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Abstract 
This thesis reviews the potential for the application of Geographical Information 
Systems and environmental remote sensing products to malaria control planning 
needs in sub-Saharan Africa with regard to: the stratification of malaria; routine 
monitoring of environmental variables which may influence changes in endemicity 
and epidemic risk; and the scope for their use in malaria early warning systems. 

The history and body of knowledge to date, in the field of 'geographical 
malariology' is reviewed, including the concept and process of stratification of 
malaria. The following outcomes are presented which represent novel findings in our 
understanding of the geography of malaria and its inter-annual variability: 1) a new 
interactive method of mapping the spatial and temporal distribution of malaria risk 
(based on climatic suitability for transmission) in the 'African Savannah' is 
developed; 2) the 'highland and desert-fringe' malaria strata is discussed and a new 
method of identifying and mapping the desert-fringe areas (based on the combination 
of mean rainfall distribution and interannual variability) is produced; 3) a method for 
the integration of long-term mean monthly climate data, and routine meteorological 
satellite information, into a biological model of malaria transmission potential 
(vectorial capacity) suitable for mapping potential malaria risk is developed. This 
process permits a more dynamic mapping of malaria risk than hitherto available. 

The paucity of reliable epidemiological data for Africa is acknowledged. However, 
to be effective malaria control managers have to make rational decisions on the 
information routinely available. Time series of malaria incidence data (clinical and 
laboratory confirmed) at the district level were obtained from the routine Health 
Information Systems operating in four countries in Southern Africa (Zimbabwe, 
Botswana, Namibia and Swaziland) at a range of temporal scales. The data were 
analysed in conjunction with a range of environmental variables including the 
vectorial capacity products. The seasonal structure of the epidemiological data was 
explored and modelled as a function of these environmental variables. 

Tests of association between monthly malaria incidence anomalies, and time-lagged 
anomalies of environmental variables, indicate that routine monitoring of the latter 
would provide a useful warning of epidemic risk in certain districts or, where 
appropriate, strata. In Zimbabwe, for example, the models were based on seven 
altitude zones. In Botswana, which is almost entirely defined as desert-ffinge, 
predictive models for three latitude zones were developed. 

Multivariate regression models using combinations of environmental variables were 
developed to predict malaria incidence as a function of environmental variables, with 
at least two months warning, for both districts and strata. The results show clear 
evidence that there are areas where this early warning approach to mapping malaria 
risk would be useful within each of the countries studied. 

The thesis concludes with a discussion of the implications of the findings in the 
current context of the malaria control strategy in sub-Saharan Africa. 
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1. General Literature Review 

"The microbe is nothing, the terrain everything, " Pasteur., cited Learmonth, (1988). 

1.1. Disease, location and environment. 

1.1.1. The origins of medical cartography. 

The origins of medical cartography and the establishment of its role in the 

epidemiology and control of disease is often attributed to the work of John Snow, a 

medical doctor working in London during a cholera epidemic in 1854. The dominant 

belief of the time was that cholera, like malaria, was transmitted through the 

inhalation of bad vapours. Snow, who had hypothesised that cholera was instead 

transmitted through contaminated water, was able to test and support his theory by 

documenting and correlating cholera cases with their use of water from one of two of 

the city's water supply companies (Learmonth 1988). The Lambeth Waterworks 

Company drew its supplies from the upper Tlames. The Southwark and Vauxhall 

Water Company took its water from much further downstream where it had 

subsequently been contaminated by sewage from the city. Snow found that users of 

the latter company's water died of cholera in large numbers. In one particular Soho 

neighbourhood, the concentration of cases was so high that more than 500 deaths 

occurred during a period ofjust ten days. From his investigations, Snow concluded 
that the focal cause of the epidemic was a single pump on Broad Street. He advised 
that the handle of the pump be removed immediately. This was carried out and the 

epidemic subsided. Snow later mapped the distribution of cholera cases in relation to 

the Broad Street pump (Snow 1854) demonstrating the potential value of maps 
(when combined with appropriate epidemiological understanding and enquiry) as a 

useful tool in public health decision making'. 

I Since the 1854 publication of Snow's Broad Street Map questions of its role in guiding Snow's 
hypothesis, investigations and conclusions has been the subject of anecdote and prolonged debate. 
Recent argument suggests that Snow did not use a map as a primary deductive tool, but rather to 
provide illustrative support for his existing hypothesis and epidemiological investigations. It is also 
believed that the epidemic was already in decline when the Broad Street pump handle was removed 
Brody, H., M. Rip, R, P. Vinten-Johansen, N. Paneth and S. Rachman (2000). "Map-making and 
myth-making in Broad Street: the London cholera epidemic, 1854. " The Lancet 356: 64-68. 



While Snow's 1854 map came to be seen as a keystone in the use of cartography in 

guiding epidemiology and disease control, it was certainly not the first documented 

use of maps in studies concerning disease. Snow, and others, had produced earlier 

maps showing the locations of cases in previous cholera outbreaks (Brody, Rip et al. 

2000). Jarcho identified 36 authors who published maps of cholera between 1820 

and 1836 (Jarcho 1970). Other work draws attention to an epidemic of yellow fever 

in East-side New York which was mapped by physician Valentine Seaman in 1798 

(Stevenson 1965). Maps had also been used during the 17 th and 18 th century to 

identify the more unhealthy parishes of Essex, Kent and Sussex. Many of those 

parishes bordering on the marshes of the River Thames and its estuarine tributary the 

River Medway were perceived as being subject to high risk of 'marsh fever' or 

'ague' and many professional people, including the clergy, avoided residence in them 

(Dobson 1994). 

The perception of a linkage between malaria and a particular location or environment 
is an ancient one. Indeed reference is made to the association between intermittent 

fevers and environment in Vedic manuscripts of 1600 BC (Desowitz 1991) and the 

writings of Hippocrates 400 BC (Najera 1999a). Paludisme, the older French term 
for malaria, derives from paludal: meaning of, or pertaining to, the marshes (Watson 

1976). However, neither the causative agent of malaria nor its mode of transmission 

were known until the end of the 19'h Century, so the presence of mosquitoes in the 

marshes was not the reason associated with this. The use of the term malaria in the 
English language is believed to be attributed to Horace Walpole writing from Rome 

in 1740, where the Italians used mal'aria derived from 'bad' or 'evil' air to describe 

the local marsh fever (Desowitz 1991). This illustrates the then widely held belief 

that malaria was caused by miasma a cold, damp, misty effluvium rising from the 

ground in marshy lands. 

Despite Laveran's discovery and identification of the malaria parasite (Plasmodium 

malaride) in a patient's blood in Constantine, Algeria, in 1880, the mode of 
transmission of the disease remained elusive. Did the parasite get into the body 

through inhalation of an air-borne microbe, or the ingestion of a water-borne or soil- 
borne microbe? The miasma theory still held much persuasion and any of these 

possibilities accommodated the perception of malaria as a 'marsh fever'. 
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In 1889 an 'Atlas of Tropical Diseases' was published (Felkin 1889). Felkin's world 

map of malaria distribution, Figure 1.1, was produced at a time when evidence was 

beginning to suggest that malaria was due to "an earth-borne poison, generated in 

soil, the energies of which are not expended in the growth and sustenance of healthy 

vegetation" (Felkin 1889). 

What is striking about Felkin's map is that while the mosquito's role in the parasite 
life cycle, and as the actual mode of malaria transmission, was yet to be discovered 

and established by both Ross and Grassi in 1898, the map shows a remarkable 

similarity to those widely available more than a century later. The map itself was 

produced by a combination of expert opinion and the use of rainfall isohyets and 

temperature isotherms to 'fill in the gaps' (a process still very much in evidence 

today). Comparison of Felkin's map with that produced more recently by WHO, 

Figure 1.2, shows that in the intervening century malaria has disappeared from the 

more developed countries of Europe and North America, but that the disease has 

persisted in (or returned to) much of tropical Africa, Latin America, India and South- 

east Asia. 

During the British colonial period detailed maps of malaria distribution in Bengal, 

India were produced following surveys carried out during 1901-1911. Bentley 

measured enlarged spleens in the Bengali population (Bentley 1916) a technique 

devised by Dempster in 1848 to indicate levels of malaria parasitaernia. From these 

same surveys Bentley then produced maps showing the varying endemicity occurring 

throughout the Province. Similar but more extensive surveys, undertaken largely 

during 1914-1918, were later collated by Christophers and Sinton in 1926 

(Learmonth 1957), and related to altitude and rainfall patterns to form the basis of a 

malaria endemicity map for the whole of the Indian subcontinentý Figure 1.3. 

The geographical context of malaria transmission continued to be studied and played 

an increasing role in understanding the differing endernicities of the disease and in 

guiding control options up until World War II (Boyd 1949). Maps showing the 

world distribution of human malaria parasites and the principal malaria vectors were 

produced by Jacques May in his "World Atlas of Diseasee' (May 1950-55; May 
1961). May's work is recognised as offering a major contribution to medical 

3 



14 

I i 



; -i 
0. 

cý-7 

ago 

Ell 

Lzý 

L ýJ I 

(Z 

rP 

-4 % zi - .1 -r 



FIG uRE 1.3. CHRISTOPHERVAND SINTON'S MAP OFMALARIA ENDEMICITY FOR THE INDIAN 

SUB-CONTINENT- CIRCA 1926. REPRODUCED FROM LEARMONTH (195 7). 

Legend: 
1. Areas above 50COR (non-malarious). 
2. Known healthy plains (spleen rates less than 10%). 
3. Moderate to high endemicity of more or less static character, the intensity 

depending on local surroundings; seasonal variation moderate, fulminant 
epidemics unknown. 

4. Hyper-endernicity of hilly jungle tracks and terai land. 
5. Probably hyper-endemic hill areas. 
6. Hyper-endemicity other then hill areas. 
7. Variable endemicity associated with dry tacts, usually showing autumnal 

rise in fever incidence (potential epidemic areas), spleen rate low except 
for years following epidemics, or in special local circumstances, and 
much affected by conditions of irrigation. 

8. Known areas liable to fulminant epidemicity (diluvial) malaria. Spleen 
rate dependant on occurrence of epidemics, high during and immediately 
after such, slowly falling to low rates in course of half a decade or so. 



geography and disease ecology. May offered the perspective of multifactorial 
diseases, each factor having its own geography, and manifestation of disease 

resulting from the spatial and temporal interaction of these geographies (Learmonth 

1972). Systematic reviews of the geographical distribution of the malaria vectors 
(Russell, West et al. 1963) were made on a global basis (Bruce-Chwatt 1970). 

Reviews of epidemiological characteristics in selected areas were also undertaken 
(MacDonald 1957; Lysenko and Semashko 1968) and the world was stratified into a 

number of major epidemiological zones (Bruce-Chwatt 1985). The map in Figure 

1.4, after (Onori 1986) gives an example of this where nine geographical regions are 

considered in terms of their epidemiology and the prevailing situation regarding 

control. 

WHO collected available national statistics on malaria each year and these formed 

the basis of annual publications reviewing and mapping general trends in the world 

malaria situation. Despite these products the perceived value of local geography, and 
epidemiology for that matter, in malaria control planning became less pronounced 
from the mid 1950s until the failure of the drive for global eradication and control 
became explicit more than thirty years later (Najera 1999a). To understand why this 

was so it is useful to look at policy priorities and prevailing control options of the 
time. 

The technical 'zolution'to the malaria problem. 
Prior to the eradication era malaria had been seen as a complex disease which varied 
markedly according to its local epidemiology and ecology. Hackett writing in 1937 

suggested "Everything about malaria is so moulded by local conditions that it 
becomes a thousand epidemiological puzzles. Like chess it is played with few pieces, 
but is capable of an infinite variety of situations. " (Hackett 1937) cited in (Gilles 
1993). 

During the 1950s interests largely shifted away from the prerequisite need to 

understand the local geography and epidemiology of malaria for its control (Najera 

1998b). Two very cheap andeffective control tools had, become available in the 
forms of the insecticide DDT and the anti-malarial drug Chloroquine. Which many 
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FIG 1.4. EPIDEMOLOGICAL ZONES OF THE WORLD WHERE M LA RU FMSTS OR AM Y 
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Legend. 

Onori's map is based on a stratification of malaria into the following zones: 

1) Africa, North of the Sahara, 

2) Africa South of the Sahara, 

3) North America, " 

4)' Middle America, 

5) South America, 

6) Asia West of India, 

7) Middle South Asia, 

8) East Asia and Oceania, and', 

9) Europe including Turkeyand the USSiL 



considered could be universally applied, irrespective of local conditions. During the 
inception of the World Health Organization (1946-1948) its Interim Committee 

established an Expert Committee on Malaria which recommended the assistance of 

governments of endemic countries worldwide to accomplish malaria control along 
'modem scientific' lines. This policy, though subject to contentious debate, was 

ratified at the Kampala Conference in 1950 (WHO 195 1). 

The perceptions of malaria as a major public health problem has been a central 

concern of WHO and over the past fifty-sixty years the perceived wisdom regarding 

priorities and options for eradication and control have changed markedly. The value 

of epidemiological and geographical understanding of malaria, and the perceived 

need for personnel trained in these disciplines, varied accordingly. During the drive 

for eradication Macdonald's mathematical model was'offered to provide a 'complete 

picture of the epidemiology of malaria' and a"realistic representationý of natural 
happenings' (Najera 1999a). 

A number of writers provide a historical description of the changing role of WHO, 

and its partners, in global malaria c6ntiol activities. Najera divided the various 

control approaches into four key periods (Najera 1989). Bradley categorises these 

periods and their changes in approach to control by decade: 1940s - Control, 1950s - 
Eradication Attack Phase, 1960s - Eradication Consolidation Phase, 1970s - 
Resurgence, 1980s - Chaos, ' 1990s - Hope " (Bradley 1992). A more recent 
publication (Connor 2002) provides a review of these various approaches including 

recent changes of emphasis resulting from the WHO's New Global Malaria Control 
Strategy (WHO 1993a) and the Roll Back Malaria Initiative (WHO 1998b)., ý 

The Global Malaria Control Strategy 1946-54.,, 

This period saw the adoption of malaria control as a major international humanitarian 
initiative. The world had seen the mobilisation of huge forces during World War II 

and it was felt that concerted efforts could now be made against one of the world's 
major public health problems. Intervention relied primarily on spraying the interior 

walls of dwellings with DDT to kill resting mosquito vectors, any subsequent malaria 
cases were treated with Chloroquine to reduce the parasite pool in the human, ý, - 
population. - In the USA, Europe, North Africa; and the Middle East malaria control 
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campaigns based on this two pronged approach were so successful that global 

eradication was seen as a realistic possibility. 

1.2.2. The Global Malaria Eradication Campaign 1955-69. 

Fears over the growing resistance to both of these cheap and effective control tools 

and the costs of maintaining recurrent control measures spurred the drive for 

eradication. While eradication in the developed nations of Europe and the USA was 

expected, eradication in Indiaand Ceylon looked as if it too might succeed 

(Kondrachine and Trigg 1997). In India prevalence levels of 70 million per year 

declined by 1967 to about 100,000 cases (Learmonth 1988). Ceylon also virtually 

achieved eradication. 

Eradication efforts did not include most sub-Saharan African countries despite the 

recommendations of the First Conference on Malaria in Equatorial Africa which was 

held in Kampala, Uganda in 1950: 

to governments responsible for the administration of African territories 

that malaria should be controlled by modem methods as soon as feasible, 

whatever the original degree of endemicity and without awaiting the outcome , 

of further experiments. ' (WHO 195 1). 

There were two basic schools of thought on control in sub-Saharan African., The 

interventionists with their strong commitment to eradication were convinced of the 

rom. every continent (Macdonald 195 1). The need to vanquish malaria f 

conservationists argued that the equilibrium reached between humans and parasites 

under intense malaria transmission offered a high degree of adult protection and 

should not be interfered with lightly (Wilson, Garnham_ et al. 195 0). Ultimately 

vector control campaigns were not considered feasible in sub-Saharan African, due 

to the technical difficulties of intense malaria transmission, requiring extensive 

control efforts in countries which had very limited health infrastructure (Bradley 

1992). However, Ethiopia, South Africa, Swaziland and the former Rhodesias did 

carry out effective malaria control campaigns. Major research experiments which 
included vector control also occurred in Kenya and Tanzania (Bradley 1991b) and 
Nigeria (Molineaux and Grammicia 1980) which did produce significant reductions 
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in infant and child mortality. A 1977 paper by Kuznetsov gives a detailed account of 
experiences with vector control in Africa (Kouznetsov 1977). 

During the latter part of this phase however, the considerable gains that had been 

made began to lose ground. Donors saw that eradication was going to be a long 

process. While they were prepared to invest significant funding for a limited term 

intervention, they were reluctant to maintain recurrent vector control operations. 

They began to argue that further improvement in the malaria situation could only be 

achieved through greater national commitment and improved public health 

infrastructure. This was followed by an immediate reduction in bilateral and 
international fmancial support to anti-malarial campaigns. In recognition of this, 

combined with the devastating epidemics in Sri Lanka during 1968, and the wide 

scale re-emergence of malaria in Asia, the 1969 World Health Assembly radically re- 

examined the malaria eradication strategy. 

1.2.3. - Malaria Control vAth the Ultimate Goal of Eradication 1969-78. 

During this period the capability of many endemic countries to continue anti-malarial 

operations, especially those involving yecto, r control, were ftirther reduced and many 

countries including India expenienced widespread and dramatic resurgence of malaria 
(Akhtar and Learmonth 1977)., 

While anti-malarial programmes were in decline the efforts to establish basic health 

care services in the more peripheral areas of endemic countries met with little 

success. In 1975 a collaborative WHO/UNDP/World Bank Special Programme of 
Tropical Disease Research was established to identify new and improved tools for 

malaria control and to strengthen research capabilities in endemic countries. While 

its central thrust focused on clinical and field research, a significant component of 
this new initiative was the drive for greater epidemiological and sociological inputs 
into the planning of appropriate control programmes (Kondrachine and Trigg 1997). 
Extensive resurgence of malaria in South Asia and Latin America led to calls to 
develop malaria control programmes appropriate to the infrastructure existing in 

endemic countries. 
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1.2.4. Malaria Control as part of Primary Health Care 1978-89. 

This approach was formulated during the Alma-Ata Conference in Russia, 

September, 1978 (WHO 1978). It centred on an actively participating community 

working closely with health services. Its'aims: to ensure that malaria control 

activities would be integrated into the'priorit'y setting of the general health services, 

reflect the prevailing infitistructure and the level of service delivery possible, and to 

be able to Maintain the gains'achieved. It was arg I ued that the fundamental element 

of the new approach reflected recognition of the variability of epidemiological 

situations, the feasibility of their modification and the availability of resources. 

A decade after Alma-Ata, progress towards Primary Health Care and 'Health for all 
by the year 2000' was slow and disappointing. Only' China had made significant 

inroads against malaria. Elsewhere the malaria situation was stagnant or 
deteriorating, especially in'sub-Saharan Africa (Kondrachine and Trigg 1997). 

Financial resources available to health care in developing countries continued to 

decline dramatically. To support primary health care'provision UNICEF la I unched 

the 'Bamako Initiative' in 1987 to encourage financing through-cost recovery. In 

many countries, where malaria control hid been carried out as a public health 

measure, people were now expected to Meet the cost of treatment themselves. By the 

end of the 1980s the global malaria control strategy was in crisis. 

1.2.5. Redefining Malaria as a Global Health Issue - after 1989. 

In view of the increasing prominence of malaria as a major public health problem, 
the Executive Board of WHO and the World Health Assembly adopted resolutions in 
1989 asserting that control of malaria must again become a global priority. Malaria 

was seen as an excessive drain. on limited health resources, amajor, constraint to 

child survival programmes, and maintained poverty through low productivity and, 
impaired economic growth in developing countries. International meetings in 
Brazzaville, New Delhi and Brasilia during 1991 and 1992, followed by consultation 
with experts at national and regional levels led to the formulation of a new strategy 
which was adopted by the Ministerial Conference on Malaria in Amsterdam in 
October, 1992. The New Global Malaria Control Strategy recognises malaria has no 
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single formula for its control, but is a disease of differing epidemiological types 

determined by a diversity of social, ecological and economic settings (WHO 1993a). 

Strong political support for concerted action against malaria, especially in Africa, 

grew throughout the 1990s. It was recognised that there was a serious shortfall of 

trained malaria epidemiologists available to support health services (Naj era 1999a), 

there had been a drastic under funding of malaria research (Anderson, MacLean et al. 

1996), and malaria had come to be seen as a neglected disease (Marsh 1992). In 

1996 an Accelerated Strategy for Malaria Control in the Africa Region was approved 

by WHO and in 1997 the Meeting of Heads of State of the Organisation of African 

Unity made a declaration on malaria control (OAU 1997). - Further international 

support came in 1997 with the Multilateral Initiative on Malaria and in 1998 with the 

'Roll Back Malaria' Global Partnership which includes the United Nations 

Development Programme, the World Bank; UNICEF and support from a number of 

Bilateral Agencies (WHO 1998b). Roll Back Malaria aims to identify stakeholders, 

consolidate research, and deliver concerted support to malaria control through 

strengthened health systems development (Nabarro and Tayler 1998). It aims to 

draw more commitment from the private sector in a drive for new control tools 

through its Medicines for Malaria Venture, and the Malaria Vaccine Fund which is 

substantially supported, for example, by the Bill and Melinda Gates Foundation. 
4-- -- 

1.3. Rs-estabbNng the need for mapping malaria rlsk. -ý 
In its explicit recognition of malaria as a disease that has no single formula for its 

control the New Global Malaria Control Strategy (WHO 1993a) promotes the view 

that malaria is a disease of diffe_ring epidemiological types that are determined by a 
2 diversity of social, ecological and economic settings . 'Arguably, 'there is a clear role 

for mapping the spatial variation in these factors and using the results to guide 

control efforts. 

2 Hackett's viewpoint from 1937 is rediscovered Hackett, L. W. (1937). Malaria in Emm. London, 
Oxford University Press.. 
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The four basic technical elements of the New Global MaMa Control Strategy are: 

1. to provide early diagnosis and prompt treatment; 

2. to plan and implement selective and sustainable preventative measures, 

including vector control; , 
3. to detect early, contain or prevent epidemics; 

4. to strengthen local capacities in basic and applied research to permit and 

promote the regular assessment of a country's malaria situation, in 

particular the ecological, social and economic determinants of the disease. 

The strategy aims to control malaria through a concerted approach using various 

methods of intervention based on knowledge of the local epidemiology of the 

disease, availability of resources and the ability to maintain a sustainable impact. 

The successful implementation of the New Global Malaria Control Strategy therefore 

depends on a radical shift from highly prescriptive, centralised control programmes 

to flexible, cost effective and sustainable programmes adapted to local conditions 

and responding to local needs. Mapping could clearly provide useful inputs into all 

but the firse of these technical elements, i. e. planning of preventative measures; 
identification of epidemic prone regions; and assessment of a country's ecological, 

social and economic determinants of the disease. This is acknowledged by a WHO 

Study Group on hnplementation of the Global Strategy (WHO 1993b) and in the fact 

that the newly established Roll Back Malaria Initiative immediately set up a 
Technical Support Network on Mapping Malaria and Healthcare in 1998 (WHO 

1998a). 

The New Global Malaria Control Strategy departs somewhat from the previous 

approaches to malaria stratification, such as that defined purely by geographical' 

region (Onori 1986), and instead suggests the elaboration of identifiable ecological 

and I soc io-economic situations in I areas I where malaria is common and has been more 
difficult to control. These basic'malaria patterns have been referred to'as 

'prototypes' or 'paradigms' (Najera, Leise et, al. 1993). The ecological categories 

3 Although even here ma - pping could inforni the development . of localised diagnostic algorithms in 
countries with regions of varying seasonal transmission. Prompt treatment may also be supported by 
mapping of health facilities in relation to those at risk. 
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identified are: 1) African savannah, 2) Plains and valleys outside Africa, 3) Forest 

and forest fringe, 4) highland and desert fringe, 5) Seashore and coastal malaria, 6) 
Urban malaria. In addition, there are a number of patterns associated with specific 
occupational activities or social conditions. These are: 7) Agricultural colonization 

ofjungle areas, 8) Gold and gem mining, 9) Migrant agricultural labour, 10) 

Displaced populations (Najera, Leise et al. 1993). 

In view of this renewed focus on the epidemiology of malaria it is not surprising that 

workers in malaria research and control began once again to demand maps showing 
the variation in malaria endemicity as a tool to guide control efforts (Najera, Leise et 
al. 1993; Snow; Marsh et al. 1996). A map of malaria endemicity may be considered 
a basic epidemiological tool that can be used to help stratify a region, a nation, a 
province, or a district into areas of relative risk. This may then be used to assess the 

numbers of people at risk; guiding choice of control options, and estimating the 

resources required to implement an effective control programme. Where maps can 
be updated regularly they may also play a role in monitoring changes in factors 

related to transmission patterns and potentially provide a component input into early 
warning of epidemic risk (Connor, Flasse et al. 1997). The wide availability of 
personal computers and the development of geographical information and satellite 
remote sensing technologies may be especially useful in this regard., -, ýý 

1.4. ' GaCgrapMcal Inf6rmation Systems (GIS) 
The advent of computer-based cartography dates back to the 1960s when computer 
screens and plotters were used to plot'Cartesian coordinates to make up points, lines, 

grids and areas. The ISYMAT sofWare programme was the first developed, by 
Harvard University. 7bis programme wasused experimentally to produce maps for 

various naturalresource applications (Burroughes and McDonnell 1998). It had at 
least one application in health when a map of mortality statistics was produced for 
Hawaii (Armstrong 1972). The concept of Geographical Information Systems stems 
from workers in the Canadian Government in the early 1960s (Coppock and Rhind 
1991) but it was during the 1970s that the development of GIS came about as the 
technology was driven by rapid demand from city I planners and' utility companies. 

5-- 
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GIS is defined variously according to whether it is viewed as an industry, a product, 

a technology, a database, a tool, or a science (Martin 1991; Reader 1995; Wright, 

Goodchild et al. 1997; Burroughes and McDonnell 1998). 

A simple working definition of a GIS used here, as a tool, is: 'A geo-refercnccd 

computer database used for data management, locational enqui ry, spatial association, 

modelling and mapping. ' The key factor in GIS being that each of the database 

records have locational information (geographic co-ordinates) associated with them, 

and can be examined in relation to any other variables sharing those co-ordinates. 

GIS technologies have developed along two basic architectures: 1) arc-based (or 

vector-based) systems, where all geographical features are represented by points, 
lines and polygons with associated attributes linked to codes in a database; and 2) 

grid-based (or raster-based) systems where all features and their associated attributes 

are stored as digital records in grids, Figure 1.5. The fonner found many 
applications in the service sector and utilities where information on streets, city 
blocks, pipe and cable lines were readilystored in this format. The latter was mostly 
used for image processing of remote sensing data obtained from satellite and 
airborne survey systems for natural resource management applications. Arc-based 
formats can also be readily used for network analysis and distance opera tions, such 

as in transportation. Grid-based formats lend themselves readily to applications 
where changes occur gradually over surfaces and where boundaries between features 

are less distinct. Over the past ten years the interaction between these two systems 
has been increasing and many GIS packages can handle both arc-based and grid- 
based data type. For instance the overlaying of rivers and roads on to a satellite 
image, Figure 1.6. However, the majority of analytical procedures will usually 
require data to be in the common base format, either arc or grid, and software 
systems often try to incorporate conversion utilities between the two formats. 

The rapid advance in personal computer technology revolutionised the GIS industry 

and during the 1980s many research applications were demonstrated. In 1991 a 
comprehensive three volume text on GIS and its applications was published 
(Maguire, Goodchild et al. 1991). Yet, as Glass and colleagues pointed out (Glass, 
Aron et al. 1993) health researchers had been slow to exploit this technology, and in 
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Fi(; uRE 1.5. COMPARA TIVE REPRESENTA TION OF FEA TURES IN VECTOR AND R. 4STER GIS 

Cd 

FIJ 

(a) 1(b) 

Legend: 

(a) In vector-based GIS features are represented by points lines and polygons. 
In this illustration a road a is shown by a curved line, a lake h, a building 
c and trees d are shown by polygons, and drainage access points x are 
shown using points. The characteristics (attributes) of these features are 
stored in an associated database. 

(b) In raster-based GIS these same features must be represented by different 
values in a matrix (image). Their attributes are classified according to the 
different values in those cells. 



FIG URE 1.6.0 FERL4 IING DlFFERENT INFORAM TION LA YERS IN A GIS. 
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water 
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Legend: 

elevation 

GIS allow several different information layers to be stored, displayed, queried and 
analysed in relation to one another. Reproduced from Eastman (1993). 



the whole of this 1096 page treatise, not a single paper examined GIS and disease. 

There were a few studies during the early 1990s, notably those of WHO's 
Schistosomiasis Control Unit which had developed a GIS database on 
schistosomiasis in 76 endemic countries (Yoon 1993); and Glass and colleagues use 
of GIS and statistical models to identify environmental risk factors for Lyme disease 
in Maryland (Glass, Schwartz et al. 1995). There were a number of early disease- 

environment studies in veterinary disease applications using GIS, and a special issue 

of Preventative Veterinary Medicine is given over to these (Hugh-Jones 199 1). A 

number of these studies used satellite imagery as a primary data source within GIS. 

1.5. Remote sensing and its use within GIS 

As stated previously grid-based GIS had developed primarily to meet the needs of 

satellite image processing. Satellite and aerial survey data provides a method for 

obtaining recent, or frequently up-dated survey data for large and often remote areas 
of the earth's surface. Environmental earth observation satellites have been in 

operation since the launch of the ERTS 1, a forerunner of the Landsat MSS series in 

1972. The more recent Landsat TM series offer a spatial resolution of 30 metres. 
Data from these multiband, higher spatial resolution, satellites are commercially 
distributed. Another well known, high spatial resolution, satellite system is SPOT 
(Satellite Pour I'Observation de la Terre) a multiband system with a spatial 
resolution of 20 and 10 metres. There are numerous satellites systems, which operate 
in the visible, thermal and microwave bands, both experimental and operational 
(Lillesand and Kiefer 1994). 

High spatial resolution satellite data tends to have a low repeat cycle. That is they 

may only observe the same place on the earth's surface twice in 16 days in the case 
of Landsat and 26 days in the case of SPOT. By contrast, weather monitoring 
satellite data, such as that from Metcosat and NOAA-AVHRR provide information at 
a much coarser spatial resolution (5kM2 _ IkM2 ) but with a rapid repeat cycle of 
several times daily. Weather satellite data is usually freely available, or at low-cost. 
So in general there is a trade off between spatial and temporal resolution (and cost). 
Perryman provides a concise, but thorough, overview of remote sensing, including a 
useful description of issues of spatial, temporal, spectral and radiometric resolution 
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(Perryman 1996). Connor and colleagues review these in relation to their use in 

malaria research and control (Connor, Flasse et al. 1998). 

Satellite data have long been used in many natural resource applications, including: 

forestry and land-use, monitoring of cropping patterns, rainfall, drought and 

vegetation conditions (Keech 1983; Power, Rosenburg et al. 1996). There have also 

been a number of studies relating to infectious disease. The potential for use of 

remote sensing in landscape ecology studies of vector-borne and other diseases was 

recognised as early as 1970 (Cline 1970). During the 1970s the implications of its 

use in mosquito control programmes and public health campaigns, and its technical 

limitations, were considered (Barnes and Cibula 1979). Among the earliest of the 

major studies using satellite data in examining human disease vector distributions 

were those of Linthicum and colleagues who used environmental satellite data in a 

study of the association between outbreaks of Rift Valley Fever and vegetation status 

in Kenya (Linthicum, Bailey et al. 1987). Rogers and colleagues examined 

relationships between satellite derived estimates of vegetation status, and the 

mortality rates and abundance of vectors of human trypanosomiasis (Rogers and 

Randolph 1991; Rogers and Williams 1994). Wood and colleagues used satellite 

data to map the landscape components surrounding Californian rice fields from 

which they were able to identify areas of high anopheline production (Wood, Beck et 

al. 1992). Washino and Wood provide a review of this and a similar study including 

malaria vectors and risk of malaria in villages in Chiapas, Mexico, as well as further 

studies on Lyme disease (Washino and Wood 1994). The UNICEF Guinea Worm 

Eradication Programme was also one of the earlier users of remote sensing data 

within GIS for a disease application (Clarke, Osleeb et al. 1991; Mott, Nuttall et al. 

1995). 

The 1990s saw a rapid expansion of health research interest in GIS and remote 

sensing. In 1994 the Canadian Government's International Development Research 

Centre (IDRC) drew together a number of researchers from around the world for an 
International Conference on GIS for Health and Environment, in Columbo, Sri 

Lanka. IDRC stated that this was the first major international meeting dedicated to 
the use of these technologies in health (de Savigny and WiJeyaratne 1995). A 

number of papers at this conference discussed the use of remote sensing in studies of 

14 



human disease transmission and control. These were, for instance, a study of malaria 
in Nadiad Takula, Kheda district, Gujurat, India using Landsat data to create detailed 

thematic maps showing landscape features around Nadiad Takula (Malhortra and 
Srivastava 1995); and one on the use of Landsat imagery and GIS in a study of 

malaria transmission along forest fringe settlements in Amazonia, Brazil (Bretas 

1995). A paper by Connor and colleagues outlined applications of weather and 

environmental monitoring satellite data in GIS studies of malaria transmission in The 

Gambia, epidemic Kala azar in Southern Sudan, and health impact assessment and 

monitoring in major irrigation schemes (Connor, Thomson et al. 1995). 

There have, since 1995, been a number of reviews of applications of remote sensing 

and GIS in studies of disease ecology. Reviews by Hay and colleagues explored the 

impact of environmental proxies from remote sensing in the study and control of 

arthropod-borne disease (Hay, Tucker et al. 1996; Hay, Packer et al. 1997). Studies 

of epidemic Kala azar in Sudan explored the associations between the vector 
Phlebotomus orientalis and environmental factors including vegetation and soil-type 
(Elnaiem, Connor et al. 1998; Thomson, Elnaiem et al. 1999). Thomson and 

colleagues investigated the association between satellite derived rainfall and 

vegetation proxies and seasonal malaria transmission patterns in The Gambia 

(Thomson, Connor et al. 1996) and considered how remote sensing could be used in 

mapping malaria risk in Africa (Thomson, Connor et al. 1997). Hay and colleagues 

used a similar approach looking at differing malaria settings and their seasonality in 

Kenya (Hay, Snow et al. 1998a). Papers by Connor and colleagues consider these 

techniques (use of weather satellite data within GIS) with respect to how they might 

contribute to improved malaria control in the sub-Saharan African countries (Connor, 

Flasse et al. 1997; Connor, Flasse et al. 1998; Connor 1999b) including their 

operational use use in epidemic forecasting (Connor, Thomson et al. 1998; Connor, 

Thomson et al. 1999). A 1999 paper outlines one of the first studies which 

specifically considers appropriate spatial statistics for interpretation of remote 

sensing data in studies of disease and their corresponding control decisions 

(Thomson, Connor et al. 1999). A more recent review by Thomson and Connor 

provides a broad overview of how GIS, remote sensing, and satellite positioning 
technologies might be used in a range of entomological research studies and 

arthropod disease control problems (Thomson and Connor 2000). Hay and 
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colleagues recently produced a compilation of papers outlining the current 'state-of- 

the-art' in use of these technologies in disease research (Hay, Randolph et al. 2000). 

Contributing papers include linkages between land cover and disease (Curren, 

Atkinson et al. 2000); use of spatial statistics in GIS applications in public health 

(Robinson 2000); remote sensing applications in studies of African trypanosomiasis 
(Rogers 2000), P. falciparum malaria in Africa (Hay, Omumbo et al. 2000), tick- 

bome disease (Randolph 2000), remote sensing and GIS in studies of human 

helminth infections (Brooker and Michael 2000), advances in satellite sensors and 

environmental proxies (Goetz, Prince et al. 2000), epidemic disease forecasting 

(Myers, Rogers et al. 2000); as well as discussion on technology transfer, training 

and the future of GIS and remote sensing in human health applications (Wood, Beck 

et al. 2000). A framework document by the Roll Back Malaria Technical Resource 

Network for Prevention and Control of Malaria Epidemics was published in 2001 

which sets out the role of EIS, along with other monitoring and surveillance tools, 

within the development of malaria early warning systems in Africa (WHO 2001b). 

A more recent article considered the prospects for the use of satellite data in 

biological models of malaria transmission and their use in early warning systems and 

concluded that this is the next challenge for workers in this discipline (Rogers, 

Randolph et al. 2002). 

1.6. GIS/RS/EIS: their role in control decision making? 
While it is now broadly recognised that GIS and remote sensing can play a useful 
role in disease research their value in the control setting remains subject to debate. 
Questions on whether GIS and remote sensing are appropriate tools for use in 
developing countries have been asked for a number of years. The issues raised over 
their use in the health sector (Boclaert, Arbyn et al. 1998) largely reflect debate for 

their use in other sectors such as agriculture and natural resource management a 
decade previously. Consideration of the challenges of using these computer-based 
information technologies, appropriate training and technology transfer have been the 
subject of detailed review (Hastings and Clark 1991; Kabbaj and Ben Mehrez 1994). 
Since the time of these writings however, computers have become much more 
commonplace in health facilities, even at a district level, and many district health 

officers use computers regularly to record and analyse case data. Remote sensing 
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can be seen as just one of a number of information sources and the use of GIS as just 

one of a number of data management approaches, not mutually exclusive of any 
other (Connor 1995; Dunn, Atkins et al. 1997). Clearly, what works well in one 
situation may not work well in another, and technology transfer and appropriate 
training may be particularly difficult in situations where human resources are too 
few. 

There are however, a number of examples where GIS and remote sensing are 
beginning to be used effectively by health services. The development of the 
HealthMapper software by WHO-HealthMap provides a useful example of how GIS 

can be designed specifically with the health services in developing countries in mind 
(Meert, ONeill et al. 1995). The HealthMapper is a customised system which allows 
health services the opportunity to enter and manage data, tabulate that data for 

surveillance reporting and provide a variety of mapping options (Nuttall, ONeill et 
al. 1998). Whilst simple in its basic functionality, the HealthMapper is built upon an 
industry standard GIS architecture (Arc-View) which allows added complexity of 
functions as appropriate. The HealthMapper is also able to incorporate remote 
sensing products and grid-based maps, and these are being used and tested by health 

services at a number of levels (district provincial, national and international) in 
Zimbabwe (ONeill, Connor et al. 1999), with a view to using them elsewhere 
throughout Southern Africa (WHO-SAMC 2000). A training programme for health 

workers in the use of GIS and remote sensing for disease surveillance and epidemic 
prediction was held jointly with WHO-HealthMap and the MALSAT4 team in 
Liverpool in 1999 (Thomson, Connor et al. 2000). 

Another example of use of GIS in health services supply and disease control 
planning is provided by workers at the Medical Research Council, Durban who 
describe the use of GIS and GPS, by the health services, to map homesteads in a 
rural area of Kwa Zulu Natal (Le Sueur, Ngxongo et al. 1997). This information was 
then used to identify areas that were poorly served by existing facilities and where 
mobile clinics should attend. Information from this study was also used to determine 

4 MALSAT is an interdisciplinary research team based at the Liverpool School of Tropical Medicine. 
First established in 1994 this team have been involved in the development of Environmental 
Information Sytems for multi-disease surveillance and epidemic prediction. 
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areas where existing control efforts were being used ineffectively and where anti- 

vectoral residual spraying practices should be concentrated, or discontinued. 

A further example of the use of GIS for malaria control planning is that of the 

MARVARMA collaboration. This initiative is an ambitious continental scale 

attempt to map malaria risk and produce an Atlas of Malaria in Africa which is then 

intended to form the basis of an intervention planning platform for malaria control in 

Africa (MARA 1998). A brief summary of the MARA/ARMA initiative is given 
here and reference will be made to MARA products in subsequent chapters. 
MARA/ARMA aims to mount a considerable data collection exercise (parasite ratio 

and annual incidence), it will then analyse and map the distribution of malaria across 

the African continent. 

The MARA group is made up of f ive regional data collection centres and a main GIS 

laboratory based in Durban, RSA. The MARVARMA products will become 

available in phases. The first of these is complete, and is a climate-based distribution 

model of malaria in Africa (Craig, Snow et al. 1999). A further sub-product of this 

includes an assessment of the populations at risk of malaria in Africa and their 

distributions (Snow, Craig et al. 1999a; Snow, Craig et al. 1999b). A second phase is 

the development of more detailed national level risk maps. Two of these have been 

developed to date, one for Kenya (Omumbo, Ouma et al. 1998), and one for Mali 

(Kleinschmidt, Bagayoko et al. 2000). 

Use of long-term climate data can be found in mapping and GIS studies aimed at 
defining the distribution of the principal malaria vectors in Africa. Work by White 
(1989) produced interpolated maps of continental distributions of malaria vectors in 
Africa based on point collections (White 1989). More recent work used long-term 

mean continental climate surfaces in combination with published point collection 
data to model the range and relative abundance of the two major malaria vectors 
across the African continent (Lindsay, Parson et al. 1998). The mapping of species 
of the Anopheles gambide s. l. complex using climate data has also been published as 
part of the MARA project (Coetzee, Craig et al. 2000). Further information on the 
MARVARMA collaboration and its products can be found on their internet site: 
www. mara. org. z 
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1.7. Aims of this thesis, and review of methods 

GIS and remote sensing (combined here as Environmental Information Systems: 

EIS) are tools which can assist research into vector-borne diseases such as malaria. 
This thesis is based on the premise that EIS can also contribute to malaria control 

planning (Connor, Flasse et al. 1997). As such it aims to test the hypotheses: 

a) That EIS can provide information on the spatial and temporal patterns of 

malaria transmission found in Africa, at four levels of scale: continental, 

regional, national and district 

b) and further, that EIS may be readily used alongside epidemiological data (as 

routinely available to national malaria control managers in Africa) to inform 

malaria control planning. More specifically in relation to: 

" Stratification of malaria endemicity, 

" Monitoring of environmental factors influencing variability in 

transmission, in unstable malaria situations 

" Early warning of malaria epidemics based on changes in environmental 
factors in areas vulnerable to epidemics 

The utility of EIS for these objectives will be explored at four levels of scale; 
continental, regional, national and district; and will include: assessing the 

epidemiological data readily available to national malaria control planners; assessing 
the value of routinely available environmental variables, and where appropriate 

creating new monitoring products for use in malaria stratification and epidemic early 

warning; testing the value of the data described at a regional and national level in 
four case study countries (Botswana, Zimbabwe, Namibia and Swaziland) in 
Southern Africa. 
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2. Mapping Malaria in Africa 

"Maps of the distribution of malaria usually depict nearly the whole of. 4frica in 
dark red, indicating high risk, but this is a gross simplification of a complex 
epidemiological picture. " (Greenwood 1999) 

2.1. Introduction 

Global malaria maps such as those in Chapter 1, Figure 1.2, may be useful for 

advocacy in that they show malaria has a global dimension, and compared against 

similar historic maps may show where malaria has increased or decreased. However, 

they give very little useful information on patterns of malaria transmission or 
intensity, even at a continental scale. Such maps may also perpetuate the idea of 

malaria as a purely 'tropical' disease, i. e. one which is determined by geography 

alone. 'Mis perception was never strictly accurate, as malaria transmission was 

endemic in many temperate zones. Malaria reached its northernmost recorded 
distribution in the area of Archangelsk, at 64N, close to the Arctic Circle in the 
former Soviet Union (Wernsdorfer 1980). Other non geographical factors such as 

poverty, under-development and social conditions have played an important role in 

the distribution and persistence of the disease. Currently it is in the countries of sub- 
Saharan Africa that malaria poses the greatest public health problem, accounting for 

an estimated 80 per cent of the world's malaria cases and 90 per cent of total malaria 
deaths (WHO 1993a). Recent estimates of the minimum numbers of deaths from 

malaria range between 700,000 and 2.7 million each year, with over 75 per cent of 
these in African children (Breman 2001). 

2.1.1. Continental level risk mapping 

Malaria in parts of Africa reaches the highest transmission rates anywhere in the 
world (Bradley 1991 a). However, the burden of illness and death attributable to the 
disease varies enormously between and within countries. Information on this burden 
by country, region or district is important as it may enable targeting of control 
interventions in areas where they are likely to be most effective, rather than most 
administratively convenient (Greenwood 1999). Yet, as Snow and colleagues 
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(Snow, Marsh et al. 1996) point out, in African countries where malaria is the largest 

single cause of mortality, maps of malaria endemicity often do not exist. Where such 

maps do exist they are often out of date and unavailable to control staff. There is a 

strong case, for having accurate data and maps of malaria in Africa. But is it possible 
to obtain this information given that most cases of malaria are diagnosed without the 

aid of laboratory facilities, and any fever episode may be recorded as malaria? For 

example, studies of malaria case data in Niger by Julvez showed that during the dry 

season over diagnosis may exceed 90% (Julvez, Develoux et al. 1992). Furthermore, 

as many as 90% of deaths from the disease occur outside of any health facility 

(Greenwood 1999). For example, in Morogoro Rural District, Tanzania verbal 

autopsies revealed that more than 80% of deaths occurred at home and in more than 
half of those cases, no contact had been made with a health facility before death. This 

is in a district where 85% of the population live within 5km of a health facility (de 

Savigny, Setel et al. 1999). A further confounding factor is the role of malaria in all 

cause mortality (Molineaux 1997). Where patients suffer more than one life 

threatening health condition simultaneously, malaria may contribute to fatality but 

may or may not be considered, or recorded, as the primary cause of death. 

Z 1.1.1. Qassfto malaria endemicftv in Africa 

A method of classifying malaria endemicity in Africa was produced at the first 

malaria conference in Equatorial Africa, held at Kampala in 1950 (WHO 195 1). 
According to this classification, based on spleen rates, malaria is: 

Holoendemic - ifspleens enlarged in greater than 75% of 2-10 year olds 

Hyperendemic - if spleens enlarged in greater than 50% of 2-10s 

Mesoendemic - ifspleens enlarged in between 11-50% of 2-10s 

Hypoendemic - if spleens enlarged in less than 10% of 2-10s 

Macdonald introduced the concept of a more simple classification of malaria 
endemicity into stable or unstable (MacDonald 1957). In the case of stable malaria, 
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the level of transmission is high without marked fluctuations over the years. In 

unstable malaria, the level of transmission varies from year to year. While the two 

terrns were meant to represent extremes along a wide range of situations (Onori 

1986), Metselaar and van Thiel suggest that the stable or unstable classification is too 

simplistic for everyday use in malariology (Metselaar and van Thiel 1959). They 

suggest that something similar to the classification which came out of the Kampala 

Conference would be more useful. However, they argue that spleen rates are not 

sufficient to differentiate endemicity. The usefulness of the spleen rate measure 

assumes that the response of the spleen to immunity is always and everywhere the 

same. Their analysis of data from Tanzania and Papua New Guinea, however, shows 

that this is not the case. They conclude that differences in spleen response are likely 

to be due to nutrition, parasite species, sickle cell and patho-geography. As an 

alternative measure Metselaar and van Thiel suggested that the classification should 
instead be based on parasite rates: 

Holoendemic -greater than 75% of 2-10 year olds infected (constantly) 

Hyperendemic - greater than 50% of2-10s infected (may vary with season) 

Alesoendemic - between 11-50% of2-]Os infected (will vary with season) 

Hypoendemic - less than 10% of2-10s (Will vary with season andyear) 

They suggest that "Difficulties will remain but it is always difficult to encompass 
biological events within a watertight classification system. " (Metselaar and van Thiel 
1959). Unfortunately, reliable data on parasite ratios in Africa did not prove as 
readily available as Metselaar and van Thiel implied. 

Bradley argues that there is insufficient reliable data on malaria in Africa to 
determine the mortality rates occurring in different endemic regions, and discusses 

this problem along with the different approaches that have been tried to overcome it 

(Bradley 199 1 a). These are: (a) observing the increase in mortality during malaria 
epidemics, (b) measuring the fall in mortality when malaria is temporarily brought 

under control, and (c) calculating the mortality necessary to maintain the observed 
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level of the sickling gene in a balanced polymorphism. However, as Bradley 

suggests, the problems of using these approaches in the African research context 
have themselves produced results that yield equally inconclusive evidence. 

Table 2.1, summarizes epidemiological data which may be available and briefly 

discusses their uses and limitations. As Gilles states "There is no satisfactory way of 
expressing in an arbitrary way the dynamics of malaria transmission" and suggests 
instead that "methods which estimate the vectorial capacity and subsequent risk of 
infection may come closest to such an appraisal" (Gilles 1993). 

2.2. Aims of this chapter 

To discuss the concept of stratifying malaria in Africa. 

To review ways in which new tools such as Geographical Information 
Systems can be used to assist in the stratification of malaria in Africa. 

e To develop example products based on the use of GIS for specific strata. 

2.3. Malaria Stratification in Africa 

Given the paucity of reliable epidemiological data for Africa, other means of 
categorising malaria transmission patterns have been developed. Malaria 

stratification has been defined as: "the process of uniting areas, populations or 
situations, which exhibit a relative resemblance by a specified relevant characteristic, 
thereby distinguishing them from other areas, populations or situations dissimilar 
through the same set of characteristics" (WHO 1985). Thankfully this definition is 

made somewhat less unwieldy by Kouznetsov and colleagues: "stratification consists 
of the identification, characterisation and delimitation, within an area (or population) 
affected by malaria, of the different situations in which distinct control (and 

evaluation) strategies may be appropriate. Strata may be geographical areas and/or 
population groups. Stratification designates both a process and its outcome" 
(Kouznetsov, Molineaux et al. 1986). 
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TABLE 2.1. EmEmioLOGICAL DATA FOR CLASSIFYING AMLARL4 ENDEMICITYINAFRICA? 

_Epidemiological 
data Uses and Limitations in Stratification 

Spleen rate Age specific cross-sectional surveys providing evidence of 
previous malaria infection. Different responses between 
ethnic groups and people of differing nutritional status 
limit it usefulness as a comparative measure (Metselaar & 
van Thiel, 1959). Can be confounded by other infections 
e. g. kala azar and schistosomiasis. 

Parasite rate Age specific cross-sectional survey showing presence of 
current malaria infection. Quality of diagnosis, immunity 
and migration can confound its use as a comparative 
measure of transmission (Gilles, 1993). Parasitaemia often 
does not reflect the seasonality of transmission 
(Greenwood, et al, 1987; Smith, et al. 1993). Main data 
source that will be used by MARA*. 

Laboratory diagnosis Clearly shows infection and species type, but question over 
who is selected for testing and consistency of diagnosis 
limits its use as a comparative measure (slide positivity 
rates). Delays in process and reporting may also mean it 
does not accurately reflect transmission context. Rarely 
available in rural Africa. 

Clinical diagnosis Most widely available information source for 'malaria' in 
Africa. More immediate process of reporting may give 
better reflection of transmission context. But may not be 
malaria, over diagnosis can be very high (Julvez, 1992). 

____ Deaths The relationship between malaria deaths and malaria is not , 

simple and has been recently reviewed (Molineaux, 1997). 
Comparative malaria death rates are notoriously difficult to 
obtain since over 80% of deaths occur in the community 
and are rarely recorded. Verbal autopsies may be used to 
determine the cause of death but this technique is of 
limited validity. Death may be due to several contributing 
factors and the cause of death unclear (Greenwood, 1999). 

Birthweight ratios for Relatively widely available information source'. May give 
primagravidae: multiga useful indication of infection pressure (Brabin, 1999). 
vidae Large sample size needed. May be confounded by HIV- 

AIDS. 
Entomological Estimate of actual transmission based on number of 
inoculation rate infective mosquitoes biting an individual over a unit of 

time. Difficult to make comparisons between areas 
because of differing host vector interactions and varying 
methodologies (Hay, et al. 2000). Longitudinal surveys 
very expensive and not widespread. 

0 The MARVARMA project is in process of compiling a database of parasite ratio data from 
literature and grey literature searches. Not yet available for the continent or in the public domain. 
IA database of African birthweight data explored for mapping malaria distribution and found general 
agreement with climatic and environmental models of malaria in Africa, Savage (1999). 



Mapping may be seen as a necessary, but not in itself sufficient, component of the 

malaria stratification process. Stratification delimits areas or populations based not 
just on their geographical, ecological, social and economic characteristics but uses 
these in consideration of options for planning control efforts. The current malaria 

stratification (or malaria 'paradigms') used in the New Global Malaria Control 

Strategy is basically that set out by NaJem and colleagues (Najera, Leise et al. 1993). 

These are reproduced here in Table 2.2. 

Within the listed ecological categories or strata all but one (plains and valleys outside 
Africa) are applicable to malaria transmission in Africa: 1) African savannah, 2) 

Forest and forest-fringe, 3) Highland and desert-fringe, 4) Seashore and coastal, 5) 
Urban, 6) Agricultural colonization of forest. However, not all of these are 
appropriate for mapping at the continental scale. For example, urbanization entails 
changes which should, in theory, reduce malaria transmission due to limiting the 

availability of the clean fresh water pools favoured by Anopheles gamblae s. l. and 
consequently man-vector contact. Studies in Brazzavile, Congo and Ouagadougou, 
Burkina Faso provide evidence where levels of transmission were generally lower in 

urbanized areas compared to their rural surroundings (Sabatinelli and Bosman 1986). 
However, examples also exist from Cotonou, Benin where transmission levels are 
higher in urban and peri-urban areas than in surrounding rural areas (Bosman and 
Coluzzi 1992). From the disease perspective urbanization is a complex situation 
which is occurring across a wide range of epidemiological and ecological situations, 
which themselves change relatively quickly, and as such generalisation is difficult 

over the larger scale. 

While it may be relatively easy to produce a map of the African seashore and coastal 
margins this too would be of little value in differentiating malaria endemicity. 
Figure 2.1. provides a simple illustration of this. A map of the African continent was 
produced using the Idrisi raster-based software with an arbitrary 50krn buffer around 
the continent's coastline. At site (a) malaria is perennial along this humid tropical 
forest coastal zone, whereas at site (b) the coastal zone comprises the Skeleton Coast 

and the Namib desert which are malaria free (NVDCP 1995). At site (c) work by 
Snow and colleagues has shown that malaria varies significantly between two sites 
on the Kenyan coast just 60 krn apart (Snow, Bastos de Azevedo et al. 1994). 
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FIG URE 2.1. ANAFRICA COASTAL BUFFER ZONE (50 KILOAIETRES) PRODUCED IN IDRISI. 

m coastal buffer (50km) 

Legend: 

At site (a) malaria is perennial along this humid tropical forest coastal zone, whereas 
at site (b) the coastal zone comprises the Skeleton Coast and the Namib desert which 
are malaria free. At site (c) it has been shown that malaria can vary considerably 
between two sites on the Kenyan coast only 60 krn apart. 



Those strata that may be relevant to mapping at the continental scale are those where 

macroclimatic factors play a significant role. In Africa these are: Forest and forest- 

fringe, African savannah, and Highland and desert-fringe. The stratum 'Agricultural 

colonization of forest' could arguably be more at place in the occupational/socio- 

economic strata set out in Table 2.2. However, this stratum will be discussed briefly 

along with the Forest and forest-fringe stratum. 

2.3.1. Mapping malaria risk in forest and forest fringe. 

There is considerable interest among environmentalists over the increasingly rapid 
loss of the forest biome, especially the tropical rainforests. Rain forests, as their 

name implies, are closely correlated with rainfall distribution. Montane forest is also 

closely correlated with rainfall, temperature, and in its upper reaches, the high 

humidities associated with cloud. At a continental level reference to rainfall regimes 

and altitude may give an impression of where forest should exist, if humans had not 

exploited them. However, for malaria risk it is the interphase of humans and forest 

that is of interest. Historically rainforests have supported small population densities 

of hunter gatherers. This has of course changed in the face of development pressures 

and exploitation of forest resources, and changes in land use along their margins are 
happening rapidly on all continents (Myers 1993). 

In its 'natural' state dense forest vegetation is thought to be unsuitable for the major 
African malaria vectors of the Anopheles gambide s. l. complex. However, as forest 

canopies are opened up the habitat changes considerably and may provide ideal 

opportunities for colonization by efficient malaria vector species, and bring them into 

close contact with their human hosts (Coluzzi 1992). The impact of deforestation on 

evolutionary changes and species adaptation among vectors can be considerable over 
relatively small spatial and temporal scales. Detailed studies from West Africa 
illustrate the biological effects of ecological change over time and the level of detail 

required to understand the impact of deforestation on malaria vectors (Coluzzi 1979; 
Coluzzi 1992). A broad discussion of the impacts of deforestation on malaria and a 
number of other vector-bome diseases, in Africa and elsewhere, is reviewed in 
(Walsh, Molyneux et al. 1993). 
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Deforestation will impact on the local ecology, but from an epidemiological 

perspective its effects will depend greatly on the existing endemicity and levels of 
immunity, in the local population, and any new migrants who exploit or settle in 

them. Generalisation at the continental level should clearly be approached with 

caution. However, Figure 2.2. provides a map of forest distribution in Africa by 

type, and Figure 2.3. example maps of where those forests are under pressure from 

human populations. Maps such as this provide information about where forests are 

currently being exploited, and combined with focussed consultation and investigation 

at a more localised level, could provide information on the degree of risk the 

exploiters face. Large scale forest maps have also been used in studies of the 

distribution of vectors of loaiasis (Thomson, Obsomer et al. 2000). 

2.3.2. Mapping malaria risk in the African Savannah 

The category African savannah encompasses a wide range of transmission patterns, 
from perennial to epidemic (i. e. Macdonald's two extremes: stable to unstable) and 

would clearly benefit from further subdivision. The ecological definition of the term 

savannah is: "the tropical and subtropical grassland biome transitional in 

character between desert and rain fbrestý" (Lincoln, Boxshall et al. 1982). Earlier 

attempts at malaria stratification have used meteorological information to help 

subdivide the broad category of 'Africa south of the Sahara' (Onori 1986). Rainfall 

amounts and seasonal distribution patterns vary markedly across the African 

continent. Figure 2.4. provides an annual rainfall distribution map, and Figure 2.5. 

an illustration of the mean dry and rainy seasons with respect to latitude. 

Temperatures of course also vary with latitude and Figure 2.6. illustrates this. 
Locally, rainfall amount and temperature are also influenced by altitude. As a. - 
general rule rainfall may be expected to double with an increase of 1000m, up to a 
maximum which varies with local conditions (Le Houerou, Popov et al. 1993). 
Temperatures are subject to a mean lapse rate of 5.50C per 1000m. However, the 

moisture content of the air will affect this considerably and the lapse rate may be 

10"C per 1000m where the air is dry (Wilson 1983). 

26 
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FYGURE 2.3. MAPS OF FOREST ZONES UNDER HUMAN ECONOMIC PRESSURE IN AFRICA. 

(a) West Africa 

21 0 

(b) Central Africa 

Legend: 

These two maps, with forest zones under pressure circled in red, are produced by the 
European Union's Joint Research Centre through their Trees Project. Similar maps 
for other regions of the world are available on their website: 

m. sai. ircAt/Forest/A frica)botspots. htm 



FIG uRE 2.4. ANNIAL MEAN RAINFALL DISTRIBUTION INAFRIC. 4 1951-1995 (UE4). 
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Fi(; t'Rb, 2.5. DISTRIBUTION OF DRYAND RAINYSEASONS IN THE INTER-TROPICAL ZONE. 
REPRODUCED FRom LE HoUFROU(I 993). 
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Legend: 

This graphic represents the latitude range 25S to 25'N onto which mean annual 
rainfall regimes are plotted, with month along the horizontal axis. 

Tropical rains regime 



Fi(; uRE 2.6. TEMPERA TURE ASA FUNCTION OF LATITUDE. REPRODUCEDFROAILE 
HOUEROU(I 993). 
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Legend: 

This graphic represents the latitude range 90'S to 90'N (which here run left to right) 
onto which mean annual. summer and winter temperatures are plotted. 



Clearly, climatic factors such as rainfall and minimum and maximum temperatures 
do have an impact on malaria transmission, and invariably appear in transmission 

models. However, empirical verification is diff icult and the number of such studies 
in Africa are limited (Thomson, Savage et al. in press). 

2.3.3. The MARMARMA climate suitability model for malaria 

The map produced in Figure 2.7 represents a climatic suitability for 'stable' malaria 
transmission in Africa. The map is based on the assumption that while the factors 

which determine the distribution and severity of malaria are complex and diverse, 

61climate can be considered the major determinanf' (MARA 1998). 

This spatial model uses long-term mean monthly rainfall and upper and lower 

temperature parameters as constraints to characterize malaria transmission (Craig, 
Snow et al. 1999). Ile climatic data used in the MARWARMA model has 
interpolated mean monthly rainfall, mean monthly minimum temperature, and mean 
monthly maximum temperature surfaces for Africa for the period 1920-1980, at 
approximately 5km resolution (Hutchinson, Nix et al. 1995). Craig and colleagues 
assume that below 18* C conditions for stable malaria transmission may not occur as 
too few adult mosquitoes survive sporogeny and mosquito numbers are limited by 
long larval duration, and above 22"C transmission would be stable if sufficient 
rainfall, 80mm per month, were available for long enough. To develop the model 
they used the Idrisi GIS software (Eastman 1993) to produce the mean monthly 
average temperature surfaces. They then used Idrisi's 'Fuzzy Logic' module which 
is basically an extension of Boolean logic allowing a 'less clear' distinction between 

conditions of suitability (1) and unsuitability (0). For rainfall 0= 00mm and I 
80mm per month. For average temperatures 0= 18" C and I= 22" C, for the 
increasing curve, and I= 32" C and 0= 4011 C for the decreasing curve. For winter 
minimum temperatures 0= 4* C and I= 6* C. To gain temporal coincidence of 
suitability conditions each of the ftizzy images were overlaid in Idrisi. The minimum 
time period of continuous conditionality for transmission to occur was decided on the 
basis of whether rainfall or temperature were the limiting factor. This time period 
was decided as being three months for the region greater than 8*N, and five months 
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F1c, URE 2.7. M4RAIARNM CLIAIATESUITABILITYMAP FORMA LARIA INA FRICA. 
REITODUVED FROM CRAIG, ETAL. (1999). 
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for the rest of the continent. The resulting model produces the map in Figure 2.7. 

showing the area ranging in increments from fully unsuitable (0 - coloured white) to 

fully suitable (I - coloured red). 

The author has heard criticism of the MARA map from several malaria control 

managers and malaria researchers. The most common is that the map is 'too red' i. e. 
it does not reflect their experience of variability in malaria patterns. The limitation 

of the MARA map of malaria risk, is that it does not give enough information about 

spatial heterogeneity and no information about temporal heterogeneity and as such it 

provides little advantage above that offered in the global malaria map shown in 

Figure 1.2, in Chapter 1. This is especially apparent in many of the West African 

countries, Nigeria, Sierra Leone and Senegal for example are almost uniformly red 
but malaria patterns vary markedly between and within these countries. The Sahel 

experienced a long-term drought during the 1960s - 1980s which will be suppressed 
in the long-term 1920 -1980 mean monthly climatology used by MARA. Faye and 

colleagues describe studies in Senegal, where surveys of parasite index show a 

profound change in endemicity from hyperendemic (50%) in 1963 and 1967 down to 
hypoendemic (<10%) in 1991-92 (Faye, Gaye et al. 1995). These authors suggest 
that the factor responsible for these changes is the virtual disappearance ofAnopheles 
funestus (the main vector at the time of the earlier surveys) which has occurred as a 

result of the environmental impact of the long-term changes in rainfall. The MARA 

map will therefore over-represent the stability of malaria in West Africa and the 
Sahel. Further criticism is that of the real meaning of the 'ftizzy classisfication' of 

stable malaria. What for example should the categories less than 0.5 stable 

conditionality mean for the control manager - is it to be considered epidemic prone? 
Not according to Craig and colleagues who suggest "because interannual variation is 

not reflected in long-term mean climate data, epidemic zones are not detectable" 

(Craig, Snow et al. 1999). Such a map might be adequate were the only control 
option for sub-Saharan Africa to remain that of effective case management. 
However, if the MARVARMA map is to be used as an intervention planning 
platform for Roll Back Malaria in Africa then further information on the spatial and 
temporal heterogeneity of malaria would be useful if this is truly to become the 
'formidable planning and management tool now available to malaria control 
programmes, " Dr. E. Samba cited in MARA (1998). 
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2.4. Continental risk mapping6 an interactive GIS approach. 
Interpolated climate data, satellite data and the ldrisi GIS software are used here to 

create a more dynamic, or interactive, map of malaria risk. That is one which uses 
GIS to indicate where and when conditions deemed suitable for malaria transmission 

exist and how long they can be expected to exist in a normal year. 

Optimal temperatures for malaria transmission are suggested to lie between 20"C and 

30*C (Gilles 1993) and this temperature range should be adequate to map continental 

climatic suitability for malaria given the inherent crudity of interpolated 5km 

monthly mean surfaces. While rainfall is an essential component in malaria 

suitability little is known about the quantitative relationships (Service 1978) and it 

has been argued that temporal distribution may be more important than total amount, 

and a wetness index (number of rainy days times total rainfall/number of days in 

month) has been proposed (Russell, West et al. 1963). However, this information is 

not available at the continental scale and so the somewhat arbitrary figure of 80mm 

per month used in the MARA model is retained. Gilles states that for optimal malaria 

conditions a Relative Humidity greater than 60% is also required (Gilles 1993). 

Monthly mean relative humidity surfaces were not available for the African continent 
(Fulvia Petrassi, FAO: pers comm). However, a number of writers have outlined the 

relationships between atmospheric moisture indices, satellite derived vegetation 
indices (NDVI) and disease vectors of trypanosomiasis (Rogers and Williams 1994) 

and malaria (Thomson, Connor et al. 1996; Hay, Snow et al. 1998a). An NDVI 

figure of 0.35 - 0.4 was suggested by Hay and colleagues (1998) for malaria 

suitability across a range of epidemiological settings in Kenya and the lower of these 

values will be used here as a proxy for greater than, or equal to, 60% relative 
humidity at the continental scale. NDVI is also described as a measure of 
biologically effective rainfall and this may help to overcome the limitations 

regarding information on the number of rainy days in the month, mentioned 

previously. 

Climatic variability overtime can be very significant and the choice of which period 
to use in long-term means is an important one. The general aim is to map malaria 

risk as it may relate to the current perceptions, or recent experience. An assessment 
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of mean temperatures for the continent shows that temperatures during the past thirty 

to forty years there have been increasing compared to those of the earlier decades of 

the 20'h century (Watson, Zinyowera et al. 1998). The rainfall situation during this 

time period varied according to region (Gommes 1994). Figure 2.8. shows 
fluctuations in Sahelian rainfall during the 20th century. The last few decades of the 

2e century are much more akin to our 'living institutional memory' than the period 
1920-1980, so an alternative to the Hutchinson data used by MARA (Hutchinson, 

Nix et al. 1995) is desirable. 

The Climatic Research Unit at the University of East Anglia produced an archive of 

monthly climate surfaces for Africa for the period 1951-1995 (New and Hulme 

1997). The interpolated climate surfaces of rainfall, minimum and maximum 
temperature and range describe departures from the 1961-1990 mean climatology 
using observations at 2307 rainfall stations, 1485 temperature stations and 1431 
diurnal temperature range stations throughout Africa. In total 540 monthly climate 
surfaces for each variable were produced and distributed on CD-ROM. New 

monthly and annual rainfall and temperature means were produced from this data set 

using Idrisi's Overlay and Scalar modules (Eastman 1993), and comparison made 
with those of the Hutchinson 1920-1980 climatology. 1drisi was used to produce a 
difference image between annual mean rainfall from 1920-1980 compared with 
1956-95. 'Me result showing those areas which experienced lower rainfall is 

produced in Figure 2.9. 

A dynamic, interactive, climate suitability map for malaria distribution was produced 
using the UEA climate surfaces for temperature constraints outside of the optimal 
range described by Gilles, 20T - 30*C (Gilles 1993). In addition the arbitrary figure 

of <80mm of rainfall per month, and the <0.35 NDVI values were used as 
constraints. The mean monthly NDVI surfaces were produced from the 10 daily 
NDVI data disseminated by the USAID, Famine Early Warning System's Africa Data 
Dissemination Service: 1983-1999 with inter-satellite series sensor corrections 
carried out (minus 1991-93 which were subject to atmospheric dust contamination). 
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The bars represent annual rainfall amounts in individual years expressed as a 
percentage of the 1961-1990 mean. 



FIGU'RE 2.9. 

Legend: 

1920-1980 COMPARED K7TH MEAN ANNUAL RAINFALL 1956-1995. 
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This map illustrates the areas that experienced less annual rainfall on average during 
the period 1920-80 compared with 1956-95. The legend, top right represents a 
relative measure of this shortfall in annual rainfall. 



One of the major values of GIS is that many of the constraints of the two 

dimensional paper map can be overcome. This is particularly useful where time 

trends need to be shown. The following four figures, Figures 2.10-2.13, represent 

outputs from the interactive climate suitability map for malaria. The map produced in 

the figures is that showing the continent of Africa divided into 12 classes, each 

representing zones where conditions are suitable for malaria for one month, two 

months, three months . .... .... .... twelve months etc. The Idrisi GIS also has an 
interactive cursor enquiry function and this allows a screen graphic to display values 

queried for any particular point from any, or all, of the component images contained 

in a specific time series file (in this case each of the 12 monthly suitability images). 

The result is an interactive climatic suitability map for malaria in Africa showing 
how many and which months satisfy the conditions for malaria transmission. In 

Figure 2.10 the cursor enquiry of a location in southern'Mali shows that suitable 

conditions for malaria exist for three consecutive months of the year, July- 

September. In Figure 2.11 the cursor enquiry from northern Botswana reveals just 

two consecutive months suitable for malaria, January and February, at that location. 

In Figure 2.12 the cursor location in central Nigeria reveals that conditions suitable 
for malaria exist for six consecutive months, May-October. In the case of Figure 

2.13 the cursor enquiry of south-eastem Ethiopia reveals three months which satisfy 

suitable conditions for malaria, but that there is a bimodal pattern of two consecutive 

months, April and May, followed by a further one month in October. 

Each of these represents climatic suitability in a 'normal' year. Experience of earlier, 
heavier or extended rainfall, or unseasonal temperatures, in any given year will of 
course change the prospects of malaria transmission in that particular year, and 
monitoring of these factors would be valuable for control purposes. Variability in 

these factors, especially in those zones which do not allow sufficient time for malaria 
transmission to occur, or where the season is very brief, may result in the risk of 
epidemics occurring. It would be useful for malaria control services to identify 

zones that are epidemic prone, and this is an essential first step towards monitoring 
of epidemic risk, which will be covered in a later section. 
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FIGURE2.10. CLIMATE SUITABILITY FOR MALARIA MAP SHOWING INTERACTIVE CURSOR 
ENQUIRY FOR A LOCA TION IN SOUTHERN MALL 
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FIGURE2.11. CLIMATE SUITABILITY FOR MALARIA AlAP SHOWING INTERACTIVE CURSOR 
ENQUIRY FOR A LOCA TION IN NORTHERN BoTswANA. 
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Legends. The graphics, bottom left, shows the distribution of months (red bars 
in horizontal histogram) where mean climatic conditions are deemed suitable 
for malaria transmission at the cursor location. The map legend, upper right, 
shows the number of months meeting the conditions of suitability generally. 



FiGuRE2.12. CLIMATE SUITABILITY FOR MALARIA MAP SHOWING INTERACTIVE CURSOR 
ENQUIRY FOR A LOCA TIONS IN CENTRAL NIGERIA. 
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Legend. The graphics, bottom left, shows the distribution of months (red bars 
in horizontal histogram) where mean climate conditions are deemed suitable 
for malaria transmission at the cursor location. The map legend, upper right, 
shows the number of months meeting the conditions of suitability generally. 



Mapping malaria risk in highland and clesert-fringe. 

Z4.1.1. HiOland malaria 

There has been renewed interest in epidemic malaria in the highlands of Africa over 

the past decade (Lindsay and Martens 1998). The altitude constraint to malaria 

varies with latitude. The reason for this is that it is fundamentally a function of 
temperature. MARA's Highland Malaria Project (HIMAL) analysed historic records 

of malaria epidemics in Africa and found that the use of altitude alone as a cut-off to 

malaria transmission is an oversimplification at any latitude (Cox, Craig et al. 1999). 

A simple illustration of this might be where a particular altitude zone on a 

mountainside, which experiences prevailing warm humid winds from the ocean, 

would provide a very different environment for malaria vectors than the same 

altitude zone on the leeward side of the mountain, which may be in a rain shadow. 

The lower level temperature constraint to malaria used by MARA was chosen at 
18"C as the extrinisic; parasite development rate is seriously compromised at this 

temperature (Craig, Snow et al. 1999). Here a series of monthly Boolean images 

were produced in Idrisi using the 18"C cut-off as the condition unsuitable for malaria 
transmission. These images, see Figures 2.14 and 2.15 show that parts of the 
highland areas of East Africa persist throughout the year in their apparent 

unsuitability to malaria. Elsewhere, in southern Africa for example, the condition is 

a function of changes in seasonal temperatures rather than altitude alone. 

Z4.1.2. Desert-Mme malaria 

Too little rainfall is the major constraint to stable malaria transmission throughout 

much of tropical Africa and inter-annual variability in rainfall along the 'desert- 
fringes' may be a contributing component in many 'post-drought' epidemics. To 
identify where these 'desert-fringes' are distributed, an analysis of the UEA monthly 
rainfall anomalies was carried out. 

A Coefficient of Variation analysis of 540 monthly rainfall anomaly surfaces, 
covering the period 1951 - 1995, was achieved using the ldrisi GIS software. 
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FIGuRE2.14. LOWER TEMPERATURE CONSTRAINTS TO MALARIA JANUARY-JUNEA vERAGES 
(RED AREAS UNSUITABLE FOR MALARIA ASSUMING <=18 U CUT-OFF). 



FIGURE2.15. LoWER TEMPERATURE CONSTRAIN7N To MALARIA JULY-DECEMBER AVERAGES 
(RED AREAS UNSUITABLE FOR MALARIA ASSUMING <=18U CUT-OFF). 



Macros were written to automate the considerable image processing involved. 

Co V= Standard deviationlmean 

The resulting map of CoV was then refined to determine regions where the CoV was 

greater than the mode. ldrisi was also used to develop a map of semi-arid regions 

where annual rainfall is between 200 and 600 mm per year. These two maps were 

then overlaid to produce a map showing regions of low - moderate rainfall with high 

inter annual variability. The result can be seen in Figure 2.16. 

The map in figure 2.16 could be used as a guide to areas where low annual rainfall 

and high variability makes for epidemic prone populations. Examples where 

epidemics did occur in these regions include Botswana 1988,1993,1996 and 1997 

(Najera 1999c); Kenya 1998 (Snow, Ikoku et al. 1999); Sudan 1999 (Najera 1999b); 

Senegal (Gaye 2000) Mali and Mauritania 1999. Monitoring changes in seasonal 

rainfall in these areas may give a useful but relatively simple indication of changes in 

epidemic risk. 

2.5. Discussion 

Given the paucity of reliable and consistent epidemiological and entomological data 

the difficulties of stratifying malaria endemicity in Africa are considerable. The 

availability of continental climate surfaces, GIS software and the high processing 

power of modem personal computers allows the production of Africa wide maps of 

*malaria fisk'. However, caution must be exercised. Monmonier published a book 

entitled "How to lie with maps" in which the all too common dangers of 
inadvertently presenting misinformation in map form are discussed in detail 

(Monmonier 1996). It will be valuable to keep this in mind as the process of 

mapping malaria risk continues. 

Currently continental scale maps of malaria risk are perhaps most useful in thinking 

about the limitations of what went into making them, and how they can be tested and 
improved upon, rather than as applications to the real world. They are however, a 

necessary first step in a long journey. 
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FiGuRE2.16. MAP SHOWING AREAS COINCIDENTAL FOR BOTH 'LOW-MODERATE'ANNUAL 

. tYEAA'RAL%'F, 4LL AND 'HIGH'L\'TEP, 4. %', \*(,, AL VARIABILITYINRAINFALL. 
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Legend: 

The map was produced from a coefficient of variation analysis of 540 monthly 
rainfall images (UEA 1951-1995) overlaid with lower and upper limits in annual 
mean rainfall of 200mm and 600mm respectively. These zones can be considered as 
a guide to the desert-fringes for epidemic malaria in Africa. 



The interactive GIS approach to malaria risk mapping presented here is arguably a 

step forward in climate based malaria risk mapping. It makes more explicit the 

greater spatial and temporal information on the assumed climate constraints to 

malaria transmission. In particular it shows the number and distribution of months 

considered suitable for malaria at any particular 5km grid location, and provides a 

useful further subdivision to the stratum 'African Savannah'. 

The map produced here showing the desert-fringes in Africa offers a guide to where 
this particular epidemiological setting extends and where to develop epidemic early 

warning systems based on rainfall. As such it's a useful first product to offer to 

national control staff to verify, or amend according to local information, for this 

particular stratum. 

However, it must be stressed that the climate surfaces which go into the maps are 
aggregated monthly products constructed from diurnal data collected from an 
irregular network of reporting stations. These data are then interpolated between 

stations, sometimes hundreds of kilometres apart, with little consideration of the 
landcover between them. Mosquito vectors do not live wholly in this 'macroclimatic 

space' but instead occupy the microclimatic situations required by their survival. 
How would the maps differ if we could take this into account? How reliable, 
detailed and consistent would the epidemiological data available need to be to verify 
them? 
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3. Environmental monitoring for epidemic early warning 
"whoever would study medicine aright mustfirst learn ofthefollowing subjects. 
First he must consider the effects of the seasons of the year and the differences 
between them. Secondly he must study the wann and the cold winds, both those 
which are common ( ..... ... ) and those that are peculiar " Hippocrates cited by 
(Committee on Climate 2001) 

3.1. Introduction 

3.1.1. Malaria epidemics 

During the past five years the author has participated in three meetings of the Roll 

Back Malaria Technical Resource Network on Epidemic Prevention and Control, and 
two WHO-AFRO Workshops on Epidemic Prevention and Control. Invariably these 

meetings begin and end with the question "what is a malaria epidemic? " It seems 
this is a perennial question and is never answered to everyone's satisfaction. 

A 'double-barreled' definition which has been used is: 

"a sharp increase of the incidence ofmalaria among a population in which the 
disease was unknown Conversely it may refer to a seasonal or other increase of 
clinical malaria in an area with moderately endemic malaria" (Gilles 1993) 

Alt6matively it may be useful to begin with a simple working definition, 

"an increase in the disease beyond that normally expected" and then to classify 

epidemics according to their cause and their epidemiological setting (Connor, 

Thomson et al. 1999). 

Malaria epidemics can generally be considered as a disturbance of an existing 

epidemiological equilibrium. They arise in a variety of situations and while there 

may be several causative processes at work, it is usually possible to classify them 

according to a main precipitating factor. This is of course an important requirement 
in the process of identifying appropriate control interventions. For instance 

epidemics may arise following the development of dams, fisheries and/or irrigation 
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schemes that change the local environment and, as a result, the previous ecological 

equilibrium. Epidemics may also occur where mass migration of partial or non- 
immune populations into regions of higher endemicity follows political and 

economic instability. Occasionally epidemics occur through importation, or invasion, 

of an exotic vector species into an area, thereby changing the vectorial capacity of 
local transmission. The commonest causative factor in malaria epidemics is, 

however, that of abnormal meteorological conditions which temporarily change the 

equilibrium between host(s), vector(s) and parasite(s). Tle situations described above 
have been termed as 'true epidemics' (Najera 1998a). In contrast, 'resurgent 

outbreaks' result from control failure where declining health infrastructure, 

combined perhaps with increasing drug and insecticide resistance, enable malaria to 

re-emerge in areas where it had previously been controlled. 

3.2. Aims of this chapter 

* To present a conceptual model for early warning and early detection of 

malaria epidemics. 

* To review the suitability of environmental monitoring products used in other 

sectors for application to the problem of early warning of malaria epidemics 

in Africa. 

* To develop a methodology for integrating both rainfall and temperature 

information into a monitoring product which may be used for malaria early 

waming. 

3.3. The influence of climate on seasonal and interannual 
variation in malaria transmission in Africa 

Meteorological variables rainfall (R) temperature (1) and humidity (H) influence 

patterns of malaria transmission, through their effects on parasite/vector development 

and survival rates. There are three basic, climate related, models of malaria 
endemicity for the African continent: (i) rainfall-limited seasonal malaria, as seen in 
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much of West Africa and the Sahel; (ii) temperature and rainfall-limited seasonal 
malaria, found in parts of Southern Africa and the East African Highlands; and (iii) 

unconstrained perennial transmission, found in many parts of Central and Coastal 
Africa. Our interest here lies with situations (i) and (ii). Figure 3.1. sets out a 
conceptual model of one possible scenario in an area of seasonally endemic malaria, 
showing: (a) seasonal changes in meteorological variables; (b) their potential effects 
on vector bionomics; and (c) possible epidemiological surveillance methods that may 
be used to monitor seasonal patterns of malaria. 

3.3.1. Climate induced malaria epidemics 

In his treatise on malaria endemicity and epidemic prevalence, Christophers 
describes the development of climate induced epidemics that take the form of a 
'Seasonal Epidemic Rise' 5 in cases beyond the normal pattern (Christophers 1949). 
The vast majority of surveillance systems in African countries would be unable to 
detect such an abnormal (though perhaps periodic) event until it is too late to act 
effectively on its outcome. Instead, the majority of surveillance systems merely 
confirm that an epidemic did occur. For political reasons control services may 
mount an emergency control campaign consisting of inter-domiciliary residual 
spraying and larviciding, but in view of its poor timing it may have little, or no, 
effect on transmission (Najera 1999a). At certain times climate induced epidemics 
may occur over very large areas, as experienced recently in East Africa during 1998, 

and before that in Southern Africa in 1996. Christophers described severe and 
extensive epidemics 'Regional Epidemic Malaria' as experienced in Northern India, 

as a feature of the sub-tropical malaria zones which were essentially an exaggeration 
of the seasonal epidemic rise (Christophers 1949). 

The surveillance methods described in Figure 3. L are based on the principle that the 

malaria season is a discreet event. In Figure 3.2. the same seasonal malaria pattern is 

shown again. 

5 See also Gill's writing on the 'Seasonal Epidemic Wave' Gill, C. A. (1938). The seasonal 
Wriodidly of. malaria and the mechanism of the epidemic wave. London, JA. Churchill Ltd.. 
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FIGURE 3.1. CONCEPTUAL MODEL OF MALARIA SEASONALITYAND SURVEILLANCE 
(REPRODUCED FROM CONNOR ETAL 1999) 
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Legend: (a) represents an annual distribution (x = time, y= amplitude) of the variables R, I' and 
Ii. The horizontal dotted lines represent the lower temperature constraint of 18*C (TC) for P. 
falciparum, and a (60%) humidity constraint for sufficiency of anopheline survival (HQ. In Fig I 
(b) a 'periodicity' of these constraints are set out in phases I to V. During phase 1, T rises above 
18'C but no surface water is available for mosquito breeding. The arrival of the rains mark the 
beginning of phase 11 with a consequent rise in H to above 60% and the establishment of surface 
pools. During phase III the vector population (V) increases and peaks shortly after Rmax while 
the infective proportion (IP) continues to develop. During phase IV the infective vector 
population declines quickly once T and H are no longer sufficient to support rapid parasite 
development and longevity of the vector. Phase V continues to produce mosquitoes but these are 
unlikely to transmit malaria. Fig I (c) shows a seasonal distribution of malaria (M) in the human 
population along with various methods which may be used to provide information for the 
planning of malaria control activities. The Health Information System (HIS) records cases 
presenting at health facilities. This source of information may be valuable for planning resource 
allocation to particular diseases but it is usually too slow to act on in a given season. In some 
countries Sentinel Surveillance (SS) from a few representative sites are used to monitor what is 
happening in the current season, but again delay is inevitable as it relies on cases presenting. 
Entomological surveillance methods (ENT) can be used to provide an assessment of infective 
mosquito populations prior to the increase in human cases but these are very costly and not 
realistic in the current sub-Saharan African context. 
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FiGuRE 3.2. A PROCESS PERSPECTIVE ON THE EPIDEMIC WA VE 
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Viewed from such a perspective it has a distinct beginning (A), a peak, and an end. 

Subsequently the direct indicators used in the majority of surveillance systems 

described are lagging indicators. Routine Health Information Systems (HIS) are rare 

in sub-Saharan African countries. Where they do exist the data are often lagging by 3 

months, case reporting data from Sentinel Sites, which are rarer still, are usually 

lagging by 10- 14 days at best. An alternative, and more useful, perspective for 

epidemic prevention is that the malaria season is part of a process, or cycle, which 

may vary markedly from year to year, and may show marked periodicity. 
The malaria pattern that actually occurs is a function of a particular season's 

environmental and epidemiological make up, and may have been determined over a 

period of several years. If indirect indicators that are known to be causally related to 

malaria during the pre-epidemic phase, i. e. leading indicators, are used it should be 

possible to gain information that can aid in the advance planning of control 
interventions which are more appropriate to the forthcoming conditions. This is, of 

course, a vital consideration if infortnation systems, which can be used to aid timely 

decision making for greater epidemic preparedness, are to be developed. 

The process perspective on epidemic malaria is evident in Onori and Grab's review 

of potential indicators for epidemic forecasting (Onori and Grab 1980). They suggest 

that malaria epidemics have a four stage cycle: pre-epidemic, epidemic wave, post 

epidemic and inter-epidemic. Their work argues for the development of a two stage 

epidemic forecasting system based on the monitoring of meteorological variables and 

changes in the Entomological Inoculation Rate during the pre-epidemic period. It is 

explicit in Onori and Grab's writing that their system may be suited to the 

forecasting of resurgent outbreaks where comprehensive surveillance systems have 
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already been developed and operated as part of the routine malaria control services. 

Unfortunately the capacity to monitor EIR as a routine component in an epidemic 

forecasting system is at present beyond the scope of most African countries. 

So what is realistically available for epidemic forecasting in the African context and 

what can be learned from epidemic malaria areas elsewhere in the world? Early 

detection systems based on routinely reported cases exceeding a predetermined 

threshold such as 2 standard deviations beyond the expected mean value for the time 

of year (Cullen, Chitprarop et al. 1984) have been suggested. Another threshold 

method for early detection is that where reported cases exceed the median normal 

value to the extent of reaching the third quartile (Najera 1998b). These two methods 

and variations on their themes have recently been tested in Southern Africa by the 

WHO-SAMC team and have been shown to perform poorly in the African context 

(WHO 2001a). Epidemic forecasting based on climatological and socio-economic 

variables, were used routinely in some parts of the world. Unfortunately, much of 

the interest in the further development of epidemic forecasting methods was lost 

during the period of the Global Malaria Eradication Campaign (Najera. 1998a). 

3.3.2. Environmental monitoring in epidemic prone regions 

Environmental variables such as: rainfall, temperature, humidity, sunshine hours, 

cloud cover; and seasonal vegetation/crop status and development can be monitored 

on a routine basis. These may be direct observations from meteorological or 

agricultural stations, or in some cases, proxies derived from satellite remote sensing. 

In sub-Saharan Africa the former only comprise of a sparse network of reporting 

stations. The production of continental scale maps will, therefore, require 
interpolation between stations causing, not only loss of accuracy but also, delay in 

data availability. Conversely, the use of environmental proxies, from satellites, may 

allow frequent observation of a uniform sampling grid of a few kilometres squared. 

These do however, have their own problems of observational accuracy, and some 

degree of ground 'truthing' is desirable. Estimates of rainfall and vegetation 

condition derived from meteorological satellites (METEOSAT and NOAA-AVHRR) 

6 The historical use of epidemic early warning in the Punjab and its potential for use in some parts of 
Africa have been reviewed Connor, S. J., M. C. Thomson and D. H. Molyneux (1999). "Forecasting 
and prevention of epidemic malaria: new perspectives on an old problem. " Parassitolop-la 41(1-3): 
439-448.. 
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have been used for more than two decades in programmes such as the FAO Africa 

Real Time Monitoring and Environmental Information System (ARTEMIS), mostly 

as an input to Famine Early Warning Systems (Hielkema and Snijdcrs 1994) and 

Locust Control (Bonifacio and Ouladichir 1996). Their use in monitoring epidemic 

prone regions in Africa is arguably a logical extension of their routine use by other 

sectors (Connor, Flasse ct al. 1997). 

Cold Cloud Duration (CCD) is a method of rainfall estimation which uses Meteosat's 

thermal infrared sensors (TIR) to observe critical cloud top temperature thresholds 

(corresponding to a given latitude) to estimate the amount of rainfall occurring 
during a set period of time, at a nominal 5krn spatial resolution (Milford and Dugdale 

1990). CCD is commonly used to estimate rainfall for 10 daily periods (dekads: 

three per month) and has been used routinely by African meteorological services to 

estimate rainfall over large and remote areas (Tadesse, Sear et al. 1995). While CCD 

is known to underestimate rainfall in some localities (especially mountainous and 

coastal areas) it has been shown to offer a better estimation of total rainfall occurring 

throughout a regional catchment than that available through conventional rain-gauge 

networks (Milford, McDougall et al. 1994). Relationships have been shown between 

CCD and interannual variation in seasonal malaria in West Africa (Thomson, Connor 

et al. 1996), East Africa (Hay, Snow et al. 1998b) and Southern Africa (Connor 

1999b). CCD was shown to be spatially associated with the length of the 

transmission season and the variation in malaria incidence in village studies in The 

Gambia (Thomson, Connor et al. 1999). CCD data archives are available on request 
from FAO's ARTEMIS Programme covering the period 1988-1999. 

It is possible to estimate Land Surface Temperature using the thermal channels of 
meteorological satellites (Carlson, Taconet et al. 1995). However, the relationship 
between this proxy and ambient temperature is less reliable. In a comparison of 
satellite derived proxies of rainfall and temperature (from Meteosat and NOAA- 
AVHRR) with interpolated data from meteorological stations, spatial interpolation of 
station data gave a better prediction of temperature, while CCD gave a better 

prediction of rainfall (Hay and Lennon 1999). Work by Cresswell and colleagues 
developed a method to improve the estimation of ambient temperature through the 

combined use of Meteosat TIR and calculation of solar zenith angle (Cresswell, 
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Morse et al. 1999). This method however, requires further validation and is not, as 

yet, an operational product available for routine monitoring. 

The desert-fringe regions outlined in Figure 2.17. (Chapter 2) were described 

previously as being prone to malaria epidemics due to their high variability in annual 

rainfall combined with low to moderate annual total rainfall distribution. Rainfall is 

the primary limiting factor in these regions. While temperature falls below the 

critical minimum threshold value for malaria transmission for part of the year in the 

southern African region, temperature is not limiting to transmission during 

September to April - the period in which the rainy season occurs (see Figures 2.15 

and 2.16 in Chapter 2). Therefore simple routine monitoring of rainfall in both these 

regions could provide useful information to malaria control services regarding 

changes in epidemic risk. Monitoring for unusually high rainfall in the desert-fringe 

regions, or monitoring for a return to 'normal' rainfall in regions which have recently 

experienced a number of years of drought may be particularly appropriate as a first 

step in the development of a routine malaria epidemic early warning system (Connor, 

Thomson et al. 1999). 

The USAID's FEWS supports an internet facility, the "Africa Data Dissemination 
Service" (ADDS) which provides satellite derived rainfall estimates (RFE) and 

vegetation condition (NOAA-AVHRR-NDVI). Continental RFE images are 
produced for FEWS NET by NOAA's Climate Prediction Center. The RFE are 
prepared on a 0.1 -degree grid from thermal infrared images acquired from Meteosat 

every 30 minutes. These are used to identify areas of cold cloud top temperatures 
(less than 235*K). The duration of these temperatures over a dekad is used to make 
an initial estimate of convective rainfall. Then, dekadal rainfall totals from ground 
stations that report electronically through the WMO Global Telecommunication 
System (GTS) are used to remove bias from the cold cloud estimates. Finally, areas 
of "warm cloud" rainfall, associated with orography, coastal areas, and frontal 

activity, are estimated from analysis fields of NOAA's operational Global Data 
Assimilation System (GDAS). Fields of wind direction, relative humidity, and a 
digital elevation model are used to identify areas of non-convective lifting and 
condensation (Xie and Arkin 1997; Herman, Kumar et al. 2001). Dekadal RFE are 
produced on the I st; II th, and 21 st of each month and posted to the website soon 
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after. The historical archive for these data covers the period July 1995 - present. Ile 

images currently available are at a spatial resolution of 8km squared in Alber's equal 

area conic projection (Bugayevskiy and Snyder 1995). 

RFEs are commonly used by international food security and drought monitoring 

systems to produce dekadal rainfall difference images. These difference images show 

the comparison between the estimated dekadal or monthly rainfall and that which 

would be expected for that time of the year. Images based on long-term averages 
have commonly been used for the comparison. However, the ADDS site has recently 

provided a short-term mean for an alternative comparison. The long-term mean used 
for the ADDS RIFE is derived from interpolated station data 1920-1980. The short- 

term mean is itself derived from the 1995-1999 RFE. 

Comparison between current seasonal rainfall and distributions in recent rainy 
seasons may be especially pertinent for monitoring changes in malaria epidemic risk, 

especially in 'desert-fringe' regions where there is a history of post-drought malaria 
epidemics. 

The RFE image shown in Figure 3.3 gives the estimated rainfall distribution for the 
10 day period 11-20'h November, 1997. This image was downloaded from the ADDS 

website. A freely available image processing, analysis and display software called 
WINDISP has been developed by USAID/FAO FEWS (Pfirman, Hogue et al. 1999). 
The WINDISP software was used to produce a rainfall difference image (current 

rainfall estimate minus the mean for time of year) for 11-20 th of November, 1997 and 
the result is shown in Figure 3.4. 

The red areas in Figure 3.4. show rainfall deficiý the green areas show rainfall in 

excess of expected. This particular period saw extensive, heavy rainfall over much 
of sub-Saharan AfricW. Reference back to Figure 2.17 (Chapter 2) shows that this 

rainfall event occurred over areas which usually experience low annual rainfall. A 

single dekad of higher rainfall may well not produce an epidemic, even in an 

7 The unusually heavy rainfall was associated with a strong El Nino event. NOAA-OGP (1999). An 
experiment in the application of climate forecasts: NOAA-OGP activities related to the 1997-98 El 
Nino event. Washington, United States National Oceanographic and Atmospheric Administration, 
Office of Global Programs: 134.. 
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FiGuRE 3.3. SA TELLITE RAINFALL ESTIMA TE IMAGE FOR PERIOD 11-20"' NOVEMBER, 1997. 
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FIG URE 3.4. RAINFALL DIFFERENCE IMAGE FOR THE PERIOD 11-20THNO VEMBER, 199 7. 
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Note. The arrow in Figure 3.4, highlights the area around north-eastern Kenya 
where estimated rainfall was well in excess of what would normally be expected. 



epidemic prone area, and some caution would need to be used by any malaria control 

programme when looking at such an image. However, a compilation of difference 

images over a series of dekads will indicate if the rains started late or early this year 

and how consistent the rains have been to date. An elaboration on this method is to 

monitor rainfall and when an unusual event occurs refer to the cumulative amount of 

rainfall that has occurred so far this season and compare this with the same 

cumulative period over the past few seasons. Unusually high rainfall occurred over 

much of East Africa during the rainy season of 97/98, much of this rainfall was 
distributed over arid and semi-arid areas and major disruption was caused to the 

peoples and livestock inhabiting these areas. This latter method was used to explore 

the rainfall preceding the dramatic epidemic of malaria which occurred in WaJir, NE 

Kenya early in 1998 (Brown, Issak et al. 1998). 

Rainfall in the semi-arid district of Wajir normally has an annual total of <400mm. It 

exhibits the bimodal distribution characteristic of this region of East Africa with a 
'big rains' during March, April, May followed by a 'small rains' during October, 

November, December. The WINDISP software was used to extract district rainfall 

averages from the interpolated data available from FAO 1961-90 mean climatology. 
These are illustrated in Figure 3.5. It can be seen that there is only one month with 

sufficient rainfall (assuming the 80mm criteria) to be suitable for malaria 
transmission. April the peak month of the big rains has 106mm on average, 
November the peak month of the small rains has almost 80mm on average. However 

because these are isolated months, malaria transmission would not be expected to 

occur. 

The extracted district rainfall estimate for the dekad of 11 -20 th November, 1997 alone 
is 160mm. An unusual event representing more than twice the expected monthly 
average. The district of Wajir did in fact experience 4 consecutive months of rainfall 

well above 80mm in 1997, Figure 3.6, so among these largely non-immune people 
the epidemic risk may have been considered high. The region had also experienced 
drought in the two previous years and so severe disease outcome could have been 

expected. 
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FIGURE 3.5. AtERAGEAfONTHLYRAIVFALLIA'WAJIR, NORTHEAsTERv KENYA 1961-1990. 
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The WINDISP software was used to create summed images of estimated rainfall for 

the Africa continent covering each of the periods July-November 1995, July- 

November 1996 and July-November 1997. A macro was written to divide the image 

values by 10 (to avoid exceeding the maximum value 255 used by the Windisp 

software when summing the series - the legend for the product is multiplied by 10 to 

rectify this). Then the image series for July-November were summed for each year 

(1995,1996,1997). A mean image was made for the two years 1995 and 1996. 

Which was then subtracted from the 1997 image to create a cumulative difference 

image of cumulative rainfall for the 'season' of interest: 

1997 Y-(x/ 10) - (1995 Y, (x/ 10) + 1996 E(x/ 10) / 2) 

The result, Figure 3.7. shows clearly that Wajir is at the epicentre of this rainfall 

anomaly. 

The epidemic in Wajir (Brown, Issak et al. 1998) which occurred in February 1998 

was preceded by an unusual extended peak in rainfall during October and November 

1997 three to four months previously. If malaria control services were monitoring 

rainfall routinely then three to four months might be a useful lead-time for malaria 

control services to stage an epidemic response (Connor and Thomson 1998). Using 

such a method in combination with other information collected by food security and 

drought monitoring agencies would form a useful basis for developing an epidemic 

early warning system (Connor and Thomson 1999, Connor 2000). A similar method 

was used to highlight districts in Mali during epidemic outbreaks which occurred in 

1999 (Bagayoko, Connor et al. 1999). During 1999 extensive rainfall occurred across 

the Sahelian belt and epidemics were also reported from central Sudan and Senegal 

during this period (Najera 1999b; Gaye 2000). 

Whilst the relationship between rainfall and malaria incidence is not always 

straightforward, and temperature may act as a limiting factor in some regions, 

epidemics which are primarily rainfall-related are common in sub-Saharan Africa. 
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FiGuRE 3.7. CUMULATIVE RAINFALL DIFFERENCh IMAGE FOR THE PERIOD JULY-NOVEMBER 
1997 COMPARED To JuLY-NorEMBER MEAN FOR THE PRE FlOUS TWO YEARS. 
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Legend: 

Note the palette here is slightly modified from the FAO palette used in Figure 3.4, in 
order to highlight the area of high excess in estimated rainfall. It is also noteworthy 
that the use of colour palette may mean different things to different people. The 
FAO palette was produced as part of their Famine Early Warning Systems (FEWS). 
For FEWS people, green means more rainfall therefore more vegetation. Red means 
dry. When the author has used this palette with malaria control staff they have 
invariably linked red to high malaria risk and green to 'all is well'. 



The routine development of rainfall difference images could form a useful element in 

monitoring for malaria epidemic early warning in many situations. However, to 

explore more fully the interplay between rainfall and temperature and their potential 
in malaria epidemic warning it is useful to extend a mathematical model of malaria 

transmission potential (e. g. Vectorial Capacity) to include these variables. The use 

of vectorial capacity in temporal models of transmission have been proposed for 

early warning of malaria epidemics in highland Kenya (Githeko and Ndegwa 2001). 

Complex models which predict malaria cases from climate and known input 

parameters have also been explored using data collected from known point locations 

in Kenya and Zimbabwe (Worrall 2001). The objective here, however, is to use GIS 

to develop a spatial model of vectorial capacity which is able to demonstrate the 

relative change in this transmission indicator over a region, from one month to the 

next, and for the same period between years. 

3.3-3. Development of a vectorial capacity product 

Environmental variables influence malaria transmission patterns through the impact 

they have on the bionomics of the anopheline vector (feeding frequency, gonotrophic 

period, larval development rate, survival) and the parasite's extrinsic incubation 

period (sporogeny) in its mosquito (definitive) host. Work describing mathematical 

considerations of such entomological components of malaria transmission were 

published by European and Russian authors during the 1940s, 1950s and 1960s with 

much of this work culminating in the development of a mathematical model of 

vectorial capacity (Garrett-Jones 1964). Vectorial capacity V has been defined as the 

daily rate at which future inoculations could arise from a currently infected case (Dye 

1992). It has also been described as a convenient way of expressing malaria 

transmission risk, or the receptivity of an area to malaria (Gilles, 1993). While 

vectorial capacity does not take into account parasite availability in the human 

(inten-nediate host) population, it is considered to be analogous to the environmental- 
biological driving force under-pinning the transmission potential in an area. 
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Vectorial capacity may be expressed: 

ma 2 P"I-InP 

Where: 

ma represents the number of bites received per person over a fixed period of time, 

P represents daily survival of the vector, 

n represents the length of the sporogonic cycle. 

Clearly rainfall and temperature have an impact on vectorial capacity as illustrated in 

the model illustrated in Figure 3.8. 

FIG uRE 3.8. DIA GRA MMA TIC REPRESENTA TION OF A VEC TORIA L CA PA CITY MODEL 
EXTENDED TO INCLUDE ITS RELA TIONSHIP WITH TEMPERATURE AND RAINFALL. 
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Legend: The coloured lines illustrate the direct and indirect nature of the relationship 
between the variables. Red represents the temperature driven relationships, blue represent 
those affected by rainfall, purple the joint influence. The bicoloured lines represent the dual 
affects of one of the environmental variables plus one of the parameters where the input 
value is set at an assumed level (Human blood index, human population, proportion of vector 
surviving the feeding cycle, production factor relating mosquito numbers to rainfall). 

Temperature is known to impact directly on sporogonic cycle length and gonotrophic 

cycle length (Detinova 1962). Indirectly, temperature has an impact on the 

probability of daily survival, probability of surviving sporogeny, human biting habit, 

human biting rate and vectorial capacity. Rainfall has a direct impact on the vector 
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population through availability of surface water for breeding sites and is indirectly 

linked with the human/vector ratio, human biting habit and vectorial capacity. If the 

temperature and rainfall variables used in the model are in the form of continental 

images, then maps can be produced of vectorial capacity and its components, 

modelled at a continental Africa scale. 

FIGURE 3.9. A MA THEMA TICA L REPRESEN TA TION OF THE 'EXTENDED' VEC TORIA L 
CAPACITYMODEL. 
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Legend: Here the variables and parameters outlined in Figure 3.8. are represented in the 
mathematical notation which will be used in the development of the spatial model. 

The following methodology describes in detail how the components laid out above, 
Figure 3.9 are translated into continental maps of relative vectorial capacity through 

a seven stage process using the ldrisi raster-based GIS software. 

3.4. Materials and methods 
The materials used here are the mean climatology derived from the UEA climate 

surfaces (New and Hulme 1997). It was decided to create and use the mean 
interpolated rainfall and temperature surfaces for the period 1965-1995. 
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3.4.1. Stage 1- probability of daily survival 

The first stage is to derive the probability of daily survival P. 

FIG uRF 3.10. REI. ATIONSHIP BETWEEN TEMPERATURE AND PROBABILITY OF DAILY VECTOR 
SURVIVAL 

P) 

The vector's probability of daily survival, Figure 3.10, is one of the most important 

variables in malaria transmission, as it determines the longevity of individual 

mosquitoes. Since the vector must live longer than the parasite's extrinsic incubation 

period (sporogeny) it is only the older mosquitoes in the population which have the 

potential to transmit malaria. 

The probability of daily survival has been modelled by Lindsay and Birley (Lindsay 

and Birley 1996) and Martens (Martens 1997). The former is used here. 

allu 
where: 

a is the proportion of vectors surviving each feed ing/gonotroph ic 

cycle 
U is the gonotrophic cycle length. 
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The model assumes that the mosquito's probability of survival decreases as 
temperature increases and the feeding cycle length decreases. The survival rate per 

cycle a is assumed to be constant and independent of cycle length. The a value of 

0.5 used here represents the middle of its usual range 0.4-0.6 (Hii, Birley et al 1990). 

The gonotrophic cycle length is influenced by both temperature and humidity. 

Beklemishev (1940) described three phases of the gonotrophic cycle: 1) the search 
for a host, 2) the digestion of the blood meal and maturation of the ovaries, and 3) the 

search for a suitable surface water body and oviposition; cited by (Detinova 1962). 

This model takes the first and third phases together (6). Phases one and three are 

assumed to take 12 hours (0.5 days). Phase two (u) has been shown to be directly 

related to temperature and relative humidity (RII) and can be derived from the 

formulas given by Detinove. For the purposes of this model the middle range 
formula associated with RH of between 70%-80% are used (Detinova 1962). 

Gonotrophic cycle length U=v+ (u =f ul T- gu) 

where: 
the number of degree days needed for maturation = 36.5, 

T= ambient temperature *C, 

gu = threshold beneath which development ceases = minus 9.9 

T is modified to reflect the difference between internal and external phases of the 

cycle. In this model the mean diurnal temperature image [_D for a given month 
(1955-95) is raised by 2"C for the intemal phase (u) to give [7]. 

The following products were produced using map algebra techniques (Eastman 

1993). While Idrisi has a MAP CALCULATOR function that can handle complex 

mathematical procedures, this was not used here, as it does not facilitate the batch 

processing required. Instead, individual modules were used in combination using 

a Detinova's formulas relate to studies of A. maculipennis. Comparable values for A. gambiae are not 
available. While the relationship between temperature and gonotrophy are unlikely to be the same 
between a temperate and a tropical mosquito it is assumed that the shape of the relationship will be 
similar. 

49 



branched macros. Some of the 1drisi modules cause floating point errors. In order to 

overcome this, intermediary images require multiplying up by a factor of a hundred 

or a thousand, and then dividing by the same amount after the operation has been 

carried out. Re-scaling of products so that background values (the seamask) do not 
over-stretch the 0-255 value colour palettes used by Idrisi is also required in some 
instances. For clarity, these steps are not included here. 

Using Tdrisi's SCALAR module, 2'C is added to a mean diurnal temperature image 

[1] for a given month. The product is [7]. This is represented using the following 

cartographic modelling method (Eastman 1993). 

SCALAR is then used to subtract 9.9 from [7]. The result being [T-gu]. 

[71 no SCALAR 113=Z5> [T. gui 
-9.9 

Idrisi's INMAL module is used to create an image with a uniform value of fu 
[36.5]. The OVERLAY module is then used to divide [f u] by [gu] to produce [u-, ]. 
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A review of published data on gonotrophic cycle length for A. gambide s. L quoted 
figures of between 2 and 3.8 days (Thomson, Savage et al. in press). The 

gonotrophic cycle length is unlikely, anywhere, to be less than two days as the high 

average temperatures required to achieve this would occur in an environment 

unsuitable for malaria transmission. In order to prevent this occurring here Idrisi's 

RECLASS module is used to remove the impact of high temperatures giving a [u] 

value less than 1.5 (which would, when added to [v] the half day for phases I and 3, 

produce less than the minimum [V] of two days). 

lu-rl 0c] RECLASSO 
'I <1.5 = 1.5 

INITLAI is used to produce an image of v with a value of [0.5]. 

SCALAR is then used to add v [0.5] to [u]. The product is [U] the gonotrophic cycle 
length. 

01" A lul 
"ýA AR 

+0.5 
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INITIAL is used to create an image with a value of one [1]. 

The OVERLAY module is then used to produce the reciprocal of [M. 

OVERLAY is used again to raise a (the proportion of vectors surviving the feeding 

cycle - given here as 0.5) to the reciprocal of U to give P the probability of daily 

survival. 
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3.4.2. Stage 2 -the sporogonic cycle length 

The second stage is to derive the sporogonic cycle length (Figure 3.11. ). 

FIG URE 3.11. RELA TIONSHIP BE TWEEN TEMPERA TURE A ND SPOROGONIC C YCLE LENG TH. 

(n) 

The period of time between an infected blood meal being ingested by the mosquito 

and the time when sporozoites appear in its salivary glands is known as the extrinsic 
incubation period, or sporogonic cycle length. This process is also highly 

temperature dependent with an inverse relationship. It is expressed by Detinova as: 

f,, / (T-9n) 

where: 

f,, is the number of degree days required for parasite development 

gn is the threshold below which parasite development ceases. 

Here III 'C (degree days: P. falciparum) is used for f, and I 8'C taken as the 

adjusted minimum temperature threshold for P. falciparum, as stated by Detinova 

(Detinova 1962). Temperature is adjusted through a weighting method based on the 
time the mosquito is estimated to be inside a house (phase 2, u of the gonotrophic 
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cycle) as a proportion of the total gonotrophic cycle length (M. The temperature 

correction factor is calculated (ulV) and multiplied by a user defined correction 

factor I (which represents the difference between the indoor and outdoor 

temperature) to produce a weighted correction factor. This is added to T to give the 

temperature goveming the sporogonic cycle. 

Therefore the length of the sporogonic cycle is expressed as: 

(luA)) + (T - 

This is achieved in Idrisi through the following process: 
The SCALAR module is used to subtract 0.5 (half day) from U to recreate u9 

all -SCALAR 
-0.5 

OVERLAY is then used to obtain the ratio of [u ]/[U] the proportion of time 

spcnt indoors. 

9 The macros used in ldrisi produce a large number of temporary input and output files which were 
automatically deleted during the previous branch of the process. Therefore, it is necessary to recreate 
the monthly value images for Phase 2 (u) here. 
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SCALAR is used to multiply the product above by 21C to take into account the 

higher temperatures acting on the proportion of time spent indoors. 

[U/Lg Go]== SCALAR 00= VU/M 
*2 

OVERLAY is then used to add [IuITJ] to the mean diurnal temperature image LD to 

produce [71 the temperature goveming the sporogonic cycle. 

SCALAR is then used to subtract g. (I 8*C) from [71 the product being [T- gn] 

INITIAL is used to create an uniform image with a value of 111 (degree days) the 

product of this is 
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OVERLAY is then used to divide [f,, ] by [T- g,, ] the product of this is [n] the 

sporogonic cycle length. 

3.4.3. Stage 3- probability of surviving sporogeny 

The third stage is to derive the probability of the vector surviving sporogeny (Figure 

3.12). 

FiGuRE 3.12. THE INDIRECTRELATIONSHIP BETWEEN TEMPERATURE AND PROBABILITY OF 
SUMVING SPOROGENY. 

(pn) 

56 



To determine the probability of the mosquito surviving long enough to complete 

sporogeny, the probability of daily survival P is raised to the power of the sporogonic 

cycle length n: 

Pn 

In ldrisi, OVERLAY is used to raise [P] the probability of daily survival to the 

power of [n] the sporogonic cycle length. The result is the probability of the 

mosquito surviving sporogeny [P"I. 
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3.4.4. Stage 4- human biting habit 

The fourth stage is to derive the human biting habit (Figure 3.13). 

FIG URE 3.13. THE INDIRECT RELA TIONSHIP OF TEMPERA TURE TO THE HUMAN BITING HABIT 
COMPONEN T OF THEMODEL. 

(u) 

----i 
- ---- - 

AI 

The human biting habit (a) represents the frequency of mosquito blood meals taken 

on humans as opposed to any other animal. It is expressed by the relationship: 

VU 

where: 
h is the human blood index (proportion of human blood fed mosquitoes) 
U is the length of the gonotrophic cycle. 

The human blood index is a measurable entomological parameter with a value 
between 0-1. The HBI value here is assumed as 0.7 as this represents a mean value 
found for indoor resting Anopheles gambiae s. s. in a recent review (Thomson, 

Savage et al. in press). 
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The human biting habit is achieved here in ldrisi using the following method: 

INITIAL is used to create a uniform image with a value of 0.7 [h] 

OVERLAY is then used to divide [h] by [q the result is the human biting habit [a]. 
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3.4.5. Stage 5- the ratio of mosquitoes to humans 

The fifth stage is to establish the ratio of mosquitoes to humans (Figure 3.14). 

FIGURE 3.14. RELA TIONSHIP BETWEEN RAINFALL AND THE RA TIO OF MOSQUITOES TO 
HLAIANS. 

The ratio of mosquitoes to humans m is expressed: 

qld 

where: 

q is the mosquito population 
d is the human population. 

The mosquito population is assumed here to be a linear function of rainfall Rt-L 

recorded at time t-L where I is the present day and L is the lag between rainfall and 
its impact on the mosquito population. The average rainfall is multiplied by a 

constant p to give the number of mosquitoes resulting from that rainfall. 
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p RI-L 

The value of p was chosen as 10 (i. e. 10 mosquitoes, per person, per mm rainfall, per 

day) to allow a reasonable biting rate to occur'O. The human population d is assumed 

to remain constant and is set here to an arbitrary figure of 100,000. 

m is produced here simply by the following process: 

SCALAR is used to multiply average rainfall [Rt-L] by u to produce m. 

[RIA all SCALAR go, ---+ Iml 
*10 

10 While the relationship between rainfall and mosquito numbers can be shown to approximate a linear 
relationship in some studies: Fontenille, D., L. Lochouarn, N. Diagne, C. Sokhna, J. J. Lemasson, M. 
Diatta. L. Konate. F. Faye, C. Rogier and J. F. Trape (1997). "High annual and seasonal variations in 
malaria transmission by anophelines and vector species composition in Dielmo, a holoendernic area in 
Senegal. " American Journal Of Tropical Medicine And Hygiene 56(3): 247-53. Krafsur, E. S. and J. 
C. Armstrong (1978). "An integrated view of entomological and parasitological observations on 
falciparum malaria in Gambela. Western Ethiopian Lowlands. " Transactions of the Royal Society of 
Tropical Medicine & Hygiene 72(4): 348-356., this will not always be the case as local soils, slope, 
land use and hydrology will undoubtedly play a significant role. Extreme rainfall events may also 
wash away breeding sites. 
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3.4.6. Stage 6- human biting rate 

The sixth stage is to determine the human biting rate (Figure 3.15). 

FIG URF 3.15. THE INDIRECT RELA TIONSHIP BETWEEN RAINFALL AND TEMPERA TURE ON THE 
HUMAN BITING RATE COMPONENT OF THE MODEL. 

(ma) 

The human biting rate ma is the composite entomological measure of the number of 
bites received per person per night, and is produced here using the following method: 

OVERLAY is used to multiply m (the mosquito/human ratio) by a (the human biting 

habit) the product is the human biting rate ma. 

Im] 

OVERLAYU6 [ma] 
MULTIPLY I==:; 

> 

[al 
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3.4.7. Stage 7- vectorial capacity 

The seventh stage produces the vectorial capacity images (Figure 3.16). 

FiGuRE 3.16 INDIRECT RELA TIONSHIPS BETWEEN RAINFALL, TEMPERA TURE AND VECTORIAL 
CAPACITY 

This final stage produces the mean diurnal Vectorial Capacity images for the African 

continent. per month. 

To reiterate: Vectorial capacity V is the daily rate at which future inoculations could 

arise from a currently infected case (Dye 1992) and is described as a convenient way 

of expressing malaria transmission risk, or the receptivity of an area to malaria 
[Gillies, 1993 # 178]. While vectorial capacity takes no account of parasite 

availability in the human population, it is analogous to the environmental/biological 
driving force under-pinning the transmission potential in an area. When produced as 

a map through this method it offers a convenient means of comparison between one 

region and any other for the same period. 
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Vectorial capacity may be expressed: 

V= ma2P"I-InP 

a is squared as it appears both in human biting habit and again in human 

biting rate (also reflecting the fact that the mosquito must bite humans twice 
in order to have the potential to transmit malaria). 

Vectorial capacity is produced here using the following: OVERLAY is used to 

multiply person biting rate ma by person biting habit a to produce ma2. 

[ma] 
all 

OVERLAY [ma 2] 
MULTIPLY 

and again to multiply ma2 by the probability of surviving sporogeny P" 

[ma 2] 

00 

=ti OVERLAY 0[+ [ma2P"] 
DO OU L TIPLY 

[pni 

TRANSFOR is then used to obtain the log of P 

64 



Uli TRANSFOR 
LOG 

[InP] 

SCALAR is then used to multiply InP by -1 to derive the negative log. And finally 

[InPI SCALAR 
MULTIPLY 

[-InP] 

OVERLAY is used to divide ma2P" by -4nP to produce V. 

[ma 2pm] 
911 

OVERLAY 
oi3 RATIO 

IM 

The continental images (maps) of vectorial capacity can then be displayed in ldrisi 

using the DISPLAY module. 
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3.5. Results 

3.5.1. Rainfall estimates 

In certain regions satellite derived rainfall estimate images may provide a useful, 
easy to monitor indicator of changes in epidemic potential. In descrt-fringe locations 

where temperature is not a limiting factor in transmission potential, these may be 

processed to assess the changes occurring in the current malaria season compared 
with recent experience. However, rainfall alone is not the only environmental factor 
influencing changes in transmission potential. Temperature too is very important in 

some regions. It is therefore important to explore the interplay between these two 

components in a malaria transmission model, such as vectorial capacity, and map 
these dynamics accordingly. 

3.5.2. Vectorial capacity 

The resulting annual average vectorial capacity map for continental Affica is shown 
in Figure 3.17. The annual map of Vectorial Capacity represents a further method of 

using climate to map differences in malaria endemicity. The monthly images show 
the seasonal dynamics that occur in this indicator across the continent in an average 
year. The monthly average vectorial capacity maps for the African continent are 
illustrated in figures 3.18. and 3.19. 

The Vectorial Capacity maps produced above are based on long-term monthly 
rainfall and temperature averages. However, by replacing the long-term average 
rainfall input into the model with the routinely available satellite derived rainfall 
estimates it is possible to monitor changes in vectorial capacity in epidemic prone 
areas in near real-time. At present there are no routinely available images which 
could replace the temperature input in the same way. While there is evidence of 
increasing temperatures across the African continent associated with global warming 
(Watson, Zinyowera et al. 1998) the inter annual variability in temperature is much 
less pronounced than that of rainfall. There is therefore an argument for using the 
estimated monthly rainfall inputs along with the average temperatures as an indicator 

of deviations from the normal in epidemic prone regions. Hopefully, satellite 
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FIGURE3.17. A. %,, 4 VERAGE ANNUAL VECTORIAL CAPACITY AIAP FOR AFRICA (1951-1995). 

Legend: 

Vectorial capacity is mapped here as a relative indicator of environmentally induced 
transmission pressure across the Africa continent in an average year. The colour 
palette used in the legend represents a relative scale of vectorial capacity from lowest 
to highest. 



FIGURE3.18. MEAN MONTHLY VECTORIAL CAPACITY PRODUCTS JANUARY-JUNE. 



FiGuRE3.19. MEAN MONTHLY VECTORIAL CAPACITY PRODUCTS JULY-DECEMBER. 



derived estimates of ambient temperatures may become operationally available in the 

not too distant future. These could then also be used in the model in place of long- 

term monthly averages. 

Figure 3.20. illustrates the vectorial capacity occurring in November 1997 

(preceding the Wajir epidemic). Comparison of this image with that of the average 
November VC shows a marked increase in Central and East Africa. Figure 3.21. is a 
difference image derived from these two products. As mentioned previously an 
increase in regions where endemicity is high is unlikely to pose a threat of epidemics. 
However, the higher vectorial capacity occurring across the East African region, and 

parts of the Sahel should have given cause for concern, and perhaps field 

investigations should have been carried out, in those areas identified as desert-fringe 

epidemic prone. 

The use of the rainfall estimate images within the vectorial capacity model also helps 
to overcome the potential problem of high rainfall events in highland areas giving 
rise to false epidemic alerts. If rainfall difference images alone were used to identify 

changes in epidemic risk, then no account is taken of areas where temperature is the 

primary limiting factor in transmission potential. The vectorial capacity images 

therefore effectively mask out the latter. 

3.6. Discussion 

Both rainfall difference images and images showing changes in vectorial capacity, 
could provide useful inputs to a malaria early warning system, especially in epidemic 
prone regions. Here the use of actual rainfall estimates rather than the long-term 

mean rainfall offers a further step forward on the malaria risk maps discussed in 
Chapter 2. The availability of new satellite products and the development of proxies 
for ambient temperature are expected to become available following the launch of 
the Meteosat Second Generation satellite, due for launch in October 2002. This 
would then offer a further opportunity for real-time input into the model. If satellite 
derived proxies for temperature do become available then the vectorial capacity 
images may also become useful in 'highland-fringe' epidemic settings. 
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FIGURE 3.20. VECTORIAL CAPACITY MAP FOR AFRICA NOVEMBER, 1997. 
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While the vectorial capacity images present a methodology for integrating 

temperature and rainfall into an epidemiologically meaningful product, which can 

provide guidance on the stratification of malaria risk in Africa, the actual value of 

many of the input parameters remain unknown. The vectorial capacity products do 

however, represent a significant step towards meeting the challenge of integrating 

remote sensing data into biological models of disease set by Rogers, et aL (2002). 

Theoretically the basic reproduction rate RO can be calculated from vectorial capacity 
V and a measure of the recovery rate from infectiousness r (Dye 1990; Smith, 

Charlwood et al. 1993). 

Ro = Wr 

The rate of recovery is itself a difficult value to determine in the African field 

context. The period of 200 days for parasitaemia and 80 days for gametocytaemia 
suggested by Macdonald (MacDonald 1957) have been used, perhaps most notably 
in field tests in Northern Nigeria (Dietz, Molineaux et al. 1974). This figure was 
highly contentious however, and Dutertre drew attention to a number of studies 
providing evidence of much longer duration (Dutertre 1976). Nedelman provides a 
detailed review and discussion of the inferences of recovery and other parameters 
used in the major mathematical models of malaria (Nedelman 1985). Technically it 

would be easy to produce a map of 'RO ' using the continental image products for 

vectorial capacity. This is not done here however as the product (R) relies on 
factors within the homoiothermic human host and represents too much of a departure 
from the environmental variables temperature and rainfall used to drive the model. 

While it is possible to use continental scale inputs and produce continental scale 
products, and while these products may be pertinent to epidemic malaria control 
planning, it may be questionable to consider the development of malaria early 
warning at this scale. The biggest limiting factor is the absence of institutions with 
the required technical capacity, in combination with the political legitimacy, to 
ensure an appropriate response. Malaria endemicity changes markedly between the 
various regions of Africa, both spatially and temporally, and the sub-continental level 

may offer a better option for the development of malaria early warning systems. 
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These issues will be explored further at a regional level, in Southern Africa. In 

subsequent chapters the mapping products outlined above will be tested against 
available epidemiological data in four country case studies. The country case studies 
used are Botswana, Zimbabwe, Namibia and Swaziland. 
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4. Malaria and Environment in Southern Africa 

4.1. Geographical background 

Here the term Southern Africa collectively includes the member States of the 

Southern Africa Development Cooperation: Angola, Botswana, Lesotho, Malawi, 

Mozambique, Namibia, Republic of South Africa, Swaziland, Zambia and 
Zimbabwe. Madagascar is also included in a survey of NMCP managers. The high 

mountain kingdom of Lesotho does not have malaria transmission. 

4.1.1. The influence of topography and climate on malaria 

Much of Southern Africa is comprised of upland plateau with land averaging above 
1000 metres, Figure 4.1. The main drainage basins are those of the Great Lakes, the 
Zaire and the Zambezi river systems, along with the Orange River to the south. In 

addition, many other rivers impact on the environment at a more localised scale. 

Altitude and latitude play an important role in temperature regulation and, along with 

rainfall, help determine the endemicity of malaria. Many highland areas, most 

notably the Highland Kingdom of Lesotho, are non-malarious, while in the lower 

river valleys and flood plains perennial transmission occurs. Between these two 

extremes, malaria transmission is of varying seasonal length. The southernmost 
limits of malaria transmission in Southern Africa are markedly skewed due to the 
different influences of the Atlantic and Indian Oceans on regional climate and 
localised weather systems. Along the South Atlantic Coast, the Benguela Current 

moves northward from the Antarctic bringing low winter temperatures, which along 
with the aridity this causes in the region, act as major constraints to malaria 
transmission. Historic surveys describe the area along the Kunene River, forming 
Namibia's North-west border, as having a very low endemicity (De Meillon 195 1) 

and transmission appears to cease at latitudes greater than 17.5"S. Conversely the 
influence of the warmer Aghulas Current flowing southward from the Indian Ocean 
has, historically, enabled perennial malaria to occur south of Durban (Sharp and Le 
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FIG( ! RE 4.1. Sot'TlIER, N'AFRICA PLA TEA U DERIVED FROM IKM DIGITAL ELEVATION 
MODEL. 

I. I to li 40 41 10 

Legend: 

The map uses a digital elevation model to indicate the extent of highland areas in 
Southern Africa. Produced from Corbett, J. & O'Brien, S (1997) Spatial 
characterization Tool, Texas A&M University. 
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Sueur 1996) at approximately 31"S (Bagster Wilson 1949) approximately 15001cm 

further to the south. 

Periodically the countries along this southern margin: Namibia, Botswana, 

Zimbabwe, Republic of South Africa and Swaziland experience extensive and severe 

epidemics when on occasion environmental conditions are conducive to high levels 

of transmission. These five countries have a history of extensive, vertical, malaria 

control campaigns, relying largely on indoor residual spraying of insecticides for 

vector control. South Africa has a long history of active case detection and 
treatment. Civil and military conflict has had profound impacts on the consistency 

and effectiveness of malaria control in the region. For example, the war of 
independence in Zimbabwe disrupted national vector control programmes for several 

years (Taylor and Mutambu 1986). The disruption of vector control during fighting 

and the return of freedom fighters from Angola to Namibia, following Namibia's 

independence from South Africa in 1990, has also been implicated in the epidemic 

outbreaks which occurred in Northern Namibia during the early 1990s (Meek 1991; 

Scrinigeour 1991). 

4.1.2. Vector populations 

A significant body of work on the distribution of the Anopheles gambiae s. l. 

complex, within Southern Africa, has been carried out by workers at the South 

African Institute for Medical Research (Coetzee, Hunt et al. 1993). The major 

vectors implicated in malaria transmission in Southern Africa have been Anopheles 

arabiensis and Anophelesfunestus, with a lesser role played by Anopheles merus. In 
South Africa Anophelesfunestus populations were dramatically reduced as a result of 
concerted indoor residual spraying programmes over many years (Sharp and Le 

Sueur 1996). However, the external resting habit of Anopheles arabiensis makes this 

mosquito less susceptible to indoor residual insecticides such as DDT and as a 
consequence these populations have remained viable, and this species is now 
considered to be the principal vector in South Africa. The same is thought to be true 
by a number of NMCP managers in other Southern Africa countries where vector 
control by residual spraying has been practised. There is however, little direct 

empirical evidence to support this. 
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Parasite populations 

While infections of Plasmodium malaride (Laveran, 1881) and Plasmodium vivax 
(Grassi and Feletti, 1890) are found throughout Southern Africa (Bagster Wilson 
1949) according to workers at the South African Medical Research Council in 
Durban, it is Plasmodiumfalciparum (Welch, 1897) which accounts for more than 
95% of all malaria infections in South Africa and Southern Africa (Sharp and Le 
Sueur 1996). 

4.1.4. Human population 

The human population in Southern Africa is more urbanised than elsewhere in 
Africa, and many of the major population centres are in highland regions. Rural 

populations tend to be concentrated in highland areas, coastal regions and river 
valleys. Elsewhere populations are sparsely distributed, Figure 4.2. Migration is an 
important factor in malaria distribution (Prothero 1965) and in Southern Africa 

migration between and within nations is among the highest on the continent 
(Prothero. Pers. comm. ). 

Clearly it is unrealistic to discuss population in Southern Africa without considering 
the impact of I-HV/AIDS on the region. Botswana and Zimbabwe are suffering the 
highest prevalence of HIV/AIDS, among adults, anywhere in the world at 30% and 
25% respectively. Swaziland, Namibia and Zambia follow with prevalence rates 
above 20%. HIV-AIDS has had a profound influence on population growth in 
Southern Africa and since 1995 growth rates have been substantially reduced (Root: 

pers comm' 1). For example recent population growth rate estimates for Botswana, 
Zimbabwe, Namibia and Swaziland are: 0.76%, 0.3%, 1.6%, and 1.8% respectively. 
Life expectancy figures have reduced as a consequence to: 39,38,42 and 40 years 
respectivelY12. The burden that HIV/AIDS is putting on health services in Southern 
Africa is severely compromising their capacity to maintain their former levels in 
human development indicies. The populations of these countries are becoming more 
vulnerable to an infectious 'disease complex' (Kalipeni 2000). In the face of the 

11 Dr. Root is a demographer who was working with the WHO Southern African Inter-Country Team. 12 Source: International Programs Centre, Population Division, U. S. Census Bureau, HIV/AIDS 
Surveillance Data Base, June 2000. 
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FIGURE 4.2. HUMAN POPULA TIONDENSITY DISTRIBUTION IN SOUTHERN AFRICA, 1990, 
DERI VFD FRom DEicHmANN (1994). 
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Legend: 

The population density shown here is derived from interpolated 1990 estimates for 
the African continent, using a log scale. 



severe HIV/AIDS situation in Southern Africa, and the need to protect sufferers, 

effective prevention and control of infectious diseases such as malaria and 
tuberculosis is perceived to be essential. 

4.1.5. Malaria control 

In the African malaria control context Southern Africa is unusual in that it is a region 

where malaria control has been relatively well developed in a number of contiguous 

countries, generally those bordering the Republic of South Africa. Most of these 

countries have mounted effective vector control programmes in the past, and some 

continue to do so. The region has some of the wealthier countries in sub-Saharan 
Africa. However, as with the global malaria control situation, resources for malaria 

control diminished greatly during the 1970s and 1980s and the effectiveness of many 

of the national control programmes declined. Drug resistance is widespread though 

many countries still rely on chloroquine as their first line drug of choice. Insecticide 

resistance is less problematic in this region and a number of countries still use DDT 

for vector control. 

During the 1990s Southern African countries were at the forefront of calls for 

renewed efforts against malaria. The region has also been successful in bringing the 

neighbouring countries together for meetings and workshops to share experiences 
and discuss national and regional control issues. The WHO-Southem Africa 
Intercountry Team (SAMC) in particular have been hosting annual intercountry 

planning and consultation meetings for malaria control managers during the past five 

years. The technical support provided by SAMC to the member countries is now 
recognised to be an example of 'best practice' in sub-Saharan Africa (WHO 200 1 a). 

4.2. Aims of the chapter 
The general aims of this chapter are to explore perceptions of climate, environment 
and malaria distribution in Southern Africa and to provide background information 
for subsequent chapters, which will look in more detail at four case study countries. 

The specific aims are: 
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To review the perceptions of national malaria control programme managers 

in Southern Africa with respect to malaria transmission patterns, and their 

linkage with climate and environment. 

9 To present the cnvirofunent, 31 and epidemiological data available here for 

an3lysis. 

* To create a simple climate suitability map for 'more stable' and 'less stable' 

m3lari3 for use by mal., Aa control managcrs in Southern Africa. 

4.3. Mate6als and methods 

4.3.1. Perceptions of Climate and Malaria among Control Programme 
Managers in Southern Africa 

In June 1997, the author attended the I' Southern Africa Conference for Malaria, 

%% hich was held in hi3puto, Mozambique. The conference %2s host to all the 

countries of the Southern Africa Development Cooperation (SADC) and in addition, 

Madagascar, Figure 43. U'hilst at the conference the author was involved in a 

survey of the National Malaria Control Programme managers to explore their 

perceptions of linkages between inter-annual climate variability, seasonal malaria 

transmission patterns and vulnerability to epidemic malaria" . The survey included: 

NMCP managers from Angola, Botswana. Madagascar, Mozambique, Namibia, 

South Africa, Swaziland, Tanzania and Zimbab%%, c (Zambia and Malawi did not 

rctum the questionnairc). 

4.3.2. Survey quesbonnaire 

4121. Part A. * General introduction 

1. Docs your country havc a malaria control progrwnmc? 

Docs it cover the A holc country? 

11 The surM quesnionnautavs drv%ii UP in collatwation with Dr. David Le Sucur, WC Durban and Ktacol 
Sk-, w% NOAA OfTwe of GUwJ Program& The ww)-sis or aw survey muhs %ut conduacd by the author in 
Pin fWfUnxu of a cownwt wah NOAA4)GP Connor. S. J. (1999a). Improving cpidcmic preparedness for 
nWxia control in Africa. the utday of wasonal forccastrng am monaonng or dm=c variabiliq. Final Repo" to 
NOAA-OGP. washwom Dc, NoAA ofrKe of Gk" PmVwns: 8 Pages +7 Appcndicc! L. 
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FiGvRE 4.3 Matsu cor,,. %TxIESCOIIPRM. %G T71ESoln7lERvAFRJC4 DEVELDPREAT 
Cooputnav(SADQ. 
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Legend: 
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The map shows national boundaries of the SADC member states. The map is 
derived from administrative boundary files supplied by SADC-RRSP (1997). 



Just rural areas? 
Just urban areas? 
Othcr? 

2. Ulut are the m3in forms or intervention? 

3) case dctection 
b) casc management 
C) vector control (residual sprayinglarviciding) 
d) health education (early recognition and personal protection) 
C) mobilis3tion of additional manpowcr/transport/supplics 
f) chernoprophylaxis 
g) othcr 

3. Do )nu have a m3i 16,2 noti fication system? 

If so mhat? 

4. Do you currcntly rcccivc cl imatologicaVmctcorological data? 

If so uhat d3t3 do you receive? 
Ulien and how often? 
From %% hom? 
I low do ) ou use it? 

5.1 low reliable do you perceive this data to be? 

vcry reliable 
some%% hat reliable 
not very reliable 

Explain: 

6. Does your control programme have access to qualified malaria scientists? 

National scientists: 
Vector Yes No 
Parasite Yes No 
Clinical Yes No 
Foreign scientists: 
Vector Yes No 
Parasite Yes No 
Clinical Yes No 

7.1 low long is your country's data set for malaria incidence? 

Is diagnosis clinical? 
Is diagnosis lab confirmed and clinical? 
Is diagnosis lab confirmed? 
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S. Ulut other data wts do you have that might act as a longer term indicator of year 
to year trends %%hich might be useful for modelling? (for example, hospital 
admissions ror complicated malaria for one major hospital) 
9. Ulut do you see as the main challenges to malaria control in your country over 
the next 10 years? 

4.12Z Pal 13- Perm-tions of malaria Widence (last 5-10 years) 
10. Ilas there been an increase in m3laria incidence in your country in the last five to 
ten ycars? 

If so uhat do you believe the reasons to be. 
8) Fininci3l 
b) Drug resistance 
C) clim3te 
d) War/civil unrest 
C) Refugees 
() Lack of skilled manpower 
g) Agriculture and irrigation 
h) Other 

Rank in order of importance. 

11. In the last ten ycars, list the ycars in %N hich your country experienced severe 
epidemics. 

12. X%liich was the most sevcre year in the last ten years? 

13. flow would you dcrinc a severe epidemic in your country? 

14. Arc scvcrc years becoming more or less frequent? 

If so, uhat do you believe to be the reasons. 
a) Financial 
b) Drug resistance 
C) Climate 

d) War/civil unrest 
C) Refugees 
f) Lack of skilled manpower 
g) Agriculture and irrigation 
h) Other 

Rank- in order of importance. 

15. Were your recent epidemics: 

a) Widespread over large geographic regions of your country 
b) Localised to small areas 
c) A combination of both indifferent years 

Explain if nccessaq. 
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16. Over the next 20 )tws, how many )tws would you expect to experience severe 
epidemics? 

4.121 Part C* Responses to Sewre ePidem 

17. When % as the last severe epidemic in your country? 

18. On the axes below. please draw the seasonal transmission prof He for your 
country- 

Profile of Malaria Season 

I 

d/11 

month 

Ulicn (and how) %% cre you rust notified that an epidemic was underway during that 
ycaO Please draw an arrow in the diagram above indicating in -Ahich month you 
were notiried/becamc aware of the epidemic. 

19. flow did you respond and %hat %%-crc the main challenges of response? 

20. flow did malaria control practices change in the following year in response to 
this experience? 

21. If you received exly warning of an epidemic, how would you respond? 

22. flow far in advance of the malaria transmission season would you need to 
receive early warning information? (in %hat month) 

4.124. Part D., ResDonses to past climate 
23. Over the past five years %%hat have been the impacts of wet pcriodslyears for 
your malaria control operations? 

24. Ulmt, if anything. have you done in response to these wct pcriods/)-cars? 
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25. mut, irany. roaturcs oryour country's malaria control opcrations arc diffcrcnt 
now (rrom rive )-cars ago) becausc of wct periods/)vars? 

26. Arc there characteristics of your country %%hich make control in )vur country 
more or less vulnerable to wet ycars than neighbouring countries? 

27. Uliat. if any, climatic conditions or events are problematic for your country's 
malaria control operations? (specify the climatic conditions and the potentially 
vulnerable aspects of m3hri3 control) 

4. IZ& arl E. - Adaptafbn fo climate varfaN 

29. In uhat ways can m3laria control programme managers reduce their 
vulnera, bility to m3la63 epidemics in %%-ct)-c3rs? 

29. Uliat arc the main obstacles to reducing vulnerability to wet )-cars? 

30. 'Would you like to be involved in collaborative research on prediction in your 
country? 

4.3.3. Perceptions of malaria endemicity in Southern Africa - Mapping Expert Opinion 

During November 1998 a X%710-AFRO Planning and Consultation Meeting for 

Accelerated Malaria Control in Southern Africa was held in Harare, Zimbabwe. 

During the meeting the author asked a number of National Malaria Control 

Programmc managers to create maps of malaria distribution in their countries. The 

maps %% crc to be classif ied according to %% hether malaria in a district or province was: 

absent (A), seasonal with transmission for less than 6 months of the year (B I), 

seasonal with transmission longer than 6 months of the year (B2), or periodic and did 

not occur every ycar (C). "Me NMCP managers that responded were from: 

Bots%-am, Namibia, South Africa, Swaziland and Zimbabwe. The baseline maps 

provided were produced from the SADC CD-RO', %I and werc the latest available at 

the time (SADC-RRSP 1997). The administrative districts shown on the mapswere 

not in every case the same as those used by the Ministry of Health and so the NNICP 

managers were invited to draw in additional lines and make changes %herc 

appropri3te". 

"I IN$ cxcrcise *as carricd out in collaboration %ith workm from the South African Nfcdical 
Research Council, Durban %%ho used cxpert opinion maps a3 a basclinc for the MARA map Craig, N1L 
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4.3.4. Data collection for the Southern Africa region 

4.3.4.1. Foldemlological data 

A number of field visits were made in collaboration with SAMC and WHO- 

HealthMap'5 to develop local capacity in the use of GIS/EIS for malaria control. 

During these visits epidemiological data available from the central levels in 

Botswana, Namibia, Swaziland and Zimbabwe were obtained. 

4.3.4.2. Environmental data 

Grid surfaces for a range of environmental variables were collected from a number of 
different sources, these were acquired over the internet, on CD-ROM or through 

visits to climate monitoring institutes. 

4.3.5. A model of stable and unstable malaria in Southern Africa 

A simple climate based map of malaria endemicity in Southern Africa was produced 
in Idrisi using climate constraints to malaria discussed in Chapter 2. The climate 

constraints chosen were mean annual temperatures < 80C and annual rainfall 

<250mm for the non malarious class; mean monthly temperatures between 18-22"C 
for five consecutive months and annual rainfall >250mm. for the less stable malaria 

class; mean monthly temperature >2211C for five consecutive months and annual 

rainfall >400mm for the more stable malaria class. 

H., R. W. Snow and D. Le Sueur (1999). "A climate-based distribution model of malaria transmission 
in Sub-Saharan Africa. " Parasitology lodgy 15(3): 105-11 L 
15 'Me V; HO-CDS team responsible for developing GIS for health services. 
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4.4. Results 

4.4.1. Perceptions of Climate and Malaria among Malaria Control 
Programme Managers in Southern Africa 

Section A. Backwound Information 

1. All countries reported having a National Malaria Control Programme 

(NMCP). All countries, except Mozambique and South Africa, reported that their 

NMCP covered the whole country. 

2. The respondents answers are summarised in Table 4.1. 

Table 4.1. Malaria control intervention in Southern Africa. 

Form of intervention Number 
of 
countries 

Comment 

Case detection 3 
Case management 9 
Vector control (residual 
spraying/larviciding) 

8 

Health education (early symptom 
recognition/personal pro ection) 

9 

Mobilize additional 
manpower/transport/supplies 

7 

Chemoprophylaxis 18 1 Travellers/pregnant women 
Other 11 1 Treated bednets 

3. All countries reported having a malaria notification system. Five respondents 
indicated some form of routine Health Information System based on monthly 

reporting from districts. South Africa includes malaria as a notifiable disease and 

operates an Active Case Detection System. 

4. Five respondents reported receiving regular meteorological information, the 

exceptions were: Angola, Madagascar, Mozambique and Tanzania. The data 

available are generally monthly rainfall and temperature statistics from the 
Meteorological Department. 

80 



5. The available meteorological data are reported as being either very reliable or 

somewhat reliable in availability. Madagascar commented that the malaria cases in 

the and southern region were related to rainfall. 

6. Eight countries reported having access to national malaria scientists. The 

exception was Swaziland who reported only having access to foreign scientists. 

Madagascar reported a lack of parasitologists. Angola reported a lack of 

entomologists. 

7. Only three countries reported having long-term data on malaria incidence. 

These were: Angola with data from 1970 (covering a few major cities); South Africa 

with data from 1970; and Botswana with data from 1981/82. Others report data being 

available for the last 4 to 5 years. The data (with the exception of South Africa and 
Botswana) were records of clinical diagnosis. Eight of the respondents stated that 

parasitological confirmation of a proportion of cases is carried out at selected 
facilities. Madagascar stated that parasitological confirmation was rarely carried out. 

8. There was little apparent awareness of other long-term data sets which could 
be used as indicators in modelling year to year variation in malaria. Three 

respondents suggested hospital admission data (Madagascar, Swaziland and 
Zimbabwe) while one (Namibia) suggested rainfall station data might be useful. 

9. There was little clear consensus on challenges to malaria control over the 

next 10 years, although a number of countries (3) expressed concern over increasing 

drug resistance. Three countries mentioned the need for improved forecasting and 
management of epidemics (Namibia, Botswana and Swaziland). Madagascar 

mentioned implementation of a large scale, bednet programme. South Africa 

mentioned the need for geographical stratification for improved coverage by the 
NMCP. 

4.4.1.2. Section B. PerceDtions of malaria incidence (last 5-10 vears) 

10. All countries reported increased levels of malaria in their countries over the 

past 10 years - see table 4.2. for reasons stated. 
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Table 4.2. Perceptions of increasing malaria trends. 

Perceived reason for increase in malaria 
over last 10 years 

Respondents ranking within 
top 3 categories 

Financial 4 
Drug resistance 4 
Climate 7 
War/Civil unrest I 
Refugees 2 
Lack of skilled personnel 4 
Agriculture and iffigation 2 
Other 

Migmtions 
Post drough epidemics 

2 
I 

11. The respondents answers are summarized in Table 4.3. 

12. The respondents answers are summarized in Table 4.3. 

Table 4.3. Epidemics experienced in the last 10 years 1985-1996. 

Year Countries reporting epidemics 
in year 

Year of most severe epidemic 

1985/86 1 
1986/87 3 
1987/88 3 1 
1988/89 
1989/90 1 
1990/91 
1991/92 
1992/93 5 
1993/94 2 1 
1994/95 1 
1995/96 6 16 

13. The majority of respondents defined an epidemic simply as an increase in the 
number of cases and deaths above that expected. One respondent defined an 
epidemic as an increase in incidence beyond the 10 year mean (South Africa). 
Another as an increase in cases above the previous 5 years for the same period 
(Botswana). 
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14. Six of the nine respondents perceived that years of severe transmission were 
becoming more frequent. Tbree respondents attributed this to climate variability, 
three to increasing drug resistance, two to financial considerations. 

15. Five of the respondents reported the epidemics as being wide spread, three as 
localised in small areas, and one as a combination of both, depending on the year. 

16. There was a low response to this question. However, three respondents 
expected to have 4 to 5 epidemics over the next 20 years. 

4.4.1.3. Section C. Responses to severe epidemics 

17. Most respondents cited 1996 as their last epidemic year, the exceptions were 
Mozambique which was 1993, and Madagascar which was 1988. 

18. The respondents were asked to draw a seasonal profile of malaria for their 
country and indicate where on the graph they noticed an epidemic was occurring in 
the year of the last epidemic. Most respondents (7) claimed to have become aware of 
the epidemic one month prior to its peak. 

19. Only one country reported being unprepared for the last epidemic 
(Zimbabwe). Response was generally based on vector control and mass drug 

administration. Only one country reported a lack of available personnel (Botswana). 

20. Five respondents report improved preparedness the following year, 
development of national epidemic response plans, and improved surveillance in 
epidemic prone areas. 

21. If an Epidemic Early Warning were available eight respondents claimed that 
they would send field teams out to confirm the epidemic, then mobilise resources. 
Response generally based on mass drug administration, vector control and increasing 
community awareness. 

22. The perceived lead-time required for an Epidemic Early Waming System 
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ranged between one month and six months prior to the beginning of the transmission 

season. 

4.4.1.4. Section D. ResDonses to past climate 

23. Six respondents replied to the question of impacts of wet periods on malaria 

control operations. These stated that wet periods were related to increased malaria 

and higher risk of epidemics. 

24. Low response to question on response to wet years (5). However, increased 

surveillance (South Africa), resource mobilisation (Namibia) and additional vector 

control (Mozambique) is carried out in some countries. 

25. Tbc response to the question of changes in control in response to wet periods 

over the past 5 years was low (4). Both Zimbabwe and South Africa said there was 

no change. Namibia and Swaziland reported emphasis on developing national 

preparedness plans. 

26. Regarding characteristics of the country which make malaria control more or 
less vulnerable in wet years than in neighbouring countries. The response was again 
low (5). One mentioned post drought epidemic risk as being an important factor 

(Namibia). Both South Africa and Zimbabwe stated no difference between normal 

and wet years. Angola reported concerns over adequacy of sanitation in wet years. 

27. Regarding whether climatic conditions or events are problematic for the 
country's malaria control operations, again a low response to question (4). Rainfall 

variability (Angola) and a 2-3 year drought prior to wet period were suggested by 
Namibia. Mention of El Nino was made by South Africa. Zimbabwe stated "none. " 

4.4.1.5. Section E Adaptation to climate varlat& 

28. Regarding ways malaria control programme managers can reduce their 

vulnerability to malaria epidemics in wet periods, six responded to the question. 
There was little consensus apparent but better preparedness and improved 

84 



management were mentioned twice. Access to epidemic early warning (South Africa, 
Namibia and Botswana) and identification of epidemic prone areas (Mozambique 

and Namibia) were also mentioned. Improved health education, greater access to 

resources and training were also mentioned as issues Angola and Zimbabwe). 

29. With respect to the main obstacles to reducing vulnerability to wet years, 

again a low response to question. However, unpredictability of rains (Zimbabwe), 

poor sanitation (Angola), and access to skilled personnel (Namibia) were cited by 

respondents. The need for epidemic early warning was mentioned by Mozambique. 

30. All respondents answered that they would like to be involved in collaborative 
research on malaria epidemic prediction. Tanzania's NMCP said it was interesting, 
but because Tanzania is an endemic country epidemic prediction is not an important 
issue in Tanzania. 

4.4.2. Perceptions of malaria endemicity in Southern Africa - Mapping Expert Opinion 

Here the expert opinion of national malaria control programme managers was sought 
with regard to spatial and temporal distribution of malaria in their countries. The map 
showing the results for the five countries involved is shown in Figure 4.4. Much of 
the Republic of South Africa is seen to be malaria free, with transmission occurring 
along the northern borders with its neighbours Botswana, Zimbabwe, Mozambique 

and Swaziland. 

4.5. Data available for the Southern Africa region 

4.5.1.1. EDIdemloloqk8l data 

The epidemiological data gathered from field visits to Botswana, Namibia, 
Swaziland and Zimbabwe consists mostly of that which is available through each of 
the countries' routine national Health Information Systems. This data is gathered for 
decision making by the NMCP at the national level, its intention is not primarily for 
rapid disease surveillance. Other, supplementary data was also collected (blood slide 
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A- never 

01 -awry year 14 months 

02 - every year 6-12 rn(MMS 

C- not every year 
M 

Not sure 

Legend: 

The map represents expert opinion of malaria distribution in selected Southern 
African countries. The map was produced using administrative boundary files 
supplied by SADC-RRSP (1997). 



surveys, age specific data, district populations, parasite surveys) where possible and 

these will be discussed along with case definitions at the individual country level as 

appropriate. The data available from the four countries are summarised in Table 4.5. 

The author had intended to use this data to assess 'malaria' across the region. 
However, intercountry analysis of the data was not possible as the case definition and 

age categories used by the countries were not consistent across borders between 

neighbouring countries. 

Envir-onmental data 

Environmental data for Southern Africa were obtained from a number of different 

sources, these are summarized in Table 4.6. The environmental, data which mostly 
comprise continuous grid surfaces, are readily available over the internet, or obtained 
on CD-ROM. 

The simple climate based map of malaria endemicity was produced by the author 
after discussion with the WHO-AFRO Inter-Country Team for Malaria Control in 
Southern Africa (SAMC), based in Harare, Zimbabwe. The map picks out well, for 
instance, the highland areas of Zimbabwe where malaria transmission is constrained 
by temperatures and by contrast the lower lying river valley systems where malaria 
would be expected to be more stable. The map produced, Figure 4.5, has since been 

adopted by WHO-SAMC as a baseline stratification map for the region (WHO- 
16 SAMC 2000) 

4.6. Discussion 

Malaria in Southern Africa is perceived, by national malaria control programme 
managers, to vary markedly within and between countries. Challenges to malaria 
control in Southern African countries are not perceived by these experts to be 

uniform problems. According to the survey, malaria is considered to be a highly 
endemic disease in Tanzania and as a consequence epidemic early warning and 
surveillance do not rank as priorities for the national malaria control programme in 

16 The map is also currently distributed by WHO-HealthMap-Geneva with the malaria module of the 
HealthMapper software. 
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TABLE 4.5. SUMMRYOFAVAIL4BLEEPIDEMIOLOGIC, 4L DATA ONMAL4RL4 COLLECTED 
FROM FO UR SO UTHERAr AFRICA CO UNTRIES. 

Country Time period/frequency/case definition Spatial Scale 

Botswana 1996-1999 Weekly confirmed/unconfirmed District 

1996-1999 Weekly deaths District 

1982-1999 Annual confirmed/unconfirmed District 

1974-1998 Annual outpatient/inpatient District 

Namibia 1996-2000 Monthly clinical outpatient/inpatient Directorate 

1993-2000 Monthly clinical inpatient National 

1996-2000 Monthly deaths National 

Swaziland 1985-1999 Annual clinical inpatient District 

1992-1999 Annual clinical outpatient District 

1994-1999 Annual deaths District 

Zimbabwe 1994-1999 Monthly clinical unconfirmed, 04 years District 

1994-1999 Monthly clinical unconfirmed, 5-14 years District 

1994-1999 Monthly clinical unconfirmed, > 15 years District 



TABLE 4.6. ENVIRONMENTAL VARUBLES USED 17V THE ANALYSES. 

VARIABLE Spatial Temporal Time Original Source 
resolution resolution period projection* 

NDVI 8km Monthly July 1982- Alber's ADDS 
(derived Dec 2000 Equal Area 
from 
decadal) 

RFE 8km Monthly July 1995- Alber's ADDS 
(derived December Equal Area 
from 2000 
decadal) 

CCD 7.6 dekadal. 1988- Hammer- FAO 
1999 Aitoff 

Climate 5km monthly 1951- Geographic UEA-CRU 
anomalies 1995 (Lat/Long) 
(min, max 
temperature 
and diurnal 
range, rainfall 
Mean, min, 5km Geographic ANU-CRES 
max altitude 

_CLat/Long) Vectorial 5km monthly July 1995- Geographic Derived from 
capacity December (Lat/Long) UEA-CRU and 

2000 ADDS 
Lat/ Long of Geographic Derived and 
district (Lat/Long) adapted from 
centroids SADC-RRSU 
Rainfall 7.6km monthly Mean 19- Geographic SADC-RRSU 
climatology 61-1990 (Lat/Long) 
Humidity 7.6km monthly Mean 19- Geographic SADC-RRSU 
limatology 61-1990 (Lat/Long) 
Temperature 7.6km monthly Mean 19- Geographic SADC-RRSU 
climatology I 1 1 61-1990 (Lat/Long) II 

'All image products were converted into a common 'Geographic Projection' (Lat/Long) at 51an 
spatial resolution using Windisp4. 



FIGURE 4.5. ENVIRONMENTAL BASED MAP OF MALARIA ENDEMICITY IN SOUTHERNAFRICA 

aria 
ria 

Legend: 

This simple map of more stable - less stable malaria distribution in Southern Africa 
was produced in discussion with WHO-SAMC and WHO-HealthMap using climate 
surface data. The climate constraints chosen were mean annual temperatures <1 80C 
and annual rainfall <250mm for the non malarious class; mean monthly temperatures 
between 18-220C for five consecutive months and annual rainfall >250mm for the 
less stable malaria class; mean monthly temperature >22'C for five consecutive 
months and annual rainfall >400mm for the more stable malaria class. 



that country. Other countries express a need for stratifying their country to improve 

the focus of control activities. Elsewhere better access to information on seasonal 

weather patterns, or climate trends, were seen to offer potential for improvements in 

control of periodic malaria epidemics. 

The design of the survey questionnaire unfortunately allowed a degree of ambiguity 

and inconsistency of response, making it difficult to quantify the findings. However, 

the survey was carried out in 1997 before the heightened interest in malaria mapping 

and linkages in climate an d health became so widespread that some results became 

biased. The questionnaire was perhaps too long and respondent fatigue was apparent 

in the latter parts of the survey. However, it is clear from the survey results that the 

majority of NMCP managers are aware of linkages between variability in seasonal 

and inter-annual malaria patterns and climate. The importance of climate as a factor 

influencing the occurrence of malaria epidemics was apparent, as was the need for 

some means of Early Warning System for notifying of increased epidemic risk. 

These were identified at a general malaria conference, rather than a climate health 

meeting. Although the survey included a maximum of 9 respondents and therefore 

has no statistical validity. The respondents consisted of key personnel who effect 

malaria control in practice at both the national and regional level. Understanding 

their perspectives on the role climate variability plays in malaria control is essential 

for the development of outputs which can be tested in the field reality in which they 

operate. Since 1997 there have been a number of epidemic outbreaks in Tanzania in 

which climate has been one of the reasons implicated, along with malnutrition (Juan 

Garay: pers. comm. ), and increased drug resistance (Bodker, Kisinza et al. 2000). 

In general malaria endemicity in Southern Africa is thought to increase from South to 

North, but within this overall trend there are anomalous areas where perceived 

endemicity changes markedly at international borders, e. g. Botswana/Zimbabwe, 

Figure 4.4, and where non-malarious areas in Southern Botswana meet areas where 

malaria occurs periodically across the border in the Republic of South Africa. Is this 
due to differentials in control achievements on either side of the border 17 

, differences 

17 Surveys in South Africa during the 1930s by Park Ross showed that malaria was endemic all along 
its northern borders with Botswana, Zimbabwe, Swaziland and Mozambique. Reviewed in Le Sueur 
et al (1993). 
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in the importance of malaria as a public health problem and therefore differences in 

surveillance of malaria in remote regions? The climate based endemicity map of 
Southern Africa, Figure 4.5, does not support these border differences, and neither 
does it support so clear a north-south trend. Extensive highland areas of Zambia and 
Angola fall clearly into the category of less stable malaria. A basic problem with this 

expert opinion map is that it does not indicate whether the NMCP manager who 

produced it was basing his or her perceptions on transmission or case reporting. 
Both the expert opinion maps and the climate based maps of malaria endemicity 
should be tested against good quality epidemiological data to verify their worth as 

endemicity maps. 

The epidemiological data available varies greatly in its quality and availability over 
time. Unfortunately the lack of comparability of the epidemiological data across all 
the different countries makes it difficult to test for regional patterns. Therefore each 

of four countries (Botswana, Zimbabwe, Namibia and Swaziland) will be dealt with 

as individual case studies in subsequent chapters. 

By contrast there is a growing availability of environmental information for the 

region. Much of it has been archived by the SADC Regional Remote Sensing Unit 

(RRSU), in Harare, Zimbabwe and is available on a CD-ROM. The problems of 

cross border comparability with the environmental variables is less of an issue, as 
these are available as continuous grid surfaces covering the entire region. The 

regular dissemination of frequently updated environmental information, throughout 

the region by the SADC-RRSU, is also encouraging for intersectoral collaboration on 
development of epidemic early warning initiatives. 
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5. Malaria and Environment in Botswana 

5.1. Introduction 

5.1.1. Geographical background 

Botswana is a landlocked country with a total land area of 581,730 square 
kilometres. It shares borders with Namibia, Zambia, Zimbabwe and South Africa. 

The country is mostly comprised of land above 1000 meters, with substantial tracts 

of desert, including the Kalahari in the Southwest. The major river system in 

Botswana is the Okavango, which flows from the Bie Plateau in Angola, into the 

north-westem part of the country forming the extensive Okavango Delta. 

Occasionally floodwaters from the Okavango will enter the Boteti River and flow 

south-easterly into Lake Xau and the Makgadikgadi Pan. The average annual rainfall 
is 635mm in the north decreasing to 230mm in the south. Although rainfall is 

concentrated into the summer months, November to April, it is subject to high inter- 

annual variability and periodic drought (van Regenmortel 1995). Botswana's Gross 

Domestic Product, is relatively high for sub-Saharan Africa at US$3070 per capita 
(UNDP 2000). The population comprises approximately 30% urban and 70% rural. 
Literacy rates are 60% for women and 81% for men. Prevalence of HIV/AIDS is 
high (30%) and current population growth rates and life expectancy levels (0.76% 

and 39 years respectively) are much reduced as a consequence. 

5.1.2. Overview of malaria and its control in Botswana 

Malaria is ranked as one of the major public health problems in Botswana and as 
such is included among the notifiable diseases reported routinely through the 
Ministry of Health's National Health Information System (NHIS). There is a well 
established National Malaria Control Programme in Botswana with permanent staff 
members. The NMCP is based within the Epidemiology and Disease Control Unit, 
of the Ministry of Health, in Gabarone. A multi-sectoral advisory body, the Malaria 
Reference Group (MRG), was established in 1993 to provide professional and 
technical expertise to the NMCP. Additional resources at the national level include 

89 



an Entomology Unit with two permanent staff, based in Francistown. The primary 

responsibility for malaria control, however, lies with the District Health Teams who 
may access support from the national level as and when necessary. 

The main malaria control activities carried out in Botswana according to the Ministry 

of Health are: 

1. Vector control through annual indoor residual house spraying in endemic 

areas (Gumare, Ngami, Chobe, Tutume, Boteti and more recently Ghanzi and 
Northeast districts). Between 1997 and 1999, Botswana changed from the use of 
DDT to Deltamethrin (due to poor availability of DDT rather than insecticide 

resistance). 

2. Chemoprophylaxis for target groups during the malaria season: 

o Pregnant women in endemic areas throughout pregnancy and until six weeks 

after delivery. 

0 Residents of non-endemic areas travelling to endemic areas - including 

tourists, defence forces and special labour groups. 

0 School children may be subject to mass administration where and when the 

need arises during epidemic outbreaks. 

3. Prompt and effective case management including drug therapy to affected 
individuals. Sulfadoxine-Pyrimethamine is the recommended first line choice for 

uncomplicated malaria cases, and Quinine is recommended for severe and 
complicated cases. Chloroquine was abandoned as the first line treatment in 1997 
due to surveys which showed increasing resistance and high rates of treatment 
failure. 

4. Community health education, raising awareness of malaria symptoms and 
appropriate action, encouraging the use of personal protection measures such as 
mosquito repellents and bednets. 

S. Environmental hygiene and sanitation. 
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Programme Monitoring and Evaluation. 

The achievement of malaria control through the above is a major policy goal of the 

NMCP and is integrated wherever possible through the country's Primary Health 

Care strategy and referral system (Ministry of Health 1999). 

According to the NMCP malaria distribution is highest in the North of the country 

with seasonal transmission patterns of less than six months each year. The central 

section of the country is considered to be one of low endemicity where malaria does 

not occur every year, but where epidemics may occur. The South is perceived to be 

largely non-malarious, apart from sporadic cases (Ministry of Health 1999). Figure 

5.1 presents the 'Expert Opinion' map of malaria distribution in Botswana gathered 
during the survey described in Chapter 4. 

5.2. Aims of this chapter 

" To describe the spatial and temporal distribution of malaria incidence in 

Botswana from district level data collected through the health information 

system. 

o If successful, to use this data to create a model of the seasonality of 

malaria transmission in Botswana at the district level. 

" To relate the spatial and seasonal variation in malaria incidence to environmental 

variables 

o If successful, to a create a map of the seasonality of transmission in 

Botswana at the sub-district level. 

" To relate spatial and inter-annual variation in malaria incidence to spatial and 
inter-annual variation in environmental variables 

o If successful, to explore the use of these relationships in the development 

of early warning indicators for malaria epidemics at the sub-district level. 
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FIGURE 5.1. EVERT OPINION MAP OF MALARIA IN BoTswANA - ciRcA 1998. 
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The expert opinion map of malaria distribution in Botswana was produced using 
administrative boundary files provided by SADC-RRSP (1997). 



5.3. Materials and methods 

Data sources 

5.3.1.1. EpidemioLogical data 

Epidemiological data were collected from the Ministry of Health's Epidemiology 

and Disease Control Unit, and the Central Statistics Office in Gabarone, Botswana. 

The data consisted of the following information as set out in Table 5.1. 

TABLE5.1 EpimmioLOGICAL DATA COLLECTED FROMBOTSWANA 

Country Time period/frequency/case definition Spatial Scale 

Botswana 1974-1998 Annual outpatient/inpatient District 

Botswana 1982-1999 Annual confirmed/unconfirtned District 

Botswana 1996-1999 Weekly confirmed/unconfinned District 

Botswana 1996-1999 Weekly deaths District 

The National Health Information System (NHIS) in Botswana has, since 1996, 

received weekly reports of unconfirmed and confirmed malaria cases, as well as 
deaths attributed to malaria. To enable these data to be analysed directly with as 

wide a range of environmental variables as possible they were aggregated to monthly 

values using SPSS. The weeks spanning the beginning and the ends of months were 

allocated on the basis of which month their mid weekday fell into. 

Some urban districts are assigned as being of the same risk as the wider rural district 

surrounding them (Ministry of Health 1999), and these are combined here, and the 
latter are used for extracting statistics on the environmental variables. 

5.3.1.2. District boundaries 

Some district names and district boundaries have changed during recent years and 
this has also been taken into account here for data aggregation, Table 5.2. Figure 5.2. 

92 



FIGURE5.2. HEALTH DISTRICTS REPOR77NG TO THE HEALTH INFORMATION SYSTEM 
(INCORPORATING URBANARE, 4SANDRECENTBOUNDARYCHANGES). 

Legend: 

The map was produced from health district boundaries supplied by the Ministry of 
Health, Botswana. 



Table 5.2. Administrative districts in Botswana 

Administrative District Formerly or Incorporating 
Bobirwe SPTC (Selibe-Phikwe Town Council) 
Boteti 
Chobe 
Ghanzi 
Gumare Okavango 
Kgalagadi Kgalagadi North and Kgalagadi South 
Kgatleng 
Kweneng_ýE 
Kweneng_ýW 
Mahalapye 
Ngami Ngamiland 
Northeast Francistown 
Serowe-Palapye 
Southeast Gabarone and Lobatse 
Southem(S)"' Good Hope 
Southem(N) 
Tutume 

District population totals were produced for each year using available information on 

growth rates. Following reference to population statistics held by the US Census 

Bureau and discussion with a demographer based in the WHO Intercountry Team 

Offices, in Harare, annual population growth rates were revised to reflect a rate of 

1% per annum, since 1995. Incidence data were produced for each of the districts by 

year. 'Me district boundaries used in the extraction were adapted from those provided 

by SADC in line with changes in the Health Districts. 

5.3.1.3. Environmental data 

The Windisp4 software was used to extract district, regional and national statistics 
from the digital surfaces of the environmental variables (described in Chapter 4). 

Administrative boundaries used for the data extraction were amended to correspond 

with the administrative units used by the various national Health Information 

Systems. Extracted data included: the latitude and longitude co-ordinates of the 
district centroids, attitude; decadal CCD, RFE, NDVI aggregated to monthly values; 

'a In the Botswana HIS, the administrative district 'Southern' is divided into two areas: the southerly 
area was formerly called Good Hope. Here it is simply called Southern(S). Other sectors do not appear 
to use this division. 
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monthly Vectorial Capacity, and long-term monthly averages for rainfall, 

temperature and relative humidity. The monthly Vectorial Capacity images 

(described in Chapter 3) were produced with monthly average temperature and actual 

rainfall estimates input into the model at lags of 0,12, and 3 months. With the 

exception of altitude, latitude and longitude, all environmental variables including 

Vectorial Capacity (with rainfall to temperature lags) were then lagged at 1-5 

months, Tables 5.3 a-d. 

The extracted statistics, were then entered into SPSS V. 10.0 along with the 

respective epidemiological data. Image products required for spatial modelling were 

re-projected into a common spatial and temporal resolution using the Windisp4 

software. Windisp4 was then used to export the products into Idrisi format for 

subsequent modelling using ldrisi's 'Image Calculator' function. 

5.3.2. Data analysis 

SPSS and Microsoft Excel were used to explore and assess the relationships between 

the data sets. The preliminary analyses included comparing time series of 

unconfirmed (outpatient and inpatient) and laboratory confirmed malaria cases using 

exploratory scatterplots and Pearson's correlation coefficient. Comparisons were 

made of relationships between contemporaneous environmental variables such as 
NDVI and RFE and the respective long-term mean monthly climatology variables. 
The relationships between the epidemiological data and the environmental variables 

were also explored using curve estimation techniques in SPSS. The best overall 

relationships between environmental variables and the epidemiological data occurred 

when the natural log of the confirmed malaria incidence was used. As a result of 
this, and the fact that laboratory confirmed data was available for all districts in 

Botswana, the prime malaria case data chosen for further analysis was the natural log 

of the monthly incidence of confirmed ca§es, 1996-1999. 

Difference anomalies for both contemporaneous environmental variables, and the log 

confirmed incidence data, were created by aggregating annual mean monthly 
statistics and then subtracting mean from actual. These were then classified: zero 
<--O, one >0. Chi square (using 'exact' where N<--5) statistics on differences 
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TABLE5.3A. SUMAMRYOFENVIRONMENTAL VARL4BLESFROMREMOTE SENSING. 

Environmental proxies de rived from remote sensing 
Variable Description Notation used in 

models 
NDVI smoothed average Monthly NDVI made from dekadal. NDVI-SAV 

data using a simple smoothing 
technique (Robinson, 1996). 

NDVI smoothed average Monthly NDVI smoothed and LAGS(NDVI-SAV, I) 
lag I lagged by one month 
NDVI smoothed average Monthly NDVI smoothed and LAGS(NDVI-SAV, 2) 
lag 2 lagged by two months 
NDVI smoothed average Monthly NDVI smoothed and LAGS(NDVI-SAV, 3) 
lag 3 lagged by three months 
NDVI smoothed average Monthly NDVI smoothed and LAGS(NDVLS", 4) 
lag 4 lagged by four months 
NDVI smoothed average Monthly NDVI smoothed and LAGS(NDVI-SAV, 5) 
lag 5 lagged by five months 
NDVI maximum maximum NDVI value in month NDVI MAX 
NDVI maximum lag I maximum NDVI in month lagged by LAGS(NDVI_MAX, I) 

one month 
NDVI maximum lag 2 maximum NDVI in month lagged by LAGS(NDVI-MAX, 2) 

two months 
NDVI maximum lag 3 maximum NDVI in month lagged by LAGS(NDVI-MAX, 3) 

three months 
NDVI maximum lag 4 maximum NDVI in month lagged by LAGS(NDVI-MAX, 4) 

four months 
NDVI maximum lag 5 maximum NDVI in month lagged by LAGS(NDVI-MAX, 5) 

five months 
Rainfall estimate Monthly rainfall estimate (sum of RIFE 

dekadal estimates) 
Rainfall estimate lag I Monthly rainfall estimate lagged by LAGS(RFE, I) 

one month 
Rainfall estimate lag 2 Monthly rainfall estimate lagged by LAGS(RFE, 2) 

two months 
Rainfall estimate lag 3 Monthly rainfall estimate lagged by LAGS(RFE, 3) 

three months 
Rainfall estimate lag 4 Monthly rainfall estimate lagged by LAGS(RFE, 4) 

four months 
Rainfall estimate lag 5 Monthly rainfall estimate lagged by LAGS(RFE. 5) 

five months 
Cold Cloud Duration Monthly CCD (sum of dekadal CCD 

CCD) 
Cold Cloud Duration lagi Monthly CCD lagged one month LAGS(CCD, l) 
Cold Cloud Duration lag2 Monthly CCD lagged two months LAGS(CCD, I) 
Cold Cloud Duration lag3 Monthly CCD lagged three months LAGS(CCD, I) 
Cold Cloud Duration lag4 Monthly CCD lagged four months _ LAGS(CCD, I 
Cold Cloud Duration lag5 Monthly CCD lagged five months LAGS(CCD. 1 



FIGURE5.3B SUMM4RYOFENVIRONMENTALVARL4BLESFROMAMNCLIAMTOLOGY 

Mean monthly climatoloZ r (1951-1995) 
Variable Description Notation used in 

models 
Mean rainfall Monthly mean rainfall (1951-95) RAIN 
Mean rainfall lag I Monthly mean rainfall (1951-95) LAGS(N_RAIN_I) 

lagged by one month 
Mean rainfall lag 2 Monthly mean rainfall (1951-95) LAGS(X-RAIN_2) 

jagged by two months 
Mean rainfall lag 3 Monthly mean rainfall (1951-95) LAGSOý_RAINJ) 

lagged by three months 
Mean rainfall lag 4 Monthly mean rainfall (1951-95) LAGS(N_RAIN_4) 

lagged by four months 
Mean rainfall lag 5 Monthly mean rainfall (1951-95) LAGS(X. RAIN__5) 

lagged by five months 
Mean temperature Monthly mean temperature (1951-95) TEMP 
Mean temperature lag I Monthly mean temperature (1951-95) LAGSOý_TEMPý_I) 

jagged by one month 
Mean temperature lag 2 Monthly mean temperature (195 1.95) LAGSOý_TEMP-2) 

lagged by two months 
Mean temperature lag 3 Monthly mean temperature (195 1-95) LAGS(N_TEMP_3) 

lagged by three months 
Mean temperature lag 4 Monthly mean temperature (195 1-95) LAGS(N_TEMP-4) 

lagged by four months 
Mean temperature lag 5 Monthly mean temperature (195 1-95) LAGS(X-TEMP_5) 

lagged by five months 
Mean relative humidity Monthly mean relative humidity RH 

(1961-1990) 
Mean relative humidity lag I Monthly mean relative humidity LAGSOý_RILI) 

(1961-1990) lagged by one month 
Mean relative humidity lag 2 Monthly mean relative humidity LAGS(X, 

_RILI) (1961-1990) lagged by two months 
Mean relative humidity lag 3 Monthly mean relative humidity LAGSOý_RILI) 

(1961-1990) lagged by three months 
Mean relative humidity lag 4 Monthly mean relative humidity LAGSOý_RILI) 

, (1961-1990) lagged by four months 
Mean relative humidity I 4ý Monthly mean relative humidity LAGSOý_RILI) 

(1961-1990) lagged by five months 

FIGURE5.3C. NON-TEMPORAL ENVIRONMENTAL VARZABLES USED 
Variable Description Notation used in 

models 
Latitude Latitude of district centroid LATS 
Longitude Longitude of district centroid LONGS 
Minimum altitude Minimum altitude in distict MIN ALT 
Maximum altitude Maximum altitude in district MAX ALT 
Average altitude Average altitude in district AVG ALT 
Altitude class Altitude range considered to be 

pertinent to malaria endemicity, e. g. 
(Taylor and Matumbo, 1986) 

ALT_CLAS§- 



TABLE 5.3D. SUMIARYOFENVIRONMENTAL VARUBLES CREATED. 

Vectorial Capacity produc using both mean climatology (T) and r mote sensing (RFE) 
Variable Description Notation used 
Vectorial Capacity lag 0 Monthly vectorial capacity with both T VCLAG-O 

and RFE simultaneous 
Vectorial Capacity lag I Monthly vectorial capacity with RFE VCLAG-I 

lagged by I month 
Vectorial Capacity lag 2 Monthly vectorial capacity with RFE VCEA-G_2 

lagged 2 months 
Vectorial Capacity lag 3 Monthly vectorial capacity with RFE VCLAG_3 

lagged by 3 months 
Vectorial Capacity lag 01 Monthly vectorial capacity (T and RFE LAGS(VCLAG-0, I) 

simultaneous) lagged I month 
Vectorial Capacity lag 02 Monthly vectorial capacity (T and RFE LAGS(VCLAG_0,2) 

simultaneous) lagged 2 months 
Vectorial Capacity lag 03 Monthly vectorial capacity (T and RFE LAGS(VCLAG_0,3) 

simultaneous) lagged 3 months 
Vectorial Capacity lag 04 Monthly vectorial capacity (T and RFE LAGS(VCLAG_0,4) 

simultaneous) lagged 4months 
Vectorial Capacity lag 05 Monthly vectorial capacity (T and RFE LAGS(VCLAG_0,5) 

simultaneous) lagged 5 months 
Vectorial Capacity lag 11 Monthly vectorial capacity (input RFE LAGS(VCLAG-1, I) 

lagged by I month) lagged I month 
Vectorial Capacity lag 12 Monthly vectorial capacity (input RFE LAGS(VCLAG_1,2) 

lagged by I month) lagged 2months 
Vectorial Capacity lag 13 Monthly vectorial capacity (input RFE LAGS(VCLAG_1,3) 

lagged by I month) lagged 3 months 
Vectorial Capacity lag 14 Monthly vectorial capacity (input RFE LAGS(VCLAG_1,4) 

lagged by I month) lagged 4 months 
Vectorial Capacity lag 15 Monthly vectorial capacity (input RIFE LAGS(VCLAG_1,5) 

lagged by I month) lagged 5 months 
Vectorial Capacity lag 2_1 Monthly vectorial capacity (input RFE LAGS(VCLAG_2, I) 

, 
lagged by 2 months) lagged I month 

Vectorial Capacity lag 2_2 Monthly vectorial capacity (input RFE LAGS(VCLAG_2,2) 
lagged by 2 months) lagged 2 months 

Vectorial Capacity lag 2, 
_3 

Monthly vectorial capacity (input RFE LAGS(VCLAG_2,3) 
lagged ýb 2 months) lagged 3 months 

Vectorial Capacity lag 2_4 Monthly vectorial capacity (input RFE LAGS(VCLAG_2,4) 
lagged by 2 months) lagged 4 months 

Vectorial Capacity lag 2_5 Monthly vectorial capacity (input RFE LAGS(VCLAG_2,5) 
lagged b by 2 months) lagged 5 months 

Vectorial Capacity lag 3_1 Monthly vectorial capacity (input RIFE LAGS(VCLAG_3, I) 
lagged by 3 months) lagged I month 

Vectorial Capacity lag 3_2 Monthly vectorial capacity (input RFE LAGS(VCLAG_3,2) 
lagged by 3 months) lagged 2 months 

Vectorial Capacity lag 3_3 Monthly vectorial capacity (input RIFE LAGS(VCLAG_3,3)' 
lagged by 3 months) lagged 3 months 

Vectorial Capacity lag 3_4 Monthly vectorial capacity (input RFE LAGS(VCLAG_3,4) 
lagged by 3 months) lagged 4 months 

Vectorial Capacity lag 35 Monthly vectorial capacity (input RFE LAGS(VCLAG_3,5)' 
lagged by 3 months) lagged 5 months 1 



between classified epidemiological and environmental anomalies. These were 

graphed for visual analysis prior to modelling. 

5.3.3. Mapping malaria 

Methods of presenting summary data in map fonnat were explored. These included: 

* Identifying the malaria positive months in each district using: presence or 

absence of any confirmed malaria cases reported in any given month, per 
district. 

* Identifying the malaria transmission season in each district. This was 

achieved through: 

o identifying months in which confirmed malaria incidence exceeded a 
specified percentage threshold of the annual total 

o Following explorations using the monthly unconfirmed and confirmed 

cases for 1996-1999 the figure of 5% of annual total was chosen as 
being the most useful indicator of whether a particular month belongs 

to the malaria transmission season. This technique was also used by 

Hay and colleagues to determine seasonality of malaria in Kenya 

(Hay, Snow et at. 1998b) who coincidently found 5% to be the best 

indicator of the beginning and end of the transmission season. 

o Identifying months in which malaria incidence equal to or in excess of 
the percentage threshold value and neighbouring at least one other 

similar month. Months fulfilling this criteria were deemed to be part 
of the malaria transmission season. 

o Mapping the number of months fulfilling the malaria transmission 

season criteria including the first month, the last month and the 
duration of the season. 

* Development of a map describing a seasonal model of malaria incidence, 
based on environmental variables, using logistic regression techniques. 
Logistic regression computes the percentage of class membership, I or 0, of 
malaria season using differences between a number of independent variables. 
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The 'Forward Stepwise' method in SPSS was used to run a number of 

exploratory logistic models using the environmental variables described in 

Tables 5.3a-d. 

5.3.4. Monitoring changes in epidemic risk 

Linear regression modelling was used to identify combinations of selected 

environmental variables most closely associated with the monthly variability in the 

confirmed malaria incidence data. Tests of association between environmental 

variable anomalies and malaria incidence anomalies were explored. The 

environmental variables which were lagged (0,1,2,3,4 and 5 months) were analysed 

against variability in the monthly incidence data. The products were then used in the 

development of predictive maps of confirtned monthly malaria incidence, at national 

and sub-national scales, using linear regression methods. 

5.4. Results 

Patterns of malaria in Botswana 

Annual totals (1982-1999) of confirmed malaria cases plotted against time show that 

malaria in Botswana has a high inter-annual variability (Figure 5.3a). There is also a 

clear trend of increased malaria cases over time apparent in Figure 5.3a. The Moll 

have suggested that this is due to increased parasite resistance to drug treatment 

(Chloroquine was changed to S. P. as the first line drug in 1997) and a shift 

southward of the margins of transmission (Ministry of Health 1999). Ghanzi was 
first declared a malarious district in 1997. While the conf inned cases are a sub-set of 

unconfirmed (total) malaria cases that may have varied in proportion over the years, 

the correlation between unconfirmed and confirmed cases in Botswana is relatively 

strong (R2 =0 . 7982), Figure 5.3b. The relationship between confirmed and 

unconfinned malaria cases varied over the months of the year, and between districts, 

Table 5.4a-b. 
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FiGURE5.3A. ANNUAL TOTALS OF CONFIRMED CASES OF MALARIA IN BoTswANA 1982-1999. 
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FIGURE5.3B. RELATIONSHIP BETWEENCONFIRMEDAND UNCONFIRMED MALARIA CASES IN 
BoTswANA 1982-1999. 
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T4BLE 5.4,4. Co. kfl'. 4RI, ý0. \'OF. 41'EP, 4GEAfOVTHLYCOý, VFIRMED AND UNCONFIRMED MALARIA 
CASE REPOR TING IN BoTswANA 19 96-1999. 

Significance R2 value N* 
J4AV4 RY0.000 0.746 50 
February 0.000 0.764 48 
March 0.000 0.817 50 
April 0.000 0.823 52 
May 0.000 0.728 48 
June 0.000 0.576 38 
July 0.000 0.601 35 
August 0.000 0.660 29 
September 0.000 0.646 33 
October 0.000 0.702 33 
November 0.001 0.286 36 
December 0.000 0.615 35 

TABLE 5.4B. COMPARISON OF CONFIRMED AND UNCONFIRMED MALARIA CASE REPORTING 
BYDISTRICT IN BoTswANA 1996-1999. 

Bobirwe 
Boteti 
Chobe 
Ghanzi 
Gumare 
Kgalagadi 
Kgatleng 
Kweneng_E 
Kweneng-W 
Mahalapye 
Ngami 
Northeast 
Ser-Pal 
Southeast 
Southem(S) 
Southem (N) 
Tutume 

Significance 
0.000 
0.000 
0.000 
0.000 
0.000 
0.038 
0.282 

0.002 
0.000 
0.000 
0.000 
0.000 
0.018 
0.017 
0.000 

R2 value N* 
0.559 
0.673 
0.624 
0.626 
0.767 
0.436 
0.096 

0.340 
0.812 
0.691 
0.701 
0.606 
0.637 
0.888 
0.885 

47 
36 
48 
35 
48 
10 
14 
0 
0 

26 
47 
41 
45 
35 

8 
5 

42 

N= number of months where both unconfirmed and confirmed data are available 
for comparison. 



The most consistent agreement between the two data sets corresponds generally with 

the main months of the malaria season, March and April, and the more endemic 

districts, e. g. Ngami. However, there are anomalies. These are caused mostly by 

sporadic cases occurring in some of the more southern districts. The correlation 
between malaria inpatients and confirmed cases for 1992-1998 was found to be very 

strong (R2 = 0.9559), Figure 5.3c. This suggests a high level of accurate diagnosis 

in hospital care. The relationship between the longer-term unconfirmed (1974-1998) 

outpatient and inpatient malaria data was found to be R2=0.611, Figure 5.3d, 

showing a wider spread in the data, especially when case numbers are high. The 

relationship between confirmed cases and malaria deaths (1992-1999) was R2= 

0.86 1. Figure 5.3e. This indicates that inter-annual variation in malaria deaths was a 

function of transmission levels rather that variation in cases and access to effective 
drug therapý. 

The average confirmed monthly incidence figures for the years 1996-1999 (Figure 

5.4. ) show that Chobe District has the highest malaria, followed by Gumare, Ngami, 

Tutume, Boteti and Ghanzi respectively. However, it can be seen from Figure 5.5. 

that confinned malaria incidence varies markedly between years, and among the 

different districts. 

SPSS was used to analyse the correlation between reported malaria cases and latitude 

(the district centroid). The scatter plot produced in Figure 5.6. shows that monthly 

confirmed malaria cases during 1996-1999 were concentrated in the northern part of 

the country (areas less than 23'S). 

A cross tabulation of simple presence (YES) or absence (NO) of confirmed malaria 

reporting per month. per district was also carried out. The result is outlined in Table 

i. s. and the confirmed cases represented graphically in Figure 5.7. 

Presence (YES) or absence (NO) of reported malaria per month is tabulated by 

district in Table 5.6. The results suggest that no district in Botswana is free of 

unconfirmed or confirmed malaria cases being reported. Furthermore, II of the 17 

districts report confirmed malaria cases for 6 months or more and that 4 of those 
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RGURE5.3C. RELATIONSHIP BETWEEN MALARIA INPATIENTAND CONFIRMED CASE DATA 
1992-1998. 
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FIGURE5.3D. RELATIONSHIP BETWEEN OUTPATIENTAND INPATIENT* MALAPJA CASES, 
B07SWANA 1974-1998. 
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FiGuRE5.3E. CORRELA TIONBETWEEN CONFIRMED MALARIA CASES AND MALARIA DEATHS IN 
BoTswANA, 1992-1998. 
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FiGURE 5.4 
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FiGuRE 5.5. COMPARISON OFANNUAL CONFIRMED MALARIA INCIDENCE (PER 1000, PER 
YEAR) BY DISTRICT 1996-1999. 
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FIGURE 5.6. NORTH-SOUTH DISTRIBUTION OF MALARIA IN B07SWANA 1996-1999. 
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FIGURE 5.7. NUMBER OF MONTHS WITH PRESENCE/ ABSENCE OF CONFIRMED MALARIA BY 
LA TITUDE IN BoTswANA 1996-1999. 
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TABLE 5.5. NuMBER OFMONIHS Jf7TH PRESENCE OR ABSENCE OF CONFIRMED MALARIA BY 
L4 77TUDE 1NBO7N"', 4. v. 41996-1999. 

crosstabulation of malaria presence or absence 

malaria present 
No Yes out of total 

latitude -25,5284 40 8 48 
of -25.1165 38 10 48 
centrold 

-24.9975 13 35 48 
-24.7121 40 8 48 

-24.1353 33 15 48 

-24ý0532 24 24 48 

-23.7761 33 15 48 

-23.3496 22 26 48 
-22.1854 13 35 48 

-22.1738 3 45 48 

-22.0868 1 47 48 
-21.299*3 12 36 48 

-21.0324 7 41 48 
-20.4349 6 42 48 

-19.6780 1 47 48 
-18.9397 48 48 

-18.4024 48 48 
Total 286 530 816 

TABLE 5.6. MONTHLYOCCURRENCE OF MALARIA REPORTING BYDISTRICTIN BOTSWANA 
1996-1999 

District Unconfirmed malaria cases (out 
of total 48 months 

Confirmed malaria cases (out of 
total 4 months) 

No Yes 4 year average No Yes 4 year average 
Bobirwe 48 12 1 _ 47 11.75 
Boteti 48 12 12 36 9 
Chobe 48 12 48 12 
Ghanzi 

- - 
48 12 13 35 8.75 

6 u ma re 48 12 48 12 
Kgalagadi 21 27 6.76 38 10 2.5 
Kgatleng 14 34 8.5 33 15 3.75 
Kweneng_East 15 33 8.25 24 24 6 
Kwenenq_ýWest 22 26 6.5 33 15 3.75 
Mahalapye 1 47 111.75 22 26 6.5 
Ngami 48 12 -1 -47 11.75 
Northeast 48 -12 7 41 10.25 
Ser-Pal 48 12 3 45 11.25 
Southeast 48 12 1 35 8.75 Southern 30 18 4.5 - 40 8 2 
Southern(N) 38 10 -2.5 40 8 2 tu: t im: e 48 12 6 42 10.5 



districts report confirmed malaria cases year round. To illustrate this the results were 

mapped, Figure 5.8. The map still supports the perception of malaria being greatest 

in the northern half of the country. However, it does depart substantially from Expert 

Opinion on malaria distribution in Botswana in terrns of average seasonal duration of 

malaria. The map merely shows the occurrence of malaria reporting by district and 
does not distinguish between districts with one isolated case and others with 
hundreds of cases per month. The map is therefore inadequate in illustrating the 

'endemicity' of malaria in Botswana. 

The cross tabulation was repeated using the results of the months of malaria 

transmission obtained from the analysis of monthly membership of the malaria 

transmission season. Membership was considered to be '1' if totals of monthly 

conf irmed cases were greater than 5% of annual totals and not sporadic 19, otherwise 

membership would be '0', Table 5.7. The seasonal results, Figure 5.9. are much 

closer to expert opinion on malaria distribution in Botswana. The results were then 

mapped, Figure 5.10. 

It can be seen from the map that the average malaria 'season' is longer in districts in 

the northern part of the country. This finding does not agree with the climate 

suitability map, cursor enquiry for northern Botswana, Figure 2.12. While it should 
be noted that the cursor enquiry in Figure 2.12, represents only that specific pixel the 

colour categories over northern Botswana generally suggest a shorter season than 

found here. The district Southeast is somewhat anomalous with a value of five 

months. However, this district contains both Gabarone and Lobatse, two major urban 
districts, and it was considered that many of the cases appearing here would be 

referrals, a result of transmission outside of the district. 

5.4-2. A logistic regression model of malaria season in Botswana 

The monthly presence (I = monthly totals =>5% of annual totals, N=247) or absence 
(0 = monthly totals <5% of annual totals and sporadic, N=569) of confin-ned malaria 

cases was used to create a logistic regression model of the malaria season in 

19 Sporadic is used here to describe low numbers of reported cases in an isolated month where 
neighbouring months do not have reported cases. 
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FiGURE 5.8. M. 4 11 Oh'BO7-)'11', 4, \, 4 SHOWING A VERAGE DURA TION IN MONTHS OF CONFIRMED 

, kfAL. 4RLA CASE REPORTLVG BY DISTRICT 

Legend: 
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Includes referrals to 
Gabarone and Lobatse 

Hatched areas indicate districts with malaria reporting for longer than 6 months per 
year on average. 



TABLE 5.7. A ITRAGE DURA TION OF MALARIA SEASON IN MONTHS, BYDISTRICT, IN 
Boi'sijA. vA 1996-1999. 

District Unconfirmed malaria season 
(months) 

Confirmed malaria season 
(months) 

Bobirwe 7 6 
Boteti 4.5 3.75 
Chobe 8.25 4.75 
Ghanzi 6.5 4 
Gumare 6 5 
Kgalagadi 3.5 1.25 
Kgatleng 4.5 3 
Kweneng_E 4.5 3 
Kweneng W 3.5 1 
Mahalapye 6 4 
Ngami 5.25 4.25 
Northeast 5.75 4.5 
Ser-Pal 6.5 5.25 
Southeast 6 5 
Southern 1 1.5 
SouthemN 2 1.5 
ITutume 1 4.75 4.25 

FIGURE 5.9 MEAN PERCENTAGE OFANNUAL CONFIRMED MALARIA CASES REPORTED BY 
moNTHINBoTswANA (1996-1999). 
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Botswana based on environmental variables. The number of district/months which 

fulfil the membership criteria for malaria season are 247 compared to 569 months 

which do not. This means that without the model guessing whether any district/ 

month would be out of season would have a 69.7% probability of being correct. 

After exploring a range of model structures the fourth model 'Step 4' in Table 5.8 

was eventually chosen as it accounted for 87.7% of the variability in class 

membership, while requiring only 4 independent variables, Table 5.9. 

Twi-, 5.8. DEvELOPAff NTOFA LOGISTIC REGRESSION MODEL MEMBERSHIP OFSEASON 

Clasaffication Tabie 0 

Predicted 
membership of malaria 

season (conf) 
<5% + > =5% and Percentage 

Observed sporadic non sporadic Coffect 
Step I membership of malaria <5% + sporadic 497 72 87.3 

season (conf) > =5% and non sporadic 79 168 6&0 
Overall Percentage 81.5 

Step 2 membership of malana <5% + sporadic 506 63 88.9 
season (conf) > -5% and non sporadic 64 183 74.1 
Overall Percentage 84.4 

Step 3 membership of nvgaria <5% + sporadic 515 54 90.5 
season (conf) > =5% and non sporadic 57 190 76.9 
Overall Percentage 

.4 Step 4 membership o( makina <5% + sporadic 520 49 91.4 
season (coný > =5% and non sporadic 51 196 794 
Overall Percentage 87.7 

a The cut vakie is . 500 

TA BLE 5.9. COEFFICIENTS USED IN THE LOGISTIC REGRESSION MODEL 

Variables In the Equation 

B &E Wald df Sig. Exp(B) 
Stpp X-RAIN_2 061 004 217588 1 000 1063 
1 Constant -3607 240 225.176 1 . 000 027 
step X_RAIN-2 042 . 005 7T852 1 

. 000 1043 
2 NDVl_SAV 14664 1,974 55176 1 

ý000 2335912 
Constant 

-T072 574 152.042 1 
. 000 . 001 

step X. RAIN-2 
. 049 005 83A72 1 

. 000 1.050 
3 NDVI-SAV 14707 2086 49.713 1 

. 000 2437960 
AVG_H -007 '001 35.173 1 

. 
000 993 

Constant -024 1.250 ý000 1 
ý985 976 

SýPp X_RAIN-2 034 . 007 21.960 1 
. 000 1 ý035 4 NDVISAV 13,428 2.127 39.870 1 
. 000 678567.9 

AVG_H -004 . 002 7.445 1 . 006 
. 996 

X-RH-1 080 . 
029 7.676 1 

. 
006 1.084 

Constant -6704 2741 5,984 1 014 . 001 
a Vanable(s) entered on step 1X- RAIN_2 
b Vanabie(s) entered on step 2, NDVI 

- 
SAV 

c Varlabkýs) entered on stop 3 AVG 
-R d. Vanable(s) entered on stop 4 X-RH-l. 

The four independent variables: mean monthly Rainfall (lagged by 2 months); the 

average monthly smoothed NDVI; the average altitude of the district; and the mean 
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monthly Relative Humidity (lagged by I month) were each examined further to 

determine their function in the model. 

Membership of the malaria season for district/months are characterised by a median 

monthly rainfall of 72 mm, lagged by two months (the rainfall two months previous 
to malaria cases), Figure 5.11; a median monthly NDVI of 0.34 without any lags, 

Figure 5.12; a median district altitude of 1000m, Figure 5.13; and a median relative 
humidity of 66%, Figure 5.14. The summary 'box and whisker' plots are based on 
the median, quartiles, and extreme values. The boxes represent the interquartile range 

which contains the 50% of values. The 'whiskers' extend from the box to the highest 

and lowest values, excluding outliers. The line across the box indicates the median. 

FIG uRE -5.11 PUINFALL CHARACTERISTICS FOR MEMBERSHIP OF SEASON 
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Fl(; t'RI, 5.12. NDVI ('11.494CTERISTICS FOR MEMBERSHIP OFSEASON 
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FIG I RE 5.13. ALTITUDE CIIARACTERISTICS FOR AlEmBERSHIP OF SEASON 
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Fi(; t'Rf, 5.14. REL4 TIVE HUMIDIn'CHARACTERISTICS FOR MEMBERSHIP OFSEASON 
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The value of 72mm of rainfall required for membership of malaria season relates 

relatively well to the choice of 80mm chosen by MARA for their climate suitability 

map. The value of 0.34 NDVI relates strongly to the choice used in the development 

of the dynamic maps of climate suitability for malaria, Chapter 2. The value of 66% 

relative humidity also confirms the requirement of >60% RH cited by Gilles (1993) 

and used in the dynamic GIS maps of climate suitability for malaria. 

5.4.3. Mapping the malaria season 

A map of malaria season as determined by the regression model (Box 5.1) was 

produced for each of twelve months using ldrisi's 'Map Calculator' module. 

Box 5.1. THE LOGISTIC REGRESSION MODEL FROM TABLE 5.9. 

1 /(l 

where -Z = (-6.704 + (NDVI-SAV * 13.428) + (X_RAIN 
-2 0.034) + (X_RH_l * 0.080) + (AVG_ALT * -0.004))*-l 

102 



The resulting maps describe the predicted percentage membership of malaria season 

in Botswana. Where the predicted percentage was less than or greater than 50% 

these were reclassified to 0 or] respectively. The twelve maps were then added 

together using ldrisi's overlay module to produce the map, Figure 5.15, which offers 

a predicted length of the season based on a 5km grid. 

The resulting map of malaria season, Figure 5.15, now shows less disagreement with 

the climate suitability map, Figure 2.12, as 'season' in the northern part of the 

country is shown to vary markedly within the districts, ranging between 2 and 6 

months (not including the Okavango Delta). While the map assumes population is 

evenly distributed, the malaria season can be seen to agree well with actual 

population distribution in Botswana, see Figure 4.2, Chapter 4. However, the region 
in the southeast around the major population centres of Gabarone and Lobatse may 
be considered anomalous. suggesting the probability of sustained referrals in this 

region skewing the map. 

5.4.4. A linear regression model of malaria incidence in Botswana 

The linear 'Stepwise' regression module in SPSS was used to model the monthly 

confirmed incidence of malaria cases in Botswana. The model results are applicable 
to a specific month. The month used in this example being January 1996. Following 

an exploratory analysis it was decided to use 'Model 5' as the slope in the 
incremental improvements in subsequent models began to decrease markedly after 

this stage, Table 5.10. 

TABLE 5.10. MODEL COEFFICIENTS 

Model 5 Unstandardized 
Coefficients 

Std. Error n3ignificance 

(Constant) 17-531 1.095 ). 000 
LAGS(X_RAIN_2) 2.359E-02 0.002 ). 000 
LATS 0.509 0.032 

. 
000 

NDVI 
- 

MAX 7.710 1.012 . 000 
LONGS -0.293 P. 034 

. 
000 

1 

ýVG_ALT 
-3.886E-03 0.001 

. 000 
Dependent Variable: Log of confirmed incidence 
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FIGURE5.15. MAP OF MODELLED MALARIA sEAsoN IN BoTswANA (MEAN 1996-1999). 

Legend: 

The map models the number of months making up the malaria season in Botswana. 
The legend, top right, represents the number of months of malaria season duration. 



The correlation between the dependent variable (log of monthly incidence in 

confirmed malaria cases) and the model's predictive value (R 2=0.758) is described 

in Figure 5.16. 

FIGURE 5.16. RELA TIONSHIP BETWEEN LOG OF CONFIRMED INCIDENCE AND PREDICTED 
VALUE 
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Box 5.2. THE LINEAR REGRESSION MODEL IN TABLE 5.10. 

Rsq = 0.7583 

y= 17.531 + (LAGS(X_RAIN_2) * 0.0236) + (LATS * 0.509) 
+ (NDVI_MAX * 7.710) + (LONGS * -0.293) + (AVG_ALT 
* -0.0039) 
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5.4.5. Mapping the results of the linear regression model of malaria 
incidence in Botswana 

The regression equation was (Box 5.2. ) entered into the Idrisi Map Calculator and the 

national level result is illustrated in Figure 5.17. As expected the higher incidence of 

cases are to be found in the northern part of the country. 

Further exploration was carried out using linear regression to model differences in 

malaria incidence within different parts of the country. Botswana was divided into 

three latitude classes: 1) Northern areas between -1 7.5'S and -2I. O'S; 2) Central 

areas between -2 LO'S and -24.0'S; and Southern areas between -24.0'S and 

27.5'S. Separate models were then developed for each of these 'Latitude Classes'. 

5.4.5.1. Northem Botswana - Latftude Class 1 

The optimal model for Latitude Class I was again model 5, Table 5.11. 

TABLE 5.11. MODEL COEFFICIENTS 

Model 5 Jnstandardized 
, oefficients 

Std. Error 3ignificance 

ý(Constant) 11.347 1.765 ). 000 
NDVI SAV 17.510 1.023 ). 000 
LATS . 670 . 096 . 000 
LAGS(VCLAGI, 2 . 919E-02 . 018 . 000 ;1 
LONGS 0 0 . 163 . 045 

1 

. 000 

1 

LAGS(RFE, 4 , , 045E-03 . 001 . 000 
Dependent Variable: Log of confirmed incidence 

For Latitude Class 1, the correlation between the dependent variable (log of monthly 
incidence in confirmed malaria cases) and the model's predictive value (R 2=0.835) 

is described in Figure 5.18. 
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FIGURE5.17ý LINEAR REGRESSION MODEL FOR LOG OF MALARIA INCIDENCE, JANUARY 1996. 

5ý. 

Legend: 

cýI iMpl 
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p 

The model (from Table 5.10) is used to produce the map (which assumes a constant 
population across the district). The map indicates the relative distribution of malaria 
incidence during the month of January 1996. The legend 

, bottom right, represents 
the relative scale. 



FIGURE 5.18. RELATION BETWEEN LOG CONFIRMED INCIDENCE AND PREDICTED VALUE 
(LA TITUDE CLASS 1) 
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BOX 5.3. RiE MODEL 1A, T4BLE 5.11, FOR LA TITUDE CLASS I 

Rsq = 0.8349 

y= 11.347 + (NDVI_SAV * 17-510) + (LATS * 0.670) + 
(LAGS(VCLAG1,2) * 0.099) + (LONGS * -0.163) + 
(RFE_4 * 0.004) 

The regression equation (Box 5.3. ) was entered into the ldrisi Map Calculator and the 

result for northern Botswana, Latitude Class 1, is illustrated in Figure 5.19. 
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FIGURE5.19. LINEAR REGRESSION MODEL OF MALARIA INCIDENCE IN THE NORTH OF 
BOTSWANA, JANUARY 1996. 
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Legend: 

The model (from Table 5.11) is used to produce the map (which assumes a constant 
population across the district). The map indicates the relative distribution of malaria 
incidence during the month of January 1996 in northern Botswana. The legend, 
bottom right, represents the relative scale applicable in this map. The palette used by 
ldrisi is driven by the range of values in the particular model. Consequently one map 
cannot be used for cross comparison with the other maps. 



5.4.5.2. Central Botswana - Latftude Class 

The choice for Latitude Class 2 extended to Model 7, Table 5.12. 

TABLE 5.12. MODEL COEFFICIENTS 

U nstandardized 
oefficients 

u td. Error ignificance. 

I(Constant) 10.637 I I . 474 0.000 
O, 2). 104 AAG ILAGS(VC L . 

020 . 000 

fl i 

-ATS . 638 . 113 . 
000 

LAGO, 3 -02 GO 
,3 . 837E -AGS(VC 

). 0 . 000 
LA Go, 1 -AGS(VCLAGO ,1 . 102 ). 021 . 000 
LAGO, 4 -02 -AGS(VCLAGO, 4) . 935E 000 

Dependent Variable'. Log ot confirmed incidence 

For Latitude Class 2, the correlation between the dependent variable (log of monthly 

incidence in confirmed malaria cases) and the model's predictive value (R 2=0.57) is 

described in Figure 5.20. 

FIGURE 5.20. RELA TION BETWEEN LOG CONFIRMED INCIDENCE AND PREDICTED VALUE 
(LA TITUDE CLASS 2) 
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Box5.4. PiEMODEL iN TABLE 5.12, FOR LA TITUDE CLAss 2 

Rsq - 0.5696 

y= 10.637 + (VCLAG 
- 

0,2 * 0.104) + (LATS * 
0.638) + (VCLAG_0,3 * 0.098) + (VCLAG_o, 1 
* 0.102) + (VCLAG_0,4 * 0.079) 
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FIGURE5.21. LINEAR RPGRESSION MODEL OF MALARIA INCIDENCE IN THE CENTRAL REGION 
OF BoTs". 4. vA, JANUARY 1996. 
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Legend: 

The model (from Table 5.12) is used to produce the map (which assumes a constant 
population across the district). The map indicates the relative distribution of malaria 
incidence during the month of January 1996 in central Botswana. The legend, 
bottom right, represents the relative scale applicable in this map. The palette used by 
ldrisi is driven by the range of values in the particular model. Consequently one map 
cannot be used for cross comparison with the other maps. 



The regression equation (Box 5.4. ) was again entered into the ldrisi Map Calculator 

and the result for central Botswana is illustrated in Figure 5.21. 

5.4.5.3. Southem Botswana - Latkude Class 3 

The optimal choice for Latitude Class 3 was Model 4, Table 5.13. 

TABLE 5.13. MODEL COEFFICIEN7S 

Model 4 Jnstandardized 
:; oefficients 

td. Error 3ignificance 

(Constant) -38.089 . 045 ). 000 
LATS -1.387 . 243 ). 000 
LAGS(RFE, 3) 

_1.110 
E-02 . 

003 ). 001 
RFE 11.1 89E-02 . 004 P. 003 
CCD ý7.564&03 0.003 P. 023 

Dependent vanatme: LOg OT contirmea incidence 

For Latitude Class 3, the correlation between the dependent variable (log of monthly 

incidence in confirmed malaria cases) and the model's predictive value (R 2=0.494) 

is described in Figure 5.22. 

FIGURE 5.22. RELA TION BETWEEN LOG CONFIRMED INCIDENCE AND PREDICTED VALUE 
(LA TITUDE CLASS 3) 
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Rsq = 0.4595 
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Box 5.5. THE A40DEL m TABLE 5.13, FOR LA TITUDE CLAss 3 

y= -38.089 + (LATS * -1.387) + (RFE-3 * 0.011) + (RFE 
00.0 12) + (CC D* -00.0076) 

The regression equation (Box 5.5) was again entered into the ldrisi Map Calculator 

and the result for Southern Botswana is illustrated in Figure 5.23. 

5.4.6. Analysis of difference anomalies 

The environmental variables used in the models for latitude classes I to 3 include: 

RFE, CCD, NDVI, VC as well as the non-temporal variables latitude and longitude. 

To test the association of inter-annual variability alone (i. e. after removing the effects 

of seasonality) between the dependent variable (confirmed malaria incidence) and 

each of the temporal environmental variables, difference anomalies were produced 

between the actual monthly values for each of the variables, and the monthly mean of 

those same variables over the period 1996-1999. Difference anomalies were 

similarly produced for the epidemiological data (confirmed malaria incidence) for 

comparison. Bivariate analysis of the environmental variable anomalies and the 

confin-ned incidence data anomalies were carried out using SPSS. These exploratory 

results were produced as scatterplots and examined for negative or positive 

association within the four quartiles. Figure 5.24 provides one example of this for 

the month of January. The scatter graph shows there is a relationship between high 

NDVI and high malaria incidence (log) and low NDVI and low malaria incidence for 

the month of January. 
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FiGuRE5.23. LINEAR REGRESSION MODEL OF MALARIA INCIDENCE IN THE SOUTHERN REGION 
OF BOTSWANA, JANUARY 1996. 
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Legend: 

The model (from Table 5.13) is used to produce the map (which assumes a constant 
population across the district). The map indicates the relative distribution of malaria 
incidence during the month of January 1996 in southern Botswana. The legend, 
bottom right, represents the relative scale applicable in this map. The palette used by 
ldrisi is driven by the range of values in the particular model. Consequently one map 
cannot be used for cross comparison with the other maps. 



Fi(; uRE 5.24. B11ARIATE PLOTOFNDVI AND CONFIRMED MALARIA INCIDENCE ANOMALIES. 
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The file was split by latitude class (1,2 and 3). The anomalies were then reclassified 

according to whether they were negative or positive and then subject to Chi Square 

tests for association. The results are presented in Tables 5.14. to 5.18. 

This methodology sets out to determine which variables may be used to indicate 

unusual departures from average incidence levels. A cluster of significant 

associations in which the environmental variable precedes malaria incidence by one 

or more months provides evidence of the value of that environmental variable for use 
in an early warning system. 

The associations between NDVI, RIFE, CCD, VCLAG 
- 

0, and VCLAG_I anomalies 

and the malaria incidence anomalies in the northern part of the country, are shown in 

Tables 5.14-5.18. These indicate that malaria is significantly associated in the 

following way: 

Latitude Class I 
While significant (P<0.05) associations between environmental anomalies and 

malaria incidence anomalies can be found in latitude class 1, only I of these 

associations is highly significant (May RFE anomaly and May malaria incidence 
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TABLE 5.14. ASSOCIATION BEIVEENMONTHLY MALARIA INCIDENCE AND NDVI 1996-99 

a) Latitude Class I (* = 95%, **= 99% significance, Chi Square Exact Test). 
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TABLE 5.15. ASSOCIA TION BETWEEN MONTHLY MALARIA INCIDENCE AND RFE 1996-99 

a) Latitude Class I (* = 95%, **= 99% significance, Chi Square Exact Test) 
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TABLE 5.16. ASSOCIATIONBE77VEENMONTHLY MALARIA INCIDENCE AND CCD 1996-99 

a) Latitude Class I (* = 95%, **= 99% significance, Chi Square Exact Test) 
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T4BLE5.17. ASSOCIATION BETWEEN MONTHLY MALARIA INCIDENCE AND VCLAGO 1996-99 

a) Latitude Class I (* = 95%, **= 99% significance, Chi Square Exact Test) 
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Table 5.18. Association between monthly malaria incidence and VCLAG1 1996-99 

a) Latitude Class I (* = 95%, **= 99% significance, Chi Square Exact Test) 
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anomaly). The significant associations where they do occur are not highly clustered, 
indicating that interannual variation in these environmental variables are not likely to 

provide a clear indication of interannual variability in malaria incidence when 

analysed in this way. 

Latitude class 2 
Four of the five environmental variable tested indicated substantial association 
between the environmental anomalies and the malaria incidence anomalies with lags 

of 04 months. The exception was CCD. VCLAG 
-I produced the highest level of 

association, Table 5.18, with February values of VCLAG_I anomalies highly 

correlated with malaria incidence anomalies in March and April (P<0.01) and May 

(P<0.05). March VCLAG 
-I 

anomalies were significantly associated with malaria 
incidence anomalies in March, April and May (P<0.01). 

Latitude class 3 
None of the 5 environmental variables tested indicated substantial or consistent 
association with malaria incidence anomalies in this latitude class. 

From the above it can be said that malaria incidence in Botswana is highly correlated 
with the individual environmental variables, but that most of this correlation is the 
result of the seasonal pattern of climate and disease. Only in latitude class 2 is there 
substantial evidence that the interannual variation in climate is associated with 
unusual patterns of malaria transmission. The MoH in Botswana consider the central 
section of the country as being epidemic prone. They also consider the more 
endemic region in the north to be prone to periodic epidemics. The evidence here 

supports the former but provides scant evidence for the latter. It should be noted 
however, that only 4 years of monthly epidemiological data were available in this 
study of Botswana, a short time period when looking for evidence of interannual. 

variability. 

5.4.7. Predictive mapping of malaria in epidemic prone districts 

Epidemic prone districts in Botswana would benefit from some advance warning of 
levels of malaria to be expected in the forthcoming season, whether they be true 
epidemics or unusual sharp seasonal increases. Some of the independent 
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environmental variables used in the above maps are simultaneous with the dependent 

variable (log of malaria incidence) and some do not vary between years (altitude, 
latitude, longitude). Other variables, the lagged variables, offer some predictive 

value for malaria incidence in months to come. If for example, a District Health 
Team decided it required indicators which offered a warning time of 2-3 months, to 

mount a preventative response, then maps could be produced using only variables 
which offered that lead-time. The following tests this requirement in two districts 

considered by the MoH to be epidemic prone: Boteti and Tutume. 

5.4. Z 1. Botet! 

Model 3 was chosen for Boteti, Table 5.19. 

TABLE5.19. MODEL COEFFICIEN7S 

Aodel 3 nstandardized 
I oefficients 
I td. Error 3ignificance 

: Constant) 3.389 . 294 ). 000 
-AGS(RFE, 2) I . 815E-02 . 004 ). 000 

. -AGS(RFE, 3) . 059E-02 . 004 . 0.000 
PVCLAG 1 0.130 0.041 

_ 
0.004 

Dependent Variable: Log of confirmed incidence 

For Boteti, the correlation between the dependent variable (log of monthly incidence 

in confirmed malaria cases) and the model's predictive value (le = 0.74) is described 

in Figure 5.25. The model is relatively simple in that it requires just three variables 

all of which are positively associated with the dependent variable. 
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FIGURE5.25. REL477ONBEIWEEIV LOG CONFIRMED INCIDENCE AND PREDICTED VALUE, 
BOTE77 
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The cluster of high values for 1996 and 1997, both considered epidemic years, 

suggests the combination of environmental variables used in the model has some 

value in early warning of differences in incidence levels between years. 

BOX5.6 THEkfoDEL FRom TABLE 5.19, FoR Boma 

y= -3.389 + (LAGS(RFE_2) * 0.018) + (LAGS(RFE_3) * 0.02) 
+ (VCLAG_l * 0.130) 

The regression equation (Box 5.6) was mapped using Idrisi and the result is 

illustrated in Figure 5.26. 
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Fi(ýt'RE5.26. PREDICTIVEHAP OF LOG MALARIA INCIDENCE FOR BoTETi, JANUARY 1996. 

Legend: 

The model (from Table 5.19) is used to produce the map (which assumes a constant 
population across the district). The map predicts the relative distribution of malaria 
incidence during the month of January 1996 in the district of Boteti. The legend, 
bottom right, represents the relative scale applicable in this map. The palette used by 
ldrisi is driven by the range of values in the particular model. Consequently one map 
cannot be used for cross comparison with the other maps. 



5.4.7.2. Tutume 

Model 4 was chosen for Tuturne, Table 5.20. 

TABLE 5.20. MODEL COEFFICIENTS 

Aodel 4 Unstandardized 
Coefficients 

Std. Error Significance 

: Constant) -7.211 1.154 0.00C 

-AGS(RFE, 2) 1.626E-02 0.004 0.00( 
GS(RFE, 3) 1.223E-02 0.005 0.01( 

C LAG I 0.26M 0.0 ý O. Og 
GS( 3.1741 3.871 1 0.00 

uepencent vanaue: LOg ot contirmea inciclence 

For Tutume, the correlation between the dependent variable (log of monthly 
incidence in confirmed malaria cases) and the model's predictive value (le = 0.72) is 

described in Figure 5.27. The model is relatively simple and describes a positive 
correlation between the dependent and the independent variables. 

FiGuRE5.27. RELATIONBETWEENLOG CONFIRMED INCIDENCEAND PREDICTED VALUE, 
TUTUME 
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The clustering of high values for years 1996 and 1997 again suggest that the 

combination of environmental variables used in this model has value for early 

warning of differences in levels of malaria incidence between years. 

BOX5.7. THE MODEL FROM TABLE 5.20, FOR TUTUME 

y= -7.211 + (LAGS(RFE_2) * 0.016) + (LAGS(RFE_3) * 0.012) 
+ (VCLAG_l * 0.268) + (LAGS(NDVISAV-3) * 13.174) 

The regression equation (Box 5.7. ) was mapped using Idrisi and the result illustrated 

in Figure 5.28. 

5.5. Discussion 

Botswana lies almost entirely within the desert-fringe zone identified in Figure 2.16 

(Chapter 2). It is therefore, a country where interannual variability in malaria is 

likely to associated with interannual variability in rainfall. The availability of 

confirmed malaria case data for Botswana makes this case study the most critical. 
Unfortunately many countries in sub-Saharan African do not have confirmed data. 

However, the statistical relationships between unconfirmed, and confirmed malaria 

cases, and the environmental variables, shown here, provides tentative support for 

the use of regression modelling of malaria and environmental variables in close 

neighbouring countries where confirmed case data is unavailable. 

The development of the seasonality map is based on the actual data in conjunction 

with temporaneous environmental variables shown to be strongly related to malaria 
distribution, rather than theoretical climate suitability alone, and as such represents a 
useful basis for a seasonal malaria transmission map of Botswana. It differs 

markedly from the climate based suitability map, Figure 2.11 (Chapter 2). The 
longer transmission season modelled here reflects case data and may therefore be 

115 



Fi(; uRE5.28. PREDICTIVEMAP OF LOG MALARIA iNciDENcE FOR TUTUME, JANUARY 1996. 

The model (from Table 5.20) is used to produce the map (which assumes a constant 
population across the district). The map predicts the relative distribution of malaria 
incidence during the month of January 1996 in the district of Tutume. The legend, 
bottom right, represents the relative scale applicable in this map. The palette used by 
ldrisi is driven by the range of values in the particular model. Consequently one map 
cannot be used for cross comparison with the other maps. 



strongly influenced by migration and referrals. The reality probably lies somewhere 

between the two. 

Early warning and early detection of malaria epidemics is a very important control 

need for Botswana due to its high interannual variability in malaria cases in the 

northern districts, and its periodic epidemic malaria in the central and some of the 

southern districts. Epidemics are considered to have occurred in 1988,1993,1996, 

1997 and 1999 (Ministry of Health 1999; Najera 1999c). The correlations found 

between individual environmental anomalies and malaria incidence anomalies 

suggest that these variables would be useful as a monitoring product in an early 

warning system for epidemics, especially in the central part of the country. 

The strong statistical relationship between confirmed malaria incidence and the 

combinations of lagged RFE and Vectorial Capacity images offers a useful method 

of predicting with some confidence malaria incidence levels 2-3 months in advance 
of the seasonal peak. Ile simplicity of the models, where all environmental 
variables are positively correlated with malaria incidence (Tables 5.10 and 5.11 and 
5.12 and 5.19 and 5.20), is encouraging for their use in the northern and especially 
the central regions of the country. These predictive products could be tailored to the 
latitude class, or to the district as required. The production of these spatial models on 
a routine basis and their subsequent use in difference maps would make them more 
useful still as an indicator of change in malaria risk. 

The presence of latitude and longitude in models does however suggest something 

else is at work which is not captured by the enviromnental variables alone. 
Identifying what this factor is would be useful in further developing predictive 
models of malaria transmission in Botswana. 
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6. Malaria and Environment in Zimbabwe 

6.1. Geographical background 

Zimbabwe is a landlocked country of 390,760 square kilometres located 

approximately between 15"S to 22*S and 25*13 to 33T in central, southern Africa. It 

shares borders with Botswana, Zambia, Republic of South Africa and Mozambique. 

The population in 1995 was estimated at 11.4 million. Gross Domestic Product per 

capita in 1998 was estimated at US$620 (UNDP 2000). The country has a central 

upland region, the Highveld, which runs from the south-west beyond Bulawayo 

across to the north-east beyond Harare. This central ridge, which has an average 

altitude of 1525 metres, divides the country into the northern watershed forming part 

of Lake Kariba and the Zambezi valley; and the southern watershed draining away 
into the Limpopo-Sabi river systems. In the easternmost part of the country, a 

mountain range extending to 2596 metres forms a physical border with its low lying 

neighbour Mozambique. While Zimbabwe lies entirely within the tropics, its climate 

is moderated by its elevation. Average July temperatures are 16T rising to 21T in 

January. The average annual rainfall in the Highveld is 900mm. with most rainfall 

occurring between October and March. However, both rainfall and temperature 

regimes vary markedly across the country. Annual rainfall totals vary from 400mm. 

in the south-west, to 1200mm in the north-east; and average temperatures increase as 

one descends down into the valleys of the major river systems, north and south of the 

central highlands. 

6.2. Overview of malaria and its control in Zimbabwe 

Since Zimbabwe's independence in 1980 malaria has remained one of the major 

public health problems facing the country. In Zimbabwe malaria is classified as a 
legally notifiable disease. It ranks 4th nationally in terms of outpatient consultation, 
2'd for inpatient admission and e as the stated cause of inpatient death (Ministry of 
Health and Child Welfare 1997). 
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6.2.1. Patterns of malaria in Zimbabwe. 

The distribution of clinical malaria cases in Zimbabwe varies greatly between years 
and this is considered to be strongly related to rainfall, Figure 6.1. (Ministry of 
Health and Child Welfare 1997). It is also recognised that malaria in Zimbabwe 

varies markedly between districts and a 'Top 20' of malaria districts have been 

ranked by the MoH. Ilese districts are highlighted on the map in Figure 6.2. The 

expert opinion map for malaria in Zimbabwe (described in Chapter 4) also illustrates 
how malaria is perceived to vary across the country, Figure 6.3. 

6.2.2. The National Malaria Control Programme in Zimbabwe 

Zimbabwe's National Malaria Control Programme has been decentralised to the 
Provincial level with additional support from the Department of Epidemiology and 
Disease Control in Harare. However, most malaria sufferers report first to a health 
facility based in one of the 63 districts. The NMCP is built on four main components: 

61M. Effective case manaoment 

In Zimbabwe, malaria is diagnosed, in most cases, on the basis of clinical 

observations. The clinical definition of a malaria case used in Zimbabwe is: 

64a patient who lives in malaria areas, or visited those areas within the last six weeks, 

and presents a sudden onset of the following signs and symptoms: intermittent fever 

with shivering, sweating, headache, muscle and/or joints pain, body weakness" 
(Ministry of Health and Child Welfare 1997). 

Chloroquine remains the first line anti-malarial treatment choice, despite reports of 
resistance in many areas of the country. Patients showing signs of treatment failure 

will usually be given sulphadoxine primethamine, the second line choice of anti- 
malarial, and a blood slide taken for analysis. Patients with severe treatment failure, 

or severe and complicated malaria, are referred to an appropriate health facility after 
a first dose of quinine, if available, the third line choice of anti-malarial. 
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Figure 6.1. Malaria incidence (clinical cases per 1000 population) in Zimbabwe 
1987-1996 in relation to rainfall. Derived from (MoH, 1997) 

800 

750 

M 

öw 

000 

f Dou 

it 600 

450 

400 

350 

300 

Rainfall (mm) 

Malaria incidence per 1000 Pop 

Ip-- I- x 
--- --- - 

IN 
- -- -1 1 

1 

1 

/ 

'' 

150 

130 

I-- 0 

110 cx 

CD 

90 

70 

i 

50 

30 
1987 1988 1989 1990 1991 1992 1993 1994 1995 1m 

YEAR 



FiGuRE 6.2 MAP OF THE 'Top 20'MALARIA DISTRICTS IN ZIMBABWE 

Ranking District Incidence rate per 1000 
I Hwange 211.25 
2 Centenary 211.04 
3 Kariba 200.58 
4 Mutasa 191.73 
51 Binga 191.53 
6 Guruve 189.5 
7 Mount Darwin 181.14 
8 Nyanga 164.76 
9 Mudzi 164.48 
10 Rushinga 148.35 
11 Chipinge 138.61 
12 Mutoko 116.89 
13 Mutare 110.38 
14 Gokwe 105.87 
15 Chimanimani 105.0 
16 Lupane 104.47 
17 Chiredzi 95.89 
18 Hurungwe 89.02 
19 1 Makonde 87.41 
20 1 Kwekwe 83.01 



FIGURE 6.3. EXPERT OPINION M4P OF MALARIA IN ZIMBABWE, CIRCA 1998. 
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6.222. Vector controt 

Vector control activities have formed a significant, though not consistent, part of the 
NMCP in Zimbabwe since the late 1950s. Prior to independence vector control was 

practiced mostly as a 'barrier method' i. e. to prevent mosquitoes from migrating 
from the river valleys into the highlands with the seasonal onset of warmer 

conditions, and to control epidemic outbreaks. Following independence attempts 

were made to broaden the use of vector control mainly using residual insecticide 

(DDT) to spray the interior walls of dwellings in all endemic areas, a policy of 
'blanket coverage. ' By the mid 1990s, the extent of coverage achieved had, however, 
been in sharp decline and whilst considered to be the most equitable approach, 

worries over its effectiveness in relation to costs became prominent. Larviciding in 

rural areas had in practice been limited to commercial farms and estates with large- 

scale irrigation. Community participation had been attempted with larviciding but 

considered to be unsustainable. Thermal fogging had been carried out on a small- 
scale in urban settings. The recent move towards a policy of 'selective vector 
control' aims to allow for a more focal, but hopefully more effective, use of indoor 

residual spraying (DDT is still used) and larviciding against malaria vectors. 

61M. Personal protection. 

The NMCP in Zimbabwe encourages personal protection and has recently been 

focussing on increasing the use of Insecticide-Treated BedNets (ITNs). Demand for 

ITNs in Zimbabwe has increased, from a very low base, in recent years. A number of 

small-scale pilot projects have been carried out in collaboration with NGOs, and a 

major initiative is now being funded by the Japanese International Cooperation 

Agency. This new initiative aims to stimulate broad use of ITNs through provision 

at affordable cost, as well as setting up revolving funds and loan schemes for net re- 
treatment and subsequent purchases for the longer term. 

6.22.4. Health Education. 

Raising community awareness of seasonal malaria risk, personal protection, 
recognising the symptoms, the need to seek prompt treatment, compliance with drug 
treatment regimes and cooperation with vector control and environmental health 

119 



activities are important aspects of malaria control. This message is promoted at the 

community level by the NMCP in Zimbabwe through its health education activities, 

which are carried out in collaboration with community leaders, schools, employers, 

shopkeepers, commercial suppliers and the media. WHO has been a major 

contributor to Health Education in Zimbabwe over recent years. 

61M. SuDDlementary actlOies 

The National Health Surveillance Unit is part of the Department of Epidemiology 

and Disease Control of the Ministry of Health and Child Welfare, in Harare. The 

National Health Information System (HIS) collects health statistics through it routine 

monthly reporting system from all districts. It also collects weekly reports on certain 

diseases, including malaria, from selected districts as part of its Rapid Notification 

System. 

Chemoprophylaxis is recommended for vulnerable groups: pregnant women, under 
5s and travellers from non-malarious areas. 

Applied research is also stated as a component of the NMCP in Zimbabwe. The 
Blair Research Institute (BRI) allied to the Ministry of Health is based in the 
University of Zimbabwe. The BRI has integral links with the Department of 
Epidemiology and Disease Control and provides advice on control policy and 
implementation. 

6.3. Aims of this chapter 

To describe the spatial and temporal distribution of malaria in Zimbabwe 

To compare and relate the spatial and temporal distribution of malaria to 

environmental variables in order to inform malaria risk mapping. 

To explore whether or not temporal environmental variables could be used in an 

early warning system for malaria epidemics in Zimbabwe. 
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6.4. Materials and methods 

6.4.1. Epidemiological data 

Epidemiological data for malaria were collected from the Ministry of Health's 

Department of Epidemiology and Disease Control in Harare. The data covering the 

period 1994 - 1999 consisted of the following information as set out in Table 6.2. 

Unfortunately there is very limited data on laboratory confirmed cases available at 

the central level. 

TABLE6.2. EPIDEMIOLOGICAL DATA OBTAINED 

Time period/frequency/case definition Age 

cohort 

Spatial 

Scale 

1994-1999 Monthly clinical unconfirmed <5 District 

1994-1999 Monthly clinical unconfirmed 5-14 District 

1994-1999 Monthly clinical unconfirmed >15 District 

6.4.2. Population data 

District population figures were obtained from the Central Statistics Unit and their 

projected growth rates between years were carried out in consultation with local 

expertise. Zimbabwe is suffering a high prevalence of HIV-AIDS and population 

growth rates are much reduced as a consequence 20 
. As with Botswana annual 

population growth rates were revised to reflect a mean rate of 1% per annum, since 
1995.. 

The population data were used to create incidence rates. Incidence rates were 

produced for each of the districts by year. The district boundaries used in the 

extraction were adapted from those provided by SADC. 

20 In an interview in New Scientist, Zimbabwe's Minister of Health, Timothy Stamps, stated "that 
Zimbabwe would reach zero population growth by 2002" New Scientist, 20 Oct 2001 p50. 
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6.4.3. Environmental data 

The environmental data used here and the method of extraction for summary 

statistics per district, per month is the same as that described for Botswana, in 

Chapter 5, section 5.5.2.1.3. 

6.4.4. Data analysis 

SPSS and Microsoft Excel were used to explore and assess the relationships between 

the epidemiological and environmental data. The preliminary analyses included 

comparing time series of unconfirmed malaria cases and environmental variables 
using exploratory scatterplots and Pearson's correlation coefficient. Comparisons 

were also made of relationships between contemporaneous environmental variables 
such as NDVI and RFE and the respective long-term mean monthly climatology 
variables. The relationships between the epidemiological data and the environmental 
variables were explored using curve estimation techniques in SPSS to elicit the best 

overall relationships between environmental variables and the epidemiological data. 
As a result of these tests, the malaria case data was transformed (log or quadratic) 
where appropriate. Further analysis was carried out in SPSS using a combination of 
bivariate and multivariate techniques against the chosen environmental variables. 
The creation of difference anomaly statistics and their analysis is as described in 
Chapter 5, section 5.2.2. 

6.5. Results 

In the expert opinion map of malaria distribution in Zimbabwe, Figure 6.3, the 

greater proportion of the country is considered to have a malaria season of 6 months 
or more. I'he exceptions are generally those districts comprising the central 
highlands. The map gives the impression that there is little effect of latitude, or 
longitude, on malaria distribution. There is little apparent agreement between malaria 
distribution in the Zimbabwean districts bordering Botswana and the Republic of 
South Africa and those districts immediately over the border in those countries 
(compare with Figure 4.4, Chapter 4). 
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6.5.1. Malaria distribution 

6.5.1.1. Interannual variab 

Unfortunately the lack of confirmed malaria data means there is no 'gold standard' to 

work with in Zimbabwe. This analysis uses data routinely available to the NMCP at 

the national level and therefore represents the data used for decision making for 

malaria control in Zimbabwe. The assumption here is that, as was the case in 

Botswana, unconfirmed malaria cases are correlated with confirmed malaria cases. 

However, as discussed in Chapter 2, misdiagnosis must remain a serious 

consideration. The annual total unconfirtned malaria cases for the years 1994-1999 

are illustrated in Figure 6.4. The dramatic rise in cases during 1996 was associated 

with a regional epidemic in Southern Africa (Najera 1998b) and high annual total 

numbers of cases have remained in subsequent years. This was not considered to be 

due to more complete reporting and surveillance, or changes in drug policy, but a 

result of increased epidemic outbreaks (Murugasampillay: pers. comm? '). The 

extent to which declining control infrastructure would have been able to regain 

control after the 1996 epidemic is not clear. It should be noted however, that annual 

rainfall for the years 1997,1998 and 1999 were generally above average in most 

parts of the country. 

6.5.1. Z Seasonal variab 

The mean seasonal trend in the national data is clear, Figure 6.5. However the 

average monthly cases reported, do not fall below 1000 cases in any month and it is, 

without conf inned data, difficult at the national level to identify clearly where the 

malaria season in Zimbabwe season begins and ends. Ile method of using 5% of 

annual totals and 'sporadics' (as used for Botswana and described in chapter 5) was 

not adequate to overcome this. 

Observation of the range of monthly percentages of the annual totals in Zimbabwe, 

Figure 6.6, suggest that 7.5% might be a more useful measure of the average 

21 Dr. Murugasampillay (WHO-AFRO) was formerly Director of the Epidemiology and Disease 
Surveillance Department, Ministry of Health, Zimbabwe, and was responsible for the development of 
the NHIS in Zimbabwe during this time period. 
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FIGURE 6.4. ANNUAL TOTAL MALARIA CASES IN ZIMBABWE, 1994-1999. 
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FIG URE 6.5 SEASONALITY OF REPORTED MALARIA IN ZIMBABWE (MEAN 1994-1999). 

5000 

4000 

3000 

2000 

looo 

0 

month 

JAN MAR MAY JUL SEP NOV 
FEB APR JUN AUG OCT DEC 



FIG (., RE 6.6. PERCENT4GE OFA VERAGE ANNUAL TOTAL BY MONTH 1994-1999. 
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beginning and end of the season in Zimbabwe. The national level statistics may of 

course include a number of districts where malaria is perennial. 

6.5.1.3. Spatial variab 

When the number of months satisfying the 7.5% 'seasonality' criteria are mapped at 

the district level the following spatial pattern results, Figure 6.7. Many of the 

districts showing the longest 'season' are situated along the highland plateau. This is 

in direct contrast with the expert opinion map. This is caused by low numbers of 

cases reporting over a longer period in the highland areas. 

A map of mean incidence of malaria per 1000 population, Figure 6.8, shows that 

most malaria occurs in the lower lying districts, particularly those to the north of the 

highland plateau. Districts in the Eastern Highlands bordering Mozambique also 

show a relatively high incidence. A parasite survey carried out in April 2001 agreed 

with this national pattern22. The high altitude in these eastern districts should mean 

that temperature acts as a constraint to malaria transmission. There have been 

anecdotal reports of increasing malaria burden in the East. Factors suggested as 

being implicated include large numbers immigrants from Mozambique, very high 

population densities, high levels of poverty, and poor coverage from indoor residual 

spraying in some districts (Root. Pers. Comm). 

6.5.1.4. Malaria and alfflude 

Altitude and its inverse relationship with temperature have long been associated with 

vector distributions and malaria endemicity in Zimbabwe (Leeson 193 1; Ross 1932). 

In a published work reviewing the malaria situation in Zimbabwe (Taylor and 
Mutambu 1986), seven distinct altitude zones were identified to explore differences 

in malaria endemicity. These were: a) comprising land less'than 600 metres on the 

northern side of the central watershed; b) land between 600 and 900 metres on the 

northern side; c) land between 900 and 1200 metres on the northern side; d) all land 

over 1200 metres; e) land between 900 and 1220 metres on the southern side of the 

watershed; f) land between 600 and 900 metres on the southern side; g) land less than 
600 metres to the south. Analysis of blood slides surveys carried out between 1969- 

22 The national parasite survey was carried out by the Ministry of Health with the support of the WHO 
Southern Africa Inter-Country Team. However, the results are not available for reproduction here. 
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FIG uRE 6.7. MA LA RIA 'SEA SON' IN ZIMBA B WE - MON THS OF MEMBERSHIP > 7.5 % OF 
A. VNIAL TOTAL. 

Legend: 

The map used administrative boundary files supplied by SADC-RRSP (1997). 



FIGURE 6.8. INCIDENCEAMP (PER 1000) MEANI 994-1999. 
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1981 showed the prevalence of malaria (P. falciparum) to be closely related to 

altitude (and latitude) with the highest prevalence in the areas of the Zambezi valley 

less than 600 metres in the north and the lowest in the 900-1200 metre southern 

region, and the central plateau, Table 6.3. Malaria was described by Taylor and 
Mutambu as markedly seasonal, occurring mostly between February and May. It was 

also described as hyperendemic and stable below 600 metres in the north, elsewhere 

as meso-endemic, absent, or unstable and epidemic in nature. 

Table 6.3. Prevalence of malaria in relation to altitude derived from (Taylor and 
Mutambu 1986). 

Altitude Zone Slides examined P. falciparum (+ve) % prevalence 
<600m (N) 4030 1231 30.55 
600-900m (N) 24567 1428 5.81 
900-1200m (N) 57723 1830 3.17 
>1200m 11770 139 1.18 
900-1220m (S) 7835 47 0.6 
600-900m (S) 22203 321 1.45 
<600m (S) 28066 2082 7.42 

While these authors suggest the data they used represents a gross underestimation of 
the number of malaria cases, they include periods of intermittent control in certain 

regions, and that cases may present in places other than where transmission occurred. 
They state that the work clearly illustrates the relative importance of malaria in the 

various regions of Zimbabwe (Taylor and Mutambu 1986). 

Exploratory analyses of the 1994-1999 monthly unconfirmed malaria data indicated 

that altitude class offered a useful basis of analysis of the data, both spatially and 
temporally. The 0-600,600-900,900-1200 and >1200m. altitude classes derived 
from the SADC DEM (Digital Elevation Model) are illustrated in Figure 6.9. The 

19"S parallel was used to ascribe whether districts fell into the northern or southern 

group of altitude classes. Two remaining districts with centroids to the south of 19'S 

but clearly north of the central highland divide were classified manually. The 

relationship between altitude class and the temporal environmental variables are 
surnmarised in Table 6.4. 
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Fi(; t'RE 6.9 ALTITUDECLASSES IN ZIMBABIVE AFTER TAYLOR AND MATUMBU (1986). 
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T4BLE 6.4.4. StAftlARYREL. 4 TIONSHIP BETWEENALTITUDE CLASSAND MEAN CLIMATOLOGY. 
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Maximum 216. Oq 25.00 79.00 
Median 26.00 22.00 67.5 

<600m(S) ean 40.22 22.67 
ý 

65.5 
td Deviation 37.30 3.28 6.21 

Minimum 
. 
00 17.00 53.0 

Maximum 116.01 26.00 76. OC 
Median 24. OQ 23.50 1 65.5C 



TABLE 6.4B. S(Af. %IAR) RELA TIO. \SIIIP BETWEENALTITUDE CLASSAND TEMPORAL 
EA'17ROA. VENTAI. VARIABLES. 

AV H CLS NDVI SAV NDVI Sm RFE CCD VCLAGOI VCLAGI I VCLAG2 VIC 
<600n(N) Mean 0.341 0.360 60.84N 90.63ý 5.90ý 5.06ý 4.09E 2.871ý 

Std. Dev ý 0.0991 0.101 91.1ý 183.8C 8.31,1 7.81ý 6.67E 4.63ý 
Min 

, 
0.1 0.20 0.0( 0.0c 0.0( 0.0c 0.0c 0.0( 

Max 0. 0.55 353. (X 1012.0ý 33.0( 30.0( 27.0( 20.0( 

1 
Median 0.34 0 'Ar'j 

.7 
5.00( 8.0 1.5( 1.0c 1.0 1 1.01 

600- Mean 0.3 0.352 61.7-j 88.9ý 6.4-1 5.6-o 4.540 3.160 
I 900m(N) Std. Dev 0.1 0.111 

- 
90.17ý 179.22, e 8.860 8.3281 7.251 5.16A 

Min 0.1 0.17 0.0( 0.0( 0.00 0.001 0.00 0.00 
Max 0. 0.58 383.0( 1012.0( 42.00 41.00 39.00 29.00 

Median 0.32 0.34 10. 8.0( 1.01 1.01 1.0( 1.01 

900- Mean 0.349 0.36ý 59.971 83.311 3.93A 3.29ý 2.54( 1.73 
ý 1200m(N) Std. Dev 0.098 0.090 82.70 161.21d 5.17 4.72ý 3.95,1 64 2.64 6 4 

Min 0.17 0.17 0.0( 0.00 0.0c 0.0( 0.0i 0 0.0 0 

1 

0 
Max 0.57 0.59 408.0C 1012.0 30. OC 29.0( 27.0ý .0 

1 8. 0 18.0 
Median 0.34 0.36 15.0( 12.0 1.0( 1.0( 1.0( 1 0 1.0 

>1200m Mean 0.3391 . 357, 60.755d 83.131 1.871, 1.59ý 1.264 0.934ý 
Std. Dev 0.087 O. co 79.577 161.72ý 2.22ý 2.031 1.551 1.04'g 

Min 0.17 0.10 0.00 0.0c 0.00 0.0c 0.0c 0.0( 
Max 0.57 0.5ý 416.00 1012.6( 13.00 12. OC 10.0c 7.0( 

Median 0.31 0.31 22.50 12.0( 1.01 1.0 1.0c 1.0( 

900- Mean 0.32E 0.34ý 51.1605 1 69.95U 2.78ý 2.441 1.9 1.3861 
1200m(S Std. Dev O. Oc O. Co 63.45ý 134.88d 3.480 3.140 2.380 1.546 

Min O. lE 0.10 O. Co 0.0c 0.00 0.00 0.00 0.0 
Max 0.5-o 0.50 345. Co 968. OC 20.00 18. CO 13.0( 8.0 

Median 0.32E 0. 22.50 12. OC 1.00 1.01 1.0( 1.0c 

600- Mean 0.330 
. 
3-5$ 48.71 ý 65.40-1 3.761 3.340 2.59, 1.8561 

900m(S) Std. Dev O. lq 0.10ý 59.688 131.691 4.882 4.431 IN 2.01AI 

Min 0.16 0.10 0.00 0.00 0.0( 0.00 0.0 0.0 
Max 0.57 0.50 301.00 804.0( A 26.0C 23.00 18.0 11.0 

Median 0.331 0.31 23.50 8.0( 1.0c 1.01 1.0( 1.0 

1 

<600m(S) Mean 0.303 0.32ý 41.58 1 56.92f 4.53E 4.111 1 3.11 2.22 
Std. Dev 0.103 0.10 52.212 1 121.381 6.1 E 5.59 4.17 2.600 

Min 0.15 0.1ý 0.0 0.0( 0.0( 0. 0. 0.0c 
Max 0.54 ý. 5 276.00 776. Oq 33.0 29.0 22. Qj 13. OC 

Median 0.284 0.30ý 20. Co 10.00 1.0 . 1 loo 1.0c 

. In ANOVA all groupings were found to be significant at better than 0.05. 



FIGURE6.10. MALARIA INCIDENCE RATIO CHILDREN UNDER 5: ADULT (OVER 15) ACCORDING 
TOA L TITUDE CLASS. 
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Fl(; t*RE6.11. MALARIA SEASONALITY IN ZIMBABWE BY ALTITUDE cLAss. DERiVEDFROM 

T4 YLORAND MUTAMBU (1987). 
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6.5.1.5. Endemicgy per aftftude class 

Using Taylor and Mutambu*s altitude classes to explore the data, the ratio of malaria 

in children (under 5) compared to adults (over 15) was found to be higher in the 

northern classes than in the southern classes, Figure 6.10. This may be used as 
further evidence to suggest that malaria is more endemic in the north and that adults 

in this region acquire immunity to malaria more readily than those in the south. 

6.5.1-6. Seasonalfty Der aft#ude class 

While Taylor and Mutambu showed that prevalence varied markedly between the 

altitude classes the length of the season generally did not23 , Figure 6.11. 

6.5.2. Linear regression modelling within the different altitude classes 

Further exploration of seasonality within each of the altitude classes yielded the 

following results. 

6.5.2.1. Aft#ude class 1. <600m(N) 

The monthly membership of 'seasonality' using the 7.5% criteria for altitude class I 

is shown in Figure 6.12. 

Fi(; uRE 6.12 MALARIA SEASONALITY IN ALTITUDE CLASS]. 

1000 
ALT_CLASS 1 <600n(N) 
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23 The early peak in the 900-1200m(S) zone was due entirely to a high number of positive slides being 
submitted in January and FebruaD, 1974 Taylor. P. and S. L. Mutambu (1986). "A review of the 
malaria situation in Zimbabwe with speeial referenee to the period 1972-198 L" Transaetions of the 
Roval Societ, * of Tropical Medieine and Hygiene 80: 12-19. 
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Forward step%Nise linear regression modelling of the 7.5% category for membership 

of malaria season and the relationship with environmental variables produced the 

folio%% ing model. Step 5 was chosen as the optimal model as the incremental 

advantage decreased markedly after this point, Table 6.5. The relationship between 

the model's predicted value and the malaria incidence data is given in Figure 6.13. 

T4 BLE 6.5. CoE/-h'/clE, v7NOFTHE IsIODEL FOR ALTITUDE CLASS 1. 

nstandardized 
oefficients 
r 
c ý 

Ptandardized 
Coefficients 

t ig. 

Model 

J 

td. Error j Beta 
5 Co tant 50.124 189.686 . 

900 
. 
005 

VCLAG3 3 36.657 2.613 0.794 
. 795 ' . 

000 
CID 

-LAG3 -5.411 1.261 -0.358 . 
292 

. 
000 

1 

CID LAG2 
J 

-10.103 1.633 -0.668 . 185 . 000 
CLAG1 1 369A85 57.004 0.924 . 482 . 

000 
CD LAG1 -4.460 1.061 -0.296 . 202 . 000 

Fl(; t'RE 6.13. RrLA TioN BETWEEN MALARIA INCIDENCE AND PREDICTED VALUE, ALTITUDE 
clAss 1. 

ALT_CLASS 1 <600n(N) 
140 
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Rsq = 0.6590 

Regression Adjusted Predicted Value 
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6.5.2.2. Aft#ude class 2.600-900m(N) 

For altitude class 2. monthly membership of seasonality is shown in Figure 6.14. 

Fi(; t 'RE 6.14. MALARIA SEASONALITY IN ALTITUDE CLASS 2. 
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Forward stepwise linear regression modelling of 7.5% membership and 

environmental variables produced the following model for altitude class 2. Again 

step 5 was chosen as the optimal model, Table 6.6. The relationship between the 

model's adjusted predicted value and the malaria incidence data (log transform) is 

given in Figure 6.15. 

T4 BLE 6.6. COEFFICIENTS OF THE MODEL FOR ALTITUDE CLASS 

Jnstandardized 
oefficients 

- 

ýtandardizpd 
poefficients 

t Sig. 

Mode 3 ýtd. Error l Beta 
Constant . 5.695 . 352 -4.211 0.000 

RAIN 2 5.948E-03 . 001 0.585 2.632 P. 000 
CLAG1 3 1.81 OE-02 . 003 

1 

0.206 
. 309 . 000 

LONG . 324E-02 . 014 . 232 . 572 . 000 
LAT . 316 0 . 065 0.173 ( . 890 . 000 
VCLAG3 546E-02 . 007 . 180 . 778 000 
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Fi(; uRf 6.15. Rf. 'LA TioN BETWEEN MALARIA INCIDENCE AND ADJUSTED PREDICTED VALUE, 

.41. TI TUDE CLAss 2. 
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6.5-2.3. Aftkude Class 3.900-1200m(N). 

Monthly membership of seasonality in altitude class 3 is shown in Figure 6.16. 

FIGURE 6.16. A1.41-4RJA SFASONALITY IN ALTITUDE CLASS 
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Vor%ard %tcp%%I%c linear regressit'M modelling of 7.5% membership and 

cn%irtmmcntal %anabics prLxjtxcd the follo%-. ing m(Ael for altitude class 3. Step3 

%as chosen as t"Imal. Fable 6.7. The relationship between the model's predicted 

%aluc and the malaria incidence data is given in Figure 6.17. 

1 4MI-1.6 ,( *(*k ýA It % IN 1 )b I Ht AN)DEL FOR AL 77TUDE CIANS 

t 

M Erro( 
3827 

4 

557 18481 0000 
6 14699 0000 

t 
, 
478 11 202 0 000 

Ik). % BElWFEh A"LARJA INCIDENCE AND PREDICTED VALUE, ALTITUDE 

ALT_CLASS 3 900-1200m(N) 
300 

200 

too 

-ilk lit JAJ" 
A 

10 0 10 20 30 40 

Regression A4USW Predided Value 

so 60 

YEAR 

0 1999 

a 1906 

1997 

1996 

1995 

1994 

Rsq - 0.2765 

In general the model is weaker in this altitude class than those of altitude classes 
1&2. lio%e%cr, if the data are plotted for years 1994 (drought) and 1996 (epidemic) 

onlý the slope of the regression can be seen to be much greater in the epidemic year 

compared with the drought Near, Figure 6.17b. 
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6524 Affude Class 4. > 1200m. 

Membership ofthe monthl) 7.5*, o criteria for seasonalitý in altitude class 4 is shown 
in Figure 6.19. In this altitude class the seasonality is becoming less distinct. The 

major population centres Harare and Bulawayo are included in this altitude class and 

there is a strong possibilit) that cases are being reported here which result from 

infection clse%hcre. 

Flot RE 6, IN MAL. AW4 SEASONALM INALrMIDE CLASS 4. 
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I-or%ard %tcp%%Isc linear regression modelling of the 7.5% membership and 

environmental --anabics produced the following model for altitude class 4. Step 5 

, Aa--. chosen as the optimal. Tablc 6.8. The relationship bet%keen the model's adjusted 

prcdictcd %aluc and the malafia incidence data is given in Figure 6.19. 

r4911 6x rHe- ki)R. 41. TITI'1)1-. -(-L4. V4. 

t 

3951 p 547 -123929000 
128 10004 l 027 2320 0000 
720 0050 0762 14524 cýOO0 
784E-02 006 0384 -8.267 0.000 

j )345 
9604 

10301 8.142 o- 000 

ý 761 - -b 094 *ýOý258 
-8.105 9.000 

f, /(, ( Rk 6 19 RIVI-4 1 1(A DEI'»EF-N'*£4L4R1A LVCIDENCE AND PREDK7TED VALUE, AL TITIIDE 
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0 1994 

Rsq = 0.4605 

1-his model for this altitude class is verN poor. It must be remembered however. that 

the major population centres. including Harare and Bulawayo, are located in this 
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altitude class and many cases reporting here may be a result of transmission 

else%N here. 

6.5.2.5. Aftkude Class 5.900-1200m(S). 

Monthly membership of the 7.5% seasonality criteria for altitude class5 is shown in 

Figure 6.20. 

Fic, (, lRE 6.20. SEASONALITY OF MALARIA IN ALTITUDE CLASS 5. 
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The forward stepwise linear regression modelling of 7.5% membership and 

environmental variables for altitude class 5 produced the following model. Step 5 

was chosen as the optimal, Table 6.9. The relationship between the model's adjusted 

predicted value and the malaria incidence data is given in Figure 6.2 1. 

TABLE 6.9. COEFFICIEN7S OF THE MODEL FOR ALTITUDE CLASS 5. 

Jnstandardized 

, oefficients 
Standardized 
Coefficients 

t Sig. 

Mode 3 Std. Error Beta 
Constant . 18.715 3.066 -6-105 0.000 

RAIN 2 

k 

3.528E-02 ). 005 ). 558 13.871 ). 000 
RH ). 470 ). 035 ). 437 13.306 ). 000 

1 Cc LAG1 1 1.058 )-123 ). 360 8.589 ). 000 
TT Mp EMP 4 -0.709 ). 088 . 0.252 -8.034 ). 000 

CL 0 CLAGO 
-3 

). 638 )-098 ). 241 6. -5--28 ). 000 
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F1(; uRE6.21. RELA TioN BETWEEN MALARIA INCIDENCE AND PREDICTED VALUE, ALTITUDE 
cLAss 5. 
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6.5.2.6. Altkude Class 6.600-900m(S). 

The monthl-v membership of the 7.5% category for altitude class 6 is shown in Figure 

6.22. There is an indication here that the season may be starting earlier 

(November/December), a trend beginning in altitude class 5 and apparent in altitude 

class 7 also. This would indicate that the season generally begins earlier in the 

southern altitude classes compared with those of the north. 

Fi(; uRE6.22. SEASOAALITYOF MALARIA IN ALTITUDE CLASS 6. 
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Forward stepwise linear regression modelling of 7.5% membership with the 

environmental variables produced the following model for altitude class 6. Step 5 

was chosen as the optimal, Table 6.10. The relationship between the model's 

predicted value and the malaria incidence data is given in Figure 6.23. 

TABLE 6.10. COEFFICIEN7NIN THE MODEL FOR ALTITUDE CLASS 6. 

I nstandardized ýoefficients Standardized 
Coefficients 

tý sig. 

Modei Std. Error Beta 
-220A19 5, (ConstanA 21.349 -10.325 ). 000 
ý , ýX_RAIN 2 0.254 0.010 1.182 24.409 ). 000 

RH 5 ý1.562 
- -+ - - . 

062 ). 933 25.001 ). 000 
TEýiP 5 ý 1.563 ý 

. 109 . 0.428 -14.400 ). 000 
i 
ý6.872 . 

948 

1 

-0.200 7.245 
. 
000 

ý/CLAG2_1 0.754 
. 145 3.217 

. 
216 

. 
000 

Fim, 'W'623. RELA TION BETWEEN MALARIA INCIDENCE AND PREDICTED VALUE, ALTITUDE 
CLASS 6. 

ALT-CLASS 6 600-900m(S) 
70, 

60 

50 

40- 

30 

,0 20 

10 

c 

ic 

YEAR 

* 1999 

0 1998 

1 1997 

A 1996 

+ 1995 

Rsq = 0.8069 

-10 0 10 20 30 40 50 60 

Regression Adjusted Predicted Value 

135 



6.5.2.7. Aftftude Class 7. <600m(S). 

Monthly membership of the 7.5% criteria for altitude class 7 is shown in Figure 6.24. 

FlouRE 6.24. Sf.. 4.. S'Olv'AL17'1'OF MALARIA IN ALTITUDE CLASS 7. 
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Forward stepwise linear regression modelling of the 7.5% membership and 

environmental variables produced the following model for altitude class 4. Step 4 

was chosen as optimal, Table 6.11. The relationship between the model's predicted 

value and the malaria incidence data (log transformed) is given in Figure 6.25. 

TA BLE 6.11. COEFI-VIENTS IN THE MODEL FOR AL TITUDE CLASS 7. 

Jnstandardized 
oefficients 

Standardized 
Coefficients 

t ig. 

Mode 3 Std. Error Beta 
onstant) . 53.254 8.133 -6.548 . 000 Vý H . 056E-02 . 006 P. 346 

. 351 . 000 
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. 000 
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FIOURE 6.25 

6.5.3 

Rl 1-111m INCIDENCEAND PREDICTED VALUE, ALTITUDE 
cLAss 7. 
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Using logistic regression to map seasonality 

When the forward-stepwise binary logistic regression function in SPSS was used to 

model the 7.5% membership condition against the range of environmental variables, 
the following summary results were obtained, Table 6.12. Model (Step) 2 was 

chosen as it correctly predicted 81.6 % of the membership cases, while maintaining 
the simplicity of just two covariables (mean rainfall lagged by 2 months and mean 
temperature lagged by 4 months). Without the model, guessing whether a particular 

month would have membership of malaria season would have a 55% probability of 
being correct. 
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TABLE 6.12. PREDICTXE MODEL SUMMARY 

a. Classification Table 

Predicted 

7.5% of totals 
Observed 

D. 00 1.00 
Percentag I 

Correci 
Step 2 0.00 1441 221 86.71 

7.5% of total 1.00 328 999 75.3 
Overallý 

Percentagej 81.6 
b. Variables in the Equation 

I B S. E. dý Sig. 
Step 2 X RAI NZ 0.022 0.001 11 0.000 

X TEMP_A 0.214 0.01§ 1 1 0.000 
Constaný -5.631 0.341 1 1 0.000 

Box 6.1. DIF LOGISTIC REGRESSION MODEL FROM TABLE 6.12. 

1 /(l 

where -Z = (-5.631 + (X_RAIN_2 * 0.022) + (X-TEMP-4 * 

0.214))*-l 

As in Chapter 5, a map was produced for each month using ldrisi's Image Calculator 

using the above formula, Box 6.1. The twelve maps were then added together using 

ldrisi's overlay module to produce the map, Figure 6.26, which offers a map of 

predicted length of the season based on the 5km grid resolution. 

There is a general agreement between Figure 6.26, Figure 6.9, the altitude map 

showing the altitude classes, and Figure 6.8, the malaria incidence by district map. 
The map, Figure 6.26, also shows a greater area in the south as having the longest 

seasonality. 
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Fi(; t,,, RE6.26. PREDICTIVE MAP OF MALARIA SEASON IN ZIMBABWE (1994-99). 
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E3 

Legend: 

The map is produced from the model in Table 6.12 and predicts the mean seasonality 
of malaria in Zimbabwe. 



6.5.4. Mapping epidemic risk 

The ability to map areas of epidemic risk in Zimbabwe, especially changes in 

epidemic risk, could he a valuable tool in malaria control. The value depends in 

particular on any lead-time that can be gained through environmental or 

epidemiological monitoring. 

Analysis of the association between the difference anomalies of the temporal 

environmental variables compared with the malaria incidence anomalies for the 

various altitude classes were carried out, as described for Botswana in Chapter 5, 

section 5.3.6. In Zimbabwe CCD and NDVI anomalies appear to be the most 

strongly associated with anomalies in the malaria incidence, both for anomalies 

within the main season and those which occur outside of the main season. The 

difference anomalies in vectorial capacity (lags 0,1,2 and 3 months) are also 

associated with anomalies in the malaria incidence. These associations tend to be less 

strong in the peak season, but with high significance in early and late season in some 

of the altitude classes. The association between vectorial capacity anomalies and 
incidence anomalies also tend to be less apparent in the lowest altitude classes, both 

north and south. 

Some of the combined environmental variables used in the above analyses are 

simultaneous with the dependent variable (malaria incidence), some do not vary 
between years but reflect mean seasonal changes (mean climatology) others do not 

vary with time at all (altitude, latitude, longitude). Other variables, the lagged 

variables, may offer some predictive value for malaria incidence in months to come. 
If for example, a District Health Team decided it required indicators which offered a 

warning time of 2-3 months, to mount a preventative response, then maps could be 

produced using only variables which offered that lead-time. The following will test 

this requirement in two epidemic prone districts. 

The monthly malaria incidence data for Zimbabwe 1994-1999 suggests that there is a 
strong correlation between mean incidence levels and the standard deviation of the 

same, Figure 6.27. 
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Fi(; t'RE 6.2 7. REi.. 4 TIONSHIP BETWEEN MEAN INCIDENCE AND STANDARD DEVIATION OF 
1994-1999. 
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The map, Figure 6.28, shows the standard deviation in incidence, by district, over the 

period 1994-1999. Comparison of this map and the map of mean district incidence, 

Figure 6.8, indicates that many of the districts with high malaria incidence also have 

high variability in incidence. This would suggest that many of the malaria epidemics 
in Zimbabwe occur in endemic areas as increases in cases over and above the normal 

seasonal trend rather than as 'true epidemics', as defined in (Najera 1998b). 

Two districts are chosen here, one within the high mean and standard deviation range 
(Mudzi), and one within the medium mean and standard deviation range (Chiredzi). 

Mudzi in the northeast of the country has an incidence mean of 32.3 and a standard 
deviation of 35.3. It is in altitude class 2. Chiredzi in the southeast of the country has 

an incidence mean of 18.2 and a standard deviation (13.2). It is in altitude class 7, 

Figure 6.29. 

The stepwise linear regression method testing the relationships between mean 
monthly incidence totals (all age groups) against all environmental variables 
produced the following results. 
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FiGuRE6.28. STAADARD DEVIA TIONIN MALARIA INCIDENCE BY DISTRICT, 1994-1999. 

T 

Malaria Incidence (ad) 

2 

2-4.9 

5-9.9 

10-19.9 

20-29.9 

> 30 

Legend: 

The map used administrative boundary files supplied by SADC-RRSP (1997). 



Fim'RE6.29. LocA TioN OF MUDZI AND CHIREDZI DISTRICTS IN ZIMBABWE. 

Legend: 

The map used administrative boundary files supplied by SADC-RRSP (1997). 



6.5.4.1. Epidemic fisk in Mudzi, District 

For Mudzi district. step 3 of the model was optimal giving an R2 value of 0.717 

(72%) vhile requiringjust three covariables, Table 6.13. The relationship between 

the incidence data and the model's predicted values are given in Figure 6.30. 

T4Bi, E 6.13. LINEAR REGRESSIONNYODEL FOR MUDZI 

Modeý, R Square Adjuste 
R Squar 

Std. Error of th 
Estimate 

. 
84 . 717 . 691 21.4981 

rnaffir-ionte 

Unstandardize 
Coefficientl 

I Standardize 
Coefficien 

t Sig. 

Mode Eý Std. Error Beta 
Constant -30.18q 12.795 -2.3591 . 

0231 
VCLANG 2.521 . 

886 . 
358 2.843 . 

007 
NDVISAV 215.69ý 49.421 . 615 4.365 . 

000 1 
RFE_LAGý -. 120 . 

041 -. 280 -2.537 . 015 

Fim'RE 6.30. RELA TlONSHIP BETWEEN INCIDENCE, ACTUAL AND PREDICTED, MUDZI 

DISTRICT. 

District: Mudzi 
zuu 

100 

'D 
a 

loc 

Regression Adjusted Predicted Value 

Rsq = 0.6652 

Using this model, Box 6.2, in ldrisi's Map Calculator module produced the following 

spatial model of predicted malaria incidence for Mudzi district, for January 1996, 
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Figure 6.3 1. In terms of lead-time available such a map could have been produced in 

November 1995, offering two months warning of where, relative to this district, 

malaria incidence would be lower or higher. However, the relationship between the 

models predicted values and malaria incidence shown in Figure 6.30, suggests the 

model would not perform particularly well for predicting epidemics in Mudzi. 

BOX6.2 ME REGREssiov Atom FRom TABLE 6 13. 

Y= -30.180 + (VCLAG 3*2.52) + (NDVISAV 2* 215.697) 
(RFEý_LA G5 * -0.120) 

6.641 Epidemic risk in Chlredzi, District 

For Chiredzi district, step 5 of the model was optimal giving an W value of 0.831 

(83%) again rcquiringjust three covariables, Table 6.14. 'Me relationship between 

the incidence data and the model predicted values are given in Figure 6.32. 

TABLE 6.14. LXVEA R REGRESSION MODEL FOR CHIREDZI 

Mode I R Squar I Adjuste 
R Squar 

Std. Error of thel 
Estirnateý 

. 91ý . 831 1 
. 81 5.960ý 

Coefficients 
Unstandardize 

Coefficient 
Standardized 

Coefficients 
t Sig. 

Mode BI Std. Error Beta 
(Constant 26.370 5.014 5.26C . 00c 

CCD LAW 
, 5.596E-021 . 006 . 571 

. 
8.748 . 00c 

NDVISAVJ -32.291 L 11-980 -. 241 --2.695 
. 01 

VCLAGý 1.140 . 251 . 417 1 4.558 . 000 
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FiGURE6.31. SPA TIALMODEL OF PREDICTED MALARIA INCIDENCE, MUDZI, JANUARY 1996. 

lowest 

03 
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Fic, URE6.33. SPATIAL MODEL OF PREDICTED MALARIA INCIDENCE IN CHIREDZI DISTRICT, 
ZIMBABWE, JANUARY 1996. 
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Legend: The maps for Mudzi and Chiredzi are developed from the models in Tables 
6.13 and 6.14 respectively. They predict where in the district malaria incidence 
would be higher or lower on a relative scale. They assume uniform population 
distribution within the district. They use separate models and are not comparable to 
each other. 
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FIG uRE 6.32. RELA TioNsHip BETWEEN INCIDENCE, ACTUAL AND PREDICTED, CHIREDZI 
PISTRICT. 
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Regression Adjusted Predicted Value 

Rsq = 0.7111 

Using this model, Box 6.3, in ldrisi's Map Calculator module produced the following 

spatial model of predicted malaria incidence for Chiredzi district, for January 1996, 

Figure 6.33. In tenris of lead-time available, such a map could have been produced 
in November 1995, offering two months warning of where, relative to this district, 

malaria incidence would be lower or higher. The relationship between the models 

predicted values and malaria incidence, Figure 6.32, does suggest the model would 
have some value in predicting epidemics in Chiredzi. 

Box 6.3. 

Y= 26.370 + (LAGS(CCD_3 * 0.056) + (NDVISAV 5 
-32.291) + (VCLAG-2 * 1.146) 
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6.6. Discussion 

The malaria situation in Zimbabwe is relatively difficult to assess from the data 

available here. This is partly due to the data being unconfirmed, but also due to the 

complexity of the terrain and the diverse ecological/epidemiological settings which 

exist. Some of models produced are not intuitive, as they include relationships which 

are negatively correlated, with malaria incidence, in combination with relationships 

which are positively correlated, with malaria incidence, within the same model. By 

comparison Botswana is relatively straight forward. 

However, it has been shown here that available data from routine case reporting used 

alongside available environmental information can provide useful information on 

malaria distribution in Zimbabwe. The spatial and temporal (seasonal and inter 

annual) variation in the reported malaria was shown to be in agreement with historic 

surveys across a range of ecological settings (altitude class). Environmental 

information modelled against the case data was also shown to be useful in identifying 

spatial variation in season length, and an indication of when the season begins and 

ends in each altitude class. 

It would appear that malaria epidemics in Zimbabwe are less likely to be 'true 

epidemics' (le becomes greater than 1) but result from sharp seasonal increases, 

possibly including resurgent outbreaks, during years when environmental conditions 

are favourable for transmission. If this is the case, then routine malaria control based 

on a calendar of events would be the best option for most districts, with monitoring 

and surveillance carried out to ensure the efficiency of the control programme. 
There is evidence that some advance warning of increased seasonal malaria may be 

achieved by routine reference to environmental monitoring products such as NDVI, 

CCD and RFE in certain altitude classes. These are all available from the SADC 

Food Security System and Drought Monitoring Centres in Harare. Spatial models 
including these variables are also important in this respect, and examples were shown 
from two districts for a month early in the season in a given year. If such models 
were routinely available to malaria control services then their acquisition over time 

would allow monthly difference products to be made of these, providing further 

144 



development of localised, 'epidemic' risk indicators which could be used at the 

district level. 

The linear models were generally more robust in the altitude classes I and 7, the 

lower altitude classes. Altitude class 3 included a positive relationship between 

mean temperature lagged by 4 months*and malaria incidence. Work by Freeman and 
Bradley suggested that malaria severity was correlated to temperatures in the 

September preceding the malaria season in Zimbabwe (Freeman and Bradley 1996). 

They concluded, from analysis of 80 years of malaria data and meteorological data 

from Harare, that high September temperatures would predict increased severity in 

malaria throughout the middle altitude zones in Zimbabwe. However, the models 
here for altitude classes 4,5 and 6 suggest mean temperature lagged by 4 and 5 

months are negatively correlated with malaria incidence. The presence of latitude 

and longitude in the models suggests there is some other factor(s) not captured by the 

environmental variables. Identifying what this factor is would be valuable in further 

developing predictive models for these regions. 
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7. Malaria and Environment in Namibia 

7.1. Geographical background 

Namibia is a large country of 824,290 square kilometres in Southwest Africa. it is 

located between I1 11 45' E and 25" 15' E; and between 17" 00' S and 29' 00' S. 

Namibia has an Atlantic coastline of approximately 1500 krn as its western border. 

To the north and northeast it shares land borders with Angola and Zambia, to the east 

with Botswana, and to the south and southeast with the Republic of South Africa. 

Topographically Namibia is divided into three distinct regions: the arid, low lying 

coastal belt which ranges from 100-160 krn in width and includes the Namib Desert 

in the south and the Skeleton Coast in the north; the central plateau which has a mean 

elevation of II 00m with several mountainous areas rising to elevations greater than 
1800m; and the Kalahari Desert which is a continuation of the plateau. 

Namibia is the driest country in Southern Afflca. With 92% of its surface classed as 

arid. The climate is generally described as hot and dry, but rainfall and temperatures 

vary markedly across the country. Annual rainfall totals along the coast average 

around 50mm. Inland, average annual total rainfall is 559mm. in the north, decreasing 

to 152mm in the south. Most of the rainfall occurs during the summer (October - 
March). The average annual temperature along the coast is 17'C, inland it is 210C 

but again this varies markedly across the country. Average monthly summer 

temperatures range from 19-34T. The 'summer' months are October to April. 

Winter temperatures range between 6-19T although temperatures may fall below 

zero in the highland and Southern regions. Relative humidity varies between 61- 

71% in the north and between 2440% in the south. 

The only permanent rivers are the Kunene, Okavango, Zambezi, in the north, and the 
Orange river in the south, all of which form international borders. There is very little 

surface water apart from seasonal flooding of the Oshanas in the north of the country. 
The Oshanas are large shallow lakes flowing slowly southwards across the border 
from Angola down towards the Etosha Pan. Occasionally, heavy rainfall in Angola 
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will cause the Etosha Pan to flood and normally dry water courses will discharge into 

the Atlantic. 

The population in Namibia, estimated at approximately 1.8 million people (Obeid, 

Mendelsohn et al. 2001) is sparsely distributed, having a population density of only 2 

persons per kM2. The north is essentially rural and the economy is based on 

traditional agriculture and livestock farming. However, Tsumeb is an important 

economic base for mining, industry and commercial agriculture. The population in 

1995 was split into 37% urban and 63 % rural. Urbanisation is rapid and the urban 

population was expected to grow to 40% by 2000. Internal migration in Namibia is 

high. GDP per capita is also relatively high for sub-Saharan Africa estimated in 

1998 at US$ 1940 (UNDP 2000). 

7.2. Malaria and its control in Namibia 

While Namibia is the driest country in Southern Africa, malaria is seen to be one of 
the leading public health problems in the country. It is ranked as the first cause of 

outpatient attendance in children over 5, in under 5s it is second only to Acute 

Respiratory Infections. It has f irst ranking as the reason for inpatient admission in all 

age groups. In 1995 malaria was ranked as the first cause of death in Namibia 
(NVDCP 1995). By 2001 it was ranked as the sixth cause of death overall but 

remained as the first cause of death in the 5-15 age group (Obeid, Mendelsohn et al. 
2001). This change is largely a result of the impact of HIV/A1DS in the region. 

In 1965 extensive malaria control operations were begun using DDT for indoor 

residual spraying. This resulted in a marked reduction in malaria among the general 

population. The conflict in the region during Namibia's war of independence 

disrupted the control programme during the 1980s. 'Mis coupled with several years 

of drought (and declining immunity) was considered to have led to the devastating 

malaria epidemic of 1990 (NVDCP 1995). As a result of this epidemic the Ministry 

of Health and Social Services (MOHSS) launched an extensive National Vector- 
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borne Disease Control Programme (NVDCP) to control malaria and other vector- 

borne discaSCS24. 

7.2.1. Malaria control activities in Namibia 

The main malaria control activities in Namibia are implemented in conjunction with 
the Primary Health Care Programme and include: 

711.1. Disease mannement 

Effective disease management requires early diagnosis, followed by prompt and 

correct treatment in line with national guidelines on treatment of uncomplicated 

malaria, and severe and complicated malaria. Chloroquine is the first line drug of 

choice in Namibia, S. P. is the second line choice for drug resistant malaria, except in 

pregnant women or infants under 6 months where the drug of choice is oral quinine. 
For in patients with severe and complicated malaria I. V. quinine is recommended. 

721.2. Disease prevention 

Continual assessment of the malaria situation is recognised as an essential 

prerequisite to effective disease prevention. Information required includes data on 
morbidity and mortality, drug and insecticide resistance, population movement and 
environment. Mosquito nets, especially insecticide treated nets are recommended. 
However, their use in Namibia is limited. Protective clothing, use of repellents and 
screening of doors and windows are recommended also. Use of anti-malarial drugs 
is recommended for special risk groups. These are: pregnant women, young children 
and non-immune travellers to malarious areas. 

711.3. Vector control 

The control of vectors is considered to be the best method of protecting a community 

against malaria infection. Selective vector control, using DDT for indoor residual 

spraying, is carried out in the endemic regions of the Northwest and Northeast Health 
Directorates. Additional spraying may be carried out in other areas considered to be 

at risk. The recommendations are that spraying should begin 4 months prior to the 

start of the transmission season. Monitoring for insecticide resistance should be 

24 -TbC programme was initially called the National Malaria Control Programme but was renamed in 
its first year to include diseases such as schistosorniasis and plague. 
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carried out regularly. Additional use of insecticides may be directed at larval stages 

of the vector in selected areas as part of environmental management. 

711.4. Communitv Participation 

This includes raising awareness of malaria risk through education and training of 
local communities in the importance of removing mosquito breeding sites and 

personal protection against biting. 

711.5. Prevention and control of epidemics 

The ability to detect early, prevent and control epidemics is recognised as an 

essential component of effective malaria control in Namibia. The importance of 

mapping areas at risk and the monitoring of climatic indicators are seen as essential 

steps in the forecasting of epidemics. A national malaria epidemic response plan for 

Namibia was drawn up following a WHO-AFRO Workshop on Prevention and 
Control of Malaria Epidemics in 1996. 

7.3. Pafterns of malaria in Namibia 

Malaria is most prevalent in the northern regions of the country where more than 
60% of the population live (NVDCP 1995). Ile most extensive survey of malaria 
prevalence was carried out between 1947 and 195 1.17his survey showed that 64% of 
the population in Okavango, and 49% of the population of Ovamboland were 
infected with malaria parasites. The potential for malaria transmission was found to 
be high in the north and northeast and low in central and southern regions (De 

Meillon 1951). 

Malaria in Namibia is seasonal and unstable with a potential for epidemic outbreaks 
when environmental conditions are favourable for transmission. Acquired immunity 
in the population appears to be low with morbidity and mortality extending into all 
age groups, although the annual incidence of malaria is approximately twice as high 
in children compared with adults (Kamwi and Connor in press). A number of 
epidemics have occurred in recent years: the first in 1990, the second in 1993, a third 
along the Caprivi Strip in 1996. In 1997 malaria cases and deaths increased yet 
further, with a fifth epidemic in 2001. This most recent epidemic occurred in the 
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Northwest of the country where the first six months of the year produced 22,25 8 

confirmed malaria cases and 690 deaths. 'Me epidemic was thought to have been 

caused by prolonged warm conditions with late and heavy rainfall (Hamata 2001). 

The expert opinion map for malaria in Namibia, Figure 7.1, suggests malaria to be 

confincd to the northern half of the country, with a trend for increasing malaria 
towards the northeast. 

The administrative boundaries in Namibia have been subject to significant changes 
during the past decade. The expert opinion, Figure 7.1, map used the 2 nd level 

administrative boundaries (Regions) available from the SADC CD-ROM. These 28 

regions were redrawn in 1992 to 13 new regions. However, the Health Information 

System in Namibia was based on different administrative units. It had four regional 
Health Directorates (Northwest, Northeast, Central and Southern) in turn divided into 

34 Health Districts. This management structure is however currently under review 

and the 4 Directorates will be reorganised according to the 13 new political regions, 

each with a regional management team reporting to the MoHSS in Windhoek (Obeid, 

Mendelsohn et al. 200 1). The monthly malaria statistics available from the HIS were 

organised at the Health Directorate level, Figure 7.2. Therefore the environmental 

and population data used here were also organised at this level for comparative 

analysis. 

7.4. Aims of this chapter 

* To describe the spatial and temporal distribution of malaria in Namibia. 

9 To compare and relate the spatial and temporal distribution of malaria to 

environmental variables in order to inform, malaria risk mapping. 

9 To explore whether or not temporal environmental variables could be used in an 

early warning system for malaria epidemics in Namibia. 
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Legend: 

The map is produced using the administrative boundaries supplied by SADC-RRSP 
(1997). 
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RGURE 7.2. THEFOUR REGIONAL HEALTH DiREcToRA TES 17VNAMBL4 .. 

Legend: 

The map is based on the 4 Health Directorates, boundary files supplied by the 
Ministry of Health and Social Services, Namibia. 

0 The Directorates NW and NE correspond generally with the former Ovamboland and Okavango 
regions described in DeMeillon's survey (de Meillon, 1951). 



7.5. Matedals and Methods 

Ile materials and methods used here are generally similar to those described 

prcviously in ChaPtcrs 5 and 6. 

7.5.1. Epidemiological data 

Epidemiological data covering the period 1993-2000 were collected from the 

Ministry of Health and Social Services routine Health Information System. Details 

of these data are summarised in Table 7.1. Unfortunately there was limited data on 
laboratory confinned cases available at the national level. 

TABLE 7.1. SUAMMRYOFA VAILABLE EPIDEMIOLOGICAL DATA ONAMURM 

Time period/frequency/case definition Spatial Scale 

1996-2000 Monthly clinical outpatient/inpatient Directorate 

1993-2000 Monthly clinical inpatient National 

1996-2000 Monthly deaths National 

1997 Laboratory confirmed slide positivity data Facility 

7.5.2. Population data 

Namibia has a high prevalence of HIV-AIDS. Population growth rates were 

estimated at approximately 3.0% p. a. for the period 1990-1995. However, growth 

rates declined to 1.6% p. a. by 2000. To accommodate this figures for the Health 

Directorate level were revised downward to reflect an estimated population growth 

of 2% per annum since 1995. Incidence figures were produced for each of the four 

Health Directorates by year. 

7.5.3. Environmental data 

The environmental data used and the method of extraction of summary statistics per 
Directorate, per month is the same as that described in Chapter 5, section 5.5.2.1.3. 
Tlie administrative boundary files used for the extraction were made according to 
information obtained from the NVDCP. 
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7.5.4. Data analysis 

SPSS and Microsoft Excel were used to explore and assess the relationships between 

the epidemiological and environmental data. 'Me preliminary analyses included 

comparing time series of unconfirmed malaria cases using exploratory scatterplots 
and Pearson's correlation cocMicient. Comparisons were made of relationships 
between contemporaneous environmental variables such as NDVI, RFE and CCD 

and the respective long-term mean monthly climatology variables. The relationships 
between the epidemiological data and the environmental variables were explored 
using curve estimation techniques in SPSS. As a result of this, the malaria inpatient 
data were log transformed, where appropriate, prior to further analysis in SPSS using 

a combination of bivariate and multivariate techniques against the chosen 

environmental variables. 

7.6. Results 

The relationship between inpatient and outpatient data for Namibia is shown in 

Figure 7.3. The correlation is strong with an W of 0.843. Annual totals for malaria 
inpatient admissions in Namibia vary markedly between years, Figure 7.4. The 

inpatient malaria data, while not necessarily slide confirmed, are assumed to be 

generally more reliable than the outpatient data. 

7.6.1. Seasonality of malaria 

The mean seasonality of malaria in Namibia 1996-2000 is presented in Figure 7.5. 
The graph suggests that the season begins in January peaks in April and ends in June. 

Unfortunately there is little laboratory confirmed data available at the central level in 
Namibia. However, blood slide results were obtained for laboratory facilities for 

each month of 1997. The blood slide positivity results for 1997 vary drastically 
between the different facilities (22 in total). Nankudu in the NE showed the best 

results with an overall positivity rate of 41.61% over the year and a clear seasonality 
in the data, Figure 7.6. Not surprisingly correct clinical diagnosis of malaria is 
higher during the main malaria season (60.18%) falling off to (31.52%) during the 
latter half of the year. 
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? GuRE 7.3. RELA 77ONWIP BETWEEN OUTFA 77ENTAND INPATIENT CASES IN NAMIBIA 1996- 
2000. 
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Fi(; uRE 7.6. BLOOD SLIDE POSITIVITY X4 TES INNANKUDU 1997. 

1400 

1200 

1000 

800 

600 

400 

200 

0 

blood slide positivity Nankudu 

m total 
0 positlye 

LL 

23456789 10 11 12 

month 

FIG uRE 7.7. BLOOD SLIDE POSITlP7TY OSHAKA TI 199 7. 

3000 

2500 

2000 

1500 

1000 

500 

0 

6789 10 11 12 

month 

blood slide positivity Oshakati 

a total 
sposbwe 

56789 10 11 12 

month 

Fl(; I Rý, -. 8. BI. OODSLIDE POSIT117TYLVOPUR'O 1997. 

600 

500 

400 

12 300 

200 

100 

0 

blood slide positivity Opuwo 

F-- 0 total 
0 positive 



The poorest diagnostic results come from Oshikati with an overall correct diagnosis 

of 5% (8.26% during the main season and 3.29% during the latter half of the year, 

Figure 7.7. 

Results from Opuwo are interesting in that correct diagnosis increases marginally 
from 39.53% to 42.63% during the latter part of the year, Figure 7.8. 

The relationship between laboratory confirmed cases and inpatient cases in 1997 was 

strong with an R2 value of 0.875, Figure 7.9. The results of the laboratory data 

analysis for 1997 ranging from 5.0 1% and 41.6 1% for annual rates and 7.72% and 
60.18% seasonal rate (January-June) are summarised in Table 7.2. Results on blood 

slide positivity rates from the various laboratory facilities are likely to change from 

year to year, or as staff change. Blood slide results from 26 laboratory facilities for 

the years 1994/95 showed ranges of 5% to 47.74% positive and 1995/96 showed 

ranges of 5.13% to 53.05% positive (Kamwi and Connor in press). A more recent 

study in Outapi District Hospital and Mahenene Clinic in the NWHD, between 

September 1998 and May 2000, found that over-diagnosis in the dry season had 

reached 94% at Outapi District Hospital with a best performance of 57% correct 
diagnosis at Mahenene Clinic during the wet season (Barnish 2000). 

When the monthly range of percentage of annual totals are plotted the following 

result is obtained, Figure 7.10. If the results are produced for each Directorate the 

variability in seasonal and interannual patterns can be compared, Figure 7.11. A 

figure of 5% of annual totals would appear to identify the beginning and end of the 

season. 

7.6.2. Mapping seasonality using logistic regression 

Using the 5% monthly membership criteria, a binary logistic regression model for 

monthly seasonal membership in Namibia was produced. Step 2 was chosen as 

optimal, Table 7.3, as it predicted 87.8% of the membership correctly. 
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DBLE U DBORA TORY CONFIRMED M4L4RL4 POSITIVITYRATESFOR 22 FACILITIESIN 
NA, tfiBL4 199Z 

Laboratory 
Facility 

Total 
slides 

"ositive 
Mides 

Annual 
(+)ve rate 

Jan-Jun 
+)ve rate 

Jul-Dec 
+)ve rate 

alvis Bay 685 ill 10.40 15.17 6. T4 
Uukwaluudhi 3665 906 21.05 28.14 20.62 

wakopmund 1100 81 5.84 7.7ý 6.5q 
Rundu 1776Z 4511 1 9.66 32.84 8.80 

tjiwagongo 3324 65E _ 13.25 19.1ý 10.10 
shikati 13330 106E 5.01 8.20 3.20 
puwo 3487 133Q 38.311 39.5ý 42.6ý 
ngandjera 887 191 11.15 20.1 ý 4.811 
maruru 352 65 11.38 14.4Z 11.4 
kakarara 678 127 11.29 21.52 2.5 

Nankudu 6142 3247 41.61 60.18 31.5 
adental 365 37 6.41 10.05 3.8ý 

Ludedtz 0 1 N/a N/a N/a I 
Kongo 1710 703 N/a N/a 18.20 
Khorixas 920 17Q 14.34 23.67 8.1Z 
Keetmanshoop 151 24 12.02 21.27 4.8 
Latima Mulilo 321E 1154 27.35 48.01 10.00 
Kamhaku 
I 

497E 1580 25.14 37. Q 20.5Z 
rootfontein 193F 

-% 
754 25.29 1 37.3" I 18.91 

obabis 343Z 125 13. 26.97 4.8q 
Ennhana 3781 950 15.81 26.3C 10.1 
Engela 537ý 80ý 10.3ý 18.54 6.21 
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TABLE 7.3. MEMBERSHIP CLASSIFICA 77ONAND VARIABLES USED IN THE MODEL 

Predicted 

Classification 5% of annual totals 

Percentage 
bserved ). 00 . 00 Correct 

tep 2% of annual D. 00 A 88.4 
otals 1.00 1 87.1 
verall 
ercentage 7.8 

Variables used B E. df ig. 
Step 2 RAI N2 075 

. 026 1 . 004 

1 

EMP 3 T [245 
. 127 1 . 054 

o nstant ý6.569 
. 393 1 . 006 

Box 7.1 THE LoGismcREGPFmiommoDEL FoR AmL4Ru msoNmMmim. 

The model from Table 7.3: 

11(1 +e) 

where -Z = (-6.569 + ()ý_RAIN_2 * 0.075 ) 

TEMP-3 * 0.245))*-l 

As in Chapters 5 and 6, a map was produced for each month using ldrisi' Image 
Calculator using the above formula, Box 7.1. The twelve maps were then added 
together using ldrisi's overlay module to produce the map, Figure 7.12, which offers 
a map of predicted length of the season based on the 5km grid resolution. 

7.6.3. Unear regression modelling of malaria incidence in the 
individual Health Directorates 

Linear regression models for each of the four health directorates produced the 
following results: 

154 



Fic, uRE7.12. MODELLED MAP OF MALARIA SEASONALITY IN NAMIBIA. 

Legend: 

The model in Table 7.3 is produced as a map showing the number of months 
comprising the malaria season in Namibia. 



7.6.3.1. Northwest 

The fourth step in the model was chosen as optimal, with an Rý value of 0.796, see 

Table 7.4. 

TABLE 7.4. PARAMETERS OF THE LINEAR REGRESSIONMODEL, NWHD 

ILA Ma I #' ,iim mn rv 
Mode Square djusted R ýquare Ptd. Error of the 

F-stimate 
. 892 . 796 10.774 0.3190 

r. mpffiriAnt-q 

nstandardized 
oefficients 

t 3ig. 

Model td. Error 
4 ýConstant) 0 

. 473 . 068 -6.991 ). 000 

-AGS(RFE, 3) . 631 E-03 
. 004 1.266 3.213 

-AGS(RFE, 2) . 175E-03 . 001 . 431 . 000 ' 
-AGS(VCLAGI, 

2) . 307 . 100 
1 

i 
. 
070 

. 004 
1 

ýAGS(VCLAGO, 3) 
. 
241 . 114 . 116 . 041 

Box 7.2 LINEAR REGRESSION MODEL FOR NWHD 

The model in Table 7.4, for NWHD: 

Y= -0.473 + (LAGS(RFE, 3) * 0.0056) + 
(LAGS(RFE, 2) * 0.0052) + (LAGS(VCLAG1,2) 
* -0.307) + (LAGS(VCLAGO, 3) * 0.241) 

FiGuRE7.13. REL477ONBE77VEEMINPATIEIVTIIVCIDENCEAND PREDICTED VALuEsNWHD. 

Directorate: NW 
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7.6.31 Northeast 

TABLE 7.5. PARAMETERS OF THE LINEAR REGRESSION MODEL FOR NEHD 

Mntlpi qtjrnmarv 

odel Square LAdiusted R 
I quare 

Std. Error of the 
Estimate 

. 960 . 922 . 914 1.2655 
rnpffir-isintq 

Unstandardized 
Coeffidents 

t 3ig. 

odel 3 3td. Error 
ýConstant) 1.691 ). 258 6.550 ). 000 

-AGS(VCLAGI, 
2) ). 724 ' ). 084 8.645 3.000 

-AGS(CCD, 
3 7 . 442E-03 . 002 ý3-71 0- ý-. 001 

1 

-AGS(RFE, 2) -02 258E 
. 
006 P. 658 P. 000 

ýAGS(CCD, 2 9.331 E-03 . 002 ý5.321 0.000 
Dependent vanaole: inpatient incAclence 

Box 7.3. LLVEAR REGPESSIONMODEL FOR NEHD 

The model from Table 7.5, for NEHD: 

Y=1.691 + (LAGS(VCLAGI, 2) * 0.724) + (LAGS(CCD, 3) * -0.0074) 
(LAGS(RFE, 2) * 0.0426) + (LAGS(CCD, 2) * -0.0093) 

FiGuRE 7.14. RELA 77ON BETWEEN INPA TIENT INCIDENCE AND PREDICTED VAL uEs NEHD. 

Directorate: NE 
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7.6.3.3. 

TABLE 7.6. 

Mvial c, i irnmnrv 

Central 

PARAMETERS OF THE LINEAR REGRESSIONMODEL FOR CENTRAL HD. 

odel Square djusted R 
quare 

td. Error of the 
stimate 

1 

. 
867 . 752 . 746 3038 

r-naffirionte 

nstandardized 
oefficients 

t 3ig. 

Model 3td. Error 
onstant) . 133 CI 

L 
). 061 2.167 ). 036 

GS(VCLAGO, 3) . 257 ). 024 10.875 ). 000 
uepenaent vanaDie: inpatient inucience 

BOX 7.5. LINEAR REGRESSION MODEL FOR CENTRAL HD 

The model from Table 7.6, for Central HD: 

Y=0.133 + (LAGS(VCLAGO, 3) * 0.257) 

FiGuREZ15. RELATIONBE7VEENINPATIENTINCIDENCEANDPREDICTEDVALUESCENTRAL 
HD. 

Directorate: Central 
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76.3.4. So0hem 

TABLE 7.7 PARAMETERS OF THE LINEAR REGRESSIONMODEL FOR SOUTHERNHD. 

Mndpl Rummarv 

odel Square djusted RI 
quare j 

Std. Error of the 
Estimate 

. 907 . 823 . 811 0.415E-02 
u-npthmt*nt--. 

nstandardized 
oefficients 
I t I 3ig. 

odel td. Error 
'Constant) . 974E-02 

4 

. 021 -2.390 ). 021 

-AGSCVCLAGO, 
3 . 125 3 . 009 13.981 3.000 

-AGS(VCLAG3,4 
0.116 4 6 P. 024 ýý. 770 0.0001 
490E-05 -AGS(VCLAG3,5 5 ) 0.022 P. 402 0.0011 

Dependent Variable: inpatient incidence 

BOX 7.6. LINEAR REGRESSION MODEL FOR So uTHERmHD 

The model from Table 7.7, for Southem HID: 

Y= -0.0497 + (LAGS(VCLAGO, 3) * 0.125) + (LAGS(VCLAG3,4) 
* -0.116) + (LAGS(VCLAG3,5) * 0.0749) 

FIGURE7.16. PEL477ONBE71VEENINPA77ENTINCIDENCEANDPREDIC7ED VALUES 
SOUTHERMHD. 
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7.6.4. Predictive mapping using linear regression 

The Map Calculator function of Idrisi was used to map the results of the linear 

regression models for each Health Directorate. 

7.6.4.1. Northwest 

Using the model, Box 7.2, produced the following spatial model of predicted malaria 
incidence for NWHD, for January 1996, Figure 7.17. In terms of lead-time available 

such a map could have been produced in November 1995, offering two months 

warning of where in the district malaria incidence would be highest. 

7.6.41 Northeast 

Using the model, Box 7.3, produced the following spatial model of predicted malaria 
incidence for NEHD, for January 1996, Figure 7.18. Again in terms of lead-time 

available such a map could have been produced in November 1995, offering two 

months warning of where in the district malaria incidence would be highest. 

7.6.4.3. Central 

The linear regression model in Box 7.4, produced the following spatial model of 

predicted malaria incidence for Central HD, for January 1996, Figure 7.19. In this 

case lead-time available was three months and such a map could have been produced 
in October 1995, offering three months warning of where in the district malaria 
incidence would be highest. 

7.6.4.4. SoLlhem 

Ile linear regression model in Box 7.5, requires inputs from vectorial capacity 
images with RFEs lagged by three months, which are then in composite lagged by a 
further four and five months respectively. While values for these could be produced 
in SPSS for the modelling, the images are unavailable for mapping January 1996 as 
used in the previous examples (as the required RFEs were not available for input). 
So in this example the spatial model of predicted malaria incidence for Southern HD, 
is for January 1997, Figure 7.20. Again the lead-time available was three months 
and such a map could have been produced in October 1996, offering three months 
warning of where in the district malaria incidence would be highest. 
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FiGuRE7.17. PREDICTIVE MODEL OFMALARIA INCIDENcENWHD JANUARY 1996. 
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Fi(; uRF'. 18. PREDICT11T MODEL OF MALARIA INCIDENCE NEHD JANUARY 1996. 
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Legend: 

The maps represent predicted malaria incidence for NWHD and NEHD based on the 
linear regression models in Tables 7.4 and 7.5 respectively. The maps assume a 
uniform population distribution. The maps are produced from different models and 
are therefore not cross comparable. 



FIGURE7.19. PREDICTXE MODEL OFMALARIA INCIDENCE CENTRAL HD JANUARY 1996. 

Fl(; t'Rp- 7.70. SPA TIAL MODEL OF MALARIA INCIDENCE SOUTHERN HD, JANUARY 1997. 

lowest 
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Legend: The maps represent predicted malaria incidence for Central HD and 
Southern HD based on the linear regression models in Tables 7.6 and 7.7 
respectively. The maps assume a uniform population distribution. The maps are 
produced from different models and are therefore not cross comparable. 



7.7. Discussion 

The spatial distribution of malaria in Namibia varies considerably between the 

extensive and zones of the South and West and the semi tropical North. Given the 

low spatial resolution of the epidemiological data available here, just four 

administrative units which themselves vary considerably in size and ecology, it is 

difficult to feel confident that the models capture the epidemiological setting 

adequately. The logistic model of malaria season for example relies almost 

exclusively on the mean long-term rainfall and temperature surfaces. The resulting 

map is therefore unlikely to capture the localised variability which may exist at sub- 

national levels. A previous analysis of monthly inpatient data from eight health 

facilities in relation to locally obtained NDVI data was carried out (Connor 1999b). 

The results of this study indicated that the seasonality and amplitude of malaria 
inpatient cases was strongly related to the seasonality and amplitude of NDVI. A 

malaria distribution map was produced which was modelled at the Ikrn grid 

resolution available from the NDVI satellite imagery captured locally at the Etosha 

Ecological Institute. While NDVI was found to be strongly related to malaria 
inpatient cases the seasonal trends were virtually simultaneous, thus offering no lead- 

time information. 

The temporal variability of malaria incidence in Namibia also varies markedly 
between years and the linear models are effective in showing the relationship 
between 'epidemic' and non epidemic years in some health directorates. Epidemics 

in Namibia are periodic and while environmental conditions may trigger these events 
the progressive build up of case numbers suggests other factors such as inadequate 

control, or drug resistance, may be implicated. 

While the epidemiological inputs available here were limited, the examples highlight 

some methods which could be useful in control planning. The spatial predictive 
models (derived from the linear regression) should be helpful in identifying areas 
within the extensive Health Directorates where malaria incidence would be greatest, 
and this could have significant implications for active, focussed control operations 
responsive to changes in environmental conditions. Indoor residual spraying is 
carried out in the Northern areas of Namibia. The two months lead-time available 
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through the predictive modelling could be useful in highlighting areas of increased 

risk in any given month, especially if produced as difference maps. If these were 

compared to the geographical reconnaissance information produced by the spray 

teams then any areas that were not covered, or considered to have been poorly 

covered, could be revisited, and local availability of drugs could also be ensured. 

Results from the predictive model in the Central Health Directorate give slightly 
longer lead-times (three months using vectorial capacity alone) and while routine 

control operations may not be carried out in these areas such lead-times should be 

adequate to plan and initiate an appropriate response in years when indicators 

suggest an increase in risk. 

Regular production and archiving of such indicators would allow monthly difference 

maps to be developed which would further add to the local applicability of the 

modelling process for focal epidemic prediction. The predictive relationsýips appear 
to stem mostly from the lagged vectorial capacity products, alone or in combination 

with lagged RFEs. ne exception to this is in the NEHD where lagged CCD exhibits 

a negative relation with inpatient incidence and other environmental variables. 
Previous analysis of inpatient data from health facilities in former Ovamboland 

(roughly corresponding to the current NWTID) showed a strong relationship between 

monthly inpatient cases and the quadratic of CCD lagged by three months (Connor, 
Thomson et al. 1998). 

That malaria ranks as the leading cause of outpatient consultation in a country as and 

as Namibia is suspicious. It is recognised that malaria over-diagnosis is a problem in 

Namibia and clearly case definitions, or conf irmations, need to be improved. 'Me 

availability of better epidemiological data collected routinely from smaller spatial 
units would allow the models to be improved much further. This is in theory due to 
happen once the four Health Directorates are broken down into the thirteen regional 
management units. 
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8. Malaria and Environment in Swaziland 

8.1. Geographical background 
Swaziland is a small independent monarchy in the east of Southern Africa 

comprising a land area of 17,363 square kilometrcs. It is a landlocked country 

surrounded mostly by the Republic of South Africa. Part of its eastern border 

however is shared with Mozambique. 

Topographically Swaziland can be divided into four regions which run north-south 

and slope generally downwards from west to east: the mountainous Highveld to the 

west, which has an average altitude of 1300m and comprises 32% of the national 
land surface area, extends from the Drakensburg Mountains of South Africa; the hilly 

Middleveld covering 25% of the land area has an average altitude of 700m; the 

Lowveld to the east has a rolling landscape between 300m and 120m and accounts 
for a further 35% of surface area; the fourth area to the extreme east, the Lumombo 

Plateau, bordering Mozambique and comprising 8% of land area has an average 

altitude of 400m. 

Tle climate in Swaziland changes from near temperate in the west to subtropical in 

the eastern Lowveld. The temperature in Mbabane the capital city (Highveld) ranges 
from 251C in January to YC in July. Rainfall is concentrated in the warmer months 

of the year October-April. Average annual rainfall totals, in the west, range from 

1000mm-2280mm. In the east these range from 500mm-1000mm. 

'Me main rivers are the Komati, Umbuluzi, Lusutfu and the Ngwavuma which flow 

eastwards from the Highveld and provide abundant water for hydroelectric power 
and extensive irrigation projects in the Lowveld region. 

The population of Swaziland was determined at 965,000 in the 1997 census. 
Population density in Swaziland overall is 64 per KM2. The population is divided 
into approximately 35% urban 65% rural. The annual population growth rate is 

currently estimated at 1.8%, with life expectancy at birth figures of 39.4 years for 

162 



%%omen and 37.9 ýears for men, both of these have declined markedly due to the 

impact ot'l IIVAI DS over recent years. Literacy rates are 91% and GDP was 

estimated in 19,98 at VIS 1,400 per capita (UNDP 2000). 

8.2. Overview of malaria and its control in Swaziland. 

Malaria is recognised as a serious public health problem in Swaziland. It is estimated 

that 3(r, o ofthe population live in malarious areas, 38% live in malaria receptive 

areas. and 32% in non-malarious areas (Kunene 1999). While malaria accounted for 

onlý 4.8% of inpatient admissions nationally in 1999, this figure varies 

projx)rtionatelý between the four administrative districts, and between years, Figure 

8.1. Luhumbo District in the Lowveld region typically has 70-80% of the national 

total malaria inpatient admissions. Due to its high altitude the Highveld region is 

considered to he non-malafious. Figure 8.2. Malaria in Swaziland is considered to be 

highlý seasonal -A ith transmission occurring between November and May (Kunene 

1999) and unstable %% ith periodic epidemics, especially in years of high rainfall 
(Kunene 2000). 

Figure 8.1. Annual total laboratory confirmed malaria cases, 1981/82 - 1998/99. 
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8.2.1. The National Malaria Control Programme in Swaziland 

Prior to the 1940s malaria prevalence levels in Swaziland were high, with parasite 

prevalence rates generally over 40% (Mastbaurn 1954). In young children living in 

areas of the Lowveld it was found to be 100% during the main season where it would 
drop to levels of 50-60% during the winter months (Mastbaurn 1957). Major 

epidemics of malaria occured during the 1930s and 1940s and it was recognised that 

such epidemics occurred periodically, Figure 8.3. 

In 1948 a National Malaria Control Programme was established with funding from 

the World Health Organization. The main strategies of the NMCP during the 1950s 

and 60s were blanket residual insecticide spraying using DDT, active case detection, 

case management and health education. The impact was dramatic and by 1970 

malaria was no longer perceived as a major public health problem in the country and 

the NMCP was scaled down. The World Health Organization gradually cut back its 

funding, staffing levels were reduced and spraying coverage declined. By the latter 

half of the 1970s, malaria cases slowly began to rise and in 1978 an epidemic 

occurred. By the 1980s residual insecticide spraying had ceased altogether and cases 
increased steadily, Figure 8.1. In 1984 the combined absence of vector control, 

unusually high rainfall due to Cyclone Dominia and an influx of Mozambican 

refugees resulted in a serious epidemic occurring. The trend in cases generally 

continued to rise each year until 1988 when the NMCP was overhauled and received 
financial and technical support from USAID and the South Afflcan Trade Mission. 

With this renewed supportý the NMCP rapidly scaled up its activities. Extensive 

health education campaigns and training in case management were carried out. 
Residual insecticide spraying with DDT was resumed. The houses of the entire 
Lowveld and Lubombo Plateau communities were sprayed and within a few years 

coverage rates of over 80% were achieved. Where there was evidence of local 

transmission in the Middleveld indoor residual spraying was also carried out 
(Packard 1986). 

In 1990, in order to decentralize malaria control activities and strengthen the timing, 

quality and coverage of residual spraying, two field centres were established. The 

centres, staffed by Environmental Health and other Technical Officers, include 
laboratories, accommodation facilities, a spray equipment repair workshop and 
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FIGURE8.3. EPIDEAfICSINSWAZfLAND1917-1946. - SOURCE PACKARD (1984). 
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insecticide storage facilities. The combination of these activities led to significant 

reductions in malaria morbidity and mortality. In 1992, only 480 laboratory- 

conrin-ncd cases, 6258 clinical cases and no deaths were reported. During this period, 

the Government of Swaziland increased funding for malaria control and, as donor- 

support declined, absorbed the running costs of the programme. Currently, 95% of 

the NMCP's budget comes from the Government with the remaining 5% from the 

World Health Organisation. Ile NMCP receives about E2 million25 per annum 

(1998/99 budget) as its recurrent expenditure budget from the Government of 
Swaziland, representing about 2% of the Ministry of Health and Social Welfare 

budget. Approximately E6.00 per person living in malarious areas per year is spent 

on malaria control (Kunene 1999). 

In 1996 there was a serious malaria epidemic associated with high rainfall following 

several years of drought. Since then outpatient and inpatient cases have not fallen 

back to levels achieved in the early 1990s. There are likely to be a number of reasons 
for this. Between 1996 and 1999 Swaziland experienced higher than average rainfall 

totals, however since the cessation of the Mozambican civil war in 1996, the 

movement of people between Mozambique and Swaziland has increased. Relatively 

poor access to health facilities on the Mozambican side of the Lubombo Plateau, 

means that people frequently seek treatment in Swaziland. In addition to increasing 

the number of cases health facilities have to attend to, which is likely to have 

increased drug pressure and parasite prevalence rates, the efficacy of chloroquine, 

which has been the first-line drug since the mid I 940s, appears to be declining. Both 

Mozambique and South Africa have reported high levels of chloroquine resistance 

and a chloroquine efficacy study conducted at one sentinel site in Swaziland in 2000 

found a 16% treatment failure rate (Kunene: pers comm). 

Currently the NMCP relies on the following control interventions: 

8.21.1. Disease mana-qement 

Prompt diagnosis and treatment with appropriate antimalarial drugs is recommended. 

At the community level Rural Health Motivators are trained to recognise malaria 

25 Ile Lilangeni (E) is the unit of currency in Swaziland it is tied to the value of the Rand at 1: 1. 
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symptoms and refer suspected cases to a clinic. Diagnosis at the clinic is based on 

clinical observations. All patients suspected of malaria are treated with chloroquine 

and a blood slide should be taken and forwarded to a laboratory facility. The second 

line drug S. P. should always be available at clinics and all cases which do not appear 

to respond to chloroquine by the third day of treatment should be given this drug. It 

is estimated that blood slides are taken from 70% of suspected cases. The limited 

laboratory facilities often cannot cope during the peak malaria season and many 

cases are not parasite confirmed during this period. In an analysis of laboratory cases 

by age it was found that 6.7% of cases were in children under five, 9.8% in children 

aged between 5-9,13.4% in children aged 10- 14, and 70.2% in people aged over 15. 

Confirmed cases by district were: Lubombo 86.3%, Manzini 8.4%, Hhohho 2.6% 

and Shisclwcni 2.6%. Cases by gender were 55% males and 45% females (Kunene 

2000). 

For severe and complicated malaria all patients are referred to an appropriate health 

facility. Diagnosis at this level is based on microscopy. Quinine remains the 

preferred drug of choice for severe and complicated malaria. The recent case fatality 

rate (average 4% between 1994-1998) is a current cause of concern. 

8.2 11 Disease prevention 

Ile success of the malaria control programme in Swaziland is largely attributed to 

vector control measures. Residual spraying of dwelling houses in malarious areas is 

carried out prior to each rainy season. On average 120,000 structures are sprayed. 

The programme aims to maintain a spray coverage of >90%. Larviciding is carried 

out by private companies in irrigated commercial agricultural estates to protect their 

workforce. 

Chemoprophylaxis is recommended for pregnant women residing in the Lowveld, 

the Lubombo, Plateau and some parts of the Middleveld. Visitors to these regions 
from nonmalarious areas are also recommended to use chemoprophylaxis, though it 
is recognised that compliance is very poor. 

Community education in the use of personal protection (repellents and knock-down 

sprays) is carried out. However, there has been little success to date in the promotion 
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of insecticide-treated bcdnets in Swaziland. Public health education is carried out in 

schools and work places to raise awareness of the symptoms and appropriate 
treatment of malaria. 

While it is rccognised that there is a need for early detection and control of epidemics 

there is as yet no adequate routine surveillance system capable of achieving this. A 

number of sentinel sites have been established for a weekly reporting system (manual 

paper tally sheets) and collaborations have been developed with the National 

Meteorological Services. 'Me NMCP has also been attending the Southern Africa 

Regional Climate Outlook Forum during the past few years and have used the 

information provided in control planning (Kunene 1998). 

perational research 811.3.0 

The programme regularly monitors for insecticide resistance in collaboration with 
the SAIMR, Johannesburg, RSA. Studies on drug resistance are carried out in 

collaboration with the Medical Research Council in Durban, RSA. 

8.3. Aims of this chapter 

e To describe the spatial and temporal distribution of malaria in Swaziland. 

e To compare and relate the spatial and temporal distribution of malaria to 

environmental variables in order to inform malaria risk mapping. 

* To explore whether or not temporal environmental variables could be used in an 

early warning system for malaria epidemics in Swaziland. 

8.4. Materials and Methods 

Ile epidemiological data available for Swaziland was limited mostly to annual totals 
of inpatient cases by district for the period 1985-1999. Annual data on confirmed 
cases nationally were also obtained for the period 1982-1999. These data were 
entered into SPSS and analysed along with the environmental variables (as detailed 
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in previous chapters) which were also aggregated to annual figures. Incidence figures 

(per 1000 population) for each district were calculated using 3% annual growth rates 

prior to 1995 and 2% growth rates post 1995. 'Me bivariate and multivariate 

analyses which could be carried out were limited in comparison to previous chapters. 
For example there was insufficient data to determine seasonality of malaria in 

Swaziland. Perceptions of malaria distribution and its control in Swaziland are 
linked strongly with the topographical zones. Unfortunately this is not reflected in 

the epidemiological data which is collected and aggregated by administrative district. 

Environmental data was therefore extracted using the administrative district (method 

as described in Chapter 5, section 5.5.2.1.3. to allow direct comparison with the 

epidemiological data. 

8.5. Results 

8.5.1. Dishibution of malaria in Swaziland 

The 'expert opinion' map of malaria distribution in Swaziland reflects the 
topographical settings quite well, Figure 8.4. 

Due to its altitude, the Highveld is the only region that is considered completely non- 
malarious. Tlie transmission season is expected to occur between November and 
May with March being the peak transmission month (Health Statistics Unit 1998). 
Approximately, 260,000 people live in malarious areas, and in Lubornbo District all 
inhabitants arc considered to be at risk of malaria, Table 8.2. 

TABLE&Z EMAM TED POPULA TIONA T RISK OF MALARM, SWAZILAND200126 

District Total popula ion Number in malarious areas 
<5 Total <5 Total 

I Ihohho 40356 276502 4036 27650 
Lubombo 31369 210341 31369 210341 
Manzini 42350 304133 2118 15207 
Shisclweni 33565 , 215380 1678 10769 
Total 147640 1 1006357 392ý 

ý28967 

26 Source: 1997 Swaziland Population and Housing Census Vol I Statistical Tables, Central Statistics Office. 
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FiGuRE 8.4. EVERT OPINION MAP OF MALARIA DISTRIBUTION SWAZILAND, CIRCA 1998. 
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The incidence of malaria among the districts is shown in Figure 8.5. Lubombo has 

the highest, followed by Hhohho and Manzini with Shiselweni having the lowest 

incidence. Shiselwcni did however have an epidemic in 1999, Figure 8.5. As stated 

previously malaria control efforts were heightened during the late 1980s and early 
1990s. This is especially apparent in Lubombo where levels in this district fell below 

those elsewhere, Figure 8.6. It should be remembered also that there was a regional 
drought in Southern Africa during the early 1990s. 

The climate suitability map for malaria developed for WHO-SAMC and WHO- 

HealthMap (described in Chapter 4) is presented here for Swaziland in Figure 8.7. 

The MARA Climate-based Malaria Risk Map for Swaziland is also produced for 

comparison. The maps model quite well the perceived distribution of malaria shown 

in the expert opinion map and show some agreement with local perceptions of 

stability of transmission. Recent epidemic outbreaks are also shown on the SAMC 

map and it can be seen that these occurred largely in areas identified in the map as 

less stable 27 
. 

The mean and standard deviation of the inpatient incidence shows that Lubombo has 

the highest mean incidence and while it might be expected that this would suggest 
greater stability in transmission, it also has the highest variability, Figure 8.8. 

8.5.2. Bivariate analysis of epidemiological and environmental data 

The exploratory bivariate analysis of individual environmental variables against 
incidence showed that there is a good relationship between lagged RFE and malaria 
inpatient incidence in Hhohho, Manzini and Lubombo. The strongest relationship 
was RFE lagged by 4 months in Hhohho (R2 = 0.994). The second strongest 
relationship was RFE lagged by 3 months in Lubombo (W = 0.764). Manzini had 

the third strongest relationship with RIFE lagged by 4 months (le = 0.584). 
Shiselweni did not exhibit strong relationships with any of the environmental 
variables, the best relationship was with vectorial capacity (RFE lagged 3 months) 
lagged by I month (R2 = 0.292). 

27 Ilie epidemic outbreaks were identified in collaboration with members of the Swaziland NMCP. 
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Fic, uRE 8.5. INPA TIENTAIALARIA INCIDENCE BY DISTRICT 1985-1999. 
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Fi(; uRE 8.6. INPA TIENT MALARIA INCIDENCE BY YEAR, BY DISTRICT, 1985-1999. 
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FiGuRE 8.7. CLIMA TE SUITABILITY MAPS FOR MALARIA IN SWAZILAND*. 
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. The WHO-SAMC map is that described in Chapter 4. The MARVARMA Map produced here is 
derived from the country products available from the MARA website: %vNv%N-mara. org. za 
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FIGURE8.8. INPATIENTINCIDEMCE, AlEANAND STANDARD DEVUTION, BYDISYRICT. 
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8.5.3. Linear regression modelling 

The Multiple linear regression modelling produced the following results: 

8.5.3.1. Hhohho 

In Hhohho District the single variable RFE lagged by 4 months out perfon-ned all 

combinations of variables, Table 8.3. Producing an R2 value of 0.994. 

Tinb, 8.3 MODEL SUMMARY 
djusted R Square Std. Error of the 

Estimate 

. 992 5.941 E-02 

nstandardized 
oefficients 

t. Sig. 

el I Std. Error 
Constant) . 

274 0.066 4.165 0.025 

. 461 E-02 0.001 22.256 0.000 
Dependent Variable: inpatient incidence 

P'/(; ( Rh 8.9. RELATIONSHIP BETWEENINPATIENT MALARIA INCIDENCE AND PREDICTED 

VALuEsHHOHHO. 
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8.5.3.2. Manzini 

T4 Hi. b., 8.4. MODEL SUAIMARY 

odel Square djusted R Std. Error of the 
quare Estimate 

. 
861 . 814 0.2501 

Coefficients 
Jnstandardized 
ýoefficjents 

t ig. 

odel 3 td. Er or 
kconstant) 

-1.358 . 603 -2.251 0.110 
ý/CLAG2 1 1.287 . 299 4.304 0.023 

Dependent Variable: inpatient incidence 

In Manzini the single variable lagged vectorial capacity product showed a good 

correlation, R2=0.86, against inpatient incidence. 

FIG I RE 8.10. RELA TIONSHIP BETWEEN MA LA RIA INPA TIENT INCIDENCE AND PREDICTED 
IALUES, MANZINI. 
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8.5.3.3. Shiselweni 

T4B1. F, N. 5. NIOI)EI, SUMNIARY 

Model Square T Adjusted R Square td. rror of the 
Estimate 

. 
998 . 996 0.992 1308 

Coefficients 
I nstandardized -ioefficients t Sig. 

Model IB Std. Error 
2 ýConstant) 2.504 0.273 -9.164 0.012 

CID LAG 5 . 028E-02 0.002 19.065 0.003 
CLAG2 1 . 717 0.131 0.491 0.0321 

Dependent Vanat)le: inpatient inciaence 

The model for Shiselweni required 2 environmental variables to produce an 
R2=0.996. The model suggests that the lagged vectorial capacity product and CCD 

are strongly and positively related to inpatient malaria incidence. 

Fi(j ( RE8.11. RELATIOASHIP BETWEEN INPATIENTMALARIA INCIDENCE AND PREDICTED 
VALUES, SHISELWENI. 
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8.5.3.4. Lubombo 

Tmoý, N. 6. Afol)EI, SlAfAMRY 

Model ýR Square djusted R Square td. rror of the 
Estimate 

. 
999 0.998 

. 995 . 1872 

t 

t) -8.850 . 010 ý8.760 P. 013 

-1 
11.537 . 987 111.692 

. 007 
5 0.389 . 041 ý9 

. 512 0.011 
Variable- inpatient incidence 

The model for Lubombo is also very strong with an R 2=0 
. 998. It shows that the 

lagged vectorial capacity product is positively correlated with inpatient malaria 
incidence, while estimated rainfall five months previous is negatively correlated. 

F1GuRE 8.12. RELA TIONSHIP BETWEEN INPA TIENT MALARIA INCIDENCE AND PREDICTED 
VALUES, LUBOMBO. 
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8.6. Discussion 

Despite the lack of monthly time series data on malaria in Swaziland there are 
interesting relationships apparent between specific environmental variables 
(especially RFE and vectorial capacity products) and inpatient malaria incidence in 
Swaziland. The combination of environmental variables in models to predict malaria 
incidcncc in all districts in Swaziland is encouraging. Significant correlations were 
observed bct-*N, ccn environmental variables and annual malaria incidence in all four 
districts. 

The climate suitability models for malaria also appear to fit the situation in 
Swaziland quite well and the SAMC version of the map has been adopted by the 
NXICP as a provisional part of its malaria stratification. Use of the map along with 
other geographical information within the HealthMapperý8 will form a basis for its 

malaria surveillance system (WIlO-SAMC 2001). 

To develop predictive spatial models that can be used as part of an early warning 

system for the early months of the season, as shown in previous chapters, then 

monthly epidemiological data needs to be available to drive the development of the 

maps. I lowever, the strong relationship of lagged RIFE in Hhohho is very 

encouraging and there should be immediate value in using this simple indicator of 

epidemic risk. The NNICP are aware of this indicator and have begun to receive RIFE 
difference images on a regular 10 daily basis from the SAMC off"ices in Harare via 

email (WHO-SANIC 2001). The RIFE estimates can be viewed directly in 
HealthNiapper. 

Plans are also in process to enter routine surveillance directly into the HealthMapper 

as the basis for the routine surveillance system in Swaziland (replacing the current 

paper system). Once this system is in routine operation a time series of 
epidemiological data should become available to further test and develop predictive 
mapping tools for Swaziland. 

2' Ibc I lcal&\Iappcr is a fivcly available soN-are distributed by WHO for routine data entry, 
surveillance data management and reporting. 
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Discussion of findings 

9.1. Summary 

The work in this thesis is based on the premise that Environmental Information 

Systems (EIS) are tools that can assist research into vector-borne diseases such as 

malaria. Furthermore, that these same tools can also contribute to malaria control 

planning. 

The stated hypotheses of this thesis are: 

a) That EIS can provide information on the spatial and temporal patterns of 

malaria transmission found in Africa, at four levels of scale: continental, 

regional, national and district 

and further, that EIS may be readily used alongside epidemiological data 
(as routinely available to national malaria control managers in Africa) to 
inform malaria control planning. More specifically in relation to: 

9 Stratification of malaria endemicity, 

41 Monitoring of environmental factors influencing variability in 

transmission, in unstable malaria situations 

9 Early warning of malaria epidemics based on changes in environmental 
factors in areas vulnerable to epidemics 

The approach here has focussed on the use of information that is routinely available 
to malaria control planners at the national level, or in some cases sub-national level. 
The epidemiological data used is therefore the data malaria control programme 
managers routinely rely upon for decision making, whether that be confirmed or 
unconfirmed. The environmental information used is mostly derived from that used 
by regional food security and drought monitoring systems or international 

environmental monitoring organizations. 
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The review carried out in Chapter I provides background discussion of the role of 

geography in health. It clearly demonstrates the use of GIS and remote sensing as 

research tools and discusses their application to the ecology and epidemiology of a 

number of infectious diseases, including malaria. In Chapter 2 the concept of 

malaria stratification and attempts at its application to Africa are discussed and EIS 

products arc demonstrated for use in a number of different Strata. The strata most 

appropriate for consideration here at the continental/rcgional level are: 

The Forest and forest fringe stratum: where satellite derived information 

and map products are available from groups responsible for monitoring 
development pressure on forest resources. Changes in forest use or 

settlement can have a profound cffect on malaria transmission. This EIS 

information can be readily accessed by, or provided to, national malaria 

control programmes to further develop or update their national malaria 

stratiricatiort, and help focus any entomological or epidemiological 

surveys as considered necessary. 

2) African Savannah: this category includes vast regions of the continent 

within %hich malaria endemicity varies enormously. However, climate- 
based models of suitability for malaria distribution are available, or can 
be easily produced, which attempt to outline areas where malaria is stable 
or unstable, and of varying seasonality. While these products have 

become "popular' they remain contentious and further validation is 

required before they can be considered valuable as control planning tools. 

3) Malaria in highland or desert-fringe settings: Continental altitude surfaces 
are available and a number of studies have applied EIS information to 
historical and recent highland malaria epidemics in Africa. Highland 

areas are by their nature complex terrain and generally have an equally 
complex interaction with regional climate and seasonal weather systems. 
The relationship between altitude and temperature is also markedly 
affected by latitude and rainfall patterns. Their use in the highland setting 
is perhaps more appropriate to smaller area studies in combination with 
localised climate data. Ile use of EIS in desert-fringe settings are 
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considered to be more promising, as in Africa the vast majority of the 

deserts arc warm deserts and temperature is a less critical factor in 

constraining malaria transmission. It is possible, therefore, to produce 

maps of potential epidemic risk based on low to moderate annual rainfall 

combined with high intcr-annual variability of rainfall. 

The use of EIS in the other strata identified: seashore and coastal, urban; and 
those linked to specific occupations and social conditions, gold mining, migrating 

agricultural labour and displaced populations (Najcra, Leise et al. 1993) clearly 

rcquirc a much morc localised and focussed approach. 

In Chapter 3 the influence of weather variables on malaria transmission are 
discussed and consideration is given to the potential lead times available which 
may be gained by including and monitoring these variables in routine 
surveillance systems. The use of satellite derived rainfall estimates and their 

application to early warning in desert-fringe epidemic malaria settings is 
discussed. 1"he development of a routine monitoring product that integrates both 

rainfall and temperature in a biological model of malaria transmission potential 
(an extended vectorial capacity product) is outlined. 

The perceptions of malaria distribution, its endemicity, and its linkages with 

climate, surveyed from national malaria control programme managers in 

Southern Africa, are described in Chapter 4. Additionally the development of a 

climatc-based map of 'more stable - less stable' malaria as a basis for further 

stratification of cndemic-epidemic malaria zones in Southern Africa is outlined. 

Chapters 5-8 test the relationships between routine epidemiological data on 
malaria and a range of environmental variables (including the vectorial capacity 
products) in four Southern African countries, Botswana, Zimbabwe, Namibia and 
Swaziland. A rcgional analysis was not possible due to lack of comparibility 
(case definitions and age cohorts) of the epidemiological data between the four 

countries. 
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There is evidence that EIS information in combination with routine epidemiological 
data can be used to map the seasonality and distribution of malaria within a country. 
While the quality and reliability of the results rely on the quality and reliability of the 
data uscdý the models and maps produced for Botswana (based on confirmed cases) 
and Zimbabwe (based on unconfirmcd cases) provide information of value to control 
services. Namibia by contrast relied on data aggregated to a few very large 

administrative units and as a consequence the spatial patterns in the modelled map of 
seasonality are questionable, especially in regard to the central and southern health 
directorates. Ile lack of a useful time series of monthly epidemiological data for 
Swaziland prevented mapping the seasonality of malaria. However, strong 

relationships bet%%-ccn annual malaria incidence and environmental variables were 

shown for some districts. 

The strength of the relationships between interannual and seasonal changes in both 

epidemiological and environmental data shows promise for the use of EIS in the 
development of malaria early warning systems in these countries. It was shown that 

combination products derived from environmental variables could be used in many 
situations, to provide a prediction of malaria incidence with at least two months 

advance warning. In some situations the use of rainfall estimates alone performed 
equally well. Ile best example is 11hohho district in Swaziland which, while data 

was limited, showed a relationship between unconfirmed malaria incidence and 
rainfall cstimatcs with an W of 0.99 which provides a lead-time of 4 months. In a 

situation such as this, there appears to be an immediate benefit in monitoring these 

products as a first component in epidemic malaria early warning systems. 

The remainder of this chapter will consider the application of these findings in the 

current context of rnaMa control in Affica and its prospects for the near future. 

9.2. Malaria control in Africa in the New Millennium 

Within the context of potentially high mortality rates coupled with a limited capacity 
for control intervention, case management has been the mainstay of malaria control 
in Africa during the past 50 years. Recent targets to halve malaria related deaths by 
20 10 and halve them again by 2015, promoted by RBM (WHO 1998b), and adopted 
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by African ministers (WHO 2000) with support from their international partners, 

means that malaria control in Africa must become more proactive, more focussed 

and more cffectivc. What arc the prospects for this? The global burden of malaria is 

reported to be increasing, especially in sub-Saharan Africa, due to drug and 
insecticide resistance coupled with social and environmental change (Greenwood and 
Mutabingwa 2002). A study of 15 years of data from Kwazulu Natal, South Africa, 

shows a sharp rise in the incidence of malaria, especially in areas in close proximity 

to the Mozambique border (Klcinschmidt, Sharp ct al. 2002). This is in a country 

%hich has practiced malaria control very successfully in the past (Sharp and Le 

Sucur 1996). Thc use of insecticide treated mosquito nets and other materials have 

been promoted heavily as an appropriate technology for prevention of malaria in 

Africa. I lo%%, cvcr. their acceptance by communities in Africa has been mixed. In 

Tanzania for example, the production and uptake of nets has increased rapidly over 

the past few years. While in Southern Africa their uptake has been very limited. A 

number of countries in Southern Africa maintain preventative malaria control 

activities based primarily on the use of indoor spraying with residual insecticides. 

These activities have been shown to be very effective in the past at limiting the 

number of malaria cases. Especially so in areas where malaria is less stable. 
However, during recent years the spraying programmes have been in decline once 

more and the number of epidemics being reported in the region has grown as a 

consequence. Some of the epidemics have occurred in areas where transmission only 
happens periodically. However, most of these epidemics are sharp increases on the 

normal seasonal pattern beyond levels normally expected, and many of these are 

resurgent outbreaks due to inadequate control coverage. Both types of event can be 

triggered by unusual rainfall distribution. 

In recognition of the role played by climate and seasonal weather patterns in malaria 
epidemicsý there have been calls for increased collaboration between health services 
and other sectors. For example, the recommendations for the development of Health 
Information Systems in Africa ratificd at the MIM Conference in Durban, 1999 

stated: 

"Forecasting tools producing simple summary indicators for use at the district level 
( ...... ) should be developed outside the health sector by climate/meteorological 
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forecasters, food security and drought monitoring systems and made available to 

public health services" (MINI 1999). 

nerc arc clear bcncrits in this approach as the cost to the health services appear 
minimal (in that the information is provided as a service by others). Also human 

resources in the health sector arc oflen ovcr-strctched, especially in the more 
peripheral areas %here many epidemics occur. However, in order to minimise 
inappropriate response to epidemic warnings, health service personnel need to have 

some training in the interpretation of early warning indicators and be aware of the 

reliability of such information. While the use of rainfall difference images in some 
districts may show promise as a simple epidemic risk indicator, the occurrence of 
high rainfall alone does not necessarily mean an epidemic will occur. Other factors, 

such as recent drought, inadequate food security, or an influx of migrant workers, 

may be equally important. I'liese need to be taken into account in deciding on levels 

of epidemic risk and in planning and focussing an adequate response. Historical 

analysis of malaria epidemics in S%%2ziland illustrate this well. 

In the process of colonization in Swaziland, restrictive land practices were put in 

place that favourcd the %0itc settlers. This included agricultural policies which 
undermined local production and in turn led to impoverishment and social disruption 

among indigenous peoples. By the 1920s Swaziland was only able to produce 20% 

of its food requirement. It is suggested that the most profound impact of these 

changes can be seen in patterns of ill health and infectious disease (Packard 1984). 
Ile four ecological zones in Swaziland stem from work by the Ministry of 
Agriculture in the 1960s (Murdoch 1969) when it was rccognised that the economic 
development of these zones had, and would continue to have, a major impact on the 

epidemiology of malaria in the country. 

In the prc-colonial period the vast majority of Swazis had inhabited the middleveld. 
They subsequently relocated to the lowveld encouraged by work in large-scale 
irrigated agricultural schemes in the area. Malaria transmission levels in the lowveld 
were endemic with periodic epidemics (see Figure 83, Chapter 8). In the epidemic 
of 1946, the first year in which extensive surveys were carried out, 50,000 cases of 
suspected malaria N%, cre recorded, and parasite rates among children of up to 100% 
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wcrc found in the eastern lo%%-vcld (Packard 1984). TIIe colonialists attributed 

malaria epidemics to high rainfall events which increased the availability of vector 
breeding sites. A study by a Wl 10 consultant looked at rainfall and malaria 
incidence levels during 1966-1973 and found a significant relationship of R=0.9. 

Ile consultant immediately recommended using rainfall to forecast malaria 

epidemics in Swaziland (Ramakrishna 1974). 

I lo%%, cvcr, later analyses of the epidemic malaria situation in Swaziland suggests that 

%%hilc rainfall does indeed play a significant role in determining the incidence of 

malaria in a given year, it is not the only factor involved (Packard 1984). Packard 

argues that other equally important factors are parasite carriers migrating into areas 

%%here there arc non-immunesý and the population's vulnerability to severe morbidity 

and increased mortality. It is suggested that the first of these is a function of labour 

pricing. The latter is considered to be a function of reduced immunity and poor 

nutrition. These may be brought about by droughtý reduced access to grain, loss of 

cattle, and loss of milk in the diet. Packard supports these views with evidence from 

the particularly severe epidemics of 1932 and 1946 which were both clear examples 

of post-drought epidemics. Indeed with the exception of the epidemics in 1919 and 

1937 (the first confounded by an influenza epidemic and the second a poorly 

reported extension of the previous year's epidemic) it appears that all epidemics in 

Swaziland had been post drought phenomena (Packard 1984). This analysis adds 
further weight to the need to include information on food security and drought 

assessment, as well as rainfall monitoring, in epidemic malaria forecasting systems. 

This is broadly in agreement with historical studies of epidemics in Ethiopia 

CFontaine 1961) and early warning systems operated in pre-independence India 

(Christophcrs 1911; Connor, Thomson et al. 1999). 

Despite its history of severe epidemics, Swaziland has also shown remarkable 
success in the control of malaria. Following the establishment of the NMCP in 1949 

and the extensive use of indoor residual spraying, malaria parasite rates in children in 
the lo%%-vcid had4 by 1952, declined to 2%. By 1959 surveys found rates had declined 
further to 0.11% (Packard 1986). By 1970 the perception was that malaria was 
firmly under control in Swaziland. 
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According to Packard (1986) the malaria control efforts in Swaziland mirrored the 

situation c1sc%hcre in the developing world. The initial success and optimism of the 

1950s and 1960s %cre follo%%cd by a dramatic resurgence in the 1970s. Packard 

anues, that much of the blame for this resurgence %%-as attributed to the 'Green 

Revolution' %% ith increased vector resistance following widespread use of 
insccticidcs in cxtcnsivc commercial agriculture. A WHO technical report of the 

time suggestcd -mistancc is probably the biggest obstacle against vector-bomc 
disease" and that this resistance is -a side c ffcct of agricultural pesticide usc"(WI 10 

1976). llo%c%cr. as Packard points out the resurgence occurred in Swaziland and 

othcr Southcm African countries in the absence of widespread pesticide resistant 

strains of the% cctor (Pack'ard 1986). 

The activities and resources of the NNICP had been reduced dramatically following 

the decrc= in the number of annual malaria cases. Simultaneously there was an 
increased resettlement of many Swazis into the lo%%NcId. Many of the Swazis at this 
time preferred not to work in the commercial sugar estates and in response to this 
there %%-as a rapid increase in the number of Mozambicans employed in Swaziland. 
PacLard suggests that it was this combination of an influx of high numbers of 
parasite carriers living in close proximity to large numbers of non-immuncs and low 
levels of malaria control %%hich fuelled the resurgence of malaria in Swaziland during 

the 1970s. I lere PacLard argues that any programme designed to copc with 
Swaziland's malaria problem must go beyond the purely biomedical approach to 

malaria control. Further to this, a combination of cffcctive surveillance (including 
food security, drought and rainfall monitoring) needs to be put in place alongside 
flexible vector control capacity and the screening of migrant workers (Packard 
1986). 

9.3. Malaria Early Waming Systems for Africa 

9.3.1. What is an epidemic? 
It is important to rcvisit this question. To some an epidemic is simply def ined. as 'a 

situation %here malaria occurs due to a temporary imbalance in the existing 
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equilibrium such that 0 rises above 1.0. This according to Najcm (1998) is a'true 

epidemic'. They can occur for a number of reasons (as discussed in Chapter 3) but 

arc most cornmonly due to abnormal meteorological conditions (Najcra 1998b). To 

others the definition of an epidemic has to include unusual sharp increases in the 

norm3l seasonal malaria pattern (Gilles 1993). ncsc may, or may not, be due to 

declining ic%cis orcontrol co%, cmgc or the effectiveness of control tools used. If they 

are they can be termed "resurgent outbreaks. ' Either way, they too arc often 

associ3tcd %% ith abnormal meteorological conditions (Najera 1998b). A third type of 

ocpidemic' can be identified which is a slo%%-cr, insidious increase in malaria which 

results from a number of factors. These factors include, political unrest, wide spread 

population mo%, cmcnt. declining health infrastructures, poor levels of food security. 

These epidcmics, as in the recent case of Rwanda. may manifest themselves as a 

builJ up in ft number of cases over a period of )=rs, sometimes as a series of 

4-stcps'. until the le%el ormalaria cases reaches a point where the situation becomes 

an 'cpidcmic emergency'. Is this latter situation an epidemic? If so when did it 

stan? Was it a series of epidemics %%hich N%, crc not dealt with and so escalated into 

one component ora complex emergency? Although this latter situation does not fit 

comfortably c%cn within the broader definitions of an epidemic (Gilles 1993). It is 

still an example ora situation of control need that effective malaria early warning 

and surveillance systems need to be able to inform upon. 

These three epidemic situations %% erc recently recognised as discreet contexts 

requiring different t)pcs of early warning approach (WHO 2001a). Ile first should 
be based primarily on environmental monitoring with other supplementary 
information (such as community vulncrability reports from food security and drought 

monitoring services) collected to inform control response as appropriate. The second 
should primarily rely on calendar-based control with environmental monitoring and 
surycilbnce to guide intcrycntion and infonn of risk- of unusual circumstances and 
help focus additional control response in situations of increased risk. The third 
requires a broad approach to community vulnerability and risk monitoring. While 

cnvirontricrital monitoring information %%ill be important in warning of risk of 
'trigger c% cnts'. in rormation on population mo%, cmcnt, nutritional and economic 
status, health service delivery (and access) and the political context are critical. 
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It %%ould appear to bc the case that in the majority of epidemic situations there is a 

progression of vulncrability among affected communities, which is then 'triggered' 

by an event such as unusual rainfall (Connor and Thomson 1998). This premise 

forms the basis orthc recent RBM framework- on developing malaria early warning 

sYStems(NIEWS) in Africa (WI102001b). The recommendations arc that MEWS 

are developed on four'pillars: vulnerability assessment, seasonal climatc 

rorecasting. environmental monitoring and epidemiological surveillance. 

9.3.2. Vulnerability assessment 

It is often the case that the "desert-ffingc' epidemic prone countries in Africa arc 

those same countries % hich suffer chronic food insecurity, and in the worse cases 

periodic famine. 11c benefits of linking epidemic malaria early warning (NIEWS) 

within existing food security and drought monitoring (FEWS) are clear. In many 

cases the FEWS have an operational surveillance and vulncrability assessment 

process gathering information directly relevant to MEWS, Table 9.1. FEWS 

consider malaria to be a food security issue and arc willing to collaborate more 

closely with health services. The issues concerning FEWS offer significant lead- 

times in respect to changes in epidemic risk in affected communities. FEWS also run 

training workshops in selected countries to enable local services to interpret 

information gathcred4 gauge the reliability of indicators, and assess the severity of 
drought and food shortfalls that are likely to occur. The opportunity to include 

epidemic risk is there, as is the opportunity to include health service personnel 

among the workshop participants. Clearly it would also be valuable for any 

workshop on the development of MEWS to include participants from these other 

sectors. 

9.3.3. Seasonal climate forecasting 

A further element in forecasting epidemics is the use of seasonal climate forecasts. 

These forecasts am oflcn regionally focussed and involve a consensus of results from 

various climate prediction modelsý produced by groups in Europe and the USA. In 
1996 the regional forecasts for Southern Affica began to be disseminated through 

regional workshops, held prior to the rainy season, and involving participants from 
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various sectors to consider the usefulness of the climate forecasts for planning 

purposes (NOAA 1996). The regional workshops: Southern Africa Regional Climate 

Outlook Forum (SARCOF); the Greater Horn of Africa Regional Climate Outlook 

Forum (GI IARCOF): and les Prcvisions Saisonniercs dc IAfiriquc Oucst (PRESAO) 

havc all included health personnel in their workshops to date. Where climate 

predictions forecast unusual rainfall (either above normal or returning to normal 
following drought) with levels of accuracy better than chance, then useful lead-times 

may be gained by malaria control services in respect of any increased epidemic risk. 
The current levels of accuracy achieved by these forecasts (believed to be 60-70%, 

but validation is limited) mean that they should be used as a 'first alert' only, a signal 

to make prcliminary investigations of drug and insecticide stocks for example. 

Discussions arc in process regarding the possibility of disseminating regional 
forecasts in a format that could be viewed directly in HealthMapper, a basic GIS tool 

being promoted by NVIIO for use in health systems surveillance. 

9.3.4. Environmental Monitoring 

The routine monitoring of rainfall distribution is a logical forward step on from 

forecasting. Observing ir, %%hen, and where forecasts for higher than normal rainfall 
did actually prove correct. If and %here it did, then there can still be useful lead- 

times in terms of identifying and considering increases in epidemic risk and planning 
and implementing an appropriate control response. This 'second alert' is the time to 

act on preventative measurm as well as focussing the distribution of therapeutic 
drugs and services. National meteorological services in most African countries have 

access to 10 daily (dekadal) rainfall estimates. Most are able to produce difference 
images showing current estimates compared with expected for the time of year, as 
outlined in Chapter 3. A number of countries in Southern Affica (Botswana, 

Swaziland and Zimbabwe) now receive 10 daily rainfall difference images from 

W1 IO-SAMC via email. These images are viewable directly in HealthMapper and 
can be used by surveillance teams to identify, and consider, any rainfall anomalies 
%%hich may increase epidemic risk. 
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9.3.5. Epidemiological Surveillance 

Routine epidemiological surveillance systems capable of sufficiently early detection 

of malaria epidemics are )-ct to be developed in sub-Saharan Africa. Howevcr, there 
is a strong international commitment to improving and developing routine health 

surveillance systems %%hich include malaria. 71here is also a growing acceptance of 

simple, purposc designed GIS systems, such as the IfealthMappcr, which can form 

the basis of health systems surveillance (NVIIO-IlealthNiap 1999). The availability 
of maps outlining areas of epidemic risk and updated information on changes in risk 
offcr the possibility of at least informing surveillance teams where to look for 

epidemic% and %%hen to be extra vigilant. A number of countries in Southern Africa 

are beginning to use I IcalthMapper as a basis for their health surveillance systems. 
I lowcvcr, if the sudden rise in the number of cases is the alert used to prompt 
activity, then unfortunately much of the opportunity for prevention is already lost. 

9.4. Cost effectiveness of early intervention in malaria 
epidemics 

Not surprisingly, the efTectivcness of epidemic malaria control would be greater if 

the epidemic could be detected early and control activities put in place in suff"Icient 
time to avoid the high increase in case numbers. Recent work has investigated the 
financial bencrits, that could be rcalised from early warning systems which allowed 
adequate lead-times to ensure early response. The work shows that the cost: benefit 

ratio changes markedly in terms of timeliness and uncertainty and that much could be 

gained through the development of reliable early warning systems (Worrall 200 1). 

9.5. Drug policy 
EfTectivc malaria treatment requires effective drugs. The availability, affordability 

and use of crfectivc drugs in Africa is in a state of flux. Many countries have high 

rates or resistance to their first line drugs and rapidly increasing rates of resistance in 

second line treatment. Ile alternatives arc few, some are prohibitively expensive, 
and there are concerns over releasing these new drugs, or drug combinations, into a 
situation %here inconsistencies and poor compliance arc likely to produce rapid 
resistance pressure. It has been suggested that epidemic prone areas should have 
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regionally agreed policies on drug use, specifically for epidemics. Onceanepidemic 

is past. those drugs should be withdra%%m (Delacollette: pcrs. comm. ). Mapping of 

epidemic prone areas is a clear requirement for this and should help stimulate cross 

border agreements on drug policy. 

9.6. Vector control 
Interest in vector control is currently being rekindled by its supporters, and its 

acceptability is beginning to grow amongst its opponents. If vector control activities 

can be seen to be flexible and cffcctivc control tools, selected rationally and based on 

evidence, from a number of control options then it is likely that further support will 

grow. Vector control has worked -. vclI in many areas in the past, and a number of 

writers continued to draw attention to this over the years (Kouznetsov 1977; 

Davidson 1982; Coluzzi 1992; Schoricid 1993; White 1999). 

A WI 10-AFRO Work-shop on a framework for the development and implementation 

of vector control interventions in the Africa region was held in Harare in 2001 

(WI 10-AFRO 200 1). The workshop was opened by the WHO Regional Director for 

Africa, Dr Ebrahim N1. Samba. In his opening remarks, Dr Samba emphasized that 

vector control was important in Africa because the majority of diseases of public 
health importance in the region were vcctor-borne. lie regretted that most countries 
in the region tended to give priority only to curative measures while very little 

attention %%-as given to prevention in general and vector control in particular. 

Ile %vorkshop focused on the concept of 'Integrated Vector Managemcnt. ' It was 

stated that: "Vector-borne diseases constitute the major public health problem in the 

African Region. This transmission is inilucnced by vcctoral, environmental and 

socio-economical factors. Due to this fact, control of vector-bomc diseases requires 

an integrated approach that has a strong vector control component. Integrated vector 

management, therefore, seems to be the most appropriate approach to Vector 

Control" (N%l 10-AFRO 200 1). Ile type of activities that would be carried out under 
integrated vector management arc summarized in Table 9.2. 

There am obvious applications in IVNt %here mapping and routine environmental 

monitoring would be useful. For instance: 
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TABLE 9. Z COMPONEWS OF I. N7EGRA TED VECTOR AUMAGEMENT SOURCE WHO-AFRO 
(2001). 

T)m Intmention Targets Products 
. Lar%iciding Urban mosquitoes, Microbial 

blackflies larvicides, 
organophosphates, 
neern extracts and 
other herbal 
insecticides 

Space spraying Urban mosquitoes Pyrethroids 
Chemical control Indoor residual Vectors of malaria, Pyrethroids, 

spraying lymphatic fiMasis, organophosphates, 
leishmaniasis carbarnates, DDT 

Insecticide-trealed Vectors of malaria, Pyrethroids; 
materials leishmaniasis, 

lymphatic filariasis, 
trypanosomiasis 

I louscholds products Mosquitoes, flies, Coils, mats, 
fleas repcllentsý natural 

products, ct ... 
Biological I. Anivorous fishes Mosquitoes 
control Predators and Snails 

competitors 
Environmental Environmental changes Mosquitoes, 
management blackflies, snails, 

etc.. 



- EIS have been used to identify areas where insecticidc-treated bednets would 
havc grcatest impact 

EIS have been used to predict areas with high anopheline densities 

EIS have bccn used to identify areas where malaria is less stable and arc 

therefore epidemic prone 

- EIS can be uscd to monitor climatic, mctcorological, cnvironmcntal and 

hydrological changesu hich increase epidemic risk 

An Intcgratcd Vcctor Management for Malaria in Africa Symposium is to be held in 

Kampala, April 2002 to discuss these issues among many others. 

9.7. Information Delivery 

Who should produce EIS products for malaria control planning? The most simple 

products, the rainfall difference imagcs, can be accessed directly from the USAID 

funded Africa Data Dissemination Service (ADDS) intcmct site. In Southern Affica, 

these products arc downloaded c%, cry 10 days by WHO-SAMC, processed for 

vicwing in IfealthMapper, and emailed out to countries able to use them. To date 

those countries (Botswana, Swaziland and Zimbabwe) are using IlealthMappcr, have 

been scnsitised to the use of rainfall imagesý and have been trained, by the author, to 
interpret them for epidemic malaria control planning. 

The rainfall difference images are currently being adapted specifically for use in 

dmrt-fringe epidemic risk- areas. The areas where rainfall is suff"icientlY high and 

reliable to support endemic malaria, and cooler highland areas, will be maskcd out, 
leaving only the desert-ffinge epidemic areas showing the rainfall difference. T'his 

work- is being carried out by workers at the USGS who maintain the ADDS internet 

site, these products will become routinely available on the ADDS interrict site. 

In respect of the vectorial capacity imagcs, these could also be distributed by WHO- 

SANIC in Southern Africa. Local information on the entomological inputs used in 

the vectorial capacity model should also be incorporated where available. For 

example, if the principal vector in a country is kno%%m to be Anopheles arabiensis and 
this vector is known to have a lower man-biting rate than the one used in the 
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continental model. An individual in the SANIC inter-country team has bccn trained, 

by the author. in the production of the vcctorial capacity imagcs and macros havc 

been written to automate the process. 

ncrc arc a numbcr oroptions for delivcry of EIS products for cpidemic malaria 

control planning. 

'Mrough a regional technical support office for malaria control, as stated 

above. 

* Via regional or international FEWS serviccs. 

* Via regional or national meteorological services. 

Ile actual route of delivery should be chosen according to what is possible and most 

reliable. It is important however, that MEWS products are developed in conjunction 

with broader health information systems development. It is also very importanL that 

if such products arc to be meaningful and useful, the end users are trained in their use 

and interpretation. Local use will help show what does work- and where, and what 

does notwork- and %%here, and perhaps what else is needed. 11is will help in the 

validation of the products and enable their further refinement for local situations. 
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10. Conclusions 
For the current malaria control strategy to succeed in reaching the agreed targets, to 

halve malaria related deaths by 2010 and half them again by 2015, the strategy must 
become morc proacti%-c. more focussed and more cffcctivc in sub-Saharan Affica 

% here most maM3 related deaths occur. To do this malaria control needs a variety 

of tools including rational and effective use of drug treatment, vector control, 

personal protection. community education, combined with the development of 

routine health surveillance systems and human resource development. Stratifying 

and monitoring areas at risk of perennial, seasonal and epidemic malaria is needed to 

help focus the usc of the abo%-c control tools to most cffcct. 

EIS have been shown to be useful research tools and have a clear role in helping to 

understand the ecology, and guide the control of a number of infectious diseases. 

Thc availability. to the health services, of purpose designed GIS (such as the 

I lcalth: Mappcr produced by NVI 10-CDS) provides a useful platform for the 

development of routine health surveillance systems and focussed control planning. 
The ability to use EIS information within this same platform offers malaria control 

services supporting information on the seasonality of disease, and access to 

frequently updated information on changes in the local climate or environment, 

%hich can givc warning of changes in epidemic risk occurring within their 

jurisdiction. 

An 'interactive' climate based model of suitability for malaria transmission 
(developed here and described in Chapter 2) can provide guidance on where, and in 

%hich months. the climate may be considered suitable for malaria transmission to 

occur, Figure 10.1. Ilis is a new development which goes further than previous 

attempts at developing climate-based maps of malaria risk. The active use of such a 

model within a GIS framework- is useful in sub-dividing the extensive African 
Savannah malaria stratum, and makes a step towards answering Greenwood's 

criticism of existing malaria maps for the African continent (Greenwood 1999), cited 
Chapter 2. 
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Figure 10.1. Interactive GIS model of 'malaria risk' in Africa (developed and 
described in Chapter 2). Showing a specific enquiry for an area in 
southern Ethiopia. 
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EIS have also been used here (as described in Chapter 2) to identify 'desert-fringe' 

zones, and map areas where the combination of low-moderate annual rainfall and 
high interannual variability in rainfall occurs, Figure 10.2. These are the areas of 

marginal endemicity, in which malaria epidemics are likely to occur when rainfall is 

abnormally high in a particular year, or as a result of a return to more 'normal' 

rainfall following drought years. These are the areas where routine rainfall 

monitoring should form the basis of a simple malaria epidemic early warning system, 

using rainfall difference products as described in Chapter 3. Other strata, Table 2.2 

Chapter 2, need more detailed information which EIS may contribute to. 
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Figure 10.2. Desert-fringe strata for epidemic prone areas in Africa. Based on 
mean annual rainfall amount and interannual variability. 

F-1 
low rainfall & 
high variability 

A method has been demonstrated here which uses EIS to provide frequently updated 
inputs (satellite derived rainfall estimates) into a vectorial capacity model (developed 

and described in Chapter 3). Currently the use of the vectorial capacity images 

effectively masks out areas where temperature (on average) acts as a constraint to 

malaria transmission (highland-fringes) and are a more focused malaria risk 

monitoring product for desert-fringe epidemics, than rainfall estimates alone. When 

improved, satellite derived, proxies for temperature become available these too will 
be able to be used as inputs into the models (substituting long-term mean 
temperatures) and may then become useful in monitoring highland-fringe epidemic 

settings, Figure 10.3. 

192 



Figure 10.3 Vectorial capacity difference product for November, 1997. 

Where countries have routinely available malaria incidence data (as defined and used 

by the NMCP for decision making) EIS can be used to model the seasonality of 

malaria transmission in its regions or districts based on the relationships between the 

malaria incidence data and environmental data available. This information will help 

in choosing control options, and in the preparation and timing of routine calendar 

based control planning in these regions or districts. The modelling of routine malaria 

incidence data and environmental information has shown that anomalies in 

environmental variables are correlated with anomalies in malaria incidence in certain 

regions or districts of the case study countries in Southern Africa. The map, Figure 

10.4 shows the regions and districts of Namibia, Botswana, Zimbabwe and 
Swaziland that were tested here, and where evidence suggests, that routine 

monitoring of environmental variables (with at least 2 months lead-time) would be a 

useful component in malaria epidemic early warning systems in those countries. The 

map does not represent the results of exhaustive testing in all individual districts in 

Botswana (which was tested primarily according to latitude class) and Zimbabwe 
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(which was tested primarily according to altitude class) and it is possible that models 

for individual districts might also yield promising results, as shown from example 

districts in both countries. 

Figure 10.4. Areas with evidence of association between anomalies in 
environmental variables and anomalies in malaria incidence levels. 

Where possible, the development of Malaria Early Warning Systems should be fully 

integrated within the development of routine health systems surveillance, and in 

close collaboration with other sectors, who may collect supplementary information 

that provides greater precision in deciding where and when epidemics may occur. 
The information available from Food Security and Drought Monitoring Systems 

(information on migration and nutritional status) may also help determine the risk of 

severe disease outcome should an epidemic occur, Chapter 9, Connor et al (1999) 

and WHO (2001). 
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