less
important ones.

2. In the Analysis Phase, a Requirements
Specification can be derived by developing
a prototype of the System which is being
developed. Such a prototype can
demonstrate to the User/Management how the
System will behave and whether is in
accordance with their Requirements.

3. An eXisting available proven good System,
if it satisfies the Requirements of the
User/Management to a specific extent can
be used as a prototype.

86

4. In some cases developing System
Specifications is difficult and time
consuming due to lengthy documentation.
Such System Specifications become
practically impossible to read or amend if
needed. This problem can be solved in a
better and easier way by developing a
prototype of the System, and seeing at an
initial level what the System will look
like. Redundant and unambiguous System
Specifications can also be eliminated by
comparing them against the Prototype. This
can be achieved by using a V & V Phase with
the Prototype.

!l. Prototyping can be used in the
Implementation Phase. Especially in
environments where a small error can cause
serious problems such as in defence radar
Systems, air traffic control Systems,
telephone switching Systems, etc. This
situation will be worst if the System is
not designed properly. Such a situation
can be avoided by using a prototype of the
System, to see how it will work in
practice.

6. Prototyping can also be very useful in the
cases where there is no adequate

81

information for developing the System. By
using a Prototype the User/Management can
see how and what is being done, rather than
just reviewing the written documents to
examine the behaviour of the system.

". Prototyping can be used to excersise
System Specifications and observe their
performance. For example to achieve above
Tavendale [66] uses a translator program
which checks the synthax and syrnentax of
specifications written in FDL, a

specification language. He converts these
specifications into a Prolog

form.
(logic
Theseprogramming language)

translated specifications are used in
conjunction with a set of modelling
functions which are also written in
Prolog, to provide an operational
interpretation of the sementics of the
specification language. These
specifications are stored in the
Prototyping System, a Prototype of the
System may be executed by using a User
interface facility which allows the User
to excercise the specifications and

observe its performance.

88

S4 * Quality Plan

Quality is a perceived property of an entity and

as such is established by consensus. In general Quality is

likely to be established relative to a standard.

Quality may be viewed in several ways, sometimes

it may be felt rather than measured. It may be considered

like beauty which is often in the eye of the beholder.

Quality may be established by a number of attr ibutes or

factors e.g. readability is dependent on vocabulary,

grammer, informal contents and style. It is also possible

to have a number of properties which reflect a given

Quality. For example complexity may reflect and depend on

the readability of text, grammar, information content,

functional style, data style, flag setting style, etc ..

Some qualities may be transient and therefore may be only

meaningful in a particular time band, e.g. reliability.

The cond itions that act ive ly contr ibute to a

System having the desired nature, degree of excellence,

characteristics, attributes, grade of goodness, inherent

features, standard, etc. are called Quality Factors. These

factors are

reliability,

often described by adverbs such as

integrity, portability, etc .. However there

are some exceptions such as time, money, manpower needed,

size of the System etc .. The Quality Factors can actively

contr ibute to the Quality of the System as percieved by

the User/Management.

89

A Quality Plan is a set of procedures, rules,
characteristics, constraints which can ensure that the
delivered System achieves the required qualities. A
Quality Plan may be used to minimise cost of a given
System, to control the Quality of each product, to produce
output of a consistent standard, etc..

The Quality Plan usually arises as a result of
imposing certain specific Requirements by the
User/Management. These Requirements may be imposed at the
begining of the project or may be notified at later
Phases. Such additions to the Requirements occur because
the needs of the User/Management may not be constant
throughout the entire System development Phases.

The Quality Plan will influence both the
production tasks 1.e. form of the Life Cycle and the
Methods and tools which will be needed. The Quality Plan
may influence the Life Cycle by inclusion or exclusion of
certain Phases and may decide how rigorously these Phases
are to be applied. It may also require specific Methods
and tools. For example:

1. a Quality Plan of low level, having low
reliability or cheapness, may not require
extensive use of the V & V Phase,

2. to develop a very sophisticated System it
may be required to do the Analysis Phase
very carefully and may hence require the
use of SADT,

90

3. a Quality Plan may require the development
of a Prototype first to evaluate some
special features,

4. a Quality Plan may require the System to be
developed by using MASCOT,

5. a Quality Plan may require the application
of a specific Quality control technique
before the acceptance of the output of the
Phases.

The Quality Plan may be influenced heavily by
specific constraints and the System Specifications. For
example reliability may be influenced by cost, size and
complexity etc.. A sophisticated Quality Plan may give a
better System but may involve higher cost. There is a need
to have a balance between the required level of Quality
and relevant Cost.

A Quality Plan may use forcasting techniques to
determine which System development Method/Methodology
should be used and which controls should be involved in
order to achieve the appropriate levels for the Quality.

In order to demonstrate that the required
qualities are being achieved it will be necessary to
compare them against predefined events, levels, outputs or
standards. The 'quality control' techniques such as
reviews, reports, schedules, Sigma charts and Quality
Metrics etc. can be used for this comparison.

91

A System Quality Metric is an indicator or
yardstick used for measuring the qualities of a System.
The Quality Metrics can measure the Quality in some
objective sense and may be in terms of indices. The
Quality Metrics in theory can measure quantitatively the
degree to which the System posseses a given Quality. The
Quality Metrics may be justified for achieving the
Analys is and the Design outputs up to a desired level.
These indices may be applied to the output of any Phase or
subphase in the System Development Life Cycle and to the
final product e.g. the System. Their application will
assist the Analyst/Designer in checking whether the work
is being done according to the required Quality Plan.

Boehm et al [56], McCabe [57] have defined
Quality, as a hierarchy of factors and they have tried to
measure these factors. There is no standard which can be
used universally for measuring the Quality of a System.
Different authors have defined how to measure or assess
the different Qualities of a System. For example McCabe
[57] and Halsted [58] have indicated how to measure the
size in terms of complexity. Schach [69] has developed a
metric for estimating software size and cost thereof, at
the end of Design Phase, of the classical Life Cycle
model. Yourdan [20] has used cohesion and coupling the
metrics to measure the qualities of modules. Jones [59]
and Kitchenham [60] have used error detection and remova1
statistics as indicators of assessing the certain
qualities. "Of particular importance are metrics that

92

measure the efficiency of software life cycle activities
and the quality of all representations of software, from
requirements specifications to operational run-time
code." [p.27S, 67]. It has been shown that it is easy to
develop metrics which can give misleading results [59].
Therefore development of a System Quality Metric should
involve the use of sound statistical and mathematical
techniques.

A Quality Plan for a System affects the
following:

1. how the Requirements and the System
Specifications are to be developed,

2. what Quality Metrics are to be applied
during the various Phases of System
development and to what extent,

3. the selection of Design Methods or
Methodologies and tools to be used during
System development.

There may be several Quality Metrics for each
Quality Factor and these can be applied:

1. in an existing System to determine the
Quality or power of it's attributes e.g.
integrity, reliability, etc.,

2. in a proposed System for establishing it's
objectives, scope,
reliability, etc.,

cost, performance,

93

Factors
Quality.

3. on the output of a Phase, as an indicator
to acc9pt or re-do the Phase if necessary.
This may involve going back to the
appropriate point in the Life Cycle.

The following are some
which may be desirable in

Quality
of high

important
a System

1. Maintainability i.e. changeability,
amendability,

2. Reliability,
3. Operation (performance, response to an

action or event),
4. Portability to different(applicable

environment),
5. Robustness,
6. Integrity (completness),
7. Verifiability & Validity,
8. Reusibility,
9. Efficiency,
10. Economic,
11. Simplicity,
12. User Friendly,

etc..

94

The following are some Quality Factors which can
help in ranking one Method or Methodology over others for
specific applications:

1. Generality,
2. Applicability (No. of Phases of the System

Development Life Cycle covered),
3. Mechanisability (for support and tools),
4. Verifiability & Validity techniques,
5. Tolerability (fault avoidance),
6. Simplicity,
7. Maintainability,

etc..

It must be clearly stated by the
Analyst/Designer what important qualities will be in the
System. The User/Management must agree on these before any
move. This decision must be based on considerations such
as cost, time, manpower, environment etc..

95

The following notations are used as:

1. I is used for or,

2. , is used as a separator,

3 • The string enclosed between the characters < , >means a task or

Phase or subphase,

4. L] means is the output of a task, Phase or subphase,

5 • (is used for paranthesis,

6. :=: means is defined as,

.,. : '*:= means is the output of the task, Phase or subphase

recursively.

8. < >La][b] means that the task < > requires as its inputs

the out puts of tasks, Phase or subphases <a>and .

9. (La], Lb]) is the collection of outputs from tasks, Phase or

subphases <a>and .

10. (La]/[b]) means the output of tasks, Phase or subphases <a>or

is used.

11. 'file string enclosed between curly brackets Le. (

parallel task(s), Phase(s) or subphase(s) .

12. I f a task, Phase or subphase is not performed then the output ot

} means

that task, Phase or subphase is defined by the option e.g. if in

a case it is not required or desired to do Initial

Investigation then this situation will be dealt as:

LInitialinvestigaton):'*:=<PO>[Pl)

where as [PO] and [P.l] are the

outputs of Null operation and

study of Proposal.

96

<System Development Life Cycle>:=:<SDLC>

<SDLC>:=:<SDLC><Phase sequence>

/ <Special case>

/<Null>

lSDLC]:~:=<SDLC>lPhase sequence)

/lSpecial case]

/<Null>

<Phase sequence>:=:<Project Proposal Phase option>

<Strategy Phase option>

<Analysis Phase option>

<System Specifications Phase option>

<DeSign Phase option>

<Implementation Phase option>

<Transition Phase option>

<Verification & Validation Phase option>

/<Null>

Note: 1~e above order enforces the ordering of phases. Each could be nUll.

<project Proposal Phase option>:=:<Study of Proposal>

<Initial Investigation>

<Initial t'easibility study>

/<Null>

Hotel 1~e above sequence orders the operations. Each could be nUll.

<strategy Phase option>:=:<Strategy Phase>

/<Null>

<Analysis Phase option>:=:<Analysis of Environment>

<Requirements Analysis>

<Prepare Requirements Specification>

97

<Check J:o'orConsistency>

<search l"or J::xistingAvailable Systems>

<J:o'easibilityAnalysis & Detail Proposals>

/<Null>

Note: The above sequence orders the operations. J::achcould be null.

<System Specifications Phase option>:=:<System Specification Phase>

/<Null>

<Design Phase option>:=:<Planning and Decision>

<Conceptual DeSign>

<Physical Design>

j<Null>

Note: '.rtleabove sequence orders the operations. J::achcould be null.

<Implementation Phase option>:=:<Implementation Phase>

/<Nulh

<'l'ransition Phase option> :=:<'l'ransition Phase>

/<Null>

<Verification & Validation Phase option>:=:<Verification & validation Phase>

j<Null>

<PO> :=:<Nu~l>

lStudy of proposall:.:~<Study of proposal>

/<PO>

lPl]:=:lstudy of Proposa11

98

Llnitial Investigation]:*:=<Initial Investigation>LPl]

/<PO>LPl]

LP2]:=:LInitial Investigation]

LInitial l"easibility study]: *:=<Initial l-'easibility study> [P2)

/<PO>[P2]

[Pl]I=:[lnitial peasibility study]

<STO> :=:<Null>

Lstrategy Phase]:*:=<strategy Phase>LP3]

/ <S'1'O>LP3]

LSrl):=:Lstrategy Phase]

<AO> :=:<Null>

LAnalysis of ~nvironment]:*:=<Analysis of Environment>

/<AO>

L~]:~:lAnalysis of Environment]

LRequirements Analysis]:*:=<Requirements Analysis>([P3],[Al)

/<AO>([Al],[P3)

LA2]:=ILRequirements Analysis]

LPrepare Requirements Specification]:*:&<Prepare Requirements Specification>

(LA2], [Al))

/<AO>([A2],[Al)

(A3]:~I(prepare Requirements SpecificationJ

(Check for ConsistencyJ:*I=<Check for Consistency>([A3j,[A2],[Al)

/<AO>([A3J, [A2J. [Al]

[A4]:L:[Check Por Consistency]

lsearch tor Existing Available Systems]:*I=<Search for Existing Available

Systems>([A4],[Al)

/<AO>([A4],[Al)

99

[A5]:=:[Search for Existing Available Systems1

lFeasibility Analysis & Detail Proposals):*:=<Feasibility Analysis & Detail

Proposals>(lA4),[A3),[A2],L~)

/<AO>([A4],[A3],[A2],[~)

[A6J:=:[Yeasibility Analysis & Detail proposals]

<SSO>:=:<Null>

lsystem Specification Phase):*:=<System Specification Phase>(LA6),lSTl)

/<SSO>(LA6),[STl])

[SSl]:=:[system Specification phasej

<DO>:=:<Null>

lPlanning & Decision):*:=<Planning & Decision>[SSl]

/<OO>lSSL]

lOl)I=:lPlanning & Decision]

lCOnceptual Design):*:=<COnceptual Design>([01],lSSl],LA6],[~)

/<DO>(LOl),[SSl),[A6),L~)

[02]:=:lconceptual Design]

lPhysical Design]:*:=<Physical Design>[02]

/<00>l02]

lD3]:~:[Physical Design1

<!O>:=:<Null>

l!mplementation Phase]:*:=<Implementation phase)([D3)/[AS)

/<IO>([D3)/lAS])

l!l]:=:[!mplementation Phase]

<TO>:=:<Null>

lTransition Phase]:*:=<Transition Phase>([Il]/[AS])

100

/<'1'0>([Il]/(A!;1)

LTl):=:[Transition Phase]

<VO> :=:<Null>

lVerification & Validation Phase]:~=:<verification & Validation Phase>([Pl],

LP3],[A3],[A4],[A!:i],[A6],[SSl],(D3),

[Ill,(Tl))

/<verification & Validation Phase>(Pl]/

LP3]/[A3]/[A4]/[AS]/[A6]/(SSll/(D3]/

lIll/(Tl])

/<VO>([Pl],[P3],[A3],[A4],[A5],[A6],

[SSl],[D3],[Il,[Tl])

/<VO>([Pl]/[P3]/[A3]/[A4]/[A!:i]/[A6]

/[SSl/[D3]/[Il]/['rl])

[VIJ:~:(Verification & Validation PhaseJ

- _._------------- ----_._----- ,--------------

'Ibe following are the special cases of the Life Cycle

<Special Cases>:~:<~nhancement>

/<Maintenance)

/<prototyping)

/<Quality Plan> This is a set of criteria which choses a

Life Cycle

/<Nul1>

ro t

<t:O>:=: <Null>

Lt:nhancement]:*:=<Enhancement>([I1],(03],LSS1],[AS),LA4),LA3],LA2),[P3],[PO)

/<EO>([I1],L03),[SS1],[AS],LA4],LA3],[A2],[P3],LPO)

r 1-:1 J : = : (Enhancement Phase J

<MO> :=: <Null>

LMaintenance]:*:=<Maintenance>([I1],[03],[SS1],[A6],[A5],[A3],[~])

/<MO>([I1),[03),LSSl),[A6],[AS],[A3],[Al]

(Ml J:=: [Maintenance J

<PO> :=: <Null>

LPrototyping]:*:=<prototyping><Phases>

LP1]:=:LPrototyping]

Note:

1. Prototyping is building a special case or modifying an existing

system. SO we need <assessment of the existing system> and the

output should feed into a re-evaluation.

b. Also this notation does not cope with parallel life cycles.

e.g. <SOLC>:=I<SOLC>{<Prototyping>, <SOLC>}<SOLC> SO,

<SOLC>:=:<SOLe><Phase sequence>

/ {<SOLC>, <SOLe>} <Phase sequence>

/<Null> •

<QC» 1=: <Null>

lQuality Plan]:*:=<Quality Plan><Phase sequence>

/<0.0>

lQ1]1~:[Quality Plan]

102

2.4 The Summary Of The Life cyc1e

Phases
1 ~ project Proposal

~study at proposal

starting Point

Proposal about
what the user
& Management want
to have.

End Product

Recommendations about
Analysis MethodjMethodology,
statement of needs &
brief plan, estUnates
about manpower required,
costs, time etc •.

Study at the proposal coaments, notes, etc.,
given by the
User & Management.

~rnitial Investigation Investigating the
proposal using
the informal report,
oomments, notes,
etc •.

*rnitial Feasibility
study

2 * strategy

output of initial
investigation Phase.

about the proposal and
informal recommendations,
and a report etc •.

statements postulating
actual needs, costs,
benifits, etc •.

Recommendations about
Analysis Method/Methodology,
statement of needs and

brief plan, estimates about
completion date, manpower
required, costs, etc •.

output Report of
Project Proposal
Phase i.e. initial
feasibility study
sub-phase.

strategy Plan i.e. how

to proceed with the
Project.

3 * Analysis statements at needs,
brief plan etc.
obtained from
Phase 1

103

Detailed proposals
showing definations at
Requirements, Requirements
Specification, ~rtant
parameters, information
about environment, etc.,
statistics about costs,
time, manpower etc. and

their feasibility to be
used for developing
system specifications.

*Analysis ot
environment

any available
intormation about
working, working
area, terminologies
being used by the
user/Management etc ..

*Requirements Analysis Report on Analysis
ot the environment,
the statement of
needs, brief
plan etc ..

*Prepare Requirements
specification.

Report ot
ReqUirements
Analysis

*Ckeck for consistency Statement ot
ReqUirements
Specifications

*serach tor existing
available System

*Feasibility Analysis
and Detai led
Proposal(s)

4 * System
SpeCifications

The output ot
sub-phase
check tor
conSistency

The output ot
sub-phase
check for
conSistency

Short report showing adequate
information about the
environment working area.

statement showing the
agreed Requirements of the
User/Management.

Particular comprehensive
and precise statement of
Requirements from the
UserfMa,nagement and the
environment point ot view.

A critically examined report
against any contraduction,
misleading components, etc •.

May lead to Implementation
Phase if there is available
a suitable System which is
according to Requirements
Spec ification.

Set of detailed proposal(s)
giving recommendations,
conclusions, statistics
about costs, time, etc.,
and possible benifits.

The selected
detailed Proposal
i. e. output of
the Analysis
Phase.

!i * Design

'the technical Plan having
set of ditferent clear
steps to be used as a basis
for system DesiCJn.

system Specifications Integrated details about
which are in terms of
set of clear steps
expressed in
technical terms.

104

Modules, Sub-systems, their
interfaces to other Modules
or sub-systems, their
controls, constraints etc ••
'rhis is called as frame or
skleton.

WPlanning & Decission

wConceptual Design

wPhysical DeSign

6 W Implementation

Use ot System
SpeCifications.

output ot subphase
Planning & Decission
and system
Specifications.

output of subphase
Conceptual DeSign.

Basic structure ot sottware
and series ot hierarichical
steps, definations, main
functions, processes,
operating parameters,
rio data, etc •.
Basic assumptions about
DeSign and ideas creating
modules, subsystems, data
bases, etc., models about
entity types, data element
types, data structure,
data flow diagram, etc ••
Integrated details about
data format, data structure,
data base, data dictionary,
functions, processes,
modules, subsystems, their
interfaces to other modules,
subsystems etc ••

Frame or skeleton
of software System
developed during
Lhe Design Phase.

Detailed programme
statements in suitable
programming language(s) and
its documentations.

'/W Transition A working system1. system
specifications,
information about
functions, real
world, etc •.

2. Detailed program
statements in a
programming
language(s) and its
documentations.

105

2.5 Gl.ossary

Anal.ysis:
The term Analysis is used for the purpose of the

systematic study and examination of needs, (obtained in an
earlier phase), in order to find, determine, and identify
Lhe causes of the problem and Requirements of the
User/Management. The results of this Analysis are
represented in detailed proposal(s) together with the
feasibility report(s) for developing the System
Specifications.

Analyst:
An Analyst is a person who identifies the

working environment, talks and works with the user and
their Management, in order to discover, study and analyse
their needs & wants; and prepares proposal(s). The term
Analyst may be used as singular and plural and for male
and female.

Design:
The term Design is used both as a verb and a

noun.
1. As a verb it is used as conceiving &

planning by using an agreed proposal(s)
and its
converting

specifications
the plan into

as
an

input and

unambiguous
106

executable model, called a System frame or

System skeleton to perform its purpose(s)

i.e. function(s).

2. As a noun it is used as a tool set which

accepts the human proposal(s) and its

specifications as input and can develop an

unambiguous executable System frame or

System skeleton to provide the information

to the User/Management and serve his

purpose(s) i.e. function(s).

The representation of the Design may be either

textual, logical, a diagramatic model or as a Prototype.

Designer:

A Designer is a person who:

1. Uses proposal(s) developed by the Analyst

to develop System Specifications,

2. Transforms the System Specif ications into

a Des ign to meet the Requirements of the

user/Management.

3. Is concerned with deoigning details of a

System, subsystems, modules, etc ..

The term Des igner may be used as singular and

plural and for male and female.

Jtnhancenaent:

Enhancement means changing the System due to the

development of additional or changed Requirements.

107

Implementation:
Implementation means the tasks which are

concerned with giving practical effect to the Design or
System skeleton; the manipulation & translation into code
of a software System frame developed earlier in the Design
Phase, to fit it to the hardware and also in some cases to
the other software. It is also concerned with debugging
the code, if necessary. Briefly the Implementation tasks
include the following:

1. preparation of an Implementation schedule
in consultation with the User/Management,

2. development of accurate & reliable
computer programs based on the System
frame or System skeleton from the Design
Phase.

3. scheduling of modules, subsystems,
processes and their mechanisms for
invoking and suspension,

4. checking that the required hardware and
Software (in some cases) are available and
are in working condition,

5. development of operating procedures,
manuals, and documentation in a clear and
understandable way,

6. training of the end User/Management in the
use of the System and the interpretation of
the output etc.,

7. helping and guiding the User/Management in
developing the organisation and

108

administrative structure of the data
processing centre,

8. ensuring that all the required changes
have been implemented and nothing is
missing or is ambiguous.

Management:
The term Management is used for:
1. The collective body who handles and

conducts the running and operations of an
organisation for which the System is to be
developed.

2. The authority or controlling body whose
Requirements are to be evaluated &
understood and the results of the study to
be submitted to them.

3. One who directs and handles the System
development team.

4. The chief or director of a data processing
section or computer section within an
organisation.

Maintenance:
Maintenance means the changes incorporated into

the Systems at any point from Requirements Specification
in the Life Cycle onwards, to rectify faults, bugs, etc.
which may appear from time to time. It is also concerned
to make the System workable for a particular environment
and hardware.

109

A Method is a way, set of Phases or steps which
should be followed in order to perform certain System
development tasks, such as
Design and Implementation,
certain specific tasks of

project management, Analysis,
etc.. It is designed to do
System development and is

available for small or specific types of project. It may
be considered as a subset of a Methodology.

)IIethodology:
Methodology involves philosophies, Management

techniques, Methods, Phases or steps, rules,
tools, aids and documentation required to

techniques,
develop a

System. In principle it is concerned with the complete
span of System development tasks. A Methodology may
contain more than one Method or Phases, etc., to do
different System development tasks together with the rules
to apply them.

Phase:
A phase is a state or stage of development of

System tasks over a discrete period of time. Conceptually
they do not overlap and preserve time ordering, although
in practice this is not usually essential. Each Phase has
both input and output.

J»rogra.er:

A programmer is a person who implements the
Design decisions in a programming language.

110

_Prototyping:

Prototyping means the construction of a System

experiment with concepts,

limited goals and selected

establish nome principles,

determine feasibility or:

or a part of a System, with

Requirements, in order to

otherwise explore aspects which are not understood.

Quality:

Quality is a perceived property of an entity and

as such is established by consensus. In general Quality is

likely to be established relative to a standard.

Quality Factors

The Quality Factors are the conditions that

actively contribute to a System having the desired nature,

degree of excellence, character istics, attr ibutes, grade

of goodness, inherent features, standard, etc.. Qual ity

Factors are often described by adverbs such as

reliability, integrity, portability, etc .. However there

are some exceptions such as time, money, manpower needed,

size of the System etc ..

Quality Plan:

A Quality Plan is a set of procedures,

rules, characteristics, constraints which can ensure that

Lhe delivered System achieves the required qualities.

III

Quality Metric:

A Qual ity Metr ic is an indicator or

yardstick used for measur ing the qualities of a System.

These metrics may be in terms of indices.

Requirement:

A Requirement is something which is deemed to be
needed.

Requirements Specification:

A Requirements Specification is a particular

and precise statement of those things which are deemed to

be needed. This perception of needs is from the view point

of the User, their Management and the environment.

Software Tool:

A Software Tool is a program or set of

prograrn(s) developed to achieve a specific purpose(s) and

lask(s) and to support the application of a

Method/Methodology.

Strategy:

1. Strategy means a proposed set of act ions

clear ly des igned to achieve certain well

defined goals over a period of time.

/.. In the domain of System development the

Strategy means choosing between practices,

guidelines, recommended sets of actions

and the ordering of development decisions.

112

~_ystem:

A System represents a set of

interconnected items or elements arranged

in a certain order, [or example,

a computerManagement of an organisation,

System, a railway network, etc ..

2. It is the representation of the Design

model or Design frame for an environment.

3. In the domain of computer science a System

may be any comb inat ion of hardware,

software and the User/Management which

fulfils lhe specific function(s) or

purpose(s) in an environment.

System Analyst:

See Analyst.

System Specif ications:_

This is a precise statement of the Requirements

in a form which js meaningflll to the Designer.

~ystem SpeCifications Phase:

The System Specification Phase is the Phase

which represent an interface between the Analysis and the

Des ign Phases. The Phase which separates completely the

Design work [rom the Analysis and refers to the

information which must be delivered from the Analysis to

the Design Phase. This Phase converts the detailed

propo sa 1. into clear and unamb iguous statements stat ing

1 13

what the System must do.

'I'ransition:

Transition tasks are defined as the evolution

and change from one System to another and hence occur only
in situations where both exist. Transition Lasks are

concerned with how the new System should replace the old

one and deals with all the problems which may occur during

Lhe tasks of switchover from the old to the new System.

User:

A User is:

1. A person who will be using the System such
as an operator, software programmer,

quality controller, stock control officer,

accountant, etc.,

?. A person who will be using the System in a

supervisory capac ity such as a person who

is in charge of a section in a bank,

quality control supervisor, etc ..

3. A person or organisation who will be using

t.he System as the owner, for example, a

government ministry, a banking

organisation, etc.,

4. A person who will be using the system

without knowing anything about hardware or

software, but is supposed to know clearly

about the results he is expect ing and be

able to check the input or output, e.g. ,

114

bank customer, user of flight information

services, etc.,

S. The clerical and other people who will work

directly with the System by using

terminals, filing output forms or

interpreting output for their jobs etc.,

b. A person or. organisation whose

Requirements are t.o be evaluated and

understood and the result of the study is

then submitted to them for. further.

actions, e. g. , bank authorities,

government officials, etc.,

"/. A.nyone who uses the System by issu ing

commands.

8. Not the Analyst and Designer and anyone who

supplies the System.

The term User may be used as singular and plural

and for male and female.

Verification & Validation:
The term Verification applies to Lhe

establishment the correctness of something by comparing it

against some standard. For. example t.o compare Lhe

developed system with its Requirements, System

Specifications, etc.

The term Validation is used to ensure that the

output of a Phase complies with a standard such as the

Requirements, the Detailed Proposals, Lhe System

Specifications, etc ..

lIS

V~rification & Validation Phase:

The Phase whose purpose is to:

1. guide the Analyst/Designer and the

User /Management in making dec isions about

Lheir next move, which may be to go ahead

or abandon the project,

2. satisfy that the System Specifications are

developed according to the result of the

Analysis Phase and serve its purpose,

3. satisfy oneself and the User/Management

that t.he System Des ign is developed

according Lo Lhe Requirements and the

System Specifications,

4. check Lhe output of Lhe Design Phase

against t.he basic rules of the selected

Method or Methodology, such as rules about

input/output data structure, criteria Lo

build modules or subsystems,

calling or

their

exitconnections and

procedures, etc, and

b. ensure that its result cat.t sf ies the test

data.

The V & V Phase may be activated at any time and

in any Phase of the Life Cycle if needed .

..ote:

L Words like Analyst, Designer, User,

Programmer and Management may be used as

either singular or plural and male or.

female. Combinations such as

116

user/management should be interpreted as a

member of either or both groups.

The names of Phases, subphases/. . and

cspec ially def ined terms are used in this

Lhesis with capital letters, except when

Lhey are enclosed in quotation marks.

3. Any other Lerm used and not def ined

specifically, is used in its common

meaning in the software engineering.

1 17

••&.....
lIP •••

118

3 Summary of the Results of the Analysis & Comparison

This Thesis is an attempt to identify the

problems which Software Engineers are facing when using

existing Methods/Methodologies. In the past where

d ifferent groups have stud ied the Methods/Methodolog ies

each member of the group has studied one or two

Methods/Methodologies taking into consideration certain

specific goals & objectives, commercial interests and

personal beliefs. In order to obtain a unique and

un-biased approach we developed a set of questions without

hav ing any commerc ial and personal inter est. Since the

whole study was carried out by the same individual

consistency and uniformity of the study was achieved thus

eliminating commercial & personal bias towards or against

any Method/Methodology. The selection cr iter ia of these

Methods/Methodologies was on the basis of their popularity

in commercial, industrial and academic environments.

Maximum poss ible effort was made to collect the working

manuals, published materials and research papers on these

Methods/Methodologies. Letters were written lo the

concerned people,

facilities were

personal contacts were made and library

used to collect the maximum possible

information about the existing Methods/Methodologies.

Unfortunately very little information could be obtained on

some Methods/Methodologies and was not sufficient to cover

and do the feature Analysis on certain other

Methods/Methodologies. This constraint plus lack of time &
resources forced us to reduce the number of elements

119

covered in th is study. Cons iderat ions wer e made to find

out those aspects which are most unique and or iginal in

Lhe Methods/Methodolog ies. IL was found that in general

there is no Method/Methodology which can be used for

developing a System for all different types of problems

and environments and is capable of satisfying or likely to

satisfy different User's Requirements and cover all the

Lasks of System Development. The importance of having a

global framework was recognised which could be adopted in

all different env ironments and problems and perform all

different tasks of System Development having by-passing

facilities, if some Phase is not essential for a

particular problem.

The absence of any mathematical foundation,

quantitative concepts, unified tasks done by the system

Development Methods/Methodologies forced us to do

comparative feature Analysis of the complex and varying

nature of the Methods/Methodologies. The Global Life Cycle

framework was used as one of the basis of our study. The

framework which hopefully can be adopted successfully by

different Methods/Methodologies and in different

environments.

One of the most difficult problems faced in the

study was due to a lack of a standard unified &
comprehensive set of terminologies. It was very difficult

Lo find out how a specific concept is termed and defined

in one Method/Methodology and how it relates to a similar

120

concept in the other Method/Methodology with usually
different terms. We tried to study these terms, their
definitions and concepts in which these are being used.
Efforts were made to solve to a limited extent the problem
of these terminologies & their definitions. Later it was
felt necessary to have a global set of terminologies and
their definitions and use them as a basis of comparision.
We developed and used a set of certain important and
commonly used terminologies & their definitions, which are
of a global nature. This was supplemented with the
information about the contents & concepts of the
terminologies in the MethodsjMethodologies. This set of
standardised and global terminologies and their
definitions if enlarged could be helpful in future while
developing new Methods/Methodologies for different
environments. This needs further research work and
extension. This could be done with the support of some
international body.

The use of a common framework and set of
questions resulted in identification of similar features,
common terms, concepts, specific areas of applicability
and their commercial claims and its validity. The success
of this approach made it clear that this model framework
and set of questions can also be applied in other
Methods/Methodologies which have not been covered in this
study.

It was found that the most of the

121

Methods/Methodologies do
explicitly and distinctly

not mention specifically,
their objectives, scope and

fundamental principles. We made a concerted effort to
determine these objectives, scope and principles.

Information about the pre-requisites, starting
points, and final product of the Methods/Methodolog ies
were not given explicitly and clearly and also these were
found to be not the same. In the study we determined that
JSD starts the tasks of System Development by developing
the model of the real world. This model is developed on
the basis of complete information about the real world
including the required Functions. Therefore, before
starting the System Development tasks it is assumed that
such information is available by the User/Management. The
final product of JSD are the Specifications for the
programs. LSDM generally starts the System Development
tasks from the Feasibility Study report. But in certain
cases if the Feasibility Study report is not available it
may be developed by LSDM. The final product of LSDM is the
Physical Design which is the detail about files/DBMS
definitions, program SpeCifications, operating schedules,
etc.. MASCOT starts its tasks by developing an overall
Software Design on the basis of operational Requirements.
The pre-requsit for this task is the availability of host
and target computers. The host computer must have filing,
text editing, compiling and diagnostic facilities. The
final product of MASCOT is a complete implemented Software
system on the target computer. ETHICS starts System

122

Development tasks by d iagnos ing the human & technical

needs of the User/Management of an existing System which

mayor may not be computerised. Therefore, an old System

must be there to start the task of System Development. The

working and evaluated socio-technical System is the final

product of ETHICS. SADT starts its tasks from a most

general description of the System contained in a Module,

represented by a box. To develop a detailed System;

statement of System Requirements, decisions, constraints

and information about Functions are essentially

pre-requsite. SADT finally delivers a SADT System Design

model. This diagrammatic model contains a set of activity

and data diagrams which show the activities and data

aspects of the System and identifies the components of the

Software System. SA starts by investigating the existing

System which mayor may not be computerised. To do this

some proposals from the User/Management showing their.

wants are pre-requsites. The final product of SA is the

Structured Specifications which is also called Functional

Specifications. SD starts its tasks from the output of SA

i.e. a statement showing what the System is supposed to
do, t..his is also called Structured or Functional

Specifications. The end product of SD is the final

Structure chart and data Dictionary.

It was found that JSD, LSDM, ETHICS, SADT and SD

offer clear information about the steps which are followed

during the System Development activities. Howerver, it was

found that the MASCOT Method is one which just provides

12".11

brief directions showing how to develop a System, whereas

SA does not offer any step by step clear & precise

directions.

The study revealed that the phases of the Life

Cycle and the steps/phases of the Methods/Methodologies in

general do not have one to one correspondence. In most of

the cases the Methods/Methodologies do not cover the whole

span of the Life Cycle and also not a single one covered

the complete tasks of System Development. In such cases

the Methodologies are considered as a subset and a

particular case of the Life Cycle Model. For example JSD &
MASCOT completly ignore the tasks concerned with the

Project Proposal, Analysis and Transition Phases. These

Methods/Methodologies are more or less concerned with the

System Specifications, Design and Implementation tasks.

LSDM covers certain aspects of Project Proposal, Analysis,

System Specifications & Implementation, and gives more

emphasis to the Design tasks. There is no evidence that

the tasks of the Transition Phase are covered by LSDM. The

ETHICS Method partialy covers the Phases of the Life Cycle

except the System Specifications Phase which is not

covered at all. ICl fact ETH ICS completly ignores the

technical aspects of the System Development and gives more

cmphas is to the Analys is aspects of System Development.

SAD'r ignores the tasks concerned with the Project

Proposal, Implementation and Transition Phases of the Life

Cycle. It was observed that SADT is mainly concerned with

Development of system Specif ications and Design tasks.

124

SASD covers the Analys is, System Spec ificat ions, Des ign

and Implementation tasks of System Development. SASD also

does not cover the Project Proposal and Transition Phases.

It was found that most of the Methods/Methodologies have

failed Lo find and define the problems of the

User/Management, hence obviously the solution obtained by

Lhem are mostly not satisfactory and do not satisfy the

User/Management. They also failed to do the tasks

concerning the Project Proposal. For example they do not

cons ider time, schedule, f inanc ial constraints, etc. to

avoid possible delay or financial problems. Some

Methods/Methodologies confuse the Analysis tasks with the

Design and do Analysis tasks superficially. This situation

leads to misleading results, making the User /Management

unhappy and causing frustation. Finally not a single

Method/Methodology in the sample has covered the Strategy

Phase of the Life Cycle which is in fact a new concept

given in the Life Cycle.

The study revealed that JSD, LSDM, ETHICS, SADT

and SD have fairly clear guide lines which can help during

the performance of the System Development tasks according

Lo their sCupe and coverage. It was observed that LSDM has

a number of rules and guidelines which are relatively

better than other Methods/Methodologies. MASCOT

Methodology does not show the guidelines and details.

Similarly SA has certain limited general information

showing how to proceed with the Analysis tasks.

125

While collecting Lhe information about the

special training required Lo use Lhe

Methods/Methodologies it was found that JSD, LSDM, MASCOT,

SADT emphas ise the need to have spec ial training before

us ing the ir Method/Methodo logy. ETH ICS and SASD do not

have any such conditions.

JSD, LSDM, MASCOT, ETH ICS, SADT and SASD all

have certain tools/supports to be used at various levels

during the System Development. The tools/support used by

JSD, LSDM, MASCOT, SADT were found not to be an integral

part and are optional, whereas the tools/support used by

ETHICS and SASD are integral parts. In SASD tools/support

can be selected according to the size & type of a problem

etc .. How effective and useful Lheir Lools are is

difficult to say. Perhaps it may need another study.

JSD, LSDM, MASCOT, ETHICS, SADT, SA do not

specify any rule which can help in choosing a suitable

Method or approach according to a particular environment.

The main reason for this is that these

Methods/Methodologies have limited scope and can deal with

certain class of problems and are problem oriented. They

follow a similar approach in all cases. SD is a little

exception because it offers two different options to be

used in the selection of tools/support i.e. transform

analysis & Lransaction analysis. The

Methods/Methodolog ies under study were found not to be

flexible enough to fullfil the wider scope of demands and

126

environments. It was difficult to determine whether a

given Method/Methodology can be appl ied per fect ly for a

part icular env ironment. It was not poss ible to evaluate

lhe performance of these Methods/Methodologies and to say

I this is the best I Method/Methodology suitable for all

purposes. Some might be better than others in certain

specific environments and work excellently but may fail in

other cases.

JSD is found to be au itable for developing a

System to solve data process ing, Process control, real

lime and other sequential problems. LSDM and SADT claim to

be suitable for a wide class of problems. MASCOT is found

lo be better for developing large real time Systems.

ETHICS and SASD are mainly suitable for commercial and
industrial problems.

JSD, LSDM, MASCOT, ETH ICS, SADT and SASD were

found to be machine and language independent. However, it

was noticed lhat MASCOT which was developed with

particular reference to CORAL-66 can be used only by the

languages which have facilities similar to CORAL-66.

JSD, MASCOT, ETHICS and SASD were found not

assisting in the Project Management and Strategy Phases.

Authors of LSDM claim that their Methododology assists in

Project Management and have a technique to assist in this

direction but they do not develop or use any Strategy for

System Development. SADT assists in project Management to

127

a limited extent.

It was found that JSD has its own approach which

is quite different from the traditional approaches, and

uses the structured concept differently. LSDM, MASCOT and

SA follow the Top-down approach. SADT and SD use the

Top-down Modular concept. The ETHICS Method does not use

any such traditional approaches.

While studying how and to what extent the

Methods/Methodologies apply the V & V activities or

something similar to it, we found that JSD uses the V & V

activities but not precisely and significantly. It

develops the System and validates it by asking the

User/Management whether the real world is like the model

Lhey have developed. LSDM applies a limited concept of V &
V activities. LSDM achieves this by checking and proving

lhe System Logic. This is achieved by identifying the

event that may change the System data, validating the

Requirements for each event etc .. MASCOT makes some effort

lo maintain quality assurance. This is done by developing

test strategies dur ing the Design tasks and using the

concept of structured decompos ition. ETH ICS uses V & V

activities by evaluting the performance of the System

against the set of objectives fixed at the begining of the

proj ect. Il also ver ifies the efficency of the System

after its Implementation. The efficency is tested by

checking that there is improvement in the control of

variance and that no other variance has been created

128

during the System Development tasks. SADT and SASD do not

use the V & V concept or any thing similar to it. It was

felt that in general these Methods/Methodologies can not

guarantee to deliver reliable & error prone Systems. The

reason [or this is that these Methods/Methodologies

generally do not have the V & V Phase and proper testing

facilities as an integral part.

It was felt that JSD is suitable for small to

medium size problems. LSDM, ETHICS & SASD are suitable for

varying sizes of problem. MASCOT is claimed to be suitable

for large real time Systems. SADT is also suitable for

large and complex problems, but it can also be used for
smaller problems.

While collecting information about the

communication facilities which the Methods/Methodologies

cmploy it was found that JSD, LSDM, SASD do not have any

specif ic & particular communication facilities. In LSDM

Lhe Analyst/Designer and the User/Management can consult

oach other at various levels, if needed. The ETHICS Method

communicates with the Analyst/Designer and

User/Management by documenting the results of the Analysis

& Design lasks. MASCOT and SADT use documentation

facilities for this purpose. SADT also has well defined

communication facilities, but lhese facilities are

limited to the use of the Analyst/Design.

We examined the documentation facilities, Le.

129

tools, symbols, notations and their style, readability,

unambiguity, effectiveness, etc .. IL was found that JSD

uses a set of diagrams, notations and symbols for. the

purpose of documentation. These diagrams are a by-product

of various System Development tasks. JSD notations &
symbols are easy to draw, read and in general are clear.

JSD rely on symbols which are supported by a special JSD

textual repr esentat ion style, wh ich makes documentation

unambiguous. But JSD documentation is not suitable for the

use of the User/Management. LSDM uses a set of forms for

the purpose of documentation. It is claimed by the authors

that the LSDM documentation is a by-product of the System

Development tasks. There is no evidence to support the

success and effect iveness of these symbols & notat ions.

LSDM does not rely too much on symbolic formalism. It has

symbols and notations similar to JSD & SASD. MASCOT has

very specific and precise documentation rules & standards

which reflect its approach. It has a set of diagrams and

six different symbols & notations. The style of these

symbols & notation can help effectively in communicating

during the System Development tasks. The symbols are not

designed for the use of the User/Management. MASCOT relies

too much on its symbols & notations and therefore pays

more attention to developing its diagrams. The ETHICS

Method does not have any specific documentation tools or

facilities. It uses some general symbols and notations for

the purpose of documentation. The style of the symbols and

notations are similar to the flow chart. ETHICS does not

rely too much on symbols & notations. SADT uses the

130

graphical language called 'SA'. This language gives

details concerning Analysis & Design gradually and

unambiguously. The language uses forty separate notations

and conventions for the purpose of document ion. The

language has a well defined and systematic set of rules,

symbols & notations which are easy to draw and read. SADT

'SA' language and its rules, symbols etc .. have a

limitation in that these are not suitable for the use of

the User/Management. SADT highly depends and relies on the

use of these symbols. SASD has good & well defined

documentation facilities but these facilities are not

suitable for the use of the User/Management. The notations

used are clear, readable and easy to understand, but they

are not perfect. SASD does not rely on symbolic formalism.

The Methodology also uses textual representation for

documentation. In general we did not find a single

Method/Methodology which has an impress ive documentat ion

technique starting from documenting the User's

Requirements to the end product. Their documentation

causes problems when Enhancement and Maintenance tasks are

done. It is suggested that in future while developing the

new Methodologies efforts must be made lo improve

communication and documentation facilities to allow

comprehensive

documentation.

and meaningful communication and

The answer to the question about the experience

needed to use the Method/Methodology showed that the

Des igner us ing JSD must have some sound exper ience in

order to express
communication. The

Process
Designer

structure and Process
must be capable of

understanding the environment and communicating with the
User/Management. LSDM has the limitation that it cannot be
used without proper training, therefore, its authors
provide training facilities. To use the MASCOT Methodology
the Designer must be experienced and qualified, otherwise
there is a risk that the resultant System may not be
optimal and may high overheads. The ETHICS Method does not
require any special experience and training only general
experience and knowledge is needed. The Analyst/Designer
using SADT must have a clear concept of the Methodology
which can be achieved by studying the literature and
completing excercises. SADT is in fact easy to understand
and follow. To use SA the Analyst must be experienced. The
level of experience required varies according to the size
of the problem to be solved and its environment. In
general SA is easy to use.
highly experienced. There

For SD the Designer must be
is a great risk that an

inexperienced Designer in complex problems may lead
towards inefficient Systems.

It was observed t.hat,the Enhancement and
Maintenance tasks in JSD can be done in certain cases only
Le. when the addition or replacement of a Function is
required in the model of the real world. But if it is
required to make changes in the existing Function Process
or change the model, it becomes more difficult to do so.
LSDM covers Enhancement by taking the logical view of the

132

current System and extending or replacing it with a System

which includes further facilities required by Lhe

User/Management. The Enhancement and Maintenance tasks

are possible in MASCOT and they are performed similarly to

those of the initial integration of the System. IL can

change, create and introduce new sUb-systems without any

major disturbances. Maintenance in the ETHICS Method can

be performed by repeating all the steps of the Method. The

Enhancement and Maintenance tasks in SADT can be performed

by rderitt ry rnq in the diagrams the activities and data

structures which are Lo be introduced, changed or

modified. This involves the whole Analysis/Design steps of

SADT. Because it involves the re-design of data structure

etc.. SASD can do Enhancement and Maintenance tasks by
adding or changing a Module if needed. But it may create

many ripple effects. In general the Methods/Methodologies

were found not lo have efficient and impressive
Enhancement & Maintenance facilities.

Investigation of Lhe prototyping facilities

available in the Methods/Methodolog ies showed that JSD

uses a concept similar to prototyping by completing model

specifications and adding Functions to the model. It does

not use any tool/support for this purpose. MASCOT also

uses the prototyping concept; it also does not have any

tool/support. LSDM, ETHICS, SADT and SASD do not use

Prototyping during the System Development tasks.

About the use of the concept of Quality Plan and

133

Quality Metrics it was found that JSD, ETHICS and SADT do

not use any Quality Plan and Quality Metrics. LSDM does

some regular checking procedures etc. without applying any

Quality Metrics. MASCOT uses the concept of Quality Plan

without applying any Quality Metrics. SA does not use the

idea of Quality Plan or Quality Metric, but SD uses

indirectly the concept of Quality Plan and Quality Metric

by applying the criteria of modularity, and using coupling

and cohesion as measures. These two measures are

qualitative not quantitative.

It was found that JSD, MASCOT, SADT and SASD do

not involve the User/Management during System

Development. LSDM and ETHICS involve the User/Management,

but at varying levels. ETHICS is mainly based on active

particaption of the User/Management during the System

Development tasks. LSDM supports to some extent the

involvement of the User/Management during the System

Development tasks but not actively like the ETHICS Method.

During the search for the unique approach which

these Methods/Methodologies follow it was found that JSD

[irstly uses an approach by which a model of

world is developed with which the System

the real

must be

concerned. This model is developed without considering the

Functions at the beginning. The Functions are introduced

into the model at a later stage. LSDM cons iders three

different views in parallel i.e. data flow, data structure

and events during the System Development tasks. No other

134

Method/Methodology has adopted a similar approach.
Further LSDM is based on a data dr iven approach rather

Lhan on Function. MASCOT uniquely develops Software first

on a host computer and then implements it on the target

computer. Such Software can be implemented on a single

Processor or set of inter-connected Processors. Further it

is possible to use a subset of MASCOT facilities out of

six facilities. In ETHICS the active Participation of the

User/Management, during the System Development tasks,

having democratic philosophy in designing a System,

cons ider ing the human & technical aspects of the System

equally and the idea of us ing var iance Analys is are the

unique approaches which no one has used earlier. SAD'l'

uniquely supports and does the tasks of System Development

by team work. IL involves the reader-author iteratively

dur ing the Development of diagrams for the purpose of

communication and review. The unique concepts used by SASD

are coupling and cohesion.

In examining whether the Method/Methodology is

a combination or variant of others it was found that JSD

is an extension of JSP. LSDM evolved from the LBMS data

base Design Lool and SSADM which is a mandatory

Methodology for GovernmcnL Departments in U.K .. MASCOT is

in evaluation. MASCOT-3 is a varient of MASCOT-l and

MASCOT-2. ETHICS and SADT are not a combination or variant

of any other Method/Methodology. SASD is a combination of

SA and SD.

135

i••• JPtrB ••:•••

4.1 Sunmary-

In the last few years there have been a number
of different efforts to analyse, evaluate and determine
the strong & weak points of System Development
Methodologies. These efforts adopted three different
approaches. The first two attempts were made separately by
IFIP WG 8.1 [63] and the Dept. of industry, UK., et. al.
[78]. These studies were made by examining and comparing
the suitability and competence of Methodologies against
their solution for a particular problem. For this purpose
IFIP WG. 8.1 developed a model problem about an
hypothetical conference. The authors of the Methodologies
had to present a paper showing how they could solve the
model problem. The second group i.e. the department of
industry, UK. et. al. decided to develop two different
problems to study how Methodologies can solve them. These
problems were about the development of an aircraft
monitoring System and a KAPSE database system. This
approach had many drawbacks and could not give unbiased
results. For example the idea of developing a problem
which could equally be used by all these Methodolog ies
(which were developed for specific purposes and having
different scopes), was not a suitable approach. This is
because practically it is impossible to develop an
unbiased model problem, no matter how carefully it is
formulated. Further the span of the System Development
Life cycle which could be used to solve the particular
problems was limited and not complete. For example,

Requirements Analysis was excluded because the

Requirements were already presented in the

statement. This limited the coverage of the

problem

systtm

development tasks. Many Methods i.e. not Methodolog ies

were also included in this study. Therefore, the efforts

to analyse and evaluate the facilities, strong and weak

points, suitability and competence of these Methodologies

were not successful.

The second approach was to develop a list of

model questions and apply it on selected Methodologies to

identify and study their characteristics and features.

These selected characteristics and features were used to

compare and evaluate the ind ividual Methodolog ies. This

approach was adopted first dur ing 1981 jointly by the

department of industry, UK. and five other UK. based

organisations [78]. These organisations applied this

approach when they wanted to study how the Ada language

can best be used by System Development Methodologies and

how successfuly these Methodolog ies can solve problems

related to the Ada env ironment. This study was further.

assisted by a review committee comprising of eleven other

members each representing his organisation. They

developed a set of 13 character istics against which 21

Methodologies or their variants were examined. Later.

during 1982 Wasserman and his group conducted a mail

survey [82], [83] on slightly different lines but for a

similar purpose. Due to commercial reasons it is difficult

to assess how honestly the authors of the Methodolog ies

have answered the questionaire. Of course no one would

like to express the weak points of his Methodology and

will admit that his Methodology is not suitable for the

Ada language. Further the framework of these two studies

was itself subjective and biased towards the suitability

of Ada; it is therefore difficult to say how reliable and

unbiased the results of these studies were.

During 1983 IFIP WG. 8.1 organised a second

conference to do feature Analys is of System Development

Methodolog ies [64]. The WG. at this times adopted the

second approach mentioned above. At this conference the

feature Analysis of some of the Methodologies from the

first conference, plus some other Methodologies was made.

In this conference the solutions of the model problem of

lhe IFIP first conference [63] were compared and analysed

by various participants. This comparison and Analysis of

the Methodologies was performed against a number of

features and on the basis of the information about the

goals, applicability, origin, experience, etc. of the

Methodolog ies. The main drawback in this study was that

different participants tried to compare and analyse the

features of the Methodologies without having a common

frame, framework or list of common features. It was

therefore difficult to relate and compare their work with

each other and find agreed common points of interests.

Further what constitutes a Methodology was also not clear

in all the above studies.

139

The th ird approach was to carry out a feature

Analysis of the Methodologies by using a set of questions

uniformly on each selected Methodology, without doing

comparative analysis, and express these features in

uniform terminologies. This approach was adopted by

Maddision and his group during 1983 [65). This study was

done collectively by eight people. Each one wrote at least

two internal papers on the basis of which their joint work

was published. They selected nine Methodologies to study

their features and essentials. Three of these are covered

in this thesis. Maddision and his group gave more coverage

to the Analysis activities, reflecting the orientation of

the Methodologies. The group did not mention the criteria

[or the selection of the Methodologies. Their definition

of Methodolog ies was very wide and is not related to a

complete span of System development tasks. Some Methods

were considered as Methodologies e.g. JSD which is defined

as a Method by its authors. Other important aspects such

as pr inciples, Ma intenance, Enhancement, Qual ity Plans,

Quality Factors, Quality Metrics, Verification &

Validation activities, level of participation of the

User/Management, etc. were not covered. Little effort was

made to cover prototyping. The terminolog ies used were

also not clear and suitable for the different

Methodologies.

Each of the above studies were done by group of

people having different experience, ability,

understanding and personal liking. Also the possibility of

140

them having commercial interests cannot be ignored. It is

therefore, difficult to comment on how reliable, effective

and consistent these studies were within particular scopes

and objectives. Furthermore all these studies did not

cover the complete span of System development tasks. In

some of these studies either the Analysis aspects were

ignored, concentrat ing on Des ign and Implementation

tasks, or concentrated more on Analysis tasks giving less

emphasis to Specification, Design and Implementation

Lasks. Not a single study covered the complete span of

System development.

In order to do the Analys is and Compar ison of

these Methodologies for the purpose of this thesis it was

felt to be essential to adopt a better approach; an

approach which is free from strategic omission and errors.

In order to carry out the study properly it was felt to be

desirable to:

a. cover the important and commonly used

Methods and Methodologies.

b. cover the complete span of System

development i.e. from initial conception

and to use the

realisation

Phases of

of System,

a System
of needs to final

Development Life Cycle as a standard for

compar ison i.e. to know what Phases of a

life cycle the Method/Methodology covers.

c. have a set of terminologies with clear

1Lt 1

definitions

consistently,

uniquely,

d. apply a comprehensive questionaire on the

Methods/Methodologies covering all lhe

essential characteristics & features to do

and lo apply lhese

uniformly, properly and

a feature Analysis and Comparison of the

results,

e. perform an Analysis

Methods/Methodologies

and Comparison of

cons istently, free

from any commerc ial or personal interest,

and free from strong personal believes in

support of or against any

Method/Methodology.

At the begining of this study several

Methods/Methodologies were selected for the Analysis and

Comparison. The criteria for selection was their

popularity in commercial, industrial and academic

environments. Comprehensive and utmost efforts were made

lo collect their working manuals, published materials and

facilities

Correspondence and personal contacts

the concerned persons. The library

used lo collect maximum possible

research papers.

were made with

were
information about the Methods/Methodologies. Whenever

possible, seminars and lectures given by the authors of

these Methods/Methodologies were attended. Unfortunately,

often very little information could be obtained. The

reasons for this were either these Methods/Methodologies

142

did not have enough materials to be supplied or they were

not interested in being exposed against their claims. This

constraint and lack of time forced the study to a limited

number of Methods/Methodologies. Six

Methods/Methodologies were finaly selected for the study.

To adopt the above new approach it was necessary

to select a System Development Life Cycle which can cover

the complete span of the development tasks. Several life

cycle models were examined which were used by var ious

Methods/Methodolog ies as an integral part such as SASD

[5,18], SADT [11], NIAM [14], LSDM [16], HOS [31], There

were also some life cycle models defined explicitly such

as those defined by Enger [36], Biggs [37], Blum [38],

Ramamoorthy [39], O'Neill [40), Freeman [41], etc .. It was

found that these life cycle models have several ser ious

problems, e.g. not covering the whole span of System

development tasks. They were found to be suitabie only for

certain types of problems and many have lengthy Phases

which may increase the probablity of committing errors.

They had no by-pass options (i.e. skipping unwanted

Phases). The lack of a suitable and complete life cycle

model forced us to develop a new System Development Life

Cycle model which is of a global nature and can be applied

appropr iately on all class of problems and to different

environments. The model which is developed in this thesis

covers all these requirements and is free from the above

problems. This model is not restr icted to any specif ic

System Development Method/Methodology. The model consists

143

of a set of Phases which are generalised ones and can help

the Analyst and Designer to do their tasks. This model

Dtarts from the Project Proposal and covers all aspects of

System development such as Proj ect Proposal, Str ategy,

Analysis, System Specification, Design, Implementation,

Transition and Verification & validation. These Phases are

clear and flexible, any Phase can be by-passed or.

modified, if needed, according to the environment and type

of problem. Iteration and recursion are t..wo main

properties of lhis model. The model also has the

capability to deal with special cases such as Enhancement,

Maintenance, Prototyping and the inclus ion of a Quality

Plan. To do this the model has four special cases which

can be applied at any time, if needed. These special cases

are particular instances of the life cycle. This life

cycle model is based on the active participation of the

User/Management. The model offers guide lines and gives

Dome idea how to start the development of a System and to

Implement it. Any Phase can be by-passed if found

unnecessary. The model specifies clearly the

inputs/outputs of each Phase. The life cycle model is also

expressed in a modifed form of BNF notation. All these

features made the life cycle model unique and of a global

nature but at the same time a standardised one.

The frequent use of the same terms for different

purposes and different terms for the same concept by the

Methods/Methodologies made it difficult to do the Analysis

and Compar ison. To resolve this problem it was at first

144

decided to use the IEEE standard glossary of software
engineering terminologies [34] as a hallmark or a basis
for the Analysis and Comparison. Later it was observed
that the IEEE glossary itself is not complete &

comprehensive and cannot serve the purpose. Efforts were
made to find out the discrepancies in the terminologies,
such as how different terminologies for the same thing are
being used, and how similar names are used for different
purposes. The terms which these Methods/Methodologies use
very often and in various ways with out having any
definition were identified. It was then decided to develop
a glossary of important terms with clear definitions and
apply them in this study. Therefore a set of 29 different
terms was developed to express certain concepts in a
unified manner so that these can be used globally for the
purpose of comparison. These terms are also used in the
life cycle model. This enabled the Analysis and Comparison
of the Methods/Methodologies in a consistent and uniform
manner, free from any discrepancy.

To do Lhe Analysis and Comparison of the
selected Methods/Methodologies which are of varying
scope, nature and having different features, it was
decided to list all the important features and
characteristics which should be analysed and compared.
Later it was found that it is not feasible to cover all the
features or characterisics. The reasons for this were the
varying nature of the Methods/Methodologies, time etc..
Finally a set of 35 selected questions was applied. The

145

last two are concerned with definitions and terminologies.

The use of Lhe above approach resulted

successfully in the identif ication of objectives, scope,

concepts, specific area of applicability, etc. of the

Methods/Methodolog ies. It also helped in determining how

Lrue are their commercial claims.

It was observed Lhat most of Lhe

Methods/Methodologies did not mention explicitly and

distinctly their scope, fundamental principles, etc ..

Information about the pre-requisites, starting points and

final outputs were not Lhe same for different

Methods/Methodologies

Most of the Methods/Methodologies which were

studied provide information about the steps which they

follow dur ing the System development tasks. Only MASeO'l'

and SA were found not to give step by step, clear and

precise directions.

The study revealed that the Phases of the life

cycle and step/phases of the Methods/Methodologies in

general do not have a one to one correspondence. In most

cases they do not cover the whole span of life cycle. Not a

single Method/Methodology covered the complete tasks of

System development. No Method/Methodology has used the

strategy Phase.

146

All the Methods/Methodologies expect MASCOT

generally provide clear guide lines which help during the

performance of System development tasks according to

Lheir scope and coverage.

It was observed Lhat all these

Methods/Methodologies emphasise the need to have special

training before using them. However, ETHICS and SASD were

exceptions.

All Lhe Methods/Methodologies have certain

tools/support to be usedat various levels of System

development. These tools were not necessarily an integral

part of the Methods/Methodologies.

It was found these Methods/Methdologies in

general do not specify any rules which can help in

choosing an approach suitable to a particular environment.

The reason for this was found to be that these

Methods/Methodologies have limited scope and can only deal

with certain class of problems and are hence problem

oriented. However, SO is an exception, since it offers two

different options i.e. Lransform and transaction

Analysis. The Methods/Methodologies were found to be not

suffiCiently flexible to fulfil the wider scope of demands

and environments. It was not possible to evaluate the

performance of these Methods/Methdologies and to say 'this

is the best one', Le. one which is suitable for all

purposes. Some of these might be better than others for

147

certain class of problems and environments and work

ideally but may fail in other situations.

JSD was found suitable for data processing,

process control, real time and other sequential problems.

LSDM and SADT may be used for wide classes of problems.

MASCOT was found to be better for developing real time

Systems. ETHICS and SASD were found to be suitable for

corrunercial and industr ial problems.' This conclus ion

appears consistent with the claims of the respective

authors.

These Methods/Methodologies were found to be

machine and language independent. However, MASCOT is an

exception and is best with languages which have facilities

similar to the CORAL-66.

All the Methods/Methodologies except LSDM and

SADT do not assist in the project Management and Strategy

Phase. The authors of LSDM claim that they do assist in

project Management and have appropriate techniques. SADT

assists in the project Management to a limited extent.

approaches such as

Methods/Methodologies

approaches. The ETHICS

approach.

JSD was found to have its own unique approach

which is quite different from the other traditional

Bottom-up, etc .. Other

traditional Top-down

Top-down,

follow

Method does not use any such

148

JSD, LSDM, MASCOT and ETHICS all apply the

concept of V & V activities or something similar to it but

not precisely and significantly. SADT and SASD were found

not to be applying a V & V concept or anything similar to

it.

It was felt that JSD is suitable for small to

medium size problems. LSDM ETHICS, SADT and SASD were

found suitable for varying sizes of problems. MASCOT was

found suitable for large size real time Systems.

JSD, LSDM, SASD were found not to have any

specif Le and particular corrununication facilities between

the User/Management. ETHICS, MASCOT and SADT use their

documentation facilities for this purpose.

JSD has notable documentation facilities but

Lhese are not easy or good enough for the User/Management

to be able to understand them. LSDM uses a set of forms for

documentation purpose. The symbols and notations which

LSDM uses are similar to those of JSD and SASD. MASCOT has

very specif ic and precise documentation

standards and therefore, relies too much on

and notations. ETHICS does not have any

rules and

its symbols

notable and

influential documentation facilities and therefore does

not rely too much on its symbols and notations. SADT has

detailed and well defined graphical language called 'SA'.

SAS!) prov ides good and well def ined documentat ion

facilities but these facilities are not easy for the

149

User/Management to

Method/Methodology was

understand.

found to

In general no

have impressive

documentation facilities and were not good enough when

Enhancement and Maintenance tasks were to be performed.

It was felt that to use JSD, MASCOT and SD is

not easy. To use other Methods/Methodologies is not

difficult but they may need some training and experience.

It was found lhat the Enhancement and

Maintenance tasks can be dealt with to some extent by

lhese Methods/Methodologies. But they do not provide any

efficient, notable and impressive Enhancement and

Maintenance facilities.

No Method/Methodology was found using the

Prototyping facilities during System development except

JSD and MASCOT but these two also do not have any specific

tool/support for this purpose.

No Method/Methodology was found using the

concept of a Quality Plan or Quality Metr ics. However,

LSDM and MASCOT apply some vague concept of Quality. SD

applies the concept of coupling and cohesion during System

development tasks Lhis may help to some extent in

improving the Quality of a System.

No Method/Methodology except LSDM and ETHICS

involve the User/Management during System development

150

tasks. ETHICS is mainly based on active participation of

the User(Management during System development.

The JSD approach of developing a model of the

real world was found to be unique. LSDM considers three

different views i.e. data flow, data structure and events

in parallel during System development. No

Method(Methodology has used all three views together. The

development of Software on a host computer and

Implementing it on the target computer is a unique tactic

in MASCOT. The active participation of the User(Management

is a unique approach in ETHICS. SADT uniquely supports and

does the tasks of System development by team work. The

concept of coupling and cohesion made SASD unique.

While

Methods(Methodologies

examining whether the

are a combination or varient of

others, it was observed that JSD is an extension of JSP,

LSDM evolved from LBMS database Design tool and SSADM.

MASCOT is in its third variation. SASD is the combination

of SA and so. ETHICS and SADT were found to be generic

ones.

151

4.2 Suggestions

Almost all sciences have an agreed standard set

of terminologies and corresponding definitions. The study

of System development Methods/Methodologies revealed that

software eng ineer ing is a science which does not have a

complete, comprehensive and standard set of terminologies

and corresponding definitions. These

Methods/Methodologies use different terms for the same

concept and the same word for different concepts. These

Methods/Methodologies also use certain terms without

defining them explicitly. The IEEE standard glossary of

software eng ineer ing

large number of

terminology also does

Lhe terms used

not cover a

by these

Methods/Methodologies. The terms which are defined by the

IEEE often differ from the way these are used by the

Methods/Methodolog ies. This results in communicat ion

problems especially when two or more

Methods/Methodologies are used in the same organisation.

This also causes problem in teaching, Lraining and

research environments. Due to commercial and prestige

reasons it is probably impossible for the existing

Methods/Methodologies to ammend their terminologies.

There may be two feasible approaches which can

be adopted to solve the problems of terminolog ies. The

first one, which is short term and a temporary solution is

to develop a set of terminologies and their definitions in

such a way that these terms can represent a wide range of

152

concepts and possibly be suitable for all different types
of Methods/Methodologies. This seems LO present
difficulties and can only be developed for certain
selected terminologies i.e. only for those terms which
have the same word but are used for different purposes. We
have made an effort in this direction and a glossary of
terms has been developed for certain important commonly
used words. Another but long term feasible solution for
this problem can be to develop a detailed and complete set
of terminologies and corresponding definations. This can
be done by getting technical and financial co-operation
from international non-commercial scientific and research
organisations such as the IEEE Computer society, the BCS
etc. and with the help of academic and experienced
experts. If it is possible to have a unique standard set
of terminologies and their definitions in other fields of
science and engineering than why can it not be possible in
software engineering. These terminologies later if
pOSSible, should be legally backed through the EEC, UNO,
UNESCO and other inter governmental organisations, etc..
The Methods/Methodologies should be checked by the
authorities to see how close they are to the standard. Any
lack of standard should be recorded, reported and
communicated to consumer councils pointing out clearly
how, where and to what extent there is a deviation from
the standard. The international organisations should be
promoted by giving them financial support to develop new
multi-purpose Methodologies based on an agreed standard
set of terminologies using the concept of a global System

153

Development Life Cycle such as the one developed in this

thesis.

Software eng ineer ing is in its initial stages

and developing fast. The scientific, commercial and

industrial factors are forCing the software engineers to

develop new Methodolog ies. These Methodolog ies are

essentially required to be free from the existing

deficiencies and limitations and in future they will

replace the existing Methodologies. Before conceiving new

Methodologies it is essential to provide for the software

engineers a complete, comprehensive and standard glossary

of terminologies.

The System developers must accept that the

present existing System development Methods/Methodologies

apart from their general deficiencies are incomplete. They

can only develop Systems partially i.e. covering either

technical or human aspects of a problem. In fact very few

Methods/Methodologies are available which consider the

human and Management aspects of a problem and encourage

the participation of the User/Management dur ing System

Development i.e. the group who will be us ing and will

mainly be concerned with the System. Further, to do the

job of System development effectively it is essential that

the Analyst/Designer must be competent in both aspects of

the System i.e. technical and human areas. Unfortunately

during our study of the Methods/Methodologies it was

revealed that the Analyst/Designer were not expected to

154

spec if ically know about both areas. Therefore, in this

study of System development Methods/Methodologies we

included the ETHICS Method which covers the human aspects

of the problem while developing a System. But the study of

Lhe ETHICS Method revealed that it gives too much

importance Lo the involvement of the User/Management

during the development of a System and very little to the

technical aspects. The main drawback in this Method is

that it lacks the ability to deal with technical aspects

of the System development tasks. For example, Lhe ETHICS

Method has a great disadvantage in that it cannot cope

with determining the Lechnical Requirements and

developing Requirements Specification and other vital

Lechnical aspects of System Design. With such an

unbalanced involvement there can arise certain technical

problems which may result in a conflict. Especially in the

case where the User/Management does not have enough

Lechnical information and want Lo impose Lheir

constraints, conditions and needs etc. for prestigious

reasons.

There is an acute need to have a new approach

which can avoid the human ill-effects, fullfil the human

needs of the User/Management and cover all the important

and useful technical aspects of the traditional System

development Methods/Methodologies as its integral part. A

Methodology is required which can cover the technical as

well as human Requirements equally. There IS a need to

have a marr iage between such a Method and a technical

155

Method/Methodology which misses the Management and human

aspects of a problem and does not cover the Analysis

activities in its scope. For example the JSD and ETHICS

Methods can be integrated to compliment each other. In the

absence of such an approach there is a great risk that the

growing computer industry in future will reject such

Systems which do not cover both aspects of System

development.

It is suggested that there is a need to develop

an automatic Software Tool which can be used as an

integrating tool for using different System development

Methods/Methodologies according to the global System

Development Life Cycle Model. Such a tool will enable

everyone to get benefits from different

Methods/Methodologies at different levels of the Global

Life Cycle. To integrate the Methods/Methodologies it will

need to have a language. Any suitable high level language

can be used for this purpose. Such a tool can be built

first by developing a prototype and then the package

itself. The available proven good tools which support the

selected Methods/Methodologies can also be used and

integrated in the selected Methods/Methodologies. Such an

integrated tool will hopefully help in solving the System

development problems, e.g. Structured Design, ETHICS &

JSD, etc ..

156

a....... A

157

A.I Introductioo

essential
This appendix
features of the

Analyses
selected

and Compares the
System development

Methods/Methodologies. The selection of t.hese
Methods/Methodologies
the computer world.
Comparison is to

is based upon their popularity in
The purpose of this Analysis and
determine the objectives, scope,
features, etc. of thesecharacteristics,

Methods/Methodologies. A set of 33 selected questions is
used for this purpose. These questions determine, analyse
and compare the objectives, scope, characteristics,
features, etc. of these Methods/Methodologies. These
questions also examine, determine and evaluate the extent
to which these Methods/Methodologies cover the Phases of
the Global System Development Life Cycle i.e. cover the
span of System development tasks. The order in which these
Methods/Methodologies are presented in this thesis is
alphabetical, not according to their popularity or any
other factor.

158

A.2 ETHICS Method

The following general questions concerned with
a Method/Methodology are applied to evaluate the strong
and weak points and to perform a feature Analysis of the
ETH ICS Method [9], [76], [77], [87] .

1. What are the objectives and scope of the Method?

Objectives:
The following are the objectives of ETHICS

Method:
a. To provide an approach to do systematic

Analysis of the problem required to be
solved.

b. To provide the means to identify and meet
human needs of the User when designing a
Computer System.

c. To provide an approach which can give a
solution to get or improve both job
satisfaction and efficency needed by the
User/Management.

d. To have a System Development approach
which can either eliminate work problems
or ensure that they could be quickly
corrected.

e. To provide socio-technical approach of
System development which can show how
technical and human Requirements can be

159

analysed and System Designed, which people
both can and will be pleased to use.

Scope:
The ETHICS Method according to its definition is

concerned with the development of an Effective Technical
and Human Implementation of Computer System. In brief it
covers the following:

a. Identification of human & technical needs
and helping the Analyst/Designer & the
User/Management in setting the human and
technical objectives.

b. ldentification of the variances which can
affect and influence the performance of
the existing System.

c. helping and assistng the Analyst/Designer
and the User/Management in how to Design
technical and human objectives.

d. Design a new System according to ~he
objectives and implement it.

e. Monitor and evaluate the performance of
the new System and examine whether it is
implemented according to the objectives.

Note: ETHICS Method does not show in sufficient detail how
to identify the technical needs and develop the technical
objectives i.e. Requirements Specification. The Method is
not concerned with the development of System
Specifications and technical aspects of the system Design.
The Method emphasises more on the Analysis aspects of the

160

existing System.

2. What are the fundamental principles of the Method?

The following are the fundamental principles
adopted by ETHICS Method.

a. Provide opportunities to the
User/Management in redesigning their own
System by active participation.

b. The role of Analyst/Designer should be to
help the User/Management in the
development of a System. The
User/Management should do the main task of
the System development.

c. The User/Management responsible for System
development should represent all grades of
the staff in the organisation.

d To achieve an agreed solution involve, if
possible, participation of the trade
unions, if there are any.

e. A 'unit operation' should not be split. A
group of User should take responsibility
for one or more 'unit operations' in their
section.

f. Ensure that corrections are made as close
to the source of variance as possible.

Note: The development of the technical aspects of a System
is generally not possible by the User/Management due to
lack of profeSSional knowledge and experience. The above

161

principles can successfully be applied mainly during the
Project Proposal, Strategy, Analysis and some aspect of
Implementation & Transition Phases.

3. What are the pre-requisites for the Method?

The old System must be there to start the
Analysis work and obtain diagnostic data.

Note: The ETHICS Method has limited scope in the sense
that it does not show what to do when designing a new
System.

4. What is the starting point of the Method?

ETHICS Method starts the System development by
diagnosing Lhe human & technical needs of the
User/Management of an old existing System, which is not
working smoothly, efficiently and satisfactorily. The old
existing System mayor may not be computerised.

Note: In their literature and the reports of case studies
which were made by the authors it is assumed that
technical Requirements are readily available.

5. What is the final point or step of the Method, and
what is the deliverable of the Method?

The System evaluation is the final step of the

162

ETHICS Method. The Method delivers a working

socio-technical solution in place of the old System.

6. What are the steps or phases of the Method?

ETHICS Method has ten steps which are

essentially taken dur ing the Project Proposal, Analysis

and some Implementation & Transition tasks. The following

are the steps of the ETHICS Method, and its brief

description.

a. Diagnosis.

b. Socio-technical System Design Objectives.

c. Setting out alternative solutions.

d. Setting out possible Socio-technical

solutions.

e. Ranking Socio-technical solutions.

f. Preparing a detailed work Design.

g. Accept best possible socio-technical
solution.

i. Implementation.

j. System Monitoring.

k. System Evaluation.

In this Method in principle equal efforts are

made to identify technical and soc ial needs and

constraints.

In the first step efforts are made to diagnose

those 'needs' which can effect the long term

Job-satifaction needs. To achieve this information the

'needs' are collected by conduct ing a survey. A

questionaire is developed and used to find about the
job-satisfaction. The questionaire is answered by the
User. The information obtained from the questionaire is
examined and analysed analytically by using a tool I.e.
the 'Job-satisfaction Analysis Model' [8], [76], [77]
which has several different measures. These measures are
information about 'fit' between what the User are seeking
from the organisation and what they will achieve if their

are about knowledge,
which are generally measured
psychological, efficency,

If this 'fit' is found to be

wants are made. The 'fits'

task-structure and ethics.
good in a pre-change situation, it means that job
satisfaction is high and the chances of having conflict
between the User and Management will be minimal. Otherwise
efforts are made to diagnose why the fit is not good. This
is done by analysing the outcome of the result of the
questionaire. The reasons for the lack of fit as well as
the social and technical problems are determined, which
the new system must avoid. Social & technical Requirements
are determined which should be in the new System. A
democratic approach is adopted by making small groups of
the participants i.e. the User and the Management, analyse
and discuss the outcome of the questionaire.

In the second step the diagnostic data on job
satisfaction and technical Requirements are used as the
input for the second step. This data is used for stating
in detail the human and technical needs, the area where
job satisfaction can be improved and technical factors
which can improve the System performance. The

164

Analyst/Designer identifies technical and social
constraints and resources available to use them to specify
two sets of technical and social objectives. At this level
these objectives can state in detail policy and guidelines
for the development of a Design and also a check against
which the System can be evaluated. The compatibility
between the two sets of objectives is then checked.
Careful consideration is made in consultation with Lhe
User/Management on the impact of the outcome on the
affected departments or sections.

In the third step the two different sets of
possible solutions are prepared independently in
accordance with the social & technical objectives. Each
set gives alternate solutions in terms of technical/social
aspects of the problem. The advantages and dis-advantages
of each alternate solution is determined. Each solution is
evaluated separately and independently against the
objectives established in the second step. The feasibility
of their Implementation is also determined. From these two
sets a set of feasible social and technical solutions is
prepared to be used as a short list.

In the fourth step each solution listed in the
short list of alternate feasible social and technical
solutions are compared with each other to determine which
'fits' are compatable i.e. technical solutions are
compared with social solutions. The pairs which are in
harmony are selected and listed in a set of possible
socio-technical solutions.

In the fifth step the socio-technical solutions

165

are examined and ranked by the User/Management to
determine the best solution. The amount of effort to be
spent on this task depends on time, money and the type of
the problem. Cost-benefit Analysis of different solutions
is made in order to help in the selection of the best
socio-technical solution. The selected socio-technical
solution must be evaluated by the User/Management against
the job satisfaction needs established in step 1. Further
the advantages and dis-advantages must also be considered
in relation to the social & technical objectives. The
selected solution must 'fit' together and achieve both
human & technical objectives i.e. it musl jointly meet in
the best possible way the technical and human objectives.

In the sixth step structure of the tasks to be
performed by the User is considered. Efforts are made to
assign the duties in a way that work group or individuals
have a logically integrated pattern of work activities. To
achieve such a pattern the ETHICS Method recommends some
job-design principles such as the principles of task
variety, skill variety, task identity, task autonomy. The
Method also emphasises to consider the following point at
the time of assigning the tasks:

a. the User must know about their job and how
it should be performed,

b. the social environment must be developed
in a way that the User feel socially happy
and feel that their work is being
recognised,

c. the User must not feel that his promotion

166

or future will be blocked.
The job structure which can provide to the User

an acceptable level of job satisfaction should be chosen
as the accepted solution of the job structure. Such
structure can only be achieved by the active involvement
of the User/Management and Analyst/Designer.

After selecting the best possible
socio-technical solution and developing the job structure
according to the given guidelines efforts are made in the
seventh step to re-examine the needs. Any thing which must
essentially be in the System and found missing should be
re-considered to see if it can be satisfied in some way.
This is done by skipping through all the previous steps.

The Implementation is the eighth step of ETHICS
Method and starts when the System Design work has been
completed. This step involves a set of operations which
change the existing System smoothly and successfully from
one organisational structure to another. Implementation
is achieved by forming a single group from the
User/Management and the Analyst/Designer under the
leadership of one of the most experienced section leaders
in the department. (It does not rely entirely on the
Analyst/Designer.) The group represents the section and
consists of a number of multi-skilled clerks and
specialists. The
technical aspect
Implemented
expectation

in

new organisational structure and
of the Design must essentially be

a way that they fit well with the
the User/Management. The Implementationof

approach of the Method requires creation of an attitude

167

which regards the new System as being better than the old
one, and the User's recognition of the competence of this
new System. All concerned must understand the nature of
logic of the change consequences. The Implementation step
provides to the User/Management a commitment to the new
System explaining how it works and giving training and
skill to operate it efficiently. The step also provides
the job-training, which is generally done by the most
experienced staff taking part in the System development
group.

In the System monitoring step tasks of System
Implementation are monitored Le. what is happening and
how it is happening. In this step careful efforts are made
to ensure that the System which is being Implemented is
valid and staying in accordance with the human objectives
i.e. human aspects of the Requirements Specification set
in earlier steps. If there is a descrepancy between what
is to be intended and what is being done then controls are
made to bring it back in the right direction.

In the System evaluation step it is observed
closely what has happened, to ensure that the Design has
been implemented according to the objectives set earlier.
This step is essentially applied to avoid and rectify
mistakes, if there are any, and study the human aspects of
system Implementation for future purposes. The diagnosis
tool [8], [76], [77] Le. 'Job-satisfaction Analysis
Model' is used once again to evaluate the level of fit
between the User's needs and the Management's job
Requirements in the new System. If the resultant value of

168

the 'fit' is better than the change, it means that the new
System can lead towards better job satisfaction, so it can
be accepted. Otherwise there is need to take action which
may be to redesign the System to the desired level of
'fit' i.e. to control and change back to the right course
of action.
Note:

a. From where the technical Requirements are
obtained is not clear. In their literature
and the reports about case studies which
were conducted in the past by the authors,
it is mentioned that technical information
was provided by the Management. Perhaps a
reason for this was that the participants
of the case studies did not have the
technical knowledge to find the technical
needs and the set of technical objectives.
Further it seems that the ETHICS Method has
emphasis on designing the social aspects
of a System,

b. the System objectives are used as the basis
of establishing development policies and a
standard against which the final System
can be evaluated,

c. the Method has provision for System
Maintainance which is done iteratively.

d. This Method is in its evolutionary process
and lacks many aspects of System
development. For example it does not show

169

how to develop the technical aspects of a
System, though in principle the Method
agrees to do so.

e. The Method looks t.ime consuming and
therefore expensive.

"' . Are these steps or Phases of the Method
systematically procedurised, or do they just give broad
directions?

Yes, these
procedurised and must
development.

steps are
be followed

Systematically
during System

8. What Phases of the System Development Life Cycle does
the Method cover?

ETHICS Method covers partly the tasks
concerning the Project Proposal, Analysis, Design,
Implementation and Evaluation Phases of the Life Cycle.

The tasks concerning with the Project Planning
Phase of the Life Cycle are covered partially by the
ETHICS Method and overlap with its steps. Tasks concerned
under the heading of The Study of the Proposals are not
performed. The Method covers the Initial Investigation
subphase 1.2 by diagnosing why there is no job
satisfaction and what the User want. To achieve this the
existing System is investigated during the 'diagnosis'
step of the Method. This is done by conducting a survey to
find out the most frequent problems which are in the

170

existing System and cause job dissatisfaction. The reasons
for dissatisfaction are traced out, the User's wants are
reviewed and social & technical problems are determined.
From the above information the efforts are made to find
the User's actual needs which should be fulfilled in the
new System. Technical Requirements and radical changes are
determined which should be in the new System. In the 2nd
step of the Method details of these human & technical
Requirements are stated by reviewing wants and seeking out
actual needs. From the technical and human Requirements
the technical and social objectives are determined. These
objectives are checked for their correctness &
completeness. The impact
objectives on different

of the outcome
departments are

of these
carefully

considered in consultation with the User/Management. In
the 3rd step of the Method two different sets of possible
proposals are prepared from the objectives each showing
social/technical solutions.

The Initial Feasible study subphase 1.3 of the
Life Cycle is performed partly in the 2nd step of the
Method. This is achieved when the Analyst/Designer
identifies social/technical constraints, resources
available and determines the feasibility of· these
objectives.

The Method does not incorporate the activities
concerned with the Strategy Phase of the Life Cycle.

The tasks concerned with the Analysis Phase of
the Life Cycle are done partially. The subphase 3.1 i.e.
the Analysis of Environment is done by involving actively

111

the User/Management. Efforts are made to collect &
understand the information about the environment where the

existing System is working and to know about the

application area for which the new System is being

designed. The factors which affect the environment and are

responsible for creating incorrect data, performance etc.

are also determined. All these are done in the 'diagnosis'

step.

The tasks concerned with the subphase 3.2 of the

Life Cycle i.e. the Requirement Analysis are done by

identifying clearly whether or not the identif ied needs

will actually be required and detailed information about

the social and technical Requirements are collected. The

security, social, privacy,. managerial and financial

aspects of the needs are also determined and communicated

to all concerned in the first two steps of ETHICS Method.

The tasks concerned with preparation of the

Requirements Specification i.e. the subphase 3.3 of the

Life cycle are done by ETHICS Method during its 2nd step.

This is achieved by setting detailed technical and social

objectives, policies and guidelines for the development of

a Design. These objectives define what the System must do

to satisfy the human and social Requirements and also can

be used as a check against which the final System can be

evaluated. These objectives are used in transforming the

Requirements into System Design. This is done by setting

out alternate

solut ion acts

social/technical Design solutions. Each

as an initial model which can exhibit as

much as possible the necessary information for forming a

172

Design.
The tasks concerned with the subphase 3.4 i.e.

Check for Consistency is done during the 7th step of the
ETHICS Method. This is achieved by making efforts to
re-examine the User's needs, Requirements Specification,
job description etc.. Anything which must be there and is
missing is re-considered to see if it can be satisfied in
some other way.

The tasks concerned with the subphase 3.5 i.e.
the Search for Existing Available Systems are not covered
by the ETHICS Method.

The tasks concerned with the subphase 3.6 i.e.
Feasibility Analysis and Detailed Proposals are done first
at the time of developing the objectives during the 2nd
step of ETHICS Method. This is done by ensuring that these
objectives are realistic and capable of achievement
without any major difficulty and verifying that resources
are available for implementing them. Second time the task
of Feasibility AnalYSis is done during the 3rd step by
setting out the alternative social and technical
solutions. At this poInt, efforts are made to take into
considerations the resources which are available and
constraints which must be met. The activities concerning
the development of a set of various proposals which are
feasible to achieve the Requirements Specification called
objectives by the Method, are done during the 3rd, 4th and
~th steps of the Method. This is done by developing two
different sets of possible proposals in accordance with
the social and technical objectives i.e. Requirements

173

Specification.
feasibility of

The advantages & disadvantages and

Implementation of these two sets of
proposals
alternate

is determined. From these two sets a set of
feasible social and technical solutions is

prepared. These alternate feasible social and technical
solutions are compared with each other to select a set of
the best socio-technical solutions. In the 5th step these
socio-technical solutions are examined and ranked by the
UserfManagement to determine the best solution.

The tasks of the System Specifications Phase of
the Life Cycle which is concerned with stating clearly,
un-ambiguously in the technical terms of the computing
environment, what a System must do, are not covered by
ETHICS Method.

The tasks concerned the Design Phase of the Life
Cycle are to conceive & plan out, by using an agreed
proposal and its specifications as input, converting the
plan into an un-ambigous executable model, called System,
to perform its purpose(s) i.e. function(s). These above
tasks are not performed by the ETHICS Method, as it does
not develop a System Specification in technical terms.
This is an important area which is missing in ETHICS
Method.

The tasks concerned with the Implementation
Phase of the Life Cycle which are the manipulation,
translation & debugging of code, for a software System or
skeleton developed earlier in the Design Phase, to fit to
the hardware and in some cases software also, are mainly
not covered by.the Method. The Method does not follow any

174

Implementation Strategy or approach such as JSP, Top-down,

Bottom-up, etc .. The Method covers the training, helping

and guiding the User/Management in the use of the System

and interpretation of Lhe outputs. Guiding the

User/Management in the organisation and administration of

the data processing center. Ensuring that all the required

changes have been implemented in a way that they fit well

with the expectation of the User/Management and nothing is

missing or is ambiguous. These tasks are done during the

8th step of the Method.

Note: ETHICS Method has a great weak point that it does

not show how to re-wr ite the selected proposal in the

technical terms and make the technical foundation of the

Design. The System Specif ications Phase which acts as

interface between Analysis and Design tasks are missing.

There is no way to know how to get technical input for the

Design tasks. This can create many Implementation,

Transition and Maintenance problems. Unless the Method Is

supplemented by some other Methodology, for developing the

technical input of the Design i.e. System Specifications,

the System will not be reliable and many Implementation

problems may arise.

9. Does the Method give equal weight to the different

Phases of the System Development Life Cycle?

No, ETHICS Method gives more weight to the

Analysis Phase. Very little weight is given to the Design,

Implementation & Transition Phases of the Life Cycle. The

175

tasks concerned with the Strategy, System Specifications

are not covered by the Method.

10. Does the Method contain a set of guidelines which can

lead from the start of the project to the Implementation &
Transition of the System'l

Yes, ETHICS Method gives guidelines on how to

proceed and do the work of System development within its

scope. The Method is silent about how to get the System

Specifications and other technical aspects of a System.

11. Does the Method require any special training before

using it?

No, ETHICS Method does not require any special

training. However, it expects from the Analyst/Designer

that they have a good knowledge of different ways in which

work can be organised in a System. They must know about

system Management techniques.

12. What Methods, tools and support are used by the

Method?

The Method and tool which are used by ETHICS

Method are the Variance Analysis and the Job-satisfaction

Analysis respectively. The following is a short

description about these:

Variance Analysis:

It is a simple Method [8], [77] for identifying
technical weaknesses in an existing System i.e. for
identifying weak areas of a System. This tool gives
priority to identify and eliminate the 'key variances'
first i.e. those variances which are most direct or
important in their impact, cost, quantity and Quality. The
success of a new computer System is determined by the
level of extent to which prechange variances have been
eliminated or better controlled without creating new
variances.
Note: The variance Analysis is not concerned with the
temporary problems such as machine break-down, strike,
shortage of man power etc..
Job-satisfaction Analysis:

This tool [8], [76], [77] is used to analyse the
variables which are concerned with the human aspects of
the problem such as knowledge, psychological, efficency,
job-structure and ethical factors. In short efforts are
made to determine:

a. What the individual seeks from his
employer, if his most important needs are
to be meet.

b. Up to what level an individual wants to
persue his own interests and is unwilling
to compromise.

c. The extent to which an individual wishes to
behave in a unique and individual way i.e.
to show his individuality.

d. The level of desire of an individual to

177

recognise his personal qualities,
promotions, etc..

e. How flexible the working hours are
according to individual's Requirements to
satisfy himself.

The fit between employees needs, expectations
and job experience is determined for the above five
variables. If the fit between the User's need and
expectations are met then it means that the User have high
job-satisfaction. If the fit is not entirely good then
efforts are made to further analyse why this is. In the
new System considerations are made to avoid the reasons of
lack of fit. This is achieved either by amending personnal
policies as well as job-design. The knowledge and
job-structure fit can be improved by creating forms of
work organisation and job-structure in the light of a
socio-technical approach of System Design.

13. Does the Method offer clear and precise rules for
choosing the Methods to be used in a particular
environment?

No.

14. For what class of problem is the Method most suited?

The Method is suitable for commercial and
Industrial problems.

178

15. Is the Method language and machine dependent?

No.

16. Does the Method assist with the project Management
and Strategy?

No.

17. Is the Method based on principles which are in
general:

a. structured,
b. Top-down,
C. Bottom-up,
d. others?

No, ETHICS Method does not use any of the above
concepts.

18. Does the Method use the V & V activities or something
similar to them'?

Yes, and it is performed by using the set of
objectives specified in its earlier steps as a standard
for evaluating the System.

19. To what extent deos the Method use the V & V
activities?

179

ETHICS Method verifies the efficiency of the
System after its Implementation. The efficiency is tested
by checking that the improved control of variance has
taken place and that no other variance had been created.

20. Is
Systems'?

the Method suitable for small/medium/large

ETHICS Method can be used for developing the
problems of all different sizes.

21. Does t.he Method have communication facilities
between the User/Management and the Analyst/Designer?

Yes, ETHICS Method communicates with the
Analyst/Designer and User/Management by documenting the
results of the Analysis/Design. These documents
diagramatically propose changes in the nature or
arrangement of
structure of
structure etc..

hardware, work-flow, group social
the User/Management, individual job

22. What documentation facilities, tools does the Method
have'?

The Method does not have any specific

documentation tool or facility.

23. Does the Method use any symbols or notations, for

180

expressing the outputs of the Phases, e.g. specifications,

Design, etc.? If yes, what are they"?

Not any special one.

24. Is the style of symbols or notations readable, can

these symbols or notations lead to effective, rapid and

unambiguous communications?

Yes the style of symbols is readable and is

similar to flow chart. The set of symbols or notations is

effective.

25. Does the Method rely on highly symbolic formalisms?

No.

26. What exper ience is required by the Analyst/Des igner

in applying and using the Method?

Not any specific ones, only general experience

is needed.

Note: From the reports of the case studies, it was found

that ETHICS Method is not much concerned about the

development of the technical aspects of the System Design

such as System Specifications, etc .. Perhaps no special

technical experience is needed by the ETHICS Method.

27. Does the Method have provision for covering special

181

cases such as:.

a. Enhancement? No,

b. Ma intenance '? Yes,

b. Prototyping? No,

c. Quality Plan? No,

d. Search for Existing No.

Available System?

The Maintainance activities can be performed

during the sixth step of ETHICS Method. In this step any

thing which the System does not provide to meet the

technical and human needs of the User/Management and were

derived from the Analysis are re-examined by repeating all

the previous steps.

28. What Prototyping tools/support does the Method have?

The ETH ICS Method does not use the concept of

Prototyping.

29. Does the Method incorporate a Quality Plan for a

system?

No.

30. Does the Method use any Quality Metr ics'?

No. But there is a tool which measures the 'fit'

182

analytically for different variables such as knowledge,
efficencyetc ..

31. Does the Method support the User/Management
participation? If yes, to what extent"?

ETHICS Method is completely based on active
participation of the User/Management. It involves not only
the User/Management but even their trade union, if there
is one, during the System development. The Method
constrains the active participation of the
User/Management during the System development. This
participation is not only up to a voting level but it is
much more than that. It involves thinking, knowledge and
competence. It is concerned with working jointly.

32. Has the Method some unique approaches? If yes, what
are they?

Yes, the following are the unique approaches
adopted by ETHICS Method during the System development.

a. the active participation of the
User/Management and trade union and giving
emphasis on the need for meeting the human
needs of the User when developing a
computer System,

b. the emphasis on the approach to have
democratic philosophy in which staff of
the concerned department are asked to

183

Design their own work organisation with
the help of the Analyst/Designer,

c. ETHICS Method takes both technical and
human factors into account during the
System development,

d. ETHICS Method has a Variance Analysis
facility which no one has used before.

Note: It does not offer a technical solution of the
problem.

33. [s the Method a combination or variant of other
Methods? If yes, which oneat

No, ETHICS Method is not a combination or
variant of other Methods.

184

A.3 JSD Method

The following general questions concerned with
a Method/Methodology are applied to evaluate the strong
and weak points and to perform a feature Analysis of the
JSD Method [21], [22].

1. What are the objectives and scope of the Method?

Objectives:
To develop a System which can represent &

reflect the real world with which the System is concerned.
This System should not depend on the functions or the
concept of functionality.
Scope:

JSD is concerned with the problems which are of
sequential nature, and have time ordering. The problems
which have no time ordering are out of its scope, e.g.
census etc.. JSO excludes activities such as Project
Proposal, Strategy, Systems Analysis, etc..

2. What are the fundamental principles of the Method?

a. A formal description of the real world with
which the System is concerned must be
developed before specifying the functions.

b. An adequate model of a time-ordered real.
world must itself be time ordered.

c. The System should be Implemented by

185

transformation of formal specifications
into runable System having efficient &
convenient set of processes adaptable to
running on the available hardware and
software.

d. A dynamic real worId cannot be modelled
accurately and sufficently by a database,
which is an appropriate medium for the
static models.

3. What are the pre-requisites for the Method?

The complete Information about the real world
including the required functions should be available from
the User/Management.
Note: JSO does not mention how to get the complete
information about the real worId. They claim that "the
model implicitly defines a coherent set of possible system
functions" [p.8, 21]. But the problem is that they have
not defined the term function and have not mentioned how
to find and represent a function. In fact JSD is not
tackling this problem differently as they claim. JSD also
ignores completly how to determine the various parts of a
problem and their relationship with each other.

4. What is the starting point of the Method?

The real world is regarded as a fixed starting
point which is based on general and informal information

186

provided by the User/Management.

Note: The information provided by the User/Management to
develop a System is usually not complete, adequate and
some times incorrect. A System which is based on such
information may not be reliable and in some cases may not
work correctly.

5. What is the final point or step of the Method, and
what is the deliverable of the Method?

Implementation is the final step of JSO. It
creates the specifications for the programs which can be
developed further by using JSP.

6. What are the steps or phases of the Method?

JSO divides the activities of System
developingdevelopment into two major steps i.e.

specifications and developing Implementation.
JSD develops the specification for the System,

by building it up from parts which are themselves
sequential processes. The activity of development of
System Specifications involves two major steps i.e.
specify model and specify functions. These two steps at
their lowest level are further divided to develop System
Specifications. These sub steps are as follows:

a. Entity/Action step,
b. Entity structure step,

187

c. Initial Model step,
d. Function step,
e. System timing step.

In the first two steps an abstract decription of
the real worId is developed by describing the relevent
aspects and eliminating the irrelevent ones. The subject
matter is defined by describing the real world in terms of
entities and the actions which they perform or suffer
taking into consideration the ordering of these actions.
The abstract description of the real world is achieved by
producing lists of entity types and action types and a
short description about them. Further a diagramatic
statement of the ordering of these actions for each entity
is also needed for this purpose. These diagrams are called
structure diagrams. The result of these two sub steps is
called an abstract description of real world.

In t.he initial model step the abstract
description of the real worId in terms of sequential
processes, is realized as a process model. itAsequential
process is no more than a statement of time ordering of
events" [p.l, 21]. The Designer begins to specify the
System itself by specifying a simulation of real world.
This is done by having for each sequential process in the
real world a corresponding sequential process in the
System. The output of the initial model step is a System
Specification Diagram. This diagram shows a model of
processes, connected by the real world entities which they
model.

188

In the Function step the known functions are
expressed in the form of processes each one in isolation
from other functions, with long life time. These function
processes are added to the System. If a function is simple
it can easily be added to the model process by fixing the
operations directly into the process text, which may be
needed to get output from the function. Difficult and
complicated functions may require new processes to be
added to the System. This process can be connected to the
model process by using process connections which may
either be data stream connection or state vector
connection. These function processes receive inputs
either from model processes or sometimes, from extraneous
data streams. Sometimes a function may require more than
one function processes. What function process are needed,
and how they should be connected in SSD is decided in this
Function step. In this step the structure of each function
is also decided. The purpose of function process is to
Provide System outputs.

In the System timing step the issues about
timings are considered. These issues are concerned with
the function outputs. A JSD model lags behind the real
world because the messages reaching from the real world
take time to reach the System boundary. This time lag may
be different at the different parts of the System. The
Designer in this step settles with the consent of the
User/Management the timing Requirements and specifies
what delays are acceptable for the various parts of the
System. The result of this step is used at the

189

Implementation step
The output of the major step i.e. development of

the specifications, achieved after performing the above
five steps is written in a set of sequential processes.
These processes specify a model of the real worId and
functions thereof. The System Specification Diagram
depicts the processes,
and input/output at

their connections with each other
System boundary. The detailed

specifications of each type of process is also written in
structure text.

The Implementation step, which is the second
major step of JSD, does not have any sub steps. This step
is concerned with transforming the specifications written
in terms of a large set of sequential processes to make it
executable on available hardware and software, if there is
any. These sequential processes can be implemented on any
available machine irrespective of the available number of
processors in it. This can be achieved by sharing the
processors, scheduling, inversion and internal buffering.
To do these a special purpose scheduling program is
developed. The Designer determines the number of real or
virtual processors which may be needed to execute the
System. The Designer decides how the System processes are
to be allocated, shared in time and scheduled on the
available processors. Different scheduling decisions may
be made according to the type of problem and the
environment. These decisions may give different
Implementations for the same JSD specifications. During
JSD implementation activities the Designer develops a

190

System Implementation Diagram. This diagram depicts the
outlines how the System Specifications are transfered to
do Implementation. This diagram is concerned with the
technical purpose and not for the use of the
User/Management. The results of the JSD implementation
step may be conventional. It can give the output in terms
of Bet of programs, there may be a data base of master
records and batch and on line programs to update them etc..

Note: In practical situations the abstract description of
the real world is generally developed on the basis of the
information provided by the User/Management and the
technical preconception about what a System will look
like. These descriptions are developed without getting
detailed information about the problem and the activities
which come under the System Analysis. Generally the
User/Management do not know much about their actual
problems, needs and its solution. It is, therefore,
obvious that this approach can work on small/medium
problems, and will not be suitable for big problems.
Different Designers may develop different abstract
descriptions of the same real world. Because the criteria
to elimimate the irrelevant aspects of the real world
depends entirely on the choice of the Designer. This may
lead towards drastic errors in the absence of detailed
System Analysis activities. Further the situation may get
worse if the Designer is new for the particular
environment, which is very common.
What is function? How to determine and represent it? is

191

not explained clearly by JSD. Perhaps they represent a
function by expressing it in an imperative English
statement.
The Implementation activities in JSD are problem and
environment oriented. Further the other important issues
concerned with the Implementation are not dealt with by
JSD implementation. Perhaps because their specifications
are not written in terms of other issues such as in terms
of on line transaction modules
programs to update them.
7. Are these steps

or batch, and on line

or Phases of the Method
or do they just give broadsystematically procedurised,

directions?

The JSD steps are systematically procedurised.
But the definition and coverage of the steps differs from
that of the Phases of the System Development Life cycle.
The activities of these steps are overlapping with respect
to the Phases of the Life Cycle.

8. What Phases of the System Development Life Cycle does
the Method cover?

JSD does not cover all the Phases of the System
Development Life Cycle. It only covers the activities of
the System Specifications, Design and the Implementation
Phases to some extent. The coverage and activities of
these Phases are mixed together and many Design decisions
are taken in its 'implementation' step.

192

9. Does the Method give equal weight to the different
Phases of the System Development Life Cycle?

No. The Method covers only the activities
concerned with the System Specifications, Design and
Implementation Phases of the Life Cycle. It gives more
weight to the activities which comes in System
Specifications and Design Phase. The activities concerned
with the Implementation Phase are partially covered. For
example the following activities are covered during the
development of the specifications:

1. The information given by the
User/Management are converted into an
abstract description of the real world.

2. During the development of specifications
the terminology and the pragmatism of the
application area are converted into the
terminology and the pragmatism of
computing. This is achieved during the
development of processes etc..

3. A JSD specification step
precise and consistent
System will do on the

can express
form what
basis of

in
the
the

information provided by the
User/Management.
A JSD model of a real world
during the specification

developed
step can

4.

determine the System boundaries and its
interface.

193

5. JSD specification specifies details about
processes and operations of the System.
These are expressed by SSD and structured
text in English.

Most of the System Specification activities
expressed in the Life Cycle are covered by the JSU
specification step.
Note: There is no evidence to show that error handling and

its recovery can be made by the specifications developed
by using JSD.

Most of the Design activities expressed in the
Life Cycle can easily be made by JSD. For example:

1. The activities concerned with the Planning
& Decision sub Phase can be done by JSD
during the development of specification
and Implementation steps, e.g. description
of the real world in terms of sequential
processes and their time ordering,
deciding which functions should be adued
to model etc.,

2. The activities concerned with the sub
Phase Conceptual Design can be done in JSU
by developing processes network,
establishing how information will flow
into the model, expressing the details
about the state vectors and the data
streams etc.,

3. Some activities concerned with the sub
Phase the Physical Design can be done by

194

developing details about processes, adding
the functions into the model or developing
and adding the function processes, etc.

Note: JSD does not use the concept of decomposing the
problem into sub problems to get subsystems which may be
necessary if the problem is complicated and is of very
large size. Further JSD does not have any explicit testing
provision which can be utilised.

JSD implementation step partially covers the
Implementation activities as expressed in the Life Cycle.
For example:

1 It realizes the abstraction of the real
world and manipulates in more concrete
terms by using inversion and internal
buffering techniques,

2. JSD transforms the Design frame or JSD
model for implementing according to the
available hardware and the software, if
there is any,
JSD implementation3.

sequential
available

processes
step schedules the

according to the
number of real or virtual

processors,
4. JSD implementation step allocates the

processors to the processes according to
the available time resources,

The JSD implementation step does not cover many
other Implementation activities as expressed in the Life
Cycle. For example:

195

1. preparation of an Implementation schedule
in consultation with the User/Management,

2. checking that the required hardware and
software (in some cases) are available and
are in working condition,
development of operating3. procedures,
manuals, and documentation in a clear and
understandable way,

4. training of the end User/Management in the
use of the System and the interpretation of
the output etc.,

~. helping and guiding the User/Management in
developing the organisation and
administrative structure of the data
proceSSing centre,

6. ensuring that all the
have been implemented

required changes
and nothing is

missing or is ambiguous.
7. It does not cover the activity of

translating a Design into a machine
executable form of a program or a form of a
program that can be translated
automatically to machine executable form.
etc..

10. Does the Method contain a set of guidelines which can
lead from the start of the project to the Implementation &
Transition of the System?

Yes, JSD has clear guidelines on how to perform

196

the two major steps i.e. the development of specifications
and Implementation. For example JSD has the following
specific rules and guidelines:

1. Functions should always be specified as
process with long life times, and never as
procedures.

2. A model process may be elaborated by
introduction of variables, and of
elementary operations. It should not be
elaborated structurally in any way.

3. The Implementation should be done by using
program inversion & other transformations
for combining the sequential processes of
the System Specifications.

11. Does the Method require any special training before
using it?

Yes, the Method requires some training. The MJSL
offers courses from time to time. The Method is not very
complicated and can easily be understood by an average
Designer.

12. What Methods, tools and support are used by the
Method?

JSD may involve at the end, JSP and PDF, i.e. a
program development facility, as a tool. These tools are
not an integral part of JSD. These tools can be used at the

197

Implementation and the Transition Phases of the Life

Cycle. The JSP is used for developing the Programs by

developing data structure. PDF can be used for interactive

production of the Program Design as a direct support for

JSP techniques.

13 . Does the Method offer

choosing the Methods to

environment?

clear and prec ise rules for

be used in a part icular

No.

14. For what class of problem is the Method most suited?

JSD is concerned with the System for which

subject matter is inherently sequential i.e. has time

dimensions. This covers easily all types of data

processing, process control, real time, embedded and all

other sequential problems.

15. Is the Method language and machine dependent?

No, JSD is language and machine independent.

16. Does the Method assist with the project Management

and Strategy?

No.

198

17. Is the Method based on principles which are in
general: .

a. structured,
b. Top-down,
C. Bottom-up,
d. Others?

Others. It has its own unique approach.

18. Does the Method use the V & V activities or something
similar to them?

Yes, but not precisely and significantly.

19. To what extent deos the Method use the V & V
activities?

They develop the System and validate it by going
back to the User/Management and asking if the real world
is really like the model they have developed.

20. Is the Method suitable for
Systems?

small/medium/large

It is suitable for small and medium problems. It
can be used for Systems of realistic sizes and complexity.

21. Does the Method have conununication facilities
between the User/Management and the Analyst/Designer?

199

Not any specific one.

Note: There is no way expressed in their literature which
can show how to communicate with the User/Management.
Further there is no check to ensure that the problem has
been understood clearly by the Designer.

22. What documentation facilities, tools does the Method
have r

Each step of JSD produces some documentation as
a by-product. For example structured diagrams are the
by-product of entity/action and entity structure steps.
The System Specification diagram is the output of the
initial model step. The System Implementation diagram is
the by product of the Implementation step. These documents
can provide information about the System and exhibit the
reasons for development decisions. For example the
sequential process can be expressed by structure diagram
as a tree structure of sequence, selection, and iteration.
JSD has especial diagramatic and textual representations
for such tree structures. The control flow of constructs
of sequence, selection, and iteration are augmented by
back tracking versions of the selection and the iteration
constructs. The Quit statement transfers control to the
end part of the iteration component or to the start of the
second part of the selection. JSD does not have any
specific tools for documentation purposes. The
documentation can be produced by using the computer.

200

23. Does the Method use any symbols or notations, for

expressing the outputs of the Phases, e.g. specifications,

Design, etc.? If yes, what are they?

Yes, It has especial JSl) notations for

express ing sequence, select ion and iterat ion components.

It also has System Specification and Implementation

diagrams.

24. Is the style of symbols or notat ions readable, can

these symbols or notations lead to effective, rapid and

unambiguous communications?

Yes. The style of symbols or notations are

readable. All these are very clear, understandable and

unambiguous. These symbols & notations are easy to draw.

25. Does the Method rely on highly symbolic formalisms '?

Yes, but these symbols are also supported by

some textual representation.

26. What exper ience is required by the Analyst/Designer

in apply ing and us ing the Method '?

The Analyst/Designer needs some formal

experience to express

process communications,

be able to communicate

process structure, understand

etc.. The Analyst/Des igner must

with the User/Management and

understand its environment. To achieve the above does not
need especial skills.

27. Does the Method have provision for covering special
cases such as:.

a. Enhancement'? Yes,
b. Maintenance'? Yes,
b. Pz ot.ot.yp inq? Yes,
c. Quality Plan'? No,
d. Search for Existing No.

Available System?

The activities concerned with Enhancement and
Prototyping can be done by JSD. For example:

1. Functions of the System can be enhanced, if
needed, by replacing the function process
in the model of the real world.

2. Prototyping can be made by Implementing
the System Specifications quickly and
cheaply, without looking at its running
cost.

3. Prototyping can be made by completing the
model specifications and adding the
functions to the model for experimentation.

In JSD Maintenance can be done easily in the
cases where addition of a function process is needed in
the model. The Maintenance can be done when System

202

functions are affected without changing the model of the

real world. When it is required to change an existing

function process in the model or change the model itself,

then it becomes difficult. "Changing the process during

its life time is like changing a program during its

execution" [p 352, 21].

28. What Prototyping tools/support does the Method have?

Not any particular one.

29. noes the Method incorporate a Quality Plan for a

system"?

No.

30. Does the Method use any Quality Metrics?

No.

31. Does the Method support the User/Management

participation? If yes, to what extent?

JSD does not involve the User/Management except

at the time of acceptence.

32. Has the Method some unique approaches? If yes, what

are they"l

20~

JSD insists that the Designer should start, not
by considering the required functions. JSD emphasises to
demote the idea of functions. It insists to develop first
a model of the real worId with which the System is
concerned. The action of the model reflects the action of
the real world. The function of the System may be
superimposed on the model. The basic form of 'model is a
network of processes. Initially one process is dedicated
for each separate independent entity. The process later
can be scheduled by distributing the operating System
functions among the process of the model System. The
scheduling of the process can be wholly or partly
determined at Design time.

33. Is the Method a combination or variant of other
Methods'? If yes, which ones?

No, JSD has come out of JSP. It is an
enlargement of JSP, and has nearly the same principles.

204

A.4 LSDM Methodology

The following general questions concerned with

a Methodology are applied to evaluate the strong and weak

points to do adequate feature Analysis of LSDM Methodology

L 16], [71].

1. What are the objectives and scope of the Methodology?

Objectives:
The following are the objectives of LSDM.

a. to provide a standard frame-work for

project development tasks, to increase
productivity,

b. to provide means of identification,

investigation & understanding of problems,

User Requirements, constraints and working

of the existing System,

c. to produce in a concise way the needs of

the User/Management concerned with the

System and to assist them in the selection

of the correct development option,

d. to allow the User/Management to verify

that their needs have been catered for,

e. to prov ide means and tools to achieve the

Systems objectives,

f. to provide effective review procedures to

205

Note:

eliminate possible errors and
inconsistencies at an early stage of
System development,

g. to document and Design a flexible System
which meets the Requirements of the
User/Management,

h. to provide the facilities which can enable
the User/Management to review project
progress,

i. to provide communication between the
Analyst/Designer and the User/Management,

1. They have not shown how the standard
frame-work can work in different
environments. A frame-work without having
facilities of by-passing Phases or
activities can never work successfully in
different environments and with different
types of problems.

2. There is no statistics or evidence that the
productivity of the System development
task, or the number of Systems produced by
using the LSDM has been or can be increased.

3. LSDM does not include in the frame-work
means to
Requirements

identify
in the

the problems and
environment where

there exists no System.
4. The way to verify that the needs of the

206

User/Management have been catered

correctly is crude and is not based on any

systematic Management approach.

s . On the bas is of the information available

from their literature it is observed that

the communication between the

Analyst/Designer and the User/Management

is not as effective and systematic as it is

claimed. Only some document review

procedures have been adopted for this

purpose.

Scope:
LSDM is mainly concerned with the Analysis,

Design Phases and some aspects of the Implementation

activities. It is concerned with how to get a Design

having clear definitions of files or data bases, programs

and runflows. It does not directly address project

planning and Management control of System development.

LBMS project control Method or a set of standards can be

applied to LSDM if desired so, to do the project planning

& Management control.

2. What are t.he fundamental principles of the

Methodology'?

a. "the data structure of an application, and

not the processing needs, should determine

the structure of the system" [p4, 11),

b. "the development process should split into

201

logical and physical phases. In the
logical phases the emphasis must be on the
detailed definition of requirements in
terms of data structures, data flows and
processing needs" [p4, 71),

c. provide a detailed guide to Physical
Design control to create a System up to an
acceptable level of performance.

3. What are the pre-requisites for the Methodology?

A detailed feasibility study report must be
available to start the System development activities.

Note: Like SADT, JSD, etc., this Methodology also assumes
that the preliminary work has been done and the
feasibility study report is available. It is also assumed
that the output of that preliminary work is reliable,
reflects the true picture and can satisfy the needs of the
User/Management. But this Methodology has an advantage
over the other Methodologies in that it has provision to
do the (easiblity study, if required by the
Analyst/Designer.

4. What is the starting point of the Methodology?

Generally LSDM starts its activities from the
Feasibility Study Report, but in the cases where a
feasibility study is not done earlier and is thought to be
essential, the LSDM may do this job by conducting the

208

feasibility study. The frame work of this study is the

same as that of the Analysis Phase or stage, with

different levels of details and emphasis on particular

steps.

Note: The cr iter ia to decide whether or not to do the

feasibility study depends on the project size and time

scale and on how much preliminary work has been done which

can help the development tasks.

5. What is the final point or step of the Methodology,

and what is the deliverable of the Methodology'?

The final point or step of the Methodology is

the Physical Design stage. At the end of this stage

files/DBMS definitions, program specifications, etc. are

delivered. These are the refined set of database Design

and program outlines.

6. What are the steps or Phases of the Methodology'?

The following are the Phases of the Methodology.

These Phases which are called stages by LSDMare further

decomposed into a ser ies of steps. These steps have a

detailed list of the tasks or activities to perform.

a. Analysis of Systems operation and current

problems,

b. Specification of System/User Requirements,

c. Selection of technical options,

d. Data Design,

209

e. Process Design,
f. Detailed Physical Design.
The first Phase of LSDM (called stage) starts

with obtaining details about the working of the current
existing System. These details are obtained in order to
investigate & identify the problems and deficiencies in
the System. In this Phase a logical, Le. not physical,
view of the current System is developed by using the
existing DFDs or any similar information. From this
logical view of the existing System, logical or ideal DFDs
are developed. The results of this investigation and the
logical DFDs are utilised to develop a list of existing
problems and Requirements to enhance the System or remove
the problems. This list of problems and Requirements is in
narrative form and is called PRL. The PRL is reviewed in
the light of the existing and the logical DFDs.

The second Phase or stage is concerned with
taking the logical view of the existing System to do its
Enhancement or replacement with a new System. In this
Phase the actual Requirements of the User/Management are
identified and its specifications are developed by
utilising the output of the first Phase. A Possible set of
system Requirements Solutions called SRSs is developed.
The best and most suitable SRS is selected by the
Analyst/Designer. Later the DFDs of the required System
and Logical Data Structure i.e. LDS for the selected SRS
are developed. These DFDs and LDS are then utilised to
obtain models of Entity Life Histories. The ELH models
identify the Events in a correct sequence which cause

210

changes to the System's data. These models also specify

the process ing requ ired to handle each Event. These ELH

models are submitted to the User/Management for review and

comments in the light of the Problem Requirement List i.e.

PRL, LDS and Entity descriptions. The output of this Phase

is called the 'Specification of Requirements' by LSDM.

The third Phase or stage starts with considering

the specif ication of the Requirements and developing a

list of technical options for the System. These options

are determined from the DFOs of the required System;

System Update Process Outlines i.e. SUPOs: Logical Data

Structure; Problem Requ irement List (1.e. PRL); Ent ity

descr iptions; Funct ion catalogue; Funct ion descr iptions;

etc .. These options offer different types of facilities,

costs and System delivery time. Later the User/Management

is asked to select the desired option. The

Analyst/Designer may help the User/Management technically

in the selection of the option, if so desired. The

selected option is used later for the System development.

The output of Stage 3 i.e. the selected option

for the System to be designed, LDS, and Entity description

are utilised to obtain the Data Design and Process Design.

The activities concerned with stages 4 and 5 overlap each

other and therefore, can be performed simultaneously. A

list of different required Functions which may be either

enquiry or update Functions is prepared. This list is

called an F.C i.e. Function Catalogue. The FC, the

input/output description, and ELHs after preparation are

checked to ensure that they are fully described and

211

understood.

To develop Data Design, the input/output
description is used and Relational Data Analysis is made.

The result of Relational Data Analysis, Logical Data

structure and Entity description is utilised to create the
Composite Logical Data Design called CLDD.

To develop Process Design, the Enquiry Function

Catalogue and CLOD are utilised to create Enquiry Process

outlines called EPOs. Similarly the ELHs and ClDD are

utilised to create Update Process Outlines called as UPOs.

The EPOs and UPOs are used to validate CLDD.

The last Phase or stage is about the development

of a Physical Design. The validated Composite Logical Data

Des ign or CLOD i.e. the validated output of the Data

Design stage & Process Design is the input to this Phase.

The CLOD is automatically converted to the Physical Design

when 1st cut Data Design and 1st cut Program Design rules

are applied. The Physical Design rules are also applied to

obtain the initial view of the physical Data organisation

and Process. These rules also work as a control and tuning

excercise in the development of a Physical Design to

achieve the required performance objectives. The physical
\

control helps in creating files/DBMS definitions, program

specifications, operating schedules, development plans

and manuals.

Note: The first three stages are concerned with the System

Analysis tasks and the last three with the System Design.

Little Implementation and no Transition tasks are covered

by the Methodology.

212

How to define & select an Entity is not clear. What is a
Process and how to define & represent it is not mentioned.
How to obtain the System Process Outlines is also not
mentioned but used during the 3rd. stage.
Niether have they defined the term Function nor mentioned
how to represent it. It is also not mentioned in their
literature how and from where to obtain the Function
Catalogue which is required to be used in stage 3. A
Further interesting point is that they again prepare a
Function Catalogue i.e. FC [p 25-26, 16] during the Data
Design and Process Design i.e. in stages 4 & 5. The same FC
which has also been prepared in stage 3. It is also not
clear what is the need and the basis for the selection of
the Fe.
./. Are t.hese steps or Phases of the Methodology
systematically proceduralised, or do they just give broad
directions·?

The Phases or steps of LSDM require a detailed
set of rules and guidelines to be used at various pOints.
These rules and guidelines, called by LSDM as techniques,
seems to be systematically proceduralised but complicated
and difficult to understand and use.
Note: In their literature not much information is given
about these rules & techniques. It is, therefore not
possible to further extend any comments on these
techniques.
8. What Phases of the System Development Life Cycle does
the Methodology cover?

213

The Methodology excludes the activities which

are done by the Life Cycle under the Project Proposal

Phase, except some which are concerned with the subphase

Initial Investigation. LSDM investigates the most

frequent problems which occur in the existing System.

The activities regarding the Strategy Phase are
not covered by the Methodology.

The Analysis Phase of the Life Cycle is covered

partially. For example:

1. Lhe activities of the subphase 3.1

Analysis of Environment, is partially

covered. LSDM covers this Phase by

investigating and studying the factors

which may effect the System environment

i.e. the factors which are responsible for

the occurence of incorrect data, creating

inefficient Processes or Functions, etc ..

The other aspects of the Analysis of

Environment are ignored.

the activities of Lhe2. subphase 3.2
Requirements Analysis is covered by LSDM

in the sense that it makes an effort to

identify the Requirements of Lhe

User/Management and prepare a list of the

problem Requirements i.e. some thing which

can be used as the basis of further

development.

the activities of the subphase 3.33.

Preparation of Requirement Specifications

214

is done by developing a set of
specifications of Requirements. This is
called System Requirement solutions or
SRS. The SRS is a set of particular and
precise statements of those things which
are deemed to be needed and its solution.
The best and most suitable solution is
selected. This solution is used in
transforming the Requirements into System
Specifications and providing an initial
model to exhibit the relevent information
needed to develop a System Design. Further
efforts are made to specify initial data,
which might be needed by the System. LSDM
achieves this by developing Logical Data
Structure, DFDs and ELH models in the light
of PRL.

4. the activities of subphase 3.4 Check for
Consistency is done by reviewing and
offering the comments on ELH models in the
light of PRL.

b. the activities of subphase 3.5 Search for
Existing Available
by the Methodology.

6. the activities of the subphase 3.6
Feasible Analysis and Detailed Proposal
are done during the 3rd stage of LSDM. This

System are not coverd

is achieved by developing feasible options
called a list of alternate Implementation

215

technical options. These options indicate
how the System can be developed with
varying facilities
careful study and
Analyst/Designer

& constraints. After
consultation with the

the best and most
feasible option
User/Management.

is selected by the

The activities concerned with the System
Specifications Phase of the Life Cycle are not done in a
separate Phase or stage. These activities are done in the
2nd. and 3rd. stage and overlap each other.

The Design Phase of the Life Cycle is covered in
the sense that it starts the Design activities by using
the selected option, Logical Data structure and Entity
description. All these are in fact System Specifications,
expressed in technical terms. The Design Phase of the Life
Cycle is covered in the following way:

1. the activities concerned with the subphase
5.1 the Planning and Decision of the Life
Cycle are done by developing a list of
required Functions, outlines of
input/output descriptions, and the
behaviour of entities & Process, etc.,

2. the subphase 5.2 the Conceptual Design is
partly done by developing Data Design,
Process Design, Composite Logical Data
Design i.e. the detailed and final logical
Data Design, Enquiry Process Outlines,
Update Process Outlines,

216

3. the name and activities covered in the

subphase 5.3 the Physical Design of the

Life Cycle is nearly the same as covered by

the LSDM. In this stage Phys ical Des ign

rules are applied to get an initial view of

the phys ical Data Organisat ion & Process,
fileS/DBMS definitions, output details,

program specifications, operating

schedules, cler ical routines, development
plans, etc ..

The Implementation Phase of the Life Cycle is

covered partially by LSDM. It excludes all Implementation

activities except the development of operating procedures

and manuals, training the User /Management and to help &

guide the User/Management in developing & organising the

administrative structure of the organisation. LSDM has a

separate Implementation package.

There is no evidence that LSDM covers the

Transition Phase of the Life Cycle or anything similar.

Note: The procedure of reviewing and offering comments is

based on personal observat ion & thinking. There is no

cr iter ia or metr ic which is applied by LSDM to achieve

this purpose.

9. Does the Methodology give equal weight to the

different Phases of the System Development Life Cycle?

No, the Methodology gives more emphasis to the

Design Phase of the Life Cycle. Partial efforts are made

to do the activities of the Analysis Phase. Little effort

217

is made to do Implementation. Other Phases are ignored by
LSDM.

10. Does the Methodology contain a set of guidelines
which can lead from the start of the project to the
Implementation & Transition of the System?

Yes, LSDM has a number of rules and guidelines
which are integrated into its techniques. These techniques
make it easier to perform the activities of the various
Phases or the stages of the System development. For
example:

a. LOST, the Logical Data Structuring
Technique, this technique provides
guidelines in creating data-structure and
Entity Models.

b. DFDs i.e. data flow diagrams: these
diagrams show how the information will
flow from the real world to the System,
through the System itself, and back to the
real world. These diagrams also show how
Processes & transactions fit together.

c. ELH, i.e. Entity Life Histories, this
technique helps in developing the Entity
Life History Model, identification and
definition of Logical Process. This
approach allows the System to reflect and
behave like the real world.

d. TNF i.e. third normal form, this technique

218

of data Analysis
the data, their

helps in understanding
inter-dependencies and

creating logical data groups i.e. record
types to meet the Processing needs.

e 1st cut Data Design and 1st cut program
Design rules, these rules automatically
convert Logical Processes and Data
organisations to Physical Design.

f. CLDD, Composit Logical Data Design, this
is concerned with developing a detailed
and final logical data model of the System.
This model shows about data records
(entities), data fields, data structure,
data flows, access entry points,
transactions, processing and relationships.

g. Physical Design rules, these rules are
concerned with getting an initial view of
the physical data organisation & Process.
These rules also work aa a control for
meeting performance
Physical Design.

objectives during

Note: The details about the above guidelines or techniques
are not available and therefore, it is difficult to say
how successful and effective these are. The advantages &
disadvantages and the problems with LSDM DFD, are the same
as that of SASD DFO.
The concept of ELH seems to be similar to the JSD model of
the real world. The concept of TNF is similar to that used

219

by SASD. Little Implementation and no Transition tasks are
covered by LSDM.

11. Does the Methodology require any special training
before using it?

understand
established

Yes, LSDM requires a formal training to
the Methodology. The LBMS company has well
training facilities. The company offers

training in the areas of Analysis and Design. For example
for an experienced Analyst, Programmer or User they
provide the 'Analyst skills workshop' which is about the
use of LSDM. Also they have two more types of workshops
about Structured Ana.LyaLs and Structured System Design.
These workshop give details and complete training about
LSDM. Similarly they have a workshop for managers which
can help them in evaluating various structured techniques,
strategies and Implementation approaches.

12. What Methods, tools and support are used by the
Methodology?

In addition to the various techniques mentioned
earlier the LSDM may use the LBMS Control, a project
control support. This facility is available only for the
User option.

13. Does the Methodology offer clear and precise rules
for choosing the Methods to be used in a particular

220

environment?

No. The Methodology does however offer a
facility which can help in choosing a Method or Strategy
according to a particular environment.
14. For what class of problem is the Methodology most
suited?

According to the authors, the Methodology is
suitable for a wide class of problems such as on line
Systems, database Systems using a number of products such
as ADABAS, IMS, etc.. It is also claimed that LSDM can
deal with large non database projects.

15. Is the Methodology language and machine dependent?

LSDM is not a Method of coding and is not
language or machine dependent.

16. Does the Methodology assist with the project
Management and Strategy?

The authors of LSDM assist in project Management
and also in staffing. They have some techniques concerned
with project Management and control. They offer courses on
this topics mainly for Management personnel.

Note: How effective are these techniques is difficult to
say, as there is no evidence, publication or report which

221

can verify their claim about these techniques.

17. Is the Methodology based on, in general:.
a. structured,
b. Top-down,
c. Bottom-up,
d. Others?

The Methodology follows a Top-down, structured
approach. It starts from a high level description of the
physical or logical form of the System. This high level
description shows a broad picture. This description is
decomposed gradually and in a controlled manner, to get
more detailed information about entities, their behaviour
& relationship, and a representation of Events which
effect an Entity in the System.

18. Does the Methodology use the V & V activities or
something similar to them?

The Methodology does not use V & V activities as
defined in the Life Cycle. However, the Methodology
applies the V & V activities in a very limited way by
making an effort in checking that important System logics
have been adequately defined according to the
Requirements. They also try to find out & cover the
effects of un-common cases and error conditions.

19. To what extent deos the Methodology use the V s V

222

activities?

LSDM checks and proves the System logic during
the Analysis and Design Phases or stages. This is done by
identifying the Events that may change the System's data,
finding the correct sequence of Events, providing a
description of processing & error handling and validating
the Requirements for each Event.

20. Is the Methodology suitable for small/medium/large
systems'?

The Methodology seems to be concerned and
suitable for various sizes of problems.

21. Does the Methodology have communication facilities
between the User/Management and the Analyst/Designer?

Not particularly. However, the Analyst/Designer
may consult the User/Management at various levels, if
needed.

22. What documentation facilities, tools does the
Methodology have?

The Methodology has a set of forms which are
used for recording and reviewing. The structured English
and pictorial Methods are also used for this purpose. LSDM
documentation is a part of and by-product of system

223

development tasks.

23. Does the Methodology use any symbols or notations,
for expressing the outputs of the Phases, e.g.
specifications, Design, etc.? If yes, what are they"?

Yes, the Methodology uses symbols or notations
during the development of Entity Models, DFD and ELH.
These Symbols and notations are nearly the same as those
used by SASD & JSD. For example entities in the Entity
Models are represented by a rectangular box with a name in
it.

24. Is the style of symbols or notations readable, can
these symbols or notations lead to effective, rapid and
unambiguous communications?

Not much information is available on how
effective and useful these Symbols are. However, as these
arevery similar to those of SASD and JSD, so their
performance will be the same as those of SASD & JSD.

25. Does the Methodology rely highly on symbolic
formalisms?

No.

26. What experience is required by the Analyst/Designer
in applying and using the Methodology"?

224

The Methodology can not be used with out having

proper training. The LBMS and civil service college offer

courses and a self instruction package. The pre-requsite

of the LSDM or SSADM are experience of the Methodology and

knowledge of the material in the package.

27. Does the Methodology have provision for covering

special cases such as:.

a. Enhancement. 'l Yes,

b. Maintenance.? No,

b. Prototyping.? No,

c. Quality Plan.? No,

d. Search for Existing No.

Available System?

Enhancement is done by taking the logical view

of the current System and extending or replacing the new

facilities which are required by the User/Management.

28. What Prototyping tools/support does the Methodology

have?

The Methodology does not use the prototyping

concept.

29. Does the Methodology incorporate a Quality Plan for a

System'l

225

The Methodology does not use any specific

Quality Plan, but it has regular and formalised checking

procedures. These procedures can help to some extent in

elimination of possible errors and improving the Quality

of work in respect of its completeness and applicability.

30. Does the Methodology use any Quality Metr ics'?

The authors of LSDM claim that the Methodology

provides ways to measure performance up to an acceptable

performance level during the Design Phase.

Note: How they measure the performance and what is the

acceptable performance level is not defined by the

Methodology. In the absence of such level or metric it is

ambiguous to determine the Quality of the System.

31. Does the Methodology support the User/Management

participation? If yes, to what extent?

Yes, the Methodology supports the User

involvement during all the System development activities.

This helps in developing a System which can meet the needs

of the UserjManagement. For example the different and

partial views of data given by data flows, data

structures and Events are needed to be combined to get a

comprehensive picture of the System. This job needs a lot

of interaction and involvement with the User/Management to

get the anwsers to the questions which may arise from time

226

to time.

32. Has the Methodology some unique approaches? If yes,

what are theY'l

LSDM has two unique approaches. First, it

develops a System by considering the three different views

in parallel i.e. data flows, data structures and Events.

Second, LSDM is based on a data-dr iven approach not on

Functions.
Note: The LSDM uses data structure, information flows and

Events as the basic components of the System development.

These components are documented by Entity Models, DFDs and

ELH models. Similarly JSD uses the data structure, Entity

and their actions as the basic component. Structured

diagrams, Entity structures and initial models are used to

document these components. In fact LSDM uses the modified

components of JSD and SASD.

33. Is the Methodology a combination or variant of other

Methodologies? If yes, which ones?

LSDM is grown from LDBD i.e. LBMS database

Design tool and from SSADM i.e. Structured System Analysis

and Des ign Method. SSADM is a mandatory Methodology for

the government departments in U.K. within its

jurisdiction.

227 '

A.S MASCOT Methog

The following general questions concerned with

a MethodjMethodology are applied to evaluate the strong

and weak points and to perform a feature Analysis of the

MASCOT Method [22], [72], [73], [74], (75], [87], [88].

1. What are the objectives and scope of the Method'?

Objectives:
The following are the objectives of MASCOT:

a. "to develop an integrated approach to the

problem of software construction,

operation and test" [p.2,22],

b. t.o provide a standard framework for

software Maintenance throughout the life

cycle of a software System,

b. LO save overall on System lifetime costs,

i.e . the costs of oper at ion, rnaintenance

and documentation etc.,

c. to provide Design visibility which is

essential for effective management control,

d. to develop an approach to Des ign a real

time software computer System in terms of a

net-work of inter-connected parallel

processes, which can be processed

independently of particular hardware,

228

e. to provide a documentation scheme for
MASCOT software which can effectively
portray the System Design in MASCOT terms,

f. to provide a means of applying Quality
assurance to the software,

Note:
a. There is no evidence that they have

standard framework for Maintenance,
any
and

the Method can result in an overall saving
on the System lifetime costs.

b. " MASCOT has been shown no worse
than any other method of structuring and
most users believe that the benefits of
good structure (enhanced visibility,

and integrity) are worthmaintainability
the cost" [75].

Scope:
MASCOT is only concerned with the Design and

Implementation of real time software Systems. It is a
Modular Approach to Software Construction Operation and
Test. "The scope of MASCOT2 is limited. It does not cope
particularly well with big Systems or multiprocessor
targets" [75].

Note:

a. The main activities concerned with the
System development such as the Project
Proposal, Strategy, Analysis, System
Specifications are outside the scope of
MASCOT.

229

b. The MASCOT is a programming approach. It is
a programming style like other styles such
as JSP, Modular programming etc..

c. From its limited scope it can easily be
revealed that MASCOT is a programming
Method rather a System development Method.

d. MASCOT2 is the present version of MASCOT,
MASCOT3 is under progress.

2. What are the fundemental principles of the Method'?

The following are the fundamental princples
adopted by MASCOT.

a. To have a unified form of modularity
throughout the total software.

b. To develop a test strategy to obtain a
System of desired Quality, and apply it
accordingly to lest the modules or
sUbsystems.

3. What are the pre-requsites for the Method'?

A computer having filing, text-editing,
compiling and diagnostic facilities is needed before
starting the software development. This computer is called
a 'host' computer. At the same time another computer
having the facilities to carry out its operational tasks
is needed. This computer in MASCOT terms is called a
'target' computer. In many cases the host and target are

230

the same machine.

4. What is the starting point of the Method?

The starting point of MASCOT is the development

of an overall software Design on the basis of the

operational Requirements showing what the System must do

for the User/Management.

Note: How and from where the operational Requirements

should be collected is not mentioned. There is no check

to show that the operational Requirements will really

satisfy what the User/Management requires.

b. What is the final point or step of the Method, and

what is the deliverable of the Method?

Implementation & test Phase is the final step of

MASCOT. At the end a complete software System is

delivered, which can be loaded on a target computer to run

it under the control of the target's own MASCOT kernel.

6. What are the steps or Phases of the Method.

The following are the Phases of the Method.

a. Overall software Design,

b. Detailed Design,

c. Implementation & Test.

The first Phase of MASCOT starts by developing

an overall software Design on the basis of the operational

231

Requirements. The Design is developed from co-operating
parallel processes called activities and data areas (which
may be either channels or pools). These activities and
data areas are represented diagramatically by a network.

This network diagram is drawn only when the
different Designer agree on the purpose and justification
of each System element i.e. activities, channels and
pools. The purpose & justification of these System
elements are made on the basis of the operational
Requirements and
software System.
justification of

clear understanding of
The determination of

the purpose of
the purpose &

lhese System elements is done by
re-examination iteratively. This network diagram is the
basic structure of the System Design, and exists at only
one level. The ACP network structure has no hierarichy and
has no top or bottom. To understand the operation of the
System the network diagram is decomposed into groups
called sUbsystems.

After developing the network diagram the tasks
of project planning, resources estimation, implementing
and testing strategy are determined. This is done by
considering the available man-power & time. For example,
if the time and man-power allows the testing can be done
extensively by testing each activity separately.
Otherwise, group of activities or sub-systems can be
lested. The network diagram is also used to determine the
estimates of the required hardware, its configuration,
capacity, cost, distribution of software between the
processors etc..

232

In the cases where it is difficult or
un-economical to obtain information about the hardware,
Implementation Requirements, Design, resources needed,
Implementation & test strategies etc., MASCOT develops a
software Prototype. The ACP network diagram which depicts
the System Design structure is used as the starting point
of the Prototype. This network diagram is implemented on
any MASCOT Kernel using a suitable high level language.
The Prototype is refined, if needed. The final Prototype
can be transferred to the target hardware System with
little modification and no change in the Design.

Briefly the following may be the main
deliverable of the Overall Design Phase 1.

a. A conceptual software Design in terms of an
ACP network.

b. The purpose of each activity, channel &

pool.
c. Proposals for

strategies
Implementation & test

d. Estimates of resources needed i. e.

hardware, capacity, cost, man-power etc..
e. A software Prototype, in certain cases.
In the second Phase a detailed skeleton of the

software modules developed in Phase 1 is made. The Test
strategy is expanded to produce detailed manual and
automatic support.

The ACP network, one of the outputs of Phase 1,
is expressed in software technical terms. The root
procedures are developed for the purpose of specifying the

233

processing to be carried out by the activities. Each root

procedure is designed as a normal single thread sequential

unit of program, which can be programmed in any high level

programming language. The channels and pools are used as

parameters of the root procedures. The communication

between activities is only allowed via those cnanne Lo &

pools which link activities in ACP network diagrams. This

communication is synchronised by developing special

access procedures. The access to data areas which belongs

to channels or pools is made essentially through its

access procedures. These access procedures hide from the

activities both the internal detailed data structure of

the channels & pools, and the use of the synchronisation

primitives i.e. JOIN, WAIT, LEAVE, etc., provided by the

Kernel. Later the initialisation and printing processes

are developed.

The details of the data structure, access

procedures, initialisation & printing procedures for each

channel & pool form the Detailed Design framework.

Finally the details of test procedures are made

and written in manuscript form. These test procedures are

applied at var ious levels. For example, test procedures

may be used to test channels, pools, activities,

integration and acceptance.

The following are the main outputs of the

Detailed Design Phase.

a. An approach to access the channels & pools.

b. Detailed skeleton of the software in

manuscript form to be written in any

234

suitable high level programming language.
c. Detailed approach of testing and test

programs.
The third Phase is concerned with t.he

Implementation & Testing tasks. In this Phase the outputs
of the Phase 2 which are in terms of detailed Design
Skeleton are converted into machine readable form, ready
for compilation, editing, linking, loading, testing. This
task is done by System software Construction facility. To
construct software MASCOT generates a file of System
Elements from source text modules. To do this the
inter-connections of System Elements are removed from
source text and inserted manually by creating SUb-systems
from System Elements using the Form facility. After the
completion of the compilation work the testing of software
starts. The testing is done according to the testing plan
developed in Phase 1. It usually starts with the testing
of individual modules developed in earlier Phases, testing
them after integration and acceptence. The Implementation
& Testing approach adopted by MASCOT differs from that of
Design approach. The Implementation & Testing approach
adopted is neither top-down nor bottom-up. In this
approach activities are not called by an higher level
routine. The following are the deliverables of t.he
Implementation & test Phase.

a. Source text and compiled form of all
software modules.

b. Test input data.
c. Test results.

235

Note:
a. From where and how to obtain information

about the
User/Mangement
is not clear.

Requirement of the
and System Specifications

b. From where operationalto obtain
Requirements, information about processes
i.e. activities, and data areas and
knowledge about clear understanding of the
purpose of the software is not clear.

c. Like JSD the MASCOT approach is biased
towards processes rather than Procedures.
But the use of processes (activities) in
MASCOT differs from JSD. It differs in the
sense that MASCOT functions may be
programmed with no knowledge whatsoever of
the context in which they will be used,
apart from the essential data environments
required for communication purposes. Where
as in JSD functions are introduced at the
last. In both Methodologies it is not clear
how to determine, define and represent a
function.

d. Like the JSD scheduler, MASCOT uses a
Kernel several processesfor running
(activities) on a single processor.

e. What the criteria is for decomposing the
System into a Sub-system is not clear.

f. The concept of global data is not used in

MASCOT.
g. How to obtain first the ACP network without

having knowledge of its elements is not
clear.

h. The concept of ACP is similar to the JSU
process model which is an abstract
description of the real world in terms of
sequential processes.

i. The MASCOT kernel needs essentially to be
developed by qualified and experienced
staff. Otherwise the Method is so
complicated that there is a great risk that
the overheads and the size of the Kernel
may increase dramatically.

J. The activities can communicate with each
other only via lOA's i.e. channels & pools.
This forces the activities to depend upon a
set of IDA's.

K. The MASCOT software System is complex to
develop. Perhaps this is the reason it is
not popular and commonly used.

., . Are t..hese steps or Phases of the Method
or do they just give broadsystematically procedurised,

directions?

The MASCOT Phases give broad directions showing
how to develop the System. Perhaps due to commercial
reasons detailed procedures are only given when a contract

231

is made with the developers i.e. RSRE.

8. What Phases of the System Development Life Cycle does
the Method cover?

MASCOT covers only the Design and
Implementation Phases of the Life Cycle. The tasks
concerning the sub-phase 'Planning and Decision' of the
Life Cycle such as decisions about the basic structure of
the software Design are made in the 'Overall Software
Design Phase', which is the first Phase of MASCOT. This is
done by:

a. agreeing (iteratively) on the purpose &
justification of each System Element i.e.
channels, pool, and root procedures,

b. developing ACP network,
c. developing processes i.e. activities,
d. making project planning, resources

estimation etc.,
The tasks concerned with sub-phases 'Conceptual

Design' and 'Detailed Design' of the Life Cycle both are
done in the 'Detailed Design Phase' of MASCOT. For
example, the tasks concerning the 'Conceptual Design' i.e.
the develoment of appropriate image of the actual Design
and its information flow, processes, network, subsystems
and their relationships etc. are achieved by:

a. expressing network in software terminology
& subsystems, to obtain an appropriate
image of actual Design,

b. developing modules (activities), and their
interactions by specifying the processing
to be carried out by the modules
(activities) and developing root
procedures, and their parameters i. e.
channels & pools,

c. developing an approach for information
flow and means of communication between
processes i.e. access procedures,

The tasks concerned with the Detailed Design
Phase i .e. the details of data format, data structure,
data base, processes, modules, subsystems are made in the
'Detail Design Phase' of MASCOT. These are achieved, for
example, by developing details of activities, channels &
pools, root procedures, access procedures, initialisation
and printing procedures, subsystems etc.. All these are
done iteratively.

The tasks concerning the 'Implementation Phase'
of the Life Cycle which is concerned with the use,
manipulation, translation into code and debugging, of the
software System frame or skeleton, training etc.. This is
done in the 3rd. Phase of MASCOT named 'Implementation &
Testing'. In this Phase the output of Phases 1 & 2 are
converted into machine readable form by using a high level
language, ready for compilation, editing, linking,
loading, testing. The software Construction facility is
used for this purpose. The debugging is done according to
the testing plan or strategy developed during the earlier

239

Design Phases. The linking and integration is done by

using a i"orm command which combines the System Elements

i.e. channels, pools, root procedures. The training of the

User/Management is done by having special training courses

arranged by RSRE Ministry of Defence, U.K.

9. Does the Method give equal weight to the different

Phases of the System Development Life Cycle?

No, more emphasis is given to the Implementation

Phase of the Life Cycle.

10. Does the Method contain a set of guidelines which can

lead from the start of the project to the Implementation &
Transition of the System?

Yes, but not in detail, for example, MASCOT

guides in selecting host computers which may be made by

the facilities the Designer already posseses. It also

helps in the ~clcction of target computer and guides in

making other important decisions such as to use a frozen

or an evolutionary MASCOT, to access the needs of a

multi-processor configuration, cost time etc ..

11. Does the Method require any special training before

using it'?

Yes, the MASCOT requires to have proper training

before using it. The MASCOT has a training course, run by

240

Computing Science Branch, Royal Military College of
Science, U.K.. Most suppliers of MASCOT also run
occasional courses of their own MASCOT.

12. What Methods, tools and support are used by the
Method?

A translation tool named MORAL Le. MASCO'r
Oriented Reliable Applications Language can be used to
check for compatibility prior to compilation.

13. Does the Method offer clear and precise rules for
choosing ~he Methods ~o be used in a particular
environment'1

No, the MASCOT is a Method which is suitable
only for particular environments.

14. For what class of problem is the Method most auLt.ed z

The Method is suitable only for real time
systems.

15. Is the Method language and machine dependent.

No, but the MASCOT is developed with particular
reference to the real time language Le. CORAL-66. The
Method can be used with other high level languages and
with assemblers which can provide a convenient method of

241

expressing the main structural items i.e. root procedures,
channels, pools, and must be able to provide means of
communication with the Kernel software. The software is
not restricted to a particular hardware. The software
developed by using MASCOT can be mapped on to many
possible hardware configurations. The developers of
MASCOT claim that the MASCOT System is flexible in the
sense that it can be implemented on a bare machine and can
provide a fundamental level of software, or it can be put
on the top of an existing operating System. However the
hardware configuration selected to run MASCOT can affect
the Design of the kernel and programming of the subsystems
software. In general the MASCOT simply uses hardware as a
means of executing activities in the network.

16. Does the Method assist with the project Management
and Strategy'?

No.

17. Is the Method based on principles which are in
general:

a. Structured,
b. Top-down,
c. Bottom-up,
d. Others?

"The Mascot design methodology belongs to the
'iterative top-down design familyn [p.6,74]. The MASCOT is

242

based on Top-down, Modular and Structured approaches. It
decomposes a problem into set of smaller, manageable
sub-problems by using the concept of Modular Structure.
The results of this Modularity produces a hierarichy i.e.
System--Subsystem--Activity, channel, pool(ACP)
hierarichy.
Note:

a. The organisation of MASCOT software i.e.
System into Sub-systems makes it possible
to Design and implement the software
System first on a large single computer and
later on a network of computers. This makes
it possible to study and investigate any
software problems of distributed computer
Systems, in the absence of hardware
problems which may be due to distributed
hardware problems.

b. The authors claim that the MASCOT Modular
Structure has proved that it significantly
reduces software integration time and
provides re-usable programs modules. There
is no support available for this claim. It
is, therefore, difficult to say anything
about it.

c. How to avoid the coupling between the
modules and eliminate the ripple effects
which may occur as a result of
modifications of a module is not known.
Further there is no evidence that MASCOT is

243

making any consideration to have cohesion
within a module. In the absence of these
two measures there can be serious errors.

d. The work space or module environment is
determined by considering the largest
module size, by using the bottom-up
approach. It is not easy to plan & manage
the size of the module in advance. Further
it is not an optimal way to calculate the
size of the module environment.

e. The absence of cohesion and the presence of
coupling may make it more difficult and
less efficient to share computing time.
Because in a Real time Systems where an
interrupt can break the running of
programs in an un-predictable manner it
can effect the performance of other
modules.

f. MASCOT allows only two levels of
decompositions.
MASCOT Method essentially followsg.
bottom-up or flat approach in which,
firstly the activities are developed and
secondly the sUb-systems.

18. Does the Method use the V & V activities or something
similar to them?

Yes, the MASCOT Method makes considerable

244

effort to obtain Quality assurance.

19. To what extent does the Method use the V & V

activities?

The Method applies V & V activities by

developing a testing strategy during the Design Phase.

This strategy is developed according to the resources i.e.

time, money and man-power available. It also makes V & V

activities by keeping standard documentations through out

the software development.

20. Is the Method suitable for small/medium/large

Systems?

The MASCOT is claimed to be suitable for large

real time Systems for which it was mainly designed. In

pratice it does not cope well with large Systems.

21. Does the Method have communication facilities

between the User/Management and the Analyst/Designer.

User/Management.

purpose.

MASCOT documentation is

communication

Des igner and

used for this

Yes,

facilities for

the MASCOT has its own

the use of the

22. What documentation facilities, tools does the Method

have'?

245

The MASCOT has very specific and precise
documentation standards which can be directly applicable
to all MASCOT Systems. The MASCOT documentation standard
is designed according to and can reflect the MASCOT
approach. The MASCOT documentation consists of a set of
graphical diagrams called 'Activity-Channel-Pool' i.e.
ACP diagrams.

23. Does the Method use any symbols or notations, for
expressing the outputs of the Phases, e.g. specifications,
Design etc.? If yes, what are they?

Yes, MASCOT uses six different symbols &
notations. These Symbols represent data arrow, sub-system
or peripheral device, sub-system boundary, channel, pool
and activity.

24. Is the style of symbols or notations readable, can
these symbols or notations lead to effective, rapid and
unambiguous communications?

The style of ACP symbols can show System
Structure and f low of data. These notations can help
effectively in communication during the system
development Phases. The MASCOT Design documentation
scheme has three parts, each showing the why, how, and
where aspects of the System software. The why documents at
the System level show System, physical System, processing
description, interface description and test documents.

246

Similarly they show at subsystem level. At ACP level they

show ACP diagram, processing descr iption, channel, pool

description and test documents. Further these Symbols are

easy to draw.

25. Does the Method rely on highly symbolic formalisms?

Yes, MASCOT relies too much on ACP and

therefore, pays more attention and cons ideration dur ing

the development of ACP diagrams, which are its basis. The

laying out of ACP diagrams needs high skill and good

experience, because these diagrams may be required to be

refined several times at different stages.

26. What experience is required by the Analyst/Designer

in applying and using the Method?

To develop a System us ing the MASCOT approach

needs highly exper ience and qualif ied staff. Otherwise,

there is a great risk that the resultant System may have

more overheads and may not run in an optimal way.

27. Does the Method have provision for covering special

cases such as:.

a. Enhancement "?

Maintenance"?

Prototyping?

Quality Plan"?

Yes,

Yes,

Yes,

Yes,

b.

c.

c.

247

d. Search for existing
available System?

No.

The authors of the MASCOT claim that MASCOT
Method develops and implements a System in such a manner
that its subsystems may be changed or modified at any
time, if needed, while the System is in operation. In this
way Enhancement can be made possible in MASCOT. The MASCOT
Method can do the Maintenance tasks by changing or
creating new sUb-systems and introducing them into the
working System without disturbing its working. The
Maintenance tasks in MASCOT follow exactly the same as the
initial integration of the System. About the Prototyping
they claim "the MASCOT Method lends itself very well to
software prototyping". [p.6, 12]. They develop the
Prototype to obtain the resource estimate and outline
Implementation of the ACP network. The MASCOT software
Prototype essentially has the same structure as the
proposed software. ACP network can be implemented on any
MASCOT Kernel using any suitable high level language. The
Protytype can be modified, if needed. The final Prototype
is the transferred to the target hardware with minimum
modifications.

Note: Ouring the System Enhancement how they avoid the
ripple effects and the problems of coupling between
modules is not known.

28. What Prototyping tools/support does the Method have'?

248

MASCOT does not use any tool/support for
l'rototyping.

29. Does the Method incorporate a Quality Plan for a
System'?

Yes, MASCOT has a Quality Assurance Plan. The
MASCOT Quality Plan has six milestones and Quality control
procedures. At each milestone t.he Quality Control
procedures can be applied to ensure that Quality is
maintained.

Note: There is no information available about the Quality
control procedures which are being applied.

30. Does the Method use any Quality Metrics?

No.

31. Does the Method support the User/Management
participation? If yes, to what extent?

No.

32. Has the Method some unique approaches? If yes, what
are they'?

Yes, the following are the unique points in
MASCOT.

249

a. The Method develops software first on a
host computer and then implements it on a
target computer.

b. It; is possible to use a subset of MASCOT
facilities and fix these facilities within
the existing arrangements for compilation,
loading etc.. For example, MASCOT allows
the use of Kernel and synchronisation
primitives excluding an interrupt handler.

c. MASCOT software can be implemented on a
single processor computer or by a network
of inter-connected processors. Having one
processor for each process (activity).
This approach is similar to one which is
used by JSO.

33. Is the Method a combination or variant of other
Methods '? If yes, which ones '?

Yes, the MASCOT was first developed during the
1970's. Later during the 1980's it was modified and
produced as MASCOT2. Realising its weaknesses, since 1983,
efforts are being made to rectify them and upgrade MASCOT
to MASCOT3.

250

A.6 ~ADT Methodology

The following general questions concerned with

a Method/Methodology are applied to evaluate the strong

and weak pOints and to perform a feature Analysis of the

SADT Methodology Lll], L4b), l89), 190J.

1. What are the objectives and scope of the Methodology'?

Objectives:
The following are the objectives of SADT:

a. to think about a problem in a structured

way to do a systematic study of a problem,

b. to communicate and document the results of
the Analysis and Design Phases by

developing clear and precise diagrams

supported by some text in a natural

language,

c. to maintain and control the quality,

accuracy and completness of the output

1.e. the System,

d. to work and develop the System in a tearn

spirit, to achieve effective cooperation

and have better performance (results),

e. and to make the effort to manaage and

assess the progress of a project.

Note: How to maintain and control the Quality, accuracy,

251

and completness of the output i.e. the System Design model

in a concrete and guaranteed manner is not cLear . No

Quality Plan or metric is available which is used by the

Methodology for this purpose. Only some regular reviewing

and approval procedures are available which can be applied

to critical reviews. These continuous reviews and

procedures can help to prevent drastic errors. But these

cannot give concrete and guaranteed results to achieve a

certain level of Quality.

Scope:
SADT covers the jobs which are concerned with

System development, described by SADT as 'Functional

Analysis' and Design. It. deals with large and complex

problems. When developing a new System the scope of SAlyr

is the Analys is of the Requirements and functions, and

then to Design and Implement according to the results of

the functional Analysis Phase, the functions and some

other information. When SADT is dealing with an old

existing System, its scope is concerned with the Analy~is

of the purposes, the functions which the old System

performs and the new Requirements. It is also concerned

with the study and documentation of how these purposes and

functions are to be performed by the existing System i.e.

to study their mechanism. The results in both these two

cases are represented in a SADT model. This model shows

the structure of the understanding gained.

252

2. What are the fundamental principles of the
Methodology'?

a. Analyse the problem in top-down, modular,

hierarchical and structured fashion and
express

results
the results

should be
in depth.

represented by

These

the
model(s) .

b. Differentiating between the functional

model and Design model of a problem.

c. Represent the problem in an SADT model in

terms of things and happenings. The model

must show that both the aspects are
properly related.

d. Use diagrammatic and natural language for
documentation purpose.

c. The support team work in a disciplined

manner to get better results.

3. What are the pre-requisites for the Methodology'l

A statement of System Requirements, dec isions

and constraint.s about the System Design and information

about funct.ions are the pre-requis ite information t.o be

used as the input to the SADT System Development Project.

SADT calls all these secondary requirement.s.

Note: SADT assumes that the secondary requirements, i.e.

System Requirements, decisions, constraints, etc. have

been derived from the User/Management Requirements and are

253

available for use by SAnTo Perhaps it is also assumed that
these Requirements which are derived from what the
User/Management 'wants' are correct, reliable,
unambiguous and can serve lhe purpose which the
User/Management wanted to have. But how and from where to
get this information is not mentioned. Or perhaps they
assume that the User/Management know better about their
problems, its solution and their Requirements.

4. What is the starting point of the Methodology'?

The SADT starts its work with a statement of
System Requirements called aecondary requirements. It
starts with the most general or abstract description of
the System to be produced. This description according to
SADT is contained in a single module, represented by a box
called a parent box.

~. What is the final point or step of the Methodology,
and what is the deliverable of the Methodology?

The SADT System Design model is a major output
of lhe Methodology. This model contains a set of
diagrams. These diagrams show activity and data aspects of
the System. This System Design model identifies the
components of the software Systems and according to the
authors can be implemented easily.

Note: How to Implement the System Des19n mode1 1s not

specified by SADT.

6. What are the steps or phases of the Methodology?

The following are the Phases of the SADT:
a. Functional Analysis, (i.e. Analysis Phase)
b. Design,
c. Additional Analysis.

The Functional Analysis Phase of SAD'r is
concerned with the process or steps of some aspects of the
System Analysis and the development of the System
Specifications. In this Phase efforts are made to know
'what' the System is supposed to do. The problem concerned
with 'how' is desirably kept out from this Phase. However,
in some cases where it is not possible to avoid 'how' this
matter is also considered. The Input to this Phase is a
statement of System Requirements, decisions and
constraints about the System Design. This information is
converted into System Specifications called Functional
Specifications by SADT. These specifications are
expressed by a model called the Functional model. This
model consist of two sets of diagrams, called actigram and
datagram. The first one describes the system in terms of
its activities and the second one in terms of data. These
two diagrams are always examined together to get both the
aspects of a System. The order in which activities should
occur and the sequence in which functions are to be
performed is determined by these diagrams. The control and

255

lhe mechanisms which effect and execute the functions are
also identified. At the completion of these two diagrams
efforts are made to check and make sure that all the
elements of activity/data decomposition exists and are
used consistently in its counter part of data/activity.
This process is called A/D and D/A ties Verification,
cross checking and error discovery. These diagrams and
some other textual material showing the decisions and the
reasoning used earlier are the output of the Functional
Analys is Phase.
may require to
understanding.

During this Phase the Analyst sometimes
consult the User/Management for better

The SADT Design Phase follows the fo'unctional
Analys is Phase. The input to this Phase is the System
Specifications (called Functional Specifications by
SADT), and the Requirements and constraints imposed by the
User/Management, which could not be considered or deferred
at the Functional Analysis Phase. This Phase is concerned
with 'how' the problem will be solved or executed. In this
Phase details about solutions Le. 'how' are developed.
During this Phase various controls and mechanisms which
effect and execute the functions are identified. The
identification of the control and the mechanisms is purely
on the basis of the experience of the Designer and the
performance constraints. Like the Functional Analysis
Phase the tasks of A/D and D/A ties Verification, cross
checking and error discovery are also applied at the end
of the Design Phase. The output of the Design Phase is the

256

SADT System Design model which consists of the actigrams

and datagrams. This model, with additional textual

support, can be used to a certain extent for the purpose

of System Implementation. The model can recommend either a

manual or automated System. To do the SADT Design Phase it

is necessary to have a team of experienced Designer having

extens ive knowledge about the software techniques. This

team must also know how to use these techniques

effectively. SADT recommends to include in the team some

persons who are also experts in the Implementation process.

The Additional Analysis Phase follows the

Design Phase. In this Phase actions and Problems concerned

with using, testing, training, transition, etc., are

considered.

Note: There is no criteria known to us, which SADT uses to

ver ify that the problem is fully understood. The

Functional Analysis can give its results in more than one

viewpoint. for example a functional model can be developed

(rom the UserfManagement point of view and from the

Maintenance staff point of view. These two models from the

same System Requirements will give different results.

Moreover different authors produce different diagrams for

the same problem from the same input. This situation gets

worse when the same author produces different diagrams for

the same problem from the same input when he/she is asked

to produce them at some other time. Further it is

impossible to make a one to one correspondence between the

257

actigram and datagram. In fact to develop any sort of
correspondence is extremely difficult. This may create
conflicts.

perform its functions

efforts in SADT start from
What and how the System will
is determined. The SADT

The System development
specifying the functions.

Analyst/Des igner use the available secondary information
and selects the top most viewpoint of the problem. This
top most viewpoint is decomposed into a hierarchy, to
determine what and how the System will perform its
[unctions. The top-down approach is adopted for this
purpose. There is no criteria to select the top most
viewpoint and to determine 'what is to be' or 'what
oxists'. All this is achieved on a guess or an idea of the
Analyst/Designer which may lead towards ambiguous results.
The decision of the top viewpoint of the System which is
the highest level of the hierarchy may have widest
possible consequences. It can condition everything that
follows in the hierarchy. It may, therefore, be highly
error prone, because it concerns with some thing i.e. the
system itself which does not yet exist. The System
viewpoint is placed at the very start of Functional
Analysis, with out having done any proper Analysis of the
problem, proposal and
may lead towards

environment. This weak foundation
an unacceptable System. The

Analyst/Designer who use such an approach perhaps have in
their mind a System, developed by either way. They use the
SAOT Methodology only for describing and documenting the
work which has already been done earlier.

258

There is no guarantee that the functions can be decomposed

completely within the six levels to a point from where

further decomposition is not needed. There are some

problems which can't be expressed in the top-down manner.

In such cases SADT may not work. The information about the

System problem, the environment with which the System is

concerned, and their Analysis are either ignored or

covered partially and implicitly.

JSU and SADT both start their System development from the

available information. JSU assumes that these available

information are correct and can be used for the purpose of

the System Design. SADT differs from JSU in the sense that

it does not start the System development job by developing

the model of the real world. SADT starts the System

development efforts by analysing to some extent the

available secondary Requirements and functions. Thus SADT

tries to ensure that the problem has been understood to a

reasonable extent before the details of the solution are

finalised. In this particular aspect SADT is relatively

better than JSU.

J. Are these steps or Phases of lhe Methodology

systemat ically procedur ised, or do they just give broad
directions']

Yes, the first two main Phases of SAUT are

systematically procedurised. The last

Additional Analysis is not procedur ised

Phase i.e.

systematically.

The following is a brief description of these Phases.

259

SADT starts from the general description of the

System required to be produced. The Designer/Analyst

chooses a viewpoint, and then from that viewpoint,

identif ies the main activity done or to be done by the

System. This v iewpoint is presented in a module,

represented by a box. This module or box is further

decomposed into a number of sub-modules or boxes, to

represent the information in detail. This decomposition is

done in the top-down, hierarchical manner. SADT provides

clear rules for giving the numbers to the diagrams for the

purpose of referencing within the model and documentation.

Each diagram is either a summary diagram called a parent

diagram or a detailing diagram called a child diagam. The

Structured Analysis: a diagrammatic language is used for

this purpose. This decomposition should not be less than
three and more than six levels.

The SADT boxes within a model may represent

either activities or data. If a model represents

activities it will be called an actigram or otherwise a

datagram. "Boxes in the actigram represent collections of

related activities, not just monolithic actions. A box may

perform various parts of its function under different

circumstances, using different combinations of its inputs

and controls and producing different outputs. These are

called the different activations of the box" [p 4-5, 11).

The SADT rule for developing an actigram is that the first

word in the actigram box must be a 'verb'. Each box can

represent a major function of a parent box. The dominant

activity is placed above, to the left side of the

260

dependent activity, and its output is used as the control

on the dependent activity.

In datagram boxes are some items of data and are

represented by 'nouns'. In a datagram decomposition is

based on class of data not on classes of functions. This

diagram provides a concise reference to which activities

can access each data item.

Each module and its relatives i.e. sub-modules

must be connected by us ing inter connecting arrows. The

SADT arrows show the interfaces. The arrows in an actigram

represent the data of the System and the arrows of the

datagram represent the activities. There are four specific

rules which show how arrows can interact with the boxes.

Each one for input, output, control or constraint and

mechanism. The input arrows represent activity or data

which is connected to the box of the actigram or datagram.

This input is needed for transforming the purpose of the

box. The output arrows represent activity or data which is

coming out from the right hand side of a box of the

actigram or datagram. This output is a result of the

transformation of the input after passing through the box.

The control arrows govern the way in which this

transformation occurs. The mechanism arrows connect with

the base of the box. These arrows indicate the process or

device which performs the activity or stores the data i.e.

the mechanisms which implement the purpose of the box.

These may be like, sorts, data validators, queue handlers,

lift, delivery van, car, etc ..

The child or sub module is restricted to contain

261

in it those elements that lie within the scope of its

parents. The child module can't omit any elements which

are part of the contents of the parent module. In the same

way the child model can't add anything to the model. This

provides a context which completely bounds the child.

Note: SADT claims that functions can be captured from

actigrams and datagrams. How this can be achieved from the

diagrams which themselves need to have complete knowledge

about functions for its development, and how they define

and determine the functions and other terms used in the

system is not clear and is ambiguous. This approach can

only be done when the Analyst/Des igner have some pre

concepts about the Design of the System and meaning of the

terms which they want to use in the development of the

system.

the use

In the absence of the above concepts and meaning

of the terms function, Functional model,

Funct ional Analys is, Funct ional Spec ificat ions etc. are

ambiguous. The excessive use of the term function is

ridiculous.
The arrows on SADT do not represent the flow of control or

sequence, like in a flow chart. The SADT arrows represent

constraints relationship among the boxes, in addition the

criteria to determine a control is not clear.

8. What Phases of the System Development Life Cycle does

the Methodology cover?

The Phases of SADT Methodology do not cover the

whole span of the Life Cycle. The SADT Phases which are

262

covered overlap with the Phases of the Life Cycle. For
example SADT is not concerned with whatever is done under
the Project Proposal, Strategy, Implementation, and
Trans ition Phases. SADT is partly concernd with what is
done by the Life Cycle in the Phases of Analysis, System
Specifications and Design. For example SADT is not
concerned with the Analysis of Environment, Analysis of
Requirements, Search for the existing System, Feasibility
Analysis & Detailed Proposals.

The Life Cycle term the Project Proposal is
called by SADT 'primary requirements' for the System. SADT
assumes that the primary requirements given by the
User/Management have been examined by someone and are as
readly available as the secondary requirements. These
secondary requirements are used as the input to the
Functional Analysis Phase to develop Functional
Specif ications of the System. Such jobs and actions are
covered by the Life Cycle in the subphases preparation of
Requirements Specification and System Specifications.

The Subphase Check for consistency is not
performed specifically in the way it is covered in the
Life Cycle. SADT checks only the consistency between data
and activity aspects of the System Design. This is done to
check any missing components etc..

The System Specifications Phase of the Life
Cycle as mentioned earlier is partially covered by SADT.
In the SADT Functional Analysis Phase efforts are made to
find 'what' the System is supposed to do from secondary
requirements. The objectives, constraints and functions

263

to be performed are also evaluated from the secondary

requirements, and are expressed by actigram and datagram.

The SADT Design Phase also develops some System

Specifications, e.g. details about the functions,

operations of the System, System boundar ies and System

interface are determined by this Design Phase.

The scope and the coverage of the Design Phase

of the Life Cycle differs from that of the Design Phase of

SADT. The SADT Design Phase is concerned with the limited

Designing jobs as defined by the Life Cycle. For example

it is concerned with 'how', i.e. to transform Functional

Specifications into how to do it. This Phase converts the

Functional Specifications into an SADT System Design

model. SADT Design Phase develops a library of documents

containing the terms, notations, etc .. It decomposes the

problem in top-down, modular and hierarchical manner in

order to study its processes, actions, activities, data,

etc .. This decomposition is allowed up to a maximum of six

levels etc .. These modules or SUb-systems are connected by

SADT arrows. The SADT does not contain any constructs like

JSD sequence, selection, and iteration. Such constructs

can help during Implementation and Program development.

9. Does the Methodology give equal weight to the

different Phases of the System Development Life Cycle?

SADT does not give equal weight to the job

concerned with the different Phases of the Life Cycle. Lt

gives a little coverage on the Analysis & the Design

264

Phases and ignores the many other Phases. More emphasis is
given on how to develop the System Specifications.

10. Does the Methodology
which can lead from the

contain a set of guidelines
start of the project to the

Implementation & Transition of the System?

It gives clear rules how to develop the SADT
model at the various levels. for example there is a clear
rule that a module should not be decomposed less than
three and more than six sub-modules. Further SADT has
rules about introducing the details into the model during
its Lop-down decomposition. SADT does not cover
Implementation and Transition tasks.

11. Does the Methodology require any special training
before using it"?

Yes. According to the authors of SADT a SADT
User must receive formal class room instructions before
using the Methodology. Further they emphasise the need to
supplement this class room training with practical work
under the supervision of an experienced SADT instructor to
use the Methodology properly.

Note: Perhaps the above claim and their emphasis for
practical training seems to be based on purely commercial
grounds. The Methodology is simple and easy to use. The
only thing which is needed is to have a clear concept of

265

the various aspect of SADT with some previous Analysis and

Design experience.

l?-. What Methods, tools and support are used by the

Methodo logy'?

SADT does not need to use essentially any tool

or support dur ing the development of a System. However,

there are some tools which can be used as an extra help in

certain types of applications to descr ibe a System. For

example SPECIF [89), a computer aided tool may be used for

drawing SADT models, automatic controls & Verification of

SADT basic rules, coherence of boxes, arrows and labels,

program design aids, etc .. SAINT [90], a simulation

language, designed for System Analysis of Integrated

Networks of Tasks, etc., may also be used as a support.

13. Does the Methodology offer clear and precise rules

(or choosing the Methods to be used in a particular

env ironment .?

No.

14. For what class of problem is the Methodology most

suited"?

The SADT is suitable for a wide range of

problems such as CAD, telecommunications, process
control, data processing, etc ..

266

15. Is the Methodology language and machine dependent"!

No.

16. Does the Methodology ass ist with the proj ect
Management and Strategy"?

Yes, but at limited level and it is achieved by

managing the project in a disciplined and coordinated team

work. The views of the project personnel are communicated

at different steps of the Analysis & Design. Regular

critical reviews are made in an organised way. The

comments on the reviews are recorded for further

examination by the senior Analyst/Des igner. Also "there

are two basic strategies used in reading a SADT model: the

complete model may be explored (to as much depth of detail

as necessary) to gain an understanding of the system

modelled, or a spec ific detai 1 may be nt.udLed to

accomplish a specific goal (to design or program a

software module, to understand the role of an individual

in a people-implemented system, etc.)"[p. 4-14, llJ.

17. Is the Methodology based on principles which are in
general: .

a. Structured,

b. Top-down,

c. Bottom-up,

d. others?

267

SADT is based on decomposing a problem in
top-down, modular, hierarchical and structured fashion?

18. Does the Methodology use the V & V activities or
something similar to them?

No.

19. To what extent deos the Methodology use the V & V
activities '?

The Methodology does not involve in any V & V
activities.

20. Is the Methodology suitable for small/medium/large
systems?

The Methodology is suitable for: large and
complex problems. However, there is no reason why it
should not be used for smaller and more simple problems.

21. Does the Methodology have communication facilities
between the User/Management and the Analyst/Designer'?

The Methodology has a well organised document
handling and communication facility. The facility is
limited only for the use of the Analyst/Designer. SADT has
a libarian which does the record keeping, filing, and
document distribution. This facility makes review point

268

handling and communication easy & systematic.

Note: SADT frequently uses the words and terms without

having giving explicit and clear definitions. For example

the terms function, Functional model, Punctional

Spec if ications and Punctional Analysis are used several

limes without specific definitions. The term F'urict.LoriaL

Analysis is used (or the activities of System development

lpl-l, 11]. There is no clear difference between the usage

of terms of the SADT model and the Functional model. It is

observed that, in the later publications of SADT the word

function is carefully used.

22. What documentation facilities, tools does lhe

Methodology have?

The Methodology uses a graphical language

called SA to represent a SADT model. This language has the

capacity to give details gradually, unambiguously and with

out superfluous detail The SA has the capability to

express module interfaces and also provides clear and

unambiguous vocabulary_ The language can be supplemented

by natural language for further explanation, when needed.

The document handling and communication facility given by

SADT is not designed for the use of the User/Management.

The SADT communication and reviewing facilities

also give some documentations as a by product. These

documents can reveal the history of various decisions, and

improvements made by the Analyst and Designer from time to

269

time. For example actigrams and datagrams as a set, come
with a supporting table of contents and a glossary.

23.

for
Does the Methodology use any symbols
expressing the outputs of the

or notations,
Phases, e.g.

specifications, Design etc.? If yes, what are they?

SADT uses 40 separate items of notations and
conventions which are used to bound the subject matter.
These notations express how the functions in the SADT
model can be carried out by a mechanism. These notations
also show how a single mechanism can perform related
functions at several different places in the SADT model.

24. Is the style of symbols or notations readable, can
these symbols or notations lead to effective, rapid and
unambiguous communications?

Yes, the SA, a graphical language used by SADT
has a well defined and systematic set of rules, symbols &
notations which are easy to draw and read. But these
symbols and notations may create a problem when required
to be redrawn.

25. Does the Methodology rely on highly symbolic
formalisms'iI

Yes. The success of SADT model depends on how
the Symbols are used and drawn.

270

26. What experience is required by the Analyst/Designer

in applying and using the Methodology?

The Analyst/Designer using SADT must have a

clear concept of various aspects of the Methodology. The

Analyst must clearly know what the System is required to

do. The Designer must be personnel(s) with an intimate

knowledge of Implementation techniques. The Methodology

is in fact easy to understand and use. But the authors

emphasise the need to have a formal training and attend

the practical classes.

Note: A clear understanding according to the authors of

SADT can't be achieved by studing the Methodology and the

related documents. The authors emphasise the need to have

formal classroom instructions along with practicals under

the supervis ion of SADT instructors. This claim and the

emphasis on formal training and practical sessions seems

to be purely commercial.

27. Does the Methodology have provision for covering

special cases such as:.

a. Enhancement? Yes,
b. Ma intenance '? yes,

c. Pr ot.ot.yp Lnq r No,

d. Quality Plan'? No,

e. Search for existing No.

available System?

271

The Enhancement and Maintenance can be done by
identifying in the diagrams which activities and data
structures are to be introduced, changed or modified. This
involves almost all the Analysis & Design tasks of SADT,
because it needs to redesign data structures and redraw
diagrams. The above provision are not very effective in
SADT.

28. What Prototyping tools/support does the Methodology
have"?

The Methodology does not have any Prototyping
facility.

29. Does the Methodology incorporate a Quality Plan for a
system"?

No. The Methodology does not incorporate any
Quality Plan.

30. Does the Methodology use any Quality Metrics?

No.

31.. Does the Methodology support the User/Management
participation? If yes, to what extent?

No. The Methodology does not involve the
User/Management during the System development.

272

32. Has the Methodology some unique approaches? If yes,

what are they?

SADT consciously support and emphasis to do the

work of System Analysis and Design in a disciplined manner

and with a team work spirit. It discourages Management to

impose the burden of software development on one person.

The Methodology has an unique and effective communication

and critical reviewing facility which is essentially

applied at the various levels during the developing of the

SADT model. The output of SADT Methodology i.e. the System

model can recommend Management to have either a manual or

an automated System. An important aspect of SADT is that

it involves the reader-author iteratively during the

development of actigram and datagram. This approach

improves the Quality of the SADT model.

33. Is the Methodology a combination or variant of other

Methodolog ies? If yes, which ones '/

No, SADT is not a combination or var iant of

other Methodologies.

273

A.7 SASD Methodology

The following questions are applied on
Structured Analysis & Structured Design Methodology, to
evaluate strong and weak points and to determine how they
can be applied while using the life cycle. This
Methodology is the combination of Structured Analysis (SA)
and Structured Design (SD). It also called SASD [5], [12],
[18], [20], [21], [61], (62).

1. What are the objectives and scope of the Methodology"?

Objectives: To:
The Structured Analysis has the following

objectives.
1. Provide tools and techniques to develop a

clear pictorial model of an existing
system,

2. Analyse, study, and understand t.he
organistaion, environment and working of
an existing System, to study the
feasibility of implementing the proposal
given by the User/Management stating what
they want.

3. provide a pictorial model of a new System
and other documents such as System
Specifications or general Design of the

274

new System, for the information and

satisfaction of the User/Management,

4. prov ide the input to develop a Structured

System, which can accept maximum possible

changeability, if needed by the Designer.

The

objectives.

Structured Design has the following

Resolve

develop

the complexity of

Systems which

a problem and

are workable,

understandable, reliable, flexible,

efficient, maintainable and economical.

Note:
SA, perhaps assumes that organisations under

study have a System. This may not be true, especially in

new organisations. Further SA assumes that the

User /Management can assess correctly the ir actual needs,

the starting point of SA.

Scope:
The scope of the SA is primarily concerned with

organisations where there is already an old computerised

system,

Analysis

interfacing with manual Systems. It covers the

of the old computerised System and develops

details of data-flow, data-structure, process logic etc.,

called the structured Specif ications. SA can also deal

with organisations where there is a manual System.

Note:
SA is not concerned with the Enhancement of the

existing System or improving its operations [p.240, 12].

275

The scope of the SD is to produce detailed

System Spec ifications by partitioning and organis ing the

Structured Specifications i.e. the output of SA, into

black boxes called modules. Its scope is the extension of

Modular and Top-down Design.

Note:
The development of System Specification

activities as expressed in the Life Cycle are overlapping

in SA & SD.

The partitioning or organising of the System

Specifications in a top-down manner to get a hierarchy of

modules based on functions is not an easy job, because it

is a difficult and complicated activity to find out which

functions should be in the System. This is especially true

for a Designer who is not from the organisation. It will

be difficult to know every detail about the functions and

develop a perfect System. Such Systems may need frequent

Maintenance. Jackson says "A system development method

concentrating on functions is always liable to produce a

system that is difficult to maintain" [p-8, 21].

The SD Method has developed a criteria for

partitioning the problem. This criteria is not easily

workable. In practice it is difficult for someone to know

in advance about the System, its structure, and functions

to be performed, i.e. to know about something which does

not yet exist. Therefore the approach for partitioning the

System may be error prone.

The foundation of SD theory is formal but is not

based on mathematical concepts.

276

SD is a good Method for System development but
in this Method there is no facility or check which can
give a proof about the correctness of the System. Efforts
are being made to modify the Structured chart to provide a
mechanism for proving the correctness of the System. For
example Chyou [62] has tried to modify the Structured
chart by introducing some guarded commands in the basic
construct of the Structured chart. The modified Structured
chart called a Structured proof chart, is in its
evolutionary stage.

2. What are the fundamental principles of the
Methodology?

The fundamental principle of SA is to Develop
the System Specifications, by analysing the old System and
available information in a Top-down fashion by doing
successive refinements.

The fundamental principles of SD are the
following:

a. A large problem should be partitioned into
a number of manageable parts by
identifying:
purposes to
part called

distinctive functions, or
be performed. Ideally, each
a module should perform a

single function.
b. These modules should be as independent as

possible, and must be solveable
separately. In other words f unct.tona L

277

Note:

relationship between modules should be
minimised. This criteria of relationship
between modules is called coupling.

c. Each module should carry out a single
problem related function. This means that
intra-modular functional relationship or
binding should be as high as possible. This
criteria is called cohesion.

1. Even for an average size problem it is a
very complicated and difficult task to
find out its functions. The reason is that
the functions are usually complicated. It
is difficult to find out their details and
implications on other functions. In a
practical situation an element of
processing may be functionally related in
different ways and with different
strengths with other elements. Therefore,
to get minimum coupling and maximum
cohesion is a difficult job. Also it is
very difficult to see in advance the
functional relatedness of one element with
another.

2. In the functional approach the Maintenance
problem can arise when the User/Management
want to have some changes. These changes
may effect activitiesthe functional
resulting in disruption of the structure

278

of the System.

3. If some function is missing at an initial

stage, it will remain missing, because

there is no check to find such a miss ing

function. In SASD, therefore, a check for

completness can not be guranteed.

3. What are the pre-requisites for the Methodology?

For SA some proposal from the User/Management

containing their wants is required to start the Analysis

of the existing System.

For SD the Structured Specifications, the

output of structured Analysis is the pre-requisite.

4. What is the starting point of the Methodology?

The activities of SA start by investigating the

system which may be manual or automated. This is done by

studying the System, and other written documents supplied

by the User/Management.

The activities of Structured Design starts from

the statements of what the System is supposed to do i.e.

the output of the Structured Analysis, called Structured

Specifications or Functional Specifications. This

document comprises of a DFD, Data-dictionary,

Mini-specifications, Data-access-diagram etc ..

Note:
One of the problems in using Functional

279

Specifications is that these specifications are usually
liable to change. Some times these changes may be during
the process of System development. This creates the
problem of Maintenance which is an expensive and difficult
activity.

5. What is the final point or step of the Methodology,
and what is the deliverable of the Methodology?

The end product of SA is the Structured
Specifications or the Functional Specifications. These
specifications can be developed in more than one way,
giving alternative Systems with varying facilities,
benefits and cost. The specifications which are fully
agreed by the User/Management are decided as the accepted
Functional Specifications for the development of the
system. These specifications are expressed by DFD,
Data-dictionary, Decision-tree, Structured English etc..

The following are the end product of of SD:
a. The end product of the SD is a final

version of the Structured Chart in which
modules are described by rectangular
boxes. The Chart depicts information about
the functions of modules, control, input
and output details. It also shows what will
be done to that input. In some cases the
modules are grouped into packages for the
purpose of Implementation.

b. The Data Dictionary developed during the

280

Structured Analysis is also updated and
delivered again at the end of the Design
Phase.

o. What are the steps or Phases of the Methodology?

The following are the main steps of the SA:
a. Do an initial study of the existing System

or evaluate the request made by the
User/Management, and write a report
thereof,

b. Perform a detailed study of the initial
report, study of facts, problems,
limitations of the old System and submit
the remedy for the problems,
Study the old System Specifications,
they exist, and consult

c. if
the

User/Management,
d. Produce an overall System data-flow and

express it in DFD,
e. Develop detailed data-flows and express

them in a detailed DFD,
f. Define the process logic and function

logic by using the SA tools such as
Structured English, Decision trees, etc.,

g. Break each component process, if
necessary, to further level of detail,

h. Break down each logical function, if
possible, and get more detailed DFD,

281

i. Develop data elements, data structures and
data stores and revise all these, if
necessary,

j. Develop a data dictionary containing in
alphabetical order the contents of each
data store & data element of which they are
composed.

Following are the main steps of the SD.
a. Derive structure chart,
b. Refine Structure chart,
c. Specify modules,
d. Pack the modules.

1. Are these steps or Phases of the Methodology
systematically proceduralised, or do they just give broad
directions?

SA does not provide step by step clear & precise
guidelines showing how to proceed and achieve the goals.
Note: The tools provided by SA are better and helpful.

Yes, lhe Structured Design gives clear and
systematic guide lines and procedures. These guidelines
specify how to achieve the objectives Le. coupling and
cohesions. It also directs how to do the factoring,
system's shape, fan-in, fan-out, packaging, error
reporting etc. to Design a maintainable System.
Note:

These guidelines are not enough for an

282

inexperienced Designer. These guidelines can be helpful to

one who has previous sound exper ience in

System by using SD.
developing a

8. What Phases of the System Development Life Cycle does

the Methodology cover?

The activities of SA in general are not covered

in the way they have been defined in the Phases of the Life

Cycle. Following is a br ief descr iption showing how the

Life Cycle can absorb the activities of SA in its Phases,

and what activities are not covered by SA.

SA covers some of the activities of the Life

Cycle specified in the subphase 1.1 Le. the 'Study of

Proposal'. SA deals with the proposals which are concerned

with the development of new Systems. It eliminates those

proposals which are concerned with the Enhancement of the

existing System. The subphase the 'study of the Proposal',

has a wider scope of activities than that covered by SA

because it can deal with all types of proposals whether

concerned with Enhancement or having a new System. In SA

there is no step which can find out at an initial level

what the User/Management actually 'need'. SA does not make

any effort to find out the 'needs'. The approach used by

SA is perhaps purely of a commercial nature, in their own

interest.

SA covers the subphase 1.2 i.e. the 'Initial

Investigation', and starts the investigation, only when

the proposal from the User/Management is to develop a new

283

System. The justification for having a new System is made
on the personal assessment of the User/Management. The
purpose of this step is not to find out the actual needs,
but to start the development on the basis of their
proposal.

The subphase 1.3 i.e. the 'Initial Feasibility
Study', whose basic purpose is to find out the possible
ways to implement the results of the Initial
Investigation. SA, analyses and understands the present
existing System, to achieve this purpose. The tools of SA
are used for this purpose. SA gives a report of this
Initial Feasibility Study. This report contains estimated
costs, potential benefits, tentative completion dates,
functions of the new System etc..

SA does not cover the Phase 2 i.e. the Strategy
Phase of the Life cycle.

SA covers few of the activities mentioned in the
subphase 3.1 Le. the'Analysis of Environment'. It tries
to do the Analysis of Environment by discussions with the
User/Management and reviewing the available documents, if
there are any. The SA covers the study about the role &
duties of the User/Management, and their internal
hierarchy in the System. It develops the System
boundaries, dictionary of the terminologies used in the
existing system, nature of input/output data, functions to
be performed, logic of process etc.. This information is
essential to understand the System's environment.

The activities of the subphase 3.2 i.e. the
'Requirement Analysis', in SA are done by breaking the

284

complex Requirements given by the UserfMananagement into
its components. Thia is achieved by reviewing the plan
given by the User/Management. SA covers the study of
managerial, financial and social Requirements.

The activities of subphase 3.3 Le. the
'Requirements Specification' are performed in SA by
deciding what the System or part of it, is required to do.
This is done by producing an overall System data-flow,
deciding functions to be included, or omitted etc.. All
these activities are done by studying the System
Specifications of the existing System, consulting the
UserIManagement, deriving objectives for the new System
and developing a DFD of the existing System. The
Requirements Specification are expressed by producing an
overall DFD.

The activities covered in the subphases 3.4 and
3.5 i.e. 'Check for Consistency' and 'Search for Existing
Available System' are not covered by SA.

Most of The activities mentioned in the subphase
3.5 i.e. the 'Feasibility Analysis and Detailed Proposals'
are not covered by SA. The activity of cost benefit
Analysis for the new System is done by producing a
statement of possible revenue, improved service etc.. The
activities concerning information about the essential
changes in the policies, environment, status of personnel,
organizational changes and effect thereof, may be
performed by defining the User community of the new
system.

SA produces several alternatives with differing

285

sets of benefits and costs in the form of a report. The
tools of SA help a lot in presenting such alternate
proposed models. These alternate models give various
versions of the Requirements Specification etc.. These
proposal are submited to the User/Management for approval.

Some of the activities covered in the Phase 4
i.e. 'system
example the

Specifications'
activities such

are
as

covered by SA. For
defining the System
are done in SA byboundaries, System interface etc.

deciding which functions are to be considered as part of
the System Study and which ones are not to be covered.
Further details about the process logic, function logic
and operations of the System are achieved by breaking down
the component process and logical functions etc.. All
these are achieved by using different tools of SA. For
example SA produces a logical model of the new System by
using the DFD. This DFD can show some relevent
specifications for the new System such as new data-flow,
new data-structure, new transactions etc..

The Structured Design mainly covers all the
activities of the Design Phase of the Life Cycle. It also
covers certain activities which are covered in the System
Specifications Phase of the Cycle. For example what data
and actions will be required to perform a function.
Another example may be that it specifies details about
functions, modules and their interactions. However the SD
does not cover how to represent the output of the Analysis
results in technical terms. For example it does not
specify how to fulfil the terminology and pragmatics of

286

the application area into the terminology and pragmatics

of computing. All this can only be obtained by the

experience of the Analyst/Designer who has worked in the

similar fields. Another example maybe that it does not

show how to convert the User's Requirement that a System

should be reliable to a required extent. In other words it

does not say how to have a reliability metr ic. It also

does not show explicitly how to test the Design.

Structure Design uses the Planning and Decision

activities of Design Phase by developing a network

representation of System components showing how data will

flow, and what process are needed etc ..

SD uses the Conceptual Design activities of the

Design Phase by developing Structured charts from DFD. It

is possible to develop a number of alternative Conceptual

Designs based on these charts.

9. Does the Methodology give equal weight to the

different Phases of the System Development Life Cycle?

SASD, i.e. Structered Analysis and Structured

Design covers Analysis, System Specifications, Design and

Implementation Phases of the life Cycle.

Structure Analysis overlaps some activities of

System Specifications Phase, and also Structure Design

does the same. A part of the activities concerned with the

Implementation Phase are also covered by Structured

Design.
SASD does not give equal weight to the Phases of

287

the Life Cycle.

10. Does the Methodology contain a set of guidelines
which can lead from the start of the project to the
Implementation & Transition of the System?

SA does not give any particular set of
guidelines or Analysis strategies. It only gives general
information showing how to do the Analysis by using
various tools, mainly in commercial organisations.

The SD has two ffiajorsets of guidelines or
Design strategies. These strategies are called transform
and transaction Analysis. Transform Analysis is a special
case of of Top-down approach. It guides how to start from
the output of Structured Analysis and get the Structured
Design. This Strategy identifies essential or major
functions which take major input data streams and create
major output streams by transformations. This Strategy
uses DFDs develops the structured chart for the Design. It
has five clear steps which can give a transform centered
Design. For the commercial environments where Systems are
mainly concerned with processing of transactions the
Structure Design suggests the use of a transaction
Analys is Strategy to develop a Structure chart. In this
Strategy the input data stream is split into several
discrete output sub-streams. This Strategy can pass all
transactions to subordinate transaction modules for
processing. This approach a gives transaction oriented
system.

288

Note:
The techniques mentioned above have certain

limitations. For example these can give a correct Design,
but its perfection cannot be guaranteed. Especially
t..ransformAnalysis cannot be helpful for a big problem
having a complicated DFD along with many efferent and
afferent streams. The Transaction Analysis technique is
offered for use in solving big problems. This can be done
by dividing complicated 01"D into smaller OFOs. However
t..ransactionAnalysis has problems itself. For example
t..ransactionsare problem oriented and it is difficult to
draw structure charts especially in the large commercial
organisations where different types of transactions are
dealt with. These transactions are usually processed
totally differently. Further in practice it is required to
map the DFU into a particular Modular structure which is
in practice a difficult job to do the first time. Only an
experienced Designer who has some previous knowledge can
do this. These OFUs have limitations in that they cannot
be implemented directly by using a machine, because they
are not in algorithmic form.

11. does the Methodology require any special training
before using it'?

For SA & SO an experienced Programmer, Analyst
or Designer with clear understanding about the Analysis &
Design activities is needed. Usually they do not require
any special qualification.

289

12. What Methods, tools and support are used by the
Methodology"?

SA uses the following tool and support during
the Design activities.

a. Data Flow Diagram: They use it to draw a
pictorial model of a System. The DFD shows
Systems boundaries, sources and
destinations of data. It identifies and
names the functions, data elements and
data stores. A DFD u~es four Symbols.

Note: A DFD does not depict any information about timing
considerations. It is therefore not suitable for a larger
class of problems which are heavily dependent on time
ordering. This tool can not show how the System can be
implemented.

b. Decision TYee: This tool is used to express
and present logic, structure and policies
of a process. The tool is suitable where a
process has complex branches. Because the
branches of the tree can correspond to each
of the logical possiblities.

Note: This tool can only be used effectively in a
situation where the number of actions is small. It has
limitations in that it can not show how to do calculations
and to show any instruction to achieve the decision.
l"urther there is a disadvantage that it is not machine
readable.

c. Data Dictionary: This tool provides a

structured place for keeping contents &
details of data flows, data stores and
processes. A Data Dictionary may be
automated or manual. It is a sort of
directory which contains information about
a project. 1t is like a central store. A
Data Dictionary can give various different
types of outputs such as a full listing
(details about data flows, data
structures, processes etc.), summary
listings (expressing all entries in an
arranged and short form), etc..

d. Decision Table: This is another tool for
expressing the process logic. This tool
can give a more compact representation
than any other too1 can give.

Note: This tool can be more helpful in a process where the
number of actions or alternative solutions are large and
branches are complex like a decision tree.
The problem with a Decision Table occurs when there is a
need LO change the rules. This Lool has further
limitations that the User/Management can't understand and
verify the Uecision Table unless they are familiar with
Lhem.

e. Pseudo Code: It specifies program logic by
using conventions of structured English.
This language is free from the detailed
syntax of any particular programming
language. Therefore, this language can be

291

used in any particular environment. Pseudo
Code shows how to initialize/terminate,
read/write the files. This code can give
detailed Program Design.

f. structured English: This tool is suitable
for the process where some operations and
few decisions are required. It uses
logical constructs to express the logic of
a process. 1n Structured English
instructions, decisions and loops etc. can
be written in terms of sequential
instructions, case instructions, decision
instructions and repetitions instructions.
The terms defined in the data-dictionary
are used if necessary, to make the language
compact and clear. Thus by using this tool
a logic process can be expressed very close
to a computer program.

Note: Generally in SA the specifications about reading and
writing the physical files are not expressed in structured
~nglish.
SU uses the following tools and support during the Design
activities.

a. structured Chart: This tool can show an
outer picture of the modules in a System
and their relationship with each other.

Note:
1. For a large problem it might be necessary

to have say, ~oo modules. In such cases it

292

will be diff icult to draw and develop a

Structure chart, to get the Structure

Design. To solve such problems it may be

proposed to develop major sUbsystems. The

problems in this approach may be how to get

t.he input f or the subsystems, have

uncoupled or independent sub DFDs, and

avoid duplication of modules.

2. Also the Structure chart can only give a

time independent model of a System in which

the modules are arranged arbitrarily. It

is therefore incapable of showing

intrinsic implications for

order. Therefore, it is

successful for sequential

execution

not very

and t.ime

ordering problems.

3. l"urthermore the Structure Chart does not

show procedural details i.e. 'how' things

like loops, decisions, initialisations,

terminat ion sequences of calls etc., can

t.ake place. It is unable to depict the

internal data of modules.

4. The Structured Charts which are drawn

manually are error prone. It is diff icult

to amend and ver ify them. The development

and Maintenance of Structured Charts may

result in a major effort, sometimes it may

require complete re-drawing. Checking for

completness and consistency between

293

different charts is not easy especially in
the case of big Systems.

b. Psedo-code: This tool is mainly used for
module specif ication and its Maintenance.
It is also used as a support for Modular
programming.

Note: This tool has an advantage that it is not language
dependent. It differs from Structured English in the sense
that it is only used by the Designer and the Programmer.
It. is very similar to the actual code, more closer than
structured English. But the Pseudo-code has problems that
it takes more documentation than the actual code itself.
It may affect the programming style. This code can lead
towards ambiguous results because of its style, i.e. lack
of punctuation. The code is incapable of specifying
input/output media.
The tools of Structured Analysis such as DFD, Data
Dictionary, Structured English and Data Access Diagram are
also used closely in developing Structured Design.

13. Does the Methodology offer clear and precise rules
for choosing the Methods to be used in a particular
envLronment.z

No, SA does not offer any such Method or
approach for choosing a Method for a particular
environment. Only the choice of a particular tool can be
made according to the type of a problem.

294

Yes, SO offers two different techniques
suitable for different environments. For example for
commercial and real-time Systems SU recommends the
t..ransaction Analysis Strategy. For other small problems
transform Analysis is suitable

14. For what class of problem is the Methodology most
suited'?

SA is developed mainly for commercial data
processing Systems, and therefore is suitable for such
t..ypesof problems. There is no evidence that it is also
suitable for other environments. The nature of the SA
approach reveals that perhaps it will not be suitable for
the problems which are mainly concerned with time ordering
and are of a mathematical nature.

SU is suitable for commercial problems.
However, the developer of SO Method claims that it can be
used to Design any computer System e.g., compiler,
operating System, etc.. Again it is not very successful
for problems which are heavily concerned with time
ordering and are of a mathematical nature.

15. Is the Methodology language and machine dependent?

No, both the SA and SO are language and machine
independent.

295

16. Does the Methodology assist with the project
Management and development Strategy?

No, both the SA and SD have no such facilities.

17. Is the Methodology based on principles which are in
general: .

a. structured,
b. Top-down,
C. Bottom-up,
d. ot.her sv

The SA uses a Top-down approach by doing
successive iterations, to achieve better output of the
Analysis activities.

The SO is based on modified concepts of Top-down
and Modular Methods. It does not contradict anything in
the Top-down or Modular approaches. It complements the
guidelines which Top-down lacks by adding certain features
to it. For example SO uses factoring to achieve advantages
of Top-down decomposition.

18. Does the Methodology use the V & V activities or
something similar them?

No, the SA and SD do not use the V & V
activities.

296

19. To what extent does the Methodology use the V & V

activities"?

It does not use the V & V activities.

20. Is the Methodology suitable for small/medium/large
systems?

The SASO Methodology can be applied equally to
all different sizes of commercial problems.

21. Ooes the Methodology have communication facilities
between the User/Management and the Analyst/Designer1

The SASO Methodology does not have any
particular communication facilities, between the
User/Management and the Analyst/Designer. However, the
output of their tools, can be used for communication
purpose. But for this the User/Management must have a good
knowledge of Systems Analysis and Design.

22. What documentation facilities, tools, etc. does the
Methodology have"?

The 010'0, Data-dictionary, Decision-table,
Decision-tree, Pseudo-code, structured English which are
the by product of the Analysis activities are used for the
purpose of documentation.

The structure chart, pseudo-code and

291

Data-dictionary etc. which are the by-products of the
Design activities are used, t.o some extent to show and
document the structure of the System.

23.

for
Does the Methodology use any symbols
expressing t.he outputs of the

or notations,
Phases, e.g.

specifications, Design, etc.? If yes, what are they?

The SASD Methodology has a well de!ined and
clear set of symbols & notations for expressing the
source, sink, data-flow, data-store, and other structures
of a System. For example a rectangular box with its name
inside is used to represent a module.
Note: Some symbols used by SA differ from that used by SO.
For example In SA a process is represented by an upright
rectangle having rounded corners and divided into three
sections, showing details of the process. Whereas in SD a

small circle or bubble is used showing its name. The
symbol used by SA is better than that of the SO, because it
can give more details. Source or sink i.e. a terminator,
is represented in SA by a double square whereas a
rectangle with a name inside is used for the same purpose
by so.

SO uses a rectangle to represent a module. The
same symbol in JSD is used to represent an entity, action
and process. etc..

298

24. Is the style of symbols or notations readable, can

t.hese symbols or notations lead to effective, rapid and

unambiguous communications?

Yes, these notations are clearly readable, easy

to draw and can give unambiguous documentation for the use

of the Analyst/Designer. They communicate with each other

in a clear manner. These notations can be arranged to show

the partitioning of a System and the hierarchy of the

modules. The Structure chart has some limitations. For

example it can not show the temporal order in which

modules will be activated. It is unable to show the

sequence of calls to other modules, loops, statements etc ..

2~. Does the Methodology rely on highly symbolic

formalisms'!

No.

26. What experience is required by the Analyst/Designer

in applying and using the Methodology?

To use SA for analysing a System or studying a

proposal requires an Analyst or a group of Analysts with

some experience. The level of experience required is based

on the size of the problem to be solved and its

environment. The SA is in general easy to apply.

To Design a System based on SD needs essentially

a group of experienced Designer who have worked before on

299

similar environments. The Design approach is such that an
inexperienced Designer, in a complex problem will not be
able to apply the SD effectively and efficiently.

27. Does the Methodology have provision for covering
special cases such as: .

SA SD

a. l!!nhancement? No. Yes.
b. Maintenance? No. Yes.
c. Prototyping? No. No.
d. Quality Plan? No. No.
e. Search for Existing No. No.

Available System?

The SD can do Enhancement and Maintenance tasks
by modifying & changing the modules. This can be achieved
by using the Structure Chart which is developed by the
concept of dividing the problem into modules. These
modules are developed by making efforts to maximise the
Cohesion and minimise the Coupling. This can help in
developing a System which may be easy to enhance and
maintain.

300

28. What Prototyping tools/support does the Methodology
have?

The SASU does not use the concept of the
l'rototyping.

29. Can the Methodology incorporate a Quality Plan for a
System?

The SA does not use any Quality Plan. However,
SO uses, Indirectly the Quality Plan by using the criteria
of how to develop modules.

30. Does the Methodology use any Quality Metrics?

SA does not use any Quality Metric, but in SU
the concept of coupling and cohesion can be used as a
measure of Quality of a System.

31. Does the Methodology support the User/Management
participation? If yes, to what extent?

SA does not involve actively the
User/Management in System development. It only consults
the User/Management during the study of the System by
conducting interviews.

SU does not involve the User/Management during
the System development activities.

301

32. Has the Methodology some unique approaches? If yes,
what are they?

SA does not use any unique approach. But the
concepts of coupling & cohesion, transaction & transform
analysis used by SO for achieving better Quality of
modules is of a unique nature.

33. Is the Methodology a combination or variant of other
Methodologies? If yes, which ones?

Yes, the SASD is the combination of Structured
Analysis and Structured Design.

302

•••••••• B

B.l Introduction

In this appendix the important key words or

terminologies used or defined by the selected

Methods/Methodologies are studied. The frequently used

key words or terminologies are examined and compared with

the definitions given in the IEEE glossary, the glossary

of terms developed in this thesis and the way these have

been used or def ined by these Methods/Methodologies. In

section B.2 the key words or terminologies defined or used

by the MethodsjMethodologies and by the Life Cycle are

examined and compared with each other. In sections B.3 to

B.8 the key words or terminologies are examined and

compared with the definition given in the IEEE standard

glossary. A set of 2 questions is applied for this

purpose. The order in which these Methods/Methodolog ies

are placed is alphabetical.

304

B.2 pefinitions

This section descr ibes how the following key

words are def ined or used by the Methods/Methodolog ies

under study and by the Life Cycle, if defined in different
& specific ways?

Action:

The term Action is not used by LSDM, MASCOT and

ETHICS Methods/Methodologies.

JSD defines the term action as an event in which

one or more entities participate by performing or

suffering an action e.g. PLACE, DELAY, STOP, etc .. Actions

in JSD take place at a point in time, not over a period of

time, and these actions cannot be decomposed further.

SADT uses the term activity as a near synonym to

t.he JSD Action. The SADT Activities are used for the

happen ings e .g . CONTROL FL IGHT , MANAGE RESOURCES,

PRODUCE, etc .. These activities are performed by entities
like men, machines,

computers etc ..

In SASD the SA uses the term action to refer to

an imperative phrase such as STOP, PAYMENT, PRINT NAMES,

etc ..

Note: The terms Action, Activity are used by JSD, SADT and

SASD for similar purposes i. e. for happenings or events

performed by entities and are represented by imperative

305

verbs.

Activity:.

The term Activity is not defined or used by JSO,

LSOM and ETHICS. MASCOT uses the term Activity for

process, a part of program which may be developed

independently. A MASCOT Activity is a unit of OP which

executes identifiable tasks within a System. SADT uses the

term Activity quite differently from the MASCOT term. It

uses the term for happenings, such as CONTROL FLIGHT, ADD

ALLOWANCES. The synonym of MASCOT Activity in JSD & SASD

may be near to Process and Module respectively.

j\na1ysis:

The term Analysis is used in the Life Cycle for

the purpose of the systematic study and examination of

needs, (obtained in an earlier Phase), in order to find,

determine and identify the causes of the problems and the

Requirements of the User/Management. The results of this

Analysis is represented in detailed proposal(s) together

with the feasibility report for developing the System

Specifications.

In JSO and MASCOT the word Analysis is not used

as a term. The term is also not def ined explicitly by

LSDM, ETHICS, SADT and SASD. LSDM uses it for obtaining

lhe details of the existing System to investigate and

identify the problems & deficiencies. ETHICS uses the term

for examining the preliminary key objectives, Functions,

identification of variance, examination of existing task

306

structure and work flow. SADT uses a different term
Functional Analysis for analysing the System Requirements
and understanding what the system is supposed to do. The
term Analysis is used by SASD for the jobs involving the
study of the User's current System (if there is one),
interviewing the end user, groups, and clerks, to find out
how they are presently working, document User's needs by
using various tools and ensuring that the User's statement
of problems is not incomplete, redundant, or
contradictory.
Note:

The basic term Analysis is not uniquely defined
and covered by the Methods/Methodologies. It is assumed by
LSDM and ETHICS Lhat a System exists and its
User/Management correctly know about their problems,
needs and wants, which may not always be true. Further
LSDM and SADT cover the limited aspects of the Analysis
tasks.

Analyst:

The term Analyst is defined by the Life Cycle as
a person who identifies the working environment, talks and
works with the User and their Management, in order to
discover, study and analyse their needs & wants; and
prepares proposals. The term Analyst may be used as
singular and plural and for male or female.

JSD and MASCOT are not concerned
Analysis tasks and hence the term

used. LSDM, ETHICS
Analyst

with the
or System

Analyst is not and SADT have not

307

defined the term Analyst or System Analyst, but the term

is used. ETHICS uses the term for a person who analyses

the job-satisfaction and efficiency needs of Lhe

User/Management and the establishment. The Analyst in the

ETHICS Method provides an opportunity for increasing job

satisfaction. The Analyst is responsible for examining the

preliminary key objectives, Functions and Designing the

technical part of the System. In SASD the SD uses the term

as "an informal term for a person whose job is to analyse

the user's need, and to then derive the functional

requirements of a system" [P-423, 20]. The SA uses the

term without defining it explicitly. It is used for a

middleman between the User community and the programming

community.

Note:
1. In the Life Cycle the term System Analyst

is not used purposely, because the analysis tasks in the

Life Cycle may start from a point where there is no

system. In a case where there is no System what will the

system Analyst analyse?

2. The term System Analyst is used

differently by these MethodsjMethodologies and each has

assigned different scope and duties.

3. The ETHICS Method mixes the duties of the

System Analyst and the System Designer. Both the terms are

used without any discernable difference.

Channel:
JSD defines the term Channel as "an

308

implementation device by which a process is inverted with

respect to two or more data streams simultaneously"

[P-374, 21]. MASCOT defines and uses the same term as: "An

inter-communication data area used exclusively for

passing message data between activities" [22). The term is

not used by LSOM, ETHICS, SADT and SASO.

Note: The same word is used to define different purposes

and concepts.

control:
The word control is not used by JSO & LSOM as a

term.
MASCOT uses another term Control Queue which is

a data structure providing the focal point for Software

stimulation and mutual exclusion of one activity by

another. It is a basic MASCOT variable. In SADT the term

control is used but not defined explicitly. It is used as

a constraint or a controlling factor. The control governs

hoW a box should perform its role. It is used to show the

control relationship among the boxes. It is represented by

an arrow and enters from the top of the box. The output of

a box may provide some or all controls for one or more

other boxes.
In SASD the SD uses the word control or control

of information frequently without defining it explicitly.

The SO uses the word control as a piece of information

which passes among the Modules. In SASO Control usually

subordinates the Modules possesed by its superior But it

is not necessary, and its inverse is also possible, though

not desirable. It is imperative information having a
strong verb, e.g. READ NEXT RECORD, CANCEL ORDER, STOP
WRITING etc..
Note: It is not clear how to determine or fix a control in
SADT. Further the SADT control does not represent the flow
of control or sequence. In SASD the imperative verbs are
used to represent both Control and Action. It is not clear
how to make the distinction between the SASD Control and
Action. In SD if two Modules communicate by passing a
piece of information that can control the logic of the
other Module, such Modules are called control coupled
Modules. Control coupling covers all forms of connections
that communicate elements of control e.g. actual transfer
of control, passing of data that changes, regulates or
synchronizes the target Module. This type of coupling is
non-essential. A System that includes control coupling
means that its Modules are less independent and
subordinate Modules are not black boxes. In SADT control
does not represent the flow of control or sequence.

pata structure Diagra.:
JSD defines the term as "A Structure diagram

representing the ordering, of records in a data stream or
of successive state vectors" (21). LSDM uses the term
Entity Model for some thing similar to the JSD Data
Structure Diagram. The LSDM Entity Model represents the
generic data structure of the System's data and that data
is used for System Development. MASCOT and ETHICS do not
use the term Data Structure Diagram. SADT uses the term

310

datagram for a similar purpose as the JSD Data Structure

Diagram and LSDM Entity Model. The SADT datagram

represents the data aspects of SADT model in terms of

things. SD uses the term Data Access Diagram similar to

the JSD Data Structure Diagram. The term Data Access

Diagram is defined as "A graphic tool for depicting the

ways by which a data store can be referred to by means of

the information contained in another data store" [61].

pata store:
JSD uses two different terms Le. Data Stream

and State Vector as a near synonym to a store of data, data

element and data structure. The JSD term Data Stream is

defined as "an ordered set of records or messages by which

two processes communicate, the records being read by one

process in the order in which they were wr itten by the

other". The term State Vector is used as "local variables

of a process, including text pointer" [21]. LSDM uses the

term Data Store without defining it explicitly. Data Store

in LSDM is concerned with organising the operational

system such as transactional files, extracted files for

sorting & listing, etc .. Each entity in the LSDM Entity

Model is recognised as a Data Store or part of a Data Store

in the DFD. MASCOT uses the terms IDA, Channel & Pool for

the purpose of storing the data. The term IDA is defined

as a "gener ic term for the data areas which provide the

exclusive means by which activities communicate namely

channels & pools" [22]. The term channel is used

exclusively for passing message data between activities.

311

The access to a channel is essentialy made via access
procedures. Channel has two directional interfaces one for
sending and the other for receiving. The term pool is
defined as "an inter-communication data area used to form
reference data which can be accessed by one or more
activities. Access to a pool is by user defined
conventions but can be via access procedures" [22]. ETHICS
and SADT do not use the concept of Data Store. In SASD the
SA uses the term without defining it explicitly as a place
where data, data elements and data structures are held
from one process to the next until needed or kept
permanently. The data in the data store enters via data
flow and cannot exit unless it has been stored.
Note: The above terms are defined and used differently for
similar things and for similar purposes. The term data
store and data stream, state vector, pool and channel
represent the similar things or their purpose is more or
less the same.

Design:_
The basic term Design is defined in the Life

Cycle as a verb and a noun. As a verb it is defined as
conceiving & planning by using an agreed proposal(s) and
its Specifications as input and converting the plan into
an unambiguous executable model, called a System frame or
System skeleton to perform its purpose(s) i.e.
Function(s). As a noun it is defined as a tool set which
accepts the human proposal(s) and its Specifications as
input and can develop an unambiguous executable System

312

frame or System skeleton to provide the information to the

User/Management and serve his purpose(s) i.e. Function(s).

The term Design is not def ined by JSD, LSDM,

MASCOT, ETH ICS and SADT. The SD def ines the term as "to

plan the form and method of a solution" [p.410, 20]. It is

also def ined as n......... the process of transforming

what has to be done into a means of doing it" [p.l.2, 18].

SA defines the term as: "The (iterative) process of taking

a logical model of a system together with a strongly

stated set of objectives for that system and producing the

specif ication of a physical system that will meet those

objectives" [P-176, 12].

Note:
1. The basic term Design, its scope and

concept is not defined uniquely by the

Methods/Methodologies.

2. The 'Process' is not used by SA in the way

it has been defined by SD.

Designer:
The term Designer is defined in the Life Cycle

as: A person(s) who: (1) Uses proposals developed by the

Analyst to develop system spec ificat ions. (2) Transforms

the system specifications into a design to meet the

Requirements of the User/Management. (3) Is concerned with

designing details of a system, subsystems, modules, etc ..

The term Designer may be used as a singular and plural and

for male and female.

The term Designer is not used by JSD, LSDM, and

ETHICS. However, JSD and LSDMuse a new term Developer

without defining it, to mean some one who develops a

System. The MASCOT,SADT and SASD use the term Designer

without defining it. In SASD the SO uses the term for a

person who is concerned with structural Design of a

program or System.

Entity:
The term is defined by JSD as "an object in the

real world which participates in a time ordered set of

actions" [21). LSDM uses the term Entity frequently

without defining it explicitly. Each entity in the LSDM

Entity Model is recognised as a data store or part of a

data store in DFD. MASCOTand ETHICS do not use the term

Entity. SADT uses the word Entity in its general sense

i.e. It is used for things or objects such as men,

machines, company, etc .. SA uses it for a source or

destination of data on DFD. SA also uses the term for

something about which information is stored in a data

store e.g. men, machine, workers, etc ..

Note: There is no clear and distinct cr iter ia to select

the Entities which must be in the System. The selection

depends on the personal choice of the Analyst/Designer

which may be different if selected by other

Analyst/Designer.

Event:
The term Event is used by JSD & LSDMwithout

def ining it. JSD uses the word event for the result of

314

action & participation of one or more entities in the real

war ld. The Events in LSDM mod ify or update the System's

data in the System and they affect the System. MASCOT,

ETHICS, SADT, and SASD do not use the term Event.

Note: The same word is used by JSD and LSDM for different
purposes.

l.mplementation:

The term is used in the Life Cycle for the tasks

which are concerned with giving practical effect to the

Design or System skeleton; the manipulation & translation

into code of the Software System frame developed earlier

in the Design Phase, to fit it to the Hardware and in some

cases to the Software also. It is also concerned with
debugging the code, if necessary.

The term Implementation is used but not defined

explicitly by JSD & LSDM. JSD uses the term for the jobs in

which the Specifications are transformed so that they may

conveniently and eff iciently be executed. LSDM uses the

term Implementation for the work concerned with the

development of operating procedures, manuals, training

the User/Management and organising the administrative

structure of the establishment. MASCOT uses the term

without defining it. It is used by MASCOT to implement the

Software on host & target machines. ETHICS uses the term

for a set of change processes in which an existing System

is assisted to move smoothly and successfully from one

organisational state to another. SADT has also not defined

315

the term Implementation and is not concerned with the
details about Implementation tasks. SD defines the term as
"The activity of a project during which the design of a
system is tested, debugged, and made operational" [61].
Note:

1. The Implementation tasks covered by the
Methods/Methodologies are limited when
compared with those of the Life Cycle. For
example lhe Implementation activities
covered by the SD does not encapsule how to
fit the System into Hardware or to other
existing Software Systems, to prepare
operating procedures, manuals, training of
the User/Mamagement etc.. It also does not
say how to schedule the Modules, to check
whether the Hardware and Software (in some
cases) are available and are in working
condition etc..

2. The scope of Implementation tasks covered
by different Methods/Methodologies vary
too much.

3. The scope of Implementation tasks in the
ETHICS Method is mainly concerned with the
Transition tasks.

4. The Implementation activities in SD start
after drawing final structure charts.
These do not overlap with any other
activities to save time. Whereas in the
Life Cycle the Implementation activities

316

may overlap with other Phases of the Life

Cycle.

Logical:
The term Log ical is not used by JSD, MASCOT,

ETHICS and SADT. LSDM uses the term too frequently without
defining it explicitly. Perhaps the term is used for

something which is not Physical. LSDM belives that "the

term logical is a euphemism for ambiguous, general, vague

or meaningless" [p.B, 16]. But the terms Logic, Logical

Data Structure, Logical Frame-work, System Logic etc. have

been frequently used without defining them explicitly.

SASD defines the term logical as a "non-Physical (of

entity, statement, or chart): capable of being implemented

in more than one way, expressing the underlying nature of

the system reffered to" [P-235, 12].

Note: It is observed that Log ical is one of the terms

which is misused and is used differently by the Software

Engineers.

Management:
The Life Cycle def ines the term as: (1) The

collective body who handles and conducts the running and

operations of an organisation for which the system is to

be developed. (2) The authority or controlling body whose

Requirements are to be evaluated, understood and the

results of the study to be submitted to them. (3) One who

directs and handles the System Development team. (4) The

chief or director of a data processing section or computer

317

section within an organisation.
The JSD, LSDM, MASCOT, ETHICS, SADT and SASD

have used but not defined the basic term.

Method/Methodology:_

The term Method in the Life Cycle is defined as
a way, set of Phases or steps which should be followed in
order to perform certain System development tasks, such as
Project Management, Analysis, Design, Implementation,
etc.. It is designed to do certain specific tasks of
system Development and is available for small or specific
types of projects. It; may be considerd as a subset of a
Methodology.

The term Methodology in the life Cycle involves
philosophies, Management techniques, Methods, Phases or
steps, rules, techniques, tools or aids and documentation
required to develop a System. In principle it is concerned
with the complete span of System Development tasks. A
Methodology may contain more than one Method or Phases,
etc., to do different System Development tasks together
with the rules to apply them.

JSD has not defined the term Method or
Methodology explicitly, though it is used. JSD uses the
Lerms as: "A Method is a way of doing some thing;
methodology is, or should be, the study and science of
method" [p-358, 21]. LSDM, MASCOT, ETHICS and SASD have
not defined what they mean by the basic terms Method or
Methodology. MASCOT uses the term inconsistently. For
example, at [22], [P-l, 74], [P-l, 75], [P-5, 87], [88].

318

MASCOT uses sometimes Method and sometimes Methodology. In
fact MASCOT like others is not clear about the terms
Method and Methodology. However, SADT uses the term
Methodology, without defining it explicitly, for a
coherent, integrated set of Methods and rules that form a
disciplined approach to analyse & design. SADT uses the
term Methodology consistently.
Note: It reveals that the authors of the above
Methods/Methodology have no clear and agreed concept of
the terms. Further JSD & SADT have a limited concept and
scope of the terms.

Process:
The JSD defines the term as: "Execution of a

program text from beginning to end, or a particular
instance of such execution" [P-376, 21]. JSD classifies
the term Process as Model Process and Function Process.
The term Function Process is defined as: "A pr-:>cesswhich
is added to the system for the purpose of producing
output, as opposed to model process" [21]. The JSD Process
is a statement of time ordering of events whose text is
similar to a structured program which contains
Specifications of the JSD Model and Functions. The term
Function Process is perhaps equivalent to the term Module
used by SD. LSDM, ETHICS and SADT use the term without
having any definition. Perhaps it is used in its general
sense. MASCOT uses the term Activity for Process. In SASD
the SA defines the term Process as: "A set of operations
transforming data, logically or Physically, according to

319

some process logic" [12]. The SD defines the term Process
as "An activity in data flow diagram that transforms input
data flow(s) into output data flow(s)" [p-346, 61]. In
SASD the SD Process takes data and processes it i.e. it
transforms data. SD uses a limited scope of Process e.g.
an SD process cannot be activated or performed without any
data. A Process in general mayor may not perform a
Function. But in SD a Process which performs a Function is
called a Module.
Note:

a. Maddison et al., define the term Process
during the study on Information System
Methodologies as "Sequence of actions,
operations, changes; e.g. using and
creating data" [p.109, 65].

b. The steering committee of the
International Workshop on the Software
Process and Software Environment defines
the term Software Process as "The
collection of related activities, seen as
a coherent process subject to reasoning,
involved in the production of a software
system" [66].

c. Again the word process is one of those
words which are used commonly by the
Methods/Methogologies but is either not
defined or definition varies.

~eguirements Specification:

320

The term in the Life Cycle is used as: A
Requirements Specification is a particular and precise
statement of those things which are deemed to be needed.
This perception of needs is from the view of the User,
their Management and the environment.

JSD, MASCOT and ETHICS do not use the term
Requirements Specification. LSDM uses a new term called
PRL i.e. Problem/Requirement List. This list describes
formally the existing System's problems and the new
System's Requirements. This term which is used for the
list of problems/requirements may to some extent be close
to the term Requirements Specification. In SASD the term
'Functional Requirement' is defined by SD as: "A precise
description of Requirements of computer System; includes a
statement of the inputs to be supplied by the user, the
outputs desired by the user, the algorithms involved in
any computations desired by the user, and a description of
such physical constructs as response time, volumes, and 50

on" [20). The above definition of Functional Requirements
is very close to, and is a particular case of the term
Requirements Specification used in the Life Cycle.

System:
The term System in the Life Cycle is used: (1)

To represent a set of interconnected items or elements
arranged in a certain order, e.g. Management of an
organisation, a computer System, a railway network, etc..
(2) For the representation of the Design model or Design
frame for an environment. (3) In the domain of computer

321

science, any combination of Hardware, Software and the

User /Management to fullf il the spec ific Function (s) or
purpose(s) in an environment.

The basic term System is not def ined by JSD,

LSDM, MASCOT, ETHICS, SADT and SASD. However, the MASCOT

System essentially has an environment containing

actuators & sensors, people and software. The people &

software control and monitor the actuators & sensors. SADT

uses the term for any combination of Hardware, Software,

people or may consist only of people [p-2.2, 11].

Note: The most basic term is not defined and used clearly

and uniquely by the Methods/Methodologies.

System Specifications:
The term System Specifications is defined in the

Life Cycle as a precise statement of the Requirements in a

form which is meaningful to the Designer. This statement

is stated in the technical terms of computing and is

considered as an interface between the Analyst and

Des igner. To develop the System Spec ificat ions the Life

cycle requires a complete Phase called System

Specifications Phase. This Phase is an interface between

the Analysis and the Design Phases. This Phase separates

completly the Design work from the Analysis and refers to

the information which must be delivered from the Analysis

to the Design Phase. This Phase converts the detailed

proposal into clear and unambiguous statements stating

what the System must do.

JSD uses a general term i.e. 'Specification' for

322

the term System Specifications without defining it

formally. By the term Spec ificat ion they mean a set of

Process which can reflect the behaviour of the entities,

can create the outputs, and the information about the

system timings. These are used to specify the real world

model and show the Functions required by the

User/Management with respect to that model. SADT does not

use the term System Specifications but uses another term

called Functional Specifications for the similar purpose

without defining it explicitly. The Functional

Specifications in SADT are used as an input to the System

Design Phase. In SASD the SD uses the term System

Specif ication as a synonym for Functional Requirements

[P-413, 20] and the Functional Specification as a synonym

for Functional Requirements [P-413,20]. In fact the terms

system Specification, Functional Requirements and

Functional Specification used by SD are a synonym for each

other and are used for the sarne things. Also another term

the Logical Functional Specification is expressed in SA as

a detailed statement of what the system is to do, which is

as free as possible from the physical considerations of

hoW it will be implemented [P-24, 12]. Further more a term

'Structured Specification' is defined in SD as "a

structured model of manual and automated procedures of a

system; specif ically, the target document of structured

analysis comprising data flow diagrams, a data dictionary,

mini-specifications, data access diagrams, and a minimal

amount of additional information" [6lJ.

Note: It shows that the above terms are used for similar

323

purposes by the Methods/Methodologies and more
interestingly by the same Methodology at different points.
It further reveals that these Methods/Methodologies are
careless in using and defining the terms. Perhaps these
Methods/Methodologies relate, as a fashion or trend,
everything with the terms Function, Functional and
Functionality. The terms which are themselves not clear,
are used and defined ambiguously by the
Methods/Methodologies.

User:
The term User is defined by the Life Cycle as:

(1) As a person who will be using the system such as an
operator, software programmer, quality controller, stock
control officer, accountant, etc.. (2) As a person who
will be using the system in a supervisory capacity such as
a person who is in charge of section in a bank, quality
control supervisor, etc.. (3) As a person or organisation
who will be using the system as the owner, for example, a
government ministry, a banking organisation, etc.. (4) AS
a person who will be using the system without knowing
anything about the Hardware or Software, but is supposed
to know clearly about the results he is expecting and be
able to check the input or output, e.g., bank customer,
user of flight information services, etc.. (5) As the
clerical and other people who will work directly with the
system by using terminals, filling output forms or
interpreting output for their jobs etc.. (6) As a person
or organisation whose requirements are to be evaluated and

324

understood and the result of the study is then submitted

to them for further actions, e.g., bank authorities,

government officials, etc .. (7) As anyone who uses the

system by issuing commands. (B) But it excludes Analysts

and Designers and anyone who supplies the system.

The term User may be used as singular and plural

and for male and female.

JSD, LSDM, MASCOT, ETHICS, SADT have used the

term without defining it. In SASD the SD defines the term

as: "An informal term describing the person, persons, or

organisation that expects to benefit from the development

of a computer system" [P-425, 20]. SA does not define the

term.

325

B.3 ETHICS

34. What are the key words used by ETHICS Method?

The following are the important key words which
are frequently used by ETHICS Method.

Analyst, Discrepancy Analysis, Implementation,
Job-satisfaction, Participative Approach, Participative
System Design, Process, Socio-technical Approach,
Socio-technical System, Social Structure, System
Analysis, Technical System, Unit Operation, Variance,
Variance Matrix.

35. Which of the above key words are not used according
LO their definition given by IEEE?

Analyst:
The term Analyst or System Analyst is not

defined by lEE~.

The term is used but not defined by ETHICS
Method. It is used for a person or a group of persons who
analyses the job-satisfaction and efficency needs of the
User/Management and the establishment. The Analyst
provides an opportunity for increasing job-satisfaction
Lhrough the redesign of work and considers different
aspects of the new System. The Analyst is responsible for
examining the preliminary key objectives and functions and
designing the technical part of the System.
Note: Some times a common term System Designer is used for

326

the terms Analyst and Designer with out defining it

explicitly. The term function is used but not defined.

Also it is not mentioned how a function is determined and

represented.

Discrepancy Analysis;.

The term is not defined by IEEE.

The term is used by gTHICS Method but not

defined. It is used to cover an identification of variance

& examination of existing task structure and work-flows.

This is done to establish the extent to which there is a

good or bad fit between what exists, what should be, and

what has been achieved.

Iwaplementation;.
IE~~ defines the term as: (1) HA realization of

an abstraction in more concrete terms; in particular, in

terms of hardwar e, softwar e , or both If • (2) IfA mach ine

executable form of a program, or a form of a program that

can be translated automatically to machine executable

form". (3) HA process of translating a design into code

and debugging the code" [34].

The term is used by ETHICS Method for a set of

change processes in which an existing System is assisted

to move smoothly and successfuly from one organisational

state to another [T/1. The term involves providing the

user with a commitment to the new work System, with an

understanding of how it functions and with the skills to

operate it efficently [p-97, 8).

327

Note:
a. The scope

different.
Method is

of both definitions is
The definition used by ETHICS

more concerned with the
Transition activities.

b. In the above definition the word process Is
used by ETHICS Method in its common use
i.e. it is not used in its technical sense.

Job-satisfaction~
The term is not defined by IEEE.
The term is defined by ETHICS Method as: "The

'fit' between what an individual or group is seeking from
the work situation and what they are receiving from it, in
other words the 'fit' between j ob needs and positive
expectations and the requirements of the job" [p-37, 8).
The 'fit' is also defined as "achievement of a good fit
between job needs and expectations and job experience"
lp-15, 9].

Note: Job satisfacion can be met when personality needs,
competence & efficiency needs and needs associated with
personal values are fulfilled.

,farticipative APRroach:.

The term is not defined by IEEE.
The term is defined by ETHICS Method as: ·A

participative approach to work design means that the
employees of a department or their representatives
construct a new form of work organisation which is based

328

on a diagnosis by them of their own needs" [p-7, 8).

Participative System Design:
The term is not defined by IEE~.
The term is defined by ETHICS Method as:

"Handling responsibility for the Design of a new work
System to the employees who eventually will have to
operate it" [p-!>,T/). The term is used for a Design which
is based on the participative approach. There may be three
types of participative Design, i.e. Consultative Design,
Representative Design and Consensus Design.

Process:
IEEE defines this term as: (1) "In a computer

system, a unique finite course of events defined by its
purpose or by
conditions". (2)
process" [34].

The term Process is used by ETHICS Method but

its effect, achieved under given
"To perform operations on data in

not defined. The term is used in its general sense i.e. is
not the same as that used by JSD, IEEE, etc..

Socio-technical Agproacb:
The term is not defined by IEEE.
The term is defined by ETHICS Method as: "A

design philosophy that produces productivity, quality,
co-ordination and control; but also provides a work
environment and task structure in which people can achieve
personal development and satisfaction" [p-6, TI]. It is

329

used for an approach which recognises the organisations as
purposive entities. It is an approach which incorporates a
systematic Analysis of the technical components of the
existing System and the grouping of those into unit
operations. This is an approach for improving the
efficency of an existing System through identifying and
Analysing System variances.

~.QciQ-t;.e~bnicalSyste.:
The term is not defined by IEE~.
The term is defined by ETHICS Method as: "A

socio-technical System is any unit in the organisation
composed of a technological and a social subsystem having
a common task or goal to accomplish" [p-14, T/].

~oc ial Structure:.

The term is not defined by IEE~.
The term is defined by ETHICS Method as: "The

network of roles, relationships and tasks which interact
with the technical System" [p-14, 17).

~)'stem Anal)'Bis:
The term is not defined by IEE~.
The term is not defined by ETHICS Method.

However, It is concerned with the preliminary examination
of key objectives and functions. It involves the following:

a. Specifying in detail the nature of the
problem or opportunity. Why should an
existing System or Systems be re-designed?

330

b. Identifying those groups with an interest

in how the problem is solved.

c. Defining the boundaries of the System with

which Design is concerned.

d. Specifying the preliminary objectives of

the System.

e. Identifying the principal unit of
operations i.e. sUb-systems.

Note: The term System Analysis which is most frequently

used in the field of computer science is not defined by

ETH ICS or IEEJ<~.

Technical Syste.:_

The term is not defined by IEE~.

The term is def ined by ETHICS Method as: ·A

system which consists of tools, techniques and procedurs

used for processing the raw mater ials of information"

L p-14, 77].

unit Operation:

The term is not defined by IEE~. However, the

closest possible term for Unit Operation may be Sub-system

which is defined as: "A group of assemblies or components

or both combined to perform a single function" [34].

The term is defined by ETHICS Method as: "A set

of integrated tasks separated from the other sets of tasks

by some change of state in the input" [p-161, 8]. It is

also def ined as: "An integrated set of activities which

are attached to a major System function. This set of

activities is separated from other sets of activities by

331

some kind of boundary _ a change of input, time, location
etc." Lp-8, 77).

Variance:
The term is not defined by IEE~.
The term variance is defined by ETH ICS Method

as: "A tendency for a work System to deviate from a
desired specification" Lp-8, 8]. The term is used for a
weak area in a System; a part of the System which tends to
deviate from some desired standard or norm.

Note:
a. The term specification is used but not

defined, neither is it mentioned how and
from where to obtain or develop the
specification.

b. Some variances may be called the key
variance. These are the variances which
are most direct or important in their
impact or effect.

Variance Matrix:
The term is not defined by lEEK.
The term is used but not defined by ETHICS

Method. It is a matrix where variances are placed. The
Matr ix shows the influences of a problem i.e. how it
interacts with other problems in the unit operation. In
this matrix the variances which are associated with the
System input are placed first then those which are
associated with the System output. The interaction a

332

variance has with other variances is noted by placing its
number in the vertical column it heads oppos ite those
variables which it effects. This matrix can easily point
out those variances which affect more and creates many
other variances.
Note: It is a unique approach which no one has used during
the System Analysis.

333

B.4 JSD

34. What are the key words used by ..JSIH

The following are the important key words which

are frequently used by ..JSD.

Action, Data Base, Data stream, Entity, Event,

Function, Model, Process, Processor, Real World,

Specification, State Vector, System.

3b. Which of the above key words are not used according

to their definition given by IEEE'?

Actlon:_
IEEE does not define this term .

..lSI)def ines the term Act ion as "an event in

which one or more entities participate by performing or

suffering the action-.

Note: In the above definition the word event is used by

JSI) without defining it. Further the word action ls used

for defining the word Action itself. These make the

def inition ambiguous. However in their literature it is

clear that Actions in JSD take place in the real world

outside the System. The Actions take place at a point in

time not over a period of time. These Actions are

assent ially atomic and can not be decomposed further in

sub actions.
334

Database:
IEE~ defines this term as: (1) "A set of data,

part or the whole of another set of data, and consisting
of at least one file that is sufficient for a given
purpose or
collection

for a given data processing system".
of data fundamental to a system".

(2)

(3)

collection of data fundamental to an enterprise-.
This term is not formally defined by JSD. But

they use it as a collection of state vectors of System
processes: model process, function process, and some times
schedular process.
Note: Database development in JSD is done at the
Implementation step, at the end of development activities.
In the Implementation step the Designer may keep the state
vector of one process in one, two, or many Database
segments or records. A JSD Database record can easily
accommodate the state vectors of two or more processes.
The concept of Database differs from that of the IEEE in
the sense that it is used in a specific sense and in terms
of the jargon of the JSD terminologies.

pata streaJI:

IEEE does not define this term.
JSD defines the term Data Stream as "an ordered

set of records or messages by which two processes
communicate, the records being read by one process in the
order in which they were written by the other-.
Data stream is considered as an infinite expansable queue
which consist of a sequence of records. These records can

335

be read or written. Data streams are used by the processes
for the purpose of communication. They are also used to
connect two processes and the System to the real world.
Note: To a certain extent this term is used in a similar
way to the data flow concept in SASD Methodology.

Entlty:_
IEE~ does not define this term.
JSD defines the term Entity as "an object in the

real world which participates in a time ordered set of
actions-.
Note: The meaning of JSD Entities is closely associated
with the process model and with the time ordered set of
actions. JSD ~ntites are objects which describe the real
world e g. customer, elevator, ship, book etc.. The JSD
Entities perform or suffer an action, which have
significant time ordering. ~ach separate active and
independent Entity in JSD is represented by processes. The
criteria for selection of an Entity is that the
description must be able to support the functions to be
provided by the System and must be able to do an action.
Therefore an ~ntity cannot be omitted if its absence will
affect a function. This concept of Entity differs from
that used in database Entity. So a JSD model has less
entities than a database model.

Event:
The term is not defined by IEE~ and JSD, though

it is used very frequently.

336

Function:
IEE~ defines Lhe term Function as: (1) "A

specific purpose of an entity or its characteristic

action". (2) "A sub program that is invoked during the

evaluation of an expression in which its name appears and

Lhat returns a value to the point of invocation. contrast

with sub-routine".

JSD has not def ine th is term expl icitly . The

Method uses the term as an act ion or set of act ions

performed by the System and resulting in the production of

output.

Note:

1. It is claimed that a model of the real

world can provide a conceptual as well as

computational basis on which various

Functions of a System can be built.

2. JSD claims that from the set of words

called dictionary which is expressed in

JSD model the verbs can be used to specify

the Functions. It is not clear how to

select and determine the verbs to be used

as Functions. Further the meaning of the

words depends upon the User's/Management's

view of reality.

Model:
IEE~ does not define this term.

JSD def ines the term Model as nAn abstraction

which has been realized, especially by a set of sequential

337

process·.
JSD uses this word to mean a Model of the real

world outside the computer System, which is to be
developed. It is not used as a model of the System itself
nor its attributes or characteristics. Firstly it develops
an abstract description of the real world which is simply
a description in which relevant aspects are described and
irrelevant aspects omitted. Then secondly it makes a
realization in the computer, of that abstract description.
The JSO Model provides the conceptual and computational
basis for Lhe System functions. It concentrates on
establishing the basis on which a set of functions can be
specified. It does not contain any description of the
system output.

Process:
IEEt:defines this term as (1) "In a computer

system, a unique finite course of events
purpose or by its effect, achieved
conditions·. (2) nTo perform operations
process·.

defined by its
under given
on data in

JSD defines Process as nexecution of a program
text from beginning to end, or a particular instance of
such an execution·.

The JSD Processes are statements of time
ordering of events. Ils form is like a simple structured
program. The Process text contains both the specifications
of the model and the specifications of the function. It
forms a part of the System Specifications. One Process is

338

used for each independent active entity, which may have

local variables to represent attributes of the entity. A

Process may have any number of input/output data streams.

The connection between the JSD Process is performed by

state vector connection or data stream connection. ~ach

Process may be considered to belong to a Process class ego

class of customer Process, class of order Process etc ..

The class of Process determines its program text and also

determines how the Process fits into the System network.

In a Process only one thing can happen at a time.

Therefore there must be several Processes in a JSD model.

To make the model dynamic JSD has developed a network of

such Processes.
Note: JSD is close to the first definition of IEEE, with a

special condition of time ordering of events.

Processor::
IEE~ does not define this term.

JSD defines the term Processor as "a device used

in implementation, capable of realizing a single process

execution·.

Real War:ld :_
IEEE does not define this term.

JSD defines the term Real World as "the context

in which the subject matter of the System exists·.

Note: Their literature reveals that the JSD Real World is

the starting point of the Methodology. It is the context

in which the subject matter of the System exists. It is

concerned with the world in which the time dimension has

339

prime importance, and such a world is dynamic in nature.

The Real World is described in terms of entities, actions

which they perform or suffer, and the order ing of those

actions. These entities have fixed properties and [ixed

relationships.

~pecificatlon:

IEEE defines the term Specification as: (1) "A

document that prescr ibes, in a complete, prec ise,

verifiable manner, the requirements, design, behavior, or

other character istics of a system or system component".

(2) "The process of developing a specification". (3) "A

concise statement of a set of requirements to be satisfied

by a product, a material or process indicating, whenever

appropr iate, the procedure by means of which it may be

determined whether the requirements given are satisfied".

JSU has not def ined the term formally, though

they are using it frequently. By Specification JSl) mean

the set of processes which can ref lect the behaviour of

the entities, can create the outputs and information about

the System timings. JSl) Specifications are based on

actions, their attributes and time orderings. These are

used to specify the User's/Management's model of the real

world and also the functions required by them with

reference to the model. JSU develops its Specif ications

which are independent of any software and hardware, so

these Specifications can be executed directly on a

machine. The JSl) Specifications are created from the

information about the real world provided by the

340

User/Management. JSD Specifications are written as a set

of communicating, concurrent network of processes. Their

concept of Specification is very close to that of lEEK.

However they differ in the sense that the Specifications

developed by JSD specify the User's/Management's model of

the real wold and also their required functions; where as

IEEE specifies Requirements, Design, behaviour etc ..

state Vector:
IEE~ does not define this term.

JSD defines the term State Vector as -the local

variables of a process, including the process text

pointer-.
Note: It is a form of connection between the two

processes, and also the real world and the model process.

It changes only when a process is executed. When State

Vector connections are used between the two process, one

of them directly inspects the State Vector of the other.

system;.
IEE~ defines this term as: (1) "A collection of

people, machines, and methods organised to accomplish a

set of specific functions". (2) "An integrated whole that

is composed of diverse, interacting, specialised

structures and sub-functions". (3) "A group or sUb-system

united by some inter-action or interdependence,

performing many duties but functioning as a single unit-.

JSD does not define the term System explicitly.

341

Note: From their published material it is clear that they

consider the System as the simulation of the relevant

parts of the real world. which are outside the System. The

subject matter of the System is obtained from the real

world so that the System can reflect the real world as it

is. In JSU System functions which are required by the

User/Management are introduced into the System at a later

stage. A JSU System has definite boundaries. across which

the input/output between the real wor Id and the System

flows. It consists of computer and manual procedures and

hardware. JSD uses the term System in a restricted way.

JSD considers it as a simulated model of the relevant part

of the real world. where as IEEE uses it as the collection

of relevant parts to do a set of functions.

342

B.5~

34. What are the key words used by LSDM.

The following are the important key words which
are frequently used by LSDM.

Composit Logical Data Design, Data Driven
System, Data organisation, Data Store, Enquiry Function
Catalogue, Enquiry Process Outlines, Entity, Entity
Model, ~ntity Life Histories Model, Event, Function,
Logical Data Structure, Logical Process, Logical
Specification, Low level Informati0n Process, Physical
Document Flow, Physical Design, Problem Requirement List,
Process, Process Outlines, Relational Data Analysis,
Update Process outlines, State, System Logic, System
Requirement Solution.

35. Which of the above key words are not used according
to their definition given by IEEE.

Data Dr iven Syat_:

IEEE does not define this term.
LSDM uses the term Data Driven System without

defining it explicitly. The term is used for a System in
which generic data structure is used. This generIc data
structure generally tends to change very little over a
period of time.

343

Data Flow Diagra.~

IEE~ defines the term DFD as "A graphic

representation of a system, showing data sources, data

sinks, storage, and processes performed on data as nodes,

and logical flow of data as link between the nodes" [34).
The term DFD is def ined by LSDN as "Data Flow

Diagrams are operational picture of how data moves between

the system and the external world".

The LSDN DFOs are used to represent the existing

System to find out its information flow, the needs of the

User/Management and to define in pictorial form the

required System. These diagrams also show how the process,

transactions, System-maintainance data fit together.

Note: Apart from the other uses of LSDM DFD, it is also

used to find the needs of the User /Management in the

existing System.

Bntity:
I~~E has not defined the term Entity.

LSDN uses this term frequently, but it is not

defined explicitly. However, from their literature it is

revealed that they are using the term Entity for the

object which actually occurs in the System. Each Entity in

the Entity model is recognised as a data store or part of

a data store in DFD.

344

~ntity_ ..~i__feHistories Model:

IEE~ has not defined this term.

LSDM uses the term as "~ntity Life History

diagrams provide a third view of data, in order to show

the effects of time on the system"

The ELH model shows how an entity changes, in

the System over a per iod of time and in what order the

events must occur. A chart is developed for each entity

taking part in the System. This chart shows what events

the system needs to deal with and which events effect the

data in the System. During the drawing of these charts the

origin of each event and processing of each transaction is

identified. Some other details about error dectection and

dealing with unexpected events are also added.

Entity Model:

IEE~ has not defined this term.

The term Entity Model is defined by LSDM as nan

entity model is the generic data structure of the system's

data that is used as a basis for developing the System to

support its processing needs·.

This model shows the data as the basis for an

information System and shows how it can be accessed.

Note: These models are created at different stages of the

System development i.e. from the Initial Investigation

stage to the detailed Composit Logical Data Design showing

data structure, data fields, access paths etc .. The data

stores which are concerned with organising the operational

System such as a transaction files, extracted files for

345

sorting & listing etc. are not shown in the entity model.

Event;..
IEEE has not defined this term.
LSDM uses this term frequently with out defining

it explicitly. They are using the term for the effect of
actions on entities, resulting in a happening for
something in the environment or System. l"or example an
event may create changes to the System data.

Function:
IEEE defines the term

specific purpose of an entity
action" (z) "A sub program that

Function as: (1) -A
or its characteristic
is invoked during the

evaluation of an expression in which its name appears and
that returns a value to the point of invocation. Contrast
with sub-routine-.

The term Function is used by LSDM but not
defined. It does not say how to find and represent the
functions.

Process:
lEEr: defines this term as (1) "In a computer:

system, a unique finite course of events defined by its
purpose or by its effect, achieved under given
conditions". (2) To perform operations on data in process-.

The term Process is used by LSDM but not
defined. They use the term in its general sense.

346

System:
IEE~ defines this term as (1) "a collection of

people, machines, and methods organised to accomplish a

set of specific functions". (2) "an integrated whole that

is composed of diverse, interacting, specialised

structures and sub-functions. (3) "a group or sUb-system

united by some inter-action or interdependence,
performing many duties but functioning as a single unit-.

The term System is not def ined explic itly by

LSDM.

Note: The terms Data Design, Data Analysis, Logical Data

structure, Logical Process, Logical Specification, Low

Level Information Process, Relational Data Analysis,

system Logic etc., have been used frequently without being

defined.

347

8.6 MASCOT

34. What are the key words used by MASCOT?

The following are the important key words which
are frequently used by MASCOT.

Access Procedure, ACP Diagram, Activity,
Channel, Construction, Control Queue, Form,
Implementation, Interrupt Handler, Kernel,
Scheduling, Slice, Stirn, Sub-system, System,
Construction, System Element.

IDAs,
Modules,

System

35. Which of the above key words are not used according
to their definition given by IEEE?

"cc,ess Procedure:

IEE~ does not define the term Access Procedure.
MASCOT defines the term Access Procedure as -a

procedure used to access a channel or pool data structure.
Strict conventions are specified for channel access
procedures· L22J. It is used as a means by which
activities can communicate asynchronously via the IDAs.
The Access Procedure provides an interface between the
activities and the IDAs i.e. channels & pools. The Access
Procedures may be of two types one each (or
inputs/outputs. There is a complete symmetry between
these two types of Access Procedures. The Access
Procedures are developed to do the following actions in a

348

specified sequence.

* Join-the control queue,

Check-the state of the data areas and wait

if needed,

Transfer Data,

Amend state,

stim-the control queue controlling the
other interface,

Leave-the control queue controlling the

other interface,

Wait, .

*

*

*

*

*

*

~cti¥ity_Cbannel Pool (i.e. ACP) Diagra.:

lEEK does not define this term. The nearest term

for ACP Diagram which is used by IEEE may be the Data Flow

lHagram.
MASCOT uses the term ACP Diagram frequently

with out def ining it explicitly. It is a diagram which

depicts activities and IDAs and forms the basis for the

division of tasks between various Programmers. The ACLl

Diagrams can be used to assess the progress in

construction, coding and testing on a module to module

basis.
Note: MASCOT is heavily based on ACP Diagrams, therefore,

developing these diagrams needs highly skilled and

experienced Programmers.

349

J\ctlvlties :_

IEEE does not define this term. The nearest term

for Activities which is used by IEEE is process.

MASCOT activity is a process, a piece of program

which may be developed independently. It is a unit of D~

which is scheduled by a schedular. Activities execute

identifiable Lasks within a System. Activities are

isolated from one another and may be modified

independently without having major effects. It is a single

thread in the multi-processing System. An activity can

have limited communication scope i.e. it is only allowed

to communicate with certain data areas. In other words the

concept of global data is not allowed. The Activities run

in parallel with each other. They communicate via IDAs in

an asynchronous way (like JSO scheduling).

Note:

1. The MASCOT Activities are like JSl)

processes and SASD modules.

2. The manner of communication for Activities

i.e. use of IDAs is similar to that of JSD

processes which use SV & Data Store.

3. There is no evidence for the claim that the

modif ication of an activity can be done

independently without having major

effects. It is not clear how the coupling

can be minimised to avoid the ripple

effects especially when modif ications are

made.

350

Channel:

IEEE does not define this term.
MASCOT defines the term Channe1 as "an

inter-communication data area used exclusively for
passing message data between activities. All access to a
channel must be via access procedures which use basic
MASCOT primitives to ensure an orderly and sustained flow
of data through the channel" It has two uni-directional
interfaces implemented by a pair of access procedures, one
for sending the other for receiving. Therefore, a Channel
has at least two queues, one for controlling input access
and the other for controlling output access. These
interfaces are implemented by access procedures. A
Channel is represented diagramatically by [----J.

construction:
IEEE does not define this term. The nearest term

for Construction used may be IEEE may be Implementation.
MASCOT defines the term Construction as, "all

processes necessary to convert source text into
executable code resident in a computer" [22]. The process
of Construction is used for compilation and loading of
individual pieces of software to get the total software
content of a computer.

.c_ont~ol Queue:_

IEEE does not define this term. The nearest term
for this may be data structure. It is a particular case of
data structure.

351

MASCOT defines the term Control Queue as "a data

structure, providing the focal point for software

stimulation and mutual exclusion of one activity by

another. Each control queue has a pending list upon which

activities are placed to await either an explicit software

stimulus (Stirn) or the release of the mutual exclusion

(Clear). Other fields within the control queue denote the

current state of the control queue and the priority of the

current list to which items are transferred from the

pending list" [22]. It is a fundemental MASCOT control

variable. A Control Queue may have five states of queues.

Four primitive procedures i.e. Join, Leave, Wait, Stim are

used to interact with Control Queues.

For.:_

IEEE does not define this term. The nearest term

for Form may be Integration. Integration is "The process

of combining software elements, hardware elements, or

both into an overall system-.

MASCOT defines the term Form as "this operation

is used to build MASCOT subsystems from loaded and linked

System elements" [10,22]. It is a command used to combine

the System elements i.e. channels, pools and root

procedures, in order to develop subsystems (and their

activities). 8efore combining the System elements the

Form command checks that each item mentioned is a System

element and that the parameters which have been given for

the root procedure match the Requirements as specified in

the root procedure header.

352

Function;_
IEEE defines the term Function as: (1) nA

specific purpose of an entity or its characteristic
action". (2) "A sub-program that is invoked during the
evaluation of an expression in which its name appears and
that returns a value to the point of invocation. Contrast
with sub-routine-.

No clear defination of Function is available
from the literature of MASCOT Method. Perhaps they are
using the term in its general sense.

IDAB:.

IEE"~ does not define this term. The nearest
possible term for IDAs used by IEEE may be data base.

MASCOT defines the term as "generic term for the
data areas which provide the exclusive means by which
activities communicate namely channels and pools", [22).

The Inter-communication data areas are
developed to enable the activities to communicate with
each other. The IDAs contain the data processed by the
activities together with access procedures which perform
the tasks like data control, protection & scheduling. {DAs
define the external data-interface of an activity. The
IDAs can be of two types i. e. 'channels' and 'pools'
according to data access requirements. Arrows represents
Inter-communication between activities and IDAs.
Note: The use of IDAs has an advantage that it prevents
the duplication of work, e.g. a channel developed earlier
can be re-used, if needed.

353

Implementation:
IEEE defines the term Implementation as (1) "A

realisation of an abstraction in more concrete terms; in

particular, in terms of hardware, software, or both". (2)

"A machine executable form of a program, or a form of a

program that can be translated automatically to machine

executable form". (3) "The process of translating a design

into code and debugging the code • [34).
The term Implementation is used by MASCOT but

not defined. The term is used to implement the software on

host & target machines. The MASCOT Implementation may be

of two types i.e. frozen and evolutionary. In the frozen

Implementation no change or enhancement in the System is

possible, where as in the evolutionary Implementation a

set of operational subsystems may be changed while the
System is running.

Note: The MASCOT

Implementation can

Implementation.

concepts of construction

be equivalent to the

along

IEEE term

with

Interrupt Handler~
IEEE does not define this term.

MASCOT defines the term as "the small piece of

machine dependent software responsible for translating a

real hardware interrupt into a MASCOT virtual interrupt.

Also responsible for remember ing and resetting machine

status (hardware registers etc.)" [22]. It is a part of

kernel software which is concerned with hardware

interrupts. It generates a STIM each time a hardware

354

interrupt is received to be applied to a control queue. it

interfaces the MASCOT subsystems which are outside the
kernel.

Kernel~

IE~~ defines the term Kernel as (1) "A nucleus

or core, as in the kernel of an operating system". (2) "An

encapsulation of an elementary function. Kernel can be

combined to form some or all of an operating system or set

of firmware". (3) "A model used in computer selection

studies to evaluate computer performance".

MASco'r def ines the Kernel

to support programming in
as "Software

necessary

SUbsystems.
t.he form of

The kernel software includes the despatcher

and interrupt handler executive programs, the kernel data

base and a set of primitive procedures" [22]. This

software provides a set of synchronising primitive

operations, two executive routines and a Form command. An

important aspect of the Kernel software is its monitor

facility which makes possible a time ordered sequence of

its actions to be recorded. The synchronisation

primitives handle all problems of process synchronisation

at the base levels. The two executive routines allocate

the processing time. The first one allocates the processor

t.ime on demand from external hardware interrupts and the

second one is responsible for allocating processor time to

t.he base level i.e. non interrupt driven activities. The

l'~ormcommand is used to combine System elements e.g.

channels, pools, root procedures etc.. It also contains

355

certain key files, tables and lists which are used in the
construction of software and the dynamic management of
executive sequences. The Kernel is adoptable to co-equal
multi-processor types of computer. The Kernel makes
possible a network of processes i.e. MASCOT activities to
be implemented and run on large machines.
Note:

a. The MASCOT definition of Kernel is close
to the 2nd. definition given by IEEE.

b. The main point concerned with the MASCOT
Kernel is the extent of mutual exclusion
needed between the processes. The easiest
solution may be to have only a single
processor to execute within the Kernel at
a time.

c. The Kernel software can not be expressed
in terms of a subsystem. It supports the
subsystem.

Module:
I~E~ defines the term Module as (1) "A Program

unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading; for
example, the input to, or output from, an assembler,
compiler, linkage editor, or executive routine". (2) "A
logically separable part of a program" [34].

MASCOT defines the term Module as Ra basic
constructional unit of programming, compilation and
loading" [22]. e.g. channel, pool or activity. MASCOT

356

classifies Modules as code Modules and data Modules. Code
Modules are mainly instructions to be executed. Its source
text is written as a procedure and may contain the name of
another Module. Every code Module must consist of at least
one procedure. This call may transfer the control to the
other Modules at the point of control. Data Modules
provide data space for inter-communication between code
Modules. Modules can be represented diagramatically
either by a circle or by a broken rectangle. The circle
represents data processing Modules i.e. activities and
the rectangle represents data areas. The Modules after
completion are stored in the computer to be linked with
other Modules by using MASCOT construction software.

Note:
a. The facility to call other Modules will

transfer the control to the other Modules
at the point of control. This may create a
great problem of coupling and cohesion.

b. The term Module is used for an activity
which is defined as process.

c. Again like other authors, MASCOT uses the
words Module and process for the same
things. These terms are used carelessly
and in a confused manner.

357

Modular 1ty:_

IEE~ defiHes the term Modularity as "The extent

to which software is composed of discrete components such

as that a change to one component has minimal impact on
other components" (34).

The term Modular ity is used by MASCOT but not

defined explicitly. However, it is used for partitioning a

software into smaller manageable components. "Modularity

starts with partitioning of the system design leading on

to the coding of reasonably small modules of source text"
[p. I, 22).

Note: IEE~ is using the term in the light of Coupling,

whereas MASCOT is considering it in terms of its size.

Pool:_

IEE~ does not define this term. The nearest term

for Pool used by IEEE may be data base.

MASCOT defines the term Pool as "an

inter-communication data area used to form reference data

which can be accessed by one or more activities. Access to

a pool is by user def ined conventions but can be via

access procedures" [22J. The term Pool is used to form

reference data which can be accessed by one or more

activity. It is basically a depository for non-transit

data. In general it is not concerned with data flow

through the System. Essentially a Pool has a single bi

-directional interface. Diagramatically it is represented
as !__!.

358

Note: It is similar to the terms data store, data base,
state vector and data stream.

~oot Procedure:
IEEE does not define this term. It is a special

case of module.
MASCOT defines the term Root Procedure as -the

module which defines the form of the processing for an
activity. The formal parameters of the root procedure
define the number and type of inter communication areas
which the activity will require to access in a running
subsystem. Additionally the formal parameters can define
the interrupt channels which will be required and they can
also be values of any data type" [22]. It is a program
code which determines the action of an activity and the
function of an entity. It is like a programming unit and
may be of any size within practical limits. It has formal
parameters which are the channels and pools. These formal
parameters of Root Procedure specify the number and type
of IDAs which the activity will require to access in a
running subsystem. It may be loaded either as a single
entity or as a linked collection of several modules.

Scheduling;.

IEE~ does not define this term.
MASCOT uses lhe lerm frequently without

defining it explicitly. In MASCOT Scheduling is done by
the despatcher, interrupt handler and Scheduling
primitives which are themselves parts of the kernel

359

software. The despatcher or interrupt handler calls the

activities. The processing can be initiated by the

interrupt handler in response to either the hardware

interrupts and or by the despatcher in order to perform

the pending work listed on the current and delay lists. In

both cases control is passed to the activity which in turn

is required to co-operate by returning control to the

kernel when it is no longer required. Test, Wait, Clear,

Stirn, Suspend, Delay, Terminate etc. are the examples of

Scheduling primitives.

The execution period of an activity i.e. slice

is monitored by the MASCOT monitoring facility for

measuring and recording slice times. This information is

used for establishing satisfactory Scheduling. Despatcher

has a privilege that it can detect a very long slice and

can forcibly terminate such odd activities. A unified list

structure is used for all kernel and control queues list.

This enables the despatcher to allocate and adjust the

space dynamically to the individual lists without

effecting the overall space required. This approach

prevents holding up any activity due to lack of list space.

Note: Its role is like the JSD schedular.

Slice:
IEEI!!does not def ine this term. The closest

terms used by IEEE for Slice may be I!!xecutionTime and Run

Time.

MASCOT def ines the term Slice as "a per iod of

execution of an activity started either by a hardware

interrupt or by the despatcher and terminated by the
activity calling a kernel primitive procedure- [22]. The
execution of an activity is a period consumed between
starting and termination of an activity.

sti.:

IEEt: does not define this term. The nearest
possible term used by IEE~ for Stirnmay be Instruction.

MASCOT defines the term Stirnas -the Primitive
procedure which allows an activity to apply a software
stimulus to a control queue and hence to a waiting
activity (if any)- [22]. It is usually positioned within a
special type of channel called an interrupt channel or
(INTCHAN). Stirnis used as a procedure taking little time
lo execute.

IEE~ defines the term Subsystem as -a group of
assemblies or components or both combined to perform a
single function-.

MASCOT defines the term Subsystem as ·the major
unit of software construction in a MASCOT system and the
unit which is intoduced into and removed from a running
system. A subsystem is formed from System elements and
consists of one or more activities· [22]. The MASCOT
Subsystem is a network of one or more activities
associated with one or more IDAs, for the purpose of
convenience. It is functionally related group of modules,
used as an allocating unit of creation, starting, stopping

361

and removal. Subsystems are formed from System elements
such as root procedures, channels & pools. It shows the
structure of the software and its organisation, but it is
not an essential part of MASCOT philosphy. Each activity
in a Subsystem is essentially a single 'thread' in a
multi-processing System. This concept reduces the need of
having global System management. The MASCOT Subsystem
essentially has named root procedures to support
individual activities. The Subsystems are named when they
are created. In a situation where such
unavoidable, the management operations
slowly, provided the activities are not
global operation can continue normally.

management is
can be done
effected and

Note:
a. The terms function and functionaly related

are not defined. How to identify, specify
and represent the functions is not
mentioned.

b. From the MASCOT definition it is not clear
how many functions a Subsystem can
perform. Is it limited to a single
function like the IEE~ definition of
Subsystem·l

.system;.
IEE~ defines the term System as (1)

collection of people, machine, and methods organised to
accomplish a set of specific functions". (2) "An

362

integrated whole that is composed
interacting, specilised structures and
(3) A group or subsystem united by some

of diverse,
sub-functions·.
interaction or

interdependence, performing many duties but functioning
as a single unit· L34].

MASCOT uses the term System frequently without
defining it explicitly. It is represented by the current
set of running sUbsystems.
Note:

a. The use of the term System by MASCOT is
nearer to the 3rd. definition of System
given by the IEE~.

b. The MASCOT System has a characteristic
that it can be varied while it is in
operation. This can be achieved by adding,
starting, stopping or deleting the
sUbsystems.

system Construction:
IE~~ does not

Construction. The nearest
define the

term used by
term System

IEE~ for this
purpose may be 'Implementation'.

MASCOT uses the term System Construction
frequently without defining it explicitly. It is used for
the Implementation tasks. The term is used for all those
processes necessary to convert source text into
executable code in machine. It covers compiling, loading
and linking. The basic unit of construction requires
several distinct operations supported by various files to

record intermediate results of construction processes.
These operations are Compile, Load, Link and }<'orm.The
subsystems table and activity table, which are the
important parts of the kernel data base, are also
performed in construction processes.
Note: This tasks is similar to the concept of
Implementation of the Life Cycle.

sy-stem_~lement8:
IEEE does not define the term System Element.

The nearest term used by IEE~ for this purpose may be
'Component' which is defined as "A basic part of a system
or program" [34}.

MASCOT defines the term System Element as
"loaded and linked root procedures, channels and pools
which can be used to form MASCOT subsystem" (22). The root
procedures, channels and pools are known collectively as
System Elements. These are built up individually by the
constrution facilities. These are the component elements
which are combined together into subsystems by using the
Form facility.

B.7 SADT

34. What are the key words used by SADT'l

The following are the important key words which

are frequently used by SADT.

Actigram, Activity, Datagram, Design model,

Function, Functional Analysis, Functional Model,

Functional Specifications, Mechanism,

Model, System, System Design.
Process, SADT

3~. Which of the above key words are not used according

lo the def inition given by I~E~'i

Actigr_:

The term Actigram is not defined by IEEE.

This is a diagram which represent the activity

aspects of the SADT model in terms of their happenings.

Actigrams are composed of rectangular boxes and arrows

connecting the boxes. Boxes represent activities and their

components in the break down structure. The interface

between boxes is done by arrows which represent data. The

name of the Actigram box starts with a verb representing a

function. A box may perform various parts of its

activities i.e. functions.

Hate: This diagram is concerned with the results of the

actions performed by the entities. The result of an action

is described by other Methods/Methodogies as an event.

Activity;

The term Activity is not defined by IEE~.

The term Activity is not def ined explicitly.

Activities are happenings such as CONTROL FLIGHT, MANAGE

RESOURCES, CULTIVATE, PRODUCE, ADO ALLOWANCES, etc ..

These activities are performed by entities such as man,

machines, computers etc .. Perhaps it is used an alias for

function.

control:

The term Control is not defined by IEEE.

The term Control is not defined explicitly. It

is used for a constraint or a controlling factor to govern

the way needed by a box to perform its role. It is used to

show the control relationship among the boxes and is

represented by an arrow and enters from the top of a box.

The output of a box may provide some or all controls for

one or more other boxes.

Note: It does not represent the flow of control or

sequence.

Datagr_;.,

The term Datagram is not defined by IEEE.

This is a diagram which represents the data

aspects of SADT model in terms of things. Boxes represent

the objects , nouns i. e. the data or class of data. The

interf aces between these boxes are made by arrows which

represent the activities.

366

Des19n Model:_
The term is not defined by IEEE.
The term is used for a model which can express

how the System will be Implemented to perform the
functions.

Function:
IEE~ defines the term Function as: (1) "A

specific purpose of an entity or its characteristic
action. (2) "A subprogram that is invoked during the
evaluation of an expression in which its name appears and
that returns a value to the point of invocation. Contrast
with sub-routine-.(34).

The term Function is not defined explicitly by
SAUT. No clear concept of function is available from their
literature. Perhaps they use the term Function to
represent an activity i.e. happening which is represented
by a verb in a natural language. In SADT Functions are
represented by boxes in the Activity diagram. No criteria
for detecting activities is given. It entirely depends on
the intuition of the Analyst/Designer.

Functional AnalYSis:
The term Functional Analysis is not defined by

the IEEE.
SADT uses the term without defining it

explicitly. The nearest synonym for the term Functional
Analysis may be the Functional Decomposition, the term
defined by IEE~ LP-17, 34). The SADT term }o'unctional

Analysis starts with a statement of System Requirements
and delivers Functional Specifications as output [p.i-ii,
11]. During Functional Analysis generally emphasis is made
on analysing and documenting what the System should do
rather than how it will do it. However, in some cases
consideration about how also takes place.

,ynct_ional Model:_
The term Functional Model is not defined by IEE~.
The term Functional Model is not defined

oxplicitly. However, it is used for a model which can
express what the problem is and what functions the System
must perform. It expresses activities & data aspects of
the System. This model delivers a part of the Functional
Specifications.

,unctional Specifications:
The term Functional Specification is defined by

IEEE as "A specification that defines the functions that a
system or a system component must perform" (34).

The term Functional Specifications is not
defined explicitly by SADT. However, the term is used to
name the output of the Functional Analysis Phase. The
major portion of the System Specifications is obtained
from the SADT model and serve as one of the inputs to the
Design Phase. The major components of the l"unctional
Specifications are provided by the activity diagrams and

data diagrams.

Mechanisms:
The term Mechanism is not defined by IEE~.

The term Mechanism is used to indicate 'how' and

'what' is to be realised. It is used to Implement the

required functions. A Mechanism may be very abstract or

very concrete. If a Mechanism is itself complex then it

can be decomposed to a lower level showing how that

Mechanism can be carr ied out by further Mechanisms. The

criteria for Mechanism selection is the experience of the

Designer and a knowledge about its performance.

Process:
lEE!!: def ines this term as: (1) "In a computer

system, a unique finite course of events def ined by its

purpose or

conditions".

by

(2)

its

"To

effect,

perform

achieved

operations

under given

on data in

process" [34).

The term Process is used but not def ined by

SADT. They use the term in its general sense.

SADT Model:

The term SADTmodel is not defined by I~EE.

"An SADTmodel is a graphic representation of

t..he hierarchic structure of a system, clearly revealing

the relationship of all system elements or functions"

Lp.2-6, 11).

An SADT Model is an organised sequence of

diagrams. It mainly consists of actigram, datagram, text

in a natural language, glossar ies, and node index. The

model is developed in a structured manner and can depict
the details gradually. Each diagram is connected into the
mode1 lo express the whole System, taking into
consideration their logical relationship with each other.
This connection is symbolically made by using the arrows
which can only represent constraints and relationships
but not the flow of control or sequence.

System:
IEEE defines this term as (1) "a collection of

people, machines, and methods organised to accomplish a
set of specific functions". (2) "an integrated whole that
is composed of diverse, interacting, specialised
structures and sub-functions. (3) "a group or sUb-system
united by some inter-action or interdependence,
performing many duties but functioning as a single unit-.

SADT defines the term System as "A system may
include any combination of hardware, software, people, or
may consist of only people-.

370

B.8 ~

34. What are the key words used by the SASD Methodology'j

The following are the important key words which

are used frequently by SASD Methodology.

Blackbox, control, Cohesion, Coupling, Data

structured Diagram alias Data Access Diagram,

Data-Dictionary, Data Flow Diagram, Data store, Data

Structure, Factoring, Function, Functional

Specifications, Implementation, Mini-specification,

Modules, Process, Pseudo-Code, Sink, Source, Structured

chart, Structured English, Structured Design

Specification, Transaction,

Transform Analysis, etc ..
Transaction Analysis,

35. Which of the above key words are not used accordance

to their definitions given by IEEE?

Data Flow Diagraa;..

IEEI'~ def ines the term as: "A graphic

representation of a system, showing data sources, data

sinks, storage, and processes performed on data as nodes,

and logical flow of data as link between the nodes" [34].

SO defines the term DFU as: "A graphic tool for

depicting the partitioning of a system into a network of

activities and their interfaces, together, with the

origins destinations, and stores of data" [61].

371

Note:
1. In a UFU the external entities which may be

involved in the System are identified
first. This gives a sort of System
boundary_ This step is similar to that of
JSO in which a list of entities is prepared.

2. It looks as though the IEEE and SO are
using OFU for different purposes. The
first one uses them for a graphic
representation of a System and things
related to its data, the second uses OYU
for the partitioning of a System into
networks of activities, to show what
different modules will do and how they will
interact with each other.

3. The term activity is used but not defined,
perhaps it is used in a general sense.

4. Perhaps they mean the same thing but they
are defining different aspects of a DFD. It
needs the revision of the definitions, at
least by the IEEE an independent body.

Function:
IEE~ defines the term Function as: (1) aA

specific purpose of an entity or its characteristic
action·. (2) A subprogram that is invoked during the
evaluation of an expression in which its name appears and
that returns a value to the point of invocation. Contrast
with sub-routine· [34].

372

The term Function is used but not defined
explicitly. "'rom their literature it is clear that they
are using this word informally, in-consistently and in
general terms which are used in finance or business e.g.
ACCOUNT RECEIVABLE, ACCOUNTS PAYABLE, etc.. They also use
the term Function for the tasks such as generating monthly
pay roll, performing a mathematical function (e.g.
calculation of square root, Basel Function, etc.). In SASD
a t'unctionis described by an imperative sentence, ideally
having an active verb such as PRODUCE, COMPUTE, DELETE,
etc.. The Functions are expressed like an order which can
be easily understood. However, like other
Methods/Methodology there is no explicit criteria to
select a Function.

,gn~t~Qna~_S~~lIication:
The term Functional Specification is defined by

IEEE as: "A specification that defines the functions that
a system or a system component must perform." [34].

SASD has not defined the term Functional
Specification. However, it uses the term Functional
Specification as the synonym for Functional ReqUirements
which is defined as: "A precise description of the
requirements of a computer system; includes a statement of
the inputs to be supplied by the user, the outputs desired
by the user, the algorithms involved in any computations
desired by the user, and a description of such physical
constraints as response time, volumes, and so on" [P-4l2,
20] .

373

Note: The SASD term Functional Requirements as a synonym
for Functional Specification differes from the IEE~
defination of Functional Specification. The term only
desiribes what the computer System is required to do, what
are the required input/output, etc.. It is free from the
physical consideration of how it is to do them. It is
infact the re-statement of the problem in a manner which
emphasises the data flow and ignores the how aspects. From
Lhe term Functional Requirements or Functional
Specification it is not possible to know the
characteristics of a function.

.I..DlPlenaentation:
IEE~ defines the term as: (1) "A realization of

an abstraction in more concrete terms; in particular, in
t.erms of hardware, software, or both". (2) "A machine
executable form of a program, or a form of a program that
can be translated automatically to machine executable
form". (3) "A process of translating a design into code
and debugging the code" L34].

SU defines the term Implementation as: "The
activity of project during which the design of a System is
tested, debugged and made operational" [61].
Nota:

1. This term is used by SD to convert the
output Design into code and test it. Under
this heading activities of programming,
coding and testing are covered. The scope

374

of the term differs from IEE~ in the sense
that SO does not involve the realization of
an abstraction in terms of hardware.

2. SO supports incremental Implementation
approaches over traditional approaches.
The Methodology recommends adoption of any
of the incremental approaches such as
Top-down, Bottom-up, combined etc.. The
criteria for selection of any of the
options depends on the resources and the
problem itself.

3. The Implementation of modules in SO can be
a problem, because the Implementation
activities i.e. coding, lesting and
debugging of modules involves iterations,
refinements, re-arrangements of modules
etc.. These activities become very
expensive in lerms of time and money
involved, especially when the System has a
large number of modules.

Module:
The term is defined by IEEE as: (1) nA program

unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading: for
example, lhe input to, or output from, an assembler,
compiler, linkage editor or executive routine". (2) RA

logically separable part of a programn [34].
SO defines the above term as: (1) RA collection

375

of program statements with four basic attributes; input

and output, function, mechanics, and internal data" [61].

(2) "A contiguous (in actual contact) sequence of program

statements, bounded by boundary elements, having an

aggregate identifier" [20).
Note:

The two def initions seem to be very close to
each other. In SD a Module is referred by its name, and can

be called by other Modules. It differs from a program in

the sense that an operating system can talk to a program

but usually not to a Module in the program. Examples of a

Module are; PROCEDURE in PL/l; SUBPROGRAM, SECTION, etc.

in COBOL; FUNCTION in FORTRAN.

Process;.

IEEE def ines the term as: (1) "In a computer

system, a unique, finite course of events defined by its

purpose or by its effect, achieved under given

conditions". (2) "To perform operations on data in

process" [34J.

SA def ines the term as: "A set of operations

transforming data, logically or physically, according to

some process logic" [12).

SD defines the term as: "An activity on a data

flow diagram that transforms input data flow(s) into

output data flow(s)" [61].

Your don explains in his notes that a Process

transforms data, i.e. it takes data and processes it. In a

DFD it is represented by a bubble, inside the bubble is

376

~he name of the Process [18].
Note:

1. In general a Process mayor may not perform

without having
some Process may be done

any function hence
a function i .e.

achieving any result. The Process which
performs a function, in SASD, is called a
module. In other words a module in a
program or a System is a Process which does
some function. But all Processes are not
necessarily modules.

2. SASD is using the concept of Process with
limited scope. They are using this term
only for transformation. The diagramatlc
representation of Process and transform is
identical i.e. both are represented by
upright rectangles having rounded corners
or small circles. The symbolic
representation of Process in SA is better
than that of SD in which it is difficult to
have legible writing within the circle.
The upright rectangle having rounded
corners in SA usually has three sections.
Each section shows Process identification,
description of function and physical
location.

3. In SA the logic of a Process can be
described by decision trees,
tables and structured English.

decision

377

4. Further in SASO other scopes of Processes
are ignored. For example there may be some
Processes which can be activited 01:

performed without any data.
~. In SASO a Process may be a manual 01:

automated activity, doing something, or a
combination of manual and automated
activities. It is a sequence of actions,
operations, changes by using or creating
data. In SASD Process (mini) specification
does not show control, end of file
indicator, error reporting.

6. The concept of Process used in by SASO is a
special case of the 2nd. definition of
I~EK .

.,. The term function is used above in terms of
their common use in SASD, in which it is
described by an imperative sentence.

378

•••••••:•••

379

References

1. Bell, T. and Thayer, T., "Software Requirements: are
they really problem", Proceedings of 2nd
International Conference On Software Engineering,
San Francisco, pp. 61-68, 1976.

2. Fischer G.
Communication
Proceedings

& Schneider M.,"Knowledge Based
Processes In Software Engineering",

of 7th. International Conference On
Software Engineering, Orlando, Florida, USA., pp.
359, March 1984.

3. Freeman p.,nWhy Johnny Can't Analyzen, Systems
Analysis and Design, A Foundation For The 1980's, pp.
323, Elsevier North Holland Inc., USA,
ISBN:O-444-00642-7, 1981.

4. Longman New Universal Dictionary, Longman, ISBN:
0-582-55542-6, 1982.

De Marco T., Structured Analysis and System
Specification, pp. 4, Prentice_Hall Inc., ~nglewood
Cliffs, N.J. USA.

o. Brown G. L., nLogical Design Of Computer Based
Information System·, Systems Analysis and Design, A
Foundation For The 1980's, pp. 182_83, Elsevier

380

North Holland Inc., USA, ISEN: 0-444-00642-7, 1981.

./ . Wasserman A.I.,"The User of
Methodology: An Overview",

Software Engineering
Information Systems

Design Methodologies: A Comparative Review,
Proceedings Of IFIP WG.8.1, 10-14 May 1982, The
Netherlands pp. b9l_628, North Holland Publishing
Company, ISBN: 0-444-86407-5, 1983.

8. Mumford E. & Henshall D., A Participative Approach
To Computer Systems Design, Associated Business
Press London, ISBN: 0-85227-2219, 1979.

9. Mumford IL s Weir M., Computer Systems in Work
Design_The ETHICS Method, Associated Business Press
London, ISBN: 0-85227-2308, 1979.

10. Sarvari 1.1., "Modles & Languages For Software
Specification and Design",
International Workshop on Models

Workshop Notes:
& Languages For

Software Specification & Design, Orlando, Florida,
USA, pp. 119, ISSN: 0225-0667, March 1984.

11. An Introduction To SADT, SofTech, Inc., Waltham,
M.A., Document 9022_78, Feb., 1976.

12. Gane, c. & Sarson, t., Structured Systems Analysis,
Englewood Cliffs, N.J. Prentice_Hall, ISBN:
0-13-854547-2, 1979.

381

13. Teichroew D. & Hershey E. A., "PSL/PSA: A Computer
Aided Technique For Structured Documentation And
Analysis Of Information Processing System", IEE~
Transaction Of Software Engineering, pp. 41-48, Jan.
1977.

14. Verheijen G.M.A, s Bekkum J. V. , "NIAM, An

Information Analysis Method", Information System
Design Methodologies: A Comprative Review,
Proceedings Of a'IP WG. 8.1, 10-14 May 1982, The
Netherlands, PP. 537_89, North Holland Publishing
Company, ISBN: 0-444-86407-5, 1983.

15. Alford, M. W., "Software Requirement
Methodology" , Final Report_Volume I;

Engineering
Ballistic

Missile Defence Advanced Technology Center,
Huntsville, AL , August 1979.

16. Introduction To
Management Systems,

LSDM, Learmonth
22 Newman Street

& Burchett
London WlP

3HB, Document Version 2, Issue 0, April 1985.

17. TeichroewD., Macasovie P., HersheyE. A. & Yamamoto
Y., "application Of The Entity_Relationship Approach
To Information Processing System Modelling·,
Entity_Relationship Approach To Systems Analysis And
Design P.P. chen (ed), pp. 15_38, North Holland
Publishing Company, 1980.

18. Yourdon ~., structured Design Workshop, Edition
2.1, Yourdon Inc., 1133 Avenue Of Americas, NewYork,
N.Y.10036, 1980.

19. Ned Chapin, "Graphic Tools In The Design of
Information Systems", Systems Analysis And Design, A
Foundation For The 1980's, pp 12L 162., Elsevier
North Holland Inc., ISBN: 0-444-00642-·',1981.

20. Yourdon E., Constantine L.L., Structured Design,
Yourdon Press, 1133 Avenue of Americas, New York,
N.Y. 10036, ISBN: 0-917072-11-1, 1978.

21. Jackson M.A., Michael Jackson System Development,
Prentice_Hall, International, ISBN: 0-13-880328-5,
1983.

22. Jackson K., Simpson H.~., "MASCOT", ~., Technical
Note No. T'8, RRE. Procurement Executive, Ministry
Of Defence, Malvern Worcs, Oct. 1975.

23. Brodie M.L. & Silva E., "Active And Passive
Component Modelling: ACM/PCM", Information Systems
Design Methodologies: A Comparative Review,
Proceedings Of IFIP wo. 8.1, 10-14 May 1982, The
Netherlands, pp. 4L91, North Holland Publishing
Company, [SBN: 0-444-86407-5, 1983.

24. McAuto, Stradis: System Development Methodology

Product Description (undated) 20pp.

25. Lundeberg M., "The ISAC Approach To Specification of
Information Systems And Its Application To The
Organization of An IFIP Working Conference-,
Information Systems Design Methodologies: A
Comparative Review, Proceedings of IFIP WG. 8.1,
10-14 May 1982, The Netherlands, pp. 113_234, North
Holland Publishing Company, ISBN: 0-444-86407-~,
1983.

26. Liskov B. H., " A Design Methodology For Reliable
Software Systems", Tutorial on Software Design
Techniques, 3rd. Edition, Edited By Peter Freeman,
A. L Washerman, I~EE, pp. 65-'13,1980.

27. Aschim F. Mostue S.M., "IFIP WG. 8.1 Case Solved
Using Sysdoc and Systemator", Information System
Design Methodologies: A Comparative Review,
Proceeding of IPIP wo. 8.1, 10-14 May 1982, The
Netherlands, pp. 15_40, North Holland Publishing
Company, ISBN: 0-444-86407-5, 1983.

28. Macdonald 1.G. & Palmer LR. , "System Development
In a Shared Data Environment", The 02S2 Methodology,
Information System Design Methodologies: A
Comprative Review, Proceeding of IYIP WG. 8.1, 10-14
May 1982, The Netherlands, pp. 235_283, North
Holland Publishing Company, ISBN: 0-444-8640"-5,

384

1983.

29. Meyer B., "A System Description Method", Workshop
Notes: International Workshop on Models & Languages
l"or Software Specification & Design, Orlando,
Florida, USA., pp. 42, [SSN 0225_0661, March 1984.

30. Jones C., "Software Development:
Approach", Prentice Hall, 1980.

A Rigorous

31. Hamilton M. and Zeldin S., "Higher Order Software_ A
Methodology for Defining Software". IEEg
Tranasactions on Software Engineering Vol. SE_2 No.
1 pp. 9_32, March 1916.

32. Series Z, Recommendations ('l .101 to
and Description Language (SOL)

104)
Vol.Specification

V I -1. CCITT.

33. Cerchio L., "A System Design Methodology Based on
SDL", SOL News Letter No.4, pp. 19-20, November
1982.

34. IEEE. Standard Glossary of Software Engineering
Terminology, IEEE Std. 129-1982

35. Gerhart, S. Musser, D. Thompson, D. et al, "Overview
of lhe AFFIRM Specification and Verification
System", [FIP 80.

385

36. Enger N. L., "Classical and Structured Systems Life
Cycle Phases and Documentation", Systems Analysis
and Design, A Foundation For The 1980's, pp. 1_24,
Elsevier North Holland Inc., USA, ISBN:
0-444-00642-7, 1981.

37. Biggs C. L., Birks ~. G., Atkins W., "Managing The
System Development Process", Printice-Hall Inc.,
Englewood Cliffs N.J. 07632, ISBN No.O-13-550830- 4.

38. Blum t3.,

Application
"Modles
Class",

and Language For
Workshop Notes:

a Specific
International

Workshop on Modles and Languages For Software
Specification and Design, Orlando, Florida, USA, pp.
68-69, March 1984.

39. Ramamoorthy c. v. & Ma Y. N. "Design and Analysis of
Computer Communication Systems", Systems Analysis
and Design, A Foundation For The 1980's, pp. 452-460,
Elsevier North Holland Inc., USA, ISBN:
0-444-00642-7, 1981.

40. O'Neill D., "Software Engineering Techniques
Applied To The Systems Development Process", Systems
Analysis and Design, A Founadtion For The 1980's, pp.
330-341, Elsevier North Holland Inc., USA, ISBN:
0-444-00642-1, 1981.

41. freeman J:>., "The Context of Design", Tutorial on

386

Software Design Techniques, 3rd. Edition, pp. 2-4,
IEE~ Computer Society, 1980.

42. Tutorial, JS~ & JSO: The Jackson Approach to
r,,~to.:to.: Computer Society, ISBNSoftware Development

No. 0-8186-8516-6.

43. Mills H., "Top-down Programming In Large Systems.,
Debugging Techniques in large Systems. (courant
Institute)

44. Hamilton
Structured

M, and Zeldon,
Programming and

"Top-down, Bottom-up
Program structuring",

Charles Clark Darper Laborotary, M. I.T., December
1972.

45. Corner M.F.,"Structured Analysis and Design
Techniques", Systems Analysis and Design, A
Foundation for the 1980's, pp. 213-234, Elsevier
North Holland Inc., ISBN: 0-444-00642-7, 1981.

46. M. U. Shaikh, "Techniques of Documentation of
Computer Programs", M.Sc. Dissertation (partial),
Department of Computational and Statistical
Sciences, University of Liverpool, U. K., Nov. 1977.

4·,. Wolverton, R. W. , "Software Life Cycle
Management-Dynamics Practice", 2nd Software Life
Cycle Management Workshop, Atlanta, Georgia, USA.,

387

pp. 21-29, 18CH1390-4C, August 1918.

48. Boehem, B. W., et al., "Prototyping Vs. specifying:
A Multi-Project Experiment", Proceedings of 1th.
International Conference On Software Engineering,
Orlando. l"lorida, USA, pp. 473-484, March 1984.

49. Muzzucchelli L., "Position Paper for the Workshop·,

Workshop Notes: International Workshop on Models &

Languages for Software Specification & Design,

Orlando,Florida, USA., pp. 196-197, ISSN: 0225_0667,

March 1984.

50. Dijkstra, E. W., "Structured Programming", NATO

Science Committee- Software Engineering Techniques,
April 19"/0.

51. Dahl, O. J . , Dijkstra, lLW. , Hoare. C.A.R. ,

"structured Programming", Academic Press London,
19·/2.,

52. Wirth, N. , "Program Development by Stepwise

221-227,Ref inment" , Communication of ACM, 14(14):

1971.

53. Maynard J. , Modular Programming, New york:

Petrocelli Books, 1972.

54. Brooks, 1" • P • Jr. , "The Mythical Man-Month· ,

~88

Read ing, Mass.: Add ison-Welsey Publishing Company,
19"1b.

bb. McCain, R., "A Software Development Methodology for

Reusable Components", Proceed ings of the Eighteenth
Annual Hawaii International Conference on System
Sciences, Vol. II, Software, p. 319, USA, 1985.

b6. Boeham, B.W., et al., "Characteristics of Software

Qual ity", TRW Ser ies on Software Technology vol 1,
North-Holland, 1978.

b7. McCabe, T.J., "A Complexity Metric", IEEE. Trans. on

Software Engineering, Vol S£-2, No.4, pp. 308-320,
Dec. 19"/6.

b8. Halstead, M.H., "Elements of Software Science", New

york: Amer ican Elsevier, 19TI.

b9. Jones, T.C, "Measuring Programming Quality and

Productivity", IBM. Systems Journal, Vol 17, No.1,

1978.

60. Kitchenham, B.A., "Measures of Program Complexity",

ICL Technical Journal, 1981.

&1. JONES, M.Ll., "The Practical Guide to Structured

System Uesign", Yourdon Press, ISBN: 0-91"/072-17-0,

1980.

389

62. Chyou, S.C., "Structured Charts and Program
Correctness Proofs", Proceedings of 7th.
International Conference On Software Engineering,
Orlando, Florida, USA, pp. 486-498, March 1984.

63. Olle, T.W., Sol, H.G., et al., "Information Systems
Design Methodologies", A Comparative Review,
Proceedings of the IFIP WG.8.1, 10-14 May 1982, The
Netherlands, North Holland Publishing Company, ISBN:
0-444-86407-5, 1983.

64. aIle, T.W., Sol, H.G., et al., "Information Systems
Design Methodologies", A l"eature Analysis,
Proceedings of It'IPWG 8.1, Working Conference on
l"eature Analysis of Information System Design
Methodologies, York, Uk., Elsevier
Publishers B.V., The Netherlands,
0-444-86705-8, July 1983.

Science
ISBN:

Methodologies", Wiley
0-471-90332-9, 1983.

Heyden,
system

ISBN
65. Maddison, R. N. , et al."Information

UK. ,

66. Tavendale, R.D., "A Technique For Prototyping
Directly From a Specification", Proceedings of 8th.
International Conference On Software Engineering,
London, pp. 224-229, ISBN: 0-8186-0620-1, August,
1985.

67. Man1ey J .H., "Software Engineering
of 8th.
Engineering,

Provisioning
International
London, pp.

Process", Proceedings
Conference On Software
273-284, ISBN: 0-8186-0620-1, August, 1985.

68. Belkhouche, B., "Compilation of Specification
Languages as a Basis for Rapid and Efficient
Prototyping", 3rd. International Workshop on
Software Specification and Design, London, pp. 16,
ISBN: 0-8186-0638-X August 1985.

69. Schach, S.R., "Prototyping, Design and The Early
Cost Estimation Problem", 3rd. International
Workshop on Software Specification and Design,
London, pp. 212-213, ISBN:0-8186-0638-X, August
1985.

'/0. We inberg, G.M. , and Freedman, D. P. , "Reviews,
Walkthroughs and Inspections", IEEIL Trans. Soft.
l!;ng.Vol SE-10, No.1, 68-'/2, Jan. 1984.

'/1. LBMS UP Training, Learmonth & Burchett Management
Systems Ltd, 22 Newman Street London WIP 3HB, UK,
1983-84.

'0,. MASCOT and Management, Inter Establishment
Committee on Computer Applications, Royal Signals
and Redar Establishment, Malvern, Worcs, UK.

391

~3. Jackson K, Moir C.l., "Parallel Processing in

Software and Hardware-The MASCOT Approach", Sagmore
Computer Conference on Parallel Processing, pp.
"/1-78, 19"/!>.

"/4. Jackson K. , Cloke J .A. , "A MASCOT Software
Standard-,

"15. Jackson K., "Evolut ion of MASCOT", System Des igners

Scientific,

June 1985.

Pembroke House, Camber ley, Surrey, Uk,

"/6. Mumford l!:. , "Job Satisfaction: a Method of

Analysis", Personal Review, Vol 1, No.3, Summer

19"'2.

Tl . Mumford E. , "Participative Systems Design:

Structure and Method, Systems, Objectives, Solutions

1, PP. !:l-19,North Holland Publishing Company, 1981..

"lB. Denvir el at, "Report on the Study of an Ada Based

System Development Methodology", Dept. of Industry,

Uk, Sept. 19B1.

"/9. Sol H.G. , "A Io'eatureAnalys is of Informat ion Systems

Design Methodologies: Methodological

Considerations", Information Systems Design

Methodologies, Proceedings of Lhe IfI~ wo. B.l

Working Conference on feature Analysis of

Information Systems Design Methodologies, York, UK.,

pp. 1-"/, Elsevier Science Publishers B.V. ISBN:
0-444-86705-8, July 1983.

80. Brandat f., "A Comparative Study of Information
System Design Methodologies", Information Systems
Design Methodologies, Proceedings of IFIP WO. 8.1
Working Conference on Feature Analysis of

Information Systems Design Methodologies, York, UK,

pp. 9-30, Elsevier Science Publishers B.V., ISBN:

0-444-86700-8, July 1983.

81. Wasserman A. I., Freeman P., and Porcella M. ,

"Characteristics of Software Development

Methodologies", Information Systems Design

Methodologies, Proceedings of IFIP WG. 8.1 Working

Conference on Feature Analysis of Information

Systems Design Methodologies, York, UK, pp.

Elsevier Science Publishers B.V.

0-444-86705-8, July 1983.

37-58,

ISBN:

82. Wasser A. 1., Freeman P. , "Ada Methodologies

Concepts and Requirements", Software Engineering

Notes Vol 8, Number 1, pp. 33-bO, Jan. 1983.

83. Procella M., Freeman P., Wasserman A.I, "Ada

Methodology Questionaire Summary", Software

~ngineering Notes Vol 8, Number 1, pp. 51-98, Jan.

1983.

84. Olive A., "Analysis of Conceptual and Logical Models
in Information Systems Design Methodologies·,
Information System Design Methodologies, Proceedings
of IFI~ WG. 8.1 Working Conference on Feature
Analysis of Information Systems Design
Methodologies, York, UK, pp. 63-85, Elsevier Science
Publishers S.V., ISBN: 0-444-86705-8, July 1983.

85. Iivari J., Kerola P., RA Sociocybernetic Frame Work
for the Feature Analysis of Information Systems
Design Methodologies", Information Systems Design
Methodologies, Proceedings of IFIP WG. 8.1 Working
Conference on Feature Analysis of Information
Systems Design Methodologies, York, UK, pp. 87-139,
ELsevier Science Publishers B.V., ISBN:
0-444-86705-8, July 1983.

86. }o'alkenbergE., Nijssen G.M., Adams A., Bradley L.
"Feat.ure Analysis of ACMjPCM, ClAM, ISAC and NIAM,
Information System Design Methodologies, Proceedings
of U'I~ wc. 8.1 Working Conference on }o'eature
Analysis of Information Systems Design
Methodologies, York, Uk, pp. 169-189, Elsevier
Science Publishers B.V., ISBN:O-444-86705-8, July
1983.

87. MASCOT Supplier Association, The Official
Definations of MASCOT", RSRE, L-303 (s), st. Anderws
Rd., Malvern, Worcs, Published in 1977.

394

88. Simpson H.R., "The MASCOT Approach To Software

Design and Implementation", Ph.D. thesis, Dept. of
Computong and Control, Imperial College of Science &
Technology, London University., Nov. 1975.

89. Gilles Rigal, "Generating Acceptance Tests From
SADT/SPECH'", IGL, 41, Rue De La Chaussee 0'antin,
·/5009 Paris, France, August 1985.

90. Gilles Rigal, "Simulation With SADT", IGL, 41, Rue
De La Chaussee D'antin, 75009 Paris, France, August

198~.

395

