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Abstract 

This disseltation describes pragmatic research into the application of Evolutionary Algorithms 

(EAs) to the development of military tactics. The motivation for this work arose out of 

problems associated with manually generating knowledge bases for military Command and 

Control systems. Conventional methods. whereby knowledge is elicited from military experts, 

are inherently time consuming and costly. Therefore. a method for automatically acquiring the 

necessary knowledge would be immensely beneficial. An EA. employed as part of a machine 

leaming system. is one approach which. it has been suggested. can pelform this task. 

The primary aim of this work is to produce a genetics-based machine learning system 

(GBML) which is capable of discovering tactics. There are two traditional approaches to 

GBML - at the rule-level. to search for useful rules thereby generating successful plans. and at 

the plan-level. Unfortunately. both approaches have inherent weaknesses. However, an 

aItemative method which has the potential to eradicate those weaknesses is to hybridise the rule 

and plan-level approaches. This idea forms the outline for the main system design. 

For the detailed system design. a bottom-up approach is adopted. Firstly, the rule 

discovery component of the system. the EA. is investigated. This investigation looks at 

aspects of an EA which are likely to be relevant to its effectiveness in a machine learning 

environment. These include Lamarckian operators and variable mutation rates, both of which 

are shown to significantly improve the effectiveness of the EA when compared to more 

traditional methods. 

Secondly. credit assignment is investigated by analysing the effects that parallel rules, 

that is, rules which are active simultaneously. have on the relative strength of the rules in the 

extant rule base. A significant distortion in relative strength is found to result from the 

presence of such rules and two methods for combatting this distortion are demonstrated. 

The results from these individual assessments are combined to form the detailed design 

for the hybrid genetic learning system, which also incorporates co-evolving agents to model the 

two combatants and a repair mechanism to alleviate problems of forgetfulness. The individual 

components of the system are all shown to be beneficial to the system but unfortunately. 

system pelformance is poor for all but the simplest problems. This is mainly due to problems 

encountered whilst learning at the rule-level. and in particular. problems associated with credit 

assignment. 
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Preface 

This dissertation describes a considerable amount of original work aimed at producing a 

genetics-based machine learning (GBML) system for discovering military tactics. The work 

can be divided into four main subject areas: 

(a) Evolutionary Algorithms - novel alternatives to current implementations are suggested 

and investigated using a standard Operational Research problem. the knapsack 

problem. The topics investigated include methods for maintaining capacity constraints. 

alternative crossover operators and non-standard mutation rates; 

(b) credit assignment - problems caused by the presence of simultaneously active rules are 

investigated and a number of amendments to current techniques to alleviate these 

problems are proposed and investigated; 

(c) classifier systems - a classifier system for a 2-player game scenario and incorporating a 

number of novel genetic operators is implemented and analysed using a meta-EA to 

determine useful operator combinations; 

(d) a hybrid genetic learning system - a system combining the two traditional approaches to 

GBML. that is. the Michigan and Pittsburgh approaches. is implemented. This system 

includes a number of innovative features. of which two of the most impOltant are co

evolving agents to model the two combatants. and a repair mechanism to alleviate 

problems of forgetfulness. 

The work reported in this dissertation has contributed towards the production of 7 papers. The 

first of these [Fairley and Yates. 92]. presented at the 34th Annual Conference of the 

Operational Research Society. gives experimental results from a test-EA when applied to the 

knapsack problem. The next three papers concern credit assignment in a simple classifier 



system. The first two of these, [Fairley and Yates, 93], presented at an International 

Conference on Neural Nets and Genetic Algorithms, University ofInnsbriick, and [Yates and 

Fairley, 93], presented at the 5th International Conference on Genetic Algorithms, University 

of Illinois, both describe results from experimental investigations into certain problems 

associated with credit assignment, whilst [Yates and Fairley, 94], presented at a Workshop on 

Evolutionary Computing, University of Leeds, describes the outcome of a theoretical 

investigation in credit assignment. Also presented at the same workshop was [Fah·ley and 

Yates, 94b] which describes some initial results from a hybrid genetic learning system. The 

remaining two papers have a greater military bias to them. The first of these, [Virr, et aI, 93], 

published in the Journal of Naval Science, describes much of the background to this research, 

whilst [Fairley and Yates, 94a] gives a review of all the major applications of EAs to the 

development of military tactics, together with some directions which future work may take. 
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1. Introduction 

1. 1 Background to research 

At any level of military combat. whether it involves the commander of a fleet or a pilot in a 

dog-fight, the underlying features of the tactical decision making process are essentially the 

same. The tactical decision making task can be divided into two main phases. The first, data 

fusion, involves assembling, in real-time, the infOlmation from all available sources (channels) 

to form an accurate tactical picture (world model) of the extant situation within the scope of the 

problem [Byrne, et aI, 89]. The channels supply both 'real-time information' received by 

sensors, and 'non-real-time information', such as intelligence reports, geographical data and 

weather forecasts. The second phase. situation assessment. entails the intelligent appraisal of 

the tactical picture, and the consequent selection of an appropriate action. To facilitate 

selection, a tactical plan must be available. The process of tactical decision making, therefore, 

can be viewed as is depicted in Figure 1.1. 

Unfortunately. this process is fraught with problems. These problems are mainly 

caused by the stress placed upon the human decision maker due to the gravity of the situation, 

and such stress can affect both his analysis of the tactical picture and his ability to correctly 

apply the tactical plan. Moreover, several perceptual decision making idiosyncrasies affect the 

process including self-fulfilling predictions, habit. over confidence (as well as a lack of 

confidence in some scenalios). gamblers fallacy and panic. As a result of these problems, 

considerable technological effort has been directed at the design of Command and Control 

Systems which attempt to ease some of the problems caused by the cognitive limitations of the 

human decision maker. 

Command and Control (C2) concerns 'the application of human intelligence to the 

management of resources in a dynamic (military) environment' [p 1, Miles, 88], and systems 

designed to facilitate C2 are amongst the most complex and large scale real-time resource 
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management systems known to man [Harris, 88]. Most practical C2 systems are, however, 

only action information systems - they concentrate solely on the acquisition of information, 

data processing Icommunication and the physical Human-Computer Interaction (HCI) aspects 

whilst ignoring the decision making process itself. Thus, in general, tactical decision making 

remains the domain of the human expert in the scenario. Nonetheless, in recent years, a 

number of so-called expert systems such as BATTLE [Walker and Miller, 86] and BATES 

[Rackman, 90] have been developed in which an in-built knowledge base is employed to 

provide guidance for the human in respect of what action(s) should be taken. However, the 

knowledge (in the form of tactics) that is encapsulated within one of these expert systems must 

first be acquired. 

Real Time Data 
~ ego Sensor Readings 

Tactical 
DataFusion 

Non-Real Time Data 
ego Intelligence Reports 

, World Model 

Situation 
Assessment 

Perform 
Actions 

- Tactical 
Plan 

Figure 1.1: Tactical Decision Making 

In the knowledge-based approach, a necessary prerequisite is possession of the relevant 

knowledge. [It should be noted that this contrasts with the so-called behaviour-based approach 

[Manderick, 91] in which patterns of behaviour emerge from the way in which simple 
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behaviours interact in complex ways.] Traditionally, knowledge acquisition has been the 

province of the knowledge engineer who, by means of verbal exchange with experts in a given 

field, would elicit the facts and heuristics used by those experts for solving problems. This 

process, transference of knowledge, is subject to two main problems whose effects have led 

[Lenat, 83] to refer to the process as 'the bottleneck of knowledge acquisition'. The first 

problem is the difficulty experienced by an expert in articulating what he/she knows, and the 

second is the impedance caused by the mismatch between the concepts and vocabulary of the 

expert and those of the knowledge engineer. There are two possible approaches to solving 

these problems. The first involves widening the channel between the expert and the knowledge 

base by, for example, instituting an appropriate natural language interface. Unfortunately, with 

this approach, the expert still has difficulty in verbalising his heuristics - the informal 

judgemental rules which guide him. This difficulty is especially acute for problems in such 

fields as combat management since, in the absence of any substantial underlying theory, many 

of the rules described by an expert are likely to rely on the expert's subjective opinions. The 

second approach entails eliminating both the expert and the knowledge engineer completely, 

and investing the expelt system with the ability to 'discover' the required knowledge for itself. 

In this thesis, this approach, that of designing a system to automatically generate 

knowledge bases, is investigated. As this type of research falls into the category of Artificial 

Intelligence (AI), it is appropliate to begin by defining some of the approaches to this problem 

which have been adopted within AI. 

1.2 Artificial Intelligence for Command and Control 

Artificial Intelligence concerns understanding and creating human facilities which are regarded 

as intelligent, and since C2 involves the application of human intelligence to the management of 

resources in a dynamic environment, AI is an appropriate vehicle for investigating the 

processes involved within C2. Since intelligence itself is not well defined, the term AI is not 
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well defined either. However, there are a large number of researchers spread across many 

disciplines who consider themselves to be members of the AI community, and the two broad 

objectives of this community are: 

(a) to model human intelligence and investigate how the human brain works. This area of 

research is known as Cognitive Simulation and examples of systems designed to 

perform this task include those repOlted in [Klahr, et aI, 87]; 

(b) to design systems which assist or replace humans where they are too expensive, 

inefticient, slow or the task too dangerous. 

Most work in AI (including that reported here) has concentrated on the second of these 

objectives1 and typical problems for which systems have been designed to acquire knowledge 

include game playing [Winston, 77], natural language [Feigenbaum, 63] and learning 

[Kodratoff and Michalski, 90]. However, despite research in AI having been underway for 

nearly four decades, nobody has yet constructed a system which possesses 'intelligence'. 

Early research in AI made little headway into the problem of designing systems which 

have the ability to automatically acquire knowledge, and consequently two methodologies were 

established as potential 'shortcuts' to building such systems. These were: 

(a) design a system to understand natural languages such as English, and then "feed" the 

system with knowledge from sources such as books and human experts. This 

approach, known as Understanding Natural Language, is more radical than simply 

widening the interface between the expert and the knowledge base since it avoids the 

need for an expelt altogether; 

lIt is the belief of many authors (see, for example, [Miles, 88]) that by concentrating on the design of 
systems which can replace humans, the first objective, that of discovering how the human brain 
works, may be attained as a by-product. 
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(b) design a system which has the ability to learn solutions to a wide variety of problems 

and then place it in a 'problem environment' where it would be hoped that the system 

would learn solutions and thus. acquire knowledge. This approach is referred to as 

Machine Learning. 

A small amount of progress has been made with machines for understanding natural languages 

and a number of primitive natural language interfaces (see. for example. [Bole, 80]) have been 

designed, but these are far from being practical means for generating intelligence. Even less 

progress has been made with respect to Machine Learning, but in recent years, the field has 

enjoyed a significant revival due to advances in computing technology permitting the use of 

previously unexploited techniques. For example, little was made of the early work in linear 

perceptrons because of theoretical limitations, but in the past decade or so, this work has 

resurface as connectionist networks with hidden units able to compute and learn non-linear 

functions. 

This resurgence of activity has led to a wide range of machine learning techniques being 

developed, and different authors have suggested a number of ways to categorize these, 

including: 

(a) the 'techniques perspective' on learning - for example, is the technique used to improve 

the performance of an existing system, acquire knowledge directly from its 

environment. or build theories to describe and explain complex phenomena; 

(b) its knowledge representation scheme; 

(c) its learning paradigm. 

In this work, it is appropriate to use the most common of these methods of categorization, 
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namely classifying systems by their learning paradigm, since the group of techniques that are to 

be investigated fit neatly into a single category. 

Four main categories of learning paradigm exist [Carbonell, 89], each of which 

employs a very distinct approach to learning2. These are: 

(a) Analytic Leaming 

When presented with a problem, an analytic leaming system recalls problems that it has 

encountered previously, and whose characteristics bear a strong resemblance to those 

of the problem at hand. This triggers retrieval of behaviour that was either appropriate 

for solving, or known to be appropriate for solving, the 'past problems'. The 

behaviour, thus retrieved, is then adapted to meet the demands of the new problem. 

Analytic leaming techniques are appropriate when a rich underlying domain theory for 

the problem type is available together with a number of exemplars (perhaps only one) 

each consisting of a problem instance and its respective solution. Examples of such 

techniques include Explanation Based Learning (EBL) [Gcrvasio and DeJong, 89] and 

multi-level chunking [Rosenbloom and Newell, 87]; 

(b) Inductive Leaming 

Inductive Learning techniques require an extemal teacher or environment to generate 

sequences of problem instances. The system uses its encapsulated knowledge to try to 

solve each problem instance in turn. After each attempt, the teacher/environment 

assesses the attempt as being either successful or not, as the case may be. The 

assessment is then used by the system to update its knowledge in such as way as to 

enable it to reproduce all, but only, those problem solving episodes which have 

previously been deemed successful; 

2A number of categorization schemes could have ben adopted but the one given here has been 
c~osen because the group of techniques that are the main focus of this thesis fit neatly into a 
smgle category in this scheme. 
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Cc) Selectionist Learning3 

Techniques in this category invest a system with learning capabilities by using 

simulations of processes that occur in nature as agents in the learning process. For 

example, inasmuch as genetic processes are instrumental in the evolution of species 

which are better suited to living in their allotted environments, Genetic Algorithms, 

[Holland, 75], and Evolution Strategies, [Schwefel, 75], which seek to simulate the 

underlying natural genetic processes, attempt to evolve solutions that are more apt for a 

specific problem. Again, Immune Networks [Farmer et aI, 86] [Perelson, 89] [Bersini 

and Varela, 90], which mimic the human immune system, attempt by analogy to make 

use of the immune systems's 'pattern recognition capabilities'; 

(d) Connectionist Learning 

Techniques in this category are founded on models of the structure of neurons in the 

human brain. Neural Networks, which are typically adopted in the connectionist 

learning approach, employ a network (in the graph theoretic sense, see [Boffey, 84], 

for example) to model a set of interconnected neurons. Given a sequence of training 

examples, a learning algorithm, such as back propagation, can then be used to adjust 

the weights in the network, so that the network will recognize (distinguish by its 

output) vmious classes of pattern supplied as input. Other techniques in this category 

involve, for example, the use of Hopfield nets, [Hopfield, 82], and Boltzmann 

machines, [Hinton and Sejnowski, 86]. 

With regard to military combat scenmios, there is no body of theory that dictates the manner in 

which the conflict can be successfully concluded for either combatant, that is, the domain 

~~lthough [Carbonell, 89] uses the term 'Genetic AlgOlithms' to cover this learning category, 
11 IS more appropriate to use the term 'Selectionist Learning' [Manderick, 91] as this also 
encompasses Evolution Strategies CESs), immune networks and the like. 
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theory is weak. Moreover. although some people do have experience in certain conflict 

situations. such experiential incidents are likely to be of limited value since detailed information 

about the incidents is unlikely to be available. and such information as exists would tend to be 

subjective rather than objective. Therefore. as far as C2 systems are concerned. these two facts 

effectively preclude the use of the analytic learning paradigm. However. they also indicate that 

the examples used by the machine learning technique that is ultimately adopted will almost 

certainly be simulated examples. and thereby, suggest that an inductive learning technique 

might be appropriate. Nonetheless. one of the requirements of an efficacious tactical plan is 

that it be up-to-date - that it should take account. whenever possible. of all relevant features of 

the extant real world. New weaponry is constantly being evolved and to keep pace with this 

evolution. tactical plans. if they are to be effective. must similarly evolve. Genetic Algorithms 

and Evolution Strategies (the generic term for these is Evolutionary Algorithms (EAs) ) are 

particularly adept at discovering (generating) solutions to problems. and supported by an 

appropriate infrastructure to facilitate such discovery (see later). appear to be most appropriate 

vehicles for use in modifying and updating tactical plans. 

Therefore, this research aims to explore the application of Evolutionary Algorithms to 

the field of Machine Learning. A number of paradigms for so-called Genetics-Based Machine 

Learning (GBML)4 exist. including Classifier Systems (see [Holland. 86b] [Holland. 87]. for 

example). which encapsulate the capabilities of both inductive and selectionist learning into a 

Single learning system. and Genetic Programming [Koza. 91] [De Garis, 90]. However, 

before these approaches can be desclibed and their relative merits discussed. it is necessary to 

look at the cornerstone of these approaches. an Evolutionary Algorithm. and the research that 

has been invested in this ever-increasingly popular topic. 

4The ~eference to 'genetic' in GBML is a result of the original work. and much of the current 
Work In the field. being based on GAs as opposed to alternative fOlms of EA. 

8 



1.3 An introduction to Evolution 

Evolutionary Algorithms constitute a group of heuristic search methods that attempt to mimic 

the processes that underlie evolution. In order to understand the mechanisms that exist within a 

EA and why they are necessary, it is first useful to have some understanding of how evolution 

OCcurs in nature. This, at first may appear to be a futile exercise since most people have a clear 

perception of what evolution is, and how it works. However, despite being one of the most 

powerful theories science has ever known, it is also one of the most misunderstood and so this 

section is designed to give a cursory introduction to the subject and to lay some common myths 

to rest. Moreover, this discussion will introduce many of the important terms that are used 

both in this thesis, and by the EA community at large. 

In order to describe the processes that occur at a macro-evolutionary level, it is first 

necessary to understand the genetic make-up of a living organism. Every organism is a 

mixture of characteristics which are detelmined by the genes in its chromosomes. Genes lie at 

specific positions or loci along a chromosome, with the different versions that a gene can take 

being called alleles. Each gene produces differences in the set of characteristics associated with 

an entity. For example, for certain types of pea, a single gene determines blossom colour. 

Moreover, groups of genes can jointly detelmine a given characteristic, as is demonstrated by 

eye colour in humans which is determined by a pair of genes. Together the structure of the 

genes forms the genotype, the result of which, in terms of its behavioral and physiological 

properties, is called the phenotype. This infOlmation is summarised in Figure 1.2. 

Structure of 
chromosome 
is called the 
genotype 2 3 n 

• position or locus 

Figure 1.2: Structure of a chromosome 
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Genes are composed of DNA - sequences of nucleotides - which are themselves made up of 

nUcleic acids, the basic genetic unit. There are 4 kinds of nucleic acid: adenine (A), guanine 

(G), cytosine (C) and thymine (T) and all living organisms use this same "genetic alphabet" of 

A, G, C and T. However, there is a fair amount of redundancy in this genetic code. For 

example, triplets of nucleotides form codons. Thus, there are 64 (43) possible codons but only 

20 or so amino acids and so a number amino acids are coded by several codons. Moreover, 

the genes in a chromosome do not fonTI a continuous string. 

Moving up from the genetic level, the level of the organism is reached, and 

subsequently, the population (species) level. It is at this population level that evolution is most 

commonly observed, although it should be noted that evolution can also occur at the genetic 

and organism levels. However, the levels of selection remain a burning issue within theoretical 

biology. 

Evolution is defined as being a change in the gene pool of a population over time, 

where the tenn 'gene pool' is used to represent the set of all genes in a species or population. 

This change may either qualitative, quantitative or both. To bring about this change, there must 

be evolutionary mechanisms present which can introduce (and also reduce) genetic variation in 

the gene pool. These mechanisms include: 

(A) Natural Selection 

Natural Selection (commonly referred to , somewhat inaccurately, as "survival of the 

fittest") is the only non-random mechanism of evolution and is the differential 

reproductive success of pre-existing classes of genetic variants in the gene pool. This 

means that genotypes which tend to be highly 'fit' (in an evolutionary sense) will, on 

average, be more represented in subsequent populations than those genotypes which 

are less 'fit'. Despite it being non-random, however, Natural Selection is not guided in 

any way either; it is simply an effect which allows populations of organisms to adapt to 

their environment; 

10 



(B) Genetic Recombination 

Genetic Recombination is one of the mechanisms evolution employs to add new alleles 

and combinations of alleles to the gene pool, thus increasing the extant genetic 

variation. The most common recombination method is a process called Crossover 

(meiosis) which occurs when two organisms mate. In crossover, chromosomes from 

the two parent organisms are aligned and the DNA of the chromosome broken in 

several places. At these 'break' or Crossing points, strands from one chromosome are 

joined with the remaining section of the other chromosome (and vice versa), generating 

two new chromosomes, each with a mix of alleles from both parent chromosomes. A 

simplified version of this process is depicted in Figure 1.3. Moreover, crossover can 

occur within genes as well as between genes, thus giving rise to new allele values as 

well as new combinations of allcles; 

Fatllers 
Chromosome 

MotlJers 
Chromosome 

Child 1 

Child 2 

t 
Eye Colour 
Allele 

-+ 
Hair Colour 
Allele 

t 
Leg SIze 
Allele 

N!Size t 
Allele Ear Size 

Allele 

Figure 1.3: Genetic recombination - Crossover 
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(C) Mutation 

Mutation is another evolutionary mechanism used to increase the genetic variation 

within a population. A mutation is a transfonnation of one piece of genetic material into 

another, and can occur at several levels within the genetic hierarchy. For example, 

entire genes, lengths of DNA, or simply single nucleotides can be mutated to add such 

variation into the population. 

Given these three mechanisms, the evolutionary process is essentially very simple. A 

population of organisms interact with their environment. The relative prosperity of each 

individual in the environment determines the individuals reproductive success - a guide to the 

number of times an individual will mate and thus, the number of offspring it will produce. 

When individuals mate (that is, when genetic recombination takes place) offspring are 

produced which contain genes from both parents, thus making more likely the prospect of 

beneficial genes being represented in greater numbers in subsequent generations. 

The classic example, often cited in the literature (see [Dobzhansky et aI, 77], for 

example), of evolution working in practice is that of the pepper moth, Biston betularia, which 

was found near urban areas of England in the late 18th Century. Originally, the majority of 

these moths were lightly coloured to provide camouflage against its natural habitat, lichen; the 

remainder of the moths being dark in colour. However, with the advent of the Industrial 

Revolution, exhaust materials such as soot from factories began to turn the lichen black. This 

had the effect that the moths which were lightly coloured became more susceptible to predation 

by birds and hence, their numbers sharply declined. However, the environmental change 

meant that the dark coloured moths were more suited to the new environment, and thus 

increased in number until eventually they, rather than the lightly coloured moths, were the more 

common variety. 

Unfortunately, evolution is not as simple as this example would appear to show, and is 

instead subject to several effects which can produce unexpected outcomes. These effects 

include: 
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(a) Genetic Drift 

Genetic Drift is an evolutionary effect caused by a binomial sampling error during the 

selection process, and can result in the premature loss of a particular allele type from the 

gene pool. For example, if a gene in an organism has two possible allele types, a and 

(3, and individuals with the a gene tend, on average, to be twice as successful as those 

possessing the (3 gene, then at any time during the evolutionary process, it would be 

expected that the ratio of a genes to (3 genes in a population of such organisms would 

be 2 to 1. However, it is unlikely that a given population will contain exactly two 

thirds a genes and one third (3 genes since there will be a 'sampling error' due to the 

finite population size. Subsequent generations will also tend to have a and (3 genes in 

the 2 to 1 ratio but variance can cause significant changes to this ratio over time, 

Should the selection process ever result in a population containing all a, then any future 

change would be impossible if selection and recombination (crossover) were the only 

evolutionary mechanisms. However, this is where the mutation operator is particularly 

useful since it is able to rectify the situation, through a chance event, by mutating one of 

the a's to a (3. Nonetheless, it should be noted that mutation does not on its own 

prevent genetic drift from occurring - it merely has the ability to rectify the situation -

and that the single (3 gene produced by the mutation is likely to be subsequently lost 

once more in genetic drift when further generations are produced. However, there will 

be occasions when mutations do survive into subsequent generations and regain their 

con'ect proportion in the gene pool. This is especially important if, for example, the 

environment were to change and the (3 genes to become preferable to the a genes; 
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(b) Hitch-hiking 

The hitch-hiking effect occurs when a deleterious gene becomes closely linked to a 

beneficial one and increases its representation in the gene pool as a result of "riding on 

the coat tails" of the beneficial gene to which it is linked. The most common cause of 

this effect is, as a result of the linear ordering of chromosomes, genes which are far 

apart (that is at opposite ends of the chromosome) have a much larger chance of being 

separated when a recombination takes place than genes which are close together. Thus, 

genes which are located close to beneficial genes, may spread through the population 

regardless of their own utility, and the closer the linkage between the genes, the more 

significant the effect; 

(c) Epistasis 

Epistasis is a phenomenon which derives from the complex, non-linear way in which 

the genes in a chromosome interact. The result of this is that the effect of an allele can 

strongly depend upon what other alleles are present, and thus, it is possible that almost 

identical genotypes can have very different phenotypes [Spiessens, 88]. Because of 

epistasis, the primary aim of the evolutionary mechanisms described earlier is to 

generate co-adapted sets of alleles which combine well to significantly augment the 

fitness of the whole genotype; 

(d) The Baldwin effect 

The Baldwin effect [Hinton and Nowlan, 87] occurs when a phenotype adapts over the 

period of its lifetime (that is, it 'learns'), thus altering the fitness landscape of the 

corresponding genotype. Consequently, the selection process favours those genotypes 

which learnt over their lifetime and hence, the adaptations become genetically fixed. 

It is pertinent to mention here an alternative theory on evolution which, at first, 

may appear to be the same as the Baldwin effect - namely Lamarckism. Lamarckism 

[Gorczynski and Steele, 81] is the name given to the ideas proposed by the French 

14 



biologist Jean Baptiste Lamarck (1744-1829) who suggested that characteristics 

acquired during the lifetime of an individual could be inherited by its offspring. The 

example Lamarck gave to support his hypothesis was that a blacksmith's son could 

inherit his father's strong, muscular frame, and so become a successful blacksmith 

himself. Unfortunately, there are many biological flaws in the Lamarckian theory and 

hence, it has been generally accepted as being non-feasible [Maynard-Smith, 89]. 

At first sight, Lamarckism and the Baldwin effect appear to be one and the 

same. However, this is not so since Lamarckian theory requires the adapted phenotype 

to change the genotype, whilst the Baldwin effect requires only the environment to 

change (to favour organisms which learn ce11ain traits). 

The Success of evolution in developing the wide range of robust organisms that exist in the 

world today led researchers to investigate whether mechanisms such as Natural Selection and 

genetic recombination could be employed by artificial systems (that is, computer programs) to 

generate solutions to real-world problems. 

One of the first conscious efforts to mimic evolutionary processes to generate optimum 

solutions was carried out by the German scientist Rechenberg in 1964 at the University of 

Berlin. This resulted in an approach called an Evolution Strategy (ES) [Schwefel, 75] which, 

in its simplest form, is a mutation-selection scheme. Not long after this, and independent of the 

Work carried out in Berlin, researchers in the United States also started to investigate 

evolutionary computing schemes. One of the first techniques to emerge from this work was 

that of Pogel, Owens and Walsh [Fogel, et aI, 66] which was used to perfonn simple symbol 

prediction tasks. Also around the same time, John Holland and his students at the University 

of Michigan were applying genetic-like operators to artificial problems in adaptation. 

However, it wasn't until the publication in 1975 of Holland's classic book, Adaptation in 

Natural and Artificial Systems [Holland, 75], that the research was exposed to a wider 

aUdience and the term Genetic Algorithm was first thlUst upon the world at large. 
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1.4 Evolutionary Algorithms 

1. 4.1 Overview 

In a strict interpretation, the term genetic algorithm (GA) refers specifically to the model 

proposed in [Holland, 75]. However, within the context of this thesis, a more general term 

will be used, namely that of an Evolutionary Algorithm. An EA is any population-based 

computational model that employs selection and recombination mechanisms to generate new 

solutions to the problem at hand. 

For an EA to be applied to a particular problem, two elements are essential: 

(a) An encoding scheme 

This provides a representation (encoding) of every possible solution to the problem and 

is analogous to a chromosome in natural systems. Typically, an encoding is a binary 

string although many other types of encoding have been used within the EA community 

including Lisp programs [Koza, 91], semantic networks [Fon·est, 91] and real-number 

strings [Back, 91]. However, it should be noted that no one technique works best for 

all problems, and the most suitable representation to employ will be dependent heavily 

upon the problem being investigated. 

(b) An evaluation (fitness) function 

This is analogous to the role of the environment in Natural Selection and assesses each 

solution in telms of its 'utility' or 'fitness'. 

With these two elements in place, an EA proceeds by mimicking the application of the 

evolutionary processes described earlier to a population of solutions. This it achieves by 

iteratively performing the following sequence of operators (also depicted in Figure 1.4) until 

some appropliate telminating criterion is achieved. 
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(1) Initialise 

Generate an initial population of solutions. P. 

(2) Evaluation 

Determine the fitness of each member of P using the fitness function. 

(3) Selection 

Select a subset of P to form a mating pool. M. using fitness as the underlying selection 

clitelion; the greater the fitness of a member. the more likely it is to be selected. 

(4) Recombination 

Select pairs of solutions from M and mate them to produce an offspring population. O. 

The mating process includes applying a number of recombination mechanisms such as 

crossover and mutation. which mimic the natural genetic processes. The EA 

terminology for these recombination mechanisms is genetic operators. 

(5) Repeat 

Replace the original population. p. by the offspring population. O. and return to step 

(2). Upon termination. the best solution generated from amongst the various 

populations (generations) is adopted as the solution to the oliginal problem. 
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Generation t 

Suing 1 

Stting 2 

Stling 3 

Stting 4 

Mating Pool 

Stting 2 

Stting 3 

Stting 3 

Suing 4 

Evaluation 

Recom bination 
(Crossover) 

• 

Relative 
Fitness 

Suing 1 0.5 

Stting 2 1.0 

Stting 3 2.0 

Stting 4 0.5 

Generation t+ 1 

Offspting-A (2x3) 

Offspting-B (2x3) 

Offspling-A (3x4) 

OffspIing-B (3x4) 

Figure 1.4: Main cycle of an Evolutionary Algorithm 

Although this algorithmic description encompasses the majority of EAs. the varying 

background of many of the researchers in the field has meant that many EA models have been 

proposed. The following is a list of the most significant of these variants of the standard 

model. 

(1) Initialisation Schemes 

There are two basic approaches to generating the initial population (that is. generation 

18 



1). The most common method is to use a random number generator to create random 

solutions. This approach is useful because it is both simple and a good test of the 

robustness of the algolithm at solving the problem. However. where the search space 

is pal1icularly large. it may take the algOlithm a painstakingly long time to achieve an 

optimal solution. Moreover. particularly complex problems for which non-binary 

representations are typically used. are sometimes such that the initial solutions may not 

be good enough for evolution to even 'get off the ground'. In such circumstances. it 

will be preferable if any a priori knowledge can be incorporated into the algorithm by 

seeding the initial population with known solutions. A number of studies (see. for 

example. [Grefenstette. 87b]) have shown that this approach can improve the 

pelformance of the EA in many circumstances. but it can also have a detlimental effect 

in that the search performed by the EA will have an initial bias thereby making it more 

difficult for the EA to find an optimal solution. 

(2) Reproduction Schemes 

The EA outlined above is often refcn-ed to as a traditional or generational EA because of 

the way in which each generation is replaced on every iteration of the algolithm. Many 

valiations of this basic algorithm exist but one of the most radical and widely studied is 

the incremental or steady-stare EA. In this. on each iteration. only a small number of 

individuals (often only one) are replaced. Typically. dUling each iteration. two of the 

best solutions are mated with one of the resulting offspling replacing one of the poorer 

solutions in the population. Several compalisons of generational and incremental EAs 

have been performed (see. for example. [Fairley and Yates. 92] and [Whitley. 89]). 

with the general conclusions being that the incremental approach converges far quicker 

than a generational EA. but it is also more likely to converge to a sub-optimal solution. 

(3) Selection Schemes 

The degree to which the selection scheme favours the best solutions is known as the 

19 



selective pressure and is critical to the success of the algorithm. The difficulty in 

choosing an appropriate selection scheme is known as the exploitation-exploration 

problem [Goldberg, 89a] since an EA is looking to exploit the best solutions in its 

search for better solutions, whilst simultaneously b·ying to do the opposite and maintain 

diversity within the population. There exists a variety of selection algorithms, of which 

the two most common are: 

(a) roulette wheel (fitness proportionate) selection; 

(b) rank-based selection. 

In the traditional EA outlined previously, members of the population are selected in 

proportion to their fitness relative to the rest of the population. This is known as 

Roulette wheel selection. [Baker, 87] proposed a number of alternative roulette wheel 

schemes and demonstrated that implementation details can significantly affect their 

performance. For example, if the probability of selecting an individual (that is, its 

relative fitness divided by the population size) remains constant throughout the selection 

process, then significant deviations from the expected number of selections for a 

particular individual can occur. 

The main drawback to roulette wheel selection is that it is afflicted by difficulties 

of scaling. For example, in problems where the pay-off function is sparse (that is, few 

of the encodings correspond to valid solutions), it is easy for a single 'super

individual', which has a fitness well-above the average, to rapidly dominate a 

population and thus cause premature convergence. To overcome this problem, [Baker, 

85] suggested a ranking approach in which a population is ordered according to fitness 

and selection probabilities assigned to each member which are inversely proportional to 

rank. There are two usual approaches to relating selection probability to rank. In the 

first, linear ranking, the best and worst individuals are assigned typical fitnesses of 2 

and 0 respectively, with all intennediate individuals being assigned a fitness which is 
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interpolated within this range. The alternative to this is exponential ranking and in this, 

each individual is assigned a fitness of (1- 8)R-l where 8 is a small value (typically 

0.01) and R is the rank of the individual. 

However, as with most issues associated with EAs, the choice of selection 

scheme is not clear cut. Several trials (see, for example, [Hancock, 94] and [Whitley, 

89]) have shown that exponential ranking tends to produce superior results, whereas 

trials with problems which have noisy evaluation functions have shown that roulette 

wheel selection may be more appropriate [Fogalty, 93]. 

(4) Genetic Operators 

Arguably the most important aspect of an EA's operation is the discovery of new, high 

utility solutions. This task falls to the genetic operators, and in particular, the crossover 

operator, of which there are a number of possible implementations. A crossover 

operator which selects a single crossing point about which to exchange information is 

referred to as a I-point crossover operator [Holland, 75]. In the search for 

improvements to the standard EA, this operator was quickly joined by more general 

versions, the 2-point and n-point crossover operators [Goldberg, 89a]. Unfortunately, 

all of these operators suffer from problems of positionai bias - the distance between two 

bits affects their chances of remaining together [Eshelmen, et aI, 89]. To overcome this 

problem, Syswerda [Syswerda, 89] proposed an alternative operator, uniform 

crossover, in which each bit in an offspring has an equal chance of coming from either 

parent, thereby reducing the positional bias. Trials recorded in [Syswerda, 89] showed 

that uniform crossover can generally outperfolm both I-point and 2-point crossover, 

although once again, there are a number of occasions where it will be preferable to use 

I-point or 2-point crossover (see [Fairley and Yates, 92] for a more in-depth discussion 

of the issues). 

In recent years, more interest has been focussed on recombination operators for 
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encoding schemes wherein the simple forms of crossover detailed above produce lethal 

offspring (that is. offspling which do not encode a valid solution). One such problem 

which has received a great deal of interest in the EA community is the Travelling 

Salesman Problem (TSP) [Boffey. 84] and a number of operators have been 

specifically designed for the vmious encoding schemes associated with this. 

1.4.2 How EAs work - the Schema Theorem 

To facilitate a theoretical analysis of an EA. [Holland. 75]. introduced the important concept of 

a schema (plural. schemata). A schema is a subset of A. the set of all possible string 

configurations (solutions) which have a number of common alleles. For example. given the 

two strings: 

01010 

11000 

then an example of a schema common to both stlings is * 10*0 (where the symbol * represents 

either 0 or 1). whilst 01 *** is only represented in the first stIing. 

Since each string can contain either the actual value or a * at any position. then it can 

hold up to 2n distinct schemata. where n is the length of the stling. Therefore. whenever a 

solution is evaluated. information is received relating to all 2n schemata contained therein. 

Scaling up. it is clear that for a population size of M. as many as M2n schemata may be 

evaluated per generation. although analysis [Goldberg. 89a] has shown this more likely to be 

O(M3) due to overlapping schemata. It is this ability of an EA to process a large number of 

SChemata which is the key to its success and it was deemed so imp0l1ant that Holland gave it a 

special name -Intrinsic Parallelism5. 

The success of an EA is therefore based around its ability to (a) sample a large number 

of schemata using crossover and mutation. and (b) employ selection to increase or decrease the 

number of instances of each schemata in proportion to its relative fitness. This is described in 

5Also refen'ed to as Implicit Parallelism 
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the following theorem which describes the propagation of schemata from one generation to the 

next and has proved to be the cornerstone of EA theory. 

Given the following tenTIs: 

(a) I(S). the length of schema S (the number of positions between the first and last 

non-* positions); 

(b) k(S). the order of schema S (the number of non-* positions in S); 

(c) N(S. t). the number of instances of schema S at time t; 

(d) f(S, t). the fitness ratio of schema S at time t (ie. the ratio of the average fitness 

of S to the average population fitness); 

(e) P[S.t]. the probability that schema S will be represented in the population at 

time t. 

then The Schema TheoremS states that: 

Given an EA with probabilities of employing crossover and mutation of Pc and Pm 

respectively, the expected number of representatives of schema S at time t+1, E(S, t+1), is 

given by: 

E(S. t + 1) 2: {1- Pel(s) (1- P[S. tD - PlIIk(S)}f(S. t)N(S. t) 
n-l 

The main consequence of this theorem is that. provided the fitness ratio is greater than 1, then 

shalt. low-order schemata are favoured over long. high-order schemata with the same fitness 

ratio. Thus. it may be concluded that an EA is likely to construct solutions by combining 

short, low-order schemata together to build a solution in a hierarchical manner. This idea has 

had Such a significant impact on EA theory that it was given a special name by [Goldberg, 89a] 

- the building-block hypothesis. 

61f1e version of the Schema Theorem given here is taken from [Reeves, 93]. As Reeves notes, 
~hIS sta.tement of the theorem is slightly different from that sometimes found in that the left

and-sIde is explicitly stated in terms of expectation, a fact which is often insufficiently 
stressed. 
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1.4.3 Recent advances in EA theory 

Since the original work by Holland, several tools for theoretically analysing an EA have been 

proposed. One of the most important of these was Walsh functions [Beauchamp, 75]. In one 

of their first applications to EAs, Walsh functions were employed by [Goldberg and Rudnick, 

91] to produce an expression relating to the variance of schema fitness. However, in recent 

years, most attention has been paid to their application to the analysis of so-called deceptive 

problems [Goldberg, 87] where the building-block approach leads the EA away from an 

optimal point and towards sub-optimal solutions. An alternative method of analysing EAs 

which has received some attention of late is the model proposed by [Vose and Liepins, 91]. 

The motivation for this model was the failure of the schema theorem to account for the fact that 

the representation of schemata in a population is impossible to determine unless the 

composition of the population itself is known. To address this problem, Vose and Liepins 

used population vectors (as opposed to schemata) and Markov Models to analyse the operation 

of an EA in terms of moving between points in a 'population space' [Nix and Vose, 92]. This 

form of analysis is still in its infancy, but initial results using simple EAs [Vose, 92] have 

shown great promise. 

1.4.4 Current research in EAs 

The explosion in research into EAs which occUlTed in the late 1980's has led to a vast literature 

covering all aspects of EAs from applications to theory. However, to even touch upon this 

work would take up more space then can be accommodated in this thesis. Instead, this section 

gives a brief review of some of the directions which research in EAs is currently taking. These 

directions are defined by the so-called 'Hot Topics' which have emerged in recent years and 

initial investigation of which show promise. Four of the most significant of these are: 

(1) Self Adapting Mechanisms 

One of the problems central to the use of EAs is that many of the control parameters 

such as operator rates, population size and the representation itself, have to be 
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determined by the analyst at the outset. In the absence of strong predictive theories 

which specify suitable values for sllch parameters. this process is ad hoc and tends to 

rely upon the subjective view of the analyst. However, poor choice in parameter 

settings can lead to dramatically low system performance. For example. a mutation rate 

which is too high can be too disruptive to the EA's search and lead to the search 

degenerating into little better than a random walk. Conversely, too small a mutation 

rate can lead to 'lost allele values' being regenerated too infrequently. Unfortunately. 

parameter optimisation is not a straightforward task because many parameters are 

interdependent and the relationship between them is complex. For example, an 

appropriate mutation rate may depend upon a number of factors including string length, 

popUlation size and crossover rate. As it is not uncommon for an EA to contain in 

excess of 10 to 20 such parameters. each of which may have a large number of 

plausible values. tlial and elTor optimisation is therefore out of the question. 

One method for determining parameter settings which has been used 

successfully within the EA community is that of using a meta-EA [Grefenstette, 86] 

[Freisleben and Hartfelder. 93] [Mercer and Sampson, 87]. In a meta-EA, the 

parameters of the original EA are encoded in string form; a group of bits representing 

each particular parameter. The meta-EA maintains a population of such strings and 

finds the fitness of each of these by running a test-EA for a number of generations and 

using the fitness of the best member found during that run as its fitness. The meta-EA 

then recombines the best settings and repeats the process for a number of generations. 

The main drawback to this approach is the time it requires. Even a simple EA may take 

several minutes to evaluate a particular parameter setting and consequently, it may take 

of the order of hours to evaluate a single generation of settings. Therefore, for many 

problems. this is clearly an unsuitable method. 

An altemative approach which appears to be much more apt is the inclusion of 

'self-adapting mechanisms' in the genetic operators themselves. Such mechanisms 

can use the state of the extant system or its current perfOlmance to adapt the operation 
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of its genetic operators to suit the situation. For example, [Back, 92], based on his 

work with ESs, investigated the use of an adaptive mutation rate and demonstrated that 

environment-dependent self-adaptation of appropriate settings for the mutation rate is 

possible in EAs. 

(2) Use of Lamarckian Operators 

The Lamarckian theory on inheritance of adapted phenotypes was discussed briefly in 

Section 1.2 where it was mentioned that the theory had been largely discarded by 

biologists. However, despite its uncertain biological foundations, the theory has 

proved useful in EA research wherein system designers can implement features that 

nature cannot, thereby enhancing the learning process. A number of such Lamarckian 

mechanisms have been implemented including Grefenstette's use of a hybrid approach 

[Grefenstette, 87c], wherein individuals go through a learning stage with associated 

representational changes before their fitness is evaluated, and Davidor's variable 

crossover probability [Davidor, 91], wherein the operator usage rate varies according to 

phenotypic perfolmance. 

(3) Use of Parallel Architectures 

EAs have a natural inherent parallelism, and this fact has led to a large number of 

projects concentrating on the implementation of EAs on both fine-grained and course

grained parallel computers. Parallelisation has an obvious advantage in that the speed 

for execution of an EA can be dramatically increased thereby enabling more complex 

EAs to be run for more generations on harder problems. However, there is also 

another, less obvious benetit, namely that, by splitting the population into a number of 

individual sub-populations (the term used by biologists is demes), and only 

occasionally allowing migration between these sub-populations, the population can 

maintain greater diversity and hence avoid problems associated with premature 

convergence. Again, research into the use of parallel architectures is still in its early 
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stages with most of the work being concentrated on the use of improved architectures in 

order to increase speed. Whilst research which takes account of the development of 

faster, more efficient architectures is clearly an impOltant part of this, there remains a 

great deal to be discovered by further investigations of the evolutionary effects of 

parallel architectures. 

(4) Co-evolutionary Systems 

Systems which involve two or more interacting populations aimed at evolving solutions 

to different problems have been a very recent but exciting development in the EA 

community. One of the first people to develop such a system was Hillis [Hillis, 91] 

when he implemented an EA to optimise sorting networks [Bose and Nelson, 62]. 

Hillis found that when he used a traditional EA approach to this problem, evaluating a 

solution was difficult because, unless each solution was evaluated over every possible 

problem, after only a few generations, most individuals could successfully solve most 

problems and consequenlly, there was insufficient selective pressure to gain 

improvement. To overcome this problem, Hillis implemented a second population 

which consisted of problems (ie. sequences) which the host population had to sort. By 

judging each of these problems on how many networks they managed to find faults in, 

it was observed that, as the host population evolved towards better sorting networks, 

the problem or parasite population co-evolved to produce sequences which provided a 

better test set for the improved networks. 

Hillis's work has opened up a vast number of oppOltunities for exploiting the 

properties of co-evolving systems with more recent work on the subject including that 

of [Husbands and Mill, 91] which investigated co-evolutionary mechanisms for 

planning and scheduling, [Angeline and Pollack, 93], which investigated the use of 

fitness functions that are dependent on the constituents of the population, and [Ikegarni 

and Kaneko, 91]. However, it remains to be seen whether they can have a significant 

impact upon the rest of EA research. 
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1.5 Genetics-Based Machine Learning 

1.5.1 Overview 

As mentioned earlier, the particular application of EAs which is investigated in this thesis is that 

of the development of military tactics. This can be considered as a machine learning problem 

and there has been a broad interest in the use of EAs in such problems for a considerable time, 

so much so that a separate research field, known as Genetics-Based Machine Learning 

(GBML) has developed which focusses solely on this topic. 

The theoretical foundation for GBML systems was laid by Holland [Holland, 68] and 

resulted in the development of the first functional GBML system - the classifier system CS-l 

[Holland and Reitman, 78]. Classifier systems are highly parallel, message passing, rule

based systems and are the most common vehicle for the implementation of EAs in a machine 

learning environment. 

1. 5. 2 Classifier Systems 

1.5.2.1 Knowledge Representation 

Classifier systems encode their knowledge using one of the most common representation 

schemes used in AI - Production Rules. Production Rules have two parts, both of which are 

represented as lists. The first part, the conditional part or antecedent, consists of a series of 

conditions, whilst the second part, the action part or consequent, consists of one or more 

actions which are to be performed if and when the conditions in the conditional part are 

satisfied. Thus a rule has the following form: 

RUle: IF (AND conditionl, condition2, ... , conditionn) THEN PERFORM (actionlo .. , actionm) 

In the Context of a military problem, each condition in such a rule will relate to specific 

information acquired in the data fusion phase, such as :distance to target, speed o/target, target 

bearing; and each action specifies a 'real' action that should be taken, of which: 'increase speed 

28 



5 knots', and 'turn to bearing 270°' might be examples. Any plan can be represented as a set 

of such rules whose conditions cover all of the possible situations that may occur during 

combat. Such a rule set is called a Knowledge Base (KB). 

Within a classifier system, the production rules and the KB are referred to as classifiers 

and the classifier store respectively. Each classifier is a fixed length string of k, say, 

characters. The first n<k characters of a classifier fOlm the conditional part with the remaining 

m = k-n characters forming a message which indicates the action(s) to be performed when the 

conditional part is satisfied. Also, associated with each classifier is a strength, a value which 

indicates the usefulness of the classifier in the given environment. 

Messages are the basic tokens of infOlmation exchange within a classifier system. Each 

character in a message is one from a finite alphabet, A. Typically, A is chosen to be the binary 

alphabet {O, I }. The antecedent of a classifier is a sim pIe pattern recognition device whose 

underlying alphabet is A together with a wildcard7 character, #, which matches any character 

inA. For example, if A is {O,I}, then the antecedent 01#0 will match both 0100 and 0110. 

Three main components constitute a classifier system, namely: 

(1) a rule and message system; 

(2) a credit assignment scheme; 

(3) an evolutionary algOlithm. 

In essence, the rule and message system interfaces with a representation of the extant 

environment - the world model. It accepts infOlmation from the world model (via the input 

interface), it utilises this information in combination with the rule base to select the appropriate 

action, and it effects the action (via the output intelface) thereby causing the world model to be 

updated. There is no learning inherent in this component of the classifier system. Learning is 

achieved by credit assignment. It is the credit assignment scheme which distinguishes between 

good and bad rules, thereby enabling the rule and message system to learn which actions are 

appropriate in which circumstances. The EA component is the mechanism by which rules in 

7Ihn the remainder of this thesis, the term 'wildcard' will be used to represent the wildcard 
c aracter, '#'. 
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the KB can be replaced by new and improved rules. 

A slightly more detailed schematic representation of a classifier system is given in 

Figure 1.5. The boxes in the diagram labelled 'Credit Assignment' and 'Rule Discovery' 

correspond respectively to the credit assignment scheme and the evolutionary algOlithm. 

Figure 1.5: Main cycle of a classifier system 

1.5.2.2 The Rule and Message System 

DUring an episode (the time period spanning a conflict situation), the rule and message (RaM) 

system is tdggered each time a change. not induced by the RaM system itself, is detected in the 

World model. When triggered (and this includes the occasion of the inception of an episode). 

the RaM pelfonns the sequence of operations given below. 

(1) The current state of the world model is translated by an input interface into a special 

message called the environmental or detector message. The message consists of m 

characters, and each character or group of characters. is an encoding of some relevant 

property of the world model. 

(2) The environmental message is passed to the message list. where it is stored. The 

message list is a section of short-telm memory capable of holding a small number. P> 1 

say. of messages. In addition to the environmental message. the message list may also 
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hold the messages corresponding to the most recently 'active' of the classifiers (see (4) 

below), 

(3) Each message held in the message list is compared with the conditional part of each 

and every classifier in the classifier store. When a message matches the conditional part 

of a given classifier, that classifier becomes a candidate to send its message to a newly 

constructed message list. 

(4) If there are P or fewer candidate classifiers, each classifier passes its message to the 

message list thereby updating it. If, however, there are C>P candidate classifiers, a 

problem arises: the message list is too small to hold the messages from all C classifiers. 

Although several methods do exist for resolving the problem, the most common is to 

require the C classifiers to enter into an 'auction'. In the auction, each of the classifiers 

'makes a bid', the value of which is a function of the classifier's strength, and those 

classifiers which make the P highest bids send their messages to the message list. The 

classifiers which are successful in passing their messages to the message list are said to 

be 'active'. 

(5) Steps (3) and (4) are repeated iteratively until the messages in the message list indicate 

that actions should be performed to update the world model (that is, one or more 

suggested courses of action have been delived in response to the externally 'triggered' 

change in the world model), If the courses of action suggested by the messages 

accord, the appropriate action(s) are effected, and the world model correspondingly 

updated. Otherwise, some mechanism for resolving the connict is called into play. 

Although a number of different approaches exist, the most common is that of holding 

an auction between the competing courses of action. The size of the bid made by a 

competitor is typically calculated as a function of the strengths of the classifiers which 

advocate it; the highest bid dictating the course of action ultimately taken to update the 

world model. 
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1.5.2.3 Credit Assignment 

The problem of determining (learning) an appropriate plan of action to achieve some desired 

goal in a tactical situation is made more difficult by what is called the Credit Assignment 

Problem. Consider an episode involving a long and complex sequence of decisions. The 

problem of accurately and definitively labelling each decision in the episode as being either 

good or bad defines the credit assignment problem. An example which illustrates the problem 

well is that of a game of chess which 'black' loses after 50 or 60 moves. It is quite possible 

that only a handful of black's moves were poor, but isolating them precisely in a non-trivial 

task. 

An approach which attempts to solve the credit assignment problem for classifier 

system is provided by the Bucket Brigade Algorithm (BBA) [Holland, 85]. Essential to the 

operation of this algorithm is an external critic which, at the end of an episode, judges the level 

of performance of the plan employed with respect to the outcome of the episode, and 

determines a corresponding pay-off, P say, which takes the form of a real number. The 

algorithm assigns credit to classifiers that are active during an episode in the following way: 

(1) each time a classitler, C, succeeds in its bid to send its message to the message list (C 

becomes active), Cs strength is reduced by Cbid, a function of the value of the bid 

made by C in the auction. The value Cbi(/n is then added to the strength of each of the 

n classifiers, active on the previous iteration, whose messages match Cs antecedent 

Thus, C may be viewed as rewarding those classifiers that were active on the previous 

iteration which were instrumental in giving it the chance to become active. 

(2) the value PIA is added to the strength of each of the A classifiers that were active at the 

end of the episode. 

When the BBA is employed in just a single episode, the credit assigned to all but the classifiers 

that were active at the end of the episode may not be wholly appropriate to the outcome of the 
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episode. However, when employed in a sequence of episodes, the pay-offs awarded by the 

external critic will ultimately filter back to the stage setting classifiers, awarding successful 

classifiers in line with successful episodic outcomes, and vice versa. The algorithm therefore 

facilitates the learning of successful rules by reinforcement 

1.5.2.4 Rule discovery using Evolutionary Algorithms 

The rules which complise a KB can be viewed as a population to which an EA, utilising the 

strength of individual rules to guide its search, can be applied. An EA used in a classifier 

system strongly resembles those described earlier. However, one imp0l1ant point which is 

raised by [Holland, 86a] is that in situations for which the classifier system has a well

practiced, effective set of classifiers, only the worst classifiers should ever be replaced. 

Holland called this concept gracefulness and since an incremental EA is more suited to this type 

of operation, then it is predominantly used with respect to classitier systems. 

ClasSifier systems of the form detailed above have been implemented for a number of machine 

learning problems including the multiplexor problem [Wilson, 87a] [Quinlan, 88], letter 

recognition [Frey and Slate, 91], gas pipeline control [Goldberg, 83] and the ANI MAT 

problem [Booker, 82] [Wilson. 87a] [Wilson, 87b]. Moreover, classifier systems have been 

sUccessfully implemented to run on a parallel computer [Robert<;on, 87]. 

1.5.2.5 Current techniques and research in Classifier Systems 

Research in the field of classifier systems can be divided into three categories corresponding to 

the three constituent components of a classifier system, namely system architecture (RaM), 

credit assignment and the EA. 

System architecture has probably been the least investigated aspect of classifier systems 

and few extensions have been proposed. An exception is the proposal made by Forrest 

[Forrest, 85] in her Doctoral thesis for which she implemented a compiler to translate a 

relatively complex, high-level language, KL-ONE, used for representing semantic networks, 
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into the standard classifier form desclibed earlier. By successfully achieving this mapping, 

Forrest was able to show that classifier systems can emulate the more complex models 

traditionally used in AI. Other researchers have also investigated the connection between 

classifier systems and other AI leaming paradigms. For example, both [Spiessens, 88] and 

[Belew and Gherrity, 89] have compared classifier systems with connectionist architectures, 

whilst [Davis, 88, 89b] actually provides detailed procedures for converting a classifier system 

into a neural network, and vice versa. A classifier system/neural network hybtid has also been 

investigated by [Ball, 91, 93] and shown to be effective for a simple control problem. Another 

particularly interesting extension to the basic system architecture was also proposed by [Zhou, 

90] in which a long-telm memory was incorporated into his system to avoid problems wherein 

the system deletes previously useful rules. 

In contrast to system architecture, credit assignment has received a great deal of interest 

from within the EA community, especially with respect to deficiencies in the BBA. One of the 

most widely studied limitations of the BBA is the difficulty it has in propagating strength 

backwards from the reward state to 'stage setting' classifiers when the sequence of classifiers 

is long. Results produced by Wilson [87c] and Riolo [89a] suggest that the number of 

iterations necessary to reinforce the first classitier in a chain of length n is of the order of IOn, 

which is impractical for many problems. Several solutions have been suggested to alleviate 

this problem. One of the first solutions suggested was to employ bridging classifiers [Holland, 

85]. A blidging classifier is a classitier which remains active over a number of time steps and 

therefore, by continuously paying and receiving credit to and from itself, it facilitates the 

transfer of strength to stage setting classifiers. [Riolo. 89a] demonstrated that manually 

injected blidging classifiers could help alleviate the problem of long chains but no situation has 

been found wherein they can develop spontaneously. An alternative approach to the same 

problem is that of a hierarchical credit assignment scheme [Wilson, 87c] [Wilson and 

Goldberg, 89] [Bruderer and Shevoroshkin, 93], in which. by placing classifiers in a 

hierarchy, bucket bligade chains can be kept ShOlt, thus facilitating the propagation of strength. 

This concept was implemented by [Shu and Scheaffer, 91] by grouping classifiers into 
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'families' and higher-order structures such as 'communities of families'. Initial results with this 

system were encouraging but no fUlther work on the subject has been reported to date. 

Another aspect of credit assignment that has received a great deal of attention is that of 

the ability of the BBA to SUppOlt the fOlmation of default hierarchies [Holland, 85] [Goldberg, 

89a] - plans in which general classitiers (those with many #'s) cover the general conditions, 

whilst more specific classifiers cover the exceptions. [Riolo, 87b, 89b] showed that viable 

default hierarchies can be maintained once appropriate classifiers have been generated, and 

[Goldberg, 89a] showed that such structures can be formed through the application of the EA. 

However, the work of [Wilson, 89] appears to contradict this, showing that the bidding 

process suggested by Goldberg does not encourage the formation of default hierarchies. 

Moreover, Wilson went further by adding that the bidding process tends to favour more 

general rules (since they have less to payout per activation than specific rules), resulting in a 

detrimental bias in the search of the EA. This effect was also observed by [Robertson and 

Riolo, 88]. 

As a result of the vatious problems associated with the BBA, a number of alternative 

credit assignment schemes have been proposed. Several of these belong to a class of so-called 

epochal schemes - schemes where a record of all the classifiers which have been active during 

an episode is maintained and at the end of the episode, each one is paid a constant fraction of 

the environmental reward. Examples of such schemes include the epochal algorithm [Holland 

and Reitmen, 78] and the Profit Sharing Plan (PSP) [Grefenstette, 88]. In his RUDI system, 

Grefenstette demonstrated that the PSP can leam the expected system reward more accurately 

than the BBA but is generally not as successful at measUling dynamic coupling between rules -

a necessity if useful classifier chains are to be developed. [Liepins, et aI, 89, 91] proposed 

another two alternative credit assignment schemes - Backward Averaging (BA) and an 

Adaptive Heuristic Critic (AHC) [Sutton, 88] - but results achieved with these two schemes 

showed little or no improvement over the BBA. Finally, it is worth mentioning another 

scheme which has received not insubstantial interest in recent years, a technique adapted from 

Q-Iearning and dynamic planning [Sutton, 90] [Watkins, 89]. Q-Iearning has many similarities 
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to the way in which the BBA operates but also takes into account extra infOlmation such as the 

expected future reward. Therefore, because a system using Q-learning has more infOlmation 

available, system performance should be expected to be better. However, results produced by 

[Roberts, 89] on an ANIMAT -type problem showed that results produced with Q-Iearning are, 

at best, only comparable with the BBA, and in many cases are in fact worse. 

Due to the problems encountered with credit assignment, the rule discovery aspect of 

the system has not been widely studied since the EA cannot be analysed without the 

involvement of credit assignment. One of the few studies in this area was that of [Booker, 85] 

in which a number of modifications including a restricted mating policy and a crowding 

algorithm [Goldberg, 89a] were shown to be beneficial to the EA. [Holland, 87] also 

suggested a number of novel operators including a triggered coupling operator to link more 

tightly, pairs of rules which are used on consecutive time steps. This operator was 

implemented by [Robertson and Riolo, 88] for a letter sequencing problem with the results 

showing a significant improvement in system peliormance. However, these studies aside, the 

operators used by the majority of authors are simply those associated with the standard EA, 

namely crossover and mutation. 

1.5.3 Other approaches to GBML 

The approach to rule discovery which is adopted within a classifier system is referred to as the 

Michigan approach8. A few years after the Michigan approach was first proposed, an 

alternative implementation for GBML was suggested by [Smith, 80] which resulted in the 

development of his LS-I system for playing the card game poker. Since then, the approach 

Smith adopted has been commonly referred to as the Pittsburgh or Pitt approach. Like the 

Michigan approach, it too uses production rules to represent knowledge. However, rather than 

each rule in a single rule base being an individual of the population to which the EA is applied, 

the Pitt method maintains a number of plans and it is a plan that is treated as a member of the 

8Named after the University where the approach was pioneered. 
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EA population. 

A system adopting the Pitt approach typically operates by running each of its plans a 

number of times on the simulation test model in much the same way as a classifier system runs 

its single plan. This is achieved either by running the plans on a number of different 

simulation models in parallel. or by running each plan. one at a time. on a single simulation 

model. However. a major difference between the Pitt and the Michigan approach is that rather 

than ascribing a utility value to each rule in a plan. the Piu approach assigns a utility value to 

each plan. and by so doing by-passes the credit assignment problem of trying to discover 

which rules are most useful. Periodically. the EA is invoked which causes the most successful 

plans to be passed forward to a mating pool and genetic operators to be applied to select 

members of the pool. thereby producing a new population of plans (the next generation). 

Subsequently. this new population is tested and the cycle repeated until some criterion for 

termination is met. By operating in this manner. the EA is said to be working at the plan level. 

A schematic showing the operation of a system using the Pitt approach to GBML is shown in 

Figure 1.6. 

The Piu approach appears to present fewer problems for GBML than do classifier 

systems. However significant among those problems which have been described in the 

literature are: 

(1) extensive computational resources are needed to evaluate the potentially large number of 

rule sets; 

(2) a single fitness value (derived in some way from the fitness values of the constituent 

rules) is used to represent the quality of an entire plan; 

(3) additional mechanisms are required to construct new rules in the various plans. 
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Figure 1.6: Pittsburgh Approach 

The first of these problems can be addressed with the aid of parallel processing facilities; each 

plan being 'lUn' as a separate process. Whilst means for overcoming the other two problems 

do exist, their mere existence serves to indicate that. despite deficiencies in respect of rule co

operation, application of an EA at the rule level does have certain advantages over its 

application at the plan level. 

Since the design of LS-l, there have been surprisingly few implementations of the Pitt 

approach. One of the few which systems which is described in the literature is the SAMUEL 

learning system [Grefenstette et al. 90] [Grefenstette. 91a] which is used for the development 

of military tactics - precisely the same problem domain that this work aims to investigate. 

SAMUEL has been shown to work reasonably well for a number of military problems 
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including the evasive manoeuvres problem [Gordon and Grefenstette, 90] [Schultz and 

Grefenstette, 90], the cat and mouse problem [Grefenstette and Ramsey, 92] and dog fighting 

[Grefenstette, 91 b], although the problems are very simple in nature. Moreover, SAMUEL 

has been invested with other AI learning paradigms, such as Explanation-Based Learning 

[Gervasio and DeJong, 89] and Any time Learning [Dean and Boddy, 88], and has also been 

extended to cope with multiagent environments [Grefenstette, 93] where several agents learn 

solutions simultaneously. 

1.6 The proposed approach 

The above discussion has shown that the Michigan and Pittsburgh approaches both have 

relative strengths and weaknesses. Therefore, it would appear that a hybrid system which 

attempts to capitalise on the strengths of both approaches by harnessing the two in a single 

system, may prove to be most advantageous. For example, the deficiency in the Pittsburgh 

approach of only having a single fitness value to represent the utility of an entire plan will be 

reduced by using rule strengths derived from the Michigan part of a hybrid system. 

Furthermore, the additional mechanisms required by the Pitt approach to construct new rules 

will not be needed if an EA at the rule level is also used. Undoubtedly, [pp 304, Goldberg, 

89a] had this view in mind when he wrote "we should encourage parallel experimentation with 

both types of systems [Michigan and Pittsburgh] because each has something to contribute to 

GBML understanding". 

Consider a set of plans made available to such a hybrid system. By associating one 

Classifier system with each and every plan, and running the totality of classifier systems 

concurrently, the independent development of the plans is facilitated via application of the EA at 

the rule level. If, periodically, operation of the classifier systems is suspended and then 

interaction between the individual plans effected by applying the EA at the plan level, it may be 

Possible to achieve the desired advantages of both approaches to EA application. Thus, a 
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classifier system employing dual application of EAs (at the rule and plan levels) is proposed as 

the most appropriate way for the machine leaming of military tactics. An outline schematic 

representation of this hyblid architecture is given in Figure 1.7. 

Classifier 
Systeml 

Classifier 
Sys1em2 

EAal 

Classifier 
Syslemn 

Pl,Ul Level 

Figure 1.7: The proposed hybrid architecture 

The aim of the remainder of this research is to develop, investigate and implement such an 

architecture. Although the outline an;hitecture for the system has been decided upon, virtually 

all aspects of the detailed system design, including knowledge representation, genetic operators 

and credit assignment. remain to be resolved. In this research, it is intended that all these 

implementation details be investigated by experimenting with alternative approaches to the 

various issues and detelmining which is/are 'best'. 
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1.7 Design strategy 

To SUppOlt the approach to the research which is described above, the system is to be designed 

and built in a step-wise. bottom-up fashion in which the lowest level units are first designed 

and constructed. and then subsequent layers are added, one at a time, until the whole system is 

complete. A suitable decomposition of the system architecture for the purpose of a bottom-up 

design is shown in Figure 1.8. 

EA at plan level 

Figure 1.8: Levels o/the proposed system 

At the healt of the system is a selies of classifier systems. each of which can be broken down 

into 3 component parts; the rule and message (RaM) system. the credit assignment algorithm 

and the rule-level evolutionary algOlithm (RLEA) Using a simple test problem, the RLEA can 

be tested independently of the rest of the system to investigate possible improvements to its 

effectiveness. Moreover. a module combining both the RaM and the credit assignment 

algorithm can also be investigated independent of the other parts of the system. Moving up a 

level. the two components can then be combined to form a complete classifier system which 

can then be analysed to determine if the findings of the investigations into its component parts 

are maintained when combined. Subsequent to this. a selies of such classifier systems can be 

41 



constructed and connected together via an EA at the plan level (PLEA), thus resulting in the 

desired system architecture. 

1.8 About this document 

The contents of the remainder of this thesis are as follows. Chapter 2 describes the 

implementation of a simple EA used to investigate aspects which are important in a machine 

learning environment. Chapter 3 consists of two studies investigating credit assignment in a 

simple classifier system. In the first study, a classifier system is analysed from a theoretical 

perspective to detelmine the sort of results that a classitier system should produce, whilst in the 

second study, a simple classifier system is implemented and the aspects of the credit 

assignment algorithm which most affect system peliOlmance investigated. Chapter 4 then adds 

the EA investigated in chapter 2 to the simple classifier system of chapter 3 to investigate 

whether ~uch a system is capable of leaming suitable rules for real-world military problems. 

Chapter 5 then details the final system design, whilst chapter 6 describes the experimental 

results derived from this system. Finally, chapter 7 describes the conclusions from this 

research and discusses those directions which future work in this area might take. 
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2 Implementation of a simple Evolutionary Algorithm 

2.1 Introduction 

In the previous chapter, it was decided that a step-wise, bottom-up approach would be adopted 

for the design of the proposed hybrid GBML system. One of the main components of this 

system is the evolutionary algorithm (EA) and it is the aim of this chapter to investigate a 

number of the key aspects which affect its effectiveness. This will be achieved by comparing 

the schemes which are generally used in EA applications with some novel alternatives to see if 

the effectiveness of the algorithm can be improved. In particular, since the primary use of the 

EA in the intended system is to discover useful rules as part of a classifier system architecture, 

the features investigated here relate to aspects which may be significant to the rule discovery 

process. 

Section 2.2 introduces the test problem upon which the investigation will be based - the 

knapsack problem - and defines the precise form of the problem used for the trials. Although 

not usually specified by many authors. a number of the small design decisions associated with 

the EA can have a significant bearing upon its effectiveness, and so section 2.3 is used to give 

a detailed description of the algorithm used in the trials, as well as defining the measures of 

effectiveness which are employed to ascertain the relative merits of the alternative schemes. 

Section 2.4 then gives the details of the alternative schemes proposed in this study, together 

with the results from the experiments used to evaluate them. 

2.2 Definition of the test problem 

As previously stated, this thesis aims to investigate a GBML system for the development of 

military tactics. Thus, the most appropliate vehicle to use to analyse the EA part of a GBML 
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system would be a tactical problem itself. UnfOltunately, such a problem would require other 

features of a GBML system to be present (the credit assignment algorithm, for example) and 

these would unduly complicate any analysis of the EA. Moreover, any conclusions would be 

system specific and may not necessarily hold should the detailed design of the proposed system 

change. 

Therefore, to investigate the EA, it was decided that a simpler test problem was 

required, and preferably one which requires as little problem specific knowledge as possible. 

Two such problems suggest themselves: 

(a) a function optimisation task; 

(b) the knapsack problem. 

Function optimisation is the traditional way to investigate features of an EA and a number of 

test functions have been developed to serve this purpose (see, for example, [De Jong, 75]). 

However, because the payoff returned from standard function optimisation tasks is always 

fixed, it is not possible to investigate one of the factors that plays a key role in a GBML 

system, namely the effect of the quality of the payoff on the performance of the algorithm. 

The knapsack problem, however, does include a mechanism by which the effect of 

environmental payoff can be investigated, namely the requirement for some means of enforcing 

capacity constraints. For example, by increasing the value of the penalty in the knapsack 

evaluation function, the effect of sparse payoff information on the performance of the EA can 

be determined. 

In addition to this, the knapsack problem has a particularly simple encoding scheme in 

which solutions map very naturally as binary strings. Thus, the problems that tend to occur 

with, say, function optimization where some binary to decimal encoding scheme is required, 

are avoided. Moreover, unlike other OR problems such as the Travelling Salesman Problem 

[Michalewicz, 92], no problem specific operators are required. However, if they are to be 

investigated, problem specific operators can easily be implemented for the knapsack problem, 
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thus making it very suitable for comparing the effectiveness of problem specific and standard 

operators, such as crossover. 

Finally, the knapsack problem is also useful because: 

(a) it is well understood but has a non-trivial solution (that is, it is NP-hard); 

(b) several investigations of EAs have already been pelfol1ned using the knapsack problem 

(see, for example, [Goldberg and Smith, 87] [Goldberg, 89a] and [Syswerda, 89]) and 

the operators I mechanisms analysed therein (eg. Uniform Crossover [Syswerda, 89]) 

can be used to extend the analysis performed here. 

Thus, because of its generic nature, it was decided that the knapsack problem was a very 

appropriate option for analysing a number of the features of an EA which will effect a GBML 

system. 

In the problem, a set of n items is available to be packed into a knapsack. However, 

there are N capacity constraints, that limit the number of items which the knapsack can hold. 

Each item i, i= l .. n, has a value Vi and uses up Wij units in respect of the jth capacity constraint, 

I==l, ... .N. The objective of the problem is to determine the subset I of items which should be 

packed in order to maximise the value of the contents of the knapsack without violating any of 

the capacity constraints. 

This is written mathematically as: 

such that 

n 

maxLViXi 
;=1 

n 

L WijXi:::; /(j,j = l..N 
i=1 

45 



where 

Xi = {I if item ~ is included 
o otherwIse 

IS is the capacity associated with constraintj 

This problem is a particularly appropriate application to which an EA can be applied because of 

the way in which solutions can be encoded very naturally as binary strings of length n, where 

bit i represents the ith item and is set to 1 if i is included in the solution and 0 otherwise. 

2.3 Test Regime 

As [Cohoon et aI, 87] point out, the basic EA approach is easily understood but there is no 

canonical "pseudo-code" version in published accounts and hence, almost all EA 

implementations are different. Although seemingly unimp0l1ant in themselves, the small, 

"obvious" design decisions which are not usually specified in reports by many authors, can 

have a major effect on how successfully an EA 'solves' a problem and hence influence any 

results which are reported. For this reason, the following is a complete description of the EA 

used in this chapter in respect of the knapsack problem. 

Each trial consists of running the EA on a population, S, of size pop_size until a 

number of knapsack evaluations, nUlnjvals, have been performed, where nUIn_evals is some 

multiple of pop_size (so that the number of generations is an integer), and every pop_size 

evaluations represents a generation. At the start of a u'ial the population is initialized randomly 

USing a random number generator and then the main EA cycle commences. In this, each 

member, Si, of the population is evaluated; any constraint violation being subjected to a penalty 

function as described in Experiment 1 (section 2.4). The relative fitness of each population 

member is then calculated and used by the selection algorithm to select a mating pool, M, also 
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of size Pop_size. 

The selection algOlithm used is the Remainder Stochastic Independent Sampling (RSIS) 

scheme suggested by [Baker, 87]. Crossover is then employed in respect of the members, Mio 

of the mating pool, thus selected, with a probability Pc (the crossover rate), of application. In 

this, Mi and another string Sj. selected at random from S, mate using I-point crossover, 

leading to two offspIing, Cl and C2, from which one is selected at random and used to replace 

Mi in the mating pool (the other child is discarded). If crossover is not applied to M
i
, and this 

occurs with a probability of I-Pc, then Mi remains unchanged. The mutation operator is then 

applied to every member of the mating pool by inverting each of its bits with a probability P mut 

(the mutation rate). The resulting mating pool then becomes the next generation and the cycle 

repeated. 

Each experiment or trial reported in this chapter involved 10,000 problem evaluations 

with valious performance measures (see below) being recorded. Each trial was repeated 10 

times with different initial populations on a testbed of 5 knapsack problems (outlined in Table 

2.1 and detailed in Appendix 1) of varying degrees of difficulty. 

Table 2.1: Test bed of knapsack problems 

Problem Number Number of Search 
Number of Items Constraints Space 

1 15 10 32768 
2 20 10 1.0 x lOe6 
3 28 10 2.7 x lOe8 
4 39 5 5.5 x lOell 
5 50 5 1.1 x lOe15 

As research into the applications of EAs has grown, several pelfOImance measures [De Jong, 

75] [Goldberg, 89a] have been developed in order to evaluate EA performance. The three 

mOSt common of these are the on-line, off-line and best-sa-far measures. 
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(i) 

(ii) 

(iii) 

On-line peifarmance 

This is a statistic devised by De J ong in his dissertation [De J ong, 75] and is used to 

gauge ongoing perfOlmance. It is calculated as follows: 

where QFnline(1) is the on-line performance after T function evaluations and oi..t) is the 

function value on uial t. 

Off-line peifarmance 

This is another of De Jong's measures and is used to gauge convergence among a 

population. It is calculated by: 

mOfj1ille (T) = 1. ± m * (t) 
T 1=) 

where m*(t) is the best { 01(1), oi..2), •• , O1(t) } 

Best-sa-far 

This measure is self-explanitory and is the usual measure of performance when 

evaluating any iterative heudstic technique. 

The three statistics were recorded during each of the 10 trials, and of these, the best and the 

average for each measure was found. 
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2.4 Experimental Results 

2.4.1 Default Settings 

The expeliments repOlted here investigate elements of each of the three constituent components 

of an EA, namely Evaluation, Selection and Recombination. Although a great number of 

features could have been chosen for investigation, five were deemed to be particularly useful 

because they investigate aspects which may prove significant to the rule discovery process in a 

GBML system. 

Firstly, as identified in Section 2.2, it is important to investigate the effect of the quality 

of the payoff on the performance on the algOlithm. Consequently, ExpeIiment 1 investigates 

alternAtive methods for maintaining the knapsack capacity constraints. Another aspect likely to 

be important because of the need to maintain a high level of on-line performance in a GBML 

system is the selection of partners for mating. This is investigated in Experiment 2. Finally, 

the use of tailored versions of the standard genetic operations and their rates of operation are 

both likely to be important in discovering appropriate new rules for the proposed system and 

these are investigated in Experiments 3, 4 and 5. 

Thus, the five experiments reported in the is chapter are: 

(1) maintenance of capacity constraints in the knapsack problem (evaluation); 

(2) selection of pattners for mating (selection); 

(3) alternative crossover operators (reproduction); 

(4) variable mutation rates (reproduction); 

(5) other genetic operators (reproduction). 

~he default settings for the three ma~rf:jfi:<r!6~~ chosen to be largely in line with those 

In general use ([Goldberg, 89a], for ~lrfu'plerJl{d UI:n 
I ;.. ~. . ,J 
i ,'I '. .' 



Population Size: 50 

Crossover Rate: 0.75 

Mutation Rate: 0.001 

2.4.2 Experiment 1: An investigation into the maintenance of capacity 

constraints 

One difficulty associated with applying EAs to constrained optimisation problems, such as the 

knapsack problem, is dealing with infeasible solutions. There are two basic approaches to this 

problem in general use. One is to modify the genetic operators so that only feasible solutions 

are produced. A simple operator of this type for the knapsack problem could involve removing 

items (that is, changing 1 's to O's) at random from infeasible solutions until all constraints are 

satisfied, whilst a more complex operator could remove the items with, say, the least value 

relative to the weights of the constraints, until all constraints are satisfied. The second 

approach is to introduce a penalty function into the cost function so that an infeasible solution is 

penalised and its value degraded. Despite the penalty function being critical to the EA's search 

capability, its design in the past has tended to be ad hoc. In early attempts at solving 

Constrained optimisation problems using EAs, the penalty was made harsh so that the EA 

would avoid the infeasible regions of the solution space. However, when such a scheme is 

employed, the EA receives little infOlmation from the infeasible solutions upon which to base 

its search. For example, it may be that a number of invalid solutions exist for which a single 

rnUtation will produce not only a valid solution, but an optimal solution, and yet, despite this, a 

'harsh' penalty function will give the EA misleading search infOlmation, and make it difficult 

fOr the EA to find the optimal solution. Conversely, the penalty function must not be 'over-

tolerant' . ffi· I 1 .. f 1 ·1· ·11 . . SInce infeasible solutions possessing a su lClent y arge ml la uti Ity Wl mamtam a 

high utility after application of the penalty with the consequence that the population may end up 

being d . . . fi ·bl I· omInated by a large number of high-fitness, 111 east e so utlOns. 

A utility function for the knapsack problem which employs a simple penalty function is 

ShOWn below. The penalty function involves the product of a constant penalty coefficient, P, 
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and a function of the error terms, ej-

n N 

max L ViXi - P L eJ 
i=! j=! 

where n n 

10-L WijXi if L WijXi > 10 
i=1 i=1 

o otherwise 

However, even for simple penalty functions like this, selecting the value of the penalty 

coefficient is difficult and, more often than not, to be on the safe side, the value will be made 

large, thus making the penalty function harsh. However, as [Richardson, et aI, 89] note, 

graded (variable) penalties are better than constant harsh ones. Such a variable penalty scheme 

is the lagrangian relaxation heuristic used by [Klincewicz and Luss, 86], on the capacitated 

facility location problem with single-source constraints. This entails calculating a Lagrangian 

Inultiplier,~, for each constraint in the problem as follows: 

'1 . a (Vul'l'er - Vlower )ej 0 Aj = Max I\.J - !' 

(feJ)2' 
J=! 

Where ex is a positive scalar (0.25 had previously been used with success), 

V. . 
Upper IS the best known upper bound on the solution, found by 

n 

Vm3X= LVi 
i=! 

YIower is the best known lower bound, which is set to the best feasible solution to date. 

A. third method of dealing with constraints, and one not previously used in connection with 
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EAs, is that of alternating the evaluation function every g generations between optimising the 

value of a solution regardless of constraint violations, and minimising the constraint violations 

regardless of the objective function's value. By doing this, it would be hoped that only 

feasible, high strength solutions will survive over a number of generations. 

In this experiment four methods of maintaining the capacity constraint were compared. 

These were: 

(i) 

(ii) 

(ui) 

incorporation of a genetic operator into the evaluation function to remove items from an 

invalid solution until it is valid. The items to be removed were selected by removing 

those with least relative value where 

Relative Valuei = ~ 
LWij 
j=l 

employing a constant penalty function of the form: 

n N 

Vi = L ViXi - WOOL eJ 
i=1 j=1 

where V is the fitness of a solution and ej is the en'or term; 

using a variable penalty function with the penalty coefficients found by using the 

Klincewicz and Luss method, and a set to 0.25; 

(iv) alternating the evaluation function between optimising the solution value and 

minimising constraint violations. A range of values of g was tried with the results 

presented here being those derived for the period that was generally found to work 

best, namely altemating every generation (ie. g=l). 

The results dedved from perfOlming the aforementioned trials using, in turn, each of these four 
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schemes are shown in Tables 2.2 to 2.4, where the figures in parenthesis represent the 

percentage difference from the highest value of the four methods. 

Table 2.2: Experiment 1 - Best of Best-so-far 

Problem No. 1 2 3 4 5 Av. error 

Fixed Penalty 4015 6110 12270 10336 15946 
Coefficient (0.0) (0.2) (1.1) (0.4) (1.1) 0.6 
Variable Penalty 4015 5990 12310 10347 16117 
Coefficient (0.0) (2.2) (0.7) (0.3) (0.0) 0.6 
Oscillating 4015 6090 12190 10378 15770 
Evaluation Fn. (0.0) (0.5) (1.7) (0.0) (2.2) 0.9 
'Item Removal' 4015 6120 12400 10285 16020 

l.Qperator (0.0) (0.0) (0.0) (0.9) (0.6) 0.3 

Table 2.3: Experiment 1 - Best On-line 

Problem No. 1 2 3 4 5 Av. error 

Fixed Penalty 3668 5152 10581 9085 13624 
Coefficient (1.3) (11.1 ) (10.7) (0.5) (8.1) 6.3 
Variable PenallY 3717 5120 10503 8928 14092 
Coefficient (0.0) 01.8) (11.5) (2.3) (4.5) 6 
Oscillating 1699 2606 4934 4310 6549 
Evaluation Fn. (118.8) (119.7) (137.4) (111.9) (124.8) 122.5 
'Item Removal' 3672 5726 11715 9134 14724 
~tor (1.2) (0.0) (0.0) (0.0) (0.0) 0.2 

Table 2.4: Experiment 1 - Best Off-line 

Prohlem No. 1 2 3 4 5 Av. error 

Fixed Penalty 4003 6012 12080 10215 15676 
Coefficient (0.2) (1.7) (2.0) (0.0) (1.8) 1.1 
Variable Penalty 3987 5965 12130 10177 15955 
Coefficient (0.6) (2.5) (1.5) (0.4) (0.0) 1 
Oscillating 3980 5988 11939 10131 15646 
Evaluation Fn. (0.8) (2.1) (3.2) (0.8) (2.0) 1.8 
'Item Removal' 4012 6116 12316 10100 15874 
&.rator (0.0) (0.0) (0.0) (1.1) (0.5) 0.3 

The results show that for all three performance measures, incorporating problem specific 

knOWledge in the fOlm of an operator to correct invalid solutions, namely the 'Item Removal' 
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operator, can significantly improve peliormance. 

The results also show that there is little difference between the use of constant and 

variable penalty functions - the former producing slightly better on-line perfonnance and the 

latter producing a slightly better off-line pelionnance. 

The reason for this is as follows. The harsh fixed penalty keeps the EA away from the 

infeasible region of the search space by severely penalising any infeasible solutions. On the 

other hand, the variable penalty function allows infeasible solutions, especially those close to 

the infeasible/feasible border, to gain some credit and therefore, these solutions have a chance 

to affect further generations. Consequently, the population will tend to have a greater number 

of infeasible solutions and so on-line perfOlmance will suffer. However, the areas searched by 

the EA with this added information from infeasible solutions should be more fruitful and 

therefore produce better solutions and lead to an increase in off-line pelionnance. 

For all performance measures, the alternating evaluation function scheme generally 

produced the poorest results. This is due to a number of reasons, the main one being that the 

alternating function does not allow useful building blocks to be gradually developed. Instead, 

a building block which is useful under one of the functions may be replaced on a subsequent 

generation by an infelior building block which is better for the altemative evaluation function. 

2.4.3 Experiment 2: An investigation into the selection of partners for mating 

In the EA d . h d' d' . use for these trials, a mating pool is generated m t e repro uctlOn stage an It IS 

from th' h ' IS t at one of the two parent strings for each crossover IS selected, the second parent 

being sel' . d ' h' 1 ' h' I . ccte randomly from the original population. An alternauve to t IS W lIC IS a so m 

common . f' f h ' I h Use IS to select the second parent, as well as the lrst, rom t e matmg poo , t us 

giVing a I' S h .. I greater bias towards the exploitation of useful so uuons. omew at surpnsmg y 

hOWeve h . r, t ere appears to have been little work into any other schemes besIdes these two for 
the sele . 

ctlon of the second parent. In this section, two alternatives for selecting the second 

Parent b , oth of which use ideas from partner selection in nature, are suggested and 

InVestigated. 
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The first alternative scheme is derived from the common dominance hierarchy set up 

within herds of animals such as mountain sheep, in which the "best" male is found through a 

series of competitions (such as the ramming of heads until the opponent submits). The animal 

which proves dominant then has the first rights to any reproductively active female. This herd 

leader approach can be implemented easily in an EA by always mating the fIrst parent with the 

generation's current best member. Another novel approach which is similar to a cross 

between the herd leader and ranking methods, is based on a rare method of sexual selection 

found in several unrelated species called the lek [Gould, 82]. In a lek community, males 

initially gather to fonn an integrated matrix of tiny individual tenitOlies which are painstakingly 

acquired and militantly defended. Subsequently, mating success is strongly biased toward the 

One male in the centre, which generally performs 50-75% of the copulations. The immediate 

neighbours perfonn the remaining matings, while any other males do not mate at all. Within 

the Context of this study, this scheme is implemented by performing herd leader mating for 

50-75% of the time and on the other occasions, mating takes place with either the second or 

third best members of the population (equal probability of either occurring). 

Four tIials were perfOlmed (using the same test problems as in Experiment 1) in which 

the second parent in every mating was, in turn, selected as follows: 

(a) randomly from the original population; 

(b) stochastically from the Oliginal population using relative fitness as the guide for 

selection; 

(c) using the herd leader strategy; 

(d) using the lek method. 

lbe results from these trails are shown in Tables 2.5 to 2.7. 
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Table 2.5: Experiment 2 - Best of Best-sa-far 

Problem No. 1 2 3 4 5 Av. error 
Random 4015 6110 12270 10336 15946 

(0.0) (0.0) (0.4) (1.7) (1.3) 0.68 
Relative Fitness 4015 6100 12170 10418 15962 

(0.0) (0.2) 0.2) (0.9) (1.2) 0.7 
HerdLeadcr 4015 5920 12320 10449 16155 

(0.0) (3.2) (0.0) (0.6) (0.0) 0.76 
LekMethod 4005 6090 11770 10507 15865 

(0.2) (0.3) (4.7) (0.0) (1.8) 1.4 

Table 2.6: Experiment 2 - Best On-line 

Problem No. 1 2 3 4 5 Av. error 

Random 3724 5187 10637 9193 13817 
(7.0) (14.6) (13.3) (11.7) (13.6) 12.0 

Relative Fitness 3863 5693 10996 9374 14211 
(3.2) (4.4) (9.6) (9.5) (10.5) 7.4 

Hew Leader 3988 5651 12047 10201 15701 
(0.0) (5.2) (0.0) (0.6) (0.0) 1.2 

LekMcthod 3922 5946 11441 10267 15415 
(1.7) (0.0) (5.3) (0.0) (0.9) 1.8 

Table 2.7: Experiment 2 - Best Off-line 

Problem No. 1 2 3 4 5 Av. error 

Random 4003 6012 12080 10215 15676 
(0.2) (0.8) (1.7) (2.2) (2.6) 1.5 

Relative Fitness 40()<) 6061 11998 10353 15844 
(0.1) (0.0) (2.4) (0.8) (1.5) 1.0 

Hew Leade'f 4013 5771 12288 10398 16079 
(0.0) (5.1) (0,0) (0.4) (0.0) 1.1 

Lek MCtllod 3997 6063 11696 10439 15795 
(0.4) (0,0) (5. t) (0.0) (1.8) 1.5 

Table 2.5 shows that for the best-so-far performance measure, there is little to choose between 

Illeth d o s at band c. The lek method appears to perform rather badly compared to the others 

~tili' . 
IS may be largely attributed to the relatively poor results It produced for problem 3 -

OtherWise, its performance was largely in line with the other three methods. Not surprisingly, 

sirnila 
r conclusions are also reached when gauging pcrfOlmance by the off-line results (Table 
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2.7). However, the on-line peIformance figures (Table 2.6) paint a very different picture with 

the two alternative suggestions, namely the herd leader and lek methods, both demonstrating 

far superior performance to the two standard schemes - this being largely a result of the 

exploitative rather than explorative nature of the herd leader and lek methods. 

Thus, the results have shown that for the problems used in these trials, significant gains 

In on-line performance were gained from adopting alternative selections schemes, without 

detriment to the off-line perfOlmance of the EA. 

2.4.4 Experiment 3: An investigation into alternative crossover operators 

Within the EA community, a great deal of attention has been paid to the design of alternative 

genetic operators which improve the effectiveness of an EA and since crossover is the most 

Important genetic operator, this has been the focus of much of the interest. 

As mentioned in Chapter 1, probably the most promising valiant of the standard I-point 

crossover to have been suggested is Uniform crossover [Syswerda, 89]. In some cases 

though, a simple operator such as I-point crossover is preferable. Such a situation occurs 

When the bits of a problem encoding are ordered so that related bits are physically grouped 

together, as in Grefenstette's Clustering operator [Grefenstette, 87c] where cooperative rules 

are set together to facilitate rule discovery in a classifier system. In such a situation, I-point 

crossover is likely to leave favourable values together whilst uniform crossover would most 

likely destroy favourable groupings. However, one problem with I-point crossover is that on 

sOme occasions, the crossing point may be selected such that the two segments exchanged 

between the parents are identical, thereby producing offspring which are no different from their 

parents. For example, given the two parents below, if a crossing point of less than 8 or greater 

than 20 is chosen, then the offspring are identical to the parents and the operation is said to be 
, 
Wasted' . 

Parent A: 

Parent B: 

001011101001001110110100101 

001011100010110111010100101 
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One approach for overcoming this problem which is suggested and investigated here is to use 

What will be refelTed to as the string-oJ-change method7• In this, the Exclusive-OR (XOR) 

operation is applied to the two parent strings producing a third string, s. If there are fewer than 

two non-zero digits (that is, '1 's') in s, then irrespective of where the crossing point p is 

chosen, the two offspring will be identical to the parents. However, if s contains two or more 

non-zero digits, then a crossing point selected between the first and last non-zero digits will 

ensure that the offspring are different to their parents. 

ProoJ: 

If p is selected to the left of the first' l' in s, then all bits in parent 1 to the left of p must be 

identical to the equivalent bits in parent 2. Although it is traditional within EA applications to 

exchange the sections to the right of the crossing point, exactly the same offspring are 

produced by exchanging the sections to the left. Therefore, the crossover is effectively 

eXchanging two identical sections and so fails to produce new offspring. Similarly, if pis 

selected after the last' l' in s, then the crossover will also fail to produce any new offspring. 

However, if p is selected between the first and last non-zero digits in s, then there must be at 

least one bit different between either of the sections to be exchanged, and so 'new' offspring 

111ust be produced. 

For example, given the two parents A and B, s would be 

000000001011111001100000000 

and so a crossing point selected between the ninth and nineteenth positions will result in 

OffsPring which are different to both A and B. The following analysis [Fairley and Yates, 92] 

Shows that for strings of length greater than 10, this modification reduces the probability of a 
, 
Wasted' crossover to virtually zero. 

----------------------7 S· 
13 !nce performing the work reported here on the string-of-change method, earlier work by 
b ooke~ and repOlted in [Booker, 87] on a similar approach, the reduced surrogate method, has 
een dIScovered. 
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Given two parent strings Sand T, of length /, and a randomly selected crossing point, 

p, the probability that p leads to a 'wasted' crossover is the probability of all bits to the left of p 

being identical in both parents, plus the probability of all bits to the right of p being identical, 

less the probability of both occuning. That is, 

Therefore, the probability that any particular crossover is wasted is 

Conversely, if the crossing point is selected with the string-of-change method, the probability 

that any crossover is wasted is only 

Figure 2.1 shows how these two probabilities compare for stlings of lengths up to 30 bits. 
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Figure 2.1: Probability of a 'wasted crossover' 

A.lthough variations on existing operators may improve the search of the EA, the operation 
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performed remains the same it1"espective of the environment. Consequently, there are likely to 

be occasions when the operator is inappropriate. For example, a crossover operator which 

causes a great deal of dislUption in the population (that is, it exchanges many sections) is likely 

to be unsuitable in the first few generations when it is necessary to exploit useful solutions to 

generate the building blocks from which useful solutions can be created. Conversely, an 

operator which causes little disruption is likely to be unsuitable for later generations when the 

Population has almost converged and there is little extant variation. Thus, what is required are 

adaptive operators which are able to change their modus operandi to be appropriate for the state 

of the population upon which they operate. 

Adaptive operators have been previously suggested on a number of occasions. One 

idea investigated by [Sirag and Weisser, 87] employed ideas from Simulated Annealing 

[Reeves, 93] to select appropriate crossing points, whilst another scheme, suggested by 

[Schaffer and Morishima, 87], involved encoding the crossing points at the end of the . 
lUelUbers which they produced. In this second scheme, it would be hoped that as particular 

crOSSing points become more beneficial, this would be reflected in the fitness of the offspring 

they produce and so the crossing points would be passed on to further generations. However, 

it is the author's belief that this method is likely to suffer from the common EA problem of 

getting stuck at local optima since crossing points producing offspring which would move the 

search away from a local peak would not be as fit as those which produced no change and 

hence, the useful crossing points would die off. 

A similar idea to that of Schaffer and Morishima is proposed here. An operator which 

enCOdes crossing points but maintains these in a separate population structure and uses a 
d' 
Ifferent means of evaluation is suggested. This operator will be refel1"ed to as the Lamarckian 

crossover operator to reflect the current proliferation of the term Lamarckian in the EA 

cOlUrnu' . . al' I" • nay 10 descIibing features of an EA which use enVIronment InlOrmatIon. 

To implement the Lamarckian crossover operator, two distinct populations of strings 

are rnaintained. One of these is the solution population, whilst the other, the template 

POPulation, is a population of crossover templates, as described in [Syswerda, 89]. After both 
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populations are randomly initialised, the EA proceeds as usual but when crossover occurs, a 

template is selected at random from the template population to perform the crossover. Each 

template has as its measure of fitness a diversity rating which is used to assess how successful 

that template has been at producing offspring which are different from their parents. This is 

very different from the traditional idea, such as that used by Schaffer and Morishima, of using 

the fitness of the offspring relative to their parents to judge the success of a crossover. This 

diversity rating, set to 1.0 for every template during the initialisation process, is then updated 

after crossover by using 

diversity rating after crossover = 
( c . diversity rating before crossover) + success of crossover 

Where success of crossover is the percentage of bits in the offspring which are different to 

those of its most similar parent, and c is a constant in the range 0~c<1 used to give a weighting 

to the previous results. In common with other weighting factors used in other areas of EA 

research, such as the bid co-efficient in a classifier system, c was set to 0.9 (that is, 90%). 

This process continues for n generations (11=5 was used with success) of the solution 

POpulation until the template population itself is subjected to the selection and mating stages of 

an EA. The selection process lIses the diversity rating to represent each template's fitness; the 

greater the diversity rating of a template, the more likely it is to be selected for reproduction, 

whilst the reproduction phase employs standard mutation (probability = 0.001) and I-point 

crossover (probability = 0.75) to generate new templates. After mating, the diversity ratings of 

the new templates are reset to 1.0 and the whole process repeated. By performing crossover in 

this Way, it is envisaged that, as the search of the EA focuses upon profitable areas of the 

search space, the crossover templates will co-evolve to bias crossover away from those areas, 

and thus avoid premature convergence. 

The trials that were perfOlmed in Experiments 1 and 2 were repeated using, in turn, the 

foUo . 
WIng five crossover operators: 
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(a) I-point crossover; 

(b) string-of-change crossover; 

(c) 2-point crossover; 

(d) uniform crossover; 

(e) Lamarkian crossover. 

The results from these trials are shown in Tables 2.8 to 2.11. 

Table 2.8: Experiment 3 -Best of Best-sa-far 

Problem No. 1 2 3 4 5 Av. error 
I-point 4015 6110 12270 10336 15946 

(0.0) (0.0) (0.9) (0.2) (1.5) 0.5 
Slring-of-chmlge 4015 6060 12200 10352 15917 

(0.0) (0.8) (1.5) (0.0) (1.7) 0.8 
2-point 3885 5900 12330 10232 15856 

(3.3) (3.6) (0.4) (1.2) (2.1) 2.1 
Uniform 4015 6030 12185 10267 16193 

(0.0) (1.3) (1.6) (0.8) (0.0) 0.7 
Lamarcki,Ul 4015 6050 12380 10329 16160 

(0.0) (1.0) (0.0) (0.2) (0.2) 0.3 

Table 2.9: Experiment 3 -Average Best-sa-far 

Prohlem No. 1 2 3 4 5 Av. error 
I-point 4003 5740 11896 10124 15374 

... (0.0) (3.9) (1.2) (0.9) (2.1) 1.6 
Slring-of-chrulge 3984 5816 11822 10176 15541 

(0.5) (2.5) 0.9) (0.4) (1.0) 1.3 
2-point 3718 5415 11402 9g79 14782 

(7.7) (10.1) (5.6) (3.4) (6.2) 6.6 
Unifonn 3973 5g34 11898 10136 15380 

(0.8) (2.2) (1.2) (0.8) (2.1 ) 1.4 
L.:'Unarckiml 3959 5963 12044 10215 15700 

.... (1.1) (0.0) (0.0) (0.0) (0.0) 0.2 
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Table 2.10: Experiment 3 - Best On-line 

Problem No. 1 2 3 4 5 Av. error 

I-point 3724 5187 10637 9193 13817 
(0.0) (3.2) (1.2) (0.6) (4.1) 1.8 

String-of-change 3719 5259 10353 9143 14032 
(0.1) (1.8) (4.0) (1.1 ) (2.5) 1.9 

2-point 3544 5280 10717 9246 14387 
(5.0) (l.4) (0.5) (0.0) (0.0) 0.5 

Uniform 3692 5150 10343 9175 13857 
(0.9) (4.0) (4.1) (0.8) (3.8) 2.7 

Lamarckian 3690 5354 10767 8977 14026 
(0.9) (0.0) (0.0) (3.0) (2.6) 1.3 

Table 2.11: Experiment 3 - Best Off-line 

Problem No. 1 2 3 4 5 Av. error 

I-point 4003 6012 12080 10215 15676 
(0.0) (0.2) (0.8) (0.3) (2.1 ) 0.7 

String-of-change 4001 5936 12097 10248 15673 
(0.1) (1.5) (0.6) (0.0) (2.2) 0.9 

2-point 3809 5851 11490 9973 15535 
(5.1) (3.0) (6.2) (2.8) (3.1) 4.0 

Ul1ifonn 3997 6018 11994 10210 15947 
(0.2) (0.1 ) 0.5) (0.4) (0.4) 0.5 

Lamarckiml 4004 6027 12179 10176 16013 
(0.0) (0.0) (0.0) (0.7) (0.0) 0.1 

'fhe tables show that for all measures of effectiveness, the Lamarckian operator produces by far 

the best results, whilst the 2-point crossover operator tends to produce the worst perfOlmance 

of the five operators tried. Table 2.8 appears to indicate that of the other three operators, 1-

Point crossover produces the highest best-so-far peliormance. However, when the average 

rather than the best, best-so-far performance is calculated (Table 2.9), it shows that the string

Of-change method is superior. As for the other performance measures, Tables 2.10 and 2.11 

Show that uniform crossover tends to produce the worst on-line, and the best off-line 

perfonnance, whilst the two forms of I-point crossover (simple and string-of-change) produce 

roughly equivalent on-line and off-line results. 

These results demonstrate that an adaptive crossover operator, in the form of a 

POPulation of co-evolving templates, can significantly improve the performance of an EA 
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compared to more traditional operators due to its ability to avoid premature convergence. Such 

adaptive operators can be especially useful in GBML systems where they can be used to guide 

the generation of new rules, rather than relying on purely random changes. Unfortunately, 

such an operation is much more expensive in terms of both time and space, and so in some 

cases, it may be more appropriate to use one of the simple operators. Out of these, 2-point 

crossover produced good on-line results but was poor in other performance measures whilst 

both string-of-change and unifonTI crossover generally improved upon 1 point crossover with 

regard to best-so-far and off-line perfonTIance. 

2.4.5 Experiment 4: An investigation into mutation rates 

2.4.5.1 Some alternative mutation schemes 

Like crossover, mutation has been widely investigated by many researchers in the EA 

community. However, because of its very simple nature, the mutation operator itself has not 

received much attention, except in situations where tailored operators are required for specific 

encOdings (eg. finding a mutation operator which produces a legal tour in the Travelling 

Salesman Problem [Michealewicz, 92] ). Instead, most research has concentrated on finding 

OPtimal mutation rates (see, for example, [Fog arty, 89b], [Grefenstette, 86]). Finding such 

rates is often overlooked but is an important part of a EA because a rate which is too low would 

lead to no new variants being introduced, whereas too high a rate would lead to a loss of 

adaptation. Therefore, some intermediate value that is an optimum for the problem, in the sense 

of enabling solutions to evolve rapidly without imposing an excessive level of deleterious 

mUtation, is necessary. In practice, such a level is found by trial and error but becomes 

redundant every time either the problem, or the EA itself, is changed. Some research has 
de' 

nved general formulae for automatically generating mutation rates (see, for example, [De 

Jo
ng

, 75], [Harvey, 92] and [Schaffer, et aI, 89]) but such formulae provide only rough 

gUidelines and are unlikely to be useful for more than a small number of problems. 
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An altemative which has many attractions because of its affinity to natural events is the 

Use of a mutation rate which is dynamic and evolves throughout the run of an EA. To date, 

only a small number of studies have investigated adaptive mutation rates in an EA. These 

studies include the work of [Coy ne, 92], in which the mutation rate was steadily increased 

from a small base value to a maximum after a set number of generations, [Reeves, 92], in 

which the mutation rate was set to be inversely proportional to the population diversity, and 

[Back, 92], in which mutation rates are incorporated in the genetic representation of the 

individuals. Further insight into adaptive mutation rates can also be gained from the work on 

ESs by the team of scientists based at the University of Dortmund in which the variance in the 

algOrithm (as determined by the mutation rate) is varied according to the 115 success rule 

[Back, et aI, 90]. However, because of the lack of work in this field, it was felt that a more 

extensive investigation would be profitable. On account of this, six alternative schemes were 

deVised. These are: 

(a) On-line mutation 

With this method, the mutation rate is dependent upon the change in on-line performance 

between generations, and is calculated by 

P _c(u/lI(n+l))-2 
mUl - 1 

(jfll(n) 

where @In(n) is the on-line performance after generation n, Cl is a small constant and the 

POWer of 2 was adopted to place a greater emphasis on the value of the relative on-line 

performances. The mutation rate will therefore be at its highest value of Cl when there is no 

Change in on-line perfolmance, while any improvement will reduce Pmut in proportion to the 

improvement in performance. The rationale for using this operator is that when there is little or 

no improvement in the on-line perfOlmance of the EA, it is an indication that there needs to be a 

fresh injection of new alleles into the population and so the mutation rate should be increased. 

This is typical of the situation wherein the population has converged on a small number of 
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solutions. However, when on-line performance is rising (that is O)on(n+l) > O)on(n) ), 

mutation does not need to occur at such high levels and so P mut is reduced to below the value 

of Cl. 

(b) Off-line mutation 

This is the same as the above on-line mutation method except that off-line perfonnance, (Ooff, is 

used to generate the new mutation rates instead of (Oon, and the rational for its use is analogous 

to that for on-line mutation. 

(c) Diversity Mutation 1 (DMl) 

For this and the next two operators (DM2 and DM3) a value called the diversity measure, D, is 

used. This is calculated at the end of each generation but prior to mutation being perfonned, 

and is the total number of loci within the population which are not 'fixed', where a 'fixed 

locus, implies that every solution in the population has the same allele value at that locus. For 

diversity mutation method 1 (DMI), the diversity measure is used in the following formula to 

generate the appropIiate mutation rate to be applied at the end of each generation: 

PmUI = C2(N - D) 

where N is the number of items in the knapsack (ie. the string length) and C2 is a small 

constant. The rational for using this operator is that it would be desirable for the mutation rate 

to increase as the population diversity decreases. Consequently, with DMl, the mutation rate 

Increases linearly with a fall in diversity. 

(d) 
Diversity Mutation 2 (DM2) 

For the DM2 method, the mutation rate is inversely propOltional to the diversity measure,with 

the formula being: 
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C3N 
Pmut=--

D 

where C3 is a small constant. This operator has the same effect as DM 1 on the mutation rate 

except that the rate increases exponentially with a decrease in diversity rather than linearly. 

Moreover, the minimum value of Pmut is C3 with DM2, rather than zero, which is the case with 

DMl. 

(e) Diversity Mutation 3 (DM3) 

For the DM3 method, the diversity measure is used as follows: 

where C4 as a small floating-point constant, and Cs is a small integer constant. The rational for 

using this operator is speculative - to see if there is any benefit in a mutation rate which acts in 

the OPposite manner to DMl and DM2 by maintaining a high initial mutation rate and lowering 

it as diversity decreases. 

(t) Individual Mutation 

This scheme. which has many similarities to that investigated in [Back. 92]. is based on the 

Way that mutation occurs in some natural systems. In these. the mutation rate is determined by 

the enzymes that replicate and repair DNA. and as enzymes themselves are coded by genes. 

they too are subject to selective pressure and recombination operators in the same way as the 

rest of the chromosome. Therefore. rather than having a single global parameter which is 

applied to the population as a whole. each individual with this method is subject to mutation at 

its Own individual rate. This mutation rate is passed on with an individual if the individual is 

selected for the mating pool. and should that individual be subsequently subject to crossover 

With another member. then either (a) the new child inhelits a mutation rate somewhere between 

the mutation rates of the 2 parents. or (b) the child inherits. with equal probability. the mutation 

fate of either parent. These will be referred to as methods IM 1 and 1M2 respectively. 

It is thus hoped that those individuals which have both a good phenotypic value and a 
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profitable mutation rate will become prolific within the population, and therefore, the need to 

have a global mutation rate would be avoided. 

2.4.5.2 Results 

(a) On-line and Off-line mutation 

The experiments described earlier were repeated using the two mutation schemes which employ 

on-line and off-line performance to derive the mutation rate, and the average value of the 

mutation rate for each method was detennined. These are shown in Figure 2.2. 
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Figure 2.2: Variation in mutation rate for on-line (dotted) and off-line (solid) 
mutation using C}=O.OOl on problem 5. 

As this graph shows, the mutation rate under both schemes rapidly converges (within 5-10 

generations) to the value of the constant Cl. This is because after the first few generations, the 

difference in both on and off-line perfOlmance bctween generations is fairly minor. Hence, the 

ratio of perfOlmancc measures is approximately unity and so the mutation rate quickly settles at 

Cl. 

Predictably, when results using both of these schemes were compared, with a fixed 
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mutation rate of 0.001, there was very little difference, with the fixed scheme showing slightly 

better off-line perfOlmance (due to the greater number of mutations early on) and slightly worse 

on-line perfOlmance compared to the two perfOlmance related schemes. 

(b) Diversity Mutation 1 

The observed values for the mutation rates for various values of C2, again averaged over 10 

trials of problem 5, are shown in Figure 2.3. 
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Figure 2.3: Variation in mutation rate of DMI for different values of C2 

As the graphs in Figure 2.3 show, for the first 5-10 generations no alle1es are fixed and hence 

the mutation rate is zero. The next few generations show a rapid rise in mutation rate due to 

several loci becoming fixed, before oscillating about an equilibrium level. 

If the level at which the mutation rate reaches an equilibrium state can be formulated and 

its dependent variables found, then its behaviour can be better understood. An approximation 

to the equilibrium rate can be found if we assume that when the constant C2 is very small, then 

the population will be very close to total convergence, ie. almost every allele value at each locus 

win be the same. Therefore after mutation, 
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Also, 

Number of fixed loci,! = N - N.I1. Pmut 

and 

=N(1 - n.PmuU 

Diversity, D = N -! 

!=N-D 

Pmut = ( N - D) C2 

D =N - (Pmutl C2) 

! = Pmutl C2 

At equilibIium, (1) and (2) are equal, so 

N ( 1 - 11. P mut) = Pmut I C2 

(1) 

(from definition of P mut) 

(2) 

(3) 

This formula is con'ect in cases where C2 is very small and only a very small number of loci on 

aVerage are changed every generation. This is demonstrated by comparing the bottom graph in 

Figure 2.3 (C 2=0.00001, /1=50 and N=50) to the predicted value - both being identical at 

p mut=0.0005. However, when the equilibrium mutation rate is large enough to produce 

several mutations per generation, the equilibrium diversity is larger and it would be expected 

that half of the non-fixed loci would survive to the next generation, and so the mutation rate 

need only be approximately half of that predicted, namely 

Pmut = ( N. C2) 12( N.n,C2 + 1) 

Table 2.12 shows the expected values of Pmut against those observed when N=50 (problem 5) 

and 11=50. 
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Table 2.12: Comparison of observed and predicted 

equilibriul11 mutation rates for DM1 

C2 Prob. MUL:1tion Observed Value 

0.0001 0.002 0.002 
0.0002 0.003 0.003 
0.0005 0.006 0.005 
0.001 0.007 0.007 

As the results show, the formula gives a good approximation to the expected equilibrium 

mutation levels for various values of C2. The formula also allows the effects of varying the 

two other factors which combine to give the value of Pmuh namely the string length N and the 

Population size n, to be predicted. According to the formula, Pmut should increase with 

lUcreases in N but decrease with increases in n. These observations were found to be correct 

when the values of nand N were varied, the results being shown in Figures 2.4 and 2.5. 
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Figure 2.4: Variation in mutation rate for DM1 for values of population size, n 
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Figure 2.5: Steady state mutation rate for DMI for values 

of string length (problem size) 

The performance of OMI, relative to that of a fixed mutation rate, can be determined by 

comparing the results using various values of N, nand C2 for OM I with fixed rates set to the 

equivalent equilibrium levels. However, this puts the results of the OMI method at a 

disadvantage since OMl will be making fewer mutations overall. Therefore, it was felt that the 

best way to compare the two schemes was to run an EA using DMl and record the actual 

number of mutations made. This value, averaged over 10 trials, then gives a fairly good 

estimate of the average number of mutations performed on anyone trial and from this, the 

average mutation rate to be used in a fixed scheme can be determined and the results of the 

fixed and DMl methods compared. 

Twenty five sets of results were compared (5 values of C2 for each of the 5 problems 

With N constant at 50) using the 6 measures of effectiveness previously described. The results 

showed that there was no significant improvement in using OMl compared to a standard fixed 

mUtation rate. 

(c) Diversity Mutation 2 

The family of mutation rates generated by varying the value of C3 and keeping Nand n 
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constant (both at 50) are given in Figure 2.6 below. 
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Figure 2.6: Variation in mutation rate for DM2 for values of C3 

As the graph shows. with this method there is initially a mutation rate of C3 since 

Prnut==N.C3ID and during the initial generations D=N. As some of the loci become fixed, the 

diversity will drop and the mutation rate will subsequently rise. However. this is a much 

more gradual increase than with the DM 1 method since each drop in diversity only increases 

the mutation rate by 1 CYJ/ N percent. and hence, the time taken to reach an equilibrium level is 

Significantly longer. 

To find an expression to give an approximate value for the equilibIium mutation rate for 

DM2. using analogues to that of DM 1, 

/=N( I-n. Pmud 

but this time • D = N. C3 I Pmut (from definition of mutation rate) 

therefore , 

. At equilibrium, 

N ( 1 - n.Pmut) = N ( 1 - C3 / Pmut ) 
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n. Pmut = C3 / Pmut 

1 

(C3)2 PmUl = -;; 

Again, in practice only half of this is needed and so 

. and Table 2.13 shows the expected values of Pmut against those observed when N=50 

(problem 5) and n=50. 

Table 2.13: Comparison of observed and predicted 

equilibrium mutation rates for DM2 

C3 Mutation Probability Observed Value 

0.0001 0.0007 0.0005 
0.0002 0.001 0.0008 
0.0005 0.0016 0.0013 
0.001 0.0022 0.002 

As the results show, the formula gives a fair approximation to the expected equilibrium 

mutation levels for various values of C3. One interesting factor of the formula is the 

implication that the equiliblium rate is dependent only upon C3 and population size, n, and is 

independent of the string length N. Figure 2.6 has already shown that the equiliblium mutation 

rate increases as C3 increases. Moreover, Figure 2.7 demonstrates that, as predicted, the 

mutation rate falls as the population size rises, whilst Figure 2.8 shows that there is no direct 

relationship between N and mutation rate, once again, as predicted. 
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Figure 2.7: Variation in mutation rate for DM2 for values of population size, n 

0.0008 

0.0007 I 
~ 

0.0006 .... 
ca 

=:c:: 0.0005 
c 

0.0004 .:: .... 
0.0003 ca .... = 

~ 0.0002 

0.0001 

0 

0 2000 4000 6000 8000 10000 

Function Evaluations 

Figure 2.8: Variation in mutation rate for DM2for values of string length, N 

(solid=>N=50, dotted=>N=39, dashed=>N=28) 

Using the same method as was used to compare DM! with a fixed mutation rate, DM2 was 

also compared to a fixed rate. However, with this set of 25 results, a slight improvement upon 

the results achieved with the equivalent fixed mutation rates was obselVed. 
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Cd) Diversity Mutation 3 

The family of curves generated by varying C4 and C5 are shown in Figures 2.9 and 2.10 

respectively. 
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Figure 2.9: Variation in mutation rate for DM3for 

values of C4 with N=50, n=50, C5=2. 
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Figure 2.10: Variation in mutation rate for DM3 for 

. values of C5 with N=50, 11=50, C4= 0.0001 /50 Cs-1 
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These two graphs demonstrate that the mutation rate starts off at a value of C4.N (or C4.NCs if 

Cs is unadjusted) and continues at this level until the population diversity starts to fall (that is, 

some of the loci become fixed). At this point the mutation rate falls in proportion to the value 

of Cs, before, once again, levelling off at an equilibrium level. 

Results comparing DM3 with a fixed rate show that DM3 produces slightly worse 

results. Thus, the initial hypothesis that the mutation rate should rise, not fall, as the 

population converges, is confilmed. 

(e) Individual Mutation Rates 

The mutation rates averaged over 10 trials of problem 5 using both IMl and 1M2 are shown in 

Figure 2.11. In both expedments the initial mutation rate for each individual was generated 

randomly with normal distribution between 0.0 and 0.01. 
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Figure 2.11: Average mutation. rates when using 'individual 

mutation' with initial mean = 0.005 

The mutation rates shown in Figure 2.11 are typical of those generated using a number of 

different distributions of initial mutation rates. In all cases the final rate, not surprisingly, was 

77 



very close to the mean initial value (0.005 in Figure 2.11). This is mainly due to the fact that 

for the small mutation rates used (of the order of 1 in 1000), there is very little selective 

pressure between even relatively different mutation rates, and so the rate is virtually ignored in 

terms of selection. For the first crossover method, this simply means that because the mutation 

rate is chosen to be the average of the two parent rates, the overall rate rapidly converges to the 

initial average. However, with the second scheme, where one or the other of the parent rates 

survives, the hitch-hiking effect takes place and the population tends to converge on the rate 

which is associated with the first profitable solution - it is only when the average rate over 

several trials is calculated that the mutation rate appears to be close to the mean. 

2.4.5.3 Summary of Mutation Rate Experiments 

The results from this series of experiments suggests that using either on-line or off-line 

performance to vary the mutation rate during a trial is not worthwhile since despite being 

computationally expensive to calculate, within a short number of generations, the rate settles at 

a constant level. Of the diversity schemes, both DMl and DM3 perfOlmed poorly. The failure 

of DMl was due to a zero mutation during the first 5-10 generations, whilst the poor 

performance of DM3 was due to insufficient mutation occurring as the population neared 

Convergence. Also, assigning mutation rates to each individual proved unsuccessful since the 

problems were not of sufficient size for the various mutation rates to force any selective 

pressure towards an optimal rate. However, the performance of the DM2 operator did improve 

upon that of the standard scheme. Moreover, it appears to be useful in another respect since it 

adapts to a change in population size which may be advantageous if the population size 

fluctuates. 

2.4.6 Experiment 5: An investigation into other genetic operators 

As mentioned in Chapter l, of the other genetic operators which are applied to GA's, 

inVerSion is the most common. Howev~r. it is difficult to use the standard form of inversion 

With the knapsack problem because the change in the order of the items caused by inversion 
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would make crossover difficult to carry out, in much the same way that special operators have 

to be designed for the TSP to make crossover possible. Some experiments have been 

performed [Fairley and Yates, 92] on inversion-like operators which perform an inversion of 

part of the genotype therefore creating a new solution. However, whilst results with this 

operator were quite promising, the operator is not really an inversion operator but more like a 

modified mutation operator where several adjacent bits may be mutated together. Here, an 

operator which is more akin to an inversion operator is proposed. This operator, called 

ShUffle, when called every n generations, randomly generates a new order for the problem 

description (ie. objective function and constraints) and adjusts the encoding scheme 

accordingly, thus leaving the phenotype of each population member unchanged. 

The results comparing an EA using the shuffle operator every 10 generations to one 

Without the operator are shown in Tables 2.14 to 2.16. 

Table 2.14: Experiment 5 - Best of Best-so-far 

Prohlem No. 1 2 3 4 5 Av. error 

WiUlout Shuffle 4015 6110 12270 10336 15946 
(0.0) (0.0) (003) (0.5) (1.0) 0.36 

With Shuffle 4015 6100 12310 10387 16103 
(0.0) (0.2) (0.0) (0.0) (0.0) 0.04 

Table 2.15: Experiment 5 - Best On-line 

Prohlem No. 1 2 3 4 5 Av. error 

Without Shuffle 3724 5187 10637 9193 13817 
(0.0) (0.8) (1.7) (0.0) (1.3) 0.76 

With Shuffle 3579 5227 10815 9046 14003 

(4.1) (0.0) (0.0) (1.6) (0.0) 1.14 

Table 2.16: Experiment 5 - Best Off-line 

Prohlem No. t 2 3 4 5 Av. error 

WilllOut Shuffle 4003 6012 12080 10215 15676 

(0.2) (0.9) (0.7) (0.4) (1.2) 0.68 

Willl Shuflle 4010 6066 12166 10251 15869 

(0.0) (0.0) (0.0) (0.0) (0.0) 0.0 
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The results show that with respect to best-so-far and off-line performance, the EA using the 

shuffle operator produced by far the better results. The on-line performance tended to show a 

slight reduction in performance with this new operator, although this may be largely attributed 
i 

to the very poor on-line performance achieved with the shuffle operator on problem 1. 

Otherwise, the on-line performance achieved with the shuffle operator was largely in line with 

that achieved without it. 

2.5 Conclusions 

This chapter has presented the results from applying several experimental EA's to a series of 

knapsack problems. Although the results obtained are specific to the knapsack problems 

Investigated in this chapter, the following conclusions may be suggested: 

(a) based on the impressive performance of the REMOVE_ITEM operator, operators 

which rectify or improve invalid/poor solutions appear, under certain conditions, to be 

useful additions to an EA. In relation to GBML, this fact can be used in the situation 

where no rules match the extant state of the world model. For example, this result adds 

weight to the argument for altering existing rules rather than creating new rules at 

random, in the 'no match' situation. 

(b) in these trials, the use of Lamarckian operators has been shown to he beneficial to the 

search of the EA and such operators may prove useful in guiding the generation of new 

rules as opposed to employing purely random techniques. 

(c) incorporating environmental infOlmation into operator rates as well as their operation 

appears to, under certain conditions, improve system performance. This can be 
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investigated fUlther by incorporating such features in the operator rates of the proposed 

GBML system. 

(d) the results with the SHUFFLE operator demonstrate that using problem specific 

operators can, under certain conditions, be beneficial to the search of the EA. Thus, the 

use of operators specific to the representation scheme of the proposed system should 

also be considered in the design stage. 

(e) the results with the alternative partner selection schemes showed that schemes such as 

the Herd Leader and Lek methods can, in some cases, significantly improve the 

performance of the EA 
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3. Credit assignment in a simple classifier system 

3.1 Introduction 

In the previous chapter, one of the main components of a classifier system, the evolutionary 

algorithm, was implemented and a number of alternative designs investigated to determine if 

the effectiveness of the EA applied to the knapsack problem could be improved in any way. 

Following on from that work, the aim of this chapter is to investigate the other central 

component of a classifier system, the credit assignment algorithm, to see if the performance of 

this too can be improved. 

Since they are usually geared towards practical applications, classifier systems in 

general, and credit assignment algOlithms in particular, have received very little attention from a 

theoretical standpoint. Therefore, in an attempt to redress the balance, section 3.2 presents a 

stUdy in which a relatively new branch of mathematics called Evolutionary Game Theory 

(EOT) is used to analyse the evolution of a hypothetical rule set. 

The remainder of this chapter is devoted to investigating some of the practical problems 

aSSociated with credit assignment in classifier systems. To enable this investigation to be 

performed, a simple classifier system, SCSI, was implemented. Moreover, the problem upon 

Which the investigation would be based was chosen to be a simple 2-player military game 

called the Two Tanks Problem (TIP). Section 3.3 contains both a functional description of 

SCS I and a definition of the version of the TTP used for this investigation, together with some 

results from a study investigating a particularly important problem associated with classifier 

systems, that of assigning credit to simultaneously active rules. This work is then continued in 

section 3.4 where altemative credit assignment schemes are suggested as potential solutions to 

the problems identified. The relative metits of the new schemes are then investigated with the 

Consequent conclusions being repOlted in section 3.5. 
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3.2 Evolutionary stability in simple classifier systems 

3.2. 1 The need for some background theory 

To date, Classifier Systems have proved to be a most popular vehicle for the application of 

Evolutionary Algorithms in the field of machine learning (see, for example, [Booker, et al, 

89]). However, despite such widespread popularity, the vast majority of research involving 

classifier systems has focussed either on specific applications (see, for example, [Goldberg, 

83] and [Wilson, 87a]), or on means for improving the performance of certain of their 

Constituent elements, see [Yates and Fairley, 93], [Booker, 89] and [Riolo, 89a]. Arguably the 

mOst notable exception to this is the work performed by [Holland, 86a] which attempts the 

construction of a mathematical framework for learning in classifier systems. Notwithstanding, 

many of the more 'global' questions regarding classifier systems remain unanswered. One 

such question is: does a classifier system optimise the overall effectiveness of its plan, or the 

effectiveness of the individual rules which constitute the plan - at the possible expense of the 

plan itself? In the search for a suitable method with which to answer this and related questions, 

One approach which emerged as extremely promising was that of Evolutionary Game Theory. 

3.2.2 Evolutionary Game Theory 

The branch of mathematics known as Evolutionary Game Theory (EGT) [Maynard-Smith, 86] 

IS a relatively recent development, the motivation for which was the need for a theory which 

would "model evolutionary processes in populations of interacting individuals and explain why 

certain states of a given population are - in the course of the selection process - stable against 

perturbations induced by mutations" [p 1, Bomze and Potscher, 89]. Based upon pre

programmed behavioral policies called strategies, EGT differs from classical game theory in 

that the effectiveness of strategies are measured not in terms of utility, but fitness, and natural 

selection, rather than rationality, is used as a means for selecting strategy. 

In EGT, a population consists of individuals possessing but a single inherited trait, a 

Pure strategy, which is an in-built collection of behavioral characteristics selected from a finite 
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set of such strategies. The environment in which the individuals interact takes the form of a set 

of contests, in each of which, two randomly selected individuals from the population compete 

with one another, each playing its respective strategy. Each individual also has an associated 

'fitness measure' which represents that individuals effectiveness in the environment 

Evolution in a population occurs as follows. After a contest between a pair of 

individuals has been concluded, the outcome results in the rewards (payoffs), P and P', 

reflecting the success of the respective strategies adopted, being made to the two combatants. 

After a large number of such contests, an individual's average payoff cOlTesponds to its utility 

(fitness), and therefore, the relative fitness of each individual can be calculated. Using natural 

selection to replicate the individuals in proportion to their fitness, the next generation of 

individuals is generated, and by repeating this sequence, the population evolves over time. 

EGT provides a means of analysing evolving populations and can be used to determine 

Whether there exists a state wherein the distribution of the various strategies amongst the 

Population is in equilibrium. If such an equilibrium state does exist, the population is said to 

be evolutionarily stable and the collection of strategies is said to constitute an Evolutionarily 

Stable Strategy (ESS). 

The concept of an ESS may be clarified by the following example, the Hawk-Dove 

Game, taken from [Dawkins, 76]. In this game, the objective of each contest between 

randomly selected pairs of individuals from a population is to take control of territory. There 

are only two strategies that can be adopted by anyone of the population of identical 

individuals. These two strategies are called hawk and dove. In a contest, any individual 

adopting the hawk strategy will, at the risk of injury, attack its opponent in order to gain 

territory. However, an individual adopting the dove strategy will not risk a confrontation, and 

so, in the face of an aggressive opponent (that is, one playing a hawk), will retreat and remain 

unscathed. If two hawks meet, they will fight and one will emerge the winner, whilst the other 

Will sustain injury. If two doves meet, each will evade the other until ultimately, one wins by, 

almost accidentally, being in control of the tenitory. 

After a confrontation, both contestants are given a 'reward' consistent with their 
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performance. There is a reward of 50 points for gaining territory, 0 for ceding ground 

immediately but remaining uninjured, -10 for being involved in a protracted confrontation and -

100 for losing a fight. 

Given such a scenario, what strategy should an individual adopt? The answer to this 

question depends upon the strategy adopted by the rest of the population. For example, given 

a population consisting entirely of doves, the average payoff for each member is 15 points 

(since in each contest, one dove will gain 50 points for winning the territory but lose 10 for 

being involved in a protracted confrontation, while the other will lose 10 overall, and thus the 

average pay-off is (40+(-10))/2). Now, if just one of the population were to adopt the hawk 

strategy, it would be awarded 50 points after every confrontation, thereby increasing that 

individual's reward above the mean for the population. If then other members of the 

Population leam from this example, the hawk strategy would spread through the population. 

Bowever, as the number of hawks grows, their average fitness would decrease since, on some 

Occasions, hawks would meet each other, and one of them would lose 100 points. 

Population 

.. 1 Strategy i Fitness 1 ... 

"" Contest betecn 
2 Strategy j Fitness 2 --... Evaluate -
3 Strategy i Fitness 3 / members 1 and 4 

.. 4 Strategy k Fitness 4 p 

I 
I I 
I I 

I 

n Strategy j Fitness n 

Update fitness of 1 and 4 

Figure 3.1: Main cycle of an evolutionary game 
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In order to find the ratio of hawks to doves in this population at which stability is reached, let x 

be the probability that a member of the population plays the hawk strategy and (I-x) the 

probability that he plays a dove. At equiliblium, the average pay-off for playing hawk, Phawk, 

equals the average pay-off for playing dove, P dove, and 

P hawk = (x(-2S) + (l-x)SO)/2, and Pdove = (x(O) + (l-x)IS)/2. 

Therefore, at equilibrium, (50 - 75x)= (15 - 15x) => x=7112, and so stability is only reached 

when the population is divided in a ratio of 7/12 hawks to 5112 doves. At this ratio, any 

mutant individual, that is one which changes its strategy from hawk to dove or vice versa, will 

receive a lower average pay-off than the population mean and so the population is 

evolutionalily stable and forms an ESS. 
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Figure 3.2: Results when simulating the Hawk-Dove Game 

To investigate this result, a 'simple' experiment was performed. In the experiment, a 

Population of SOO individuals was allowed to evolve over 100 generations. The initial 

~opulation was divided equally into hawks and doves, and in every generation, each individual 

Competed against all others five times (giving a total of over six hundred thousand contests per 
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generation). Natural selection was mimicked using roulette wheel selection, and the 500 

individuals thus selected were used to form the succeeding generation. Figure 3.2 depicts the 

number of hawks in each of the 100 generations of the single simulation run. The results 

clearly demonstrate that the ratio of hawks to doves oscillates about the predicted theoretical 

equilibrium value, the oscillations being due, in the main, to the sampling errors in respect of 

the (small) population size. 

It is impOltant to note that the above does not imply that an ESS is optimal in terms of 

the expected reward for individual members of the population. For example, at the 

evolutionary stable state, the average reward for each of the population's members is 6.25 

which is less than the 15 point reward for each member of a population consisting entirely of 

doves. Instead, the evolutionary stable state is more like a pareto optimum for which the 

success of one individual depends upon that of the others. 

To be capable of evolving into such a stable state, a system must have some mechanism 

by which it can adapt its response to become more profitable. Such a mechanism in EGT is 

caned a Learning Rule. A learning rule is a meta-rule which specifies the probabilities with 

Which an individual will adopt one of a set of strategies as a function of the strategies it has 

adopted in the past and the results of adopting those strategies. An impOltant question relating 

to learning rules is: does there exist a leaming rule that will always cause an initially naive plan 

to adapt, in time, towards an ESS for the game which it is playing? [Harley, 81] proved that 

such a rule for ESSs is itself evolutionarily stable since a system adopting this could not be 

Invaded by a mutant utilising an alternative learning rule. He called such a rule an 

Evolutionarily Stable learning rule or ES leaming rule. 

3.2.3 Evolutionary Stability and Classifier Systems 

Although the above discourse on the hawk-dove game suggests that an evolutionary stable state . 
IS achieved if 7/12ths of the population pl'ay hawk and the remainder play dove, without loss of 

generality, an identical ESS can be achieved if a single individual adopts each strategy in the 
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appropriate ratio (that is, a mixed strategy of playing a hawk on 7 out of 12 occasions and a 

dove on the other 5). This is so for any individual competing with either a single random 

opponent who is also playing the same mixed strategy, or a set of opponents, each playing a 

fixed (pure) strategy. Note that this situation is equivalent to a classifier system playing its 

respective strategies (represented by its rules) in proportion to their respective strengths. For 

example, the ESS in the hawk-dove game could be represented by the plan, PHDG, containing 

the two rules: 

PHDa: Rule 1: IF opponent is either Hawk or Dove THEN play_hawk 

Rule 2: IF opponent is either Hawk or Dove THEN play_dove 

Strength =0. 5833 

Strength=0.4177 

By representing strategies in this form, EGT can be applied to classifier systems to determine 

Whether the strength of the rules (classifiers) approach evolutionary stability. Indeed, as 

[Maynard Smith, 82] points out, the idea of a strategy is the same as that of a behavioral 

Phenotype and as such can be applied equally well to any kind of phenotype such as the growth 

form of a plant, the age at first reproduction, or the relative numbers of sons and daughters 

produced by a parent". 

However, for a classifier system's plan to change, there must be some mechanism by 

Which the strengths of its rules can be adjusted - that is, there must be a learning rule. 

Moreover, if the system is to reach an ESS. then this rule must be an ES learning rule. In a 

classifier system. the means by which rule strength is usually adjusted in order to adapt the 

system's response. is the Bucket Brigade Algorithm and thus, if the system's rule set is to 

move towards evolutionary stability. the BBA must be an ES learning rule. 

3.2.4 The Bucket Brigade Algorithm as an ES Learning Rule 

[pp 671, Harley, 81] suggests that, Hit is unlikely that any animal has a learning rule which 

PrOvides it with an unbeatable strategy for every game that it might encounter. Even an 

extremely simple frequency independent game such as the two-armed bandit requires a 

88 



dynamic programming algorithm and a very large menwry to solve for the best sequence of 

behaviours." Instead it is thought that some animals have a simple learning rule which allows 

them to do well in a wide range of situations. To detelmine whether such a learning rule is in 

fact an ES learning rule, Harley detailed five properties that it should possess. These 

properties are based on several assumptions about both the system and the game, of which the 

most important are: 

(a) each game considered actually possesses an ESS, which in principle is capable of being 

leamt; 

(b) although the reward (pay-off) may change in time, it does so sufficiently slowly that 

learning rules can establish stable frequencies of behaviours; 

(c) the pay-off, Pi(t), that a behaviour Bi receives at time t is non-negative and evaluated in 

units of fitness. The pay-off at time t for any behaviour Bj not used at time t is zero; 

(d) the learning rule defines the probability of displaying each of the possible behaviours at 

each time step as a function of the previous pay-offs. 

Given these assumptions, the five properties of an ES learning rule as specified by Harley are: 

(1) it must have the propelty that, after a long seIies of plays, the probability of selecting 

action A is equal to the total payoff for playing A divided by the total payoff so far. 

Harley called this the relative payoff sum or RPS property; 

(2) the ES learning rule will never completely abandon any action, K, nor will it ever fix 

the behaviour so that it always performs K. This is necessary because circumstances 

(and hence pay-off) may change; 

(3) the ES learning rule will attach greater significance to more recent pay-off information. 

Again, this is necessary because circumstances may change; 
, 

(4) the ES learning rule will be a function of pIior expectation of pay-off; 

(5) the ES learning rule will also be a function of actual pay-off. 
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By investigating the BBA in respect of these five properties, it is possible to determine whether 

the BBA can indeed be classed as an ES leaming mle. 

Property 1: 

For the purpose of this proof, consider a classifier system, M, which employs the 

simplest form of BBA, namely: 

where Si(t), Pi(t), Ri(t) and Bi(t) denote respectively the strength of, the pay-off made 

to, the payment received from other classifiers, and the bid made by mle i at time t. 

Given a sufficiently long time, the strength of a mle, Xn, which is used at the 

end of a sequence of actions, will be proportional to its payoff, P. As this rule pays a 

proportion of its strength to its immediate predecessor, Xn.t. in the sequence, then the 

strength of Xn.l will also be proportional to P. Repeating this argument, it can be seen 

that the strength of the first active mle in the chain, Xt. will also be proportional to P. 

In M the probability of selecting a rule is its relative strength divided by the sum of the 

strengths of all other candidate rules (that is, its relative pay-oft) and hence, the Relative 

Payoff Sum propelty is satisfied. 

Property 2: 

Assuming that pay-off is always non-negative, then a classifiers strength only 

decreases through taxation and bidding. As both of these quantities are only small 

percentages of a classifiers strength, then strength can only asymptotically approach 

zero, and so its probability will never be exactly zero. Correspondingly, as no 

classifier has zero strength, then no classifier can have a probability of 1.0 of being 
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employed and hence fixation also can never occur. 

Property 3: 

The taxation element of the BBA causes a rule's strength to decay exponentially over 

time, and as such, causes greater significance to be placed on more recent pay-off 

information. 

Property 4: 

All classifiers are each assigned an initial strength for use with the BBA and therefore, 

any subsequent selection is a function of these initial values. 

Property 5: 

The fact that the actual pay-off a classifier receives is one of the parameters in the 

updating equation shows that the BBA is indeed a function of actual payoffs. 

Thus, the BBA satisfies Harley's five properties for an ES learning rule. Of course, the BBA 

IS not the only ES learning rule. Much more sophisticated and efficient rules are likely to exist 

for many problems. However, as the effectiveness of an ES learning rule is improved, its 

generality is reduced and its usefulness, in a general learning environment wherein a variety of 

different problems are encountered, would be limited. 

3.2.5 HOeS: A Classifier System for the Hawk-Dove Game 

If the BBA is, for a specific application, an example of an ES learning rule, then it should be 

Possible to discuss a plan developed by a classifier system in terms of evolutionary stability. 

To determine whether a classifier system using the BBA does indeed exhibit such a 

Characteristic, a simple classifier system for the hawk-dove game, HOeS (Figure 3.3), was 

developed. 
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Classifiers Strength 

RI IF Whatever THEN Play_Dove 10.0 Conflict - Resolution 

R2 IF Whatever THEN Play_Hawk 10.0 

J~ 
llr 

Update Evaluate 
Strength - Strategy 

Figure 3.3: Outline of HDCS, a classifier system for the Hawk-Dove Game 

As a rule base, HDCS was invested with the plan PI-lOG descIibed earlier, and both rules were 

assigned an initial strength of 10.0. Since HDCS's environment would always be the same, 

and only a single action would ever be performed on any problem solving cycle, those of its 

features which made use of internal and environmental messages, such as matching and 

lllessage passing were rendered superfluous and were therefore omitted. This situation also 

obtained for the system's evolutionary algoIithm. 

HDeS was applied to 1000 instances of the hawk-dove game. At the start of each 

game instance, one of PUDG' s two rules was selected stochastically in accordance with their 

respective strengths. When selected, the rule, R say, paid 10% of its strength (equivalent to its 

bid) to the environment. The action corresponding to R was then adopted in contests with 50 

opponents whose respective strategies were selected in propOltion to the strengths of the two 

strategies in the extant plan. For example, if the extant relative strength of rule 1 (play a hawk) 

Were 0.6, then the system would adopt this rule on approximately 60% of occasions, and in the 

50 Consequent contests, the opponent would play a hawk in approximately 30 of them and 

dOve in the remainder. The value of the pay-offs awarded at the end of each game were those 

detailed in section 3.2.2 but with each ~alue being supplemented by 100 points in order to 

ensure that all pay-offs were non-negative (as demanded by Harley, see section 3.2.4). (It 
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should be noted that only the pay-off to the 'system player' needs to be taken into account.) 

Games wherein both protagonists played a hawk or both played a dove, were decided 

randomly. 

The relative strength of rule 1 of PHDG (that is, play hawk) was recorded at the 

conclusion of every tenth game instance. Figure 3.4 is a plot of the values derived against 

number of game instances. It can be seen from the plot that the strength of the two rules 

oscillates about the ESS equilibrium point. Correspondingly, given the finiteness of the 

population size and the number of game instances, it is not unreasonable to conclude that 

HDCS is playing the ESS for the problem. 
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Figure 3.4: Results of Hawk-Dove Game using HDCS 

Thus, it has been proved that, provided the assumptions detailed in section 3.2.4 obtain, the 

Bucket Brigade Algorithm constitutes an ES learning rule, and that the plan of a classifier 

sYstem which utilises the BBA will evolve in such a way as to constitute an ESS for the 

problem to which it is applied. It should be noted however, that this result is valid only for a 
, 
static' plan, that is, one which is not changed as the result of applying an evolutionary 

algorithm. For, in a classifier system's regime, the evolutionary stability built up in the 

system's extant plan will likely be disrupted by the change in constitution of the plan that will 
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almost certainly be the result of applying the evolutionary algorithm. Notwithstanding, the 

characteristics of a plan in respect of evolutionary stability, both in between consecutive 

applications of an EA, and as ultimately developed, will, if the assumptions of 3.2.4 are valid, 

tend to confOlm to that of an ESS. 

, In relation to the proposed GBML system, this result means that a classifier system 

architecture employing a BBA for credit assignment is, in itself. unlikely to derive rule 

strengths which accurately reflect the true utility of rules. Instead. rule strengths are likely to 

conform to an ESS and useful rules may not be readily identifiable. This observation affected 

the design of the proposed system by suggesting that additional mechanisms are likely to be 

needed if the system is to successfully leam useful plans for all but the simplest problems. 

Such an additional mechanism is an EA at the plan level and this, together with a number of 

other mechanisms is discussed in more detail in Chapter 5. 

3.3 Practical problems with credit assignment 

3.3.1 Parallel rule acti vation 

Of the many difficulties associated with the 'standard' BBA, only two, the allocation of credit 

to stage setting classifiers where long chains are involved [RioIo, 87a, 89a] and the formation 

of default hierarchies [Riolo, 87b, 89b], have received much attention from within the EA 

Community. One of the outstanding problems which appears to be very poorly investigated is 

that of the formation of parasite8 rules when several rules are active simultaneously. (For the 

Purpose of this work, simultaneously active rules will be refe11"ed to as parallel rules). Parasite 

rules are rules which, although detrimental in their effect, receive a high degree of 

enVironmental payoff by virtue of being active on the same occasions as useful rules. 

Therefore, due to the parasite rule 'stealing' some of the reward which should have gone to the 

----------------------
8[Westerdale, 91] uses the term 'Cannibal' rather than parasite, whilst Goldberg refers to them 
as 'freeloaders'. 
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useful rule, the strength of that useful rule is lower than it should have been (possibly leading 

to its deletion from the rule base) whilst that of the parasite is inflated, resulting in it being 

employed more often than it should with the consequence being a reduction in the pelformance 

of the classifier system. Several authors (see, for example, [Wilson, 89] and [Westerdale, 89]) 

have briefly alluded to this problem but to the authors knowledge, no detailed analysis of the 

Subject has been performed. Since at anyone time there are likely to be a fairly large number 

of classifiers active simultaneously, it was felt that this was a very important problem for the 

credit assignment algOlithm to deal with and so a detailed investigation into the effect of parallel 

rules on BBA effectiveness was instigated. 

This investigation was carried out by analysing the effect on the BBA of three of the 

ruost common types of parallel rule, namely: 

(a) duplicate rules; 

(b) subsuming / subsumed rules; 

(c) equivalent rules. 

These three types of rule, refen'ed to collectively as redundant> rules, are defined as follows: 

Given a plan containing 2 rules, A and B, with identical actions, then: 

A is a duplicate of B if the condition pmts of A and B are identical. 

A subsumes B if A and B are not duplicates, B is active ~ is active but A is active 

does not ~ is active. If A subsumes B, then A is called the subsuming rule and B the 

subsumed rule. 

~--------------------
91'he term 'redundant' is borrowed from [Westerdale, 89] where it is used to mean mostly 
redundant, not necessarily completely redundant. 
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A and B are said to be equivalent if A and B are not duplicates and A is active ~ B is 

active. 

The nature of duplicate and subsuming rules is obvious but as that of equivalent rules may not 

be, the following example is given to help clarify the defmition. Given a plan for an aircraft on 

a bombing mission, two possible rules (represented here in a high level representation for 

clarity) are: 

Rule A: 

Rule B: 

IF radar working AND time to target < 2 mins 

THEN set course for target 

IF no crew members injured AND time to target < 2 mins 

THEN set course for target 

Here the only difference in the two rules are the conditions 'radar working' and 'no crew 

members injured'. These conditions will both be active for the majority of the time, and even 

when one is not active, such as when an aircraft takes a direct hit, the other is also unlikely to 

be active. Therefore, over the limited number of trials which a classifier system would have to 

evaluate the two rules, they are likely to be active on identical occasions. Hence. although the 

two lUles are clearly different, they are said to be equivalent. 

In order to investigate the effect that these three types of rule have upon the distribution 

of credit in a classifier system, a simple test system, SCSI, was developed. Moreover. the test 

Problem upon which the investigation would be based was chosen to be a simple 2-player 

military game called the Two Tanks Problem (TIP). This problem. and the architecture of the 

test system used to manipulate it, are described bcIow. 
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3.3.2 The Two Tanks Problem 

In its most general form, the problem is set in three dimensions and requires a tank, Tl, armed 

with but a single gun, to destroy another tank T2 possessing identical capabilities. In the 

simplified version of the problem adopted for the work reported here, the setting was restricted 

to a 'one-dimensional board' composed of an infinite strip of identical contiguous squares. 

Movement of the tanks was also restricted to one square backwards or forwards per 'move' 

and gun movement to increasing/decreasing elevation by one position or notch - equivalent to 

lllcreasing/decreasing the gun range by one square. In addition, all other complicating features 

of the more general problem, such as limits on the ammunition available and weather 

Conditions, were removed from consideration. 

An episode of the TIP commences with the two tanks in their initial positions, placed 

randomly at a distance of 1O:::;;x<:::;;20 units apat1. The tanks then take alternate moves (Tl takes 

the first), and on each of its moves, a tank may: 

• move forward or backward 1 square; 

• fire; 

• do nothing; 

• increase or decrease gun elevation by 1 position or notch. 

The episode ends when one of the two tanks hits its opponent (achieved by firing when the 

lnter-tank gap equals the range of the guns), or when t moves (where t is a preset maximum for 

the length of an episode) have been made without a hit being registered. 

Given this general framework, two slightly different TTPs were used for testing 

Various problems associated with parallel rule activation. The first of these, TIPl, was 

deSigned to en~ble a random strategy to have a fairly high probability of achieving its goal, thus 

allOWing the initial population to gain some credit from the environment. In contrast to this, the 

seCond test problem, TIP2, was designed such that a random strategy has a negligible chance 
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of being successful, with the consequence being that the system would initially have to 

discover useful rules with very little environmental information to go on. The two problems 

are defmed as follows: 

(a) Test Problem 1 (TIPl) 

In this, the firing range of Tl is set to X±i, where i is selected at random to be either 1, 

2 or 3, and T2 is given an identical range. The maximum number of moves available 

during anyone episode is set to 60; 

(b) Test Problem 2 (TTP2) 

For this problem, the firing range or Tl is set to x-2, and the maximum number of 

moves allowed during an episode is set to 5. 

3.3.3 System Architecture 

Figure 3.5 shows the central part of SCSI, the rule and message (RaM) system. This is very 

similar to that of a standard classifier system described in Chapter 1. The RaM operates 

CYclically with each cycle being equivalent to a move in the TIP. 

At the start of each cycle, the world model is inspected. The world model is one of the 

problem dependent parts of the system and is simply a list of all the parameters which fully 

desCribe the state of a game (episode). For example, for the TIP this may contain the distance 

between the two tanks, their respective ranges, and so on. A detector converts this information 

Into an environmental message which can then be used by the rest of the system. This 

enVironmental message is a six bit binary string with each bit corresponding to a different 

property of the world model. Bits 1 and 2 (the leftmost bits) are set to 00 to identify the 

Illessage as coming from the environment, with the remaining bits being set as follows: 

bit 3 

bit 4 

= 

= 

1 if 1'2 altered elevation, and 0 otherwise; 

1 if T2 moved, and 0 otherwise; 
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bit 5 = 

bit 6 = 
1 if T2 did nothing, and 0 otherwise; 

1 if T2 fired, and 0 otherwise. 

After reading the environmental message, the RaM adds it to the systems internal message list 

where it replaces the previous environmental message (if one is present). 

On all but the first cycle, also present on the message list will be internal messages 

which were posted by rules that were active on the previous cycle. Internal messages facilitate 

Inter-classifier communication, and as such, provide a one move memory for the system. They 

specify an action that may be perfonned by Ti, and as with environmental messages, they are 

six bits long. The first two bits are set to 01 to identify the message as being internal, bit 3 is 

redundant and always set to zero, and bits 4 to 6, which represent the six possible actions, are 

set as follows: 

00 I - move forward 1 square; 

010 - move back 1 square; 

011 - fire; 

101 - increase elevation by 1 position; 

110 - decrease elevation by 1 position; 

000 - do nothing. 

The messages on the message list are then compared against the conditional parts of the 

Classifiers in the extant rule base using the MATCH routine. The classifiers used by SCS 1 have 

the standard <condition part>:<uction/message pUlt> [onn, whcre the <condition part> consists 

of 1 Or 2 conditions relating to onc or both types of message. A condition is represented as a 

String ofIength six over the alphabet {O, I, #}, where # is a wildcard ('don't care') symbol. 
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The <action/message part> is an internal message which specifies the action to be performed 

when the condition(s) in the <condition part> is/are satisfied. Two examples of rules of this 

form are 000001:010110 and 000100, 010001:010011 and these should be interpreted 

respectively as: 

IF 1'2 fired THEN decrease elevation; 

IF 1'2 moved AND Tl advanced THEN fire. 

In the matching phase, a classifier is 'matched' if, for each condition, C, in its <condition 

part>, there exists a message, M, on the message list, such that Cj = Mj or Cj = #, where 

subscript i denotes bit i, i=l, ... , 6. A list is kept of all matching classifiers and upon 

completion of the matching phase, a competition or auction is held to reduce their number to the 

size of the message list. This is achieved by first calculating a bid, bidj , for each competing 

classifier,j, as follows: 

bidj = 0.01 + b + specijicityj + strengthj 

Bere, b - the bid coefficient, is a constant, specijicifyj is a measure of is generality (calculated 

as the percentage of non-wildcard characters in j's conditions), and strengthj is the systems 

current estimate of j's utility. n classifiers, where n is the size of the message list, are then 

selected for inclusion in the message list. This selection is either stochastic with each 

classifiers selection probability being propOltional to its bid. or detenninistic. with the choice of 

selection scheme depending upon a system parameter, AUCTION_SCHEME. 

Some of the selected (posted) messages may specify actions which conflict, and 

correspondingly, a process of conflict resolution is performed in order to ensure that the 

niessages sent to the output interface (these specify the action T1 is to perform) are consistent. 
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This involves calculating the cumulative bid, ~, associated with each different action specified 

by the messages on the message list, and selecting that action whose associated value of ~ is 

largest. Again, this selection process may be stochastic or deterministic, and is detennined by 

the parameter CONF _RES_SCHEME. Subsequently, all messages whose actions are not 

consistent with the one chosen are deleted from the message list, while those which remain 

repay their 'suppliers' by paying their bid to the classifiers which sent the messages which 

matched their conditions, as in the explicit Bucket Brigade Algorithm. (In the special case of 

the environmental message being responsible for activating a classifier, payment is made to the 

environment.) As well as paying their bid, those classifiers which remain after conflict 

resolution also pay a bid tax for making their bid. Moreover, all classifiers, irrespective of 

Whether they are active or not, pay a life tax (fixed at 1 % of their strength) to the system, 

thereby reducing the strength of rules which are never active. 

After an action for Tl has been selected, it is passed to a control setting routine which 

decodes the message and subsequently updates the world model. T2 then makes its move 

according to a fixed strategy encoded in the OPPONENT'S STRATEGY module and the 

world model is correspondingly updated. In the experiments described here, the opponents 

strategy remained fixed at one of firing on every move. The time step counter is then 

lUcremented by one and this marks the end of a cycle. 

This cycle is repeated a number of times until the end of the episode is reached. For the 

111>, this occurs either when one of the tanks is hit or when the number of cycles (time steps) 

has passed a fixed maximum. Upon the end of the episode being reached, a further problem 

dependent routine, the CRITIC, is invoked, and this assigns a reward, R, to those classifiers 

active at the end of an episode. The value of R was set as follows: 

{

1O.0 

R= Q*lO.O 

0.0 

ifTI wins 

if neither tank wins before time elapsed 

ifT2 wins 
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where Q is a constant called the draw rating whose value, unless otherwise stated, was set to 

0.5. 

3.3.4 An Investigation into the effect of redundant rules on the bucket brigade 

algorithm 

3.3.4.1 Default settings 

In section 3.3.1, it was noted that little work had been carried out to determine the effect of 

redundant rules upon the BBA. The experiments reported in this section aim to investigate 

these effects in relation to each of the three types of redundant lUle identified in section 3.3.1 

(namely duplicate, subsuming and equivalent lUles). The experiments were carried out using 

SCSI with the default parameter settings shown in Table 3.1. 

Table 3.1: Default parameters/or SCSI. 

Parameter Value 

Initial Rule Strength 10.00 
Bid Co-efficient 0.10 

Did Tax 0.00 
Life Tax 0.01 
Payoff 10.00 

Draw Ratin}! 0.50 
Messa}!e List Size 6 
Auction Scheme Dctcnninistic 

Conf Res Scheme Deterministic 

3.3.4.2 Experiment 1: Tests involving duplicate rules 

1'0 serve as a control experiment, SCSI was invested with a simple plan, Pit containing but 

the single rule, A:- 00#### : OlOOl1, (fire on every move) and applied to a test set S of 60 

Instances of test problem TIPl. The resulting value of A's strength was found to be l: = 

0.6247. 

PI was then replaced, in tum, by plans P2,P3, ... Pg, and the experiment repeated under 
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conditions of no competition, that is, using a message list sufficiently large to hold all 

simultaneously active classifiers. Here, Pi denotes a plan containing i copies of A alone. Each 

experiment gave analogous results, namely and perhaps not surprisingly, that in using plan Pj , 

each of the j copies of A acquired a strength of J:.lj, the combined strength of the copies 

equating with the strength of A in the control experiment. 

Although indicating that the presence of duplicate rules can significantly distort rule 

strength, the above experiment is somewhat unrealistic in that it did not involve the element of 

competition which normally arises as a result of both finite message list size and other active 

classifiers. Correspondingly, to investigate the influence of message list size, SCS 1 was 

Invested with plan P6, a message list of size k and, for k=2, ... , 5, applied to the problem set S 

(the cases k=l and k=6 replicate the control experiment and that involving P6 with no 

cOmpetition respectively). 

It had been anticipated that, with a message list size of k, (6-k) of the classifiers would 

achieve a strength of zero and each of the remaining classifiers a strength of Ilk. Such proved 

to be the case. Thus, it can be said that reducing the size of the message list does reduce the 

distortion in rule strength caused by duplicate rules. Unfortunately, however, distortion will 

not be eliminated completely unless a message list of size one is adopted· and this would be 

too limiting for many applications. 

In respect of competition from other classifiers, a variety of different plans were tested 

Using the problem set S. Typical of the results obtained are those which were derived from the 

plan Pk - containing the 7 rules given in Table 3.2 together with k duplicate copies of A, k=O, 

... , 9. These results, obtained under conditions of no competition in respect of message list 

size, are depicted in Figure 3.6. 
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Table 3.2: The Plan Pk * 

Classifier Rule 
Condition Action 

00#### : 010011 whatever T2 did fire 
01#### : 010011 whatever Tl did fire 

00#0##, T2 didn't move 
01#011 : 010101 ANDTl fired increase elevation 

00#0##, T2 didn't move 
01#011 : 010110 AND Tt fired reduce elevation 
01###0 : 010011 Tt didn't fire ftee 

01##0# : 010011 Tl didn't fire ftee 

000010 : 010011 T2 did nothing ftee 

.------

Total Strength .' _ 
.--------------,-".-.. " .. .. ,' 

• • , 

0.05 ~~----
O+-------------r---------~------------~------------~--------~ 

o 2 4 6 8 10 

Number of duplicates (k) 

Figure 3.6: Total strength allocated to duplicates of A in Pk * 

In every case (k=l • ...• 9). the strength of each copy of A in Pk * was found to be the same and 

reduced below that of rule A, 1:'" say, in the control experiment (k=O). However. the extent of 

the reduction was greater than that observed in the experiment using the corresponding plan 

Pk• Thus, O'k, the combined strength of the individual copies of A in Fk *, falls below 1:* (O'k 

does increase with increasing k but never 'reaches 1:*). This is explained as follows. When 

only A and its k duplicates are active on a given cycle, each of these rules receives lI(k+l)th of 
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the pay-off. However, rules other these will also be active on some cycles, and hence the 

pay-off will be divided equally between A, its duplicates, and these other active rules. On 

such cycles, the rules differing from A are, in terms of the effects of pay-off, acting as if they 

were duplicates of A! 

The distortion of rule strength deriving from the presence of duplicated rules within a 

plan is undesirable. Fortunately, this problem can easily be circumvented by checking any 

newly generated rule against the extant rule-set prior to that rule's assumption into the set. 

More problematic, however, is dealing with new rules which turn out to subsume, be 

Subsumed by, or be equivalent to, rules already present in a plan. 

3.3.4.3 Experiment 2: Tests involving equivalent rules 

Consider two equivalent rules, RI and R2, in some plan. Let Sit speCi., and paymenti denote 

respectively the strength and specificity of rule Ri, and the payment made to Ri after a 

sUCcessful bid, ;=1, 2. During an episode which lacks competition, Rl is active <=> R2 is active 

and in the steady state, paymentl = payment2' hence: 

and thus (Eq.3.1) 

This simple analysis suggests that the ratio of the strength of two equivalent rules might be 

eXpected to be the inverse of the ratio of their specificities. To investigate this, a simple plan, 

denoted PE, was applied to the problems in test set S, and using the default parameters (Table 

3.1) but with the length of each episode constrained to L cycles, L=I, 2, ... , 200. PE 

Contained the three rules: 
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X :- 01#0## 010011 

Y:- 010#11 010011 

Z:- 000010 010011 

Here, rules X and Yare equivalent and rule Z is only active on the first cycle of an episode. 

The results derived using PE are depicted in Figure 3.7, a plot of relative strength 

(Sx/Sy) versus L. The shape of the graph does not accord with the above analysis but may be 

understood if it is compared with the graph of Figure 3.8 which was obtained by repeating the 

experiment but allocating no pay-off at the end of any episode. From these graphs it may be 

readily concluded that it is system pay-off which most radically influences the ratio of the rule 

strengths and that, as a result of the effects of taxation, its influence increases with the length 

of episode such that SxlSy~ 1. 
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Figure 3. 7: Ratio of Sx to Sy for the plan PE 
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Figure 3.8: Ratio of Sx to Sy when payoff=O.O 

3.3.4.4 Experiment 3: Tests involving subsuming rules 

Defining the nature of the influence of coexistent subsumed and subsuming rules on the 'true 

strength' of rules in a plan is a far more difficult task than the analogous ones involving 

dUPlicate and equivalent rules. The reason for this is the potential for complex relationships to 

eXist between several rules. each pair of which is linked by subsumption. However. by 

lOOking at fairly simple cases. we can get some idea of how the BBA distributes strength 

between them. 

To serve as a control experiment for subsuming rules. SCS I was invested with the plan 

Ps which contains no simultaneously active classifiers. Table 3.3 shows Ps and the cycles 

(1ll0ves) during an episode when each rule is active. 

Table 3.3: The plan Ps 

No Classifier Action Active Cyclc!\ 

1 000010 : 010011 fire 1 

2 010011 : OJOl 10 move fOlward 2.4.6 .... 

3 010110 : OJ(X)J 1 fire 3.57 •... 
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As there is no competition between any of the lUles in Ps, there is only one possible action 

sequence, namely "Fire, Forward, Fire, Forward, Fire ... " which continues unchanged until 

either the end of the episode is reached or the opposing tank is hit. 

Ps was applied to the problems in test set S using the default parameters (Table 3.1) 

and the results shown in Table 3.4. 

Table 3.4: The plan Ps after application to test set S 

No Cla'isifier Abs. Strength ReI. Strength 

1 000010 : 010011 4.19 0.07 

2 010011 : 010110 15.6 0.28 

3 010110 : 010011 36.25 0.65 

No. Wins 26 
No. Draws 34 

To investigate how the BBA distlibutes strength between rules linked by subsumption, Ps was 

in turn replaced by plans Pn, PT2, and ?n, all of which pelfolm the same action sequence as 

Ps and are shown in Tables 3.5 to 3.7. 

Table 3.5: The plan PT] 

No Classifier Action Active Cycles 

1 000010 : 010011 fire 1 

2 010011 : 010110 move forward 2,4,6, ... 

3 0#0#10 : 010011 fire 1,3,5,7, ... 

Table 3.6: The plan PT2 

No Classifier Action Acti ve Cycles 

1 0#0#10 : 010011 fire 1,3,5,7, ... 

2 010011 : 010110 move forward 2,4,6, ... 

3 010110 : 010011 fire 3,5,7, ... 
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Table 3.7: The plan PT3 

No Cla ... sifier Action Active Cycles 

1 000010 : 010011 fire 1 

2 010011 : 010110 move fotward 2,4,6, ... 

3 010110 : 010011 fire 3,5,7, ... 

4 0#0#10 : 010011 fire 1,3,57, ... 

In Pn • R3 from Ps is generalised so that it is also active on the first cycle. therefore 

subsuming Ri. PT2 has Ri generalised so that it subsumes R3. and to PD. a fUlther rule R4 is 

added which subsumes both RI and R3. 

Tables 3.8 to 3.10 show the strengths of the rules in plans PTl. PT2 and Pn when run 

on the same test set. S. as Ps. 

Table 3.8: The plan PT] after 60 episodes 

No Cla<;sifier Abs. Strength ReI. Strength 

1 000010 : 010011 1.74 0.03 

2 010011 : 010110 11.06 0.22 

3 0#0#10 : 010011 37.04 0.74 

No. Wins 26 
No. Draws 34 

Comments: When PTl is compared to ps. rule 1 has had its strength roughly halved. R2 has 

had a slight reduction in strength (due to it receiving less from R3) and the generalised R3 

Shows a slight increase in strength. 

Table 3.9: The plan Pn after 60 episodes 

No Classifier Ahs. Strength ReI. Strength 

1 0#0# 10 : 0 HXH 1 21.09 0.4 

2 010011 : 010110 14.23 0.27 

3 010110: 010011 18.03 0034 

No. Wins .26 
No. Draws 34 
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COlmnents: When PT2 is compared to Ps, R2'S strength shows a slight reduction but that of R3 

has been approximately halved. 

Table 3.10: The plan Pn after 60 episodes 

No Cla<;sifier Abs. Strength ReI. Strength 

1 000010 : 010011 1.94 0.04 

2 010011 : 010110 1359 0.26 

3 010110 : 010011 17.93 0.34 
4 0#0#10 : 010011 19.56 0.37 

No. Wins 26 
No. Draws 34 

Comments: When Pn is compared to ps. the strengths of both RI and R3 are approximately 

half of their value before R4 was introduced. 

All three sets of results show that strength is shared between subsuming rules for the 

period that they are simultaneously active (cf. equivalent rules). For example, in Pn (Table 

3.10) the strengths achieved by RI and R3 are approximately half of those achieved by the 

corresponding rules in Ps. Moreover. the sum of these two 'missing halves' is approximately 

equal to the strength achieved by R4. the subsuming rule. 

3.3.4.5 Discussion of Results 

The results in sections 3.3.4.2 to' 3.3.4.4 have demonstrated that when a rule RA in some plan 

IS Supplemented with either duplicate. equivalent or approximately equally effective subsuming 

rules (call these analogues of RA for ease of exposition), the 'true strength' of RA is distorted to 

the extent that it is shared with its analogues. Such distortion may well lead to a reduction in a 

classifier system's capability to produce an effective plan. However, it is not only a distortion 

of abSOlute strength that is observed. the strength of RA relative to that of other rules in the plan 

will also be affected. This in turn can affect both the performance of the basic system and also 

that of the EA. as shown by the following example. 
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Consider a plan PI which contains the two rules Rx and Ry. In a particular state of the 

game. Rx and Ry are found to be the only active rules. and in steady state. it is found that their 

strengths are 7.0 and 5.0 respectively. After several generations, the EA selects Rx for genetic 

recombination. and the resultant offspring. Rx*. an analogue of Rx. is added to PI. Since it 

has been shown that analogues tend to share strength. then the new steady state strengths of 

the rules would be 3.5, 3.5 and 5.0 for Rx. Rx* and Ry respectively. If the message list size 

is effectively infinite (a size of 3 would be sufficient in this case) then no competition takes 

place at the auction stage and the performance of the system would be largely unaffected. 

However. a message list size of any less than this could lead to problems. For example, a 

message list size of 2 would usually lead to Ry being selected along with one of Rx and Rx*, 

with the subsequent conflict resolution phase most likely to select Ry. the worst of the three 

rules. Even if any such problems are avoided, there may still be difficulties when the genetic 

operators are applied, especially if, as suggested in Chapter 1, an incremental rather than a 

generational EA is used. For example. when reproduction occurs using an incremental 

algorithm. the member to be deleted is more likely to be either Rx or Rx*, despite both being 

better than Ry. 

As this. albeit rather contrived example shows. the manner in which the BBA shares 

strength between analogues can cause a number of problems in a classifier system and so some 

Way is needed of reducing this effect. With regard to this. [pp 354, Westerdale, 91] notes that 

"if two classifiers have similar effects, we want the reward scheme to reward the one with the 

[oweravailabilitylO less. However, in designing such a reward scheme we would prefer to 

aVoid introducing detrimental biases". Correspondingly, a number of alternative credit 

asSignment schemes - ones which induce a relative sU'ength of other than unity between a rule 

and its analogue - were investigated to determine whether their use might reduce distortion of 

rule strength. 

'--------------------------------------
l°[Westerdale, 91] uses the telm 'availability' rather than 'strength' 
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3.4 Alternative credit assignment schemes 

3.4.1 Variants of the bucket brigade algorithm 

[Wilson, 89] was one of the first to investigate variants of the BBA. Whilst maintaining the 

standard scheme for inter-rule payment, he focused attention on environmental pay-off. but 

unfortunately, the informal experiments he performed on the alternative schemes considered. 

revealed none as being any more effective than the standard. More recently. [Fairley and 

Yates, 93] and [Yates and Fairley, 93] report the results from various alternatives to the 

standard BBA when used with the TIP. These involve dividing the inter rule payment (I) and 

environmental payoff (E) in ways other than equally between active classifiers. Of these 

alternatives, the only one which produced a significant difference from the standard BBA was 

one in which both I and E were divided in proportion to the bids of the receiving classifiers. 

Call this the Amended BBA. ABBAl. Figure 3.9 shows the distribution of strength for this 

scheme between the two equivalent rules. X and Y (from the plan PE) when applied to the test 

set S, while Table 3.11 shows the distribution between the subsuming rules in PT3 when using 

the same test set. 
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Figure 3.9: Ratio of Sy to Sx using ABBAI 
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Table 3.11: The plan Pn using ABBA1 

No Classifier Abs. Strength ReI. Strenoth 

1 000010 : 010011 0.00 0.00 
2 010011 : 010110 14.08 0.27 
3 010110 : 010011 18.45 0.35 
4 0#0#10 : 010011 20.59 0.39 

No. Wins 26 
No. Draws 34 

As Figure 3.9 shows, with ABBAI, all the strength between equivalent rules goes to the more 

specific rule. This is due to the more specific rule having a larger bid (since bid = strength * 
Specificity) and as the strengths of equivalent rules have been shown to be almost equal, then 

the more specific rule will receive exponentially more payment as both the length of episode 

and the number of episodes increases. However, with subsuming rules, the situation is more 

problematical since the strengths of two subsuming rules are not usually equal. For example, 

lOOking at Table 3.11, R land R3 are both more specific than the subsuming rule R4, but the 

Strength of R 1 is zero and that of R3 is still at its Oliginallevel. The reason for these results is 

as fOllows. Although the specificity of R 1 is larger than that of R4, its strength is much lower 

and hence its bid is lower. leading to an exponential fall in payments to Rl. However, when 

dealing with R3, although once again its specificity is larger than that of R4 and its strength is 

lower, this time the strength differential is only slight and acts to counterbalance the difference 

in Specificity, thus leading to results analogous to those found using the standard BBA wherein 

strength is shared. This can be verified if the results in Table 3.11 are compared with those 

a h' c leved by plan Pn using the standard BBA (Table 3.9) where rules 1, 2 and 3 correspond 

to rules 4,2 and 3 in Pn respectively. 

The opposite effect to that achieved by ABBAI can be observed if, rather than dividing 

PaYments in proportion to the bids (that is, strength * specijicity), they are divided in 

ProPOrtion to strength I specijicity. thus favouring less specific (more general) rules. This 
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scheme, ABBA2, was applied to the same test set as used for ABBAl, and the analogous 

results for equivalent and subsuming rules can be seen in Figure 3.10 and Table 3.12. 
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Figure 3.10: Ratio of Sx to Sy using ABBA2 

Table 3.12: The plan Pn using ABBA2 

No Cial;sitier Abs. Strength ReI. Strength 

1 000010 : 010011 0.00 0.00 
2 010011 : 010110 11.61 0.23 
3 010110 : 010011 0.00 0.00 
4 0#0#10 : 010011 3R.49 0.77 

No. Wins 26 
No. Draws 34 

As expected, Figure 3.10 shows the more general of the two equivalent rules receiving 

exponentially more strength as the time period progresses, and Table 3.12 shows R4 gaining 

all the strength at the expense of rules 1 and 3 due to both its lower specificity and its greater 

Strength. 

To investigate whether adopting either of these new schemes could give results that 

11l1prOVe upon those dedved using the standard BBA, each new scheme was in turn applied to 

the plan Pk*CTable 3.2) on a more extensive test set, S' containing 300 problems of type TTP2. 
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Tables 3.13 to 3.15 show the plans developed by each of the three schemes, and Figure 3.11 

shows the respective performances during the development of each of the three plans. The 

parameters used were the same as the default set (Table 3.1) except that both the auction and 

cOnflict resolution schemes used were stochastic so that most of the possible sequences of rules 

would be sampled. 

Table 3.13: using the standard RBA 

No. Classifier Abs. Strength ReI. Strength 

1 00#### : 010011 3.34 0.33 
2 01#### : 010011 3.34 0.33 
3 00#0##, 

01#011 : 010101 0.03 0.00 
4 00#0##, 

01#011 : 010110 0.00 0.00 

5 01###0 : 010011 0.00 0.00 

6 01##0# : 010011 3.37 0.33 

7 000010 : 010011 0.00 0.00 

Comments: As expected, when using the standard BBA, strength is shared between the two 

default rules, RI and R2, as they are almost equivalent. Thus, previous results (section 

3.3.4.3) indicating that rule strength is shared between equivalent plans are confirmed in the 

Context of a more complex plan. 

Table 3.14: 1 and E divided in proportion to the bid (ABBAl) 

No. CIassiticr Ahs. Strength ReI. Strength 

1 00#### : 010011 0.34 0.18 

2 01#### : OHX)lI 0.00 0.00 

3 00#0##, 
01#011 : 010101 0.75 0.41 

4 00#0##, : 
01#011 : 010110 0.00 0.00 

5 01###0 : 010011 0.00 0.00 

6 01##0# : OHXll 1 0.76 0.41 

7 000010 : 010011 0.00 0.00 

Comments: Again, as predicted by the earlier experiments, the strength accorded to the two 

default rules is lodged in only one of the~, in this case R It because it makes a slightly larger 
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profit by being active on the first move of an episode. Furthermore. two of the more specific 

rules (rules 3 and 6) have achieved a much larger percentage of the total strength (82%). thus 

making the plan more successful than one employing only the default rules. 

Table 3.15: I and E divided in proportion to StrengthlSpecijicity (ABBA2) 

No. Classifier Abs. Strength ReI. Strength 

1 00#### : 010011 3.73 0.11 

2 01#### : 010011 0.00 0.00 

3 00#0##, 
01#011 : 010101 3.56 0.10 

4 00#0##, 

01#011 : 010110 0.00 0.00 

5 01###0 : 01 00 11 0.00 0.00 

6 01 ##0# : 01001l 26.81 0.79 

7 oom 10 : 01 00 11 0.00 0.00 

Comments: Again. the distribution of strength is in agreement with predictions from earlier 

eXperiments, with all the strength accorded tot he two default rules residing iri only one of 

them. Once again. a high percentage of the total strength (89%) is lodged in the more specific 

rules (rules 3 and 6). thus making the plan more successful than the plan derived using the 

standard BBA. 
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Figure 3.11: Pe1formance of the standard BBA (long dash), 

ABBA1 (solid) and ABBA2 (short dash) on test set S' 
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The results depicted in Figure 3.11 show that the plans developed by both of the variants of the 

standard BBA perfOlm significantly better (approximately 3 times better) than that developed 

by the standard scheme, Moreover, both variants appear equally suitable for the particular 

problem tried, namely TTP2, with neither out-performing the other. 

3.4.2 An adaptive Bucket Brigade Algorithm 

With the success of both ABBAl and ABBA2, one question which suggests itself is "which 

One is the more suitable for rule discovery in a classifier system?" To help answer this, it is 

necessary to analyse how an ideal plan will evolve in a classifier system. 

Assuming that the initial population is generated randomly, the first few generations are 

likely to perform fairly poorly but after a while, it would be expected that a small number of 

reasonably effective rules would emerge. However, these rules are likely to be useful in only a 

small percentage of their activations. For example, a suitable rule for a particular plan may be 

'if (range, 10, 20) then fire' and after a number of generations, a rule such as 'if (range, 18, 

32) then fire', which works effectively on 20% of occasions, may be generated. In such 

circumstances, it would not be unreasonable to favour a credit assignment scheme which has a 

bias towards specialization. Clearly, ABBA1 is suitable for use in this situation. 

With the bias provided by ABBAl, more specific rules such as 'if (range, 18,20) then 

fire' will be favoured, and so the number of instances where the useful rules perform poorly is 

likely to be reduced. Consequently, it would be expected that system performance would rise. 

As the performance rises, it may be preferable to start to generalise some of the effective rules 

to cover a greater number of situations. For example. by generalising 'if (range, 18.20) then 

fire', it is possible to reach the goal state of 'if (range, 10, 20) then fire'. Clearly, in these 

circumstances, ABBA2 will be the more suitable scheme. 

Consequently, an adaptive BBA which utilises aspects of both ABBA1 and ABBA2 

could be extremely beneficial in much the same way that an adaptive mutation rate was shown 

to be beneficial when solving the knapsack problem (Chapter 2). For an adaptive scheme, 

some measure of system performance, t}~ is required. One example of such a measure for the 
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TIP is a time weighted average of the number of successful episodes during a run. By 

subsequently normalising this value to a real number on the range -1.0 to + 1.0, where -1.0 

represents 100% success and + 1.0 represents zero success, an adaptive scheme can be 

achieved by dividing both I and E in proportion using the following formula: 

strength * (specificity)~ 

With i} initially set to + 1.0, the scheme will act like ABBAl and give preference to more 

specific rules. Then, as the generations progress and system performance improves, t} will be 

reduced and the adaptive scheme will change to give a greater bias towards general rules. 

However, if at any stage overgeneralisation occurs, the performance level will fall with the 

Consequence that, once again, more specific rules will be favoured. 

Unfortunately, to evaluate such a scheme, the rule discovery element has to be 

incorporated into the system. This is the task of the evolutionary algorithm which is the subject 

of the next chapter. Therefore, a comparison of this adaptive scheme with the other BBAs is 

left until then. 

3.4.3 Other schemes 

In Chapter 1, it was mentioned that although the BBA is the most commonly used credit 

assignment scheme in classifier systems, a number of alternative schemes exist to perform the 

same task. These include the epochal algorithm [Holland and Reitmen, 78], the Profit Sharing 

Pian [Grefenstette, et aI, 90] and Backward Averaging [Twardowski, 93]. All of these have 

both advantages and disadvantages when compared to the BBA, with the general conclusion 

being that no one method is likely to be best for all possible problems. However, a number of 

authors (see, for example, [Grefenstette, 88] and [Liepins, et aI, 89, 91]) have suggested 

Various hybrid schemes in which the advantages of both the BBA and one or more of these 

a1temative schemes are combined to form a supelior algOlithm. 
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To investigate whether any of these other algorithms could be hyblidised in a beneficial 

manner with the variants of the BBA described earlier, a series of simple experiments similar to 

those of the previous sections were performed. Six alternative schemes were implemented in 

these experiments and compared to the BBA, ABBAI and ABBA2 algolithms respectively. 

(a) Simple Epochal Algorithm (SEA) 

In epochal credit assignment algorithms, the system maintains a record of each rule 

which has been active during a problem solving episode (epoch) and upon conclusion 

of the episode, each activated classifier is awarded a fixed percentage of the 

environmental pay-off, P. In the simple epochal algorithm (SEA) implemented here, 

the strength of each rule is updated at the end of an episode using the following 

equation: 

where Sj(a) and Sj'(a) represent the strength of rule i before and after episode a 

respectively, and c, is a constant (set to 0.1) which has the same role as the bid co

efficient in the BBA. [Grefenstette, 88] showed that such a scheme computes a time 

weighted estimate of the expected external pay-off for each rule and that this is useful 

for conflict resolution. 

(b) Backward Averaging (BA) 

Backward Averaging is prohahly the most common epochal-type algorithm to be used 

in classifier systems (sce. for example. [Holland and Reitman. 78]. [Liepins et al. 91] 

and [Twardowski, 93]). In the simple version of the algorithm adopted here, a trace 

parameter, Xj, is incorporated into the updating equation of the simple epochal scheme 

to place a greater emphasis on more frequently used rules. On each move (time step) of 
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an episode, the trace parameter is updated as follows: 

Xj(t+l) = (l-A)Xj(t) + Aq 

where q=l if rule i is active at time t, and 0 otherwise, and A is the trace decay rate, 

which is again analogous to the bid co-efficient and set to 0.1. This trace parameter is 

subsequently used in the following epochal updating equation: 

S;'(a) = Sj(a)(l-c) + XjCP 

(c) Profit Sharing Plan with Variance (PSPV) 

The simple epochal scheme described in (a) was employed by Grefenstette in an early 

study of credit assignment [Grefenstette, 88] in which he referred to the scheme as the 

Profit Sharing Plan (PSP). In more recent work, [Grefenstette, et aI, 90] employ an 

updated version of the algorithm which includes the variance associated with the 

estimated payoff so that con11ict resolution has a measure of confidence in the estimate, 

as well as the estimate itself, to base its decision on. This scheme, which will be 

referred to as the Profit Sharing Plan with Variance 11 (PSPV), maintains a mean, ~it 

and variance, Uj, for each rule i, as well as the strength, Si, and updates each of these at 

the end of an episode as follows: 

Uj'(a)=Uj(a)(l-r) + r(lli'(a) - P)2 

'------------------------
11[Grefenstette, et aI, 90] continue to refer to this as the PSP, despite it being quite different 
from the original version. 

121 



where r, is a constant called the psp rate (again set to 0.1). 

(d) Hybrid BA-ABBA1 

A hybrid of the BA and BBA was originally proposed by [Liepins, et aI, 91] but the 

only investigation to date into the effectiveness of the scheme was performed by 

[Twardowski, 93] on the pole-balancing problem, where results were very promising. 

The version implemented here is identical to that of both Liepins and Twardowski 

except that it employs ABBA1, rather than the standard BBA. The scheme operates in 

two distinct phases: 

(i) during an episode, the scheme assigns strength in precisely the same manner as 

the ABBA1 alg0l1thm; 

(ii) upon completion of the episode, the strength of each rule is updated using the 

BA updating equation: 

where Xi is the trace parameter. 

(e) Hybrid PSPV-ABBA1 

A direct hybrid of the BBA and PSPV algorithms is not possible because the BBA 

updates the strength of each rule using the previous strength, whilst the PSPV simply 

ignores this and replaces the strength by a value calculated from the mean and variance. 

However, a hybrid scheme is proposed here in which, during an episode, the strength 

of each rule is updated using ABBA1, and upon completion of the episode, Jli and 'Ui 
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are calculated (as in the PSPV) with the strength of each rule updated using the 

following equation: 

(t) Hybrid BA-PSPV-ABBAl 

Finally, a hybrid of the BA, PSPV and ABBAl algorithms was implemented by adding 

the trace parameter associated with the BA algorithm into the updating equation of the 

PSPV-ABBAI hybrid, as follows: 

The performance of the 6 schemes when applied to 300 instances of test problem ITP2 are 

Shown in Figures 3.12 and 3.13. Figure 3.12 shows the results for the three epochal 

algorithms by themselves (that is, methods a, b and c). In each case, the plans developed were 

lUore successful than those of the standard BBA but were not as good as those produced by 

either ABBAI or ABBA2. Of the three algorithms, due to the additional infOlmation provided 

by the variance, the PSPV method produced the best results. Of the other two schemes, rather 

SUrpriSingly, the BA algorithm produced the worst results. However, the reason for this can 

be identified by analysing the plan produced by the BA algorithm (Table 3.16). This shows 

that, due to the BA algOlithm favouring frequently used rules, the two default rules (rules 1 and 

2) gain a considerable percentage (49%) of the total strength and hence, lead to a reduction is 

sYstem performance. 
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Figure 3.12: Peiformance of SEA (short dash), BA (long dash) 

and PSPV (solid) algorithms on test set S' 

Table 3.16: Plan developed by BA algorithm 

No. Classifier Abs. Strenoth ReI. Strength 

1 00#### : 01 00 11 0.09 0.29 
2 01#### : 010011 0.07 0.22 
3 00#0##, 

01#011 : 010101 0.06 0.19 
4 00#0##, 

01#011 : 010110 0.00 0.00 
5 01###0 : 010011 0.00 0.00 

6 01##0# : 010011 0.06 0.22 
7 OO(X110 : 010011 0.02 0.08 

Figure 3.13 shows the equivalent results for the three hybrid schemes. In each case, the 

hYbrid schemes produced better results than the stand-alone epochal algOlithms but could only 

prOduce results comparable with those of the stand-alone ABBAl and ABBA2 algorithms. 

124 



150 

~ 125 c 
·i 100 .... 
Q 

75 
"" qJ 

~ 50 S 
== Z 25 

0 
0 50 100 150 200 250 300 

Number of episodes 

Figure 3.13: Peiformance of three hybrid schemes on test set S' 

3.5 Concl usions 

The work repolted in this chapter has investigated one of the main components of a classifier 

system, the credit assignment algorithm - firstly from a theoretic viewpoint and then from a 

practical perspective. 

The vehicle used for the theoretical investigation was a branch of mathematics known 

as Evolutionary Game Theory, and analysis with this showed that, under certain mild 

assumptions, the strengths of rules in a classifier system using the Bucket Brigade Algorithm 

will tend to confOlm to that of an Evolutionary Stable Strategy. The main consequence of this 

work is that if a plan were to develop in the manner predicted by the theory, then the plan may 

not end up maximising the expected payoff to the system but rather develop towards a pareto 

Optimal state. Thus, additional mechanisms, such as the EA at the plan level, are likely to be 

needed if the proposed system is to successfully learn useful plans for all but the simplest of 

problems. 

The remainder of the chapter addressed some of the practical problems associated with 

Credit assignment, with palticular attention being paid to the problems caused by parallel rules. 

ReSults from a test system applied to the two tanks problem showed that such rules can have a 
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significant impact upon the distribution of strength within a classifier system, with potentially 

disastrous consequences for system performance. A number of variants of the standard BBA 

were suggested as possible solutions -to this problem, of which two in particular, those for 

which the payoff is divided in proportion to (a) the bid (ABBAl) and (b) strengthlspecificity 

(ABBA2), were shown to significantly improve system pelformance. A number of epochal 

schemes were also investigated, as were hybrids of the bucket brigade and epochal algorithms, 

but whilst the hybrid schemes showed comparable performance, none were able to surpass the 

performance of the stand-alone ABBAl and ABBA2 schemes. 

The main limitation of the above work is that all trials were performed using a 'static 

plan', that is, one in which the rule base remained constant. To investigate the relative merits 

of the proposed credit assignment algOlithms on an evolving lUle base, the test system needs to 

be extended to include a rule discovery element, that is, an evolutionary algorithm. The effects 

of credit assignment due to the presence of an EA are the subject of the next chapter, where 

some of the conclusions reached in Chapter 2 will also be investigated in the context of 

machine learning. Moreover, the addition of the EA allows the adaptive BBA which was 

Suggested in section 3.4.2, to be investigated to determine if it too is of any benefit to a 

classifier system. 
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4. Rule Discovery in a Classifier System 

4.1 Introduction 

The work presented in the previous two chapters investigated some of the key features which 

affect the performance of the evolutionary and credit assignment algorithms respectively. The 

aim of this chapter is to combine the findings of these two investigations to produce a fully 

operational classifier system capable of leaming solutions to simple 2-player games. Building 

this system serves two main purposes. Firstly, the system can be used to determine if the 

Conclusions derived from the two separate investigations obtain when the two components are 

combined. Secondly, since such a system fonns the main constituent of the hybrid learning 

system proposed in Chapter 1, then by analysing the effectiveness of this component cl.assifier 

system, some of the shortcomings in the design of the hybrid system can be identified at an 

early stage and the system architecture con·ected. 

Section 4.2 describes the system employed to carry out this work, SCS-EA (an 

extension of the SCS I system); particular attention being paid to the genetic operators 

Suggested for the rule discovery phase. Section 4.3 then desclibes a technique not previously 

used in connection with classifier systems, a meta-EA, which it is suggested can be employed 

to discover combinations of genetic operators that work well for different classes of problem. 

Thereafter, sections 4.4 and 4.5 respectively describe the test problems used for this work and 

the results from applying the meta-EA to the problems. 
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4.2 System Architecture 

4.2.1 Modifications to SCSI 

The aim of this chapter is to desclibe the production of a fully operational component classifier 

system capable of learning solutions to 2-player military problems, and subsequently to use 

this system to investigate some of the key aspects affecting rule discovery in a machine learning 

environment Since SCS I was specifically designed for use in a 2-player game scenario (more 

explicitly, the two tanks problem) and had also been used successfully in the work in the 

previous chapter on credit assignment, it was decided to continue to use it as the basis for this 

investigation. However, to make the distinction between this and the previous version, the 

updated system was renamed SCS-EA. 

Besides the obvious addition of an evolutionary algorithm, some minor amendments 

had to be made to the system design to enable it to be employed in an investigation of rule 

diScovery. The only alteration made to the RaM part of SCS 1 was in respect of the critic. This 

Change was made because it was felt that the simple tri-paltite critic employed by SCSI was 

inadequate for all but the simplest problems. Consequently, a number of alternative critics, 

each one designed with a specific test problem in mind, were generated. These are described in 

sections 4.4.2 to 4.4.4 together with the con·esponding test problems. 

For credit assignment, four of the most promising schemes suggested by the work of 

the previous chapter were employed. These were the ABBAl, PSPV and hybrid ABBAI-BA

PSPV schemes, together with the adaptive BBA suggested in section 3.4.2. Selecting which 

Scheme to use on any system run was governed by the parameter CRED_ASSIGN_TYPE, 

Which is assigned an integer value in the range 1 to 4 corresponding to each of the four 

SChemes employed. 

4.2.2 Initialisation 

When the outline of a standard EA was described in Chapter I, it was noted that there are two 

Illethods of generating the initial population for an EA in common use - randomly or seeding 
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using a priori knowledge. The former option has the advantage that it provides a good test of 

the robustness of the system, whilst the latter option may improve the speed with which the 

system develops a good solution (aithough this may be at a cost of biasing the initial 

population). There are, however, various hybrids of these two approaches (see, for example, 

[Michalewicz, 92] on approaches to generating initial populations for the TSP). Moreover, for 

machine learning systems, there is also another option refen'ed to as Adaptive Initialisation. In 

this scheme, each bit in the conditional part of a classifier is initialised to a 'wildcard' symbol 

and the action/message part to an action selected at random from the set of those available. 

Such a scheme results in all classifiers initially matching all possible situations, thereby causing 

the system to effectively employ a random walk strategy. Systems adopting this initialisation 

scheme (see, for example, SAMUEL ([Grefenstette, et aI, 90] [Grefenstette, 9la]) ) are 

required to employ specialization operators, which use the outcomes from the sequences of 

actions to reduce the generality of the rules in an appropriate manner. However, if the rule 

discovery element is not based around such operators, then this is a poor way to generate the 

Useful building blocks which the EA needs to work effectively. 

Therefore, given that (i) the purpose of this work is to test the robustness of the 

leaming system, (ii) an external expelt to suggest any a priori knowledge was unavailable, and 

(iii) the EA to be employed was of a standard nature (that is, one not specifically designed to 

Work with adaptive initialisation), it was decided that random initialisation of the population 

Was the most suitable method. However, features of both the other two initialisation methods 

are required to be incorporated in SeS-EA because of the need to avoid generating a particular 

class of rule, referred to here as lethals. Two types of lethal classifier can be generated in ses

EA. 

(a) Illegal classifiers 

Illegal classifiers can arise as a result of using a binary alphabet to represent non-binary 

variables. In such representations, problems surface when the number of values a 

variable can take is not an exact power of 2. For example, in the representation 
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scheme adopted by SCS-EA, the rightmost 3 bits in the action/message part are used to 

specify the action to be effected, for which there are six candidates. This leaves 2 of the 

8 possible representations (1 iI and 100) with no action to specify. Therefore, a 

randomly generated action may, when decoded, suggest an action which doesn't exist, 

and consequently cause a system error. 

(b) Contradictory classifiers 

Contradictory classifiers are more problematical than illegal classifiers, and can arise 

when the conditional part of a classifier contains one or more conditions which can 

never be matched. For example, the environmental message used by SCS-EA has bit 4 

set to I if the opponent moves (either forward or backward) and bit 5 set to 1 if the 

opponent does nothing. Clearly, if in a classifier, both bits are set to 1, then no 

message can ever satisfy its conditional part, thus making the classifier redundant 

Clearly, illegal classifiers must be avoided at all costs. The solution adopted in SCS-EA was 

to regard the 3 action-specifying bits as a unit. Then, given a list of the n available actions 

along with their respective binary codes, a 'random' action can be generated by selecting a 

random number, r, I~r$n, and copying the 3 bit code cOll·esponding to the rth action into the 

action specifying bits of the new classifier. By generating an action/message part in this 

lllanner, the system is incorporating some a priori knowledge (in the form of knowledge of the 

available actions) into a generally random process. 

Unfortunately, because of the complex relationships that can exist between variables, 

there is no simple syntactic check to avoid generating contradictory classifiers. Moreover, 

complex relationships can develop in even the simplest TIPs. For example, in the TIP used 

thus far, a tank may be able to move forward and increase its gun elevation simultaneously, or 

lllove forward and fire simultaneously, but may not be able to increase its gun elevation and 

fire together. 

Producing contradictory classifiers as a result of genetic recombination cannot be 

130 



avoided. Fortunately though, the problem can be somewhat eased when generating the initial 

population. Although at first sight this may not appear to be of much use, it is in fact vital to the 

operation of the system because the EA needs sufficient 'grist-for-the-mill', that is, sufficient 

numbers of building blocks in the initial population upon which to base its search. Without 

these, the search of the EA is unlikely ever to get 'off the ground'. For SCS-EA the problem is 

eased by proceeding as follows: 

(a) when generating the internal condition, a valid action is selected at random and its code 

placed in bits 1..3 of the condition. Then, with a probability of 0.33, each bit is 

mutated to a wildcard. This process will ensure that every internal condition will match 

at least one internal message; 

(b) when generating the environmental condition, a relatively high bias is given towards 

generating wildcards Ca probability of a 0.5 was used with success). Whilst not 

eradicating the possibility of generating contradictory classifiers altogether. this does 

make it significantly less likely that they will be generated. Even if a small number are 

generated, due to the life taxes to which they are subject. their strengths should steadily 

decline and ultimately they will be deleted when the EA is invoked. It should be noted 

that this approach has much in common with the adaptive initialisation approach but 

does not require specific operators to generate the necessary 'gIist-for-the-mill'. 

One final point regarding the initialisation process concerns the presence of duplicate rules. 

The work presented in the previous chapter demonstrated that duplicate rules can have a 

detrimental effect on system performance and so, it was decided to ensure that duplicate rules 

Could not exist within the plan. In SCS-EA. this is achieved by employing a syntactic monitor 

to detect the presence of duplicate rules, not only duIing the initialisation phase but also after 

the application of genetic operators. and, where necessary. to delete all but one of the 

duplicates. 
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4.2.3 Main cycle of the EA 

Once the initial population has been generated, the main cycle of the EA can commence. For 

machine learning applications, the generational EA investigated in Chapter 2 is not generally 

desirable because a high level of on-line performance is usually required to facilitate the 

learning process. Instead, as [Holland, 86] suggests, new rules should be introduced 

gradually so that they can be tested alongside the existing proven rules. This is precisely the 

manner in which an incremental EA operates. Moreover, without the addition of a number of 

special mechanisms, useful rules may be lost in the selection phase of a generational EA but, 

With an incremental EA, only relatively poor rules are ever deleted from the rule base. 

Consequently, it was decided to employ an incremental rather than generational algorithm. 

Although the operation of such an algorithm is different from that used for the trials described 

in Chapter 2, the suggestions made at the end of those trials (Section 2.6) still maintain because 

(a) the trials were mainly analysed at a high level (for example, the net effect upon the EAs 

search of a particular mechanism - did it favour exploitation or exploration?), and (b) the 

conclusions derived were of a very general nature (for example, 'incorporating environmental 

information into operator rates appears, under certain conditions, to benefit system 

perfOlmance'). 

The evaluation task is performed using one of the four available credit assignment 

algorithms. To enable the rule strengths to approach their steady-state values, a number of 

episodes have to be run to make sure that all rules are evaluated sufficiently. This number of 

episodes is called the period of the EA and great care has to be taken when selecting its value; 

too Sh0l1 a period will mean that rules will not be properly evaluated, with the consequence that 

the search of the EA may degenerate into little better than a random walk, whilst a period which 

is too long may make the learning process unbearably slow. Unfortunately, there are no 

guidelines for selecting suitable periods for classifier systems and so the only way in which it 

can be determined is through trial and en·or. 

One further point relating to the period is that it is likely that the rule strengths of the 

initial population will take significantly longer to approach their steady-state values than those 
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of subsequent generations. Consequently, it was decided to incorporate into the EA another 

parameter, the threshold, to enable a longer peIiod to be set aside for the initial population to be 

evaluated. Thus, for example, when employing an EA with a threshold of 50 and period of 5, 

the system would run for 50 episodes before the first application of the selection I 

recombination phases, with every 5th episode after that being the cue for the selection I 

recombination phases to be invoked. 

After each evaluation phase, the fittest members of the population are selected as 

arguments for the various genetic operators employed by SCS-EA. The selection scheme 

employed by SCS-EA was chosen to be a weighted ranking mechanism because of its 

particular suitability for use with an incremental EA. In this scheme, the population is ordered 

in terms of fitness (worst member at position 1, best member at position n, where n is the 

population size) and then a member selected using the following formula [Reeves, 91] (shown 

graphically in Figure 4.1) 

i = 1 + ROUND [( 0.5 -Vc 1 + 411(11-1) rand» -0.5] 

Where i is the rank of the member selected, n is the population size and rand is a random 

number such that O~ran(l<1. Thus, for a population size of 20, the average value for i (when 

rand=0.5) is 14 (that is, the 7th best member). 
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Figure 4.1: Distribution of the member selected, i, for different values of 

'rand' when employing the weighted ranking scheme 

4.2.4 Genetic operators 

SCS-EA employs five types of genetic operator to facilitate the rule discovery process. These 

are: 

(a) NO_MATCH; 

(b) crossover operators; 

(c) mutation operators; 

(d) coupling operators; 

(e) NEW_RULE. 

The first of these operators, NO_MATCH, is essential to any classifier system which 

incorporates a rule discovery element, and is employed to generate a matching rule for the cases 

Where no extant rule matches the cun·ent intemal and environmental messages. The crossover 

and mutation operators are employed to perform the standard genetic operations of the EA, 

Whilst the last two operators, the coupling operators and NEW_RULE, are employed to 

determine if, as suggested by the trials in Chapter 2, the addition of problem-specific operators 
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can improve the pelfOlmance of the EA. 

(a) NO_MATCH 

In the most common approach to generating a matching rule where no extant rule matches the 

Current messages, typically refelTed to as best match, each rule is compared with the current set 

of internal! environmental messages and the rule with the least number of non-matching 

positions selected. All non-matching bits in the rule are then set, with equal probability, to 

either the wildcard symbol or the equivalent bit in the cOITesponding internal/environmental 

message. Not only is this a simple and effective approach to the problem but is also consistent 

with the results repOlted in section 2.4.2 which demonstrated that amending extant members of 

the population, rather than generating completely new solutions, is likely to be a profitable 

approach to rule discovery. 

Alternative schemes do exist including an adaptive No Match operator [Grefenstette, et 

aI, 90] which generates a completely general rule to match the extant state of the message list 

but, as with the adaptive initialisation scheme, this operator requires specialization operators to 

generate subsequent, more useful rules. 

A further point relating to the NO MATCH operator is that one of the rules in the extant 

rule base has to be removed to accommodate the newly generated rule. SCS-EA employs a 

REMOVE operator to achieve this, which itself employs one of two alternative schemes to 

select the rule to be removed. In the simplest scheme, one of the rules in the bottom 25% of 

the population is selected at random. However, because of the need to maintain a co-adapted 

Population, it was decided to employ a second scheme which uses a crowding mechanism [De 

Jong, 75] to select the rule to be deleted. In a crowding mechanism, x members of the 

Population are selected at random from the population and the one with the minimum strength 

selected. This process is then repeated y times, to end up with y rules which are candidates for 

deletion (no rule is selected more than once). The values x and y are referred to as the 

crowding sub-population and crowding factor respectively. Each of these y rules is then 

compared to the new rule to be added to the rule base, and the one which has the few est non-
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matching bits selected as the rule to be deleted. In the experiments reported here, both the 

crowding sub-popUlation and crowding factor were set to 3 - a value which has been used 

successfully in a number of previous studies (see, for example, [Goldberg, 89aD. 

A system parameter, CROWDING, which is set by the user at run-time, is employed to 

determine which of the two deletion schemes should be used on a patticular run. 

(b) Crossover operators 

The experiments investigating the use of Lamarckian operators (section 2.4.4) demonstrated 

that incorporating environmental information into the crossover operator can, under certain 

conditions, significantly improve the rule discovery process. During the operation of a 

classifier system, two situations wherein environmental infOlmation may be useful are: 

(i) after the OCCUlTence of a special event during the course of an episode; 

(ii) the end of an episode when its outcome can be used to guide the genetic operators. 

Therefore, two crossover operators were designed for use in SCS-EA, one for each of these 

situations. These are called triggered and end-ofepisode crossover respectively. 

(i) TRIGGERED CROSSOVER 

TRIGGERED CROSSOVER is employed whenever the message list, consequent upon 

contlict resolution, contains more than one message. In practice, this is likely to be 

almost every time step since several general rules specifying the same action are likely 

to be active simultaneously on many of the time steps, and if allowed, would produce a 

turn-over of rules so great that no rule would be able to develop its strength towards its 

steady-state value. This would effectively reduce the search of the EA to little better 

than a random walk. Consequently, the system was invested with another parameter, 

trig-probability, to limit the use of TRIGGERED CROSSOVER. Given that the 

number of time steps involved in ,an episode will be of the order of 10, and about one 
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new rule every 10 episodes would seem appropliate, the value of trig-probability was 

set to 0.01. 

When the operator is invoked, two of the message list's m messages are 

selected at random, and the respective rules, RI and R2, which posted the messages, 

selected as the parents for the crossover. Due to its success in trials with the knapsack 

problem, it was decided to employ the string-aJ-change mechanism, (section 2.4.4) in 

the crossover operator. The string-of-change is calculated for RI and R 2 by 

concatenating the internal and environmental conditions with the action/message part 

and, as discussed earlier, treating the 3 action specifying bits as a unit to avoid 

generating illegal classifiers. An example of this operation is shown below. 

Parent A 

Parent B 

Stling-of-change 

00###0, 

00#100, 

000110. 

01010#: 

010#0#: 

000100: 

010011 

010001 

000 1 

If the string-of-change has fewer than two 'ones' in it, then no matter where the 

crossover point is selected, no new rules will be generated and so the operation is 

abandoned with no fUlther attempt made to select new parents. Otherwise, a crossing 

point is selected using the string-of-change, the crossover performed, and one of the 

offspring selected at random. 

Before this new rule can be added to the rule base, a monitor is employed to 

compare it with all extant rules to ensure that it does not duplicate a rule. If it is found 

to duplicate an extant rule, then a further operator, CROSS MUTATION is employed to 

repeatedly mutate it until it no longer duplicates an extant rule. Not all the bits in a 

classifier are mutable; the 2-bit tag at the start of each 6-bit message is deemed 

immutable (because a change to it would make the classifier illegal), whilst the three 

action specifying bits are treated as a unit. Thus, of the 18 bits in a rule, only 10 are 

mutable, as follows: 
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Example string: 00#10#, 0111#0: 010.LLl 

Mutable bits: **1234 **5678 * * 9 10 (*=immutable bit) 

(ii) END OF EPISODE CROSSOVER 

Given that n is the period of the EA, then this form of crossover is employed 

periodically at the end of every nth episode subject to the constraint that the number of 

episodes is greater than the threshold of the EA. Two parents, R3 and R 4 , are 

provisionally selected according to the weighted ranking scheme outlined earlier, and a 

string-of-change produced. If this string-of-change contains at least two 'ones' then 

the crossover is performed and one of the offspring (selected at random) added to the 

rule base. Once again, the member it replaces is selected using REMOVE. However, 

if the string-of-change contains fewer then two 'ones'. then two new provisional 

parents are selected. again according to rank, and the process repeated until a suitable 

stIing-of-change is produced. Then. and only then. are the parents mated. 

Once again, a monitor is employed to check that the new offspling generated by 

this process does not duplicate an extant rule, and if necessary, the CROSS 

MUTATION operator employed to generate a non-duplicate. 

(c) mutation operators 

SCS-EA employs two other mutation operators besides CROSS MUTATION. 

(i) STANDARD MUTATION 

The first of these mutation operators. STANDARD MUTATION, is similar to the 

mutation operator used in traditional EA applications. It is applied at the end of an 

episode (immediately after END-OF-EPISODE CROSSOVER) and operates by 

mutating each bit with a probability P Sl_ffiut. The mutated version of the rule then 
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replaces the Oliginal version. This form of mutation is not suitable for application to 

profitable rules since valuable information could be lost. Consequently. STANDARD 

MUTATION is only applied to the worst 25% of classifiers. 

A further feature of this operator is that the mutation probability. Pst_mut. is 

adaptive. This feature was added because of the success of the diversity-based 

mutation operators described in section 2.4.5. However. calculating diversity can be 

quite processor-intensive and, if calTied out on a regular basis, may have a significant 

impact on the running time of the system. Fortunately, a 'rough' first approximation to 

population diversity can be derived from the number of attempts taken by the END OF 

EPISODE CROSSOVER operator to find suitably diverse parents. For example, if the 

operator finds appropriate parents on its first attempt, then the rule base is likely to be 

quite diverse and hence, will not require much mutation. However, if several attempts 

are required to find a suitable string-of-change. then this is an indication that the 

diversity in the rule base has fallen. and so a greater level of mutation is needed. 

Consequently. the mutation rate, Psunutt for this operator is calculated as follows: 

Psunut = (n+l). Cl 

where Cl is a small constant (set to OJ)Ol to be largely in line with the mutation rates 

investigated in Chapter 2) and n is the number of attempts made by the END OF 

EPISODE CROSSOVER operator to find a suitable string-of-change. 

As with the crossover operators, hefore the new rule is added to the population, 

a monitor is invoked to ensure that it does not duplicate an extant rule. If it does, the 

rule is suhjected to further mutation until a non-duplicate rule is derived. 

(ii) CLONAL MUTATION 

STANDARD MUTATION is applied to only the worst 25% of classifiers. Although 
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some of these poor classifiers may be only a single mutation away from being useful, 

in general, the most profitable mutations will be those involving useful rules. 

Consequently, SCS-EA is invested with a second mutation operator, CLONAL 

MUTATION, which makes an exact copy of a profitable rule, x say, mutates this 

duplicate, and then replaces a poor rule, and not x, by the mutated version, therefore 

minimising the loss of valuable information. 

As with STANDARD MUTATION, CLONAL MUTATION, is invoked at the 

end of an episode and is applied with a probability PIT> the replication rate, set to 0.01. 

Rules which are candidates for application of the operator are those which have made a 

profit, that is, those which have strength greater than 10.0. Each candidate is subjected 

to a single mutation. the mutant is checked using a monitor to ensure that it does not 

duplicate an extant rule, and is then added to the population in place of a rule selected 

using REMOVE. 

(d) coupling operators 

The problem of reinforcing long chains of rules has been well documented (see, for example 

[Riolo, 87a, 89a]). One method that has been suggested which may facilitate the development 

of long chains is to create tighter links between consecutive rules. Consequently, [Holland, 

86b] suggested a COUPLING operator wherein the intemal condition of a rule, R2, active at 

time t, is mutated to be more akin to the intemal message, M, posted by the rule Rl which was 

active at time t-1. Two occasions on which such an operator may prove useful are: 

(i) after a rule has made a profit; 

(ii) at the end of a successful episode (that is, one in which the system achieved its 

goal) when the sequence employed has been proved to be useful. 
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The second of these is the most obvious time to couple two lUles together but is rather limiting 

as it only applies to the last two rules in a sequence. Nevertheless, two such lUles which have 

been shown to be successful, should De closely linked together. Consequently, this form of 

coupling is called TIGHT COUPLING. When, however, coupling is pelformed when a rule 

makes a profit, there is only a possibility that the rule has been involved in a successful 

sequence. Consequently, with this fOlm of coupling, the link between the two rules should not 

be made as closely and so this fOlm of coupling is called LOOSE COUPLING. The precise 

fonn of these two operators is as follows. 

(i) LOOSE COUPliNG 

Before an episode, a record of the current strength of each rule is recorded. If at any 

time during the episode the strength of a lUle becomes larger than its initial strength, 

then it is deemed to have made a profit and is thus subjected to LOOSE COUPLING. 

In this, a single wildcard in the conditional part of the rule is mutated to the 

corresponding bit in the internal! environmental message that was active on the 

previous time step. If there are no wildcards in the conditional part, then the rule must 

already be maximally specific and hence, there is no need to apply the operator. 

Before the newly generated rule can be added to the population, a monitor is 

once again employed to ensure that the new rule does not duplicate any extant rules. If 

a duplicate is found, then further wildcards are mutated until either a rule with no 

duplicates is generated, at which point it is added to the rule base using REMOVE, or it 

is found to be maxim ally specific, in which case the operation is abandoned. 

(ii) TIGHT COUPLING 

This operator is employed at the end of an episode and is applied to the rule used on the 

final time step of the episode. It operates by mutating between 1 and w wildcards in the 

internal condition of the rule (where w is the total number of wildcards contained in the 

internal condition) to the con·esponding bits in the intemall environmental messages 
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that were active on the penultimate time step. Thereafter, the same procedure 

pelfonned in LOOSE COUPLING is employed. 

(e) NEW RULE 

The NEW RULE operator is similar to the TIGHT COUPLING operator except that it is not 

limited to the final pair of rules in an episode. It too is invoked at the end of a successful 

episode and operates as follows. On any time step, t, during an episode, the environmental 

message, the internal message 12 and the action performed on a particular time step are all 

recorded with a probability of 1I(t+ 1). Subsequently, should the episode be successful, a new 

rule is generated from all 3 messages, and, providing it is not a duplicate, added to the rule 

base; the member it replaces being selected using REMOVE. 

4.3 Evaluation method 

4.3.1 A meta-EA analysis of operator combinations 

Elements of the system which it would be useful to identify are the combinations of genetic 

operators and credit assignment schemes that tend to produce the best results. However, 

because of the large number of genetic operators and their inter-dependencies, this is a difficult 

task. For example, analysing the system with and without one type of crossover may lead to 

misleading results because its effectiveness may be linked to the degree of mutation used by the 

system. Moreover, as there are 8 different genetic operators supported by the system and 4 

different credit assignment schemes, even neglecting the various parameters such as operator 

probabilities, there are 1024 possible operator configurations. 

Evaluating these manually is infeasible and so some automated search technique is 

required to find an optimal or near optimal operator configuration. Clearly, an EA itself is such 

-
121f more than one are active, then the first message on the message list is selected. 
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a technique for this problem. As mentioned in Chapter 1, several studies (see, for example, 

[Grefenstette, 86] and [Freisleben and Hartfelder, 93]) have already been performed using one 

EA to optimize the parameter settings'for another. Such 'parameter-finding' GA's are termed 

GAs for GAs or meta-GAs. As the number of operators in SCS-EA is much larger than in a 

traditional EA, the parameters associated with the operators were not investigated (as this 

would make the search space too large). Instead, the system was assigned default parameters 

for the operators (based on the authors experience of similar parameters) and the meta-EA was 

employed to look for useful combinations of operators. 

4.3.2 Operation of the meta·EA 

The problem to which the meta-EA was applied was one of discovering which combinations of 

operators and credit assignment schemes work well for various problems. Therefore, the 

encoding scheme for this meta-EA was a binary string in which each bit in the string 

corresponds to an operator from the set of those available to SCS-EA. As there are 8 operators 

(each of which can be used or unused) and 4 credit assignment schemes available to SCS-EA, 

then the bit-string used to represent an operator configuration consists of lO-bits where a 1 in 

Position i means that the jth operator in the list of operators (see Tables 4.1 and 4.2) is included 

in the configuration described by the string, whilst a 0 implies that it is not present in the 

Configuration. The ordering of the operators within the encoding scheme was selected 

randomly. 

Table 4.1: Encoding Scheme for Meta-EA 

Bit No. Onerator I Parameter 

1 TIGHT COUPLING 

2 LOOSE COUPLING 

3 NEW RULE 
4 TRIGGERED CROSSOVER 

5 END OF EPISODE CROSSOVER 
6 CLONAL MUr ATION 

7 STANDARD M lIT ATION 

8 CROWDING 

9,10 CREDIT ASSIGNMENT SCHEME 
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Table 4.2: Encoding scheme for bits 9 and 10 

Code Credit Assignment Scheme 

0 0 ABBAl 

0 1 Ad'lptive BBA 
1 0 PSPV 
1 1 ABBAl-BA-PSPV Hybrid 

Each configuration in the population is evaluated by running the system for 10,000 episodes 

with that configuration, and recording the on-line perfonnance of the system. The value of the 

on-line perfonnance at the end of the 10,000 episodes is then used to represent the fitness of 

the configuration. 

One problem with this evaluation phase is the length of time it takes. The 10,000 

episodes take approximately 5 minutes to run and so only a relatively small number 

configurations can be evaluated. Consequently, the meta-EA must converge fairly rapidly and 

so an incremental algorithm was employed, the population size being 20. 

After evaluating the first generation, the whole population is ordered (in terms of 

fitness) and two parent configurations selected according to the weighted ranking scheme 

described in section 4.2.3. Standard I-point crossover is then applied to the two parents and 

one of the two resulting offspring selected at random. Mutation is then applied to this 

offspring, with a probability of 0.04 of changing any particular bit. The new configuration is 

Subsequently evaluated and added to the population in place of a member selected at random 

from the worst five configurations. The population is subsequently re-sOlted and the process 

repeated a further 399 times, giving a total of 420 evaluations (con·esponding to approximately 

35 hours of processing time). 

4.4 Test Problems 

4.4.1 Problem design 

Whe~ designing the problems to investigate appropriate operator combinations I credit 

assignment schemes, it was decided to pay particular attention to the type of rule that would be 
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required for 2-player military games. Analysing the scenados showed that the rules required 

fall into two broad categories. 

(i) stimulus-response rules - those in which an action is performed in response to the 

environment (world model) being in a certain state. 

ego IF distance to target = range THENfire 

(ii) coupled rules - those in which the action to be performed is determined by the previous 

actions. 

ego IF previous action was fire THEN retreat 

Correspondingly, three types of learning task were designed to investigate which operator 

Combinations are particularly useful for discovering these types of l1l1e: 

(1) classification tasks - used to investigate the system's ability to discover stimulus

response l1lles; 

(2) sequential tasks - used to investigate the system's ability to discover coupled chains of 

l1lles; 

(3) combined classification and sequential tasks. 

A. small number of problems were developed for each of these cases. Examples of problems 

for each type of leaming problem are given below. 

4.4.2 Classification Problem 1 (CPl) 

In this problem, each episode lasts for a singie time step and involves the system selecting the 

correct response (out of 8 available responses) to one of 16 randomly generated 4-bit inputs. 
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Table 4.3: Classification Problem 1 

Inputs Desired Output 

0000 001 
0001 001 
0010 001 
0011 001 
0100 001 
0101 001 
0110 001 
0111 001 
1000 101 
1001 101 
1010 101 
1011 101 
1100 011 
1I0I 011 
IlIO 110 
1111 010 

Due to there being no sequence involved with this problem, the intemal message of every rule 

Was initialised to 01#### to match every message. The critic employed for this problem was 

very straightforward; + 10 when an input is cOl1"ectly classified and 0 otherwise. 

4.4.3 Sequential Problem 1 (SPl) 

In this problem, a version of the TIP, the objective is to perform the 3 actions 'move forward', 

'increase gun elevation' and 'fire' in that order, given no environmental information (that is, 

the environmental message is constant). Thus, a solution to this problem must necessarily 

involve the generation of coupled sequences of rules. The critic for this was slightly more 

Complex than that used for Classification Problem I, in that + 10 is awarded for a successful 

sequence, +5 if the first 2 actions are correct, +2.5 if only the first action is correct, and 0 

Otherwise. 

4.4.4 Combined Learning Problem 1 (CLPl) 

The .scenario for this problem, a relatively complex version of the TIP, is depicted in Figure 

4.2. 

146 



A B 

~--~--------r----~ 
5 16 17 

River 

Figure 4.2: Initial positions in CLP 1 

At the start of the game, the two tanks are set 15 spaces apart, the gun elevation set to 3 (1 ~ 

gun elevation ~ 5), the range set to 11 (9 ~ range ~ 13) and the ammunition level (that is, the 

number of times a tank can fire) set to 2. Each tank has the same six moves (section 3.3.2) 

available to it as in previous problems and the maximum number of moves that Tank A (the 

learning agent) can take is 9. 

The only environmental information Tank A receives as to the state of the game is a 

binary encoding of the gap between the two tanks. Due to the positions of the mine and the 

river, A cannot move further than 2 places forward, or any further back than its original 

position. Two direct hits on B are required to destroy it and as the ammunition level is limited 

to 2, for A to win the game, it is necessary for both its shots to hit. Tank B's strategy is to do 

nothing until it is hit for the first time, at which time it either (a) moves forward one space on 

the next move and waits there, or (b) moves back one space, and then moves forward on the 

next move ( (a) and (b) are randomly selected with equal probability). On all subsequent 

llloves, B does nothing. Therefore, the optimal strategy for A is to move forward twice and 

increase its gun elevation twice in the first four moves (in any order) and then fire on the fifth 

lllove. This will result in B being hit for the first time. Then, if B subsequently moves 

forward (detected by the gap changing to 12) A should either decrease the elevation of its gun 

Or move back one space, before firing on the subsequent move. Alternatively, if B moves 

backward (detected by the gap changing to .14), then A should do nothing for one move and 

then~ as B comes back into range, fire on the subsequent mov~. 
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This is a useful scenario for investigating the fOlmation of both stimulus-response rules 

and coupled rules. For the first five moves; there is no environmental knowledge and so, for 

A to perform the correct actions, the system needs to generate an appropriate set of coupled 

rules. Subsequently (when B is hit), the system needs to generate two appropriate stimulus

response rules - one which specifies a move forward if the environmental message is 001100 

(gap = 12), and another which specifies 'do nothing' should the environmental message 

become 001110 (gap = 14). 

Due to this problem being much more difficult than either epl or SPl, the critic 

employed was made much more complex so as to provide the system with as much information 

as possible. The critic operates by evaluating each move made by Tl during the course of an 

episode and maintains a running total of the values retumed. This total is adjusted (see below) 

and then awarded as the payoff to T1. The ratings for the various moves available to Tl are as 

fOllows: 

(a) forward - moving forward is beneficial and thus scores +1, unless it results in Tl 

falling in the river, in which case it scores -3; 

(b) backward - if T2 moves forward on the previous move (as it does after it is hit for the 

first time), then this is a good move and so is awarded + 1. However, on any other 

occasion, moving backward is a poor move and so it is awarded -1; 

(c) fire - if the shot misses, then this is assigned -1, but if it hits, then the total is 

incremented by 9 points; 

(d) increase elevation - this is always beneficial and so is assigned + 1; 

(e) decrease elevation - sce move backward; 

(t) do nothing - if T2 moved backward on the previous move, then this is a good 'move' 

to make and is thus assigned +1, otherwise it is a poor move and is assigned -1 points. 

If, at the end of an episode, the total score is less than zero, then the critic awards zero points, 

otherwise it awards 10 x (total score/2). 

148 



4.5 Results 

The results generated by the 3 problems described above were found to be generally 

representative of the problem categories from which they were derived. Therefore, although 

only the results from 3 problems are shown here, these were verified by the results of other 

similar problems. 

4.5.1 Classification Problem 1 

Table 4.4 shows the final state of the meta-EA population after the 420 configuration 

evaluations (the solution with the highest utility is at position 20). 

Table 4.4: Meta-EA population for CP 1 

Rank Bits 
(20=best) 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 

1 0 1 1 1 0 1 0 1 0 1 
2 1 1 0 0 1 1 0 1 0 1 
3 1 1 0 0 1 1 0 0 0 1 
4 1 1 0 0 1 1 0 1 0 1 

5 1 1 0 0 1 0 0 0 0 1 

6 1 0 0 1 0 1 0 1 0 1 
7 1 I 0 0 1 1 0 1 0 1 

8 1 1 0 0 1 0 0 0 0 1 
9 1 0 1 1 0 1 0 1 0 1 

10 1 0 0 1 1 0 0 0 0 1 

11 1 0 0 1 0 1 0 1 0 1 
12 1 0 1 1 0 1 0 1 0 1 
13 1 1 0 0 0 1 0 1 0 1 
14 1 1 0 0 1 0 0 0 0 1 
15 1 0 1 1 0 I 0 1 0 1 
16 1 0 1 1 0 1 0 1 0 1 
17 1 1 0 0 1 1 0 1 0 1 

18 1 0 1 1 0 1 0 1 0 1 
19 I I 0 0 1 I 0 0 0 1 

20 1 1 0 1 1 1 0 1 0 1 

As the results demonstrate, not all the operators are beneficial to the learning of stimulus

response rules. For example, STANDARD MUTATION (represented by bit 7) tends to 
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produce poor results, as does the NEW RULE operator (bit 3). Since this problem has no 

sequential nature to it, one aspect of the results which at first sight appears a little curious is the 

success of the two coupling operators (bits 1 and 2). However, their success can be explained 

by the fact that after a successful classification, one or more bits in the internal condition of the 

successful rule(s) (originally set to 01####) is/are mutated by the operators to match more 

closely the intemal message posted at that time. Since the intemal message is always the same, 

this does not facilitate the classification process. However, it does increase the specificity of 

the successful rule, thus making more likely its selection on future occasions. 

Another important feature of these results is that the entire population adopted the 

adaptive BBA as its credit assignment algorithm (that is, bits 9 and 10 were set to 0 and 1 

respectively), thus giving an initial indication that this scheme is pmticularly useful in classifier 

systems. 

Figure 4.3 shows the performance of SCS-EA over the 10,000 problem evaluations 

when employing the fittest operator combination. This demonstrates that the system is capable 

of learning an appropriate set of stimulus-response rules in a relatively short period of time. 

Moreover, it demonstrates that once the system has discovered an appropriate set of rules, it is 

capable of maintaining a high level of perfOlmance. 
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Figure 4.3: Performance of SCS-EA (employing the 'optimal' 

operator configuration) when applied to CP 1 
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4.5.2 Sequential Problem 1 

Table 4.5 below shows the meta-EA pOI1ulation after the 420 configuration evaluations 

involving the test problem SP 1. 

Table 4.5: Meta-EA populationjor SP 1 

Rank Bits 
(20=best) 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 

1 1 1 1 0 0 0 0 1 1 1 
2 1 1 1 0 1 1 1 1 1 0 
3 1 1 1 0 0 0 0 1 1 1 
4 1 1 1 0 0 1 0 1 1 1 

5 1 1 1 0 0 0 0 1 1 1 
6 1 1 0 0 0 1 0 1 1 1 
7 1 1 1 0 0 0 0 1 1 1 
8 1 1 1 0 0 0 1 1 1 1 
9 1 1 1 0 0 0 0 1 1 1 
10 1 1 1 0 0 0 0 1 1 1 

11 1 1 1 0 0 0 0 1 1 1 
12 1 1 1 0 0 1 0 1 1 1 
13 1 1 1 0 0 0 0 1 1 1 
14 1 1 1 0 1 0 0 1 1 1 

15 1 1 1 0 0 0 0 1 1 1 
16 1 1 1 0 0 0 0 1 1 1 

17 1 1 1 0 0 1 0 1 1 1 
18 1 1 1 0 0 0 0 1 1 1 

19 1 1 1 0 0 0 0 1 1 1 

20 1 1 1 0 0 0 0 1 1 1 

Not surprisingly for a problem in which the objective is to discover sequences of coupled 

rules, both the two coupling operators and the NEW RULE operator were adopted by almost 

every member of the population. Moreover, the results demonsu·ate that for this particular type 

of problem, the crossover and mutation operators (bits 4 to 7) were not beneficial to the rule 

discovery process. The reason for this is that the two coupling operators, together with NEW 

RULE, were sufficient in themselves to discover an effective plan. Consequently, the only 

effect of either crossover or mutation would be to disrupt this plan, thereby reducing system 

performance. 

In respect of the credit assignment algorithm, the results show that for this type of 
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problem, the PSPV-BA-ABBAl hybrid scheme was the most successful out of the 4 

alternatives. The lack of success of the adaptive BBA in this environment can be attributed to 

the fact that once a set of successful, specific rules have been generated, the adaptive BBA 

would attempt to generalise them and this can only reduce system perfOlmance. 

Figure 4.4 shows the performance of SCS-EA when employing the fittest operator 

configuration over 10,000 type SPl problems. Once again, the results demonstrate that the 

system is capable of discovering an approptiate set of rules to solve the problem at hand - in 

this case, the type of rule being coupled rules. Note that for this operator configuration, the 

system manages to maintain a 100% success level.This is entirely due to the fact that the 

system does not employ crossover or mutation, and thereby avoids generating potentially 

erroneous l1lles once the optimal rule set has been developed. 
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Figure 4.4: PelfornuJI1ce of SCS-EA (employing the 'optimal' 

operator configuration) when applied to SP 1 

152 



4.5.3 Combined learning problem 1 

Table 4.6 shows the population generated by the meta-EA when applied to CLP!. 

Table 4.6: Meta-EApopulationJor CLPI 

Rank Bits 

(20=best) It 2131415T617181911O 

1 1 1 0 1 1 1 1 1 1 1 
2 1 1 0 0 1 0 0 0 0 1 
3 1 0 1 1 1 1 0 0 0 1 
4 1 1 0 1 1 1 1 1 0 1 
5 1 1 0 0 1 0 0 1 0 1 
6 1 0 1 1 0 0 0 1 0 1 
7 1 0 0 1 1 1 1 0 0 1 
8 1 1 1 0 0 0 1 1 0 1 

9 1 1 0 1 1 1 1 0 0 1 
10 1 0 1 1 1 0 0 1 0 1 
11 1 1 1 1 0 0 1 1 0 1 
12 1 1 1 0 1 1 1 1 0 1 
13 1 0 1 1 1 1 0 0 0 1 
14 1 1 0 1 1 1 1 1 0 1 
15 1 1 1 0 1 1 1 1 0 1 

16 1 1 0 1 0 1 1 1 0 1 

17 1 0 0 1 1 1 1 1 0 1 

18 1 1 0 0 1 0 0 0 0 1 

19 1 1 1 1 1 1 1 1 0 1 

20 1 1 0 1 1 1 0 1 0 1 

The results show that the best operator configuration found for SCS-EA when applied to CLP! 

Was identical to that for CP 1. thus demonstrating that whilst their use may be detrimental to 

results for a certain class of problems (namely simple sequentialleaming tasks). both crossover 

and mutation are important elements in the rule discovery aspect of the system. However, 

Whilst the results show that both crossover operators are beneficial to the system. only one of 

the mutation operators (CLONAL MUTATION) is clearly beneficial - the other operator. 

STANDARD MUTATION, generally being neither beneficial nor detrimental to the system. 

Moreover. the results once again demonstrate that an adaptive BBA appears to be the most 

Useful of the four credit assignment schemes available. 

Figure 4.5 shows the perfOlmance of SCS-EA over 10.000 eLP! problem evaluations 
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when employing the fittest operator combination. From this, it can be clearly seen that even 

When employing a near-optimal operator configuration, SCS-EA fails to find a set of rules 

which can consistently solve the problem. However. the system does manage to successfully 

'solve' this relatively difficult problem on about 25% of occasions. thus demonstrating that the 

system is able to discover many of the rules necessary for a successful solution. 

There are a number of reasons why the system only solves the problem on about 25% 

of occasions. For example. the system is constantly generating new rules to be tested and 

some of these will be poor, thereby reducing system performance. Another reason is that no 

attempt has been made to try to improve the parameter settings for the various operators. The 

values employed were only estimates (based on the authors experience of similar parameters) 

and it is likely that there is some scope for improvement with regard to these parameter values. 

However, a more pressing problem is that for this problem, sub-goals are rewarded by the 

critic. This rewarding of sub-goals is necessary for relatively difficult problems like eLP! 

because the probability of solving the problem by chance is so low that the system would have 

too few chances to reinforce any successful sequences which it may generate. This was 

demonstrated when the cIitic was replaced by one employing a simple scheme which rewarded 

100 points for a victory and 0 otherwise. In tIials with this cdtic, it was found that the system 

failed to win a single game in 10,000 attempts. However. given that sub-goals are to be 

rewarded, then the system will often just solve the sub-goal (for which it will receive credit) 

rather than the ultimate goal (that is, hitting the opponent twice in this case). 
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Figure 4.5: Performance of SCS-EA (employing the 'optimal' 

operator configuration) when applied to CLP 1 

In this chapter, a number of genetic operators for use in classifier systems have been proposed 

and investigated using a meta-EA to determine which operator combinations tend to produce 

the best results. 

The results show that not all the operators are necessary and in some situations, it may 

be a case of "too many cooks spoiling the broth". For example, generating too many new rules 

will not give sufficient opportunity for the strength of either new or extant rules to settle to an 

equilibrium level where they can be compared and the best selected. Consequently, having two 

forms of COUPLING operator plus the NEW RULE operator is, as demonstrated by the 

results in Tables 4.4 to 4.6, excessive for all problems except a purely sequential learning 

problem like SPI. However, most problems are likely to require some sequence of rules to be 

generated and so one or possibly two of these three operators are likely to prove useful. Both 

forms of crossover were generally found to be useful but having two forms of mutation was 

fOUnd to be excessive. Instead, it would appear that employing only CLONAL MUTATION is 

SUffiCient. 
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Not surprisingly, the crowding mechanism was found to generally produce better 

results than a simple 'delete a poor rule at random' strategy. Finally, the high percentage of 

solutions which adopted the adaptive BBA as their credit assignment scheme give a strong 

indication that this is the most appropriate credit assignment scheme to employ in classifier 

systems, although for some problems (for example, simple sequencing problems) a PSPV-BA

ABBAI hybIid proved to be more suitable. 

The results presented in this chapter have demonstrated that meta-GAs can be employed 

to facilitate the fine tuning of a classifier system as well as more standard EA applications. 

However, the time taken by the system to perform the analysis is a major limiting factor in the 

number of trials that can be performed. For example, it would be interesting to determine if 

significantly different results are produced by the meta-EA when a measure other than on-line 

perfonnance is used as the fitness of an operator combination. Unfortunately, due to the length 

of time taken to perform a single run, further investigations such as this could not be carried 

out. 
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5. The SAGA13 system 

5.1 Introduction 

In Chapter 1, it was suggested that a hybrid architecture combining aspects of both the 

Michigan and Pittsburgh approaches is likely to be the most appropriate architecture for 

developing military tactics. This resulted in an outline system design being proposed (Figure 

1.7). The work in Chapters 2, 3 and 4 then investigated some of the key features which 

would effect the performance of such a system. This work has been combined and resulted in 

a more detailed system design. The system has been given the name the SAGA system - an 

acronym for Strategy Analysis by Genetic Algorithm - the reference to genetic rather than 

evolutionary being a result of historical reasons. 

The aim of this chapter is to describe the architecture of the SAGA system, and the 

various operators and algorithms it employs. In particular, attention is paid to why, in the 

course of system development, various design decisions were taken, and to the major factors 

that influenced its implementation. 

Section 5.2 gives an overview of the system architecture, whilst section 5.3 discusses 

the requirements of a suitable knowledge representation for real-world problems, and describes 

a symbolic scheme which satisfies those requirements. In section 5.4 the operation of the 

central part of the SAGA system- the Component Classifier System - is detailed with palticular 

emphasis being placed upon the innovative credit assignment algorithm / genetic operators 

employed by the systems to enhance its general problem solving ability. Finally, section 5.5 

details the higher (plan) level operation of the system and its interaction with the lower level 

component classifier systems. 

--13Not to be confused with the Species Adaptation Genetic Algorithm developed by Harvey 
[l-!arvey, 92]. 
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5.2 Overview of the SAGA system 

At the end of Chapter 1. an outline design was proposed for the system deemed to be most 

suitable for learning military tactics. This consisted of a hybdd architecture in which a series 

of Component Classifier Systems (CCSs) operate in parallel. each one learning independent of 

the others. Periodically. an EA at the plan (Pittsburgh) level selects the best rules/plans from 

the set of classifier system plans and recombines these to form a new set of plans. These are 

then divided amongst the set of classifier systems and the process repeated until some 

terminating criteria is reached. 

As a result of the experiments perfOlmed throughout this research, the outline system 

design has remained largely unchanged, with the exception of one minor alteration. The 

success of systems employing co-evolutionary techniques (eg. [Hillis, 91], [Ikegami and 

Kaneko, 91]) and the need to model the opponent have suggested that it may be beneficial to 

allow the opponent to co-evolve with the learning agents. Consequently, two populations of 

Co-evolving CCS are employed in the SAGA system - one for the learning agents and one for 

their adversmies. Each CCS is paired with a single CCS from the opposing population and as 

Such, co-evolve in an environment in with each combatant is constantly trying to beat its 

opponent. Such co-evolutionary behaviour is often referred to as the Red Queen's 

race14[Rennie, 92], and is similar to the relationship between co-evolving predators [Sumida 

and Hamilton, 94]. Consequently, the two populations of CCSs in the SAGA system are 

called the Predator A and Predator B populations, with the Predator A and Predator B CCSs 

Playing tanks Tl and T2 respectively. 

Figure 5.1 is an outline schematic of the SAGA system. In the system, each CCS has 

essentially the same architecture as the SCS-EA system employed in the previous chapter. 

although there are some important differences, most notably in the genetic operators used for 

-
14The term Red Queen's race derives from the Red Queen in Lewis CaroU's Through the 
Looking Glass who says, "Now. here, you see, it takes all the running you can do. to keep in 
the same place." 
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rule discovery These differences are discussed in section 5.4. Furthermore, as well as 

interacting with a plan in the opposing population during an episode, each plan also interacts 

with other plans from the same population via the genetic operators at the plan level. These are 

discussed in greater detail in section 5.5. 

EA at Plan Level 

EA at Plan Level 

5.3 Knowledge Representation 

P ACCS = Predator A Component 

Classifier System 

PDCCS = Predator D Component 

Classifier System 

Figure 5.1: Outline o/the SAGA system 

5.3.1 Problems with the representation used so far 

The fixed length strings over the alphabet {O,l,#}. employed by the SCS-EA system to encode 

its knowledge. have a number of limitations. These include: 

(a) comprehensibility - rules encoded in such a simple alphabet are difficult to understand 

without the use of a relatively complex interpreter; 

(b) fixed length - real-world problems have a large number of entities associated with them, 

and since fixed length rules require space for conditions relating to each one of these 

entities. then the rules are likely to be very long; 
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(c) accuracy - the accuracy of values represented in a binary fOlm is limited by the number 

of bits allocated for each entity .. 

5.3.2 A symbolic, variable length rule format for real-world problems 

In view of these three limitations, it was decided that a more comprehensible, accurate and 

manageable knowledge representation scheme would be required for the SAGA system. To 

make the rules more comprehensible, the most suitable approach is to employ a high-level or 

symbolic representation scheme, similar to that employed in SAMUEL [Grefenstette, et al, 90]. 

Such a scheme not only makes the rules easier to interpret, but also facilitates the development 

of the system by making test data easier to devise / express and analyse. Furthermore, a 

symbolic representation scheme also enablesj7oating-point numbers to be incorporated into the 

system, thus resolving many problems regarding the accuracy of rules. Moreover, 

representing conditions and actions in a high-level language has the consequence that rules are 

no longer forced to have a specifically ordered. fixed-length format. A system using such a 

representation is able, by virtue of the variable length fOlmat, to discount irrelevant conditions 

(that is, those which match for all possible values) thereby making rules more concise, and 

speeding-up the matching phase by obviating non-essential comparisons. 

In respect of the structure of the rules to be employed in the SAGA system, it was felt 

that because it is the most suitable way of encoding generative rules of behaviour, the basic 

production rule form was still the most appropriate representation scheme for the system. 

l-Iowever, a small number of changes to the format of a rule were necessary to allow symbolic, 

variable-length rules to be implemented. These changes resulted in rules having the following 

general fOlm: 

Rule x: IF 'Yx le THEN <Xx IM 

where 'Yx is a set of conditions relating to the extant state of the world model, le is the internal 
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condition, Ux is a set of actions specified by the rule and IM is the internal message. In each 

rule, IC, which relates to the extant state of the internal message list, must always be present. 

The number of conditions in set Yx can range from zero, Yx is the empty set, to max, for which 

value there is a condition for every problem entity. The action part of rules also have varying 

size and consist of a (possibly null) set of non-conflicting actions, but each rule must possess 

an internal binary message, IM, which is posted to the message list whenever the rule is 

activated. 

Both conditions and actions in this format are represented by tuples similar in form to 

the entity-attribute-value triples employed by many Knowledge Based Systems [Bench

Capon,90]. An example of such a triple for a tank (the entity) having a speed (the attribute) of 

2 km/h (the value) might be (Tank, Speed, 2). However, to simplify matters, in the SAGA 

system, a triple's entity and attribute parts are combined and represented by a single identifier. 

Thus, in respect of the previous example, the simpler identifier-argument tuple (speed_oJ_tank, 

2) is obtained. 

In order to cover the wide variety of variables that need to be modelled in any problem 

domain, the representation employs 6 different identifier types. Details of each of these types, 

along with the structure that the respective conditions and actions take. are given below. 

(a) Linear 

Description: Linear tuples are used to represent identifiers which have real scalar 

values, such as the speed of a tank and the distance to a target. For 

simplicity, an integer value in the SAGA system is also represented by a 

real value with a zero decimal palt. 

Condition: 

Action: 

(Identifier. lower bound. upper bound) 

ego (speecCoJ_tank, 100.0, 200.0) 

(Identifier, value) 

ego (new_speed, 10.0) 
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(b) Cyclic 

Description: Cyclic tu pies al:e a special form of linear tuple which are used to 

Condition: 

Action: 

represent entities whose values are 'cyclical in nature', such as bearings. 

(Identifier, lower bound, upper bound) 

The lower bound in cyclic conditions may be greater than the upper 

bound. For example, (bearing, 300.0, 90.0) which is satisfied if 

300.0:5bearing<360.0 or 0.0:5bearing:590.0. 

(Identifier, value) 

ego (secbearing, 100.0) 

(c) Tree Structured 

Description: Tree structured tu pies are used for conditions/actions in which the 

domain of the identifier can be represented by a hierarchy. For 

example, Figure 5.2 gives an example of how the weather may be 

represented for a particular problem. Here, each value which weather 

may adopt is represented by a node in the tree. 

Weather: Any 

/'" Wet Dry 

/\ /\ 
Rain Snow Sunny Cloudy 

Figure 5.2: Tree Structured representation of weather 

Condition: (Identifier, node_name) 

This condition will match for any value in the subtree of 'node_name' . 
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Action: 

Cd) List 

For example, (weather, wet) is satisfied if the weather is either raining 

or snowing. 

(Identifier, node) 

Description: List tuples are used to represent identifiers which may assume one of 

several values from a non-hierarchical domain. 

Condition: (Identifier, argument 1, argument 2, ... ,argument n) 

where n is the number of arguments. 

Action: 

Ce) Boolean 

ego (tank_type, MkI, MkIII) 

(Identifier, argument) 

ego (tank_type, MkIII) 

Description: Boolean tuples are used for identifiers which can assume the values 

TRUE or FALSE. 

Condition: 

Action: 

(t) Pattern 

(Identifier, True/False) 

ego (firs cmo ve _of....game. TRUE) 

(Identifier. True/False) 

ego (secalarm. FALSE) 

Description: Pattern tuples are used mainly for internal conditions and messages. 

However, if an environmental identifier arises for which a binary string 

is the most appropriate representation, then the system can also cope 

with this. 

Condition: (Identifier, m) where m is a message over the alphabet {O,l,#}. 

For example, the condition (Internal, 0#01) will match if the internal 
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Action: 

message list contains either 0001 or 01 () 1. 

(Identifier, M) where M is a binary string. 

To ensure that the arguments of a condition or action are legal, the SAGA system maintains an 

Identifier Look-Up (ILU) table which has a record of the legal range (domain) of each problem 

identifier. The values which are required to define the domain of each identifier type are shown 

in Table 5.1, along with some suitable examples. 

Table 5.1: [LU table entries 

Type ILU table entries Examples 

Linear Minimum legal value Speed: 0 to 25m/s 
Maximum legal value 

Cyclic Minimum legal value Bearing: 0 to 3600 

Maximum legal value 

Tree Complete Tree Description Weather: See Figure 5.1 

List All list entries Tank type: MkI, MkII, 
MkIII, MkIV 

Pattern Number of bits in message Internal: 4 

Boolean Null In range: 

To enhance the expressive power of the lUles in the SAGA system, two further features were 

added to the basic fOlm of a condition: 

Ca) conditions may be negated by placing a NOT before the tuple; 

Cb) instead of fixed values, identifiers themselves may be used as the arguments of 

a condition. 

The reason for the inclusion of the first of these features is simply for efficiency of 

representation but that for the latter is less obvious and therefore, the following example is used 

to demonstrate how the use of variable arguments can significantly enhance the expressive 

164 



power of the SAGA system. 

Given a fairly simple TIP in which A knows the distance to B, then A's best strategy is 

to elevate its gun until B is within range, and to subsequently fire. Consequently, if A's firing 

range is limited to between 15 and 20 units and if conditions are limited to containing only 

fixed bounds, then the best rule set that can be derived to fire at the appropriate time may look 

something like: 

Rulel: IF (dist to target, 15, 15) (range, 15,15) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule2 IF (dist to target,16,16) (range,16,16) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule3: IF (dist to target,17,17) (range,17,17) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule4: IF (dist to target,18,18) (range,18,18) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rules: IF (d/st to target, 19, 19) (range,19,19) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule6: IF (dist to target,20,20) (range,20,20) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule7: IF (dist to target, 16, 16) (range,I5,I5) (Internal, ####) THEN (Incelev, TRUE) (0010) 

Rules: IF (dist to target, 17, 17) (range,I5,I6) (Internal, ####) THEN (Incelev, TRUE) (0010) 

Rule9: IF (d/st to target,I8,I8) (range,I5,I7) (Internal, ####) THEN (Incelev, TRUE) (0010) 

RulelO:IF (dist to target, 19,19) (range,15,18) (Internal, ####) THEN (Incelev, TRUE) (0010) 

Rulell:IF (dist to target,20,20) (range,15,19) (Internal, ####) THEN (Incelev, TRUE) (0010) 

This is clearly a space inefficient way to represent an effective strategy. However, by 

permitting identifier names as condition arguments, the optimal strategy for the problem can be 

represented more efficiently by: 

Rulel: IF (dist to target, range, range) (Internal, ####) THEN (Fire, TRUE) (0001) 

Rule2: IF NOT (dist to target, range, range) (Internal, ####) THEN (lnc elev, TRUE)(OOlO) 

Not only do such rules make the solution more concise and easier to understand, but with 
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fewer rules to discover, the problem should be easier for the system to solve and hence take 

fewer generations of the EA. 

Many more extensions to the knowledge representation scheme are possible including 

the use of compound expressions (such as 'distance to target + I') as condition arguments, and 

multiple ranges in linear/cyclic conditions. However, the above provided a scheme that is 

sufficiently powerful but nevertheless not too complex. 

By employing a variable length fOlmat for rule representation, it was anticipated that 

many of the problems relating to rule length would be resolved. However, having a variable 

length format has the consequence that when genetic operators are applied, the following two 

problems may arise: 

(a) the conditional prut of a rule may become overspecified; 

(b) the action prut of a rule may contain conflicting actions. 

To avoid the conditional part becoming overspecified, a 'condition checking' mechanism, 

CONDITION_CHECK, was introduced, to be invoked whenever a condition is added to a 

rule. The mechanism tests for the existence of more than one occurrence of an identifier in the 

conditional part of the transfolmed rule and removes all but one of these OCCUlTences (selected 

at random) should more than one be present. Preventing a rule from containing conflicting 

actions is, however, more problematical. To alleviate this problem, dUling its initialisation (see 

section 5.4.1), the SAGA system an·anges together actions which conflict and places them in 

sets or groups within a data structure called an Action Group (AG) table. Subsequently, 

Whenever the action part of a rule is altered, a relatively simple process called the 

ACTION_CHECK mechanism is invoked. This mechanism ensures that no two actions are in 

the same group, thus avoiding cont1icting actions. For example, given a simple TIP in which a 

tank has three possible actions available to it ('fire', 'move fOlward' and 'do nothing'), then if 

it cannot 'fire' and 'do nothing' simultaneously, nor 'move forward' and 'do nothing' 

Simultaneously' (but can 'fire' and 'move fOlward' together) the AG table that would be set up 
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to prevent the OCCUlTence of conflicting actions would be that shown in Table 5.2. 

Table 5.2 An Action Group table for a simple TTP 

Group Number No. of actions Action List 

1 2 'Move Forward','Do Nothing' 
2 2 'Fire','Do Nothing' 

Unfortunately, the procedure of placing actions into conflict groups has to be performed 

manually when the system is initialised, and due to the complex relationships that are likely to 

exist between the alternative actions, this can be a time consuming and error prone process. If 

errors do result, then there is no way to predict what will happen, and it is possible that 

incorrect solutions may mise. Consequently, a thorough check must be pelfOlmed by the user 

to avoid errors occuning in this phase. 

5.4 Component Classifier System operation 

5.4.1 Initialisation 

Before its life cycle can commence, the SAGA system must be initialised. This process is 

divided into two parts. In the first part, system run time parameters are read from an input file. 

These parameters include operator rates, the number of episodes to be run and the size of the 

message list. The second part of the initialisation process involves setting up the problem 

specific knowledge, including the ILU table and the initial rule bases. Depending on the run

time parameter random_rule_base, the set of rule bases are either read from an input file 

(thereby allowing the seeding of knowledge into the initial population) or randomly generated 

(thereby providing the sternest test for the system). If random initialisation is selected, then a 

rul~ base is generated in such a way that it contains a set number of rules, max_no_rules, with 

each rule having: 
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· (a) i conditions, l~ig, where I is the number of identifiers represented in the ILU table. 

Each condition has an identifier randomly selected from the ILU table and bounds 

which are randomly selected from the legal range of the identifier; 

(b) a single randomly selected action. 

A final piece of data which the system requires is the type of strategy which the opponent is to 

play. Here, depending upon the parameter opponenCtype, the opponent may play either a co

evolving predator strategy or one of a number of fixed strategies which are built into the 

problem dependent Palt of the system. 

5.4.2 Main Cycle 

Once the SAGA system has been initialised, the predator A CCS population is run sequentially 

- one episode per CCS before returning to the tirst CCS and repeating the process until a fixed 

number of episodes (num_episodes) have been perfOlmed. 

In each CCS, an episode starts with the world model being initialised, and the message 

list being reset so that it only contains the single 4-bit message '1111', which the system 

recognises as being derived from the system itself and not from a classifier. The following 

operations are then performed cyclically until some problem specific terminating criteria is 

reached. 

(a) Read Environment 

At the stalt of the main operating cycle, the extant state of the world model is recorded 

in the environmental message, E. This is simply a list of identifier-value pairs - one for 

each problem identifier. 
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(b) Match 

The Match phase is employed to determine which rules have their conditional parts 

satisfied by E. As well as having all of its conditions satisfied, a rule also has to have a 

complete set of executable actions to progress to the next stage of the system cycle. For 

example, a rule which suggests raising the elevation of a gun which is already at the 

maximum elevation will fail to match. 

If no matching rules are found, then the operator NO_MATCH is employed to 

generate one. NO_MATCH operates by selecting a candidate rule, R s, and then 

mutating it so that (i) all of its conditions are satisfied by E, and (ii) all of its actions can 

be performed. To select Rs, NO_MATCH first detennines if there are any rules which 

have a complete set of executable actions. If there are, then Rs is selected to be the best 

matching rule, that is, the one with the highest percentage of matching conditions. 

However, if no rule with a complete set of executable actions exists, then Rs is selected 

as the best matching rule regardless of its actions, and a special flag, new_actionJlag, 

set to TRUE. The conditions in Rs are then mutated, depending on the type of a 

condition, as follows: 

(i) a non-matching linear or cyclic condition tuple has one of its bounds replaced 

by the value of its identifier in E. For example, if the speed of a tank is 10, and 

Rs contains the condition (speed, 20, 30), then this condition is mutated to 

(speed, 10, 30); 

(ii) in a tree structured condition tuple, the argument is mutated to the lowest 

common ancestor of both the argument of the tuple and the value of the 

identifier in E. For example, if the weather is raining (as recorded in E) but Rs 

contains the condition (weather, snow), then the lowest common ancestor of 

both 'rain' and 'snow' is 'wet' and so the c.ondition is mutated to (weather, 
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wet); 

(iii) non-matching list condition tuples simply have the value of the corresponding 

identifier in E added to the list (or removed from the list if the condition is 

negated); 

(iv) since they cannot be generalised, non-matching boolean condition tuples must 

be removed altogether from the conditional part of Rs to enable the rule to 

match; 

(v) all bits of a non-matching pattern tuple which do not match the con'esponding 

bits in E are mutated to #. 

After mutating the conditional part, the action part of the selected rule is mutated if the 

new _action.Jlag is set to TR VE, or with a small probability, PNA, if new _action.Jlag is 

set to FALSE. By incorporating this small random probability PNA into the mutation 

process, potential problems wherein the operator always generates a rule with the same 

action to a particular situation are avoided. This mutation process involves deleting the 

current set of actions in a rule and replacing them with a single randomly selected 

action. 

(c) Competition 

If more than one rule is active after the match phase, then the SAGA system is required 

to select which actions to perfonu out of those advocated. To achieve this, the system 

employs two levels of competition· one at the rule level and the other at the action 

level. The first level of competition, the rule auction, is employed only if there are 

more matching rules than the message list can accommodate. This auction consists of a 
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roulette wheel selection of 111lUles (where m is the size of the message list) based on the 
. 

bid from each active lUle, where the bid for a lUle i is calculated by: 

bidi = specijicityi . b . strengthi 

where b is the bid-coefficient. Unfortunately, the calculation of the specificity of a rule 

for the SAGA system is not as simple as for standard classifier systems wherein it is 

simply the percentage of non-# symbols in the rule. Instead, a different method of 

calculating specificity is required for each data type and these are detailed below. 

(i) For linear/cyclic condition tuples, the specificity is calculated by 

1- [ range of condition ] 
domain of identifier 

Thus, the specificity of the condition (speed, 10, 20), where the domain of 

speed is between 0 and 100, is 1-(11/101) = 0.89. 

(ii) For tree stlUctured condition tuples, the specificity is calculated as follows. 

Let the tree be T. 

Let node in question be d. 

Then, 

specificity of d = {( n -n17l
d

) if n > 1 
o otherwise 

where n is the number of nodes in the tree T and md is the number of successors 

of d which are leaf nodes. 

Thus, a tree condition with the root node as its argument has a specificity of 

zero, whilst a condition with a leaf node has a specificity of unity. 

(iii) For list condition tuples, the specificity is calculated by 
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1_[no. of arguments in condition - IJ 
no. of members in domain - 1 

Thus, the specificity of a condition with only a single argument is unity, whilst 

that for a maxim ally specific condition (that is, one containing the full 

compliment of arguments for that condition) is zero. [The 'minus l' in the 

numerator is necessary so that when there is a single argument, the fractional 

part is zero. Similarly, the 'minus l' in the denominator is required so that the 

fractional part is unity when the number of arguments in the condition equals 

the number of members in the domain.] 

(iv) For boolean condition tuples, the specificity is always 0.5. 

(v) For pattem condition tuples, the specificity is calculated in the same manner as 

traditional classifier system, namely 

1_[no. of non-# Symbols] 
length of message 

After calculating the specificity of each condition, the specificity of a rule can be 

calculated by summing the specificities of all its conditions. 

The second level of competition, conflict resolution, takes place between the 

various actions suggested by the remaining active rules. This operation is a 2-stage 

process in which first of all, the active rule with the highest bid is selected 

deterministically. Thereafter, all rules which have one or more actions which conflict 

with the selected action are removed from the active list, thereby leaving a set of non

conflicting actions which are to be perfonned. 

(d) Update strengths 

The next phase of the CCS cycle involves updating the strength of each rule. This is 
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carried out in accordance with the credit assignment algorithm described in the next 

section. 

(e) Update World Model 

The non-conflicting actions which remain after the competitive stages of the CCS cycle 

are then passed to the world model which is accordingly updated. 

Cf) Opponents Move 

If a pre-programmed strategy is being employed by the 'opponent', then the actions are 

selected according to the strategy and the world model correspondingly updated. 

However, if a co-evolving CCS is being used to represent the opponent, then a cycle of 

the predator BeeS is executed. This cycle is precisely the same as the cycle of the 

predator A CCS, with the resulting actions from the predator B CCS also being used to 

update the world model. 

This marks the end of the main cycle of a CCS. This cycle is then repeated until some 

terminating criteria, for example, a tank being hit, is reached. 

5.4.3 Credit Assignment 

The results presented in the previous chapter from the meta-EA analysis of the SCS-EA system 

demonstrated that, in general, an adaptive BBA produces the best results. However, in some 

cases (eg. simple sequential problems), a PSPV-BA-ABBAl hybrid algorithm appeared to be 

more suitable. Consequently, for credit assignment in the SAGA system, it was decided to 

combine the best features of both algorithms. This resulted in a PSPV-adaptive BBA hybrid 

scheme which operates as follows. 

During an episode, the strength of each rule is updated as in the adaptive BBA scheme. 

In this, the strength paid to the r rules active on the previous time step is divided in proportion 

to the value of 
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b . strengthi .. specificityi~ 

where i is one of the r rules active on the previous time step and t} is termed the constant of 

adaptation, which in turn is calculated by 

~ = -1. [(current form .2) -1] 
maxform 

where current form is a time weighted average of the payoff awarded to the CCS as a whole 

(see section 5.5.2 for more details) and mllx form is the payoff the system would receive if it 

pelfonned with 100% success (that is, the maximum possible value for current fonn) which is 

Constant for any particular problem. [It should be noted that the SAGA system maintains an 

array of values for t} - one for each CCS.] 

Upon completion of the episode, the mean and variance associated with the PSPV 

algorithm are updated, and subsequently used to update the strength of the rule as shown 

below: 

J.!i'(a) = J.!i(a)(1-c) + cP 

Where J.!i(a), 'Ui(a) and Si(a) are the mean, variance and strength of rule i after episode a 

respectively, and c is the psp rate, which is set to 0.1. 

5.4.4 Genetic Operators 

With the change in knowledge representation from a simple binary alphabet to a symbolic 

language, the set of genetic operators (transformation schemes) previously used to investigate 
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rule discovery (namely, those employed by SCS-EA) needs to be altered to deal with high-level . 
structures. One area of AI research which involves transformation schemes for rules expressed 

in a symbolic language is that of Inductive Learning (lL) [Holland, et aI, 86]. Consequently, it 

was decided that the most suitable approach to the design of the operators to be employed in the 

SAGA system would be to base the operators on a number of inductive mechanisms. 

Therefore, many of the operators described in this section are derived form one of the 

cornerstones of the IL research field, namely Michalski' s study of IL mechanisms [Michalski, 

83]. 

The hybIid architecture of the SAGA system allows genetic operators to be employed at 

two distinct levels - the rule and plan levels. The operators reported below that are applied at 

the rule level (that is, within a CCS) are divided into two groups according to the time during 

an episode at which they are used. In the first group, Triggered operators are invoked when a 

special event occurs during the course of an episode, and use details of this special event to 

guide the genetic transfonnation. The second group, End of Episode operators, are invoked at 

the end of an episode and use the outcome of the episode to facilitate rule discovery. 

5.4.4.1 Triggered Operators 

The SAGA system makes use of the following triggered operators: 

(a) CLOSING_INTERVAL 

-

Genetic operators can be used to advantage when two rules which advocate the same 

action are active simultaneously. In such circumstances, it is likely that the rules apply 

to a similar set of situations. and consequently, can be combined. The SAGA system 

performs the combination according to the relative strengths of the rules. 

If both active rules are of high strength, that is their strengths are greater than 

the average rule strength plus one standard deviation15, then the system generalises a 

15The addition of a standard deviation to the selection cliteria is so that high strength rules, not 
merely above average strength rules, are selected. 
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Type 

single condition common to both rules using the operator CLOSING_INTERVAL . . 
One of the two rules is then duplicated and invested with this new condition to create a 

new rule which is added to the extant rule base. The precise operation of 

CLOSING_INTERV AL is subject to the data type of the identifier upon which it acts. 

Table 5.3 gives a blief descliption of the operation for the 6 data types supported by the 

system along with suitable examples. 

Table 5.3: CLOSING_INTERVAL 

Operation Example 

Linear/ Use a bound from one condition to (speed, lOO, 200) 
Cyclic I generalise the other condition (speed, ISO, 250) => (speed, lOO, 250) 
Tree Climbing Generaliza tion ... change (weather, any) 
Structured more specific argument to the (weather, rain) => (weather, any) 

other argument 

List Add a member of one list to the (Tank Type, MkI, Mk 11, Mk Ill) 
other list (Tank Type, MkII) => (Tank Type, MkI, MkII) 

Pattern Change one of the non-# bits to a # (Internal, ##00) 
(Internal, 1000) => (Internal, #000) 

Boolean Not Possible 

(b) OPENINGjNTERVAL 

If two simultaneously active rules advocate the same action and both have low strength, 

then it is possible that there is an element common to both rules which is causing the 

poor perfOlmance. The operator OPENING_INTERVAL adopts this idea to specialise 

a condition in one of the low strength rules using the corresponding condition in the 

other rule. Again, the precise operation of the operator varies with the data type of its 

operand and Table 5.4 gives examples for the 6 data types suppOlted by the SAGA 

system. 
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Table 5.4: OPENINGjNTERVAL 

1jpe Operation Example 

Linear/ Use a bound from one condition to (speed, lOO, 200) 
<;Ydic specialise the other condition (speed, 150,300) => (speed, 200,300) 
Tree Descending Specialization ... change (weather, rain) 
Structured more general argument to root of (weather, any) => (weather, dry) 

sub tree not containing the other argument 
List Remove a member common to both (Tank Type, MkI, Mk 11) 

lists from one of the lists (Tank Type, MkI, MkIII) => (Tank Type, MkIII) 
Pattern Change a # in one condition to the (Internal, 01##) 

opposite value of a non-hash in the other (Internal, #1#0) => (Internal, 11#0) 
Boolean Not Possible 

(c) CROSSOVER 

There are two types of situation wherein the SAGA system uses the crossover operator 

to generate a new rule from two parent rules. The first occurs when two high strength 

rules are active simultaneously. As CLOSING_INTERVAL is also used in this 

situation, significant disruption may occur in the make-up of the rules. Consequently, 

the system employs both CROSSOVER and CLOSING_INTERVAL each with a 50% 

probability. The second situation in which CROSSOVER is used is that in which one 

of the two active rules has high strength and the other low strength. Here. the resulting 

rule replaces the rule with lower strength. 

5.4.4.2 End-or-Episode Operators 

As mentioned earlier. the outcome of an episode can be used to guide genetic operators 

tOwards the creation of more profitable rules. If the episode has been a success for a particular 

CCS in that the actions employed led it to achieving its goal, then it may be profitable to build 

upon the success by generalising one of the rules used during the episode. Similarly. if the 

episode has resulted in a CCS not achieving its goal. then at least one of the actions employed 

Was inappropriate and hence, it may be profitable to specialise one of the rules used. 

Therefore, the SAGA system employs one -of the following two types of operators to mutate a 

Single rule. randomly selected from those used dUling the episode: 
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(a) Operators used after a successful episode 

The SAGA system has a set of 5 operators from which one may be selected at the end 

of a successful episode to generalise one of the rules used. The first three of these are 

grouped together and are refelTed to collectively as the Generalisation Operators. These 

have a probability, P go of being selected. The remaining two operators are 

COUPLING, which has a probability Peoup of being selected, and CONSTANT 

_TO_VARIABLE, which has a cmTesponding probability Pev• All three probabilities 

are set at run time and it is a constraint of the SAGA system that only one operator can 

be used per episode. 

(1) Generalisation Operators 

If the Generalisation Operators are selected, then, depending upon the 

specificity of the rule, one of the following three operators will be performed: 

(al) CONJUNCTION_TO_DISJUNCTION 

This operator generalises rules which have a large number of conditions 

- that is those with more than twice the average number of conditions for 

a rule. This it achieves by dividing the selected rule's condition set into 

two subsets at random and creating two new rules, each possessing one 

of the subsets as its condition set. The action palt of the new rules is 

that of the miginal with the miginal rule being deleted. For example, the 

rule Cl C2 C3 C4 Cs : Al might be generalised to Cl C2 : Al and C3 C4 

C5 : Al. 

(a2) CONDITION_DROPPING 

This operator merely discards a condition from the selected rule in order 

to fmm a rule that is slightly more gen~ral. 
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(a3) EXTEND_BpUNDS 

The aim of this operator is to extend the range of a single condition in 

the selected rule, and as such, the precise form of the operation 

perfOlmed is subject to the data type of the identifier involved, as shown 

below: 

(i) For linear or cyclic conditions, EXTEND_BOUNDS mutates 

one of the two bounds (selected at random) so that the range of 

the condition is increased. However, in such a situation, the 

amount by which the bound is altered must be detelmined. For 

example, considering the condition (distance_to_target, 100, 

120) with an associated valid range of say 0 to 10000. By what 

amount should 120 (this has been selected) be altered in respect 

of the mutation? Certainly one of the factors that must be taken 

into consideration in such cases is the range of the 

corresponding variable in the condition. Another factor is the 

current strength of the rule - if a rule has a high strength, it is 

likely that it has been successful in the past, and altering the 

bound too much could severely degrade its performance. 

However, if a rule has low strength, the opposite applies. 

Consequently, the SAGA system combines all these factors in a 

Lamarkian mutation operator which updates the selected bound 

as follows: 

New Bound = Old Bound ± [current range. C . R] 
relative rule strength 

where C is a constant (set to 9.1) and R is a random number in 
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the range [0,1). 

(ii) For tree structured conditions, the bound of the condition is 

generalised to either its parent or grandparent (selected at 

random). 

'> (iii) For list conditions, a randomly selected argument from those not 

already included is added to the list. 

(iv) For pattern (internal) conditions, EXTEND_BOUNDS mutates 

one of the non-# bits in the argument to a #. 

(v) No form of bound extension is applied to boolean conditions as 

this would lead to the condition being dropped. 

(2) COUPLING 

This operator is analogous to the TIGHT COUPLING operator employed by 

SCS-EA (section 4.2.4) and is employed to forge tighter links between one of 

the rules that was active during the successful episode and the rule which 

activated it. However, by recording a (randomly selected) pair of consecutive 

rules, this operator is not restdcted to the last two rules in the episode, as is the 

case with TIGHT COUPLING. 

(3) CONS TA NT_TO_ VARIABLE 

For each pair of variables of the same type in different conditions of a rule 

which has been active during an episode, this operator first inspects the values 

that the vaIiables possessed in the world model at the time when the rule was 

active. If the values are found to be equal then a new rule is created which 
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expresses this fact. ~or example, if the rule: 

IF ... (range_of_TI, 15, 18) (disCto_target, 16, 20) ... 

THEN (Fire, TRUE) ... 

was active during a successful episode, and at that time, the following variable

values were observed in the world model: range_of_TI = 17, disCto_target = 

17, then the operator CONSTANT_TO_ VARIABLE would create a new rule 

with the conditions: 

(range_of_Tl, discto_target, disCtojarget) AND 

(distjo_target, 16,20) 

where the first condition is matched if the range of TI equals the distance to the 

target. 

One further point worthy of note is that this is the only mechanism 

employed by the SAGA system to conve11 fixed bound values into variables and 

so could prove pivotal to the success of the system in solving some of the 

problems to which it is applied. 

(b) Operators used after an unsuccessful episode 

When a particular sequence of actions leads to an unsuccessful episode (that is, the 

CCS failed to achieve its goal). this is likely to be the result of 'overgeneralisation', and 

therefore, specialising one of the rules used during the episode may be profitable. 

Consequently, the SAGA system employs a set of Specialisation Operators to perform 

this task. Another possible cause of the lack of success in the episode may be the result 

of an inappropriate action being applied at a particular time. Therefore, the system also 

employs an operator, ACTION_CHANGE. in an attempt to 'cOlTect' a poor rule. Both 
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ACTION_CHANGE and the set of Specialisation Operators are described below . . 

(1) ACTION_CHANGE 

This operator is employed when the selected rule has a very low relative 

strength (that is, its strength is less than the average rule strength minus 2 

standard deviations - the 2 being used to signify that the strength has to be well 

below the average). In such circumstances, the operator will, with equal 

probability, either replace the whole action part of the selected rule by a single 

randomly generated action, or mutate the argument in one of the actions to a 

randomly generated argument. 

(2) Specialisation Operators 

The SAGA system employs three specialisation operators; 

(i) UNCOUPLE 

The aim of this operator is to prevent the same (poor) sequence of rules 

from being repeated and as such, is the inverse of the COUPLING 

operator. UNCOUPLE is selected with a probability, Puc, and mutates 

one of the randomly selected bits in the internal condition of the selected 

rule to the 'opposite value' (that is, a '0' to a '1' and vice versa) of the 

corresponding bit in the internal message of the rule which activated it. 

For example, if the selected rule contained the condition (Internal, 0##1) 

and the message which satisfied it was 0101, then UNCOUPLE may 

generate the condition (Internal, 1##1) by mutating the first bit of the 

original. 

(ii) CONDITION_ADDING 

This operator is used when the selected rule, chosen randomly from 
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those used during the episode, has only a small number of conditions . 
(that is, less than the average). The effect of CONDmON_ADDING is 

to introduce into the rule a new condition which satisfies the recorded 

environmental state, provided that it is not already present in the rule. 

The identifier for this new condition is selected at random from those in 

the environmental message, E, but not already in the rule. with the 

argument of the condition (or both arguments for linear and cyclic 

conditions) taking the value of that identifier in E. 

(iii) REDUCE_BOUNDS 

This operator is employed when the selected rule has quite a large 

number of conditions (that is, greater than the average). The operator 

functions by using the state of the world model at the time the rule was 

active to exclude an unsuccessful value from a condition. As with other 

operators which mutate conditions, the precise operation of 

REDUCE_BOUNDS is subject to the data type of the identifiers upon 

which it acts, and Table 5.5 gives a description of the operator along 

with suitable examples. 
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Table 5.5: REDUCE_BOUNDS 

Data Type Operation - Example 

Linear/ Compares the value of the identifier in (bearing, lOO, 200) 

Cyclic the world model to the two bounds. If it world model: bearing=180 
is nearer to the lower bound, then this » condition mutates to 
bound is mutated to the value of the world (bearing, lOO, 179) 
model+1; otherwise, the upper bound is 
mutated to the world model value-1. 

Tree Mutates the condition's current argument (weather, rain) 

Structured to the other child of its parent »condition mutates to 
(weather, snow) 

List Removes the value of the world model (tank_type, MkI, MkU) 

from the argument list world model: tank_type, MkI 
»condition mutates to 
(tank type, MklI) 

Pattern (See UNCOUPLE) 

Boolean Not Possible 

(c) Other End of Episode Operators 

As well as employing operators which use the outcome of an episode to guide rule 

discovery, the SAGA system also employs three operators at the end of an episode 

irrespective of the outcome. These are: 

(a) DELETE 

This operator is used in an attempt to rid the system of old and ineffective rules 

by removing rules if their strength has fallen below a celtain value (the deletion 

threshold - a run-time parameter). 

(b) GARBAGE_COLLECTOR 

This operator inspects every condition (except the internal condition) in every 

rule and if any condition is found to be maxim ally general (that is, it matches all 

possible values for the identifier). then it is deleted. 
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(c) INDUCTIVE_RESOLUTION 

Despite having a wide variety of generalisation and specialisation operators 

available, the SAGA system has no operators which work with boolean 

conditions. The generalisation operator INDUCTIVE_RESOLUTION was 

added to the system to redress this balance. Applied at the end of an episode 

and with a probability, PIR, this operator searches for any two high strength 

rules in the rule base which have the same actions. If two such rules are found 

and they both contain the same boolean condition but with opposite values, then 

the two conditions are removed from the respective rules. For example, given 

the following two rules: 

RA: IF... (engineJunctionai. TRUE) .. .. 

Rn: IF... (engineJunctional, FALSE) .. . 

THEN (fire, TRUE) 

THEN (fire, TRUE) 

if both these rules have above average strength, then it would appear to indicate 

that the 'engineJunctional' condition is irrelevant and can therefore be removed 

from both RA and Rn. [It should be noted that although this operator is the 

boolean equivalent to CLOSING_INTERVAL, it cannot be used when 

CLOSING_INTERVAL is used since INDUCTIVE_RESOLUTION requires 

the conditions to be mutually exclusive whilst CLOSING_INTERVAL, being a 

triggered operator, requires some degree of overlap between the two 

conditions.] 

This final trio of operations brings to 15 the total number of genetic operators supported by the 

SAGA system. Figure 5.3 (overleaf) depicts the interplay between these operators and the 

Circumstances in which each operator is used. 
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5.4.5 Repair Mechanism 

Due to the limited size of its rule base, a CCS may rapidly forget valuable experience as a result 

of the deletion of previously useful rules. Two possible solutions to this problem are readily 

suggested. The first is to consider using a much larger rule base. However, this severely 

increases the running time of the system without guaranteeing the retention of useful 

information. The second is to maintain some form of memory. [Zhou, 90] suggests the use of 

a long term memory of inactive, well-trained rules. However, this will also attract an overhead 

in terms of time, as well as creating the difficult problem of deciding whether or not a rule has 

been useful. Another problem with this scheme is that special mechanisms will be required to 

prevent a number of slightly different versions of a successful rule from dominating the long

term memory. 

In the SAGA system, a rather different approach, that of a Repair Mechanism, is 

adopted and the reason for this is as follows. Until recently, it was thought that all mutations 

Occurred at random with respect to their adaptive significance. However, a new class of 

mutation has recently been reported in unicellular organisms, such as yeast and bacteria, 

whereby the organism undergoes directed mutation [Paton, 92b] to repair "broken genes". The 

reversion mutation that repairs a gene occurs several orders of magnitude more frequently 

When the repaired gene is needed than when it isn't. Although the mechanism behind directed 

mutation is unknown, it has been shown to be under genetic control and not the result of 

random behaviour like normal mutations. Rather than 'repairing' only selected genes 

(conditions) as in biological systems, the SAGA system's repair mechanism restores the whole 

chromosome (rule) to a previous state. It functions by comparing the current strength of each 

rule with a previous best strength which is stored along with the version of the rule which 

achieved that strength. If the current strength becomes significantly higher than its previous 

best, the strength and the cOl1'esponding rule are recorded. If however. a rules current strength 

falls significantly below its previous best, then the rule can be repaired by supplanting the 

CUlTent rule by the earlier superior version. Such an operator is of great advantage in situations 

for which a generalisation significantly degrades the performance of a rule. The operator does 
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not however reduce the efficiency of the system because the stored copy is not used during any 

of the processor intensive phases of system operation such as matching and conflict resolution. 

The only cost to the system is a doubling of storage in respect of the rules and as storage is 

unlikely to be a real restriction on most modern machines, then this is not a problem. 

However, it should be noted that the operations underlying the repair mechanism, unlike those 

corresponding to such ideas as directed mutation, is fixed and is not influenced by the 

environment. 

5.5 Plan Level Operation 

5.5.1 Introduction 

The hybrid architecture of the SAGA system is designed such that a second EA. operating at 

the plan level (as in the Pittsburgh approach), is also employed to facilitate the learning 

Process. This plan-level EA (PLEA) facilitates the learning process by allowing useful rules 

from different plans to be combined into a single CCS which is better than any of its 

predecessors. 

5.5.2 Main Cycle 

The operation at this level is much simpler than that at the rule level; there are no credit 

assignment algorithms or complex evaluation functions involved. Instead, as was mentioned 

in relation to the adaptive credit assignment algorithm (section 5.4.3), each CCS has a single 

fitness measure called its current/arm. This is initially set to zero and is updated at the end of 

every episode (that is, within the operating cycle of a CCS) using: 

current/arm = (l-p) current/arm + Pp 

Where p is a constant called the plan rate which is analogous to the bid co-efficient and 
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consequently set to 0.1, and P is the payoff received from the environment at the end of every 

episode. 

A cycle at the plan level simply consists of periodically (every planJJeriod episodes) 

selecting the best plans (based on their current form) and recombining them using a set of plan 

level genetic operators. No other operations take place at the plan level. The cycle at this plan 

level, and consequently the system run, terminates when a set number of episodes, 

nUI11,_episodes, have been perfOl1TIed. 

5.5.3 Plan Level Genetic Operators 

The SAGA system employs two genetic operators to recombine rules from different plans -

PLAN_CROSSOVER and ELITE_PLAN. 

(a) PLAN_CROSSOVER 

Crossover at the plan level occurs after roulette wheel selection has been used to 

generate a mating pool of the most successful plans. With a probability Ppc, 

PLAN_CROSSOVER is applied to each member of the mating pool except the fittest 

member which is left unchanged. Two versions of the crossover operator exist within 

PLAN_CROSSOVER, each with a 50% probability of being selected: 

(i) Uniform PLAN_CROSSOVER 

This operation is analogous to th~ UnifOl1TI Crossover operator suggested by 

[Syswerda, 89] for binary encodings and operates as follows. First, the two 

parent plans are aligned such that rule I in parent A is above rule 1 in parent B, 

etc. Then. one of the two rule 1 's is selected (at random) and allocated to child 

A - the other rule 1 being assigned to child B. This process is repeated for rules 

2 to m, where m is the number of rules in the smaller of the two parent plans. 

Should the other parent contain a greater number of rules, 11 say, then the rules 

m+ 1 to n in this parent are all assigned to one of the two offspring, again 
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selected at random. 

For example, given two parent plans, Planl and Plan2, 

Planl: Rl R2 R3 R4 Rs R6 R7 Rg 

Pla112: Ra Rb Rc Rd Re Rf Rg Rh Ri 

the offspring generated by UnifOlm PLAN_CROSSOVER could be: 

Child1: Ra Rb R3 Rd Rs R6 R7 Rh Ri 

Child2: Rl R2 Rc R4 Re Rf Rg Rs 

(ii) One-point PLAN_CROSSOVER 

This operator is analogous to the standard one-point crossover operator. 

However, because the two plans may contain different numbers of rules, the 

crossing point is selected to be between I and m-I, where m is the number of 

rules in the smaller of the two parents. For example, given the same two parent 

plans, 

Planl: Rl R2 R3 R4 Rs R6 R7 Rg 

Pla112: Ra Rb Rc Rd Re Rf Rg Rh Ri 

then, the crossing point must be selected to be between I and 7. The resulting 

offspring if position 3 was selected would be: 

(b ) ELITE_PLAN 

Chilcit: Rl R2 R3 Rd Re Rf Rg Rh Ri 

Child2: Ra Rb Rc R4 Rs R6 R7 Rg 

Since the rule level system gives not only the fitness of each plan but also that of each 

rule, then the system can use this information to create a plan consisting of the best 

rules from every plan in the population. The operator which the SAGA system 

employs to do this, ELITE_PLAN, is applied at the end of every episode with a small 

probability. PEP. It operates by combining into a single plan, all the rules with have a 
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strength greater than the average strength plus one standard deviation. If more rules are 

selected than a single plan can accommodate, then the best 'max_num' rules are 

deterministically selected to fmm the new plan. This plan then replaces the plan with 

the lowest current form. 

5.6 Conclusions 

In this chapter, a functional description of the hybrid genetic learning system proposed in 

Chapter 1 has been presented. This system has been given the name the SAGA system. One 

of the major differences between this system and those investigated thus far is the knowledge 

representation scheme it employs. Since the representation scheme needs to be comprehensive 

and accurate, it was felt that a symbolic representation scheme in which rules are composed of 

identifier-argument tuples, would be the most suitable way to represent knowledge in the 

SAGA system. 

The system itself is divided into two levels. At the lower level, there is a series of 

component classifier systems each of whose architecture is similar to that of the systems 

studied in the previous two chapters, with the addition of a co-eVOlving predator CCS to 

pelform the role of the adversary in the 2-player games for which the system was designed. 

Based on the meta-EA analysis of the SCS-EA system, the credit assignment algorithm 

employed within a CCS is a hybrid of the PSPV and adaptive bucket brigade algorithms. 

Moreover, each CCS supports a set of 15 genetic operators whose use depends mainly upon 

either the occurrence of a special event during the course of an episode, or the outcome of the 

episode. Finally, one fUlther feature of the system at this lower level is the use of a repair 

mechanism which it is suggested, may alleviate the problem of 'forgetfulness' in an 

evolutionary learning system. 

At the higher (plan) level, the performance of the system is much simpler; requiring no 

complex algorithms or credit assignment schemes. Only three operators are supported: 
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analogues of unifonTI and one-point crossover and an ELITE_PLAN operator which employs 

the strengths of the rules derived at the lower level to generate a plan composed entirely of 

highly fit rules. 

Given this description of the SAGA system, it is the purpose of the next chapter to 

describe an investigation of its effectiveness in the context of a number of simple military 

problems. 
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6 Evaluation of the SAGA system 

6.1 Introduction 

The central aim of this thesis has been to investigate the important features of a evolutionary 

learning system and to use these findings to construct a system capable of developing tactics 

for a range of simple military-type problems. The work described in the first four chapters led 

to the design of a hybrid, co-evolutionary GBML system, the SAGA system, the functional 

description of which is given in Chapter 5. It is the aim of this chapter to investigate the 

effectiveness of this system in the context of the problems for which it was designed, and to 

determine if, indeed, it can be employed in a practical context. 

This chapter is organised as follows. Section 6.2 gives details of the numerous 

parameter settings adopted by the SAGA system for the purpose of performing the evaluation. 

To verify that the various rule-level operators employed by the system work as anticipated, 

section 6.3 presents the results from a pre-cursive study investigating their relative benefits, 

and analyses the roles played by each operator in the rule discovery process. Section 6.4 

presents the results derived from the main set of experiments investigating the effectiveness of 

the SAGA system in respect of the TTP. These experiments investigate the system's 

perfOlmance both against an opponent employing a fixed-strategy and when it operates in co

evolutionary mode. Section 6.5 looks at the application of the SAGA system to two other 

simple military problems - the Underwater Warfare Hide and Seek Problem and the Collision 

Avoidance Problem, and assesses its performance when attempting to solve these. Finally, 

section 6.6 presents a discussion of some of the key issues arising from the results. 
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6.2 System parameters 

The large number of genetic operators and system mechanisms employed by the SAGA system 

means that there are many parameters associated with its operation. This, together with the fact 

that there will be a large degree of interdependency between the operators, means that any 

attempt to optimize the parameters would be difficult and time consuming. Therefore, the 

values adopted by the system's parameters are only estimates of suitable values· the estimated 

values being based on Ca) values that are in general use, and Cb) the authors opinion derived 

from experience with similar parameters (for example, when peliorming the experiments in 

Chapter 2). 

Unless otherwise stated, the values adopted by the parameters employed in the SAGA 

system are as shown in the following list, together with, where appropdate, a brief explanation 

or reference to their dedvation. 

(a) Parameters associated with Credit Assignment: 

Bid co-efficient 0.1 Used in SCS-EA 

Life tax 0.01 Used in SCS-EA 

Bid tax 0.1 Used in SCS-EA 

0.1 [Grefenstette, 88] PSP rate 

Payoff (this is problem dependent and is given with the respective 

problem descriptions in Sections 6.3 and 6.4) 

(b) Parameters associated with rule-level operators: 

Threshold 

Tdggering Operators used 

Unsuccessful Operators used 

Probability (Uncouple ),Puc 

100 

TRUE 

TRUE 

0.05 
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should not be used together and so this 

operator should be used sparingly. 

P(Generalisation Ops),Pao 0.9 As the Generalisation Operators are only 

used after a successful episode, they will 

have a fairly low application rate and so 

PGO must be set fairly high. 

P(Couple),Pcoup 0.9 As the problem requires rule sequences to 

be developed, the COUPLING operator 

will play an important role in ,rule 

discovery and hence, P coUP needs to be 

set relatively high. 

P(Constancto_ Variable),Pcv 0.1 A very time-consuming operation and so 

needs to be used sparingly. 

P(Inductive Resolution),PIR 0.1 A very time-consuming operation and so 

needs to be used sparingly. 

Deletion Threshold 0.001 

(c) Parameters associated with plan-level operators: 

Plan period 

Ppc 

PEP 

(d) Other parameters: 

Size of message list 

OpponenCtype 

Initial rule strength 

10 

0.7 

0.8 

5 

'Standard' crossover rate 

An important operation and so should 

have a fairly high application rate. 

Used in SCS-EA. 

Problem Dependent 

10.0 Used in SCS-EA. 
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l 

Size of initial rule base 20 Tradeoff between perfOlmance and time 

Maximum size of rule base 20 taken for both the size of a rule base and 

Number of rule bases 10 the number of rule bases. 

Random_rule_base TRUE Best test for system effectiveness. 

Length of Intemal message 4 U sed in SCS-EA. 

Num_episodes 10,000 

The critic employed by the SAGA system is dependent upon the problem to which the system 

is applied, and hence is described in the relevant problem sections of this chapter. Moreover, 

for each problem, the value of the constant maxjorm, which is used in the calculation of the 

constant of adaptation, tt, is set to the maximum value awarded by the critic. 

6.3 An investigation into rule-level operator utility 

6.3.1 Experimental details 

In virtue of the large number of novel rule-level operators which the SAGA system supports, it 

was deemed appropriate to perform an investigation into the relative benefits of the operators 

before proceeding directly to an analysis of the effectiveness of the system. One element of the 

system which warranted particular attention was the repair mechanism which was introduced to 

alleviate the problem of forgetfulness which is inherent in classifier systems. The aim of the 

investigation described below was not to detelmine absolute levels of perfOlmance achieved 

when employing the novel operators I mechanisms but rather to give a comparison of their 

relative benefits and to detelmine their patticular roles in the rule discovery process. 

As the investigation deals only with leaming at the rule level, only a single Component 

Classifier System (CCS) was considered. Cpnsequently, all the genetic operators which occur 

at th'e plan level, such as ELITE_PLAN and PLAN_CROSSOVER, were disabled. Moreover, 
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the predator B population was disabled, thereby allowing the role of the adversary to be taken 

by a plan employing a fixed strategy which, for the purpose of this work, involved the 

opponent, T2, firing on every move. Since credit assignment was also not being studied, a 

further simplification was made, namely, that of employing only the basic Bucket Brigade 

Algorithm, in which, given that classifiers i and j are active at times t and t+ I respectively, the 

strength of classifier i is updated using: 

where Sj(t) is the strength of classifier i at time t, specj is the specificity of i, and b and tax are 

the bid and the taxation co-efficients respectively. 

The simple version of the TIP used for this investigation involved the two tanks being 

initially placed randomly at a distance of 19 ~ 21 units apart and the range of each gun being 

set to 15. No obstacles, such as mines or rivers, were present. On each move, TI had three 

actions available to it (Move Forward one square, Fire, and Increase Gun Elevation by one 

notch), and these were subject to the constraints that: 

(a) each tank could fire at most (x-I8) times; 

(b) each gun could only be elevated at most 3 times. 

The critic employed by the SAGA system for this game involved awarding ID points for a 

victory, 5 points for a draw and no points for a defeat (that is, when T2 destroyed TI). 

The investigation took the form of a series of experiments, each examining a different 

combination of operators. In an experiment, two slightly different versions of the system were 

used to fully test the range of operators employed by the SAGA system. In the first, the value 

of the distance from TI to T2 (distance_fo_target) was omitted from the environmental 

message. Therefore, in this version, TI was effectively blind and had to rely on the state of the 

internal message list to select an appropriate action (that is, it had to learn a sequence of 
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actions). However, in the second version, this knowledge was made available to T1, and so it 

was able to use environmental information, as well as internal messages, to decide upon its 

actions. 

Each experiment consisted of 40 trials of up to 200 games. At the start of each trial, T1 

was invested with a plan consisting of six rules. Three of these could only become active on 

the first move of a game (with each proposing a different one of the three possible actions); the 

other three being active on all subsequent moves, and again advocating a different one of the 

three possible actions. In the course of a trial, a subset of the operators listed above were used 

to modify the plan during and after each episode as appropriate. The success or failure of T1 

was recorded at the end of each episode. If it had been successful on 10 consecutive episodes, 

it was assumed to have found a winning strategy, and the tlial was regarded as successful. If, 

however, T1 had failed to win on any 10 consecutive episodes during a trial, then the trial was 

deemed a failure. To gauge the success of a specific set of operators, two values were used -

the number of successful trials out of the 40 and the average number of episodes it took to find 

a winning strategy (the leaming rate). 

As the system commenced each trial with a very general plan, the minimum set of 

operators (base operators) that the system in fact would need to enable it to adapt favourably 

are the specialisation operators (used after an unsuccessful episode) and NO_MATCH. Whilst 

not essential for learning, but only for reasons of efficiency, the DELETE and GARBAGE_ 

COLLECTOR operators were also included in the set of base operators. Using first the 'blind' 

version of the system and then the 'sighted' version, bench-mark results were recorded using 

only these base operators. Subsequently, various combinations of the remaining operators 14 

were tested to determine whether they could improve the perfonnance of the system. 

14INDUCTIVE_RESOLUTION was not considered because no boolean variables were 
present in the environmental message. 
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6.3.2 Results 

With the large number of run-time parameters, the number of possible operator configurations 

is very large and so the results reported here are unlikely to be optimal for a CCS in the SAGA 

system. However, they do reflect the relative performance of each operator in the results 

derived. 

Table 6.1: Results using 'blind'system 

Operators Times Successful Learning Rate 
(out of 40) 

Base Operators 12 118.7 
COUPLING 16 88.2 
Repair Mechanism 13 92.0 
Ttiggered Operators 13 116.1 
Generalisation Operators 13 90.6 
CONSTANT TO VARIABLE 12 118.7 
COUPLING and 17 65.6 
Repair Mechanism 
COUPLING, Tliggered Ops and 22 98.1 
Rep_air Mechanism 
COUPLING, Generalisation 18 97.2 
Ops and Repair Mechanism 

The first set of results are shown in Table 6.1 and relate to the 'blind' system. When only the 

base operators are employed, a winning strategy was found on 12 out of 40 trials. The 

addition of either the repair mechanism, the triggered operators or the generalisation operators 

led to a very slight improvement but the most considerable increase in performance was 

observed with the addition of the COUPLING operator. This is what would be expected, for 

in such a 'blind' system, the opportunities afforded the other operators to improve the plan 

would be few and far between because of the lack of environmental information. However, 

the system can build a winning strategy by finding appropriate rule sequences, and it is here 

that the COUPLING operator is particularly useful. Moreover, because there was insufficient 

information for it to form useful relationships, the addition of the CONSTANT_TO 
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_VARIABLE operator had no impact upon system performance. When several operators were 

added to the system simultaneously, the results became less predictable. Here, the 

generalisation operators tended to perform poorly, but the best performance was observed 

when the repair mechanism, COUPLING, and the triggered operators were all used 

simultaneously. 

Table 6.2: Results using 'sighted' system 

Operators Times Successful Learning Rate 
(out of 40) 

Base Operators 22 87.6 
COUPLING 28 107.6 
Repair Mechanism 30 74.3 
Triggered Operators 31 92.5 
Generalisation Operators 15 79.3 
CONSTANT TO VARIABLE 38 48.1 
COUPLING and 22 87.6 
Repair Mechanism 
COUPLING, Tliggered Ops and 2Y 89.1 
Repair Mechanism 
COUPLING, Generalisation 15 81.0 
Ops and Repair Mechanism 

Table 6.2 contains the analogous results derived from the 'sighted' system. Clearly, 

knowledge of the distance to the target should improve the ability of the system to learn. This 

was the case and in fact, the system was able to find a successful strategy on 22 out of the 40 

trials using only the base operators. Again the repair mechanism, the COUPLING and 

triggered operators all improved system performance. However the generalisation operators 

degraded the perfol1nance quite significantly - this being largely due to the fact that the other 

operators were able to develop a useful plan by themselves and generalising a successful plan 

will only likely make matters worse. As was expected, the CONSTANT_TO_ VARIABLE 

operator performed best of all due to its ability to link together 'distance_to_target' and 'range' 

so that firing occurred whenever the target was in range. Significantly though, employing 
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more than one operator did not improve performance further and in most cases, system 

performance was degraded. This is likely to be due to the fact that, as with the SCS-EA 

system, when employing a number of genetic operators, too many operations will be 

performed and the constant state of rules being deleted from and added to the rule base means 

that there is little oppOltunity for the system to develop a coherent strategy. 

6.4 An investigation into the effectiveness of the SAGA system 

6.4.1 Experimental details 

The aim of this investigation was to determine the SAGA system's overall effectiveness at 

solving simple military problems. By discovering this, it can be detelmined whether or not the 

central aim of this thesis, namely the construction of a system capable of learning military 

tactics, has been achieved. 

The major part of this investigation concentrated on the TIP but two other problems, 

the Underwater Warfare Hide and Seek Problem [Koopman, 79] and a simple Collision 

Avoidance task were also investigated to detennine if the system could be successfully applied 

to other military problems. The results recorded from these two problems are reported in 

section 6.5. 

Unless otherwise stated, each experiment consisted of running 1,000 episodes (games) 

On each of the 10 CCSs, giving a total of 10,000 episodes. Each experiment started with the 

SAGA system generating a random rule base, L, of 20 rules (as described in section 5.4.1) 

and assigning ~ to all 10 cess. In the course of an experiment, the only infonnation received 

by Tl from the world model was the linear variable 'distance to the target' - no other 

infOlmation was provided by the environmental message. 
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6.4.2 Experiment I: CLPI with a simple critic 

In this first experiment, the SAGA system was applied to CLPl (section 4.4.4) - a slightly 

more difficult TIP in which Tl has to score two hits on T2 in order to win the game. As with 

the version in Chapter 4, T2 employs a fixed strategy of doing nothing until it is hit, at which 

point it either moves forward one 'square', or it moves backward and then forward on the 

following move. The critic employed for this experiment was fairly simple, namely awarding 

20 points for a victory, 10 for a draw, and zero for a defeat. 

When the results from applying the SAGA system to 10,000 episodes of CLPl were 

analysed, it was found that Tl (the learning agent) failed to win a single game. Instead, it was 

found that, without exception, each CCS adopted a strategy of 'DO NOTHING' on every 

move, thus managing to draw every game. The reason for this is straightforward - a CCS, a 

say, can with relative ease, discover a 'DO NOTHING' strategy and thus, achieve a reward of 

10 every game. However, a different CCS, ~ say, which doesn't adopt this strategy is, in the 

short term, likely to fail in its attempts to discover a better strategy and will accordingly receive 

less than 10 points per game. Consequently, ex. will be favoured by the plan-level EA and 

hence, over a relatively short time, CCSs adopting the 'DO NOTHING' strategy will come to 

dominate the population. 

In an attempt to rectify this situation, the critic was altered such that no reward was 

given for a draw. However, the results from employing this critic showed little difference 

from the previous set with, once again, each CCS adopting a 'DO NOTHING' policy. 

6.4.3 Experiment 2: CLPI with a sub-goal reward critic . 

As noted in Chapter 4, such a simple critic as that employed in Experiment 1 cannot be used to 

Solve relatively difficult problems such as CLPl. Consequently, the more complex sub-goal 

reward critic that was described in section 4.4.4 was adopted for use in the SAGA system, the 

only difference being that the version implemented for this experiment awarded an extra 50 
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points to T1 if it succeeded in winning the game. 

The number of victories achieved by Tl over the 10,000 episodes is shown in Figure 

6.l. As the results show, the system gradually improves its performance with time but it still 

performs relatively poorly after the 10,000 episodes, having achieved a total of only 27 

victories. 
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Figure 6.1: Performance of the SAGA system when employing a sub-goal reward critic 

Moreover, although it appears from Figure 6.1 that the performance is improving more rapidly 

with time, this was shown not to be the case by running the SAGA system for a further 10,000 

episodes on the same problem. The results from this extended trial are shown in Figure 6.2 

and demonstrate that although the system still manages to achieve the occasional victory, the 

rate at which it achieves them has actually decreased after the first 10,000 episodes. Thus, it 

Would appear that the SAGA system is unable to leam effective tactics for this problem. 
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Figure 6.2: Performance of the SAGA system over an extended trial 

As with the SCS-EA system, the main reason for the poor performance of the SAGA system 

When applied to eLP! is that the system often ends up achieving one of the sub-goals rather 

than the desired goal. This was demonstrated by two further experiments. In these, the 

amount awarded to Tl upon winning the game (that is, for hitting the opponent a second time) 

Was reduced in the first case from 59 to 9 and then, in the second case to 1. In the first case 

When 9 was awarded, the number of victories achieved by Tl was reduced from 27 to 3, and 

then, when only 1 point was awarded for a second hit, no victories at all were recorded. Upon 

eXamining the behaviour developed by the system, it was found that Tl was exploiting 

Weaknesses in the critic and was achieving sub-goals. For example, in the experiment where 

only! point was awarded for a second hit. it was found that for much of the time, the tactic 

adopted by the system over the 9 moves was to move forward twice (gaining +1 each time) and 

then alternate between increasing and decreasing its gun elevation (4 increases and 3 decreases 

giving a net total of +1), thereby achieving an overall score of +3 points. Since Tl only 

receives, at most, +7 for a perfect game (involving a strategy which is relatively hard to 

diScover) when only 1 point is awarded for each of its seven moves but can achieve +3 from a 

relatively easily found strategy, it is easy to see how the simple strategy can rapidly come to 
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dominate the population. Therefore. this experiment suggests that it is vital that there is a 

smooth transition from one sub-goal state to the next all the way to the ultimate goal; should 

this not be the case and one sequence of sub-goals lead to a dead end. then the system may 

develop a set of rules to take this route instead and will never find the ultimate goal. 

6.4.4 Experiment 3: An investigation into the importance of the plan-level EA 

In Experiments I and 2, both ELITE_PLAN and PLAN_CROSSOVER were employed by the 

SAGA system to facilitate the learning process. The aim of this experiment was to determine 

their relative utility to the system - an aim which was achieved by setting, in turn, the 

probability of using ELITE_PLAN.PEP. and the probability of using PLAN_CROSSOVER, 

PPC, to zero. 

The number of wins recorded by the SAGA system when applied to CLPl with 

PEP=O.O is given in Figure 6.3. This clearly demonstrates that although the system can solve 

the problem· without the presence of ELITE_PLAN, it is not as successful as when 

ELITE_PLAN was employed (only 10 victories as opposed to the 27 achieved with 

ELITE_PLAN). 
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Figure 6.3: Performance of the SAGA system with PEP=O.O 
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When ELITE_PLAN was restored to the system but PLAN_CROSSOVER removed, it was 

found that the performance of the system fell very dramatically and no victories at all were 

recorded. This was almost certainly due to the fact that as a result of design constraints, the 

plan-level selection process in the SAGA system only occurs if PLAN_CROSSOVER is 

employed. Consequently, without any selection at the plan-level, the system is reduced to a set 

of independent CCSs with no communication capability, the effect of which is a dramatic fall in 

system performance. 

6.4.5 Experiment 4: An investigation into the amount of data available to the 

SAGA system 

In the previous tlwee experiments, the only environmental data which the system could base its 

rules upon was the linear variable 'distance_to_target'. To determine if the addition of more 

information improves system perfOlmance, a second linear vadable, 'range', was added to the 

environmental message and experiment 2 (that is, with a critic awarding +59 for the second hit 

On the opponent) was repeated. With this extra variable, rather surprisingly, it was found that 

the number of victories fell from 27 to 2. When the Predator A population was analysed, it 

Was found that almost all of the CCSs adopted a strategy of increasing gun elevation twice and 

then moving forward three times, thus giving a net overall score of + 1. 

This, at first, appeared to be very surprising because it would be expected that the more 

information a CCS has at its disposal, the easier it would be for it to discover useful solutions. 

However, when the tdal was analysed in greater detail, it was found that this poor performance 

Was due to the extra condition significantly reducing the number of rules matching on any cycle 

of the CCS. For example, the addition of a single variable will mean that, on average, only 

half the rules that previously matched will match with the new variable in place. This is 

important because it has the same effect as a reduction in the size of the rule base (cf. size of 

Population) with the consequence that the system performance is significantly reduced. 

Therefore, this implies that there is a link between the size of the environmental message (and 
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consequently the length of a rule) and the size of the rule base. This is not surprising since 

more standard EA applications (see, for example, [Goldberg,et aI, 91]) have also demonstrated 

a link between population size and string length. However, as demonstrated by the number of 

attempts at quantifying this relationship (see, for example, [Smith, 93]), it is a difficult problem 

even for simple bit-string representations, let alone more complex representations such as that 

employed by the SAGA system. Hence, although it has been identified that a link exists 

between the number of rules in a rule base and the size of the environmental message, the 

subject requires a much more in-depth analysis than can be undertaken here, suffice it to say 

that for complex problems which involve many problem variables, very large rule bases are 

likely to be required. 

6.4.6 Experiment 5: An investigation into co-adaptive behaviour 

In experiments 1 to 4, the Predator B population was disabled and the role of the opponent was 

played by a fixed strategy. The aim of this expe11ment was to investigate what effects occur 

When the opponent is played by a co-evolving predator B CCS. 

The run-time parameters for this experiment were exactly the same as in previous 

experiments but the problem scenal10 had to be changed so that T2 was not at an advantage. 

This was achieved by placing a second river at position 13 (3 'squares' in front of T2) and a 

second mine at position 17 (directly behind T2). 

However, one further problem with the system was that the sub-goal reward critic 

employed in the previous three expetiments could not be employed in this experiment because 

of the fact that the opponent was no longer detclministic. Consequently, it was necessary to 

resort to employing a simple critic of the form adopted in experiment 1 within the SAGA 

system. This in turn meant that the problem, as it stood, would be too difficult for either the 

predator A or predator B population to learn an effective strategy. Consequently, the problem 

Was made simpler for both players by: 

(a) increasing the ammunition level for each tank from 2 to 5; 
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(b) allowing the opponent to be destroyed by a single hit. 

The precise fOlm of the critic employed by both the predator A and predator B cess involved 

awarding 200 points for a victory, 20 for a draw and 0 for a loss. 

Figures 6.4 and 6.5 show the number of eess in the predator A and predator B 

populations that record vict0l1es for Tl and T2 respectively, the results being a moving average 

over a period of 500 episodes. The two graphs show that during the earlier iterations of the 

system, neither tank manages to develop a useful strategy. However, after about 2,500 

episodes, T2 develops a successful strategy and starts to win about 50% of games. It manages 

to maintain this level until shortly after 4,000 episodes, at which point TI develops a strategy 

to combat this and it, rather than T2, starts to win on a regular basis. This situation is 

maintained until shortly after 8,000 episodes, at which point the performance of TI rises 

sharply. However, this is short lived and T2 rapidly develops a strategy to counter TI, which 

dramatically reduces the success rate for Tl to almost zero by the end of the 10,000 episodes. 

.-I 10.00 E-
a.. 
.:: 8.00 
III 
~ 

'i: 6.00 0 .... 
(,,/ .;: 

4.00 .... 
0 

a.. 
2.00 ~ 

~ 

S 
:s 

0.00 Z 
0 200 400 600 800 1000 

Number of episodes per CCS 
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These results demonstrate that the SAGA system is capable of displaying co-adaptive 

behaviour. However, this is likely to be for only simple problems or those more difficult 

problems for which an appropriate critic exists. For example, when the experiment was 

repeated with the ammunition level reduced to 2 and two hits being required to destroy the 

Opponent (as in experiments 1 to 4), the number of wins recorded by both Tl and T2 was 

reduced to zero (as expected when employing such a simple critic). 

6.4.7 Experiment 6: An investigation into different predator A and predator B 

populations 

In experiment 5 both the predator A and predator B cess (and therefore Tl and T2) were 

identical. The aim of this experiment was to determine what effect a difference between the 

two CCS populations has on the results produced. This was investigated by altering the critic 

for the predator B population such that 400 points were awarded to T2 for winning but leaving 

the amount received by Tl at only 200 points. 
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Figure 6.7: Number of cess in predator B population that have recorded 

a vict01Y for T2 when it is awarded more than Tl 

The results from this experiment are shown 'in Figures 6.6 and 6.7. The two graphs clearly 

Show that a difference between the clitics of the two cess can have a dramatic effect upon the 
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relative performance of the tanks, with, in this case, Tl hardly ever managing to achieve a 

victory. One conclusion which can be drawn from this is that paying a higher reward may be a 

profitable strategy to employ. in a learning system. For example, the higher the reward, the 

quicker a significant payoff reaches the stage-setting rules under the BBA. Moreover, such 

behaviour is mirrored in the real-world where, for example, "big business" can often gain 

control over smaller, less-powerful, rival companies. 

However, paying larger sums is only likely to be beneficial when rewarding the 

'ultimate' goal; giving larger rewards to sub-goals is unlikely to improve matters. This is 

because the higher the reward paid, the more likely the system is to fix its behaviour at the state 

where it achieved that reward. Clearly, if the system is achieving the 'ultimate' goal, then this 

is fine. However, paying a larger reward for achieving a sub-goal makes it more likely that the 

system will get stuck in the state where it achieved that sub-goal. This was demonstrated in an 

extension to the above experiment in which the points awarded to T2 after an unsuccessful 

episode were also doubled. In this experiment, it was found that the performances of both Tl 

and T2 returned to similar levels to those encountered when employing identical critics. 

Moreover, even paying more for achieving the 'ultimate' goal does not guarantee that 

the CCS employing that strategy will be more successful. For example, when the situation 

described above was reversed with the predator A population (Tl) this time being awarded 400 

points for a victory, the results depicted in Figures 6.8 and 6.9 were derived. These results 

show that, despite being awarded a greater amount, Tl gains no advantage over T2. 

Furthermore, this cannot be attributed to any unsymmetrical features of the problem since 

although the two tanks take alternative moves, for all intents and purposes, the problem is 

symmetrical with the probability of winning being identical for both Tl and T2. 
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6.5 Application of the SAGA system to other problems 

6.5.1 Two simple military problems 

The work of the previous section investigated the application of the SAGA system to several 

versions of the TIP. To determine if it can be used to develop strategies for other military 

problems, the SAGA system was applied to two further problems, namely the Underwater 

Warfare Hide and Seek Problem and a simple Collision Avoidance task. These problems, 

together with the results derived from applying the system to them, are detailed in the following 

sections. 

6.5.2 The Underwater Warfare Hide and Seek Problem 

The scenario for the Underwater Warfare Hide and Seek Problem [Athanasopoulou, 92] 

[Koopman, 79] is depicted in Figure 6.10. The problem is set in a confined square area of L2 

units and involves two players, a searcher, S, and its target, T. The objective of S is to detect 

T whilst that for T is to remain undetected. T has an advantage in that its detection range is 

1!2L, whilst that of S is only 1I4L. However, S's speed, u, is 50% greater than v, the speed 

of T, and so, T cannot hope to simply outrun S. 

Although at first sight this problem may appear to be very abstract, it can be regarded as 

a simplification of a real-life problem, namely that of a naval force pelforming an area search to 

detect a submarine. In such a problem, the bounded area could represent a confined area of 

operations such as the Calibbean Sea, and the difference in detection ranges could be as a result 

of Sand T employing active and passive sonar techniques respectively. 
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Figure 6.10: Scenario for the Underwater Waifare Hide an.d Seek Problem 

At the start of the game, both Sand T head in randomly generated directions. During an 

episode, they travel in straight lines until either: 

(a) T detects S, at which point T may decide upon a new bearing to try to avoid S, or 

(b) S detects T, at which point the game ends. 

If at any stage dl11ing the game, either player comes into contact with the edge of the area, then 

a 'random bounce' strategy is employed in which that player rebounds off the edge and starts 

heading in a random direction away from the incident edge. 

The aim of the problem investigated here is to determine if the SAGA system can derive 

a suitable rule set to select appropriate new directions for T upon detecting S. Therefore, the 

plan to be developed should be a set of rules, each of which has a particular state of the game 

represented in its conditional part. and an action part specifying a direction in which T should 

move. 

It was decided that the state of the game would be passed to the cess (via the 
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environmental message) in the form of 5 vruiables: 

(a) a cyclic vatiable recording the relative direction of S from T; 

(b) 4 boolean variables recording whether T would, if it maintained its present course, hit 

the top, bottom, left or right walls of the box respectively. This would give T an 

indication of the otientation of the area of operation. 

Given this information, three actions were made available to T: 

(a) change course to an absolute direction; 

(b) change course relative to own direction; 

(c) change course relative to the direction of S. 

6.5.3 Experiment 7: The SAGA system applied to the Hide and Seek Problem 

Experiment 7 'consisted of applying the SAGA system to 10,000 instances of the Hide and 

Seek problem. The parameters employed were as desctibed in section 6.2. Figure 6.11 shows 

a moving average (over the last 500 episodes) of the number of occasions during an episode in 

which T successfully managed to avoid S. For comparison, Figure 6.11 also depicts the 

equivalent results from employing a random-walk strategy (that is, T selects a random direction 

Upon detecting S) and a relatively successful sU'ategy of moving directly away from S (that is, 

T adopts the same course as S). 
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Figure 6.11: A verage number of successful evasions 

As the results demonstrate, the strategy adopted by the SAGA system is only slightly better 

than a random walk strategy and significantly worse than the 'move directly away' strategy. 

To discover why system performance was so poor, the predator A population was analysed 

and it was found that new rules were being generated too frequently, thus denying a CCS the 

opportunity to develop an effective strategy. For example, despite sequences of actions not 

being required for this problem, Puc was still set to 0.9. Consequently, in the above trial, the 

COUPLE operator was employed to generate a high percentage of coupled rules which have 

little chance of being useful. 

To correct this problem, the probabilities of ·selecting the vadous operators were 

reduced and the experiment repeated to detenuine if any improvement could be found. The 

parameters of the original experiment whose values were changed are shown in Table 6.3, and 

the corresponding results depicted in Figure 6.12. 
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Table 6.3: New parameter settings 

Parameter Value 
P uc 0.0 
P IR 0.1 
Pev 0.0 

Triggered 
Operators used FALSE 

Move directly away 
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Figure 6.12: Average number of successful evasions 

with new parameter settings 

The new results clearly show a significant improvement in performance with T managing to 

remain undetected for 40% longer with the learnt strategy than with a random strategy. 

Unfortunately, performance is still relatively poor with the 'move directly away' strategy still 

supeli.or. However, there is an approximate on-going improvement and it would be anticipated 

that further optimization of the parameter settings would yield yet greater benefits but, as 

previously mentioned, this is both a difficult and an extremely time consuming task. 
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6.5.4 Collision A voidance 

Navigation problems, in which the objective is for an agent to leam a route to reach a particular 

goal state, are popular for studies in AI. Such problems are also of particular interest to 

researchers working with Autonomous Underwater Vehicles (AUVs), for which the objective 

is to navigate through a set of obstacles such as a minefield. One way for an AUV to. 

accomplish such a task is to employ a Knowledge Base of stimulus-response rules to govern 

its behaviour. A preliminary investigation into the application of GBML to the development of 

such rules for navigation tasks (or Collision A voidance as it is referred to in a military context) 

has already been carried out by [Schultz, 91] but it was felt that this would still be a useful 

problem from the viewpoint of analysing the SAGA system's problem solving ability. 

The version of the problem adopted for the work reported here (and depicted in Figure 

6.13) is set on a 15x15 grid and involves a single player, A, whose objective is to reach a goal 

state, G. The initial locations of A and G are (8, 3) and (8, 13) respectively, with A initially 

facing north (that is, towards G). To reach the goal state, A has four actions which it can take 

on any move of the game. These are: 

(1) move forward 1 position; 

(2) move backward 1 position; 

(3) tum clockwise 90°; 

(4) tum anticlockwise 90°. 

However, standing in the way of A reaching G are three forms of obstacle: 

(1) mines - these are placed around the pelimeter of the gdd; 

(2) a forest - this is situated in the centre-most 25 grid locations; 

(3) mud patches - n mud patches, 0:::;n:::;8 are placed at selected locations around the grid -

the number and locations of the patches being dependent upon the 

version of the problem lIsed (see later). 
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Figure 6.13: Scenariofor Collision Avoidance problem 

A loses the game if it moves to a location occupied by one of the obstacles, or fails to reach the 

goal state within 30 moves. To enable it to avoid the obstacles, A receives 8 items of 

environmental data on the state of the game. These are: 

(1) direction - this gives the direction in which A is currently facing and is set to one 

of 0, 90 180 or 270 corresponding to north, east, south and west 

respectively; 

(2) discto_forest - this gives the distance from A to the forest but only in the direction 

which A is facing. If A is not facing the forest, then this distance is 

effectively intinite and so is set to a large value (100 is sufficient for 

this game); 

(3) discto_mine - this gives the distance from A to the minetield in the direction which A 

is facing. 
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(4) firscmove - this is a boolean variable and is set to true on the first move of the 

game and false otherwise; 

(5-8) mud_front, mud_behind, mud_left, mud_right - these are also boolean variables and 

are set to true if there is a mud patch in front of, behind, to the left of 

and to the light of A, respectively, relative to the direction in which it 

is facing. 

Three versions of the problem were studied in this investigation: 

(a) CA1 - no mud patches; 

(b) CA2 - 4 mud patches in positions (11.6), (12,6), (13,6) and (14,6), thereby blocking 

a route to the east of the forest; 

(c) CA3 - 8 mud patches in positions (2,6), (3,10), (4,6), (5,10), (11,6), (12,10), (13, 6) 

and (14,10) (as depicted in Figure 6.13) thereby forcing A to perform an extra 

manoeuvre through the mud. 

6.5.5 Experiment 8: The SAGA system applied to the Collision A voidance 

Problem 

Experiment 8 involved the application of the SAGA system to the CA problem. The 

parameters employed for this investigation were those used with the Two Tanks and Hide and 

Seek problems. For the critic, it was deemed necessary to employ one which rewards sub

goals, which, for this problem, are to get as close to G as possible and to survive for as long as 

possible. Therefore, the payoff, P, awarded at the end of an episode of the CA problem is 100 

if G is reached, otherwise P is 

(
length_a! _game d' h) 
-~-""---""':;;""'- + 1St non 

2 -

10 
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where length_of....game is the number of time steps that the game lasted and discnorth is the 

distance that A had moved north during the game - calculated by taking A's original y co-

ordinate (that is, 3 in this case) from its final y co-ordinate. 

Firstly, the SAGA system was applied to 5000 instances (that is, 500 per CCS) of 

CA!. Figure 6.14 shows the number of CCSs in the population (averaged over 500 episodes) 

which successfully manoeuvre A from its starting point to G. 
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Figure 6.14: Success rate of the SAGA system when applied to CA1 

The results show that the SAGA system requires fewer than 1000 episodes before it discovers 

a successful route. After its initial successes, the successful plan is reproduced by the plan

level EA and quickly spreads through the population. However, as the results show, the 

system is unlikely to achieve a success rate above 80% because it is continually generating new 

rules to test and many of these will suggest poor actions to take. 

When the performance of the system was analysed more closely, it was discovered that 

the strategy adopted by all the cess was to take the route to the east of the forest using the 

fOllowing actions: 
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(1) turn 90° anti-clockwise on the first move; 

(2) move backward 6 times; 

(3). turn 90° anti-clockwise; 

(4) move backward lO times; 

(5) turn 90° anti-clockwise; 

(6) move backward 6 times. 

Consequently, to defeat this strategy, the SAGA system was then applied to CA2 in which the 

route to the east of the forest was blocked. The results when the system was applied to 5000 

instances of CA2 are shown in Figure 6.15. 
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Figure 6.15: Success rate of the SAGA system. when applied to CA2 

As the results show, with the eastern route blocked, it takes the SAGA system over 3000 

episodes before it successfully achieves its goal for the first time. However, as with CAl, 

once the system discovers an appropliate route, the plan detailing it spreads rapidly through the 

population so that after only 4500 episodes, on average, 6 out of 10 CCSs succeed in 

manoeuvring A to G. 
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The results from applying the SAGA system to CAI and CA2 have demonstrated that 

the system can develop a successful routing strategy to navigate around a single object (the 

forest). To determine whether it could solve more difficult problems, the system was then 

applied to 5000 instances of CA3, a problem which requires the system to discover fairly well 

developed collision avoidance and navigation strategies. When the results from the trial were 

analysed, it was found that the system failed to win a single game. Instead, it was found that 

the strategy adopted by all the CCSs was to move forward on the fIrst move and then rotate on 

the spot for the remaining 29 moves, thus achieving a payoff of (3012 + 1)11 0 = 1.6. 

Therefore, once again, it has been demonstrated that, given a relatively diffIcult problem to 

solve, the system ends up achieving a sub-goal, thereby managing to receive a small amount of 

credit, rather than trying to achieve the ultimate goal, in which case, because of the difficulty of 

the problem, it is likely to receive less credit. 

6.6 Discussion of results 

The results from experiments 1 to 8 show that the SAGA system can discover successful 

strategies for relatively simple problems but fails to do the same for more complex problems. 

Throughout the experiments, the common factor behind the cause of this poor performance is 

the critic. If a simple critic is employed in which no reward is given except for a win, then for 

relatively complex problems where the probability of a random strategy succeeding is 

extremely small, the system has almost no chance of developing a successful strategy. 

However, by employing a critic which rewards sub-goals as well as ultimate goals, for certain 

non-trivial problems (for example, CLPl) it was found that relatively complex, successful 

strategies could be developed. However, more often than not, this was not the case. Instead, 

the main difficulty with using a sub-goal reward critic was found to be that the small amount of 

credit a CCS receives for a sub-goal is usually sufticient for it to survive, reproduce and 

eventually dominate the population. The problem can be somewhat eased by better designed 
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critics but for the majority of problems, critics which support the gradual development of 

solutions do not exist. Consequently, for any candidate problem for which an appropriate 

critic cannot be found, it is highly unlikely that the SAGA system will be able to discover an 

appropriate solution and given that the vast majority of military problems do not possess such a 

critic, then the system is likely out be of limited use. 

When the results generated in experiments 1 to 8 are compared with those generated by 

the system most similar to the SAGA system, namely SAMUEL [Grefenstette, et al, 90], at 

first sight it appears that the SAGA system performs significantly worse on a similar set of 

problems. For example, when applied to the Evasive Manoeuvres problems, the Cat and 

Mouse problem, and a dogfighting scenario, SAMUEL exhibits impressive performance with. 

its success rate rising from between 20 to 40% for the initial population, to 80% after lOO 

generations of the EA. The results for a navigation problem [Schultz, 91] are even more 

impressive, rising from 8 to 96% success rate after lOO EA generations. However, a more in

depth analysis shows this not to be the case with the difference in results being due to the 

disparate nature of the test problems used by both systems in their evaluation. 

The crucial difference between the two sets of test problems is the probability of a 

random strategy succeeding. For all the problems used to investigate SAMUEL, the results 

show that the performance of an initial plan is always between 8 and 40%. This means that, 

even at the start of the learning process, SAMUEL will have plenty of opportunities to learn 

from successful games and this is vital if SAMUEL is to learn successfully since the operators 

it employs rely on a relatively high rate of success to learn efficiently. By comparison, the 

probability of a random strategy succeeding for the problems used to investigate the SAGA 

system is extremely small. For example, a calculation for CLPI reveals that the probability of 

T1 hitting its opponent twice in the limited time whilst avoiding all the pitfalls is only 3.3 x 

10-5. If such a problem was used with SAMUEL, then it is likely that SAMUEL's 

performance would be as poor, if not worse than that of the SAGA system because of its 

reliance on a relatively high success rate. An alternative to this form of comparison would be 

to test the SAGA system with SAMUEL's set of test problems. However, in view of the 

224 



considerable effort that would be required to generate the complex environments used to 

represent the world model in SAMUEL (eg. aircraft simulation models), it was felt that there is 

little mileage in doing this because SAMUEL's test problems appear to be unrealistic. For 

example, in the Dogfight scenario [Grefenstette, 9Ib], the chances of moving the cockpit 

controls completely at random and being successful against even a novice opponent can only be 

extremely remote. However, as SAMUEL starts off with a success rate in the region of 40% 

for a random plan for this problem, it would appear that the test problem must be either 

extremely simplistic or very unrealistic in its modelling of the environment. 

6.7 Conclusions 

This Chapter has presented the results from a series of experiments investigating various 

aspects which affect the SAGA system's perfonnance. The first set of experiments, reported 

in section 6.3, investigated the system's rule-level operators in the context of a simplified 

version of the TIP. Although the SAGA system as a whole performed relatively poorly, a 

number of the mechanisms it employs were shown to make useful contdbutions to the learning 

process. Thus, the following tentative conclusions about the various rule-level operators can 

be suggested: 

• for situations in which the environment provides insufficient data, the COUPLING 

operator proved particularly useful; 

• the CONSTANT _ TO_ VARIABLE operator is necessary to exploit common 

environmental features; 

• the addition of the triggered operators (CLOSING_INTERVAL, OPENING_ 

INTERVAL, and CROSSOVER) improved system perfOlmance, especially when more 
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environmental data was available; 

• the generalisation operators (CONJUNCTION_TO_DISJUNCTION, CONDITION_ 

DROPPING, and EXTEND_BOUNDS) may degrade performance by over

generalising successful rules. 

Moreover, the investigation suggested that adoption of the repair mechanism does indeed 

improve the learning capability of a system when used in tandem with a range of different 

operator combinations. This is due to the mechanisms ability to reinstate previously successful 

rules when a generalisation has produced a relatively poor rule. 

Section 6.4 presented the results from a set of expedments investigating the SAGA 

system's overall effectiveness at solving the TIP. The results from experiments 1 and 2 show 

that, by employing suitable sub-goal reward critics, some progress can be made towards 

solving relatively difficult problems (eg. CLPI) but that typically the system ends up 

developing solutions which achieve some of the sub-goals (as defined by the critic employed). 

It is important to note that for the same problem (that is, CLPI), the SAGA system actually 

performs worse than the relatively simple SCS-EA system investigated in chapter 4. 

Experiment 3 investigated the importance of the two plan-level operators employed by 

the SAGA system, with the results showing that ELITE_PLAN, whilst not critical to the 

learning process, is certainly beneficial, but that PLAN_CROSSOVER is necessary if complex 

solutions are to be developed. This is almost certainly due to the fact that selection and 

reproduction at the plan level only occur when PLAN_CROSSOVER is employed. 

Consequently, without PLAN_ CROSSOVER, the SAGA system operates as a set of 

independent CCSs, and this significantly reduces system perfolmance. 

This chapter has also presented details of a brief investigation into the possibility of 

developing appropriate strategies through the use of co-evolving learning agents. The 

investigation demonstrated that for relatively simple problems, the system does indeed exhibit 

co-evolutionary behaviour. However, this is unlikely to be of much use because, as with fixed 
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opponents, unless an appropriate critic can be found, both learning agents are likely to just 

solve their own sub-goals and little progress will be made by either agent towards developing a 

strategy to solve the desired goal. 

Finally, the results from applying the SAGA system to two other military problems are 

presented. When applied to the first of these, the Underwater Warfare Hide and Seek 

Problem, the SAGA system initially demonstrates poor performance and barely improves upon 

a random-walk strategy. However, after alteting several operator rates so that fewer new rules 

were generated, it was found that the system perfOlmed much better, although the performance 

level thus achieved was still somewhat less than that achieved with a relatively simple ad hoc 

strategy. Moreover, with the second problem, a collision avoidance task, the results achieved 

were fairly similar to those for the TIP in that effective solutions could be generated for 

relatively simple versions of the problem but for more complex cases, the system failed totally. 

Once again, the reason for this poor performance is a consequence of the system being 

encouraged to achieve sub-goals rather than the desired goal. 
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7 Summary and Conclusions 

7.1 Summary 

The preceding six chapters of this thesis present the CUlTent state of the author's research into 

the application of Evolutionary Algodthms (EAs) to the development of military tactics. 

Chapter 1 identified some of the problems associated with generating the knowledge 

required for Command and Control (C2) systems, and reviewed a number of potential 

solutions from the field of Artificial Intelligence (AI). Of these, EAs, as part of a Machine 

Learning (ML) system, were identified as being particularly suitable. Two of the available 

approaches to using them in a ML environment were considered, namely the Michigan and 

Pittsburgh approaches, and a hybrid of the two approaches proposed as the architecture to be 

adopted for fUl1her study. 

Chapter 2 presented some of the results dedving from an investigation into ways of 

improving the perfonnance of an EA in terms of the solution generated. The work was based 

on a simple Operational Research (OR) problem, the knapsack problem, and focussed on five 

facets of EAs including mating schemes, implementation of the crossover operator and 

mutation rates. Two of the key conclusions from this work were that a Lamarckian crossover 

operator and a mutation rate which incorporated environmental information significantly 

improved the perfonnance of the EA when compared to standard schemes. 

Chapter 3 addressed the credit assignment aspect of a Genetics-based Machine Leaming 

(GBML) system and presented details of two investigations in the area. The first was of a more 

theoretical nature and employed ideas from a relatively new branch of mathematics, 

Evolutionary Game Theory (EGT), to analyse the evolution of a hypothetical rule set. The 

main conclusion from this work was that the standard method of assigning credit in a GBML 

system, the Bucket Bligade Algorithm (BBA), was shown to be a form of Evolutionary Stable 
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Learning Rule (ESLR) and. as such. does not tend to maximise the expected payoff to the 

system but rather evolve the system towards an Evolutionary Stable (ES) state. The second 

investigation demonstrated that the presence of three particular types of redundant rule 

(duplicate, subsuming and equivalent) in a plan can significantly affect the rule strength as 

determined by the BBA. A number of amendments to the BBA were then proposed and two of 

these were shown to help alleviate many of the problems identified. 

Chapter 4 presented a description of a classifier system for the Two Tanks Problem 

(TIP). Incorporated in this system were a number of novel features including a mutation 

operator with an adaptive application rate and an adaptive BBA which gives preference to 

different types of rule depending upon the system's performance level. To facilitate the 

analysis of the features of this system, a meta-EA was employed to search the space of possible 

operator I mechanism combinations and determine which were generally beneficial to the 

system. This investigation showed that the adaptive BBA was usually selected by the meta-EA 

as being the best credit assignment scheme, but that not all the genetic operators were always of 

benefit to the system. For example, it was shown that employing three types of coupling 

operator together with two fOlms of mutation operator was excessive, and tended to degrade 

performance. 

Using the results from chapters 2 to 4, a version of the system first proposed in chapter 

I was devised; its functional description being given in chapter 5. This system, called the 

SAGA system, incorporated an adaptive credit assignment scheme, Lamarckian operators, and 

a repair mechanism (used to alleviate problems of forgetfulness) in a co-evolutionary 

architecture which also allowed the opponent in a 2-player game to evolve. 

Finally, chapter 6 presented an analysis of the results derived from applying the SAGA 

system to three military problems. The results showed that, in general, the system can develop 

solutions to relatively simple problems, but for more complex problems, it tends to generate 

solutions that achieve sub-goals which are necessadly defined by the cdtic. 

This chapter completes the thesis by drawing together the most important conclusions 

from this work and relating them to some of the directions which future research in the field of 
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EAs, and GBML in particular, should take. 

7.2 Conclusions 

The SAGA system is relevant in the field of EA research because it combines a number of 

novel features into a single genetic learning system. In particular, it is one of the first systems 

to combine the most appropriate features of both the Michigan and Pittsburgh approaches in a 

single hybrid architecture - the only others being SAMUEL [Grefenstette, et al, 90] and GIL 

[Janikow,91]. For credit assignment, the SAGA system incorporates an algorithm which is 

both adaptive and a hybrid of the BBA and an epochal scheme. Moreover, the SAGA system 

is one of the few GBML systems which incorporates a co-evolutionary component in the 

learning process. Finally, the SAGA system employs a wide variety of novel genetic operators 

for the rule discovery process and incorporates a repair mechanism to alleviate problems of 

forgetfulness which are often inherent in genetic learning systems. Thus, the results achieved 

with the SAGA system can be used to make some tentative conclusions about a wide range of 

research topics which are cUl1'ently of interest to the EA community. 

One of the primary conclusions derived from this work is that increasing the complexity 

of an evolutionary learning system does not necessarily lead to an improvement in 

performance. This is illustrated by the fact that the SAGA system actually performs worse 

with one problem (the Combined Learning problem CLPl - section 4.4.4) than the simple 

classifier system SCS-EA, investigated in chapter 4. There are a number of reasons why this 

might be the case. 

Primary amongst these is that there are too many parameters and too much randomness 

involved to be able to identify, with ease and certainty, what is happening in the system and 

what the cause(s) of poor performance might be. Specifically. the SAGA system employs in 

excess of 30 user-defined constants and run-time parameters, and because of the timescales 

involved, it was not possible to perform any significant degree of optimization of their values. 
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Instead, only a very limited investigation involving the trial and error analysis of a small 

number of parameters was possible. Consequently, it is almost inevitable that some constants I 

parameters will be employed with inappropriate default values, thereby causing the system to 

perform at a sub-optimal level. It may have been more appropriate to employ a smaller set of 

operators and mechanisms than that which was employed in the SAGA system but the 

complexity of the knowledge representation in pmticular, and the system architecture in general 

(eg. EAs at two levels, a hybrid credit assignment scheme and the ability to support co

evolution), meant that this was not possible. 

A further reason why highly complex systems such as the SAGA system may produce 

poor results is the presence of software errors. Throughout the design, implementation and 

testing of the SAGA system, standard software engineering practices were adopted. For 

example, the system was designed in a top-down fashion with all the system mechanisms 

broken down into simple units with testing taking place not only at the system level but also at 

the module and sub-system levels. However, validating programs as large as the SAGA 

system (in excess of 10,000 lines) is a highly non-trivial task even when extensive timescales, 

manpower and other facilities are available. Given the large degree of randomness that is 

inherent in the selection process, the genetic operators, etc, and the reduced timescales, only a 

limited amount of testing of the SAGA system could be peliormed, and it is highly probable 

that the final system does contain some software en·ors. Moreover, the effects of these errors 

cannot be predicted. Clearly then, software validation schemes for systems such as the SAGA 

system must play a vital role in system development, and this point will be discussed further in 

section 7.3. 

Another conclusion which can be drawn from this work is that, due to the poor results 

generally achieved with classifier systems, hybrid approaches, which rely upon much of the 

learning taking place at the rule-level, are unlikely to be successful. (The inability of the 

classifier system part of a hybrid architecture to learn effectively means that the knowledge 

necessary for the higher level to be successful will be absent.) This is probably the main 

reason behind the lack of success achieved with the SAGA system. 
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The Pitt approach, however, appears to be a much more suitable approach to GBML, 

not least because it avoids the very difficult issues associated with credit assignment. This 

view is reinforced by the recent successes that have been reported with Genetic Programming 

(GP) which is essentially a Pitt approach with a different knowledge representation (that is, 

Lisp programs are used rather than production rules). The only circumstances wherein a Pitt

based approach will generally perform less ably than one that is Michigan-based are those for 

which there is a continuous stream of payoff (that is, payoff after each action in a problem 

solving sequence rather than only at the end). However, because of their success in such 

circumstances, the use of neural networks would appear to be more suitable. 

Another important issue which has aIisen from this work is that, although some authors 

have urged caution and suggested that it is too early to judge the success or failure of a 

particular approach, it is the authors opinion that classifier systems face too many problems to 

be of any great use with complex. real-world problems. Primary amongst these difficulties is 

the credit assignment problem, and this has been a recurrent theme throughout the thesis. 

Classifier systems may provide an excellent vehicle for studying complex systems and their 

interactions but for performing a specific task such as discovering tactics. they are unlikely to 

be the best learning mechanism. Whilst this point of view is apparently at odds with the recent 

work of [Dike and Smith, 93] wherein a classifier system (GLS) successfully discovered novel 

tactics for an agile fighter aircraft. the author has reservations about the complexity of the 

applications to which their system was applied. The reason for the authors scepticism here is 

two-fold. The first is that most other researchers have achieved little success in applying 

classifier systems to complex. real-world problems - a view which is reinforced by the fmdings 

from this thesis. Therefore, for the GLS system to give such an impressive performance is 

quite surprising. Secondly, scenarios exist wherein developing an effective solution is not too 

difficult [Fairley and Yates. 94a]. For example, over 250 million possible condition/action 

states are possible in the GLS system. However, with regard to its particular test problem (a 

dogfight scenario). it appears that a particularly adept manoeuvre involving spiralling 

downwards is possible with only a single action. Flllthermore. as this manoeuvre is effective 
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at any stage during a problem run, the conditional part of the rules becomes almost irrelevant 

and this effectively reduces the search space to that of only 256 possible actions. Thus, the 

success of GLS is likely to be a result of the particular problem to which it is applied. 

However, an in-depth analysis of both the problem and the solutions generated by GLS would 

be required before a more defmitive statement could be made. 

7.3 Future research 

From the work presented in this thesis, the following are areas which the author feels may 

prove fruitful with further investigation. 

(a) Repair mechanisms jar G BML systems 

The results reported in chapter 6 demonstrate that a repair mechanism shows great 

initial promise as a means for alleviating the important problem of the deletion of useful 

rules in a GBML system. This is probably the most significant of the novel operators I 

mechanisms employed by the SAGA system and warrants further analysis to determine 

its effect in other GBML systems. 

(b) Operators jar ESSs 

The investigation of evolutionary stability and the BBA in chapter 2 illustrates that, 

given myoid assumptions, the rule base in a classifier system will develop into an 

Evolutionary Stable Strategy (ESS). However, upon application of genetic operators, 

this strategy is likely to be disrupted, and will take a number of iterations before the rule 

base again defines an ESS. This suggests that if a genetic operator could be developed 

which, when applied to a rule base, left the rule base in an ESS (whether it be the same 

ESS or an altemate one), then this could be of immense benefit to the learning process 

by significantly reducing the number of iterations required to evaluate a plan. 
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(c) Validation of software / analysis ofresults 

As identified in section 7.2, validating the code for EAs in general, and GBML systems 

in particular, is an extremely difficult and time consuming task. The benefits of some 

form of tool to facilitate this process would, therefore, be of immense benefit The tool 

could take the form of either a library of standard EA I GBML routines, or a statistical 

package for analysing the processes occurring in an EA I GBML system. 

Some progress is being made towards the first of these goals in that many 

researchers are making their code available to others via the Internet, and as such, a 

library of validated routines is beginning to form. However, it is the authors opinion 

that there are many potential benefits to be achieved by investigating the second option, 

that of a statistical analysis package for EAs. This opinion is based on the fact that such 

a package would not only facilitate the validation process, but would also help analyse 

some of the more complex effects that are produced by the operators I mechanisms that 

are cUlTently being developed in the EA community. 

(d) An additional possible level of EA application 

Throughout this thesis and in the GBML community in general, it is assumed that there 

are only two levels at which the EA can be applied in a GBML system, namely the rule

level and the plan-level (corresponding to the Michigan and Pitt approaches 

respectively). However, yet another level becomes apparent if a plan is viewed as 

being partitioned into q subsets, where 1 <q<r (the number of rules in the plan), in such 

a way that the rules in each subset are related in some way. The rules constituting a 

subset can be viewed as a population, and since every rule has an associated strength, 

the population may be subjected to an EA. 

The immediate difficulty presented by utilising an EA at this 'sub-plan' level is 

the necessity of applying it q times. However, this may be answered by using parallel 

processing facilities, thereby attracting only a minimum overhead. The benefits, on the 
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other hand, are likely to depend heavily upon the partitioning scheme, that is to say, 

upon the size of q and the nature of the relationship between the rules in the individual 

parts of the partition (sub-plans). For example, when discussing classifier systems in 

chapter I, the tendency of the EA to search for a 'super-rule' was noted. Analogously, 

when applied to a sub-plan, it would be anticipated that the EA would tend to seek a 

super-rule commensurate with the conditions represented in the antecedents of the rules 

in that sub-plan. Now, whereas a single efficacious super-rule that will cover all 

contingencies is unlikely to exist, a set of super-rules (one for each sub-plan) may be 

viable, depending, of course, on the partitioning scheme. Moreover, as well as 

improving the search of the EA, since each sub-plan would have a different sub-goal, 

such a scheme may help alleviate the problems identified in this research of a system 

generating a solution to reach a sub-goal rather than a desired goal. 

7.4 The development of military tactics: A research proposal 

It is the author's hope that the experience gleaned from performing this research can be applied 

to the design of a system that is capable of developing the sorts of complex tactics required by 

the military. The following is a proposal which the author feels has a realistic chance of 

successfully developing tactics. 

The majority of simulation models used by the military, whether they be concerned 

with a low level task such as controlling a guided weapon, or a high level task such as 

commanding a fleet, represent their tactics in a pseudo-code fOlm. This pseudo-code typically 

takes the form of a simple programming language and incorporates many of the structures that 

are found in such languages including procedures, conditional statements and loops. The 

Command statements for such languages also tend to be represented in a high level form and, 

for obvious reasons, are problem specific (eg. new bearing, speed, etc, for a torpedo). 

Within the simulation models. this pseudo-code is represented in an intermediate string 
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fonn wherein each command has a particular character code associated with it. For example, 

the high level code 

begin phase 3 

set direction to 45 degrees 

wait 5 minutes 

could be represented by the string 

* 3 D 45 W 5 ... 

where *, D and W represent the start of a phase and the 'set direction' and wait' commands 

respectively. Therefore, an entire tactical plan can be represented by a single, albeit long, 

character string. Clearly, optimizing such strings would be an ideal application for an EA or 

GP but there a number of difficulties which mise from this approach. These include: 

(a) generating an initial random set of valid tactics is extremely difficult given the complex 

structures (that is, loops, etc) that are involved; 

(b) the length of time taken by the evaluation process may significantly reduce the number 

of solutions which can be investigated; 

(c) the length of the strings involved and the high cardinality of the alphabet (due to each 

command corresponding to a unique identifier) mean that the solution space is 

extremely large; 

(d) generating valid offspIing from mating two solutions is likely to be a difficult process. 

With regard to the first of these problems, that of generating an initial set of feasible tactics, in 

the author's opinion, the most appropriate solution is to employ the tactics which are currently 
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used in the models to serve as the initial population. Although this may significantly bias the 

search of the EA towards a particular area of the solution space, it is felt that this is the only 

way that the system can attain the necessary 'grist for the mill'. Moreover, by starting the 

search in a favourable area, it would be hoped that some of the not insignificant difficulties that 

are likely to be caused by the third problem, that of extremely large search spaces, would be 

somewhat reduced. 

The second problem, that of the length of time taken to evaluate a particular tactic, can 

be resolved by using one of a number of very fast simulation models that are currently available 

which, despite not giving detailed results for a particular engagement, give sufficient 

information for the approximate evaluations necessary to employ an EA. 

However, in the authors opinion, it will be success in resolving the fourth difficulty, 

that of designing appropriate mating schemes for the pseudo-code I intermediate representation, 

that will decide the excellence of the approach. A small number of basic mating schemes can 

be imagined (for example, crossing over at phase boundaries) but more complex ones which 

involve crossover taking place in the middle of phases would also need to be investigated. 

7.5 A final word 

The SAGA system, has its place in the field of machine learning as it helps highlight a number 

of the difficulties faced by researchers investigating such systems. Primary amongst these 

problems is that of credit assignment where the absence of feasible algorithms means that 

systems adopting the Michigan approach to GBML are unlikely to be successful. As a result of 

this, it is envisaged by the author that in the long term, systems adopting the Pitt approach to 

GBML will become the standard and indeed, this is already being shown to be the case with 

the proliferation of systems employing Genetic Programming as their learning paradigm. 

The results produced with the SAGA system also demonstrate that it is not always 

beneficial to increase the complexity of the system. For example, it was found that by adding 
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more and more operators and mechanisms in an attempt to improve system performance, it 

became increasingly more difficult to analyse system performance and determine where the 

system was performing poorly. Notwithstanding, a number of the SAGA system's novel 

features were shown to be beneficial to system performance, especially the repair mechanism 

which, it is suggested, is a viable approach to alleviating the problems of forgetfulness that are 

typically encountered by GBML systems. 
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9 Appendices 

9.1 Appendix 1: Knapsack problems 

Problem 1 

Max lOOt 1 + 22Ut 2 + 90t 3 + 40Ck 4 + 300t 5 + 400t 6 + 20Sx 7 + 12Ut S + 
16Ot9+580t 10+400t 11 + 14Ut 12 + lOOt 13 + 1300t 14 + 65 Ut 15 

such that 

& 1 + 24x 2 + 13x 3 + BUt 4 + 7Ut 5 + BUt 6 + 45x 7 + 15x s + 2& 9 + 
9Ut 10 + 130t 11 + 32x 12 + 2Ut 13 + 120x 14 +4Ot 15 < =550 

&1 +44x2 +11t3 + lOOt 4 +10UtS+9Ut6+75x7+25xg+ 
2& 9 + 12Ut 10 + 130t 11 + 32x 12 + 4Ut 13 + 16Ut 14 + 4Ut 15 < = 700 

3t 1 + & 2 + 4t 3 + 20t 4 + 20t 5 + 30x 6 + & 7 + 1t s + 12x 9 + 
14x10 +4Ox 11 +& 12 +1t 13 +2Ut 14 +5x 15 < = 130 

5x 1 +9X 2 +&3 +4Ot4 + 3Ot5 +4Ox 6 + 1&7 +5x S + 1&9 + 
24x 10 + 60x 11 + 1& 12 + 11x 13 + 30x 14 + 25x 15 < = 240 

5xl +11x2 +7X3 +5Ut4 +4Ox5 +4Ox6+19x7+7xS +1&9+ 
29x 1O+ 7Ox 11 +21x 12 + 17x 13 +3Ox 14 +25x 15 < =280 

5x 1 + 11x2 +7X 3 +55x4 +4OxS +4Ot6+21x7+9xg +1&9+ 
29x 10 + 70x 11 + 21x 12 + 17x 13 + 35x 14 + 25x 15 < = 310 

lx3 + 1Ut4 +4x 5 + lOt6 +&S +6x 10+ 
32x 11 +3t 12 +7Ot 14 + lOt 15 < = 110 

3t 1 +4x2 +5X 3 +2Ot4 +14x5 +2Ox6 +&7+ 12xS + lOt9 + 
1& 10 + 42x 11 + 9x 12 + 12x 13 + lOOt 14 + 2(k 15 < = 205 

3x 1 +&2 +9X 3 +3Ut4 +29x5 +2Ox6+ 12x7+ 12xS + lOx9+ 
30x 10 +42x 11 + 18x 12 + 18x 13 + 110x 14 + 2(k 15 < =260 

3x 1 +8x 2 +9X 3 +35x 4 +29x5 +2Ox6 + 1&7+ 15xS + 1Ut9+ 
3Ut 10 + 42x 11 + 2Ut 12 + 18x 13 + 120x 14 + 2Ut 15 < = 275 

Al 



Problem 2 

Max lOCk 1 + 22<k 2 + 9<k 3 + 40Ck 4 + 30Ck 5 + 4()(k 6 + 20St 7 + 12<k 8 + 
16<k9 +5S<k 10+40Ck 11 + 14<k 12 + lOCk 13 + 130Ck 14 +65<k 15 +32Ctt 16 + 
4S<k 17 + 8<k 18 + 6<k 19 + 255<k 20 

such that 

& 1 + 24x 2 + 13x 3 + S<k 4 + 7<k 5 + SOt 6 + 4St 7 + 1St 8 
+2&9 +9<k 10+ 13<k 11 +32x 12 +2<k 13 + 12<k 14 +4<k 15+3<k 16 
+ 2<k 17 + 6x 18 + 3x 19 + lS<k20 < =550 

& 1 +44x2 + 13x3 + lOCk 4 + lOCk 5 +9<k6 +7St7+2Sx8 
+ 2& 9 + 12<k 10 + 13<k 11 + 32x 12 + 4<k 13 + 16<k 14 + 4<k 15 + 6<k 16 
+ 5St 17 + 1<k 18 + 6x 19 + 24Ot20 < = 700 

3x 1 + 6x 2 + 4x 3 + 2<k 4 + 20x 5 + 30x 6 + & 7 + 3x 8 
+ 12x9 + 14x10+4Ot 11 +6x 12 +3x 13 +2Ot 14 +St 15 +St 17 
+3x18+2Ox20< =130 

St1 +9X 2 +6x 3 +4Ox4 +3Ox5 +4Ox6+ 16x7+St8 
+ 1&9 +24x 10+6<k 11 + 16x 12 + l1x 13 +3Ox 14 +2Sx 15+ 1(<<16 
+ 13x 17 + 5x 18 + 1x 19 + SOx 20 < = 240 

5X1 +11x2 +7X3 +5Ox4 +4<k5 +4<k6+19x7+7x8 
+ 1& 9 + 29x 10 + 7<k 11 + 21x 12 + 17x 13 + 3<k 14 + 2Sx 15 + 1St 16 
+2Sx17+St18+1x19+1O<k20< =2S0 

5x 1 + l1x2 + 7X3 + 55x 4 +4Ox 5 +4<k 6 +21x7 + 9x 8 
+ 18x9 +29x 10 +7<k 11 +21x 12 + 17x 13 +35x 14 +2Sx 15 +2<k16 
+25x17+5x 18 +2x19+ 11(<<20< =310 
1x3 + lOt4 +4x 5 + lOt 6 +6x8 +6x 10+32x 11 +3x 12 
+7Ot 14 + lOt 15 < = 110 

3x 1 +4x2 +5x3 +2Ot4 + 14x5 +2Ck6 +6x7+ 12x8 
+ lOx 9 + 1& 10 + 42x 11 + 9x 12 + 12x 13 + lOCk 14 + 20t 15 + 5x 16 
+6x 17 +4x 18 + 1x 19 + 2<k 20 < =205 

3x 1 +6x2 +9X 3 +3<k4 +29x5 +2Ck6 + 12x7+ 12x8 
. + 1 Ck 9 + 30x 10 + 42x 11 + 1& 12 + 1& 13 + 11(<< 14 + 2<k 15 + 15x 16 

+ 1& 17 +7x 18 +2x 19 +4Ox20 < =260 
3x1 +&2 +9X 3 +35x4 +29x 5 +2Ck6+ 1&7+ 1St 8 

+ lOx9 + 30x 10 +42x 11 + 20x 12 + 1& 13 + 12<k 14 +2Ot 15 +2<k 16 
+22x 17+7x18 +3x 19 +5Ox20< =275 

A2 



Problem 3 

Max lO0x1 + 220x 2 +9Ox3 +400x4 +30Ck5 + 40Ck 6 +205x7 + 120xS + 
16Ox9 +58Ox 10+40Ck 11 + 140x 12 + 100x 13 + 1300t 14 + 65 Ox 15 +32Ox 16 + 
48Ut 17+8Ut 18 +6Ut 19 +255Ut20+310Ox21 + 1100t22 + 95 Ut 23 + 45 Ut 24 + 
30Ck 25 + 220x 26 + 200x 27 + 520x 28 

such that 

8x 1 + 24x 2 + 13x 3 + 80x 4 + 70x 5 + 80x 6 + 45x 7 + 15x 8 
+ 28x 9 + 90x 10 + 130x 11 + 32x 12 + 20x 13 + 120x 14 + 40x 15 + 30x 16 
+ 2Ox 17 +6x 18 +3x 19 + 18Ox20+220x21 +5Ox22 +3Ox23 +5Ox 24 
+ 12x25 + 5X26 + 8x27 + 18x28 < = 930 

8xl +44x2 +13x3 +100x4 +10Ox5+90x6+75x7+25xS 
+ 28x 9 + 120x 10 + 13Ut 11 + 32x 12 + 40x 13 + 160x 14 + 4Ut 15 + 6Ut 16 
+55x 17 + 1Ut 18 +6x 19 +24Gt20+29Ut21 + 8Gt22 +9Ut 23 +7Gt24 
+ 27x25 + 17x26 + 8x27 + 28x28 < = 1210 

3xl +6x2 +4x3 +2Ox4 +2Gt5 +3Ox 6 + 8x 7+3x8 
+ 12x 9 + 14x 10 + 40x 11 + 6x 12 + 3x 13 + 20x 14 + 5x 15 + 5x 17 
+3x18 +2Ox20+30x21 +4Ox22 +lOx23 +5X25 +lOx28 < =272 

5x 1 + 9x 2 + 6x 3 + 40x 4 + 30x 5 + 40x 6 + 16x 7 + 5x 8 
+ 18x 9 + 24x 10 + 60x 11 + 16x 12 + 11x 13 + 30x 14 + 25x 15 + lOx 16 
+ 13x 17+5x 18 + 1x 19 +8Ox20+6Gt21 +5Ox 22 +2Gt 23 +3Ox 24 
+ lOx25 +5X 26 +3x27+2Ox28 < =462 

5x 1 + l1x2 +7X 3 +5Ox4 +4Gt5 +4Ox6 +19x7+7x8 
+ 18x9 +29x 10 +7Gt 11 +21x 12 + 17x 13 +3Ox 14 +25x 15 + 15x 16 
+ 25x 17 + 5x 18 + 1x 19 + lO0x20 + 7Gt21 + 55x22 + 2Ox23 + 5Ut24 
+ 15x 25 + 15x26 +6x 27 + 20x 28 < =532 

5x 1 + l1x2 +7X 3 +55x4 +4Ox5 +4Ut6 +21x7+ 9x 8 
+ 18x9 +29x 10+7Ox 11 +21x 12 + 17x 13 +35x 14 +25x 15 +2Gt 16 
+25x 17 +5x 18 +2x 19 + 11Ox20+70x21 + 55x22 +2Gt 23 +5Ox 24 
+ 2Gt25 + 15x26 + 6x27 + 2Gt28 < = 572 
1x3 + lOx 4 +4x 5 + lOx 6 +6x 8 +6x 10+ 32x 11 +3x 12 

. +7Ox14+10x1S+30x21 +lOx22+Hk24+10x2S+5x26+10x28 < =240 
3x 1 +4x2 +5X 3 +2Ox 4 + 14x5 +2Ox 6 + <it 7 + 12x8 

+ lOx9 + 18x 10+42x 11 +9x 12 + 12x 13 + 100x 14 +2Ox 15 +5x 16 
+6x 17 +4x 18 + 1x 19 +2Gt 20 +5Gt21 +3Ox 22 +5X 23 + 2Gt 24 
+2Ox 25 + lOx26 + 1Gt27 +2Gt28 < =,400 

A3 



Problem 3 (CanO 

3x 1 +6x 2 +9X 3 + 3G.t 4 +29x5 + 2G.t 6 + 12x7+ 12x8 
+ IG.t 9 + 3G.t 10 + 42x 11 + 1& 12 + 1& 13 + I1G.t 14 + 2G.t 15 + 15x 16 
+ 18x 17+7x 18 +2x 19 +4G.t20+ 6G.t21 + 5G.t 22 + 25x 23 + 25x 24 
+ 25x 25 + 15x26 + IG.t27 + 28x 28 < =470 

3x1 +8x 2 +9X 3 +35x4 +29x5 +2G.t6 + 16x7+ 15x8 
+ 1G.t 9 + 3G.t 10 + 42x 11 + 2G.t 12 + 1& 13 + 12<lt 14 + 2<lt 15 + 2<lt 16 
+22x 17+7x 18 +3x 19 +5G.t20+6Ot21 +55x22 + 25x 23 + 30t 24 
+25x 25 + 15x 26 + lOx27 + 28x 28 < =490 

A4 



Problem 4 

Max 560x 1 + 1125t2 + 300x 3 + 62Ox4 + 2100x5 +43lx6 +6&7+32&8 + 
47x9 + 122t 10 + 322t 11 + 19& 12 +4lx 13 +25x 14 +425t 15 +426Ox 16 + 
416x 17 + 115x 18 +82t19 +22x20+631x21 + 132x 22 + 420x 23 +8&24 + 
42x25 + 10:k26 + 215x27 + 8lx28 +91x29 +2&30+49x 31 + 42Ox32 + 
31&33 + 72x34 +7lx35 + 49x36 + lOSt 37 + 11&38 +9Ox 39 

such that 

40xl +9lx2 +lOx3 +3Ox4 + 16Ox5+20x6+:k7+12x8 
+:k9 + 1& 1O+ 9x 11 +25x12 + lx 13 + 1x 14 + lOx 15 +28Ox 16 
+lOx I7+&18 +lx I9+lx20+ 49x21 +&22 +2lx23 +6x24 
+ lx25 +5X 26 + lOx27+St28 +2x 29 + 1x30+ lOx32 + 42x33 
+&34 +4x 35 +&36 + lOx38 + lx39 < =600 

16x l +92x2+4lx3 +16x4 +15Ox5+ 2:k6+4x 7+ 1&8 
+&9+ 12x 11 +& 12 +2x 13 + lx 14 +200x 16 +2Ox 17+&18 
+2x 19+ lx 20+ 7Ox 21 +9X22 + 22x 23 +4x24 + lx 25 +5X 26 
+ lOx 27 + & 28 + 4x 29 + 4x 31 + 12x 32 + & 33 + 4x 34 +:k 35 
+ lOx37 +&39 < =500 

3&1 +39x 2 +32x3 +71x4 +8Ox5+2&6+5x7+40x8 
+&9 + 12x 1Q+30x 11 + 15x 12 + 1x 14 +2:k 15 + 100x 16 +2Ox 18 
+ :k 19 + 40x 21 + & 22 + & 23 + & 25 + 4x 26 + 22x 27 + 4x 28 
+ & 29 + 1x 30 + 5x 31 + 14x 32 + & 33 + 2x 34 + & 35 + 20x 37 < = 500 

& 1 + 71x 2 + 30x 3 + 60x 4 + 200x 5 + 1& 6 + & 7 + 30x 8 
+4x 9+& 10+ 31x 11 +6x 12 +:k 13 + 1& 15 +6Ox 16 +2lx 17 
+4x 18 + 2x20 + 32x21 + 15x22 + 31x23 + 2x24 + 2x25 + 7X26 
+ St 27 + 2t 28 + St 29 + 2x 31 + St 32 + & 33 + 7x 34 + 1x 35 
+2Ox38+&39< =500 

3& 1 +52x 2 +3Ox 3 +42x4 + 17Ox5 +9X6 +7X 7+ 2Ox 8 
+:k 10 +21x 11 +4x 12 + 1x 13 +2x 14 + 14x 15 +31Ox 16 +& 17 
+4x 18 +6x 19 + 1x20 + 1&21 + 15x22 + 3&23 + lOx24 +4x 25 
+ & 26 + 6x 27 + :k 30 + lOx 32 + 6x 33 + 1x 34 + 1t 35 + :k 37 
+5X 38 +4x39 < =600 

AS 



Problem 5 

Max 560t 1 + 1125x2 +300t3 + 62Ut 4 +2100ts +431x6 +68t7 +328tg + 
47x 9 + 122x 10 + 322x 11 + 19& 12 + 41x 13 + 25x 14 + 425x 15 + 426<k 16 + 
41& 17+ 115x 18 +82x 19 +22x20+631x21 + 132x22 + 42Ot23 +86x24 + 
42x25 + lO3x26 + 215x27 + 81x28 +91x29 + 2& 30 +49x 31 + 42<k32 + 
31&33 + 72x 34 +71x 35 + 49x36 + 108x37 + 11&38 +9Ot39 +73&40+ 
181u 41 +43Ot 42 + 3060x 43 + 215x 44 + 58x45 + 29& 46 + 62<k47 + 418t48 + 
47x 49 + 81x 50 

such that 

40x 1 +91x 2 + lOx3 +3Ox4 + 16Ox5 +2Ox6+3x7+ 12x8 
+3x9 + 18x 1Q+9Xll +25x 12 + 1x 13 + Ix 14 + lOx 15 +28Ot 16 
+ lOx 17 +& IS + 1x 19+ Ix 20 +49x 21 +8x22 +21x 23 +&24 
+ 1x 25 + 5x 26 + lOx 27 + & 28 + 2x 29 + Ix 30 + lOt 32 + 42x 33 
+&34 + 4x 35 +&36 + 1Ut38 + Ix 39 +4<k40+ 8&41 + 11x42 
+ 120t 43 + & 44 + 3x 45 + 32x 46 + 2& 47 + 13x 48 + 2x 49 + 4x 50 < = 800 

1& 1 +92x 2 +41x 3 + 1&4 + 15Ox 5 +23x 6 +4x 7+ 1&8 
+&9 + 12x 11 +8x 12 +2x 13 + 1x 14 +20Ut 16 +2Ox 17+& 18 
+2x 19+ 1x20+7Ox21 +9X22 + 22x23 +4x24 + Ix 25 +5X 26 
+ lOx27 +&28 +4x 29 +4x 31 + 12x32 +&33 +4x 34 +3x 35 
+ lOx 37 + & 39 + 2& 40 + 93x 41 + 9x 42 + 30x 43 + 22x 44 + 3& 46 
+ 45x 47 + 13x 48 + 2x 49 + 2x 50 < = 650 

38x 1 +39x 2 +32x3 +7Ix4 +8Ox5 +26x6 +5X 7+ 4Ox S' 
+&9 + 12x 10 +3Ox 11 + 15x 12 + Ix 14 +23x 15 + lOUt 16 +2Ot 18 
+ 3x 19 + 40x 21 + & 22 + & 23 + & 25 + 4x 26 + 22x 27 + 4x 28 
+&29+ 1x30+5x31 + 14x32 +&33 +2x 34 +&3S +2Ox 37 
+6x 40+ 12x41 +&42 +8Ox 43 + 13x44 +6x 45 + 22x46 + 14x47 
+1x49+2x50< =550 

& 1 +71x 2 +3Ox3 +6Ut 4 + 200x5 + 1& 6 +6x7 +3Ox 8 
+4x 9 +& 10 +31x 11 +6x 12 +3x 13 + 1& 15 +6Ox 16 +21x 17 
+4x 18 +2x 20 +32x 21 + 15x22 +31x23 +2x24 +2x 25 +7X 26 
+ & 27 + 2x 28 + & 29 + 2x 31 + 8x 32 + 6x 33 + 7x 34 + Ix 35 
+2Ox38 +8x39+ 14x40+2Ox41 +2x42 + 4Ox 43 +6x 44 + 1x45 
+ 14x46 +2Ox 47 + 12x48 + Lt 50 < =550 

3& 1 +52x 2 +3Ox 3 +42x4 + 170xS +~~?~7~t~~ 
+ 3x 10 + 21x 11 + 4x 12 + 1x 13 + 2x 14 + 1~N~4~~1<>fi& 17 
+4x 18 +6x 19 + 1X20+ 18x21 + 15x22 +3&t~f 1Ox24,rt-4x25 
+ 8x 26 + 6x 27 + 3x 30 + lOx 32 + 6x 33 + trJ.t(.~~ 35 + ~J7: 
+5X38+4x39+3Ox41 +12x42+ 16x43 \18,t., 44+ 3x 4,'" ~6x46 
+ 22x 47 + 30x 48 + 4x 49 < = 650 : . ~ 
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