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The characteristics of a digital filter are determined by a set 
of multiplier values (the filter coefficients). By changing the 
coefficient values under program control, the filter characteristics can 
be optimized with respect to a chosen performance criterion. Adaptive 
filters are used in applications where fixed filter design is 
impractical or impossible, such as when signal properties are unknown or 
vary with time. Adaptive IIR filters contain both poles and zeros in 
their transfer function, and hence are more powerful than adaptive non- 
recursive (FIR) filters. However, the algorithms required for IIR filter 
adaptation are more complex than those for FIR filter adaptation. In 
addition, IIR filter algorithms have several disadvantages associated 
with them which have restricted their use in the past. With the 
increasing need for low-cost, dedicated microprocessor-based systems, 
the development of simple, robust algorithms for IIR filter adaptation 
is of great importance. 

In this thesis, previously published adaptation algorithms for 
IIR filters are examined with a view to real-time implementation. It is 
shown that the algorithms developed to date are not sufficiently 
robust, and that many are too complex for microprocessor implementation. 
The algorithm assessment suggests that simple gradient-based algorithms 
for adaptation of filter structures with guaranteed stability, are the 
most applicable for hardware implementation. 

Three new gradient adaptive IIR filter algorithms are proposed 
for filter structures consisting of parallel and cascade arrangements of 
second-order filter sections. An assessment of the algorithms is made 
using a series of system modelling tests which show advantages and 
disadvantages of the differing filter structures; in particular a local 
minimum problem arising from constraints on the filter coefficients is 
highlighted. It is shown that a modified cascade structure offers the 
best overall performance of the structures considered. More complex 
gradient algorithms applicable to this filter structure are studied, and 
two new algorithms are proposed, the Valley-Search and R-Cosa 
Algorithms. Results are presented to demonstrate the improved rates of 
convergence obtained by these algorithms. 

The modified cascade structure is applied to a practical echo 
cancelling problem which demonstrates advantages of using IIR filters in 
preference to FIR filters. In addition, a method for the avoidance of 
local minima in the IIR filter output error performance surface is 
presented. 

An examination of the equation error performance criterion is 
presented and a new algorithm for minimization of the equation error is 
proposed. By combining advantages of output error and equation error 
minimization, a novel gradient adaptive IIR filter structure is 
proposed. The Master-Slave Algorithm uses adaptive FIR filters for the 
adaptation of both the transfer function numerator and denominator. 
coefficients, and offers faster convergence than conventional 
output error minimizing adaptive filters. Implementation of the 
algorithm requires very little additional computation, and stability of 
the filter structure is maintained easily. In addition, the Master-Slave 
Algorithm offers possible adaptation to the global minimum of a 
multi-modal output error performance surface. 
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1.0 INTRODUCTION 

An Adaptive Filter is a filtering device which can modify its 

characteristics in response to an external stimulus. A digital filter is 

ideally suited to such a task, as the filter characteristics are 

determined by a set of multiplier (coefficient) values which may be 

changed easily under program control. The coefficients are adjusted to 

optimize the performance of the filter with respect to an error 

criterion, and hence achieve the required filter performance. 

Adaptive digital filters are used in applications where 

a-priori filter design is either impractical or impossible, i. e. when 

signal properties are unknown or are variable with time. In recent 

years, an increasing number of signal processing and control engineering 

applications have been found for such filters. These include channel 

equalization(l), echo cancellation(53,58,59)ý noise cancellation(2'3) 

signal enhancement(20,66)' adaptive differential pulse code 
(4'21), 

system 
) 

stem identificationýl3-17 modulation , and signal 

prediction 
(5,21,56). 

Currently, problems associated with the adaptation 

of IIR (Infinite Impulse Response) filters have resulted in adaptive FIR 

(Finite Impulse Response) filters being used in the vast majority of 

cases. However, in certain applications, the use of an IIR filter can 

offer substantial computational savings and other benefits. 

Adaptive IIR Filters have the advantage of being able to 

synthesize both poles and zeros in their responses, whereas FIR Filters 

may only synthesize zeros. Consequently, in applications where an 

adaptive filter having a highly selective frequency response is required 

(or alternatively a long impulse response), the order of the FIR filter 

needed may be prohibitively high for implementation. In addition, 

pole-zero models are preferable for adaptive control engineering 

applications since the filter parameters may be used to enhance the 

stability of an unknown system as well as controlling it. (6) 
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Two major problems are, however, associated with the adaptation 

of IIR filters and have restricted their use. The migration of poles 

outside the z-plane unit circle will result in filter instability, and 

must therefore be avoided. Hence, maintaining filter stability during 

the adaptation process is of major importance. The second difficulty 

arises from characteristics of the performance criterion relating to the 

filter adaptation. In general, adaptive filters used in signal 

processing applications adapt their coefficients to minimize a 

mean-square-output error criterion(7'9). A plot of this function with 

respect to the adaptive filter coefficients produces a multidimensional 

'performance surface'. For an FIR ladder filter, the performance surface 

has been shown to be quadratic in shape(9). Such a function has a single 

minimum which can be sought using simple and robust techniques 
(10) 

of 

which the Widrow IMS Algorithm 
(8) 

is perhaps the one most widely used. 

However, for an IIR filter, the corresponding surface is non-uniform and 

may contain local minima 
11.2,22I" 

Both of these factors are extremely 

undesirable. 

Despite the drawbacks of adapting IIR filters when compared 

with the adaptation of FIR filters, the increasing need for low cost, 

microprocessor-based real time systems encourages the development of a 

simple and robust IIR filter adaptation algorithm. 

1.1 ADAPTIVE SYSTEMS 

Adaptive systems can be grouped into three categories 

depending upon the objective of the adaptation. The classes are: 

a) System Identification Systems. 

b) Signal Estimation Systems. 

c) Signal Correction Systems. 
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Adaptive techniques for the solution of Class (a) problems have been 

utilized in control engineering for many years(13-17), Several of the 

techniques were first developed for off-line applications such as 

fitting a model to a block of data. To allow on-line operation, the 

algorithms were first modified by incorporating a recursive update 

formula, and then later stochastic approximations were developed to 

reduce the computation further. Methods used include Maximum Likelihood, 

Least Squares, Instrumental Variables, and Kalman Filtering. In general, 

the techniques involve the minimization of a performance criterion based 

on the prediction or equation error 
(18). 

For the majority of signal 

processing applications, these algorithms and performance criteria are 

unsatisfactory. 

Unfortunately, the complexity of the algorithms makes them 

unsuitable for a dedicated hardware environment. In addition, many of 

the algorithms have coefficient updates which decay to zero during the 

adaptation process. While being satisfactory for identification of 

stationary systems, many signal processing applications involve filter 

adaptation in a non-stationary environment, for which the coefficient 

updates cannot decay towards zero. Furthermore, whilst system 

identification is generally the target for adaptive systems in control 

engineering, the vast majority of signal processing applications fall 

into the signal estimation and correction categories(7). The 

prediction/equation error criteria are not suited to these problems. 

Instead, minimization of a performance criterion based on the 

mean-square-output error is generally the target for the adaptation. 

1.2 ADAPTIVE DIGITAL FILTERING 

An adaptive digital filter is a signal processing 

device that sequentially adjusts its coefficients to optimize its 
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performance with respect to an error criterion. A generalized model of 

an adaptive digital filter is shown in figure 1.1. For tke - z- tr4nscorm of an Inpyt 

A 
X(z), the filter transfer function H(z) is required to adapt to minimize 

a function of the error signal E(z), the difference signal formed 

between the filter output Y(z) and a desired response D(z). E(z) is 

obtained from: 

E(z) - D(z) - Y(z) (1.1) 

WiEi error e(k) at time t= J 

Ideally, each individual signal processing application should 

have its own optimization criterion depending upon its practical 

objective. For example, with Linear Predictive Coding (L. P. C. ) analysis 

of speech, the quality of the reproduced speech to the human ear is the 

ultimate criterion for the filter adaptation. While other performance 

criteria have been suggested for filter adaptation(19), in practice, 

minimization of the mean-squared-output error (e (k)) is chosen in the 
2 

vast majority of cases. There are several reasons for this(7), viz: 

(1) The ease with which an algorithm can be derived for optimization. 

(2) If the error is small or reaches zero, the actual desired criterion 

will usually be met. 

(3) The mean-square-error criterion is equivalent to the maximum 

likelihood criterion for Gaussian stochastic processes. 

(4) Small deviations from the optimum usually do not give a large 

degradation in performance. 

To minimize this error criterion, for the given input signal 

the adaptive filter changes its coefficients to give an output which 

forms a best least squares fit to the desired response. While the 

objective for the filter adaptation differs depending upon the 

application, for each of the three adaptation categories listed in 

Section 1.1, the necessary filter configurations can be reduced to the 
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general model shown in figure 1.1. The differences between each of the 

three classes are now examined in greater detail. 

a) System Identification 

The System Identification Configuration is shown in figure 1.2. 
A 

An unknown "plant" H(z) and the adaptive filter H(z) are both excited by 

the same input signal X(z). This input signal is generally either White 

Noise or a Pseudo-condom selkence... The objective of the filter adaptation is 

to determine the parameters of the unknown system. This is achieved by 

adapting the adaptive filter to minimize \e2(k). To completely identify 

the unknown plant, the adaptive filter must have at least as many poles 

and zeros in its transfer function as that of the system. In this case, 

the mean-squared-error"(m. s. e. ) signal will teed to zero. 

Adaptive control systems are almost invariably of this type. 

The adaptive filter estimates the unknown system parameters (or its 

state). These parameters can be used to control the system by changing 

its inputs and/or its parameters(7). Signal processing tasks which fall 

into this category are, characterization of the layers of the ground in 

seismology through the adaptive filter parameters, and indications of 

significant events in Electroencephalograph (EEG) analysis and other 

event detection applications through variations in the parameters. 

b) Signal Estimation 

The basic configuration for this class of system is shown in 

Figure 1.3. At first appearances, the problem seems identical to that of 

system identification. The filter configuration is the same as that for 

the previous category, and in both cases the filter is adapted to 

minimize _e2(k). 
However, there are several important differences between 

the two classes. Parameters-determined by this class generally do not 

correspond to those of the unknown system. For example, typical 
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applications from this category such as echo cancellation and noise 

cancellation will generally have an insufficient adaptive filter (ie. 

one having a smaller number of poles or zeros than the unknown system). 

Any set of filter coefficients which can give a sufficiently accurate 

2- 
copy of the unknown system output to'reduce e(k) below the necessary 

threshold will be acceptable. 

In addition, this only has to be achieved for the type of input 

signal used. For instance, if the input signal X(z) will always be band 

limited, then the response of the adaptive filter need model that of the 

unknown system only for signals with this band limitation. 

C) Signal Correction 

Figure 1.4 shows the basic structure for a signal correction 

system. Signal processing tasks which fall into this category are 

channel equalization, line enhancement, and linear prediction of speech. 

For these applications, the wanted signal X(z) is distorted or hidden by 

an unknown system, and the task for the adaptive filter is to retrieve 

it. 

As with adaptive filters from the signal estimation class, 

adaptive filters from this class do not have to form an accurate model 

of the unknown system. For example, for channel equalization, the 

adaptive filter only has to remove the distortion components which are 

harmful to the receiver, and does not necessarily have to form a 

complete inverse of H(z). Similarly, for LPC analysis of speech, any set 

of filter coefficients which can reproduce the speech to the quality 

necessary and can be coded efficiently will be acceptable. 

Minimization of the mean-square-output error criterion enables 

the adaptive filter to accomplish the goals of all three classes of 

adaptive systems listed above. However, in the case of an IIR filter, 

the nature of the m. s. e. performance surface creates problems for the 
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filter adaptation. In the following section, characteristics of the IIR 

filter performance surface are studied, and the inherent difficulties 

for filter adaptation are highlighted. 

1.3 THE IIR FILTER PERFORMANCE SURFACE 

The IIR Digital Filter 

The output of an IIR digital filter at time t- kT can be 

represented by a difference equation of previous input and output values 

and the present input: 

nm 
y (k) - x(k-i)"ai - Y(k-i). bi (1.2) 

1 -0 i-1 

where (ai) are the feedforward coefficients, (bi) are the feedback 

coefficients, and x(k-i), y(k-i) are past input and output values 

respectively. The order of the filter is given by the larger value of 

the m and n indices. The IIR Filter gives rise to an Autoregressive 

Moving Average (ARMA) process. The first summation term in equation 

(1.2) is a moving average process, and the second summation term is an 

autoregressive process. If the (bi) coefficients are all zero, the 

resulting filter is an FIR ladder filter. 

Taking z-transforms of equation (1.2) gives the general 

transfer function H(z) of an IIR filter: 

Where: 

aý + alzýl + a2zý2 + ... + anzýn 
H(z) - (1.3) 

1+ b1Z-1 + b2Z'2 + ... + biz m 

Y(z) 
H(z) - (1.4) 

X(z) 
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The transfer function can be realized in a number of different 

structures, such as parallel and cascade arrangements of lower order 

filters, or alternatively as a lattice structure. However, in terms of 

hardware implementation, the simplest filter structures are the canonic 

forms, so called because they have the minimum number of component 

elements 
(65). 

Figure 1.5 shows a Direct Form Canonic Implementation 

(Direct Form II Structure in(64)) of the transfer function given in 

equation (1.3). The Direct Form Filter Structure is utilized for the 

majority of adaptive IIR filtering algorithms. The m-s-e performance 

surface for the Direct Form IIR Filter Structure Coefficients was 

studied in detail by Stearns in(12). A brief review of his analysis is 

presented below. 

The Direct Form IIR Filter Performance Surface 

For the general adaptive filter structure shown in figure 1.1, 

the mean-square-error surface is generated from: 

E[e2(k)] - E[d2(k)] + E[y2(k)] - E[2d(k)y(k)l (1.5) 

V (ai, bý) j i-0,1,.., n 
j-1,2,.., m 

Where E [u] is 6l e, f--ripe 
teJ 

value, o1 Q. 

Equation (1.5) can be written in terms of the adaptive filter transfer 
A 

function (H(z)) by noting that the expected value of two stochastic 

signals u and v is given by: 

E[uv] -I tuv(z)dz 
21rj z 

(1.6) 

where 4ý 
uv(z) 

is the cross power spectrum and the path of integration is 

the unit circle in the z-plane. Strictly, u and v should be stationary, 

random signals with zero mean and finite variance. 
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Utilizing the transfer function relationships: 

ý> 
yy(z) - Zxx(z) IH(z)1 2 (1.7) 

A 0 dy(z) - Zdx(z)H(z) (1.8) 

equation (1.5) can be expressed as: 

21rjE[e2(k)] - 

fddz)dz 

+ 

fXX(z)(z)*(z)dz 

-2D dX(z)H(z)dz 
zzz 

(1.9) 

A 
Where H*(z) - h(z. 

lsince 
the contour for the integration is the unit 

circle, H(z)H(z)-IH(z)I2. It is seen from equations (1.9) and (1.3) 

that E(e2(k)] is quadratic with respect to the (ai) filter coefficients. 
AAA 

For the Direct Form IIR Filter Structure, H(z) - A(z)/B(z) 

where: 

A(z) - a0 + a1z'1 + a2z'2 + ... + anz n (1.10) 

.1 B(z) -1+b1z+ b2zý2 m + ... + biz (1.11) 

Setting the derivative of equation (1.9) with respect to each 

(ai) coefficient equal to zero, and noting that 4ý 
xd(z) 

4ý dx*(z) 
for 

any power spectrum yields: 

A 

Ak (z)z zk 
4ý 

XX(z) A A* 
dz - oxd(z) 

A* 
dz (1.12) 

B(z)B (z) zv (z) z 
k-0,1,... n 

The set of equations generated from equation (1.12) are linear with 

respect to the (ai) coefficients and hence define a single global 
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minimum of E(e (k)]. If equation (1.12) has a singular coefficient 

matrix, then the minimum will be distributed. Setting the derivatives of 

E[e2(k)] with respect to the (bi) coefficients in equation (1.9) equal 

to zero yields: 

Ä(z)Ä*(z)zk Ä*(z)zk 
(z) AAý dz -' (z) dz (1.13) 

xx B(z)B*(z)B*(z) z xd B (z)B*(z) z 

k-1,2,..., m 

The set of equations generated from equation (1.13) are nonlinear with 

respect to the (bi) coefficients. Hence the error surface with respect 

to the (bi) coefficients is non-quadratic and may contain local minima. 

To examine characteristics of the error surface with respect to the (bi) 

filter coefficients, Stearns utilized the system identification 

configuration shown in figure 1.2. 
A 

The adaptive filter H(z) and a known fixed plant H(z) are 

excited by a white Gaussian noise source x of unit power density (hence 

4ý 
xx - 1). Applying transfer function relationships to the system 

identification configuration yields: 

dd(Z) Zxx(Z)1H(z)1 (1.14) 

dx (Z) - 'xx(z)H(z) (1.15) 

Substituting equations (1.14) and (1.15) in equation (1.9) and setting 

4p 
xx 

1 yields: 

E(e2(k)] [H(z)H*(z) 
+ H(z)H*(z) - 2HA (z)H*(z)]dZ (1.16) 

2rj Lz 
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As the E[42(k)] term in equation (1.5) will be constant for a 

fixed plant, a normalized version of the error surface £(ai, bi) can be 

obtained from equation (1.16), viz: 

1 
Z(ai, b1 -1+2 H(z)[ H (z) - 2H*(z)] dz (1.17) ; -, 

to jz 

where: 

v2 -1 
IH(z)I2dz 

- E(ä2(k)I (1.18) 
2irj z 

Stearns demonstrated that for a sufficient sized adaptive 

filter, ie. the adaptive filter has at least as many poles and zeros as 

the plant, then ý has a single minimum at which ý -0. This minimum will 

be distributed if the adaptive filter is over-sufficient. 

As previously shown, the error surface is quadratic with 

respect to the (ai) coefficients. To illustrate the non-uniform nature 

of the performance surface with respect to the (bi) coefficients, plots 

were obtained of f for several second order all-pole plants and a second 

order all-pole adaptive filter. The adaptive filter had the transfer 
A 

function H(z) given by: 

a0 
H(z) -. 

-1 -2 
(1.19) 

l+ blz + b2z 

For a second order adaptive filter the stable region for the 

poles of the filter transfer function, that is, the interior of the unit 

circle in the z-plane, maps onto a triangular region in the (bl, b2) 

coefficient plane. This triangular region is shown in figure 1.6. The 

parabola b2 - b12/4 separates the real poles from complex conjugate 
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pairs. The radius (r) and angle (9) of the complex poles are related to 

the bland b2 coefficients by: 

bl - -2. r. cose 

b2 - r2 

(1.20) 

(1.21) 

Plots of the normalized error £ for four different plants are 

shown in figure 1.7. The contours of constant m-s-e illustrate the 

highly irregular nature of the surfaces. The plots are characterised by 

steep convex-sided valleys and in general the gradient vector from a 

point on the surface will not point towards the minimum of the surface. 

If the adaptive filter is insufficient, ie. has fewer poles or 

zeros than the plant, Stearns showed that local minima may exist in the 

error surface. However, conditions for the existence of local minima 

have been investigated in only very limited situations(12'29). In an 

insufficient case, the error surface remains quadratic with respect to 

the (ai) coefficients, irrespective of the order of the adaptive filter. 

Hence, problems in the adaptation of the filter coefficients lie 

principally with the (b i) coefficients, as the (ai) coefficients can 

adapt to optimum values provided that the {bi) coefficients adapt to 

their optimum values. 

An example of an insufficient adaptive filter is given in 

figure (1.8). The plant had a transfer function consisting of a single 

zero, while the adaptive filter transfer function was that given in 

equation (1.19). For this example, it is seen that the error surface is 

bimodal with respect to the (bi) coefficients. 

The irregular nature of the IIR mean-square-error surface 

suggests that adaptation times using gradient techniques will be 

generally slower than those for FIR filters. However, a long FIR ladder 

filter, for example, will need a small adaptation parameter(8) and hence 

will have a slow convergence rate. A low order IIR filter may adapt in 
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fewer iterations and require less computation. In addition, as suggested 

by Etter and Stearns(22), the tracking capabilities required with 

non-stationary signals may be superior in the IIR case because of the 

steep error surface near the minimum. 

1.4 THESIS CONTENTS 

The work presented in this thesis is aimed towards the 

development of a robust algorithm for the adaptation of IIR Filters, 

with a view to real-time hardware implementation. Due to the necessary 

limitations in speed and complexity, the required computation should be 

kept to a minimum. The filter must remain stable and ideally should 

converge quickly to the minimum m. s. e. solution. As has been 

demonstrated in the previous sections of this chapter, the nature of the 

IIR filter m. s. e. performance surface makes this a very difficult 

problem. 

In Chapter (2) a literature survey is presented of previously 

published adaptation algorithms for IIR Filters. It is shown that 

algorithms can be divided into two major classes, Gradient Algorithms 

and Hyperstable Algorithms, and that neither class offers a robust 

algorithm at present. However, for filter simplicity, stability and 

speed of adaptation, the Cascade and Lattice structure Gradient-Based 

algorithms are the most applicable for hardware implementation. 

In Chapter (3), three new Gradient-Based Adaptive IIR Filter 

Algorithms are proposed using filter structures consisting of parallel 

and cascade arrangements of second order filter sections. It is shown 

that the new algorithms offer simple, stable adaptation with the 

"Modified Cascade Structure" offering the best performance of the 

algorithms considered. 

In Chapter (4), methods for increasing the speed of convergence 

of the modified cascade structure are considered. Two new algorithms are 
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proposed; the "Valley-Search" algorithm and the "R-Cosa" IIR Filter 

algorithm. Results demonstrate that the algorithms offer improvements in 

convergence times when compared with the algorithms of Chapter 3. 

The Modified Cascade Structure is applied to a practical 

problem in Chapter (5) - that of Echo Cancellation for a 144 kbit Duplex 

Data Transmission System. The results obtained demonstrate the 

advantages of using adaptive IIR Filters in preference to FIR filters. 

In addition, a method for the avoidance of error surface local minima is 

presented. 

In Chapter (6) a new approach to adaptive IIR filtering is 

presented which results in the Master-Slave Adaptation Algorithm. An 

examination of the equation error performance criterion is presented and 

a new algorithm for adaptation of a equation error minimizing adaptive 

filter is proposed. By combining advantages of output error and equation 

error minimization, a novel adaptive IIR Filter-structure is proposed. 

Using an arrangement of three FIR filters, the filter structure is 

stable, very simple to implement and has a fast speed of convergence. It 

is demonstrated that the algorithm gives possible adaptation to the 

global minimum of a multimodal performance surface. 
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D(z) 

X(i) Adaptive 
A 

Filter H(z 

Y(z) ?,., E(z) 

Figure 1.1 General Adaptive Digital Filter. 

Unknown 
System 

H(z) 

D(z) 

E(z) 

Y(Z) A 
H(z) 

Figure_ 1.2 System Identification Structure. 
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Unknown Signal to be System 
Estimated 

H(z) 

X(z) vD(z) 
E (Z) 

Y(Z) 
A 
H(z) 

Figure 1.3 Signal Estimation Structure. 

Unknown 
System 

X(z) X(z) A H(z) H(Z) 

Signal to be 
Corrected 

Corrected 
Signal 

E( z) 
Y(z) 

D(z) 

Figure 1.4 Signal Correction Structure. 
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Figure 1.5 Direct Form IIR Filter Structure. 
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Figure 1.6 Stability Triangle. 

- 19 - 



a) Target Plant: (bl, b2) - (0.0,0.8) 

IL 

G 

b) Target Plant: (bl, b2) - (1.3,0.4) 

Figure 1.7 Normalized Error Surface Plots. 

I 

Contours at 0.05,0.27,0.5,0.73. 
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c) Target Plant: (bl, b2) - (-1.5,0.7) 

d) Target Plant: (bl, b2) - (1.8,0.95) 
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L. 

Figure 1.8 Insufficient Order Error Surface Example. 

Plant Transfer Function H(z) -1+ 10z 
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2.0 ADAPTATION ALGORITHMS FOR IIR FILTERS 

At present, IIR filter adaptation algorithms can be separated 

into three classes; 1) Gradient Algorithms, 2) Hyperstable Algorithms 

and 3) Random Search Algorithms. The majority of the algorithms utilize 

the Direct Form IIR Filter Structure, although algorithms have been 

proposed for other structures, such as cascaded filter structures and 

the recursive lattice filter. In this chapter, brief derivations of the 

adaptation algorithms are presented. An assessment is made of each 

algorithm based on results published in the literature, and tests and 

comparisons made by the author. In Section 2.1 the Direct Form Structure 

algorithms are considered, whilst in Section 2.2 algorithms which employ 

other filter structures are examined. Conclusions on the relative merits 

of the algorithms are presented in Section 2.3 as a foundation for the 

work presented in Chapters 3 -> 6 of the thesis. 

2.1 DIRECT FORM FILTER STRUCTURE ALGORITHMS 

2.11 Gradient Algorithms 

Algorithms belonging to this class have the filter adaptation 

process driven by derivatives of the m. s. e. surface with respect to the 

filter coefficients. The first IIR filter Gradient Algorithm was 

proposed in 1975 by White(23'. By extending the Widrow LMS algorithm for 

the adaptation of FIR Ladder Filters (8) 
to a Direct Form IIR Filter 

Structure, White proposed a steepest descent approach now termed 

Recursive Least Mean Squares (RLMS). The algorithm was further developed 

by Stearns et a1(24'25) 

The steepest descent approach is a first order gradient method, 

and as such is relatively simple to implement. To adapt the filter 

cofficients, the slope of the error surface is calculated for the 

present set of coefficients, and the coefficient values are adjusted in 
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the opposite direction to the gradient vector. Given a particular 

coefficient set, the updated coefficients are calculated using: 

Wk+l Wk + (- V 
-k 

e2(k)) (2.1) 

where Wk is the vector of coefficients (ai) and (bi) at time t- kT, 

Ve is the vector of partial derivatives of the m. s. e. and p is a 
-k 

diagonal matrix of convergence factors controlling the rate of 

adaptation. Provided that the values in p are correctly chosen, 

continual adaptation of each coefficient value in the opposite direction 

to the gradient vector drives the filter into a local minimum of the 

error surface. 

In addition to the White algorithm, other direct form structure 

algorithms employing the steepest descent approach are the Hsia/Horvath 

and Feintuch algorithms. The differences between the algorithms lie in 

simplifications made in the calculation of the gradient vector. 

2.111 White/Stearns Algorithm 

From the general adaptive filter structure shown in figure 1.1, 

the error at time t- kT is given by : 

e(k) - d(k) - y(k) (2.2) 

Hence, the m. s. e. value is obtained from: 

e2(k) - d2(k) + y2(k) - 2d(k)y(k) (2.3) 

As e2(k) is not readily available, the instantaneous squared 

error e2(k) is used as a local estimate. It was shown 
(6) 

that this 
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estimate is asymptotically unbiased. From equation (2.3), taking partial 

derivatives of the instantaneous squared error e2(k) with respect to the 

(ai) and (bi) filter coefficients yields: 

ae2(k) 
- 2. e(k). ai(k) (2.4) 

Bai 

- 
ae2(k) 

- 2. e(k). ßi(k) (2.5) 
8bi 

i-1,2,.., m 
Where: 

ai(k) 
ay(k) 

°- 

äai 
(2.6) 

ßi(k) °- ay(k) 
(2.7) 

8bi 

Due to the recursive nature of the filter, the output y(k) at 

time t- kT contains transients from past coefficient changes. This 

makes calculation of the ai(k) and ßi(k) terms a very difficult process. 

The problem was overcome by White by allowing only small coefficient 

updates at each iteration. The filter then remains approximately 

constant over a small number of iterations, and y(k) can be assumed to 

be the output from a fixed filter. An alternative approach would be to 

adapt the weights intermittently allowing time for the transients to 

decay sufficiently after each coefficient update. This would, however, 

'26) 
slow the adaptation time considerably. 

0. 
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From equations (1.3), (1.4), the z"transform of the adaptive 

filter output, Y(z), is given by: 

A(z) 
Y(z) - X(z) 

A 
(2.8) 

B(z) 

where: 

A(z) - a0 + a1z, 
1 

+ a2z-2 + ... +anzn (2.9) 

B(z) -1+ b1z, 1+ b2z. 2 
+ ... + bmz m (2.10) 

By taking the partial derivatives of Y(z) with respect to the filter 

coefficients, equations (2.6) -- (2.10) yield: 

X(z). zi 
ai(z) -A (2.11) 

Bk(z) 

-Y(z). z" 
ßi(z) A 

Bk(z) 

Where Bk(z) °- B(z) at time t- kT. Inspection of equations (2.11) and 

(2.12) reveals that the ai(z) and ßi (z) terms can be generated by a 

series of time varying recursive filters with delayed versions of X(z) 

and Y(z) respectively as inputs. The filters are copies of the current 
A 

B(z) adaptive filter section. 
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Hence, using equations (2.4) and (2.5), the general steepest 

descent equation (2.1) yields the following coefficient update 

equations: 

a(k+1) - ai(k) + µa. e(k). ci(k) 101,.., n 
(2.13) 

bi(k+1) - bi(k) +Ab. e(k). ßi(k) . (2.14) 
I-1,2,.., m 

with the ai(k) and ßi(k) terms being generated by an additional set of 

time varying filters. The complete adaptive filter structure is shown in 

figure 2.1. It is seen that a considerable amount of computation is 

required for even relatively low order filters. 

2,112 Hsia / Horvath Algorithm 

Hsia(26) and Horvath (27) 
separately suggested the same 

simplification for the White/Stearns algorithm. The simplification 

drastically reduces the computation required to generate the ai(k) and 

ßi(k) gradient terms. By assuming that only small coefficient updates 
A 

will be made at each iteration, B(z) at time t- kT will approximate 
A 

B(z) at times up to t- (k-n)T, where n is the order of the adaptive 

filter. The ai(k) and ßi(k) gradient terms can now be generated using: 

X(z). z'1 
ai(z) 'A (2.15) 

Bk. i(Z) i 

-i(Z). Zi 

ßi(z) -A (2.16) 
Bk-i(Z) 

A 

Where Bk-i(z) is the transfer function of the recursive section of the 

adaptive filter at time t- (k-i)T. The White filter structure is 

simplified to that shown in figure 2.2. The ai(k) terms are already 

generated in the delay line of the adaptive filter, and hence do not 
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require any additional computation. Generation of the ßi(k) terms 
A 

requires a single copy of the present B(z) filter section. By comparing 

equations (2.11) and (2.12) with equations (2.15) and (2.16), it is seen 

that the Hsia/Horvath filter will have different transient behaviour to 

the White filter in the early stages of adaptation as the coefficients 
A 

are rapidly varying, but in the later stages of adaptation Bk_i(z) will 
A 

be a good approximation of Bk(z) as the coefficients approach their 

steady states. It is also observed that the transient differences will 

be greater for higher order filters. However, comparisons of the 

Hsia/Horvath and White/Stearns algorithms have shown that the difference 

in performance is negligible for low order filters. 

2.113 Feintuch Algorithm 

Feintuch proposed a further steepest descent algorithm 
(28. ) by 

approximating the adaptive filter input and output statistics. From 

equation (1.2), the output of the direct form adaptive filter structure 

at time t- kT is given by: 

y(k) - 
AT A X(k) - 

BTY(k) (2.17) 

where: 

A- (a0, al, a2, .... an) (2.18) 

- (blob 2'b31..., bm) (2.19) BT 

XT(k) - (x(k), x(k-1),..., x(k-n)) (2.20) 

YT(k) - (y(k-1), y(k"2),..., y(k-m)) (2.21) 

Hence, the error signal at time t- kT is given by: 

e(k) - d(k) - (A X(k) - BTY(k)) (2.22) 
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From equation (2.22), E[e2(k)] is obtained from: 

4T A 
E [e 2 (k)) -E[ d2 (k) ]+ ATRXXA + BTRyyB 

A- 2ATRdX + 2BTRdy - 2A RXyB 

(2.23) 

where: 

RXX - E(X(k)XT(k)] 

Ryy - E(Y(k)YT(k)) 

RdX - E(d(k)X(k)J (2.24) 

RdY - E[d(k)Y(k)] 

RXy - E[X(k)YT(k)] 

Making the assumption that the Wiener solution for the adaptive filter 

is available 
(8), Feintuch observed that at the solution, the Rte, Rdy 

and Ryy terms from equation (2.24) are constants when differentiated 
A 

with respect to the vectors A and B. 

Hence, differentiation of equation (2.23) with respect to A and 
A 

B yields: 

°Ä(EIe2 (k) ]) - 2RÄ - 2R - 2RXYB (2.25) 

B(E[e 
2 (k)]) - 2RyYB + 2Rdy - 2R T 

XYA 
(2.26) 

AA 

If the statistics are known a priori, the optimum values of A and B can 

be calculated directly by equating equations (2.25) and (2.26) with zero 

(as the gradient vectors will be zero at the minimum). However, as in 

general the statistics are not available, Feintuch replaced the unknown 

matrices by local estimates and used a steepest descent procedure to 

update the coefficients. The gradient vectors can be approximated by: 

VÄ(E[e2(k)]) - 2[X(k)XT(k)A(k) - d(k)X(k) - X(k)YT(k)B(k)1 (2.27) 

V*(E[e2(k)]) - 2[Y(k)YT(k)B(k) + d(k)Y(k) - Y(k)XT(k)A(k)I (2.28) 
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Using equation (2.22), equations (2.27) and (2.28) simplify to: 

VA(E[e2(k)]) - -2X(k)e(k) (2.29) 

VA(E[e2(k)]) - 2Y(k)e(k) (2.30) 
B -7 

A comparison of equations (2.29) and (2.30) with the gradient term 

equations (2.4) and (2.5) for the White/ Stearns algorithm reveals that 

the ai(k) and ßi(k) terms for the Feintuch algorithm are given by: 

ai(k) - x(k-i) (2.31) 

ßi(k) - -y(k-i) (2.32) 

The filter structure of the Feintuch algorithm is shown in Figure 2.3. 

As for the previous two algorithms, the filter coefficients are updated 

every sample using equations (2.13) and (2.14). 

Following the publication of the Feintuch algorithm in(28), two 

publications questioning the validity of the algorithm appeared in the 

(29 
. Feintuch assumed in the derivation of the algorithm literature'30ý 

that the covariance terms RXyt R. and Rdy are constants when 

differentiating with respect to the coefficients. However, this is not 

the case if the coefficients are adaptive. Hence, the Feintuch algorithm 

is effectively a gross approximation of the White algorithm. The 

White/Stearns ai(k) and ßi(k) terms are truncated to the Feintuch terms 

by ignoring the recursive calculators. 

In and(30) , it was stated that, in general, the Feintuch 

algorithm will not converge to minimize the mean squared error. In (29) 

an example was given in which a two pole, two zero plant was modelled 

using a single pole, single zero adaptive filter. The resulting 
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error surface was shown to be bimodal. The Feintuch algorithm converged 

to neither the global minimum, nor the local minimum in the m. s. e. 

surface. This result confirms that the algorithm is not strictly a 

steepest descent algorithm. 

However, simulations by Feintuch suggest that if the order of 

the adaptive filter is of the same or higher order than the plant, then 

the algorithm will converge to the optimum solution. 

2.114 Sequential Regression Algorithm 

An Adaptive IIR Filtering algorithm employing a sequential 

regression technique was proposed by Parikh and Ahmed in (31) 
and further 

(32 in 32 -ý 35) 
. The coefficient update algorithm uses an 

approximation to Newtons method which has the advantage of straight line 

convergence toward the minimum of a quadratic performance surface, 

rather than the more circuitous steepest descent approach. Although the 

IIR error surface is non-quadratic as a whole, a similar technique can 

be used by making small coefficient adjustments and assuming the 

performance surface to be locally quadratic. The algorithm involves the 

generation of the inverse of the Hessian matrix of second order 

derivatives. While this is achieved using a matrix inversion lemma, the 

computation required is still considerable. 

The Sequential Regression (SER) algorithm is derived to 

minimize the cost function J(W) where: 

J(W) -qE e2(k) + WTW 
k 

(2.33) 

and W is the vector of filter coefficients. The parameter q is a scalar 

which determines the relative influence of the squared error, and the 

weights on the cost function. The WTW term in the cost function is 

required in cases when the error surface has a distributed minimum. That 
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is, the adaptive filter is over-sufficient. In such cases, the algorithm 

can run into computational difficulties if the WTW term is excluded due 

(35) 
to the recursive estimate of a matrix inverse. 

The error signal, e(k)e is obtained from: 

e(k) - d(k) - WkT vk 

where: 

(2.34) 

VkT - (x(k), x(k-1),.. x(k-n), -y(k-1), -y(k-2),.., -y(k-m)) (2.35) 

Letting VWJ(W) denote the gradient of J(W) with respect to W, then 

conditions for a minimum in J(W) are obtained by equating VWJ(W) with 

zero which yields: 

(I +Zq ýk VkT}W -Z d(k) ak (2.36) 
kk 

where I is the identity matrix and Ak - VWy(k). Hence: 

akT - (a0(k), a1(k),..., an(k)ý, 8 1(k)'02(k)...., ßm(k)) (2.37) 

Where the ai(k) and ßi(k) terms are generated using equations (2.11) and 

(2.12) derived for the White algorithm. By estimating W using r 

iterations, equation (2.36) yields: 

_1 r 
Wr - Pr I d(k) ak (2.38) 

k-i 

where: 

r 
pr -I +kElq 4 ! kT (2.39) 
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Wr is computed recursively using: 

Wk - Wk-1 +q Pk'1 ak e(k) (2.40) 

k-1,2..... ßr 

-1 
where W0 -0 and Pk is calculated via a matrix inversion lemma using: 

-1 -1 _ -1 T -1 Pk - pk-1 1 pk-1 ,k Vk Pk-1 (2.41) 

7 

where: 

ry -I+ VkT Pk_1-1 ak (2.42) 
q 

and P0-1 - I. 

Hence, the adaptive filter coefficients are updated every 

iteration using equation (2.40) with Pk' calculated using equation 

(2.41) and Ak generated using the White/Stearns filter structure. The 

matrix Pk is an approximation to the Hessian matrix at the kth 

iteration. 

Simulations by Parikh and Ahmed (31.35) have demonstrated 

several applications for the SER algorithm. One interesting property of 

the algorithm was shown in(33). The insufficient adaptive filter 

example from 
(29) 

was tested using the SER algorithm and it was shown 

that the adaptive filter converged to the global minimum of the error 

surface, and not the local minimum, irrespective of which minimum the 

filter was started closer to. However, in general, convergence to the 

. global minimum cannot be guaranteed 
(36) 
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2.12 Hyperstable Algorithms 

The concept of hyperstability was developed by V. M. Popov 

in 
(69) 

. Hyperstability extends the linear systems theory of stability 

and positivity, to non-linear and time varying systems. A discrete-time, 

recursive output error technique based on hyperstability was proposed by 

Landau 
(16) for identifying the parameters of an ARMA plant. Known as the 

Hyperstable Error Identifier, present and past values of the output 

error signal were used to satisfy conditions for hyperstability, and the 

error asymptotically decayed to zero. However, the method involved 

complicated stochastic approximations and employed a decaying step-size 

which was satisfactory for stationary input sequences only. 

The technique was adapted by Larimore, Treichler and Johnson 

in 
(37 -> 41) for use in adaptive filtering applications. The first 

algorithm, called HARF (Hyperstable Adaptive Recursive Filter), employed 

a fixed step-size and recursions from the Landau algorithm were 

sequenced to give a strictly causal filter. HARF was the first adaptive 

IIR filter algorithm to have provable convergence properties. Due to its 

complexity however, it was too computationally demanding for many signal 

processing tasks. Hence, the SHARF (Simplified HARF) algorithm was 

proposed 
(37). 

The SHARF algorithm requires the same order of computation 

as the gradient-based algorithms. A further modification to the HARF 

algorithm resulted in MHARF (Modified HARF) 
(42). 

Johnson(44)showed that 

all hyperstable algorithms can be derived from a central form called 

CHARF (Complete HARF). The algorithms are discussed in greater detail in 

the following sections. 

2.121 HARF Algorithm 

The difference equations required for the implementation of the 

HARF algorithm are given in equations (2.43) and (2.44). In addition to 

the main adaptive filter, an extra ARMA process is required for the 
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formation of the filter output, y(k). The auxi"l iary process generates: 

nm 
(k)f(k-i-1) (2.43) f(k-1) -I ai (k)x(k-i-1) - 

i-1b i 1-0 

With the filter output given by: 

nm 
y(k) -Ia (k)x(k-i) -Ib (k)f(k-1) (2.44) 

1-0 i 1-1 i 

If the adaptive process converges on a solution, ai(k+l) - ai(k), 

bi(k+l) - bi(k), and y(k) asymptotically converges to f(k). The 

coefficients are updated every sample using: 

ai(k) + 

bi(k+1) - bi(k) - 

Pa 

. x(k-i). v(k) 
q(k) 

llb 
. f(k-i). v(k) 

q(k) 

(2.45) 

(2.46) 

where v(k) is the augmented error given by: 

P 
v(k) - (d(k)-f(k)) + ci(d(k-i)-f(k-i)) 

i-i 

and q(k) is a normalizing factor obtained from: 

q(k) -1+ µbf2(k-i) +nA x2(k-i) 
i-1 i-0 

(2.47) 

(2.48) 
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For the adaptive filter to converge to its optimum coefficients, two 

conditions must be met. 

a) The order of the adaptive filter transfer function numerator and 

denominator must be at least as great as that of the plant. 
AA 

ie. m> in, n>n. 

b) The (ci) error smoothing coefficients must be chosen so that the 

transfer function G(z) given by: 

G(z)- 

P 
1+ ciz 

i-i 
(2.49) 

m 
1+ biz-1 

i-1 

is Strictly Positive Real (S. P. R. ), ie. Re(G(z)) >0 for Izl - I. 

Under these conditions, the modified error v(k) given in equation (2.47) 

converges to zero and therefore y(k) -> f(k) -> d(k) which is the 

desired performance for the filter. 

A complete explanation of the algorithm with a heuristic 

description of positive reality and hyperstability is provided 

in(37,39). A proof of the algorithm's convergence properties is given 

in(38,41). However, a considerable amount of computation is required for 

implementation of HARF, which is undesirable for real time applications. 

To make it more amenable, certain simplifications were made leading to 

SHARF. 

2.122 SHARF Algorithm 

Simplifications for the HARF algorithm were suggested by 

Larimore, Treichler and Johnson in (37) 
resulting in SHARF. By specifying 

the adaptation constants pa and µb to be sufficiently small, the 

coefficients in equations (2.43) and (2.44) change very little from 

iteration to iteration. 
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A comparison of equations (2.43) and (2.44) indicates that f(k) - y(k), 

and hence the filter output in equation (2.44) can be approximated by: 

nm 
y(k) -I ai(k)x(k-i) -X bi(k)y(k-i) (2.50) 

i-0 i-1 

The augmented error v(k) in equation (2.48) becomes: 

P 
v(k) - (d(k)-y(k)) + ci(d(k-i)-y(k-i)) 

i-1 

p 
- e(k) + ci. e(k-i) (2.51) 

i-1 

v(k) is now a moving average of the output error e(k). 

The normalizing factor q(k) was utilized in HARF to reduce the 

effective step size for large values of filter input and output. 

Assuming that µa and µb are small values, equation (2.48) can be 

simplified to: 

q(k) -1 (2.52) 

Hence, from equations (2.45) and (2.46), the coefficient update 

equations for the SHARF algorithm are given by: 

ai(k+1) - ai(k) + µa. x(k-i). v(k) (2.53) 

bi(k+l) - bi(k) - pby(k-i). v(k) (2.54) 

The complete filter structure for the SHARF algorithm is shown 

in figure 2.4. A comparison with the Feintuch algorithm of Section 2.113 

reveals that if (ci) - 0, v(k) - e(k) and the two algorithms are 
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identical. However, in general, the hyperstable algorithms do not behave 

as gradient algorithms (In (38) it was shown that the Hessian matrix for 

HARF is irregular and may have complex eigenvalues). For small values of 

pa and µb, the SHARF (and hence the Feintuch algorithm) adaptation 

process will converge provided that G(z) in equation (2.49) is S. P. R.. 

For (ci) - 0, this criterion means that the poles of the adaptive filter 

(40) 
can only lie within a restricted region of the unit circle. This 

region is shown in figure 2.5, together with S. P. R. regions for 

different values of cl. It is seen that with suitable choice of (ci) 

coefficients, the S. P. R. region can be tailored to cover different 

regions of the unit circle. However, to guarantee convergence for the 

adaptive filter, the choice of (ci) coefficients requires a priori 

knowledge of the plant pole positions. In addition, it was shown 
(37,40) 

that rates of convergence are highly dependent on the choice of (ci) 

coefficients. 

2,123 Modified HARF 

To eliminate the need for an a-priori choice of (ci) 

coefficients, HARF was modified by Parikh, Sinha and Ahmed in (42) 

and 
(43) 

to provide an adaptive S. P. R. region. This was achieved by 

adaptation of the (ci) coefficients in a similar way to the (ai) and 

(bi) coefficients. The (ai), (bi) and (ci) coeffficients are updated 

using: 

ai(k+1) - a(k) + ; ̀a v(k)x(k. i) (2.55) 

qI (k) i-O, n 

bi(k+1) - bi(k) - 1b v(k)y(k. i) (2.56) 

q(k) i-l, m 

c(k+1) - ci(k) + µc v(k)e(k-i) (2.57) 

qI (k) i-1tP 
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where: 

P 
q'(k) - q(k) + µce2(k-i) 

i-1 
(2.58) 

q(k) is calculated using equation (2.48) and v(k) is obtained from 

equation (2.47). The MHARF algorithm has the advantage over the HARF 

algorithm of not requiring a pre-determined S. P. R. region. However, 

convergence of the MHARF algorithm cannot be guaranteed due to the 

adaptive (ci) coefficients masking possible instability of the adaptive 
(36) filter. 

2.124 CHARF (Complete HARF) 

This is the central algorithmic form of the hyperstable 

algorithms. Johnson (44) demonstrated that the HARF, SHARF and MHARF 

algorithms can be generated from CHARF. 

2.13 Random Search Algorithms 

In general, gradient techniques cannot guarantee convergence to 

the global minimum due to the non-unimodal nature of the IIR filter 

mean-square-error surface. An adaptive Genetic Algorithm was proposed by 

Etter in 
(45) 

and modified in (46) 
to circumvent the problem through the 

use of a random search approach with a "survival of the fittest" 

selection process that retains information from past trials. 

2.131 Genetic Algorithm 

Each filter in the search space (ie., all possible stable 

filters allowed under the accuracy constraints) have their coefficients 

coded into binary numbers using the Gray code, and combined into a 

binary string. Initially, a set of filters are chosen at random from the 
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search space. This is termed the first generation. Each filter has a 

mean-square-error value associated with it. 

The binary strings are acted upon by one of two operations to 

form the next generation. The operations are mutation and crossover. 

Mutation acts on a filter string by complementing bits in the string 

with a predetermined probability depending on-the filter's associated 

m. s. e.. Crossover takes two strings and breaks them at random point. The 

first part of one string is then combined with the second part of the 

other to produce two new strings. The probability of selection of a 

particular bit string to modify and/or replicate is inversely 

proportional to its estimated m. s. e. in relation to the m. s. e. of the 

other bit strings. 

The algorithm was designed to slowly change from a random 

search to a converging process. Hence, in the initial stages of 

adaptation there is a higher probability that the random operator 

mutation will take place rather than the converging crossover. The 

probabilities are controlled by a decaying exponential governed by a 

constant, viz: 

p(mutation) - 0.8333e'at 

p(crossover) -1"0.8333e-at 

The search is terminated when either: 

1) The outcome of all crossover operations are identical. 

(2.59) 

(2.60) 

2) The minimum and maximum m. s. e. of a generation are the same. 

3) A filter with zero error is found. 

The evolution process enables the characteristics of above 

average filters to reproduce their patterns and hence information is 

retained through generations. The target during the random phase is to 
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generate optimal substrings. These subpatterns are termed Optimal 

Independent Schema and are bits within a string that are optimal, 

irrespective of the settings of other bits. During the convergence stage 

these Independent Schemas reproduce their bit patterns and eventually 

dominate the generation. 

Simulations in (45,46) 
show that convergence to a global minimum 

in a bimodal error surface example was achieved with a high probability 

of success. The actual rates of convergence and minima obtained were 

dependent on the choice of a. If the algorithm changed quickly from the 

random search to the convergence mode, then it quickly converged but not 

always to the global minimum. Alternatively, with a slower changeover, 

there is an increased probability of convergence to the global minimum, 

but also an increase in convergence times. 

However, the simulations by Etter used only second order 

All-Pole filters. The search space for the adaptive filter is therefore 

the triangular region shown in figure 1.6. For higher order filters the 

search space size would rapidly increase in size, and with 10 filters 

for each generation (as used in(46)), the computation required is large. 

2.2 ALGORITHMS FOR OTHER FILTER STRUCTURES 

The Direct Form filter structure featured in the previous 

algorithms is optimal in terms of hardware implementation, but suffers 

from two major drawbacks when the filter coefficients are adapted. The 

first is the absence of a simple stability check, which applies to even 

low order filters. For the Gradient Algorithms, noise introduced by the 

coefficient adaptation, or short term trends in the error signal, can 

cause poles to migrate outside the unit circle resulting in an unstable 

filter. Hence, to maintain stability of the Direct Form Structure during 

adaptation using gradient methods, it is necessary to either factorize 
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the denominator of the filter transfer function and check the pole 

positions, or alternatively to use some other equally complicated 

stability criterion. 

Both of these approaches are computationally intensive and 

hence undesirable, as the test must be repeated following each 

coefficient update. Thus, stability of the Direct Form gradient 

algorithms is not generally guaranteed for simple real time operation, 

although the problem of instability is reduced to some extent by making 

very small coefficient changes at each update. 

The second drawback is caused by the high sensitivity of the 

Direct Form filter coefficients to pole and zero positions near either 

z-1 or z- -1 in the z-plane(64). As a change in one denominator 

coefficient will change all the pole positions (and similarly a change 

in a numerator coefficient will alter all the zero positions), the 

filter characteristics can be very sensitive to small coefficient 

changes. 

To reduce the problem of maintaining stability of a Direct Form 

filter structure, adaptation algorithms have been proposed for other 

filter structures which may be kept stable easily. Structures which have 

been utilized are the recursive lattice structure(47,48,49) a cascade 

of second order biquadratic filter sections(6), and a modified cascade 

structure 
(50). 

2.21 Recursive Lattice 

Several adaptive IIR lattice structures have appeared in the 

literature. The first was proposed by Parikh, Ahmed and Stearns 
(47). 

This algorithm was simplified by Ayala in(48). Recently, a SHARF 

algorithm using a lattice structure was published(49). 

Figure 2.6 shows the IIR Lattice filter structure. The filter 

consists of two sections, a recursive lattice structure with 
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coefficients (ki) which implement the poles, and a linear combiner with 

coefficients (vi) which implement the zeros. There is a direct 

correspondence between the lattice filter coefficients and the direct 

form filter coefficients given in equation (1.3). 

The filter remains stable provided the (ki) recursive 

coefficients satisfy: 

IkiI <1 (2.61) 
1<i<N 

The input and output of the filter at time t- nT is given by: 

N 
Y(n) - vi(n). gi(n) (2.62) 

i-i 

where: 

gi(n) gi-1(n-1) + ki(n)fi-1(n) (2.63) 

fi-1(n) - fi(n) - k(n)Si-1(n-1) (2.64) 

fN(n) - x(n) (2.65) 

g0(n) - f0(n) (2.66) 

In the following two sections, the Parikh, Ahmed, Stearns and 

Ayala gradient algorithms for adapting the recursive lattice structure 

are studied. 
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2 . 211 Parikh. Ahmed and Stearns Algorithm 

The algorithm proposed by Parikh, Ahmed and Stearns uses the 

method of steepest decent to minimize the m. s. e.. The filter 

coefficients are adapted using: 

vi(n) +µ e(n)0(n) (2.67) 

° i2(n) i-1, N 

ki(n+1) - ki(n) +µ e(n)A(n) (2.68) 

vi2(n) 
i-1, N 

Where: 

ay(n) 
Oi(n) - (2.69) 

övi(n) 

ay(n) Oi(n) - 
äki(n) 

(2.70) 

p is an adaptation constant and a12(n) and vi2(n) are the estimates of 

the power at the ith stage of the lattice. ai2(n) and vi2(n) are 

calculated using: 

ai2(n) - pai2(n-1) + (1-p)Si2(n) 

vi2(n) - pvi2(n-1) + (1-p)Ißi-12(n-1) + fi2(n)J 

O<p<l determines the bandwidth of the low pass filter operation. 

(2.71) 

(2.72) 
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The 0 
i(n) terms are calculated using: 

oi(n) - 8i(n) 

ie. they are generated within the filter itself. 

(2.73) 

The calculation of the 0 i(n) terms involves a complicated 

series of recursive lattice filters, (similar to the White Direct Form 

Structure algorithm which requires copies of the recursive section of 

the filter to generate the ai(k) and ßi(k) terms). 

To calculate the 01(n) terms: 

N 
oi(n) - 

ýE 
vj (n)ß(n) 

0 
i-0,1,.., N-1 

(2.74) 

where the ßi, j(n) terms are generated using equations (2.75) and (2.76): 

(n) 
ai, j (n) - 

äf 

öki(n) 

ßi, j (n) j-o 

ai, j+l(n) - kj+1(n)ßi, j(n-1) j, 'i+1 
Iai, 

j+1(n) - kJ+1(n)ßi, 
j (n-1) - gj (n-1) j-i+l 

(2.75) 
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And: 

agi (n) 
fli, j(n) äki(n) 

- ßi, j-1(n-1) + kj(n)cxi, j-1(n) 

ßi, j-1(n-1) + kj(n)ai, j-1(n) + fj-1(n) 

i'j 

i-j 

(2.76) 

The calculation of the 0i(n) terms requires a great deal of computation 

and hence the algorithm is unsuitable for hardware implementation. 

2,212 Ayala Algorithm 

The Ayala algorithm differs from the Parikh, Ahmed, Stearns 

algorithm in the calculation of the 0i(n) terms. Ayala simplified the 

calculation by expressing equation (2.62) in terms of the reflective 

coefficients. The vector g(n) of forward residuals gi(n) can be 

expressed as: 

g(n) - A(n)g(n-1) + fN(n)k(n) 

Where k(n) is the vector of ki(n) coefficients and: 

-k0k1 -k0k2 ........ -kokN 0 

2 1-k1 -k1k2 ........ -k1kN 0 

A(n) - 
1-k22 -k2k3... -k2kN 0 

0 ................ 1-kN2 0 

(2.77) 

(2.78) 

By neglecting Second Order effects, equations (2.65), (2.69), (2.70) and 

(2.77) yield: 

0(n) - v(n)T(okA(n))g(n-1) + fN(n)y(n) (2.79) 

Where v(n) is the vector of vi(n) coefficients. 
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From equation (2.79). the expressions for successive gradient terms are 

given by: 

0l(n) - vi(n)(2f0(n) - 

ON(n) - vN(n)(2fN-l(n) 

fl(n))- g0(n-1)60(n) 

- N(n)) ' 9N-1(n-')AN-1(n) 

(2.80) 

Where: 

AO(n) - v0(n)k0(n) 

(n) - v1(n)k1(n) + A0(n) 

AN(n) - vN(n)kN(n) + AN-1(n) 

For the Ayala algorithm, the process for calculating the 0 i(n) 

terms in equation (2.68) requires only the current residuals and lattice 

coefficients at the ith stage, and a recursive update term in equation 

(2.80). This is considerably simpler than the formulation proposed 

in(47). 

2.22 Cascading Second-Order Sections 

An alternative method for ensuring filter stability is to 

realize the recursive part of the filter as a cascade of second order 

sections. Maintaining stability is achieved by constraining the two 

coefficients from each recursive section (bl, b2) within the triangular 

region shown in figure 1.6. 

An IIR LMS algorithm for adapting a cascade of biquadratic 

sections was proposed by David in(6)The algorithm was modified in(50) 

for a filter structure consisting of a Direct Form All-Zero Section 

followed by a cascade of second order All-Pole sections. These 

algorithms and filter structures are considered in detail in Chapter 3. 
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2.23 Total Adaptive Filter 

In an attempt to overcome the problem of local minima in the 

IIR filter performance surface, Soderstrand(52) proposed the Total 

Adaptive Filter (TAF). The TAF utilises the fact that implementation of 

an adaptive filter using a microprocessor enables the filter structure 

to be changed, as well as the coefficients. For a number of filter 

structures, the coefficients are adapted and the minimum m-s-e value is 

recorded. The filter producing the lowest m-s-e value is then 

implemented. Generally, convergence times from this type of approach 

will be slow. 

2.3 OVERVIEW OF IIR FILTER ADAPTATION ALGORITHMS 

Analysis of the adaptive IIR filtering algorithms proposed to 

date, reveals a lack of robustness which explains the predominance of 

adaptive FIR filters. Four major problems face prospective Adaptive IIR 

FIlter users viz: 

1) Will the filter adapt to, and converge on the global minimum ? 

2) Will the filter remain stable ? 

3) How much computation will the filter structure and adaptation 

algorithm require ? 

4) Is the speed of adaptation fast enough ? 

The above points are discussed in the Sections (2.31 -. 2.34) based on 

the available mathematical proofs and experimental results. Conclusions 

are drawn in Section 2.35. 

2.31 Adaptation to the Global Minimum 

It was stated in (18) 
that the HARF algorithm, and hence SHARF 

employing a small adaptation constant, is guaranteed convergent to the 
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global minimum provided that the G(z) transfer function is S. P. R., and 

the order of the adaptive filter is at least as great as that of the 

target plant. However, in many signal processing applications these two 

conditions are difficult to ensure. Choice of the (ci) coefficients 

which specify the S. P. R. region (equation (2.49)) is governed by some 

a-priori knowledge of where the target poles lie. This information may 

not be available and a poor choice of (ci) coefficients may result in 

slow convergence or instability. The MHARF algorithm avoids the problem 

by adaptation of the (ci) coefficients. However, this algorithm has 

stability problems which will be considered in the next section. 

Furthermore, it is known that hyperstability is an over-restrictive 

criterion. For example, the Feintuch algorithm has been shown to 

converge to plant poles lying outside the S. P. R. region 
(40). 

A second difficulty with Hyperstable adaptive filter algorithms 

arises if the adaptive filter is of insufficient size to model the 

target. It was shown in (44) 
that, in general, the adaptive filter will 

not converge to either a local or the global minimum of the m. s. e. 

surface. In fact, both HARF and SHARF adapt to the same position as 

would Feintuch IRS. This was confirmed using the bimodal error surface 

example presented in(29). For many signal processing tasks, the order of 

the adaptive filter will be less than the target, and in such cases the 

hyperstable algorithms will not necessarily adapt to a minimum in the 

m. s. e. surface. 

Although gradient algorithms have been proven convergent only 

under very limited conditions (ie., White noise input, sufficient order 

adaptive filter) experimentation has suggested that they will converge 

under less favourable input conditions 
(12). 

Apart from the Feintuch IMS 

algorithm, the gradient algorithms have the advantage over hyperstable 

algorithms of adaptation to a minimum in the m. s. e. surface. 
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While the Genetic algorithm is too complex for real-time 

operation, it will find the global minimum of the m. s. e. surface with a 

high percentage of success, and otherwise will adapt to a local minimum. 

2.32 Adaptive Filter Stability 

Maintaining filter stability during adaptation is a great 

problem for all adaptive IIR filter algorithms using a Direct Form 

filter structure. For real-time applications, gradient-based algorithms 

are likely to go unstable as a complicated stability check cannot be 

implemented. The HARF and SHARF algorithms are guaranteed stable 

provided that the G(z) transfer function is S. P. R.. However, a poor 

choice of (ci) coefficients may result in instability. In addition, the 

choice of µ parameters is still empirical. MHARF runs into stability 

problems due to the C(z) error filter. Transfer function poles may adapt 

outside the unit circle whilst being masked by the zeros of C(z). This 

can lead to a stall condition in the adaptation(36,44). To avoid the 

problem, a stability check on the adaptive filter pole positions must be 

incorporated into the algorithm. As previously mentioned, this is not 

practical for the Direct Form filter structure. The lattice and cascade 

filter structures, on the other hand, are easily kept stable. 

2.33 Computation Costs 

A major reason for the development of adaptive IIR filters is 

the computation savings offered when compared with a very long adaptive 

FIR filter. To achieve this aim, the IIR algorithm needs to be as simple 

as possible - especially for dedicated hardware applications. Reviewing 

the range of algorithms, the SER, HARF, MHARF and the Genetic algorithms 

have a high degree of complexity. Algorithms such as the White algorithm 

and the Recursive Lattice algorithms are moderately complex and may be 

too complicated for real-time implementation. Soderstrand(36) reviewed 
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the cost and performance of a number of algorithms including the White 

and Feintuch algorithms. Using several examples, it was demonstrated 

that the FIR ladder filter using the IMS algorithm can give a better 

performance than many IIR filtering algorithms for a fixed computation 

cost. 

2,34 Speed of Adaptation 

Whilst being of great importance in many practical applications 

such as echo cancelling, line equalization, etc., the problem of speed 

of adaptation tends to be ignored by the great majority of publications 

concerned with adaptive IIR filtering. Although a low order adaptive IIR 

filter may achieve the necessary reduction in m. s. e. to replace a high 

order adaptive FIR filter, the time taken for each to adapt to the 

optimum filter may be a significant factor. 

The speed of adaptation of an FIR filter using the Widrow LMS 

algorithm is governed by the length of the filter and the eigenvalue 
(spread 

of the input signal 
8ý. However, the error surface is quadratic 

in shape and adaptation is generally fast. In the IIR case, the function 

to be minimized is non-uniform(12) and adaptation times will therefore 

be slower in general. For the computationally simple algorithms, the 

step size µ must be kept small to retain stability of the gradient 

algorithms, and to keep the hyperstable feature of SHARF. This 

unfortunately leads to very slow convergence times, generally much 

slower than FIR filters. 

2.35 Conclusions 

The results presented in Sections 2.31 --> 2.34 suggest that the 

hyperstable algorithms are only suitable for system identification 

problems where the adaptive filter is of sufficient order to fully model 

the unknown system. Hence, the hyperstable algorithms are not suited to 
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the majority of signal processing applications, which fall into the 

signal identification and signal correction categories. For these 

applications, the adaptive filter is generally insufficient in order and 

the filter performance surface may be multimodal. 

The problem of local minima affects all algorithms except those 

taking a random search approach. However, the Etter algorithms are too 

complicated to implement for real-time applications. While being simple 

to implement, the gradient algorithms will adapt to a minimum in the 

error surface provided that the values of the p parameters are correctly 

chosen. Hence, gradient algorithms can always reduce the m. s. e. value to 

a minimum in the error surface, which is not the case for the 

hyperstable algorithms. In addition, for some applications, the error 

reduction obtained from a local minimum position in the error surface 

may be sufficient. 

One of the major problems of gradient algorithms is 

maintaining filter stability during adaptation. This problem can be 

circumvented by implementing the poles using either a lattice filter, or 

a cascade of second-order recursive sections. By incorporating a filter 

stability check into a gradient algorithm, the size of p adaptation 

parameters may be greatly increased in size compared with the values 

needed to retain filter stability. This will result in much faster 

convergence. 
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CHAPTER 3 
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3.0 A CLASS OF STABLE GRADIENT-BASED ADAPTIVE'IIR FILTERS 

In this chapter, simple gradient-based adaptive IIR filtering 

algorithms are developed for a set of filter structures which are easily 

constrained to be stable. Three filter structures are proposed; a 

cascade of biquadratic pole and zero sections, a modified cascade with 

the zeros implemented in direct form, and a parallel arrangement of 

biquadratic sections. Filter stability is maintained by implementing the 

poles of the IIR filter transfer function in cascade and parallel 

arrangements of second order recursive sections, and then restricting 

the coefficients from each section to lie within the triangular region 

shown in figure 1.6, Chapter 1. Gradient algorithms are derived to adapt 

the structures based on the method of steepest descent. Approximations 

made in the derivations of the algorithms result in very little extra 

computation being required to generate the gradient terms. The proposed 

algorithms require considerably less computation than previously 

published algorithms by David 
(6,50) 

for cascade and modified cascade 

filter structures. 

3.1 " FILTER STABILITY 

One of the major disadvantages of implementing an adaptive IIR 

filter as a direct form structure, is the absence of a simple stability 

check (See Section 2.2). The algorithms proposed in this chapter 

circumvent the problem by implementing the filter poles in combinations 

of second order recursive sections. Filter stability is maintained by 

constraining the (bl, b2) recursive coefficients from each section to lie 

within the 'stability triangle', ie. the triangular region shown in 

figure 1.6, which is a mapping of the z-plane unit circle. 
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Following a filter coefficient update, two inequalities are 

tested for each filter section, viz: 

Ib21 <1 (3.1) 

bll < b2+1 (3.2) 

If the point (bl, b2) lies on or outside the triangle then either one or 

both the inequalities will not be met, and the coefficient update is- 

ignored. By repeating the process for all recursive sections in the 

filter, overall filter stability is guaranteed. It should be noted, 

however, that because the filter is adaptive, a bounded input signal 

will not necessarily produce a bounded output signal, even though the 

poles always lie within the unit circle. This problem should not arise 

in practice, however, as adaptive IIR filtering algorithms require the 

coefficient updates to be small 
(23,26,50). 

3.2 ALGORITHM DERIVATIONS 

In this section, three adaptive IIR filter structures which 

incorporate second order recursive sections for pole implementation are 

considered. The adaptation algorithms for the filter coefficients are 

based on the method of steepest descent for computational simplicity, 

and, therefore, applicability to hardware implementation. In Section 

3.2.1, an adaptation algorithm for a cascade structure of biquadratic 

pole and zero sections is derived. The algorithm is modified in Section 

3.2.2 for a filter structure consisting of a cascade of second order 

all-pole sections and a direct form all-zero section. Finally, in 

Section 3.2.3, an algorithm is derived for a parallel structure of 

biquadratic sections. 
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3.2.1 Adaptive Cascade Structure 

The Adaptive Cascade Structure of biquadratic sections is shown 

in figure 3.1. The individual section transfer functions are given by: 

Aj(z) 
-1+ a1jz+ a2jz-2 (3.3) 

An(z) - aOn + alnz-1+ a2nz-2 (3.4) 

b1 zl+ b2j z-2 (3.5) 
j-1,2,.., n 

A 

The overall filter transfer function H(z) is obtained from: 

AAAA 

H(z) - H1(z). H2(z)... Hn(z) (3.6) 

where: 

A 

A (z) 
A 
HJ(z) - AJ 

(3.7) 
B (Z) 

The modularity of the Cascade structure is highly beneficial 

for hardware implementation because of the multiplexing possibilities, 

and, in addition, because the cascade structure coefficients are less 

sensitive to coefficient quantization than direct form coefficients 
(64), 

Applying the method of steepest descent, which was described in 

Section 2.11, the filter coefficients are updated using: 

a ij (k+1) -a ij (k) + µa. (- Va 
ij (k)) (3.8) 

bi j (k+1) - bi j (k) + µb. (-Vb 
ij (k)) (3.9) 
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where: 

öe2(k) 
Daij (k) aaij (k) 

(3.10) 

äe2(k) 
ýbij 

(k) abi3 (k) 
(3.11) 

As e2(k) is not readily available, the instantaneous squared error e2(k) 

is used as a local estimate. From figure 3.1, the error signal e(k) is 

obtained from: 

e(k) - d(k) - y(k) 

Hence: 

e2(k) - d2(k) + y2(k) - 2d(k)y(k) 

(3.12) 

(3.13) 

Taking partial derivatives of equation (3.13) with respect to the filter 

coefficients, equations (3.10) and (3.11) yield: 

va (k) - -2. e(k). aij(k) (3.14) 
ij 

ob (k) - -2. e(k). ßij(k) (3.15) 
ij 

Where: 

3y(k) 
ai j (k) (3.16) 

äai j (k) 

ß (k) t 
8y (k) 

(3.17) 
(k) abij 

Generation of the Va 
ij 

(k) and Vb 
ii 

(k) coefficient update terms 

(equations (3.14), (3.15)) requires calculation of the partial 

derivatives of the adaptive filter output y(k) with respect to the 

filter coefficients. However, as for the Direct Form structure (See 
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Section 2.111), the Adaptive Cascade Filter output will contain 

transients from past coefficient changes, making calculation of the 

derivatives difficult. By only allowing small coefficient updates at 

each iteration, the adaptive filter transfer function will remain 

approximately constant over a number of iterations, and y(k) can be 

assumed to be the output of a fixed filter. This assumption is perhaps 

more justified for the cascade structure than the direct form structure, 

because of the lower sensitivity of the cascade filter coefficients(64). 

However, coefficient changes in an early section of the cascade filter 

will create undesirable transient effects which will propagate through 

the filter. These effects are ignored in the following analysis and it 

is assumed that small coefficient changes in one section will not affect 

the inputs to the other sections. 

From equations (3.6) and (3.7), the z-transform of the adaptive 

filter output is obtained from: 

n 
Aj (z) 

Y(z) - X(z) 
A B (z) 

J-1 j 

(3.18) 

where X(z) is the z-transform of the filter input, and Aj(z), Bj(z) are 

obtained from equations (3.3), (3.4), and (3.5). Taking the partial 

derivatives of equation (3.18) with respect to the filter coefficients 

yields: 

Y(z). z-i 
aij (z) - 

A (z) 1j-1,2, 
n-1 

i-1,2 

J -n 
i=0,1,2 

(3.19) 
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and: 

-Y(z). zi 
ßi j (z) 

B3 (z) 
j-1, n 
i-1,2 

where aij(z) and ßij(z) are obtained by taking the z-transform of 

equations (3.16) and (3.17). 

(3.20) 

Inspection of equations (3.19) and (3.20) reveals that the 

aij(z) and ßij(z) terms can be generated by a series of time-varying 

filters which are driven by the adaptive filter output Y(z). Strictly, 
AA 

because the Aj(z) and Bi(z) filter coefficients are constantly changing 

in time, 2n+1 extra second order recursive sections are required to 

generate the aij(z) terms, with a further 2n recursive sections needed 

for the ßij(z) terms. However, as only small coefficients updates are 
AA 

made at each iteration, Bj(z) and Aj(z) at time t- kT can be 
AA 

approximated by Bj(z) and Aj(z) respectively at time t- (k-i)T. This 

approximation was employed in the Hsia/Horvath algorithm 
(26,27) 

as a 

simplification of the White/Stearns algorithm 
(23,24). The simplification 

enables the aij(z) and ßij(z) terms to be generated using only 2n second 

order recursive filters. For the final filter section, the ain(z) terms 

are generated from: 

Y(z). zi 
ain(z) _ 

An(z) 
1-0,1,2 

These expressions can be rewritten as: 

n-1 
1 Aý (z) 

ain(z) - X(z). Z z -i 
Bn(z) 

J-1 
Bj(z) 
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Close inspection of equation (3.22) reveals that the ain(z) terms are 

already generated within the delay line of the final filter section, 

reducing the number of extra filters required to 2n-1 second order 

recursive sections. The steepest descent coefficient update equations 

(3.8) and (3.9) therefore become: 

aij(k+1) - aij(k) + µa. e(k). aij(k) (3.23) 
j-l, n-1 i-1,2 
j-n i-0,1,2 

bi j (k+l) - bi j (k) + µb. e(k) . ßi j (k) 
j-l, n 

(3.24) 

i-1,2 

with the aij(k) and ßij(k) terms generated from a set of filters driven 

by the adaptive filter output, y(k). The complete filter structure 

required to implement the Recursive Least Mean Squares (RLMS) Cascade- 

Filter algorithm is shown in figure 3.2a. 

As n-1 of the aij(z) gradient term generating filters are 

recursive filters, the transfer function zeros of the corresponding 

sections from the adaptive filter are restricted to lie within the 

z-plane unit circle and hence can only model minimum phase zeros. For 

the nth (final) filter section, the ain(z) terms are generated using a 

non-recursive filter, and the zeros of that particular section have the 

freedom to adapt anywhere in the z-plane. 

As the aij(z) and ßij(z) calculators are fed with the same 

input signal (Y(z)), no two pole pairs (or zero pairs) may be started 

from the same initial coefficients. If this occurs, the coefficient 

updates for the sections involved will be identical, and hence the 

filter coefficients will be unable to separate. As an alternative, 

sections could start adapting at different times, or with different 

values of adaptation constants (the second alternative would, however, 

result in an algorithm that was not strictly steepest descent). 

Following each coefficient update, the stability of the 
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adaptive filter and of the aij(k) and ßij(k) term calculating filters are 

tested using equations (3.1) and (3.2). This involves the checking of 

the n recursive sections of the main filter, and n-1 aij(k) generating 

filters. If a section has adapted to coefficients which produce an 

unstable filter, the coefficient updates for that particular section are 

ignored. The true gradient vector will always point to a location within 

(50) 
the unit circle for the (bi) filter coeffficients. If the vector 

points outside then either: 

a) b is too large to allow convergence to the minimum. 

b) Noise in the adaptation algorithm gives an incorrect gradient 

vector. 

Reducing the size of µb is one alternative when stability limits are 

encountered. Methods for the adaptation of µb are considered in 

Chapter 4. 

It is important to note that for the aij(k) calculating 

filters, it is possible that the gradient vector will correctly point 

outside the stability triangle during filter adaptation. However, apart from 

those zeros implemented in the final zero section, the remaining zeros 

must be restricted within the triangle to ensure the aij(k) calculating 

filters do not become unstable. 

A considerably more complicated RLMS cascade structure was 

proposed by David in 
(6) in which the zeros were not confined within the 

unit circle. This was achieved at the expense of much greater 

computation. A block diagram of the David Structure is shown figure 3.2b 

i 
for a comparison. 
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3.2.2 Modified Cascade Structure 

The major disadvantage with the cascade structure of the 

previous section is that the transfer function zeros are constrained to 

lie within the z-plane unit circle, which therefore restricts the 

generality of the filter. To eliminate the constraint on the zeros, a 

modified cascade structure is proposed consisting of second order 

All-Pole sections and a Direct Form All-Zero section. A block diagram of 

the filter structure is shown in figure 3.3. Despite the loss in the 

modularity of the biquadratic cascade structure, the addition of the 

gradient calculating filters to the two structures results in a simpler 

overall filter structure for the modified cascade structure. 

In addition, implementation of the IIR transfer function 

numerator as a ladder filter yields a quadratic error surface with 

respect to the (ai) filter coefficients. While this is in general 

beneficial, it may result in slower adaptation to sensitive zero 

positions. However, because the error surface with respect to the 

denominator coefficients is possibly very irregular, it is expected that 

the rate of adaptation of the poles will control the overall rate of 

adaptation of the filter. Hence, the sensitivity of the zero positions 

is of much less importance than the sensitivity of the poles. 

From figure 3.3, the individual filter sections have transfer 

functions: 

A(z) - a0 + a1z'1 + a2z' 
2+... 

+ anz n (3.25) 

-l Bi (z) -1+ bljz + b2jz- 2 (3.26) 

The overall adaptive filter transfer function H(z) is given by: 

A 

A A(Z) 

H(z) -A 
AA (3.27) 

B1(z)"B2(z).. Bm(z) 
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Using the method of steepest descent, the derivation of the coefficient 

adaptation algorithm follows that for the biquadratic cascade in the 

previous section, for equations (3.8) -* (3.17), but differs in the 

calculation of the ai(k) gradient terms. For the modified cascade 

structure, the filter output is given by: 

A 
Y(z) - X(z). H(z) (3.28) 

where H(z) is given by equation (3.27). 
A 

For the coefficient update equations (3.23) and (3.24), the 

partial derivatives of Y(z) with respect to the filter coefficients 

ai(k), ßij(k) must be calculated. Making the same assumptions regarding 

the adaptive filter transfer function as made for the biquadratic 

cascade structure (Section 3.2.1), the ai(z) and ßij(z) terms are 

obtained from equations (3.16), (3.17) and (3.28), viz: 

X(z)z-i 
ai(z) -AAA (3.29) 

B1(z)"B2(z)... BM(z) 

-Y(z). z-i 
ßiß (z) -A (3.30) 

$j (z) 
i-1,2 
j-1,2,.. m 

Generation of the ai(z) and ßij(z) terms again requires an 

additional set of time-varying filters. By allowing only small 

coefficient updates, the ßij(k) terms can be generated using m 

second-order recursive sections, as for the biquadratic section cascade. 

However, the implementation of the zeros in direct form for the modified 

cascade structure enables the ai(z) terms to be generated within the 

delay line of the A(z) filter, and hence require no extra processing or 

hardware. 

- 68 - 



The full filter structure required for implementation of the 

modified cascade adaptation algorithm is shown in figure 3.4. The 

filter coefficients are updated using: 

ai(k+1) - ai(k) + Aa. e(k). ai(k) (3.31) 

bij(k+1) - bij(k) + µb, e(k). Pij(k) (3.32) Ii-1,2 

j-1,2,..., m 

A gradient-based coefficient adaptation algorithm for the modified 

(50) 
cascade structure has been previously published by David. However, 

the generation of the ai(k) and ßij(k) terms is considerably simpler for 

the filter structure proposed here than for the David structure. 

3 . 2.3 Parallel Structure 

By implementing an IIR filter from second order biquadratic 

pole and zero sections connected in parallel 
64), 

a further stable 

adaptive IIR filter structure can be constructed. A block diagram of the 

Parallel structure is shown in figure 3.5, with the filter section 

transfer functions given by: 

Aj(z) 
- a0j + aljz (3.33) 

-l B(z) -1+ b1 z+ b2jzý2 (3.34) 

The overall filter transfer function H(z) is obtained from: 

n 

H(z) -c+ Hj(z) (3.35) 

J-1 

Where: 
A 

AA 
(z) 

(3.36) 
B3 (z) 
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Using the method of steepest descent, the derivation of the 

coefficient adaptation is initially the same as the derivation for the 

biquadratic cascade structure (equations (3.8) -> (3.17)). The 

structures differ in the calculation of the partial derivatives of the 

filter output y(k) with respect to the coefficients. For the parallel 

structure these derivatives are defined as: 

ay(k) 
aid (k) - (3.37) 

öai j (k) 

ay(k) 
ßi j (k) - (3.38) 

8bii (k) 

3y (k) 
-y(k) - (3.39) 

3c(k) 

With the filter output y(k) obtained from: 

n 
Y(z) - X(z). (c +I Hi(z)) (3.40) 

J-1 

Assuming that by taking only small coefficient updates, the 

filter output y(k) approximates the output from a fixed filter over a 

small number of iterations, then the aij(k), ßij(k) and 7(k) terms are 

obtained from equations (3.33) -> (3.40), viz: 

X(z). z-i 
a 

(z) 

A 1j 
B(z) 

-Yi(Z) 
Rit(z) 

B3 (Z) 

7(Z) - X(Z) 

(3.41) 
1-0,1 
j-1, n 

(3.42) 

J i-1,2 
j-1, n 

(3.43) 
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As for the biquadratic and modified cascade structures, it can be 
A 

assumed that with small coefficient steps, Bi(z) at time t- kT can be 

A 

approximated by Bj(z) at time t- (k-i)T for i-1,2. This allows the 

aij(z) terms to be generated within the delay line of the Aj(z) filter 

sections. 7(k) has the value of the present input x(k) (from equation 

(3.43)) and does not require any computation. Generation of the ßij(z) 

terms requires n extra second order All-Pole sections driven by the 

outputs of the n filter sections (Yi(z), j-1,2,.., n). The full adaptive 

parallel filter structure is shown in Figure 3.6. The filter 

coefficients are updated every sample using: 

aij (k+l) - aii (k) +a e(k). ai j (k) Ji_o, 
i 

(3.44) 

j-l, n 
bij(k+1) - bi4(k) + µb. e(k). pij(k) 

i-1 2 
(3.45) 

j-1, n 
c(k+1) - c(k) + µc. e(k). 7(k) (3.46) 

The individual filter sections must be started with different initial 

coefficients, otherwise the sections will have identical coefficient 

updates and hence be unable to separate. Similarly, coherence of filter 

sections during adaptation must be avoided. 

The parallel structure differs from the cascade structures in 

that the overall zero positions of the parallel structure transfer 

function are dependent on the pole positions, in addition to the zero 

positions, of the individual filter sections. Also, each section of the 

parallel filter is driven by the overall filter input X(z), whereas the 

cascade filter section input characteristics change from section to 

section. 
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3.3 PERFORMANCE ASSESSMENT 

To assess the performance of the three adaptive filter 

structures derived in the previous section, a series of system modelling 

tests have been performed using the configuration shown in figure 1.2, 

A Chapter 1. In the tests, a known plant H(z) and the adaptive filter H(z) 

are both excited by the same white Gaussian noise input X(z) of unity 

power. The task of the adaptive filter is to adapt its coefficients to 

form a model of the plant. To provide a performance comparison with the 

filter structures proposed in this chapter, a Direct Form IIR Filter 

Structure adapted using the White/Stearns steepest descent algorithm was 

also included in the tests. 

In this section, three examples are presented to illustrate 

advantages and disadvantages of the various filter structures. In all 

examples, the adaptive filter was of sufficient order to model the 

plant, and hence could reduce the power in the error signal e(k) in 

figure 1.2 to zero(12). Unlike the Direct Form Structure, the 

Biquadratic Cascade, Modified Cascade and Parallel Structures do not 

have a unique minimum in the performance surface, as the order of the 

filter sections can be permutated in various ways. However, the overall 

transfer function resulting in each case will be the same. To give an 

indication of speed of convergence of the filter structures, a 

performance measure used in echo cancellation applications was utilized. 

The criterion is called Echo Return Loss Enhancement (ERLE) (53) 
and is 

numerically given by: 

e2 (k) 
ERLE (dB) - -10 log10 (3.47) 

d (k) 

For an echo canceller, the error signal e(k) will appear as 

noise to the receiver and the value of ERLE increases as the adaptive 

filter lowers the error power. The problem of Echo cancellation is 
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discussed in detail in Chapter 5. For the examples presented in this 

section, convergence was said to have occurred when a value of 30dB ERLE 

was reached. -To achieve this figure, the adaptive filter must form an 

accurate model of the plant. 

In each of the examples, fixed values of adaptation constants 

Pa and were used, with the values of each chosen to give the fastest jub 

convergence times. Less noisy convergence may be obtained by reducing 

the values of µa and µb. Any coefficient update that would take a 

recursive filter section unstable was ignored for that particular 

section. The true gradient vector will always point to a location within 
(55) 

the unit circle, but the instantaneous gradient estimate may take 

filter sections unstable, even though suitable values for µ have been 

chosen for overall filter convergence. 

Examples (1) and (2) are 4th order All-Pole examples and 

provide a comparison of the convergence rates of the direct form, 

cascade and parallel recursive filter sections. For the Parallel 

structure, the (aij) filter coefficients are also adapted, in order to 

cancel the zeros produced by a parallel implementation of poles. For 

each example, a number of different white noise sequence inputs were 

used, and the convergence times quoted were the slowest obtained. 

3.3.1 Example (1) 

A plant consisting of two pairs of closely spaced poles near 

z- -1 in the z-plane was implemented. The plant had transfer function 

H(z) given by: 

H(z) - 
0.05 

(3.48) 
(1 + 1.2z-1 + 0.8z-2)(1 + 1.5z-1 + 0.7z-2) 

The complex pole pairs of H(z) have radii of 0.90 and 0.85 with 

corresponding arguments 132°and 153°. The Direct Form and Cascade 
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Adaptive Filter structures were also fourth order All-Pole filters with 

a non-adaptive a0 coefficient set to 0.05 (the value of the a0 

coefficient from the plant). The denominator coefficients of the Direct 

Form Structure were all initially set to zero, but the corresponding 

Cascade and Parallel recursive section coefficients must be adapted from 

different initial values. Therefore, the two sections were adapted from 

(bil, b21) - (-0.2,0.0) and (b12, b22) - (0.2,0.0). To obtain a sufficient 

sized Parallel adaptive filter structure, the (aij) coefficients of both 

filter sections must also be adaptive. These coefficients were initially 

set to zero. 

Convergence plots showing the attenuation of the squared error 

for the three filter structures are shown in figure 3.7a, b, c. The 

Cascade Structure achieved the fastest convergence obtaining 30dB ERLE 

in about 7,000 iterations. This compares with 80,000 iterations for the 

Parallel Structure, and almost 700,000 iterations for the Direct Form 

Structure to reach the 30dB limit. 

These results were obtained with values of the adaptation 

constant µb chosen to given the fastest convergence time for each 

structure. The high sensitivity of the Direct Form coefficients to 

closely spaced poles(64), coupled with possible instability, 

necessitated a very small value of pb to produce convergence. This 

results in the very slow convergence for the Direct Form Structure. For 

the two structures composed of second-order All-Pole sections, 

guaranteed stability enabled the use of larger values of µb. However, 

the parallel structure has problems due to the adaptation of the (bij} 

filter coefficients, which create zeros in the overall transfer 

function. The (aij) coefficients must adapt to cancel these zeros for an 

All-pole target plant. For this example with closely spaced poles, the 

parallel structure did not perform very well and adaptation was slow. 

From the convergence plot shown in figure 3.7b, undesirable large spikes 
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of noise appear during the adaptation which suggests that the 

coefficients are sensitive to small changes. With its relatively 

insensitive coefficients, the cascade structure was able to achieve 

considerably faster convergence than the other two structures. 

3.3.2 Example (2) 

A plant consisting of two pairs of poles widely spaced in the 

unit circle was implemented. The plant had transfer function H(z) given 

by: 

1 
H(z) 

(1 + 1.5z -1 + 0.8z -2 )(1 - 1.5z-1 + 0.7z_2 
(3.49) 

) 

The complex conjugate pole pairs have radii of 0.90 and 0.85 with 

respective arguments of 147°and 26°. The Direct Form, Cascade and 

Parallel filter structures had the same initial adaptive filter 

coefficients' as used in Example (1). Squared error convergence plots for 

the three adaptive filter structures are shown in figure 3.8a, b, c. 

In direct contrast to example (1), the Direct Form achieved the 

fastest convergence with 30dB ERLE obtained in only 200 iterations. The 

Parallel Structure was the, next quickest taking 8000 iterations. The 

Cascade Structure, however, was unable to model the plant and only 

obtained 5 dB ERLE when adapted. The inability of the Cascade Structure 

to model the plant is caused by a local minimum in the filter 

coefficient performance surface, with both sections "locking up" at 

(bl, b2) - (-0.15, -0.15). The pole positions corresponding to these 

filter coefficients are shown in figure 3.9. The coefficient values give 

rise to two pairs of split real poles, each section contributing one 

pole at E (z - -0.32), and one pole at F (z - 0.47). The plant poles are 

situated at C and D. 
A 

From figure 1.2, during adaptation the Bj(z) sections adapt to 
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minimize e2 (k) oöta-A ¬? iron, 

1 
E'(z) - X(z). ( 

B(z) 

1 

B1(z)B2(z) 
(3.50) 

Where H(z) - l/B(z) is the transfer function of the plant. The 

individual filter sections are adapting such that: 

A 
B(z) 

B1(z) -> 
B2(Z) 

B(z) A 
B2(z) a� 

B1(z) 

(3.51) 

(3.52) 

If the poles of B1(z) and B2(z) lie close to the centre of the unit 

circle, it appears to each section that it is modelling the plant alone. 

If a single second-order pole section is used to model this 

plant, then the minimum mean-squared-error value is obtained with split 

real poles placed near E and F. Although an adaptive filter consisting 

of two second-order pole sections is of sufficient order to model the 

plant, if the initial pole positions are not split far enough apart, 

then the error surface forces the filter into the local minimum with 

each recursive section contributing one pole at E and one at F. The 

constraints of the cascade structure prevent the formation of complex 

conjugate pole pairs from this position, and hence adaptation is halted. 

To enable the cascade structure to converge to the solution, then 

either; 

1) The poles have to have initial starting positions which are split 

far enough apart in the unit circle to avoid the problem, or; 

2) By allowing the filter to lock up, and then replacing each split 

real pole pair by a suitable complex conjugate pole pair. 

The first method requires prior knowledge of the plant pole 
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locations, as the initial separation distance required for the adaptive 

filter poles is dependent on plant characteristics. Furthermore, if the 

plant poles were closely spaced and the adaptive filter poles had 

initial positions that were a large distance apart, then adaptation 

times could be increased considerably. 

Using the second method of pole replacement, with µb - 0.04 the 

cascade filter structure coefficients cohered such that the b1 and b2j 

coefficients from each section were separated by less than 0.01 in 450 

iterations. The two split real pole pairs are then replaced with two 

complex conjugate pairs using coefficient manipulation. 

When the sections lock-up, b11 b12 and b2i b22. This 

corresponds to pole positions z1 and z2 given by: 

2 
-bll - ý( bll - 4b21) 

(3.53) Z1 i 
2.0 

2 
-b11 +, /( b11 " 4b21) 

Z2 _ý (3.54) 
2. 

The new coefficients corresponding to two complex conjugate pairs are 

obtained from: 

b11 - 2.0 * -z1 (3.55) 

b21 - zl (3.56) 

b12 - 2.0 * -z2 (3.57) 
2 b22 - z2 (3.58) 

Convergence to 30dB ERLE was then obtained in a further 2,050 

iterations with µb - 0.005, resulting in a total of 2,500 iterations for 

convergence. A convergence plot showing the reduction in squared error 

is shown in figure 3.10a. 

It is interesting to note that the parallel structure of second 

order sections is not trapped in a similar local minimum to that which 
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traps the cascade structure, when both structures have the same initial 

denominator coefficients, viz, (bil, b21) - (-0.2,0.0), 

(b12, b22) - (0.2,0.0). Investigation revealed that the parallel 

structure can fall into the local minimum if the adaptive filter poles 

are initially situated very close together. For example, with pa - 0.05, 

Ob - 0.05 and initial transfer function: 

0.0 + O. Oz-1 0.0 + 0.0z-1 A H(z) - -1 -2 
+r12 (3.59) 

(1 + 0.052 + 0.0z ) (1 - 0.05z + 0.0z ) 

the coefficients lock up in 200 iterations. Following coefficient 

replacement, the filter obtained 30dB ERLE convergence in a further 

1,050 iterations using µa - 0.005 and µb - 0.008. Figure 3.10b shows a 

convergence plot for the squared error. The 1,250 iterations required 

for convergence is considerably less than the 8,000 iterations obtained 

with gradient adaptation from initial coefficients 

(billb21) - (-0.2,0.0) and (b12, b22) - (0.2,0.0). 

Inspection of cascade and parallel recursive coefficients 

during adaptation shows that, in general, they follow similar paths 

in the coefficient planes. However, the major difference between the 

cascade and parallel structures for an all-pole plant, is that the 

parallel structure requires adaptation of the (aij) filter coefficients 

to match the plant transfer function. The adaptation of the (aij) 

coefficients enables the parallel poles to avoid the "lock-up" problem. 

If the parallel structure poles and zeros are started initially from the 

constrained local minimum position, no further adaptation occurs. 

Conversely, if the cascade filter is adapted using (aij) coefficients in 

addition to the (bij) coefficients, the local minimum is avoided and the 

poles adapt to the plant pole postions with the transfer function zeros 

converging to the origin of the unit circle in the final stages of the 

adaptation. 
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3.3.3 EXAMPLE (3) 

A fourth order plant was implemented consisting of two pairs of 

complex conjugate poles closely spaced near z- -1 in the z-plane, and 

two pairs of zeros closely spaced near z-1. The plant had the transfer 

function: 

H(z) - 

0.01( 1-1.2z -1 + 0.8z-2 )(1 - 1.5z-1 + 0.7z-2) 
(3.60) 

(1 + 1.2z-1 + 0.8z-2) (1 + 1.5z-1 + 0.7z-2) 

The poles are those implemented in example (1) and have radii 

of 0.9 and 0.85 with arguments 132°and 153° respectively. The zeros have 

radii 0.9 and 0.85 with corresponding arguments 48°and 27°. Modelling 

this plant is a very difficult task as the poles are close together near 

the unit circle, similarly the zeros, and the poles are placed well away 

from the zeros. 

In this example, each adaptive filter had the same order 

numerator and denominator as the plant. With transfer function zeros 

being modelled, both the Biquadratic Cascade and the Modified Cascade 

structures are compared with the Parallel and Direct Form structures. 

For the cascade and parallel filter structures, the denominator 

coefficients were initially set to (bil, b12) - (-0.2,0.0) and 

(b12, b22) - (0.2,0.0). The (ai) coefficients for the Direct Form and 

Modified Cascade structures, and the (aij) coefficients for the Parallel 

structure were initially set to zero. The Biquadratic Cascade filter 

structure consisted of two second-order biquadratic sections and a final 

filter section consisting of the a03 gain coefficient alone. The (aij) 

coefficients for the two biquadratic sections must be adapted from 

different initial coefficients and were preset to (all, a21) - (-0.2,0.0) 

and (a12, a22) - (0.2,0.0). 

It was found that the Direct Form structure was unable to adapt 

to this plant within 1,000,000 iterations due to the sensitivity of the 
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coefficients to closely spaced poles and closely spaced zeros. 

Convergence plots for the Biquadratic, Modified Cascade and Parallel 

structures are given in figures 3. lla, b, c respectively. Of the three 

structures, the Parallel structure achieved the fastest convergence 

taking 42,000 iterations to reach 30dB ERLE. The Modified Cascade 

structure was second fastest taking 52,000 iterations. For the 

Biquadratic Cascade Structure, it was necessary to use a smaller value of 

to adapt the a03 gain coefficient than was required for the other 

(aij) filter coefficients (for the two biquadratic sections µa - 1.0, 

for the a03(k) gain coefficient µg - 0.00005). The different values of µ 

are necessary because of the very large power difference between the 

a03(k) terms and the other aij(k) terms. This is a great problem for all 

adaptive cascade filters. Convergence times for the Biquadratic Cascade 

structure varied greatly between 40,000 and 60,000 iterations. It is 

seen that the convergence plot for this structure is very noisy when 

compared with the plots for the Modified Cascade and Parallel 

structures. 

Inspection of the Modified Cascade Structure coefficients 

during filter adaptation showed that whilst the plant zeros lie inside 

the unit circle, the adaptive filter zeros move outside the unit circle 

and then return back in when following a steepest descent path. For the 

Biquadratic Cascade structure, the coefficient adaptation algorithm 

limits the zeros to lie within the unit circle. Hence the (aij) 

coefficients from the two filter sections adapt as close to the unit 

circle as numerical accuracy allows, causing problems with the stability 

of the aij(k) gradient term generating filters. This is very undesirable 

from a hardware implementation viewpoint. The restriction on the 

location of the zeros introduces noise into the adaptation which results 

in large variations in convergence times. Although the Biquadratic 

Cascade Filter Structure can allow the zeros of the final filter section 
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to adapt outside the unit circle, convergence times for this example 

were found to be slower with the a03 gain coefficient integrated into 

the second filter section. 

3 .4 
CONCLUSIONS 

Three simple adaptive IIR filter structures have been proposed 

which use gradient techniques to minimize the mean-square-error 

performance criterion. Examples have been given to compare the 

performance of the proposed algorithms and the Direct Form structure 

adapted using the standard gradient algorithm. The results show that in 

terms of speed of convergence, the best choice of filter structure is 

very dependent on the plant pole positions. The Direct Form structure 

adapted quickly to a plant with widely separated poles (example (2)), 

but was very slow when adapting to plants with closely spaced poles near 

the unit circle (examples (1) and (3)). The Parallel structure can also 

have difficulty with closely spaced poles due to the adaptation of the 

(bij) coefficients affecting overall transfer function zero positions 

(example (1)). However, in example (3), the Parallel structure converged 

faster than the other structures when the plant consisted of the poles 

of example (1) implemented with two pairs of close zeros. 

Both of the cascade filter structures, and also the Parallel 

structure, can have difficulties when adapting to poles with locations 

which are widely spaced in the unit circle, as illustrated in example 

(2). By replacing the 'locked' coefficients with complex conjugate pole 

pairs, it was demonstrated that relatively fast convergence to the 

solution could be obtained. It should be noted that the existence of the 

constrained local minimum is not necessary a major disadvantage as the 

local minimum will lie towards, and often close to, the global minimum. 

For the two cascade structures, it was expected that the 

Biquadratic Section Cascade would be less sensitive than the Modified 
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Cascade to closely spaced zeros in the target plant. However, example 

(3) demonstrated that the Biquadratic Cascade structure can have 

problems during adaptation as the zeros may wish to move outside the 

unit circle when following a steepest descent path, and are restricted 

from doing so by the constraints on the gradient term calculating 

filters. Although the Biquadratic Section Cascade can allow the zeros of 

one filter section to adapt outside the unit circle, this was not found 

to be advantageous for the example presented. 

The Biquadratic Cascade Structure proposed by David 
(6) 

enables 

all the zeros to adapt outside the unit circle, but at a greatly 

increased computational cost. A further disadvantage of implementing the 

zeros in cascade form is that they are susceptible to the constrained 

local minimum problem of example (2), when adapting to widely spaced 

zeros. The existence of a possible lock-up condition for an All-Zero 

cascade filter was noticed by Ching and Goodyear(57), and was verified 

by tests to exist under similar conditions as those for the all-pole 

sections. 

As the order of the adaptive filter is increased, adaptation 

times will in general also be increased. It can be envisaged that the 

irregularities and non-uniformity of the performance surface with 

respect to the Direct Form coefficients will severely affect adaptation 

times of Direct Form filter algorithms. The filter structures proposed 

in this chapter are easily kept stable and hence offer much faster 

convergence through the adaptation of the p parameters. 

From the results presented, the Modified Cascade structure 

offers the best overall performance of the filter structures considered. 

However, the optimum values of µ parameters used in the examples were 

found by experimentation. For each filter structure, the choice of µ a 

and Pb parameters is an empirical process which, as the results 

demonstrated, is highly plant dependent. 
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Figure 3.1 Adaptive Cascade of Biquadratic Filter Sections. 
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CHAPTER 4 
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4.0 INCREASING THE CONVERGENCE RATES OF STEEPEST DESCENT ADAPTIVE 

IIR FILTERS 

In Chapter 3, the rates of convergence of four gradient search 

Adaptive IIR Filter Structures were compared in a series of system 

identification experiments. Steepest descent algorithms were used to 

adapt the filters, and it was found that even with optimum values of the 

adaptation parameters µa and pb (the choice of which is an empirical 

process), convergence times for the different structures varied greatly 

and were highly dependent upon target plant characteristics. In this 

chapter, it is shown that the large disparity in convergence times can 

be-attributed to the non-uniform nature of the filters' performance 

surfaces. A study of error surface characteristics leads to the proposal 

of adaptation techniques which give improved rates of convergence. 

It is demonstrated in Section 4.1 that characteristics of the 

IIR filter performance surface make it ill-suited for adaptation using 

fixed values of parameters pa and µb. In Section 4.2, previously 

published algorithms concerned with the problem are assessed. In 

Sections 4.3 and 4.4, new algorithms for adapting the Modified Cascade 

Structure are proposed and are shown to offer faster convergence times 

than the steepest descent algorithm proposed in Section 3.2.2. The new 

algorithms are-the "Valley-Search" Algorithm which employs a pattern 

search technique, and the "R-Cosa" Algorithm in which the radius and 

angle of the adaptive filter transfer function poles are adapted 

independently. 

4.1 Second Order All-Pole Section Adaptation. 

It was shown in (12) 
that the performance surface with respect 

to the IIR Direct Form Filter coefficients is quadratic with respect to 

the (ai) numerator coefficients, and irregular and possibly multimodal 

with respect to the (bi) denominator coefficients. Ideally, adaptation 
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algorithms employing gradient techniques require a uniform performance 

surface, and hence adaptation of the (bi) coefficients will hinder the 

overall filter adaptation. In this section, the adaptation of a second 

order All-Pole filter using gradient techniques is investigated. 

Typical examples of second-order adaptive filter error surfaces 

with respect to the (bi) coefficients were shown in figure 1.7, Chapter 

1. Consider coefficient adaptation from an initial position of 

(bl, b2) - (0.0,0.0) on each of-the four performance surfaces. For the 

surface shown in figure 1.7a, filter adaptation using a steepest descent 

algorithm will give a straight line coefficient track to the minimum. 

However, the surfaces shown in figures 4. lb, c, d create difficulties for 

steepest descent algorithms as each of the surfaces is characterised by 

a steep valley. 

To illustrate the problems created by the presence of the 

valleys, coefficient tracks for the (bl, b2) denominator coefficients 

modelling three of the target plants featured in figure 1.7 are given in 

figure 4. la, b, c. The adaptive filter was implemented in the system 

identification configuration shown in figure 1.2. The input signal X(z) 

was gaussian white noise of unity power. In addition to the two 

denominator coefficients, an a0 gain coefficient was included in the 

adaptive filter transfer function. The White/Stearns Adaptation 

Algorithm was used to adapt the filter coefficients and values of µa and 

µb were chosen in each example to give the fastest convergence to 30dB 

ERLE. The coefficient tracks shown are very noisy and in a non-ideal 

environment smaller values of p would be necessary for filter 

convergence. In example (a), convergence to the plant was achieved in 

only 200 iterations and it is seen from figure 4.1a that the coefficient 

track to the minimum follows a straight path. The influence of the 

valleys is seen in the tracks shown in figures 4. lb, c. From the initial 

coefficients, (bl, b2) - (0.0,0.0), the gradient vector points to the 
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floor of the valley well away from the minimum position. Adaptation 

along the valley to the minimum is slow due to the main component of the 

gradient vector pointing to the valley floor rather than towards the 

minimum. This results in the coefficients following a path which 

"bounces" from side-to-side across the valley. Smaller values of µb are 

required to negotiate the valleys, and convergence times are very much 

slower for this type of plant. The problem is magnified in the case of 

example (c) as the valley is narrower and steeper. Convergence to 30dB 

ERLE was achieved in 3300 iterations for example (b) and 170,000 

iterations for example (c). 

With a suitable choice of µ parameters, convergence to the 

error surface minimum was obtained for each example. However, for an IIR 

filter, the choice of µ values is empirical, unlike the choice of p 

values for an adaptive FIR filter(8). In addition, fixed values of p 

parameters are not ideal for the IIR performance surface. For (bi) 

coefficient adaptation, a large distance from the error surface minimum 

the gradient is small, and ideally a large value of µb is needed. 

However, adaptation down the valley requires a small value of µb to 

reduce the lateral perturbations. On the valley floor the adaptation 

could again be slow due to the small gradients, and hence a larger value 

of µb is required(6) 

A fixed value for the µa adaptation parameter is also 

undesirable. Consider, as an example, the Modified Cascade Structure 

proposed in Section 3.2 (the problem, however, is a general one for 

adaptive IIR filter structures). In the initial stages of adaptation, 

the poles of the adaptive filter transfer function will be situated 

close to the centre of the unit circle, and the All-Zero ladder filter 

section will have a low-power input signal and a low eigenvalue ratio in 

its input correlation matrix. Hence a large value of pa is required for 

the (ai) coefficient adaptation(8). However, if the poles adapt to 
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positions near the z-plane unit circle, then the All-Zero filter section 

may have a high energy input signal and a high eigenvalue ratio in its 

input correlation matrix. A small value of pa is now required to adapt 

the (ai) coefficients. 

The irregular nature of adaptive IIR filter performance 

surfaces suggest that steepest descent coefficient adaptation algorithms 

ideally require adaptive p values. However, the non-uniformity of the 

surfaces (which depends upon the target plant characteristics) makes 

this a very difficult task. 

4.2 MODIFIED GRADIENT ALGORITHMS 

The unsuitability of the IIR filter performance surface for 

steepest descent coefficient adaptation has led to modified steepest 

descent algorithms being proposed by David/Stearns(6,55), and David(6). 

In this section, an assessment of these algorithms is made with a view 

to implementation using the Modified Cascade Structure proposed in 

Chapter 3. 

A series of system modelling experiments were conducted to 

study characteristics of the error surface with respect to the 

coefficients of cascaded second-order recursive sections from the 

Modified Cascade Structure. The results obtained suggest that the 

coefficient tracks for individual All-Pole sections from the cascade 

tend to follow paths similar to the second-order coefficient tracks 

shown in figure 4.1. For example, in figure 4.2 the coefficient tracks 

are shown for the two recursive sections in the fourth-order Cascade 

Filter example presented in Section 3.3.1. The coefficient tracks show 

the presence of valleys for both All-Pole sections when the target poles 

lie close to z- -1 in the z-plane. In Sections 4.2.1 and 4.2.2 the 

suitability of two algorithms for adaptation of the Modified Cascade 

Filter Coefficients is considered. 
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4.2.1 Smoothed Gradient Directional Algorithm 

For an adaptive filter, it has been shown 
(55) 

that the 

instantaneous squared error (e2(k)) is an unbiased estimate of the 

mean-square-error. Therefore, by averaging gradient vectors over a 

number of iterations, a more accurate estimate of the true gradient is 

obtained. David and Stearns utilized this factor with a smoothed 
(6 

gradient directional algorithm in, 55) 
which used a fixed stepsize in 

the direction of the averaged gradient to adapt the filter coefficients 

of a Second-Order Direct Form Filter. Hence, the algorithm does not 

require the pa and Pb adaptation parameters. 

The coefficient updates can be expressed as: 

ai(k+N) - ai(k) + A. (eai)AV (4.1) 

�(A AT ) 
AV AV i-0,1,2 

bi(k+N) - bi(k) + A. (eßi)AV (4.2) 

�(a aT ) 
AVAVi-1,2 

Where the ai and fli terms are generated using the Hsia/Horvath algorithm, 

IAV - I(eaO)AV'(eal)AV'iea2)AW (eßl)AVý(efl2)AVI (4.3) 

k+N 
(e7i)Ap -NX e(j)7i(J) 

j-k+l 
(4.4) 

and A determines the stepsize. In a simple version of the algorithm, a 

fixed value of stepsize is chosen. Alternatively, the value of A may be 

changed from a large initial value, to a small final value for 

-96- 



convergence to the minimum position. The value of A chosen for 

convergence will depend upon whether the target system is stationary, 

and also the sensitivity of the adaptive filter coefficient values. 

The gradient vector used in the coefficient updates is found by 

averaging the gradients over N iterations (equation (4.4)). A large 

value of N will give smoother coefficient tracks but slower adaptation. 

In addition to the stepsize A, the value of N may also be varied during 

adaptation. In the early stages of adaptation the coefficients are 

varying rapidly and a large value of N is required. As the coefficients 

near convergence, the coefficient update steps contain less noise and N 

can be reduced in size. 

David published a number of second-order adaptive filter 

examples which showed that the Smoothed Gradient Directional Algorithm 

offers faster convergence than the White/Stearns algorithm. However, 

problems occur when the (bi(k)) coefficients are adapting to pole 

positions near either z-1 or z- -1 in the z-plane. If the adaptive 

filter coefficients give rise to a point situated on the side of a steep 

valley in the error surface, averaging gradients will not be 

particularly beneficial for filter adaptation. The predominant gradient 

vector will point to the floor of the valley, rather than towards the 

minimum position. By averaging gradients and taking a large step in the 

direction calculated, the filter will jump to the opposite side of the 

valley. The process will then repeat itself. 

Hence, adaptation times for the algorithm will be slowed 

considerably when the error surface contains a steep valley. In 

addition, while the Smoothed Gradient Directional Algorithm removes the 

necessity for a choice of p parameters, the choice of stepsize A is 

itself an empirical decision governed by the target system 

characteristics. 
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4.2.2 Normalized RLMS. CRLMS Algorithms 

David 
(6) 

proposed a modification for steepest descent 

algorithms using a simplified version of the second-order Newton Method. 

The algorithm uses a normalizing factor to take small adaptation steps 

when the gradient is changing rapidly. The modification was applied to 

the Hsia/Horvath RIMS algorithm and to the David Cascade RIMS (CRLMS) 

algorithm 
(6), 

giving rise to the NRLMS and NCRLMS algorithms. 

The LMS version of Newton's Algorithm is given by: 

Wk+l - Wk + g. H -1 
ý& (4.5) 

Where Wk and µ are defined for equation (2.1), and H and g are obtained 

from: 

ö2e2(k) 
H_ 

Lk 2 (4.6) 
-k 

ö e2(k) 
ß 

8Wk 
(4.7) 

g is the vector of first-order derivatives utilized by steepest descent 

algorithms and H is a square matrix of second-order derivatives. David 

used the Hsia/Horvath a)orithm to calculate the terms in g, and a scalar 

estimate of the trace of H as a crude approximation to the power 

contained in the matrix. The estimate is obtained from (6): 

Tr H- Tý, 
k (4.8) 

Generation of the '0 k term differs for the'NRLMS and NCRIMS algorithms. 
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a) For the Normalized Hsia/Horvath algorithm, 0k is obtained from: 

k- (a0(k), ... a (k), ßl(k)l ... P (k)] (4.9) 

Where the ai(k) and ßi(k) terms are generated using equations (2.15) and 

(2.16). The coefficient updates for the NRLMS algorithm are given by: 

ai(k+l) - ai(k) +µ Ta e(k). ai(k) 
'ýk Ok 

i- 

(4.10) 

'ub bi (k+l) - bi(k) +T . e(k). ßi(k) (4.11) 
Ok Ok 

i 

b) For the Normalised Cascade RIMS algorithm, 0k is obtained from: 

Ak ([a1, ß1], [a2, ß2I...... [an, pn1) 

Where: 

tai , ßi 1- [al j (k)'c'2 j (k) , ßl j (k)'ß2 j (k) 

j-1, n-1 

(an'ßn1 Ic'On(k)'a1n(k)'a2n(k), ßln(k), ß2n(k)3 

Using equation (4.12), the coefficient updates for the NCRLMS 

algorithm are calculated using: 

a ij (k+l) -a ij (k) + Tja e (k) . ai j (k) 
. 'k Ok j-l, n-1 , 1-1,2 

i-n 
, i-0,1,2 

bij (k+1) - bij (k) + T- . e(k) . Ai3 (k) 
Ok Ok 

1-1,2 
j-1, n 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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The values of aij(k) and ßij(k) can be generated using equations 

(3.19), (3.20) and (3.22). 

The NCRLMS Algorithm can be applied to the Modified Cascade 

Structure by setting: 

a3 -0 
j 1, m-1 

(4.17) 

[a , ßmj - [a0(k), ..., an(k), ßim(k), ß2m(k)) (4.18) 

in equation (4.12). The ai(k) and ßij(k) terms are generated using 

equations (3.29) and (3.30). 

Examples were presented in (6) 
to demonstrate that the 

Normalized algorithms achieve faster convergence times than Steepest 

Descent algorithms. Figures 4.3a and 4.3b show coefficient tracks for a 

second-order adaptive All-Pole section adapting to the target plants 

from examples (b) and (c) in Section 4.1. Convergence to 30dB ERLE was 

obtained in 800 iterations for example (b), and 25,000 iterations for 

example (c). Comparing convergence times with the White RLMS Algorithm 

(figures 4.1b and c), it is seen that with optimum choice of p 

parameters in each case, the NRLMS algorithm gives much faster 

convergence in both examples. However, convergence times for the NRLMS 

algorithm were found to be very erratic due to the large coefficient 

changes in the early stages of the adaptation. This occurs because the 

error surface gradients are small and are only varying slowly. In fact, 

it is necessary to include a test in the algorithm for divide-by-zero 

errors which may occasionally occur. Comparing the coefficient tracks 

shown in figures 4.1 and 4.3, it is seen that the tracks for the RLMS 

algorithm are smooth in the earlier stages of adaptation and noisy near 

the error surface minimum, whereas the NRLMS algorithm tracks are smooth 

near the minimum and noisy at the start of the adaptation. 
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The optimum choice of p values for the NRIMS algorithm is 

empirical, although a smaller range of µ values is required than is 

needed for RLMS algorithms. Figure 4.4 shows a coefficient track for the 

NRLMS algorithm adapting to the target plant in example (b), Section 4.1, 

with the p values used in example (c). Convergence is now considerably 

slower than that obtained with optimum p values and 30dB ERLE was 

obtained in 9000 iterations. The coefficient track is much smoother, 

however. 

From the results presented for both RLMS and NRLMS algorithms, 

it is seen that in a large number of iterations, the adaptive filter 

coefficients jump from side-to-side across valleys in the error surface, 

rather than moving towards the surface minimum position. The Smoothed 

Gradient Directional Algorithm discussed in Section 4.2.1 also suffers 

from the same problem. Ideally, the trend of the valleys should be 

recognized by the adaptation algorithm and coefficient steps taken along 

the valley floor. 

4.3 VALLEY-SEARCH ALGORITHM 

The adaptation algorithms considered in Sections 4.1 and 4.2 

demonstrate the slower convergence of gradient-based algorithms to 

target poles located near either z-1 or z- -1 in the z-plane. Such 

pole positions will have error surfaces characterised by steep valleys. 

The Valley-Search Algorithm employs a pattern search technique which 

initially locates the centre of the valley, and then takes a normalized 

coefficient step in the direction of the minimum. The algorithm consists 

of three modes of adaptation; Gradient-Search, Cross-Sectional Search, 

and a Normalized Coefficient Step. The three modes of the adaptation for 

a single second-order recursive filter section are described on the 

following page. 
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(1) Gradient-Search Adaptation 

In this mode, the adaptive filter uses a gradient algorithm to 

modify the filter coefficients. 

(2) Cross-Sectional Search 

By adapting the b1 filter coefficient alone (keeping the b2 

coefficient stationary), a gradient algorithm is used to locate the 

floor of the error surface valley. 

(3) Normalized Coefficient Step 

A Normalized Coefficient Step is made in the direction of the 

minimum by finding the trend of the valley using steps (1) and (2). 

The adaptation of a second-order recursive filter section using 

the Valley-Search Algorithm is illustrated in figure 4.5. In the first 

stage of the adaptation, the filter is adapted from initial coefficients 

(bl, b2) - (0.0,0.0) using step (1) of the adaptation algorithm (A -> B 

in figure 4.5). The second phase of the adaptation involves holding the 

b2 coefficient stationary and locating the floor of the valley by 

adapting the bl coefficient in a Cross-Sectional Search (B -> Q. The 

coefficients of point C are stored, and will be used later to direct the 

Normalized Coefficient Step. From point C, the filter is adapted using 

step (1) of the algorithm to find in which direction the error surface 

minimum lies with respect to the b2 coefficient (C -> D). 

It is seen from figures 1.7 and 4.1 that the error surface 

valleys lie in directions which approximately radiate from the bottom 

point of the stability triangle ((bl, b2) - (0.0, -1.0)). This point (E) 

is used as an initial point for directing the first Normalized 

Coefficient Step. The coefficient step is taken in the direction E -> C 

from point C, moving the filter coefficients to point F. If the minimum 
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lies in a negative direction with respect to the b2 coefficient, then 

the step taken is halved in size, a Cross-Sectional Search is made using 

step (2), and then the filter is adapted using step (1) until 

convergence is achieved. 

If point F lies in a positive direction with respect to the b2 

coefficient, a Cross-Sectional Search is again made using step (2) 

(F - G), and the direction of the minimum found by step (1), (G - H). 

A Normalized Coefficient Step is then made in the direction (C -> G) 

from point G, taking the filter to point I. The algorithm makes use of 

the fact that points C and G each lie on the floor of the valley, and 

can therefore give a good indication of the direction of the error 

surface minimum for a stationary, or slowly varying target system. 

The filter adaptation progresses with the three steps being 

ordered (2), (1), (3). The coefficients resulting from the current and 

previous adaptation cycle's Cross-Sectional Search Phases are used to 

direct the Normalized Coefficient Step. Adaptation continues until the 

Normalized Coefficient Step (Step (3)) of the adaptation cycle is in a 

negative direction with respect to the b2 coefficient. When this occurs, 

the stepsize is halved, a Cross-Sectional Search made, and the filter is 

adapted until convergence is achieved. 

In computer simulations of the algorithm, the transients caused 

by the Normalized Coefficient Step was ignored as the following phase of 

adaptation was a Cross-Sectional Search and noise introduced into the 

algorithm was not found to be significant. The NRLMS gradient algorithm 

was used for adaptation modes (1) and (2) in preference to a RLMS 

algorithm. However, the NRLMS algorithm adapts more slowly as the filter 

negotiates an error surface valley. This is due to the error signal 

being reduced in power and the ßi(k) terms varying rapidly. Hence, it is 

necessary to increase the number of iterations used for step (1) of the 

algorithm for each successive adaptation cycle. If the Normalized 
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Coefficient Step takes the filter unstable, the stepsize can be reduced 

in size until a stable filter is reached. 

Convergence plots of the filter coefficients modelling the two 

target plants used in Section 4.1, examples (b) and (c) are given in 

figures 4.6a, b. The adaptive filter and the target plants were 

second-order All-pole filters in each example. In addition to the 

(bl, b2) coefficients, an a0 gain coefficient was also included in the 

adaptive filter transfer function. This coefficient was adapted using 

the NRLMS algorithm for steps (1) and (2) of the adaptation algorithm. 

In the examples presented, 750 iterations were used for step 

(2) of the algorithm and a Normalized Coefficient Step of size 0.5. 

400 iterations were used initially for step (1), with the number of 

iterations increasing by 100 each adaptation cycle. The RIMS algorithm 

was used'for the final run for convergence of the filter using the 

optimum values of p from examples (b) and (c), Section 4.1. The RIMS 

algorithm is used because of the poor rates of convergence of the NRLMS 

algorithm when close to the error surface minimum. The slow convergence 

is due to the low power of the error signal, and the rapidly varying 

gradient vector. With the size of Normalized Coefficient Step used for 

the examples, after five Cross-Sectional Search adaptation phases, the 

adaptive filter will be very close to the upper corners of the stability 

triangle. If this occurs, the filter must be close to the error surface 

minimum and is run for convergence using step (1). 

The Valley-Step algorithm achieved convergence to 30dB ERLE in 

6,400 and 10,000 iterations for the two examples. Comparing these 

results with those for the NRLMS algorithm in Section 4.2, it is seen 

that the Valley-Search algorithm obtained the fastest convergence for 

the second example, but not the first. This is as expected as the 

advantages to be gained using this type of algorithm will be greater for 

target pole positions in the upper two corners of the stability 
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triangle. The values of µ chosen for the NRIMS algorithm were the same 

for each example. The size of the Normalized Coefficient Step controls 

the speed of adaptation and the NRLMS algorithm is only used to find the 

direction for the step. Therefore, the choice of µb values can be made 

independently of the target system characteristics, unlike the 

algorithms considered previously in this chapter. 

The Valley-Search algorithm is limited in the type of 

applications for which it can be used, as it is not suited for filter 

adaptation in a non-stationary environment and is computationally 

demanding for higher order filters. In addition, error surfaces arising 

from insufficient order adaptive filters have not been considered. 

However, by using the NRLMS algorithm to find the direction in which to 

take the Normalized Coefficient Step, the Valley-Search algorithm offers 

fast convergence to the approximate location of a stationary minimum 

without a target plant-dependent choice of µb (the value of µb will 

depend only on properties of the input signal). Unfortunately, the 

optimum choice of pa value is still empirical. In addition, the choice of p 

parameters required for convergence to the minimum is empirical for both 

NRLMS and RIMS algorithms, and hence also for the Valley-Search 

algorithm. 

4.4 R-COSO ALGORITHM[ 

An alternative approach which may be taken in order to reduce 

adaptation times for cascaded All-pole second-order filter sections, is 

to modify the structure of each section, so allowing the radius and angle 

of the poles to be adapted independently. The filter structure of a 

R-CosO Second Order All-Pole section is shown in figure 4.7. For the 

Direct Form second-order pole section, the relationship between the 

filter-coefficients and the (r, B) pole positions in the unit circle is 

given by equations (1.20) and (1.21) for complex conjugate pole pairs. 
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For the R-Cosa filter section, the relationship is: 

bl - -2cos8 

b2-r 

(4.19) 

(4.20) 

Hence, adaptation of the bl coefficient will change cosO, and 

adaptation of b2 will change the radius r of the poles. A cascade 

structure of R-CosO recursive filter sections is therefore only able to 

synthesize complex conjugate pole pairs and not split real poles. Near 

z-1 and z- -1 in the z-plane, small changes in CosB give large changes 

in 0, and hence decoupling r and cos9 should offer better convergence 

performance to pole positions in these areas. One additional advantage 

of using a cascade structure of recursive R-CosO second-order filter 

sections is the ease of maintaining filter stability. It is only 

necessary to check that Ib21< 1 and Ibll< 2 for each filter section, 

which is a simpler test than that required for the general second-order 

section filters proposed in Chapter 3. A Steepest Descent algorithm for 

adaptation of an R-CosO All-Zero cascade filter was shown to give better 

performance than the general second-order filter cascade structure when 

used for speech prediction in56ý57) 
.A Steepest Descent algorithm for 

adaptation of a Modified Cascade IIR Filter incorporating R-CosO 

recursive filter. sections and a Direct-Form, All-Zero section is proposed 

in the following section. 

4 . 
41 R-CosO Adaptation Algorithm Derivation. 

The modified cascade filter structure is shown in figure 3.8. 
A 

The filter has transfer function H(z) where: 

A 

(4.21) H(Z) _ A, 

A(Z) 

A, 
B1(Z)"B2(z)... Bm(Z) 
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Incorporating R-CosO recursive sections, the individual filter transfer 

functions are given by: 

A(z) - a0 + a1z-1 + a2zý2 + ... + anz-n (4.22) 

Bi (z) -1+1; ijb02jz-1 + b2jz'2 (4.23) 

For a Steepest Descent algorithm, the coefficients are updated using 

equations'(3.31) and (3.32) where the ai(k) and Oj(k) terms are defined 

in equations (3.16) and (3.17). The ai(k) terms for the coefficient updates 

are obtained from equation (3.29). As for the Modified Cascade Structure 

from Chapter 3, the ai(k) terms are generated within the delay line of the 

All-Zero Section, and require no further computation. Using equations 

(4.21), (4.22) and (4.23), the ßij(k) terms are generated from: 

-Y(z). 
b2jz-1 

ßl j (z) - .,, B'(z) 
(4.24) 

-Y(z). (bljz-l + 2b2jz-2) 
ß2j (z) - A, (4.25) 

Bi (z) 
j-1,2,.., m 

The complete adaptive filter structure filter structure is 

shown in figure 4.8. To retain filter stability, it is necessary to 

restrict Ib2jI< 1 andIbljl< 2. As the ßij(k) gradient term calculating 

filters are driven with the same input signal, the All-Pole filter 

sections must be adapted from different initial coefficients otherwise 

filter sections will remain locked. In addition, the bl 
and 

b2 

coefficients from an individual section should not both be started from 

zero, otherwise the ,6 . 
(k) terms will also be zero and the section will 

not adapt. 
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4.42 Performance Assessment 

To assess the performance of the R-CosO algorithm, the System 

Identification configuration shown in figure 1.2 was used. Two 

second-order All-Pole adaptive filter examples and a fourth-order 

adaptive filter example are presented. Coefficient tracks for the two 

11 0 second-order examples are given in figure 4.9a, b. The bl, b2 R-CosO 

filter coefficients are converted into the corresponding Direct Form 

structure bl, b2 coefficients for the plots. The relationship between the 

coefficients is given by: 

bl - 
b1. b2 (4.26) 

b2 - b22 (4.27) 

The target models were those used to assess the other algorithms in this 

chapter, ie. examples (b) and (c) in Section 4.1. Convergence to 30dB 

ERLE was obtained in 800 iterations for the plant from example (b), and 

34,000 iterations for the plant from example (c). These results were 

obtained using optimum values of µ parameters and the initial 

denominator coefficients were set at (bl, b2) 
- (2.0,0.0). Comparing the 

coefficient tracks in figure 4.9 with figures 1.6 and 4.1, it is seen 

that the tracks for the R-Cosa algorithm follow the parabola of real 

pole pairs until the error surface valley is reached, and then adapt 

along the valley to the minimum. 

For a fourth order example, the target plant from Example 3, 

Section 3.3.3 was used. The transfer function of the plant is given in 

equation 3.60 and the R-CosO Filter was of sufficient size to fully 

model the plant. A Convergence Plot for the algorithm is shown in figure 

4.10. The R-CosO modified cascade filter took 19,000 iterations for 

convergence to 30dB ERLE. The initial coefficients of the recursive 

sections were (b11, b21) - (-2.0,0.1), (b12, b22) - (2.0,0.1) . The 

Modified Cascade Structure of Chapter 3 took 52000 iterations to adapt 

to this plant. Hence, the R-CosO algorithm shows a large improvement. 

- 108 - 



4.5 CONCLUSIONS 

In this chapter, characteristics of the IIR filter performance 

surface have been investigated with a view to improving the rates of 

convergence of Gradient-based adaptation algorithms. Two previously 

published algorithms were investigated (Smoothed Gradient Directional 

and Normalized RIMS Algorithms), and two new gradient algorithms have 

been proposed for the adaptation of the Modified Cascade Filter 

structure proposed in Chapter 3 (Valley-Search and R-CosO algorithms). 

All the algorithms investigated have problems with the choice 

of µ values, or the size of A in the case of the Smoothed Gradient 

Directional Algorithm. The size of adaptation parameters required is 

governed by the sensitivity of the final coefficient positions and 

characteristics of the target system. This is a major disadvantage for 

adaptive IIR Filter algorithms. The NRLMS and CRIMS algorithms have 

adaptive p values and require a smaller variation in p values than RIMS 

algorithms. However, although the optimum adaptation times achieved by 

the NRLMS algorithm are much faster than the corresponding RIMS 

algorithm results, convergence times can still vary considerably. 

Using the Valley-Search algorithm, results have shown that 

convergence close to the error surface minimum could be obtained with a 

choice of p values which is independent of the target system. However, 

the choice of p required for convergence is still empirical and depends 

on the target system characteristics. In addition, the algorithm 

requires a considerable amount of computation and implementation is 

difficult for higher order filters. 

The R-Cosa algorithm results were very encouraging when 

compared with the steepest descent algorithms of Chapter 3. However, 

split real poles cannot be synthesized by the filter structure, which 

reduces the generality of this approach. 
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I 

µb - 0.01 

rnvergence. 

a) Target Plant Coefficients: (a0, bl, b2) - (1.0,0.0,0.8) 

µb - 0.0005 

convergence 

b) Target Plant Coefficients: (a0, bl, b2) - (1.0, -1.5,0.7) 

Figure 4.1 (bl, b2) Coefficient Tracks for the White/Stearns Algorithm. 

Initial Filter Coefficients: (a0, bl, b2) - (0.0,0.0,0.0) 
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35 µb - 0.000003 

_. convergence 

c) Target Plant Coefficients: (a0, bl, b2) - (1.0,1.8,0.95) 
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I 

Filter Section (1) Initial Coefficients (blllb21) - (-0.2,0.0) 

Target Plant Coefficients: (bl, b2) - (1.5,0.7) 

1 

Filter Section (2) Initial Coefficients (b12' b22) - (0.2,0.0) 

Target Plant Coefficients: (b1, b2) - (1.2,0.8) 

Figure 4.2 (b1j. b2j) Coefficient Tracks for Cascaded All-Pole Filter 

Sections adapting to the fourth-order plant from 

Section 3.3.1. 
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I 

µb - 0.2 

convergence 

a) Target Plant Coefficients: (a0, bl, b2) - 

I 

15 %-0,005 

t. convergence 

b) Target Plant Coefficients: (a0, bl, b2) - (1.0,1.8,0.95) 

Figure 4.3 (blob 2) Coefficient Tracks for the NRLMS Algorithm. 

Initial Filter Coefficients: (a0, bl, b2) - (0.0,0.0,0.0) 
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IL 

5 l4b - 0.005 

t. convergence 

Figure 4.4 (blob 2) Coefficient Track for the NRLMS Algorithm with 

non-optimum µb value. 
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Figure 4.5 Valley-Search Algorithm Adaptation. 
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05 µb - 0.005 

1 µb - 0.0005 

6,4UU it. convergence 

a) Target Plant Coefficients: (a0, bl, b2) - 

1 

)5 µb - 0,005 

305 µb - 0.000003 

lu, uuu it. convergence 

b) Target Plant Coefficients: (a0, bl, b2) - (1.0,1.8,0.95) 

Figure 4.6 (bl, b2) Coefficient Tracks for the Valley-Search Algorithm. 

Initial Filter Coefficients (a0, bl, b2) - (0.0,0.0,0.0) 
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b2(k) 

Figure 4.7 R-CosO Recursive Filter Section. 

x(k) 1 [TLJT1L 1 
1B1(=) 8z(=) Bm(z) 

d (k) 

t=) ± 
Ftk) 

aiýký I t;: 
2IW =1 

bII(k) b21ýk) 

-01 1(k) 

=1 

b21M 

2 'P21M 

. (k) 

'ß, 2(k) 

-a22(k) 

Figure 4.8 R-CosO Adaptive Cascade Structure. 
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µb - 0.001 

)nvergence 

a) Target Plant Coefficients: (a0, bl, b2) - (1.0, -1.5,0.7) 

I 

1 µb - 0.000003 

convergence 

b) Target Plant Coefficients: (a0, bl, b2) - (1.0,1.8,0.95) 

Figure 4.9 (bl, b2) Coefficient Tracks for the R-CosO Algorithm. 

Initial Filter Coefficients (a0, bl, b2) - (0.0,2.0,0.0) 
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Figure 4.10 R-Cosa Algorithm Convergence Plot for Fourth-Order Example. 
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CHAPTER 5 
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5 .0 AN INVESTIGATION INTO ECHO CANCELLATION FOR A DUPLEX DIGITAL 

TRANSMISSION SYSTEM 

In this chapter, the feasibility of using adaptive IIR filters 

for echo cancellation in a two-wire 144 kbit/s duplex data transmission 

system is investigated. Echo responses for varying line lengths and line 

transformers are studied, and the results used to design an IIR echo 

cancelling structure and an algorithm for the filter adaptation. 

Computer'sim-ulations are then used to show that the performance of the 

IIR filter is much superior to that of the standard non-recursive 

filter, and as a result offers possible hardware savings. 

5 .1 
INTRODUCTION 

Currently, telephone systems world-wide are being converted 

from the old analogue networks to modern digital transmission systems. 

One advantage of a digital telephone network is that both speech and 

data can be transmitted simultaneously on a single channel. A CCITT 

recommendation has proposed a channel capacity of 144 kbit/s for 

transmission on the two-wire link between subscriber and exchange 
(58) 

The 144 kbit/s data rate consists of two 64 kbit/s speech channels and a 

16 kbit/s data channel. One of the major considerations in the design of 

the transmission system is the removal of the locally transmitted signal 

echo from the receive path. This problem is illustrated in figure 5.1. 

Consider the case of the subscriber, say, (the problem is 

identical at the exchange end) when both the subscriber and exchange are 

transmitting. Due to imperfections in the hybrid A, part of the 

transmitted signal from Tx1 will leak into the receiver Rxl. This 

leakage signal, or 'echo' will be -8 to -15 dB below the level of the 

transmitted signal. However, due to line attenuation, the incoming 

signal from Tx2 could have a loss of -40 dB. The wanted signal, 

therefore, is perhaps 32 dB below the level of the echo of the locally 
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transmitted signal. Two methods for the removal of this echo have been 

proposed. 

Time Division multiplexing of the two transmitted signals will 

eliminate the problem, but at the expense of a doubling in the bandwidth 

for a given baudrate, and hence increased line attenuation with 

associated problems. The second, and more attractive solution, is that 

of echo cancellation using adaptive digital filters. This approach is 

illustrated in figure 5.2. 

The filter H(z) is adapted to minimize E2 (z) (the mean square 
A 

error), at which point the output Y(z) will form a best least squares 

approximation to D(z). The echo cancellation process belongs to the 

A 
signal estimation category of Section 1.2. The output from H(z) must be 

a sufficiently accurate copy of D(z) to achieve at least 60 dB 

attenuation of the echo. This will enable the far end signal to be 

recovered with an acceptable error rate. The cancellation should be 

obtained with the least possible outlay in hardware to minimize on cost. 

Most standard echo cancellers rely on the simple, adaptive FIR 

ladder structure. Convergence behaviour of the IMS algorithm used for 

the filter adaptation has been studied and shown to be robust(8). 

However, when the echo channel impulse response contains significant 

energy outside the time span of the FIR filter, the cancellation 

obtainable may not be sufficient. If this energy is distributed over a 

long time period, then considerable lengthening of the adaptive filter 

will only result in a small improvement in performance for a large 

outlay in computation and hardware. 

Hentsche(58,59) studied echo channel impulse responses for a 

144 kbit/s system and found that the energy distribution of the echo 

could result in a FIR filter being impractical for the necessary echo 

cancellation. He proposed an adaptive filter structure consisting of a 

low order recursive section (having an Infinite Impulse Response) in 
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parallel with a FIR ladder filter to minimize the hardware outlay for 

the echo canceller. 

5 .2 
DESCRIPTION OF ECHO CHANNEL RESPONSES 

Using a hardware model of the complete system, echo channel 

responses were generated for a range of line lengths and line 

transformers. The pulses transmitted by the system were coded using a 

(1, -1) multiple response code to reduce the level of intersymbol 

interference created by the channel. The shape of the transmitted pulses 

is shown in figure 5.3. The formation of the echo from the hybrid is 

illustrated in figure 5.4. The hybrid should act as a balanced bridge 

with the outgoing pulse being removed from the receive path. However, as 

the transformer and line impedances are frequency dependent, complete 

cancellation using resistor R2 is not possible. The mismatch leads to 

the echo appearing at the receiver. 

It was found that the echo channel response to a (1, -1) pulse 

consisted of a precursor, two main lobes which contained most of the 

energy, and an exponentially decaying tail. A typical echo is shown in 

diagrammatic form in figure 5.5. The relative amplitudes of each of the 

component parts is a function of the line length and the transformer 

impedance. For a particular line transformer, the line length was varied 

over the range of possible distances between the exchange and 

subscriber. It was found that the echo reponse tails decayed 

approximately monotonically and that the rate of decay was only 

dependent on the inductance of the line transformer and not on the 

length of the line. A high inductance transformer has a low amplitude, 

slowly decaying tail, while a low inductance transformer has a large 

amplitude, quickly decaying tail. The region of the response affected by 

the changing line length was the area around the zero crossing marked 

'Z' in figure (5.5). For a short line, the zero crossing occurred 
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earlier in time than- for a long line, and, in addition, the rise in the 

response amplitude following the zero crossing was less for a short line 

than for a long line. 

In 
(58,59) Hentschke suggested that ringing may occur in the echo 

tails, and designed his echo canceller to allow complex conjugate pole 

pairs. For the echo reponses generated in these tests, no ringing was 

found and a different echo cancelling structure is proposed. 

5 .3 
ADAPTIVE IIR ECHO CANCELLER STRUCTURE 

The characteristics of the echo channel responses suggests the 

use of an FIR filter to cancel the high amplitude main lobes, and a low 

order adaptive IIR filter to cancel the long tail. However, it is not 

clear where the FIR filter span should end to give minimization of 

hardware for the required 60 dB echo attenuation. This problem is 

further complicated by IIR filter adaptation problems (See Sections 

(2.3), (4.1)). The non-uniform nature of the IIR filter performance 

surface could prove very disadvantageous by slowing the rate of 

adaptation considerably, and possibly driving the filter into a local 

minimum. Hence, the order of the IIR filter section should ideally be 

kept to a minimum. 

Figures 5.6a, b and 5.7a, b show plots of the main sections and 

tails for echo responses from two different lines lengths, a 200m line 

and a 5km line. As these line lengths are at opposite extremes of 

possible line lengths, in general, echo responses will lie between the 

reponses shown in figures 5.6 and 5.7. A 32 coefficient FIR ladder 

filter was implemented in the transmission system model with the line 

transformer giving rise to the echoes shown in figures 5.6 and 5.7. It 

was found that the filter was unable to obtain the echo cancellation 

necessary to allow the system to function satisfactorily, because of the 

long echo tails. The 32T limit of the FIR echo canceller is marked on 
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figures 5.6b and 5.7b. It is seen that the echo tails have a very slow 

decay rate, and hence considerable lengthening of the FIR echo canceller 

will not reduce the echo cancellation significantly. 

To obtain the necessary cancellation of the echo tails, an 

Adaptive IIR Filter Section was added to the end of the 32 coefficient 

FIR filter. Inspection of the echo responses reveals two types of tails 

to be modelled. In figure 5.6b the echo decays approximately 

monotonically following the 32T limit, whereas the echo in figure 5.7b 

rises quickly for a further 24T before decaying. In both examples the 

tail amplitudes remained positive and the final rates of decay are 

approximately 0.99nT. 

The non-oscillatory nature of the response tails suggests that 

they can be modelled using real poles (ignoring complex conjugate 

pairs). A real pole has the transfer function: 

A1 
H(z) 

(1 - blz-1) 
(5.1) 

The impulse response of this filter is an infinite 9eonetric series, 

viz: 

Y(z) -1+ b1z-1 + b12z-2 + b13Z-3 + ... (5.2) 

Where Ibll< 1 for the filter to be stable. The response of two real 

poles at z-b1 and z- b2 is the convolution of their individual 

impulse responses. From figure 5.6b, it is seen that the tail of the 

echo for a short line should be adequately modelled using a first order 

pole section having a positive coefficient. However, the 5km tail 

requires a second pole in order to give the initial rise required in the 

response (See figure 5.7b). Both the bl and b2 coefficients will have 

positive values in this second case. 
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Although the two responses can be approximately modelled with 

second order IIR filters, close inspection reveals that they are in fact 

responses from higher order systems. This implies that the performance 

surface which drives the adaptation of the coefficients will possibly 

contain local minima 
(12). 

Local minima will create difficulties for the 

filter adaptation if the coefficients are adapted from arbitrary 

starting values. By keeping selected coefficients stationary at 

predetermined values, certain features of the performance surface can be 

exploited to obtain an optimum echo canceller. 

5 . 
31 Choice of Structure for the IIR Filter Section 

In Chapter 1 it was shown that implementation of the (ai) 

numerator coefficients from the filter transfer function as a Direct 

Form filter section produced a quadratic performance surface with 

respect to those coefficients. The proposed adaptation algorithm for the 

IIR echo canceller utilizes this uniformly shaped error surface to avoid 

local minima in the corresponding surface for the filter (bi} 

denominator coefficients. 

As the decay rate of the echo tails is governed only by the 

inductance of the line transformer, keeping the bl, b2 denominator 

coefficients (giving rise to the poles) stationary at suitable 

coefficient values will allow the (ai) numerator coefficients to adapt 

to best match the poles' impulse response to the echo tail. When this 

has been achieved, the (a(bi) IIR Section coefficients and the Main 

FIR ladder filter coefficients can be adapted to find the optimum echo 

canceller. Adapting the filter using this method will avoid any local 

minimum present in the error surface. 
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The proposed IIR section of the echo canceller has the transfer 

function: 

HI(z) - 

-1 a0 + atz 
(5.3) 

(1 - b1z-1)(1 - b2 z-1) 

The poles are implemented as two first order sections to constrain them 

to be real. For stability, 
Ibli and (b21 must be kept less than unity. 

In addition, the characteristics of the echo tails means that b1 and b2 

can be further constrained to be positive. 

From figures 5.6 and 5.7, as the length of the line between the 

subscriber and the exchange is varied, it is known that the final 

exponential decay of the echo response tails will be approximately 

0.99. The bl coefficient is preset to a value of 0.99 to model the nT 

echo tail decay. A value of b2 - 0.4 will provide the rise in the 

reponse required for a long-line echo. By fixing bl and b2 at these 

values, the a0 and a1 coefficients can adapt to a short line echo by 

positioning a transfer function zero to cancel the pole generated from 

the b2 coefficient. For longer line echoes the (ai) coefficients shape 

the all-pole response to give a best least-squares fit to the echo tail. 

5 . 
32 Derivation of the Adaptation Algorithm 

The echo canceller structure proposed in Section (5.31) can be 

implemented using a FIR ladder filter followed by two first order All 

-pole sections and an All-zero section as shown in 

figure 5.8. The (ai), (bi) and (ci) coefficients are adapted to minimize 

e2(k). As this is not readily available, e2(k) is taken as a local 

estimate. From figure 5.8: 

e2(k) - d2(k) + y2(k) - 2d(k)y(k) (5.4) 
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The method of steepest descent, which was described in Section 2.1, is 

used to adapt the filter coefficients. To generate the coefficient 

update equations (See equation (2.1), partial derivatives of e2(k) with 

respect to (ai), (bi) and (ci) have to be calculated. From figure 5.8, 

the output of the adaptive filter at time t- kT is given by: 

y(k) - yl(k) + y2(k) 

Taking the z-transform of equation (5.5) and substituting the filter 

transfer functions from figure 5.8 yields: 

A(z). z"(n+l) 
Y(z) - X(z) C(z) +A 

B(z) 

Where: 

-1 A(z) - a0 + atz 

B(z) - (1 - b1z-1)(1 - b2z-1) 

A C(z) - clzl + c2z-2 + ... + cnz' 

(5.5) 

(5.6) 

From equation 5.4: 

Where: 

äe2(k) 
- -2. e(k). ai(k) 

öai 

öe2(k) 
- -2. e(k). ßi(k) 

3bi 

öe2(k) 
- -2. e(k). 7 (k) 

äci 

ay(k) 

öai(k) 

(5.7) 

(5.8) 

1 (5.9) 

ay(k) 
and -yi(k) . - 

ac i (k) 

ay (k) 

8b i (k) 
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From equation (5.6): 

'fi(z) - X(z). z-i (5.10) 

The ryi(k) terms are therefore generated in the delay line of 

the C(z) filter and do not require any further computation. To calculate 

the ai(k) and ßi(k) terms, certain assumptions and simplifications need 

to be made to reduce the hardware outlay to an acceptable level for real 

time operation. Problems arise because the IIR section of the filter is 

time-varying and recursive, and hence y2(k) at a particular time 

reflects the past variations in the coefficients. By allowing only small 

coefficient updates at each iteration, the filter transfer function 

remains approximately constant over a number of iterations, and y2(k) 

can be assumed to be the output from a fixed filter. Therefore, from 

equation (5.6): 

X(z). z'(n+1+i) 
- (5.11) ai(Z) 

B(Z) i-0,1 

Y2(z). z-1 
ßi(z) - 

(1 -b z-1) 
(5.12) 

i 
i-1,2 

Hence, the ai(k) and ßi(k) terms can be generated by a series 

of time-varying IIR filters. As the coefficient changes are small, the 

output from the two recursive filter sections will be approximately 

constant over a few iterations, and the ai(k) terms can be generated 
n 

within the delay line of the A(z) filter and require no additional 

hardware. Two single-order recursive sections are required to calculate 

the ßi(k) terms. The complete echo cancelling structure is shown in 
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figure 5.9. The coefficients are updated using: 

a(k+1) - ai(k) + Ila. e(k). ai(k) 
i-0,1 

bi(k+1) - bi(k) + pb. e(k). ßi(k) 
i-1,2 

ci(k+1) - ci(k) + µc. e(k). ryi(k) 
i-1, n 

5 . 
33 Sequence for Coefficient Adaytation 

(5.13) 

(5.14) 

(5.15) 

The coefficients of the echo canceller are adapted in the 

sequence given below. In addition to avoiding local minima in the filter 

performance surface, the adaptation sequence enables the adaptive filter 

to converge very quickly to the optimum echo canceller. 

1) The (ci) coefficients of the main FIR ladder section are 

adapted for 1000 iterations to cancel the major part of the echo. 

2) While still adapting the (ci) coefficients, the a0, a1 

coefficients are adapted from (0.0,0.0) with the b1 and b2 coefficients 

fixed at suitable values for the line transformer inductance. The 

(ai(k)) coefficients match the fixed poles' response to the echo tail. 

The filter is adapted in this mode for 500 iterations. 

3) Finally, the (ai), (bi), and (ci) coefficients are all adapted 

to find the nearest minimum in the error surface (which should be the 

global minimum). If adequate echo cancellation is achieved with the 

first two stages, this step can be ignored. 

5 .4 
COMPUTER SIMULATIONS 

To assess the performance of the recursive echo canceller, a 

computer simulation of the required sections of the system was used. A 

block diagram of echo channel modelling is shown in figure 5.10: During 

- 130 - 



the initial training sequence for the echo canceller, the far end signal 

is not transmitted and the input sequence X(z) is generated using a 

pseudo random noise sequence. The echo channel model was constructed 

from echo data obtained from a number of lines. The Analogue to Digital 

Converter (A. D. C. ) was included in the model to measure its effect on 

the level of echo cancellation. For the adaptive filter structure, 32 

(ci) coefficients were used and values of the bl, b2 coefficients were 

initially set at 0.99 and 0.4 respectively. 

For the echo responses considered in Section 5.3, the 32 tap 

FIR filter was unable to achieve the 60dB echo-cancellation required for 

a working transmission system. A convergence plot for the FIR echo 

canceller adapting to a 5km line echo is given in figure 5.11. An A. D. C. 

of 211 levels limits the lower limit of cancellation to 66 dB. With the 

addition of the IIR filter section, the level of echo cancellation is 

greatly improved and drops below the 60dB threshold. Figures 5.12 and 

5.13 show convergence plots for the recursive echo canceller adapting to 

a 5km echo and a 200m echo respectively. The adaptation sequence given 

in Section 5.33 was used for the adaptation and it was found that step 

(3) was not required as sufficient cancellation was obtaineLd from the 

first two stages. For each line length, the number of A. D. C. levels was 

varied to see the effect on convergence. 

It is seen from figures 5.12 and 5.13 that with the addition of 

the recursive filter section, a working system is easily achieved. The 

amount of echo cancellation obtained is in fact limited by the accuracy 

of the A. D. C.. Without an A. D. C. in the simulation to introduce 

quantization noise, greater cancellation is obtained for the 200m line 

than for the 5km line. This is expected because the short line echo tail 

is simpler to model. For the inductance of the line transformer used in 

this example, it was found to be unnecessary to adapt the poles from 

their initial values. With the (bl, b2) coefficients fixed, the extra 
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hardware for generating the (ßi(k)) terms is not required and the echo 

canceller structure is simplified further. 

From equations (5.10) and (5.11), it is seen that the (ai) 

feedforward coefficients and the (ci) feedforward coefficients require 

different values of p parameters for the update equations (5.13) and 

(5.15). The µa adaptation parameter will have a smaller value than µc 

because the input signal for the (ai) coefficients is generated by the 

feedback via the (bi) coefficients, in addition to the filter input 

X(z). The power in the input signal to the (ai) filter coefficients will 

depend on the fixed values of the (bi) coefficients. For the line 

transformer used in this example, suitable values for the adaptation 

parameters were found to be pc - 2'9 and pa - 2'14. 

5 . 
41 Adaptation of the B(z) Filter Coefficients 

Figure 5.14 shows a convergence plot for the complete recursive 

echo canceller adapting to a 200m line echo. The initial (bi) 

coefficients were fixed at (0.9,0.0) and started adapting after 1500 

iterations. Problems arise in the adaptation due to the size of µb. When 

the (bi) coefficients start adapting, 60dB echo cancellation will 

already have been achieved. The error signal E(z) will contain very 

little power, the a0(k), a1(k) coefficients will be small values 

(because the tail amplitude is small), and hence ß1(k) and ß2(k) will be 

small values also. To give a significant coefficient change, pb must be 

very large. The great difference in size between pb and both e(k) and 

(ß1(k)) will prove troublesome for the coefficient updates (equation 

5.14) in a hardware realization. 

_A solution to this problem is to use SIGN (ßi(k)) rather than 

ßi(k) for the (bi) coefficient updates. This method was used for the 

convergence plot given in figure 5.14. The (bl, b2) coefficients adapted 

to (0.985,0.2) and the echo cancellation limit set by the ADC was 
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reached after 2500 iterations 

5 .5 
CONCLUSIONS 

Echo channel responses for a 144 kbit/s duplex data 

transmission system were examined, and it was found that the energy 

distribution of the echoes is dependent on the line transformer 

inductance, and to a lesser degree, the length of the line. The energy 

contained in the echo could extend over a long time period making 

adaptive FIR cancellers an impractical proposition. In this chapter, a 

low order adaptive IIR filter was added to a main FIR filter as a means 

of reducing the cost for the echo cancelling section of the system. 

A study of the echo tail characteristics showed that the tails 

were approximately monotonically decaying and did not oscillate. These 

characteristics allowed an IIR filter structure to be chosen which only 

implemented real poles, and not complex conjugate pairs. While this 

choice of structure simplifies the nature of the filter performance 

surface, local minima may still exist because of the insufficient order 

of the adaptive filter. However, the fact that the decay rate of the 

echo tail is dependent on the inductance of the line transformer enables 

an initial choice of pole coefficients to be made which guarantees a 

large improvement in echo cancellation. This is achieved by adapting the 

(ai) coefficients with the (b i) coefficients fixed at suitable 

predetermined values, thereby avoiding local minima in the error 

surface. It is noted that the IIR filter section chosen is a simplified 

version of the Modified Cascade Structure proposed in Section 3.2.2. 

The IIR echo cancelling structure was tested and the results 

showed a significant improvement when compared with the 32 tap FIR echo 

canceller. For the example presented, a small addition in the amount of 

hardware necessary for the FIR filter, resulted in an extra 20 dB echo 

cancellation being obtained with the simplified IIR structure alone. 
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Figure 5.3 Transmit Pulse Shape 
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60 THE MASTER-SLAVE ADAPTATION ALGORITHM: A NEW APPROACH TO 

GRADIENT SEARCH ADAPTIVE IIR FILTERING 

In Chapter 3, simple adaptive IIR filtering structures which 

use gradient search techniques to minimize the mean-square-error were 

developed. Methods for increasing rates of convergence of the structures 

were studied in Chapter 4 and shown to offer some improvement. However, 

the irregular nature of the IIR performance surface severely limits the 

reductions in convergence times that may be achieved. In addition, 

gradient search output error minimizing algorithms do not address the 

problem of locating the global minimum of a possibly multimodal 

performance surface. 

In this chapter, an adaptive IIR filter algorithm is introduced 

which uses adaptive FIR filters for the adaptation of both the 

feedforward and feedback coefficients. It is shown that the resulting 

performance surface is more suitable for gradient search techniques than 

the corresponding surface for conventional adaptive IIR filters. In 

addition, results suggest the possible existence of a unique minimum for 

the filter as a whole. The new algorithm is termed "Master-Slave" as it 

incorporates an auxilliary adaptive process to the main "Master" filter 

adaptation using an additional filter (the "Slave"). The two filters are 

adapted using different adaptation strategies. The Slave filter adapts 

to minimize the usual output error criterion, while the Master Filter 

adapts to minimize an equation error criterion. The equation error 

minimization process is considered in the following section. 

6 
.1 

EQUATION ERROR MINIMIZATION 

The IIR filter adaptation algorithms discussed in the preceding 

chapters were all designed to minimize the mean square error obtained 

from the general adaptive filter structure shown in figure 1.1 

(Chapter 1). The related performance surface for IIR filter coefficients 
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leads to the problems discussed previously in Section 4.1. One approach 

to avoid these problems is by adapting the filter to minimize a 

different error criterion. The equation error criterion has been 

proposed as a possible solution to the output error IIR performance 

(60) 
surface problem, as the corresponding equation error surface has 

been shown to be quadratic with respect to all filter coefficients, and 

hence has a unique minimum for the filter as a whole. 

Figure 6.1 shows the adaptive filter configuration for 

minimization of the equation error. The poles and zeros of the adaptive 
A 

filter are implemented using two FIR filters, A(z) implements the zeros 

and B(z) the poles. The equation error is obtained from 

eq(k) - d(k) - y(k) 

where d(k) is the desired response at time t- kT and y(k) is the 

(6.1) 

adaptive filter output. Without any loss in generality, y(k) can be 

obtained from: 

nm 
y(k) -Z ai(k)x(k-i) +Z bi(k)d(k-i) (6.2) 

i-0 i-1 

where (ai(k)) and (bi(k)) are the coefficients of ladder filter 
qA 

implementations of A(z) and B(z) respectively. 

A comparison between equation (6.2) and equation (1.2) shows 

that the output of the equation error adaptive filter differs from that 

of the output error adaptive filter by the substitution of the actual 

desired response d(k) in place of the adaptive filter output y(k) in the 

right-hand side term. The equation error configuration therefore uses a 

series/parallel model instead of the parallel, output error minimizing 
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adaptive filter. The substitution of d(k) for y(k) means that the 

equation error adaptive filter does not contain any feedback, and hence 

the structure itself poses no stability problems. 

6 
.2A 

SIMPLIFIED CASCADE STRUCTURE FOR EQUATION ERROR MINIMIZATION 

The simplest structure for implementation of the equation error 

adaptive filter is obtained by using FIR ladder filters for both the 
(60) 

A(z) and B(z) filters. Mantey showed that the resulting m. s. e. 

performance surface is quadratic with respect to all the filter 

coefficients. Whilst the equation error adaptive filter does not suffer 

any inherent stability problems, in many applications the transfer 

function A(z)/B(z) is the target for the filter adaptation. In such 
A 

cases, it may prove necessary to restrict the zeros of B(z) to remain 

within the unit circle in the z-plane during adaptation. However, as was 
A 

shown in Section 2.2, this is not a simple task when the B(z) polynomial 

is realized in direct form. 

One method of providing a simple check on the position of the 
AA 

B(z) zeros is to implement B(z) as a cascade of second order All-Zero 

sections. The (bl, b2) coefficients from each section are confined within 

the stability triangle shown in figure 1.6 in a similar fashion to the 

All-Pole sections of the algorithms of Chapter 3. David 
(61) 

proposed a 

cascade structure for equation error minimization. Using simplifications 

suggested in Chapter 3, a simpler structure is now proposed. 

The cascade structure for equation error minimization is shown 

in figure 6.2. The adaptive filter transfer functions are given by: 

Ä(z) 
- a0 + a1zý1 + a2zý2+ ... + anz n (6.3) 

B(z) 
-1+ bljz" + b2jz'2 

j-1,2.. 
�m 

(6.4) 
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The filter structure shown in figure 6.1 can be redrawn as the structure 
A 

shown in figure 6.2 by feeding d(k) directly into the B, (z) filter 

sections. 
A 

The realization of the B(z) filter as a cascade of second order 

All-Zero sections changes the shape of the performance surface with 

respect to the filter coefficients, losing the quadratic error surface 

of the direct form filter coefficients. However, the cascade structure 

coefficients will be less sensitive than the direct form structure 

coefficients when adapting to closely spaced poles in the target 

mode 1(64). In addition, the performance surface with respect to the 

(bij(k)) cascade filter coefficients is much more uniform for FIR filter 

sections than for the corresponding output error performance surface for 
A 

recursive B(z) sections. 

The coefficient adaptation algorithm is a gradient algorithm 

which uses the method of steepest descent described in Section 2.11. The 

coefficient updates are expressed as: 

ai(k+l) - ai(k) + µa. ( -Va (k)) 
i 

bij(k+1) - bi3(k) + mb. ( "Vbi (k)) 

where Va (k) and ob 
ij 

(k) are defined by: 
i 

äe2(k) 

ai(k) äai(k) 

8e2(k) 
Vb 

ij (k) 8bi j (k) 

and from figure (6.2), eQ2(k) is given by: 

eg2(k) - (d'(k) - Y'(k))2 

(6.5) 

i-O, l,.., n 

J i-1,2 
j-1,2,.., m 

(6.6) 

(6.7) 

(6.8) 

(6.9) 
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Taking eg2(k) as a local estimate of eg2(k), partial 

differentiation of equation (6.9) with respect to the adaptive filter 

coefficients yields: 

pa (k) - -2 eq(k) ai(k) (6.10) 

i 

Vb. 
j (k) -2 eq(k) Qij(k) (6.11) 

ý 

where: 

ayl(k) 
(6.12) 

aai(k) 

3d'(k) 
ßiß (k) 

8 bly (k) 
(6.13) 

For the equation error adaptive filter, y'(k) is a function of 

Ä(z) and d'(k) is a function of B(z). Transferring to the z"domain, 

D'(z) and Y'(z) are obtained from: 

m 
D'(z) - D(z). (l (1 + bljz-1+ b2jz'1) (6.14) 

j-1 

A 

Y'(z) - X(z). A(z) (6.15) 

A 

Assuming that the Bi(z) filter sections remain approximately 

constant over a small number of iterations by only allowing small 

coefficient updates, equations (6.12) --> (6.15) yield: 

ai(z) - X(z). z"i (6.16) 

D'(z). z" 
ßij (z) - Bi (z) (6.17) 

The ai(k) and ßi(k) terms can again be generated as the outputs of a set 
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of time varying filters. The ai(k) terms do not require any extra 
A 

computation as they are generated within the delay line of the A(z) 
A 

A 
filter. Using B(z) at time t- (k-i)T to approximate B(z) at time t- kT 

allows the ßj(k) terms to be generated using m second order All-Pole 

filters, as in the case of the algorithms derived in Chapter 3. The 

ßim(z) terms are generated from 

-i mz 
ßirn(z) - D(z). fl B (z) . (6.18) 

J-1 Bm(Z) 

Hence: 

m-1 A 
ßim(z) - D(z) fl (B(z)) "z-i (6.19) 

j-1 

The ßim(z) terms are already generated within the delay line of the 

B(z) filter section. Therefore, the number of extra filters required 
m 

for the generation of the ßij(k) gradient terms is reduced to m-1 

second-order sections. The complete filter structure is shown in figure 

6.3a. The coefficients are updated every sample using: 

ai(k+l) - ai(k) + µa. e(k). ai(k) (6.20) 

bij(k+l) - bij(k)+µbe(k). ßij(k) 
1-1,2 

(6.21) 

j-1,2,.., m 

A block diagram of the cascade structure for equation error 

minimization proposed by David (61) is given in figure 6.3b. A comparison 

between figures 6.3a and b shows that the David structure is 

considerably more complicated than the structure derived in this 

section. 
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63 PERFORMANCE ASSESSMENT OF THE EQUATION ERROR ADAPTIVE FILTER 

Equation error adaptive filters have been compared with 

output error adaptive filters in the literature (61,62,53,51), 
and shown 

to perform very favourably under restricted conditions. To study the 

performance of the Cascade Equation Error Adaptive Filter, the system 

identification configuration shown in figure 1.2, Chapter 1 is modified 

to that shown in figure 6.4. 

From figure 6.4 it is seen that the mean squared equation error 

is obtained from: 

A 

A(z)B(z) A 
Eq (z) -X (z). - A(z) (6.22) 

B(z) 

For an output error adaptive filter used in the system identification 

configuration, the mean square output error is obtained from: 

A 

A(z) A(z) 

E (z) -X (z). -A (6.23) 
B(z) B(z) 

If the adaptive filter is of sufficient order to fully model 

the plant, both output error minimization and equation error 
A 

minimization result in the same solution: A(z) adapts to cancel A(z), 

B(z) adapts to cancel B(z), and both the output error and the equation 

error are reduced to zero. The equation error performance surface is, 

however, much better suited to iterative gradient adaptive techniques 

than the corresponding output error surface. Consequently, convergence 

times are considerably faster for the equation error adaptive 

filter 
(61,62,51) 

Tests using the Cascade Equation Error Adaptive Filter with 

fixed values of pa and Ab demonstrated that adaptation times were 

generally much faster than those obtained by the improved adaptation 

techniques considered in Chapter 4. Figure 6.5 shows a convergence plot 
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for the Cascade Equation Error minimizing filter adapting to the 4th 

order plant example in Section 3.3.3. The plant has transfer function: 

0.01( 1-1.2z-1 + 0.8z-2 )(1 - 1.5z, 1 
+ 0.7z-2) 

H(z) - 
(1 + 1.2z-1 + 0.8z-2 )(1 + 1.5z-1 + 0.7z. 2 ) 

(6.24) 

To obtain a valid comparison with the algorithms of Chapter 3, the error 

plotted on the vertical scale is that which is generated by substituting 

n 
A(z) and B(z) in the output error minimizing configuration shown in 

figure 1.2. Convergence to 30 dB ERLE was obtained in 4,200 iterations, 

which compares with 19,000 iterations for the R-Cosa Cascade 

output error minimizing adaptive filter in Chapter 4. 

The general shapes of the convergence plots for the two 

adaptive filters are very different in character. The output error 

minimizing filter tends to reduce the m. s. e. very slowly for a large 

proportion of the adaptation time, and then the error falls quickly when 

the filter is near the target. This is a direct result of the error 

surface shape (See Section 4.1). For the equation error filter, the 

error drops quickly in the early stages of the adaptation, and then the 

filter slowly locks in on the target. In general, this is more 

desirable. However, as the equation error minimizing filter uses a 

different performance surface to the output error minimizing filter, it 
AA 

_ is possible that the output error generated by using A(z)/B(z) 

constructed from the equation error filter sections will rise in the 

initial stages of the adaptation. 

When the Cascade equation error filter is used to model the 

widely spaced poles plant of Example 2, Section 3.3, it is found that 

the filter falls into the same local minimum as the output error cascade 
A 

filter, with two pairs of split real zeros in B(z). By adopting the pole 

replacement strategy proposed in Chapter 3 for the output error cascade, 
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A 

the two pairs of split real zeros in B(z) are replaced by two complex 

conjugate zero pairs, thereby removing the local minimum. 

While the equation error minimizing filter can be shown to 

offer faster convergence than the output error minimizing filter in a 

noise-free, sufficient order modelling situation, there are several 

disadvantages with the structure which may limit its usefulness. The 

first problem arises when the desired response is measured in the 

presence of noise, as in general the coefficient estimates obtained will 
63). 

be biased 

Consider the problem of system identification when the desired 

response D(z) is corrupted by a zero mean, white noise source N(z). The 

mean square error value, previously obtained from equation (6.22), 

is now obtaineol 4rom ; 

A(z)B(z) AA 
Eq'(z) - X(z) - A(z) + B(z)N(z) (6.25) 

B(z) 

Equation (6.25) differs from equation (6.22) in that the 
A 

adaptive coefficients also have to adapt to cancel the B(z)N(z) term, 

which leads to a biased result. This problem may exclude the equation 

error filter from such applications as echo cancellation, as the far end 

signal will appear as N(z) to the near end canceller (See Chapter 5) and 

lead to a non-optimum solution. 

A further disadvantage occurs when the equation error adaptive 

filter is of insufficient order to fully model the target plant. In such 

a case, a single minimum exists in the performance surface with respect 

to the equation error filter coefficients(61), while the output error 
(12' 

performance surface may contain multiple minima. However, the 

optimum coefficients for the equation error filter will not, in general, 

match those of the optimum output error filter. Hence, if the A(z) and 
A 

B(z) sections of the optimum equation error filter are implemented as 
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AA 

A(z)/B(z) in an output error configuration, the resulting filter will 

not, in general, lie at the global minimum of the output error surface. 

The problem arises from the difference between equation (6.22) and 
4 

(6.23). The two expressions generally have different minima when A(z) is 
A 

unable to match A(z) and/or B(z) is unable to match B(z). 

With the majority of adaptive filtering applications requiring 

minimization of the output error criterion using an unbiased adaptive 

filter, opportunities for the use of the equation error adaptive filter 

are limited. 

6 .4 
MASTER-SLAVE CONFIGURATION 

Development of the Master-Slave adaptation algorithm arose from 

a wish to combine the fast adaptation and more preferable error surface 

of the equation error minimizing filter, with the unbiased adaptation of 

the output error minimizing filter. A block diagram of the Master-Slave 

filter structure is shown in figure 6.6. The filter structure can be 

divided into two parts, a main filter section consisting of the IIR 
A 

Master filter Am(z)/Bm(z) and its two adaptive filter sections A(z) and 

A 
B(z), and a second section consisting of the auxilliary Slave Filter 

A 
C(z). 

When viewed externally the Master-Slave Filter appears as an 

output error minimimizing adaptive filter. However, only the slave 

filter C(z) is adapted to minimize the mean square output error, e2(k). 
AA 

The Master Filter is adapted by using the A(z) and B(z) filters to 

minimize an internal error, and then updating the Am(z) and Bm(z) filter 
AA 

coefficients with the A(z) and B(z) filter coefficients respectively. 

The Master-Slave Filter is adapted in two stages. Initially, the 

Master Filter Am(z)/Bm(z) has its coefficients fixed and the Slave 
'Z A 

Filter is adapted to minimize e (k). The C(z) filter is an FIR ladder 

Filter and has a quadratic performance surface for the adaptation of its 
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A 

coefficients. After a number of iterations, the C(z) filter coefficients 

are fixed. Y2(z) is now a better estimate of D(z) than Y1(z), and 

(Am(z)C(z))/Bm(z) gives a unbiased approximation to the unknown system. 

The second stage of the adaptation involves adapting A(z) and 

B(z) to minimize eg2(k). During this phase the Am(z)/Bm(z) and C(z) 
AA 

filters are fixed, and A(z)/B(z) forms a model of Am(z)C(z)/Bm(z) (the 

plant approximation) using equation error minimization. The cascade 

equation error minimization structure proposed in the previous section 

is used to adapt the A(z) and B(z) filters as stability of the A(z)/B(z) 

transfer function must be guaranteed. Hence, j(z) is implemented as a 

FIR ladder filter and B(z) as a cascade of second order All-Zero 

sections. The Master Filter Am(z)/ Bm(z) is updated after the second 
A 

adaptation stage using the A(z) and i(z) filter coefficients. The Master 
A 

filter structure must be compatible with A(z)/B(z) for the coefficient 

transfer, and therefore consists of a cascade of second order All-Polo 

sections and a direct form All-Zero section. This is the modified 

cascade structure used in Section 3.2.2. 

Following the updating of the Master Filter coefficients. the 

adaptation algorithm reverts to the first stage of adaptation and the 

Slave Filter is adapted again. Each additional adaptation cycle produces 

a Master Filter which is a more accurate representation of the target 

plant. The Slave Filter, therefore, 'leads' the Master towards its 

target. 

The Master-Slave filter structure enables an IIR filter to be 

adapted using three adaptive FIR filters. Two of the filters (A(z), C(z)) 

have quadratic performance surfaces. Implementation of the zeros of 8(z) 

as a cascade of second order All-Zero sections means that the 
A 

performance surface with respect to the B(z) filter coefficients is no 

longer quadratic. However, as results from the previous section 

illustrated, the surface is still considerably more regular than that 
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for IIR filter denominator coefficients. 

The new algorithm, therefore, offers considerably faster 

convergence using gradient search techniques than that obtained for a 

direct output error minimizing IIR filter alone. In addition, a major 

disadvantage of equation error minimization is that noise in the desired 

" response results in biased coefficient estimates. For the Master-Slave 

A 
algorithm, use of the Slave filter C(z) allows the Master to adapt to an 

unbiased solution, thereby combining the advantages of equation error 

and output error minimization. 

6.5 ALGORITHM DERIVATION 

The derivation of the Master-Slave filter adaptation algorithm is 

broken down into the two adaptive processes. Section 6.5.1 considers 

A 
adaptation of the C(z) Slave Filter, and Section 6.5.2 adaptation of the 

A(z) and B(z) filters. All filters are adapted using the method of 

steepest descent. 

651 Slave Filter Adaptation 

A 
A block diagram of the C(z) filter adaptation is shown in 

figure 6.7. The slave filter has the transfer function: 

C(z) - co + c1zý1 + c2zý2 + .. + cpz'p (6.26) 

Using the method of steepest descent, the filter is adapted to minimize 

2e. The coefficients are updated using: 

-öe2(k) 
ci(k+l) - ci(k) + µc"( aci(k) 

) (6.27) 

- 155 - 



From figure 6.7 the error signal e(k) is obtained from: 

e(k) - d(k) - yr(k) (6.28) 

Taking e2(k) as a local estimate of e2(k), 8e2(k)/aci(k) is obtained by 

taking the square of both sides of equation (6.28), and then 

differentiating with respect to (ci). giving: 

3e2(k) 
- . 2. e(k). y(k) (6.29) 

aci(k) 

where: 

8y2(k) 
7i(k) - (6.30) 

aci(k) 

From figure 6.7, Y2(z) can be written as: 

A 

Y2(Z) - Y1(z)"C(Z) (6.31) 

;T Hence, ti(k) is given by: 

7i(k) - yl(k-i) (6.32) 

The positioning of the slave filter after the master filter 

enables the 7i(k) terms to be generated within the delay line of the 
C(z) filter and not require any extra computation. If the slave filter 

and master filter positions were exchanged, this would no longer be the 

case. 
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The (ci) filter coefficients are updated every sample using: 

ci(k+1) - ci(k) + µc. e(k). -yi(k) 
i-l, p 

(6.33) 

where e(k) and 7i(k) are obtained from equations (6.28) and (6.32) and 

0c is the adaptation constant. 

6.5 .2 
Master Filter Adaptatio 

AA 

A block diagram for the A(z) and B(z) filter adaptation is 
AA 

shown in figure 6.8. The A(z) and B(z) filters are adapted to minimize 

e q2(k) 
using the cascade equation error minimization structure proposed 

in section 6.2. The two filters have transfer functions: 

A(z) - a0 + atz-1 + ..... + anz-n (6.34) 

Am 

B(z) - fl (1 + bljz-1 + b2jz-2) (6.35) 
j-1 

A full derivation of the adaptation algorithm for the filter 

coefficients is given in section 6.2. The coefficients are updated 

using: 

ai(k+l) - ai(k) + µa. eq(k). ai(k) (6.36) 
i-0,1,.., n 

bij(k+l) - bij(k) + µbeq(k). ßij(k) (6.37) 
1-1,2 

j 
The ai(k) terms are generated within the A(z) filter and the ßij(k) 

terms require m-1 extra second order All-Pole sections. When the j(z) 

and B(z) filters have adapted, their coefficients are duplicated in the 

Master Filter. The complete filter structure is shown in figure 6.9. 
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6 .6 
PERFORMANCE ASSESSMENT OF THE MASTER-SLAVE ADAPTIVE 

FILTER 

The performance of the Master-Slave Adaptive filter was studied 

using the system identification structure shown in figure 1.2. The 

Adaptive Filter output is given by: 

A 

Am(z)C(z) 
Y2(z) ' X(z) 

Bm(z) 
(6.38) 

Hence if the target plant has transfer function H(z) where: 

A(z) 
H(z) - 

B(z) 
(6.39) 

the error signal e(k) is obtained from: 

A 

A(z) Am(z)C(z)- 
E(Z) - X(z) - --- (6.40) 

B(z) Bm(z) 

A 

To minimize the mean square value of e(k), the slave filter C(z) adapts 
such that: 

A(z)Bm(z) 
C(z) -> 

B(z)Am(z) 
(6.41) 

If the Master filter Arn(z)/Bm(z) is of sufficient order to fully match 
A 

the plant, C(z) -> 1.0 as the filter converges. 

To keep the adaptation of the slave filter stable as the power 

level in the output of the Master Filter varies, a low pass filtering 

operation is used to normalize the µc adaptation parameters. µc is 

calculated from 
(9): 

f 
µc 

Ic 
p. r(k) 

(6.42) 

Where pc is a constant, p is the order of C(z) and r(k) is an estimate 
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A 

of the power in Y1(z), the input to C(z). r(k) is obtained from: 

r(k) - p. r(k-1) + (1-Pi(k) (6.43) 

p is a 'forgetting' factor which determines the bandwidth of the low 

pass filter operation. 
A 

When the C(z) filter adaptation is started, transients will 

exist in Y1(z) caused by the sudden change in the Master Filter 

coefficients as they are updated. It was decided to ignore the 

transients and use a small number of iterations for each adaptation 

cycle, thereby reducing the coefficient step. An alternative approach 

would be to allow time for the transients to settle before C(z) is 
A 

adapted. When the Master Filter coefficients are updated, the C(z) 

filter may either be adapted from the final (ci(k)) coefficient values 

of the previous adaptation, or alternatively, the coefficients can be 

reset to cl- 1.0, c2,3.. p - 0.0.. Adaptation was found to be quicker 

using the second method. 

Using the system identification configuration, examples are 

presented in the following sections to demonstrate the advantages the 

Master Slave Adaptive Filter has over the output error minimizing 

adaptive IIR filters. 

661 Sufficient Order Adaptive Filter Examples 

X11 Second Order Example 

The plant chosen has the transfer function: 

1.0 
H(z) 

(1 + 1.8z. 1 
+ 0.95z'2) 

(6.44) 

This is a second order All-Pole plant with poles of radius 0.975 and 
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angles +/- 157.4°. The plant has been previously used to assess the 

output error minimizing algorithms of Chapter 4. The results obtained 

showed it to be a very difficult plant to model. The performance surface 

for the output error adaptive filter coefficients is shown in figure 

1.7d. The steep valley that characterises the surface causes severe 

problems to gradient-based adaptation algorithms. The Valley-Search 

algorithm achieved the fastest convergence of the Chapter 4 algorithms 

taking 10,000 iterations for 30 dB ERLE convergence (Section 4.3). 

However, the computation required for the algorithm is considerable. 

Error convergence plots for the Master-Slave filter adapted 

using 16 (ci) coefficients are shown in figure 6.10 a, b. The Master and 

Slave sections were each adapted for blocks of 200 iterations at a time 

( ie. one complete adaptation cycle took 400 iterations). Figure 6.10a 

shows the squared output error for the Master-Slave Filter. Figure 6.10b 

shows the squared output error obtained by the Master Filter alone. 

Convergence to 30 dB ERLE was achieved by the Master-Slave 

Filter in 5,500 iterations. This is considerably faster than all the 

Chapter 4 algorithms. In addition, it is seen from figure 6.10a that the 

initial error is reduced in amplitude very quickly. Figure 6.10c shows a 

convergence plot for the White/Stearns algorithm adapting to the same 

plant. A comparison of figures 6.10a and c shows the effect of the 

differing error surfaces. The fast initial adaptation of the 

Master-Slave Filter is due to the equation error performance surface for 

the Master Filter. This is shown in figure 6.10b. The output error for 

the Master Filter is seen to drop quickly. As the filter is updated in 

two stages, the error plots for the Master and the Slave filter outputs 

rise suddenly when the master filter coefficients are updated. 

The coefficient track for the (bl, b2) filter coefficients is 

shown in figure 6.11. It is seen that the valley which restricted the 

output error IIR adaptive filters (figure 4.1c) is again in evidence 
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with the coefficient track bouncing from side to side. However, the 

coefficient steps taken are larger, the valley is less steep and 

convergence is consequently much faster for the Master-Slave Filter. 

(2) Fourth Order Example 

To assess the performance of the Master-Slave Filter in a higher 

order adaptive filter example, the fourth-order pole/zero plant of 

Section 3.3.3 was used. With the transfer function zeros implemented in 

direct form, the plant transfer function H(z) is given by: 

0.01 - 0.027z-1 + 0.033z-2 - 0.0207z-3 + 0.00562-4 
H(z) - (6.45) 

(1.0 + 1.2z-1 + 0.8z-2)(1.0 + 1.5z-1 + 0.7z-2) 

As in the previous example, the Master and Slave Filters were adapted in 

200 iteration blocks and 16 (ci) coefficients were used. 

Figures 6.12a, b show error convergence plots for the output of 

the Slave filter and Master filter respectively. For this example it was 

found that the output error of the Master-Slave Filter fell quickly in 

the early stages of the adaptation reaching 20 dB ERLE in 3000 

iterations and 30 dB ERLE in about 5000 iterations, at which point the 

Master filter transfer function was: 

0.010 - 0.021z-1 + 0.037z'2 - 0.022z-3 + 0.003z-4 
A 
H(z) - 

(1 + 1.234z-1 + 0.8102-2 )(1 + 1.4412-1 + 0.6552_2 
(6.46) 

) 

It is seen that the Master filter coefficient values are very 

close to the plant coefficient values (equation (6.45)). However, as the 
AA 

adaptation continued, the A(z) and B(z) filter coefficients were unable 

to converge on their targets very quickly and it took 76,000 iterations 

to obtain 30 dB ERLE from the Master Filter. The overall convergence of 
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the Master and Slave therefore also increased very slowly reaching 40 dB 

ERLE convergence in 80,000 iterations. 

One method for improving the rate of convergence is to use the 

Master-Slave Filter for 5,000 iterations to adapt quickly near the 

solution, and then switching to normal output error minimization using 

the Master Filter alone (discarding the Slave). The error convergence 

plots from Chapter 3 show that the RLMS IIR Filter rapidly lowers the 

squared error when near the solution. 

Switching in the output error minimization after 5,000 

iterations using the modified cascade structure of Chapter 3 results in 

6,000 iterations convergence to 30dB ERLE, with 40dB ERLE obtained in 

8,000 iterations and 50dB in 10,000 iterations. The fastest previous 

convergence to this plant was 19,000 iterations for 30dB ERLE obtained 

by the R-CosO algorithm in section 4.4. 

6.6.2 Insufficient Adaptive Filter Examples 

If the Master Filter is of sufficient order to fully model the 

plant, tests have shown that the Master-Slave adaptation algorithm 

drives the Master Filter towards the minimum that an unbiased equation 

error minimizing filter would adapt to. As shown in Section 6.3, this 

could lead to an increase in output error from the Master filter output. 

However, with the Slave Filter providing extra filtering power, it is 

probable that a smaller m. s. e. signal will result from a Master Slave 

Filter than a parallel RLMS IIR filter, which may become trapped in a 

local minimum. To examine the insufficient adaptive filter problem, two 

previously published examples from the literature have been studied. 

(1) Example 1 

Johnson 
(29) 

published an insufficient adaptive filter 

example to demonstrate the non-gradient nature of the Feintuch 
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Algorithm. The example has since been used to assess the performance of 

several other algorithms(31,44,68). Using the System Identification 

Configuration, a first-order plant with transfer function H(z), given 

by: 

H(z) - 
a0 

_1 
(6.47) 

1+b1z 

is used to model a second order plant with transfer function: 

0.05 - 0.4z-1 
H(z) - (6.48) 

1-1.1314z-1 + 0.25z-2 

The performance surface with respect to the two adaptive coefficients in 

a RIMS filter is shown in figure 6.13. It is seen that the surface is 

bimodal, and hence an RLMS filter will adapt to the minimum closest to 

the initial filter coefficients. The global minimum denoted by * is 

situated at (a0, b1) - (-0.311, -0.906), and the local minimum denoted 

by + is at (a0, b1) - (0.114,0.519). Using an adaptive filter to minimize 

the equation error criterion, the performance surface is quadratic with 

respect to all the filter coefficients and the minimum was found to be 

at (a0, b1) - (0.04, -0.88). 

A series of modelling tests were carried out using different 

initial coefficients for the Master Filter. In each case the 

Master-Slave algorithm drove the filter coefficients to the equation 

error surface minimum. A coefficient track for the Master Filter 

initially adapted from the output error surface local minimum position 

is shown in figure 6.14. 

ý2ý Example 2 

This example was used by Stearns(ll)and Etter(12,13). The 

adaptive filter is a second-order recursive section, and the plant being 
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modelled consists of a single zero. The plant transfer function H(z) is: 

H(z) -1+ 10z'1 (6.49) 

A 

and the adaptive filter transfer function H(z): 

A 

H(z) - 
a0 

_1 _2 
(6.50) 

(1 + b1z + b2z ) 

The performance surface with respect to the (bl, b2) adaptive filter 

coefficients was shown in figure 1.8. It is seen that the surface is 

again bimodal, with the global minimum situated at: 

A 4.5 
H(z) - -1 -2 

(6.51) 
1-1. Oz + 0.5z 

and the local minimum at: 

A -3.4 
H(z) 

1+1.1z-1 + 0.5z-2 
(6.52) 

For an equation error adaptive filter, the performance surface minimum 

was found to be situated at: 

A 

Heq(z) 
1.05 

1-0.1z-1 + O. Oz-2) 
(6.53) 

A series of modelling tests were carried out using different initial 

Master Filter Coefficients. As with the previous example, the Master 

Filter was driven to the equation error minimum in every case. Figure 

6.15 shows a coefficient track for the Master Filter adapting from the 

output error local minimum position. 
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623 Assessment of Insufficient Order Examples 

In both examples (1) and (2), the output error obtained by the 

Master Filter alone rose when the filter adapted. This can be seen in 

figures 6.14 and 6.15. The Master filter coefficients adapt from the 

local minimum to a higher m. s. e. value. The reduction in error power 

achieved by the Master-Slave Filter as a whole, therefore is dependent 

on the error reduction obtainable from the Slave when the Master Filter 

has adapted to the equation error minimum position. This in turn will 

depend upon the length of the Slave Filter, and the nature of the plant. 

For example, the plant transfer function in example (2) consists of a 

single zero which the All-Pole Master filter will model poorly. However, 

the addition of the All-Zero Slave Filter to the Master Filter will 

lower the output error significantly. 

As the Master-Slave algorithm will drive the Master Filter to 

the equation error surface minimum, the algorithm may prove unsuitable 

for uses in cases where the Master filter is insufficient, and the 

filter coefficients are the parameters required for the adaptation. 

However, by initially using the Master-Slave algorithm, and then 

adapting the Master Filter to locate the nearest local minimum in the 

output error performance surface, a more optimum set of filter 

coefficients are obtained. For examples (1) and (2), adapting the Master 

filter using this strategy will result in the coefficients finding the 

global minimum of the output error performance surface. This will occur 

irrespectively of the choice of initial Master filter coefficients. 

Adaptation to a number of other bimodal error surface plants using this 

adaptation strategy proved successful with the Master Filter adapting to 

the global minimum in each case. Use of this method, therefore, will 

possibly locate the global minimum of a multimodal performance surface. 
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6 .7 
CONCLUSIONS 

In this chapter, the equation error criterion has been 

considered as an alternative to the output error criterion for the 

adaptation of IIR filters. The advantages and disadvantages of using the 

equation error criterion have been highlighted and a new, simple IIR 

adaptation algorithm has been proposed for equation error minimization. 

The performance of the new algorithm has been assessed using the system 

identification configuration. 

A new adaptive filter algorithm has been proposed which 

incorporates the advantages of output error minimization and equation 

error minimization processes. By using FIR filters for the adaptation of 

both the filter feedforward and feedback coefficients, results have 

demonstrated that the Master-Slave Filter offers faster convergence than 

conventional output error minimizing RIMS adaptive filters. In addition, 

for cases in which the Master Filter is of insufficient order to fully 

model the unknown system, the adaptation algorithm drives the Master 

Filter to a unique minimum in the equation error surface. From this 

position, adaptation of the Master Filter coefficients using 

output error minimization enables the filter to adapt to the 

output error surface global minimum in the examples presented. The 

algorithm developed in this chapter is therefore a possible method of 

avoiding minima in the output error performance surface. 

In the introduction to Chapter 1, the potential advantages of 

using adaptive IIR filters in preference to adaptive FIR filters were 

discussed. The Master-Slave filter offers a viable alternative to FIR 

filters with its speed of adaptation and simple, stable filter 

structure. In Section 6.1.1, Example 1, a system identification problem 

was presented using a target plant with poles very near z-1 in the 

z-plane. This plant has a very long, slowly decaying impulse response. 

The second-order Master-Slave Filter Structure used for this example is 
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shown in figure 6.9. In terms of computation, the Master-Slave Filter 

is considerably simpler than a 64 coefficient FIR ladder filter. When an 

adaptive 64 coefficient FIR filter was used to model this plant, only 

12dB ERLE could be achieved when the optimum filter had been reached. 

This compares with 170,000 iterations convergence to 30dB ERLE by the 

standard output error minimizing RLMS filter (figure 4. lc). For a 

similar order of computation, the Master-Slave filter achieves 30dB ERLE 

convergence in 5,500 iterations, illustrating the advantages of the 

algorithm and the filter structure. 

With its less troublesome error surface the Master-Slave 

algorithm will facilitate adaptation for high order adaptive filters, 

for which the output error surface for RIMS filters will probably 

prohibit the use of direct gradient techniques. 
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Figure 6.10 Master-Slave Filter: Second-Order Example. 
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Figure 6.12 Master-Slave Filter: Fourth Order Example. 
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Figure 6.15 (bl, b2) Coefficient Track for Insufficient Order Filter, 

Example 2. 
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CHAPTER 7 
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7--_O CONCLUSIONS AND FUTURE DEVELOPMENTS 

The work presented in this thesis has been concerned with the 

development of a robust algorithm for the adaptation of IIR Filters, 

with a view to real-time hardware implementation. It is necessary for 

such an algorithm to remain stable and to converge to an optimum 

solution with respect to the performance criterion. In addition, the 

speed of adaptation of the filter is significant for a number of 

applications, and hence should be as fast as possible. 

Previously published adaptation algorithms for IIR filters have 

been studied, and an evaluation made of their applicability for hardware 

implementation. It has been shown that algorithms can be divided into 

three classes; gradient algorithms, hyperstable algorithms and random 

search algorithms, and that none of the classes offers a robust 

algorithm at present. However, for filter simplicity, stability and 

speed of adaptation, gradient algorithms using filter structures with 

guaranteed stability are the most applicable for hardware 

implementation. 

Three new gradient-based Adaptive IIR Filter algorithms have 

been proposed using filter structures consisting of cascade and parallel 

arrangements of second-order filter sections. Stability of each of the 

filter structures is maintained by using a simple check on the filter 

coefficients. Using simple steepest descent adaptation algorithms, 

examples have shown that the proposed Modified Cascade Structure offers 

the best overall performance of the structures considered. However, the 

rates of convergence of all structures varied greatly and were highly 

dependent on the target transfer function characteristics. A local 

minimum resulting from the constraints of the cascade and parallel 

structures was discovered, and a technique for circumventing the problem 

has been proposed. 
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Methods for increasing the speed of convergence of gradient 

search adaptive IIR filers have been considered and two new algorithms 

(the Valley-Search and R-CosO algorithms) have been proposed for 

adaptation of the Modified Cascade Structure. The Valley-Search 

algorithm employs a pattern-search technique to improve convergence 

times for second-order error surfaces containing steep valleys. The 

R-CosO algorithm adapts the radius and angle of the filter poles 

independently. Although the R-Cos9 filter structure is restricted to 

only generating complex pole pairs and not real poles, it has been shown 

that the algorithm offers faster convergence times than standard RIMS 

adaptation algorithms. 

A practical echo cancelling problem for a 144 kbit duplex data 

transmission system has been studied and an Adaptive IIR Filter 

Structure proposed for removal of the echo. A steepest descent gradient 

algorithm has been proposed for adaptation of the filter structure. The 

results presented have demonstrated advantages of using adaptive IIR 

filters in preference to adaptive FIR filters. In addition, a method for 

the avoidance of local minima has been proposed. This involves fixing 

the transfer function denominator coefficients at predetermined values, 

and exploiting the quadratic error surface of the numerator filter 

coefficients to allow the filter to adapt to the global minimum of the 

error surface. If sufficient echo cancellation is obtained without 

adaptation of the transfer function denominator coefficients, then 

optimum values of the required p adaptation parameters can be calculated 

a priori. 

A new steepest descent algorithm has been proposed for equation 

error minimization which simplifies a previously published algorithm. A 

performance assessment of the new algorithm has been made, and the 

filter has been incorporated into the new Master-Slave Filter 

Configuration. The Master-Slave filter is a novel adaptive filter 
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structure combining advantages of the equation error criterion and 

output error criterion. An algorithm for adaptation of the Master-Slave 

filter has been proposed and the performance of the filter has been 

assessed. Results have been presented to demonstrate that the algorithm 

gives possible adaptation to the global minimum of a multimodal 

performance surface. Using an arrangement of three FIR filters, the 

Master-Slave filter structure is stable, very simple to implement and 

has a fast speed of convergence. 

FUTURE DEVELOPMENTS 

In this thesis, a number of IIR filter adaptation algorithms 

have been developed and evaluated using computer simulations. The 

computation required for the algorithms was kept to a minimum to enable 

the algorithms to be implemented in real-time hardware systems. Effects 

caused by the implementation of both the adaptive IIR filter and the 

adaptation algorithm in hardware require further study; in particular 

the effects resulting from the finite wordlength filters of the filter 

feedback coefficients, and also the recursive data paths. 

Results obtained using the R-CosO algorithm were encouraging 

when compared with those from other output error minimizing steepest 

descent algorithms. The constraints of the R-CosO filter structure only 

allow complex conjugate pole pairs to be synthesized and not split real 

poles. However, this constraint assists with gradient search minimization 

techniques on the IIR output error surface. Further investigation of 

this filter structure is required, possibly using adaptive p values as 

in the NCRLMS algorithm. 

As was discussed in Chapter 2, an alternative method of 

retaining stability of the adaptive filter structure, is by implementing 

the recursive filter section using a lattice structure rather than a 

cascade of second-order filter sections. Similar algorithms to those 
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,., 
developed in this thesis may be applied to the lattice structure. In 

addition, further study is required to obtain a better understanding of 

the lattice filter output error performance surface. 

The proposed Master-Slave Adaptive Filter was assessed using a 

number of computer simulations and a number of avenues of further 

research arise from the results obtained. The number of iterations 

required for the Master and Slave Filter adaptation phases to obtain 

optimum rates of convergence needs studying. In addition, the values of 

the p adaptation parameters used for the algorithm are empirical at 

present and the value of µc, in particular, could cause problems to the 

adaptation process. However, as the adaptive filters are all FIR 

filters, it may be possible to calculate optimum values. 

The Slave filter is at present an FIR filter placed in cascade 

with the Master filter. Further investigation to find the optimum length 

of the slave filter is required. In addition, extra "slave" filters may 

be used, possibly implementing a filter in parallel with the Master 

Filter. 
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A SIMPLIFIED ADAPTIVE IIR CASCADE STRUCTURE 

M. C. Hall* and P. M. Hughest 

SUMMARY 

A new gradient-based adaptive IIR cascade 
structure is proposed which offers a significant 
computational saving over previously published 
algorithms. Examples are given demonstrating 
certain advantages the cascade structure has 

over a direct form structure. A local minimum 
problem relating to the IIR cascade error surface 
is discovered and a solution to it offered. 

1. Introduction 

The potential of adaptive digital filters in 
applications where a priori filter design is either 
impractical or impossible has been recognised 
for some time. In a number of these 
applications the adaptive filter is required to 
have a highly selective frequency response with 
a correspondingly long impulse response time. 
In such cases, the order of the finite impulse 
response (FIR) adaptive filter needed can be 

prohibitively high. An alternative approach is 
to use an infinite impulse response (IIR) adaptive 
filter. This allows a very much lower order 
filter to be implemented and hence offers a 
reduction in computational effort and cost. 
There are, however, two particular problems 
associated with the adaptation of IIR filters 
which have limited their use. 

As a result of noise in the adaptation 
algorithm or short term trends in the error 
signal. the transfer function poles may migrate 
outside the z-plane unit circle during the 
adaptation. This results in an unstable filter 
and consequent failure of the algorithm. Hence. 
it is necessary to incorporate some form of 
stability checking in the adaptation algorithm. 

A further difficulty arises from the shape 
of the IIR performance surface used to drive 
the adaptation. The mean squared difference 
between a desired response and the adaptive 
filter output for all possible sets of filter 
coefficients, forms a surface in the coefficient 
plane which is non-uniform and in certain cases 
may even be multimodal [1). Both these 
factors are undesirable and hinder the adaptation. 

4University 
of Liverpool 

A number of algorithms for the adaptation 
of IIR filters have appeared in the literature 
[e. g. 5,6J. However, the majority of these do 
not inherently guarantee filter stability. Hence, 
it is necessary to incorporate some form of 
stability checking after each coefficient update, 
and ignore any steps which would result in an 
unstable filter. The ease with which the stability 
of a filter can be ascertained, howe%er. varies 
from structure to structure. For the commonly 
used nth order direct form IIR structure (i. e. 
direct form 11 structure in (2)), for example. 
it is necessary to factorize the denominator of 
the filter transfer function or apply some other 
stability criterion to test for stability. Clearly, 
this is impractical in most real time applications, 
and hence stability of this structure cannot be 
guaranteed. The problem may be circumvented 
to some extent by restricting the allowable change 
in the filter coefficients to be very small. This 
reduces the possibility that a short term error 
will drive the filter unstable. but also considerably 
lengthens the time taken by the filter to adapt 
to its target. 

An alternative approach is to realize the 
adaptive filter as a cascade of second order 
recursive sections. Stability can be maintained 
simply by ensuring that the recursive coefficients 
in each section, b1 and b2, are such that 
Ib21 <I and 1b11< b2 0 1. 

A recursive least mean squares algorithm 
for adapting a cascade of biquadratic filter 
sections has been proposed by David in (31. 
This was modified in (4). where the a. goruhm 
was re-developed for a filter consisting of a 
single nth order all-zero section followed by a 
cascade of second order all-pole sections. 
Despite the loss of the modularity of the 
structure, the latter has the advantage that the 
performance surface with respect to the 
coefficients of the all-zero section is quadratic 
(1). In this paper a modification to the structure 
given in (4) is proposed. which greatly simplifies 
the implementation of the adaptive filter whilst 
maintaining the performance. 

British Telecom Research Labs., Martlesham, 
Ipswich. Formerly University of Liverpool. 
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2. Derivation of new Modified Cascade Algorithm 

The modified cascade structure is shown in 
Figure 1 where: 

Býýz) 
=1+ bl)z-1 + b2, z 

2)1,2,..., 
n (i) 

Ä(z) . ao + alz-1 . atz-2 ...... anz-n (2) 

and the error signal at time kT is given by: 

e(k) - d(k) - y(k) (3) 

y(k) and d(k) are the actual and required outputs 
respectively, of the adaptive filter at time kT. 
The filter coefficients are adapted so as to 
minimize e'(k), at which time the adaptive 
filter output y(k) will be a best least squares 
estimate of the desired signal d(k). For the 
steepest descent gradient search method, the 
coefficients are updated using: 

bIý(k+l) bil(k) + ub " 
z? (4) 

i=1,2 
j 1,2,.., n 

ai(k+1) - ai(k) + va _aa (k) 1.2.. n (5) 
i 

where ua and ub are convergence factors used 
to control the rate of adaptation. Combining 
equations (3), (4) and (5) yields: 

bij (k+1) - bil(k) + ub. e(k) . ßij(k) (6) 

i=1,2 
j"1,2,... n 

ai(k+1) = a, (k) . ua . e(k) , as(k) 

i=1,2..., n 

where: 
8 ii 

a 
ab k 

a'(k) - äa. k) 

and the instantaneous squared error e2(k) is 
taken as a local estimate of e 2(k) [6]. 

From Figure 1 it can be seen that the 
z"transform of the adaptive filter output. Y(z), is 
given by: 

Y(z)   X(z) ý(_) (10) 
B1(z) . 

B2(z).... Bn(z) 

By taking the partial derivatives of Y(z) with 
respect to the adaptive coefficients, equations (8) 
and (9) give: 

ß.. (z) " "Y(zl. zýt (11) 
Bj(z) 

i 1.2 
j"1.2 N... n 

aº(z) . 
X(z) . z"i (12) 

B1(z). B2(z).... Bn(z) 

i"1.2..... n 
Hence. the oi(k) and 9ii(k) terms can be 

generated by a series of time varying IIR filters. 

The number of filters required may be 
reatly reduced using a modification proposed in 

L51. As ®j(z) is approximately constant ober a 
short interval, fj(t) at timet . kT can be 
approximated by tj(z) at time t" (k - i)T in 
equations (11) and (12). This allows the Oil 
terms to be calculated using j second order all- 
pole filters, rather than the 2i filters previously 
required. By placing the . (zT zero section at 
the end of the cascade. the of terms are 
generated at the outputs of the delays within the 
filter. and hence are obtained without further 
processing 'cost'. 

The new adaptive filter structure is shown in 
(7) Figure 2. The coefficients are updated using 

equations (6) and (7). A comparison with the 
David structure shown in Figure 3 shows the two 
filters to be equivalent, but with the structure 
proposed in this paper offering a significant 

(81 computational saving. The differences in the 
structures are a result of the order in which the 
simplifying assumptions are made in the analysis. 
and the positioning of the all-zero section at the 
end of the cascade. 

(9) 
3. Filter Performance 

As the filter is time varying and recursive, 
y(k) at a particular time reflects the past 
variations in the coefficients. By allowing only 
small coefficients updates. the filter transfer 
function remains approximately constant over a 
number of iterations, and hence y(k) can be 
assumed to be the output from a fixed filter. 
Further, it can be assumed that each section in 
the cascade is independent of the other sections. 
That is, small coefficient changes in one section 
will not affect the inputs to the other sections. 

In order to assess the performance of the new 
cascade implementation, a series of system 
modelling tests have been performed. In these 
tests. a 4th-order adaptive filter. AQ). is required 
to model a known 4th-order plant (Figure 41. 
Both the adaptive filter and the fixed plant are 
excited by the same broadband white noise input. 
Results are presented for the new cascade 
algorithm, and for comparison. a direct form 
implementation adapted using the White RLMS 
algorithm (6]. As the mean square error surface 
with respect to the non-recursive coefficients 
can be shown to be parabolic for both structures. 
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then provided that the poles of H(z) can adapt 
successfully to their optimum positions, it may 
be assumed that the transfer function zeros will 
adapt. Hence in the following examples, the 
fixed plant and the adaptive filter used are all- 
pole filters. This implies no loss of generality. 

In each individual case the value of ub was 
adjusted to that which gave the fastest 
convergence. The convergence plots presented 
are therefore noisy. 

3.1 Example 1 

The model transfer function implemented was: 

0.05 

(1 + 1.2z' 1.0.8z )(1.1.5z' 1+ an' ) 
(13) 

The poles of H(z) are closely spaced in the unit 
circle with radii of 0.90 and 0.85. and 
corresponding arguments 1320 and 1530. Figures 
5a and 5b show convergence plots for the cascade 
and direct form filters respectively. 

The high sensitivity of the direct form 

coefficients to closely spaced poles (2) coupled 
with possible instability, necessitated a very small 
value of vb to produce convergence. In the 
cascade case, the less sensitive coefficients and 
guaranteed stability result in much faster 

convergence. 

3.2 Example 2 

A transfer function consisting of widely spaced 
poles was implemented, viz: 

H(z) =111 (1 + 1.5z- + 0.8z- )(1-1.5z- + 0.7z- ) 

(14) 

The poles have radii of 0.90 and 0.85, with 
respective arguments of 1470 and 260. 
Convergence plots for the two structures are 
given in Figures 6a and 6b. In this example the 
direct form structure adapts very quickly whilst 
the cascade is unable to match the model and 
hence gives a large final mean square error. 

Inspection of the cascade coefficients reveals 
both sections 'lock up' at b1 a -0.07, b2 = -0.21 
due to a local minimum in the cascade error 
surface. This is illustrated in Figure 7. The 
coefficient values correspond to two pairs of split 
real poles, each section contributing one pole at 
4, the other at B. The adaptive filter tries to 
adapt the poles at A to match the plant poles at 
A and similarly for those at fl. However, the 
poles at Ä cannot become a complex pair in the 
cascade filter and hence the adaptation is halted. 

The problem can be overcome by testing 
for the above condition and replacing the split 
real pole pairs by a complex pair at each point. 
Figure 8 shows a convergence plot for the 
cascade structure with this extra modification. 

It is seen that although the cascade converges in 
6k iterations the direct form requires only 150 
iterations. 

4. Conclusion 

By implementing the recursive part of an adaptive 
IIR filter as a cascade of second order sections, 
the stability of the filter can be guaranteed by 
means of a simple stability check on each section. 
In this paper a means of adapting a cascade 
structure has been presented which requires 
substantially less computation than previously 
published algorithms. The performance of this 
algorithm has been examined in the context of 
system modelling. 

It is shown that when adapting to a plant 
which has closely spaced poles, the cascade 
implementation requires considerably fewer 
iterations than the direct form structure for 
convergence. When the plant consists of widely 
spaced poles. it is found that the poles implem- 
ented by each of the sections in the cascade are 
driven into a local minimum in the performance 
surface. A method for overcoming this difficulty 
has been proposed. It should be noted that the 
existence of the constrained local minimum is not 
necessarily a major disadvantage, as the local 
minimum will lie towards, and often close to, the 
global minimum. 

In the examples given, the values for the 
convergence factor Ub were chosen so as to give 
the fastest convergence. The fact that the 
cascade structure is constrained to be stable. 
allows the adaptation of vb and significant 
lowering of convergence times. Thus, although 
the direct form structure converged faster for the 
widely-spaced poles plant (example 2), adapting 
ub for the cascade structure would reduce the 
difference considerably. Suitable strategies for 
the adaptation are the subject of further research. 
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Adaptive IIR Filter Algorithms for Real-Time Applications 

MARTIN C. HALL 

The characteristics of a digital filter are determined by a set 
of multiplier values (the filter coefficients). By changing the 
coefficient values under program control, the filter characteristics can 
be optimized with respect to a chosen performance criterion. Adaptive 
filters are used in applications where fixed filter design is 
impractical or impossible, such as when signal properties are unknown or 
vary with time. Adaptive IIR filters contain both poles and zeros in 
their transfer function, and hence are more powerful than adaptive non- 
recursive (FIR) filters. However, the algorithms required for IIR filter 

adaptation are more complex than those for FIR filter adaptation. In 
addition, IIR filter algorithms have several disadvantages associated 
with them which have restricted their use in the past. With the 
increasing need for low-cost, dedicated microprocessor-based systems, 
the development of simple, robust algorithms for IIR filter adaptation 
is of great importance. 

In this thesis, previously published adaptation algorithms for 
IIR filters are examined with a view to real-time implementation. It is 
shown that the algorithms developed to date are not sufficiently 
robust, and that many are too complex for microprocessor implementation. 
The algorithm assessment suggests that simple gradient-based algorithms 
for adaptation of filter structures with guaranteed stability, are the 
most applicable for hardware implementation. 

Three new gradient adaptive IIR filter algorithms are proposed 
for filter structures consisting of parallel and cascade` arrangements of 
second-order filter sections. " An assessment of, the algorithms is made using a series of system modelling tests which show advantages and 
disadvantages of the differing filter structures; in particular a local 
minimum problem arising from constraints on the filter coefficients is 
highlighted. It is shown that a modified cascade structure offers the 
best overall performance of the structures considered. More complex 
gradient algorithms applicable to this filter structure are studied, and 
two new algorithms are proposed, the Valley-Search and R-Cosa 
Algorithms. Results are presented to demonstrate the improved rates of 
convergence obtained by these algorithms. 

The modified cascade structure is applied to a practical echo 
cancelling problem which demonstrates advantages of using IIR filters in 
preference to FIR filters. In addition, a method for the avoidance of 
local minima in the IIR filter output error performance surface is Yr 
presented. 

An examination of the equation error performance criterion is 
presented and a new algorithm for minimization of the equation error is 
proposed. By combining advantages of output error and equation error 
minimization, a novel gradient adaptive IIR filter structure is 
proposed. The Master-Slave Algorithm uses adaptive FIR filters for the 
adaptation of both the transfer function numerator and denominator 
coefficients, and offers faster convergence than conventional 
output-error minimizing adaptive filters. Implementation of the 
algorithm requires very little additional computation, and stability of 
the filter structure is maintained easily. In addition, the Master-Slave 
Algorithm offers possible adaptation to the global minimum of a 
multi-modal output error performance surface. 



The Master-Slave Filter Configuration proposed in Chapter 6 of the 
thesis is the subject of a UK patent application. The application, 
number 8629872, was filed on 15th December 1986. 


