
THE UNIVERSITY OF LIVERPOOL

A PARALLEL IMAGE PROCESSING
SYSTEM

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor of Philosophy by

Kin WingTse

Department of Electrical Engineering and Electronics

March 1997

Ph.DThesis A Parallel Image Processing System

For my beloved wai-man

"Unless the Lord builds the house, its builders labor in vain. Unless the Lord

watches over the city, the watchmen stand guard in vain." Psalm 127:1

K.W.Tse Page ii

Ph.D Thesis A Parallel Image Processing System

Acknowledgements

I would like to thank my supervisor, Dr. I.S. Smith, for his support, guidance and

encouragement throughout this research; and also for his invaluable support and

regards when I was involved in a serious traffic accident in April 1995. Many

thanks are also due to Professor 1. Lucas, who is leading the Computer

Electronics and Robotics Research group, and without whom much of this work

would not have been undertaken. I also wish to thank the present and previous

Heads of the department, Professor 1.0. Parsons and Professor G.R. 10nes, for

providing laboratory facilities.

I would also like to thank Dr. S.R. Wylie and Dr. T.M. Colclough for their

corrections. Finally, I would like to express my gratitude to the Overseas

Research Students Awards Scheme and British Nuclear Fuels plc for funding me

during my research.

K.W.Tse Page ill

Ph.D Thesis A Parallel Image Processing System

Abstract

For many vision-based applications, it is necessary, or advantageous, to process

image data in real-time. Custom-designed image processing systems have been

used to achieve a high performance for specific applications, but, as these are

non-programmable, they cannot be adapted to suit different applications without

major modifications.

Advanced VLSI technology has enabled parallel processor based systems, which

can be programmed to perform a wide range of algorithms, to replace these

custom-designed systems.

The aim of this research was to design and build a generic parallel processor

based vision system, which was able to capture, process and display image data

in real-time. The hardware for these three functions was integrated onto a single

board, which, by simple interprocessor links or port connections, could be

connected to a mUlti-processor network.

K.W.Tse Pageiv

Ph.D Thesis A Parallel Image Processing System

Contents

Acknowledgements .. iii

Abstract .. iv

Contents .. v
L· fF' ... 1st 0 19ures .. VU1
List of Tables .. x

Glossary of Terms Used ... xi

1. Introduction .. 1

2. Determination of the Processor and the PLDs Used in the System4
2.1 Processors .. 4

2.1.1 The Key Features of the Processor ... 4
2.1.2 Investigation of T9000 and TMS320C40 .. 7

2.1.2.1 T9000 ... 7
2.1.2.2 TMS320C40 ... 9

2.1.3 Discussions and Conclusion .. 11
2.2 Programmable Logic Device ... 13

2.2.1 The Attractions of Programmable Logic ... 13
2.2.2 The Key Features of The Device ... 13
2.2.3 Investigation of Altera Devices and Xilinx Devices 14

2.2.3.1 MAX7000 Family .. 15
2.2.3.2 XC3000 Series .. 16

2.2.4 Discussion .. 16

3. The T9000 Transputer Based Image Processing System 18
3.1 The Dedicated Image Processing Board ... 18

3.1.1 Block Description ... 19
3.1.2 Memory Map ... 21
3.1.3 Memory Operations ... 22

3.1.3.1 Program Memory .. 23
3.1.3.2 Frame Buffer Memory ... 24
3.1.3.3 Overlay Buffer Memory ... 29

3.1.4 Video Timings ... 32
3.1.4.1 Composite Sync and Field Identification Extraction 33
3.1.4.2 Frame Sync Generation "' 33
3.1.4.3 Frame Timings .. 34

3.1.4.3.1 Horizontal Timing Logic ... 34
3.1.4.3.2 Vertical Timing Logic ... 36

3.1.4.4 Blank Signal Generation .. 38
3.1.5 Frame Capture Subsystem .. 38
3.1.6 Frame Display Subsystem ... 42
3.1.7 DS Link Interface ... 44
3.1.8 Control System .. 46
3.1.9 The Topologies of The System Synchronisation47

3.1.9.1 Pixel Multiplexer and Demultiplexer .. 48
3.1.9.2 Bus Multiplexing Mode Switching ... :: . .48

K.W.Tse Page v

Ph.D Thesis A Parallel Image Processing System

3.1.9.3 T9000 Accessing Buffer Memory .. 50
3.1.9.4 Frame Synchronisation .. 52

3.2 PLD Design Verification .. 52
3.2.1 Frame Capture .. : .. 53
3.2.2 Frame Display .. 53
3.2.3 T9000's Write Cycle .. 54
3.2.4 T9000's Read Cycle ... 55

3.3 Prototype Construction .. 56
3.3.1 T9000 Transputer Adaptor Board .. 57
3.3.2 Full System Prototype Using Speedwire Board 57

3.4 IMS B 108 and IMS B927 .. 58

4. The Configurations of The Image Processing System ... 60
4.1 Single-T9 Mode ... 60

4.1.1 System Interconnection .. 60
4.1.2 Hardware Configuration ... 62

4.1.2.1 Memory Interface Configuration .. 63
4.1.2.1.1 Program Memory .. : ... 63
4.1.2.1.2 Buffer Memory .. 65
4.1.2.1.3 110 Devices ... 66

4.1.2.2 Network Configuration .. 68
4.1.2.2.1 Terminology .. 69
4.1.2.2.2 The Declarations of Node, Arc and Control Port 69
4.1.2.2.3 The Link Speed Attributes ... 69
4.1.2.2.4 The Type and Root Attributes 70
4.1.2.2.5 The Memory and Memconfig Attributes 70
4.1.2.2.6 The Control and Data Tree .. 71

4.1.2.3 Setting Up The Frame Capture Subsystem 72
4.1.2.4 Setting Up The Frame Display Subsystem 72

4.1.3 Software Configuration .. 74
4.2 Multi-T9 Mode .. 75

4.2.1 System Interconnection .. 75
4.2.2 Hardware Configuration ... 76

4.2.2.1 Memory Interface Configuration .. 76
4.2.2.2 Network Configuration .. 76

4.2.3 Software Configuration .. 78

5. The Operations of The Image Processing System .. 79
5.1 Frame Buffer Management ... 79

5.1.1 Single-T9 Mode ... 79
5.1.2 Multi-T9 Mode .. 81

5.2 Image Division Techniques .. 82
5.3 Image Distribution Techniques ... 83

5.3.1 The Non-routed Network ... 84
5.3.2 The Routed Network without IMS C104 ... 84
5.3.3 The Routed Network with IMS C104 .. 85
5.3.4 The Two-DIPB Network ... 86

5.4 Image Processing Algorithms ... 86
5.4.1 Thresholding .. 87
5.4.2 Local Averaging .. 87

K.W.Tse Page vi

Ph.D Thesis A Parallel Image Processing System

5.4.3 Sobel Operator ... 88
5.4.4 Seam Tracking ... 89

6. System Performance ... 92
6.1 Image Transmission Rates .. 92

6.1.1 System Configurations .. 92
6.1.2 Unidirectional Transmission .. 94

6.1.2.1 Sending One Image ... 95
6.1.2.2 Sending One Image and Receiving One Image 96

6.1.3 Bidirectional Transmission ... 97
6.1.4 Conclusions .. 98

6.2 Image Processing Rates .. 98 .
6.2.1 System Configurations ... 99
6.2.2 Thresholding ... 1 0 1
6.2.3 Local Averaging ... 102
6.2.4 Sobel Operator ... 104
6.2.5 Seam Tracking .. 106
6.2.6 Conclusions .. 107

7. Conclusions and Future Research .. 1 08

References ... 111

Appendix A . The Schematic Diagram of the T9000 Transputer Adaptor
Board ... 114

Appendix B . The Altera Design Files .. 120
Appendix C . The Memory Configuration File for the DIPB 159
Appendix D . The Memory Configuration File for the IMS B927 161
Appendix E . The Initialisation Procedures for the DIPB 164
Appendix F . The Seam Tracking Source Programme .. 168

K.W.Tse Page vii

Ph.D Thesis A Parallel Image Processing System

List of Figures

Figure 2.1 Block Diagram of T9000 Transputer ... 7
Figure 2.2 Block Diagram of TMS320C40 (Part One) : 9
Figure 2.3 Block Diagram ofTMS320C40 (Part Two) ... 10
Figure 3.1 The System State Machine .. 19
Figure 3.2 The Block Diagram of The Dedicated Image Processing Board 20
Figure 3.3 Memory Map .. 21
Figure 3.4 Program Memory Interface ... 23
Figure 3.5 Interface for The Frame Memory's Data Bus ... 24
Figure 3.6 Data Path of the Frame Memory in the ADC State 25
Figure 3.7 Data Path of the Frame Memory in the DAC State 26
Figure 3.8 Data Path of the Frame Memory in the T9000 State for Write Cycle 26
Figure 3.9 Data Path of the Frame Memory in the T9000 State for Read Cycle 26
Figure 3.10 Data Path of the Frame Memory When the T9000 Reads from the

Frame Memory outside the Bus Multiplexing Time 27
Figure 3.11 Interface for The Frame Memory's Address and Control Buses 27
Figure 3.12 Signal Path of the Frame Memory in Both the ADC and DAC States 28
Figure 3.13 Signal Path of the Frame Memory in the T9000 State 28
Figure 3.14 Signal Path ofthe Frame Memory when the T9000 Accesses the

Frame Memory outside the Bus Multiplexing Time 29
Figure 3.15 Interface for The Overlay Memory's Data Bus ... 29
Figure 3.16 Data Path of the Overlay Memory in the DAC Overlay State 30
Figure 3.17 Data Path of the Overlay Memory in the T9000 State for Read Cycle 31
Figure 3.18 Data Path of the Overlay Memory When the T9000 Reads the

Overlay Memory outside the Bus Multiplexing Time 31
Figure 3.19 Data Path of the Overlay Memory in the T9000 State for Write Cycle 31
Figure 3.20 Local Address and Control Buses For The Frame and Overlay Buffers 32
Figure 3.21 LM1881 Video Sync Separator Circuit .. 33
Figure 3.22 Frame Sync Generator ... 34
Figure 3.23 Flow-Chart of The Horizontal State Machine ... 35
Figure 3.24 Horizontal Timing Logic ... 36
Figure 3.25 Flow-Chart of The Vertical State Machine ... 37
Figure 3.26 Vertical Timing Logic .. 37
Figure 3.27 Data Read Sequence of TMC22071 .. 38
Figure 3.28 Data Write Sequence of TMC22071 .. 39
Figure 3.29 Timing Diagram of Bank 3 Read Cycle .. 39
Figure 3.30 Timing Diagram of Bank 3 Write Cycle ... 40
Figure 3.31 Architecture ofPixel-In Box .. 41
Figure 3.32 MPU ReadlWrite Timing of Bt481A ... 42
Figure 3.33 Architecture of The Pixel-Out Box .. 44
Figure 3.34 A Pair of Buffered DS-Links .. , 45
Figure 3.35 DS-Link Connector Pinout .. 46
Figure 3.36 Up/Down Ports for Reset Signals .. 47
Figure 3.37 Relevant Signals in The T9000 State for Write Cycle 51
Figure 3.38 Relevant Signals in The T9000 State for Read Cycle 52
Figure 3.39 Frame Capture Verification .. 53
Figure 3.40 Frame Display Verification .. :; .. 54

K.W.Tse Page viii

Ph.D Thesis A Parallel Image Processing System

Figure 3.41 T9000's Write Cycle Verification ... 55
Figure 3.42 T9000's Read Cycle Verification .. 56
Figure 3.43 T9000 Transputer Adaptor Board .. 57
Figure 3.44 The prototype of the DIPB .. 58
Figure 3.45 The IMS B 108 with the IMS B927 HTRAM .. 59
Figure 4.1 System Interconnection in Single-T9 Mode ... 61
Figure 4.2 Sample imem Display Page for the Program Memory 64
Figure 4.3 The HM5117800BTT6 Dynamic RAMs Addressing 64
Figure 4.4 Sample imem Display Page for the Buffer Memory 66
Figure 4.5 Interface of Registers .. 67
Figure 4.6 Sample imem Display Page for the I/O Ports .. 67
Figure 4.7 A Network Description for Single-T9 Mode : 68
Figure 4.8 System Interconnection for Multi-T9 Mode ... 75
Figure 4.9 Network Description for Multi-T9 Mode ... 77
Figure 5.1 Frame Buffer Operation In Single-T9 Mode .. 80
Figure 5.2 Frame Buffer Operation in Multi-T9 Mode .. 81
Figure 5.3 Illustration of Edge Attachment ... 83
Figure 5.4 The Non-routed Image Processing System Network 84
Figure 5.5 The Routed Image Processing System Network without IMS C104 85
Figure 5.6 The Routed Image Processing System Network with IMS C104 85
Figure 5.7 The Two-DIPB Network ... 86
Figure 5.8 Result of Thresholding .. 87
Figure 5.9 Result of Local Averaging with 7 x 7 Window .. 88
Figure 5.10 Result of the Sobel Operator ... 88
Figure 5.11 Sobel Operator Masks ... 89
Figure 5.12 The Setting of Seam Tracking ... 90
Figure 5.13 The Flow Diagram of Seam Tracking .. 91
Figure 5.14 Image from the Seam Tracking .. 91
Figure 6.1 Configuration T(3,4) ... 93
Figure 6.2 Configuration T(3,2) ... 93
Figure 6.3 Configuration T(2,2) ... 94
Figure 6.4 Configuration T(2,1) ... 94
Figure 6.5 Unidirectional Transmission Test Results (1) ... 95
Figure 6.6 Unidirectional Transmission Test Results (2) ... 96
Figure 6.7 Bidirectional Transmission Test Results ... 97
Figure 6.8 Configuration P(3,4,5) .. 99
Figure 6.9 Configuration P(3,2,3) ... 99
Figure 6.10 Configuration P(2,2,3) ... 1 00
Figure 6.11 Configuration P(2, 1 ,2) ... 100
Figure 6.12 Configuration P(I,O,I) ... 100
Figure 6.13 Thresholding Test Results .. 1 0 1
Figure 6.14 Local Averaging 3 x 3 Test Results ... 103
Figure 6.15 Local Averaging 5 x 5 Test Results ... 103
Figure 6.16 Local Averaging 7 x 7 Test Results ... 104
Figure 6.17 Sobel Operator Test Results .. 105
Figure 6.18 Seam Tracking Test Results ... 106

K.W.Tse Pageix

Ph.D Thesis A Parallel Image Processing System

List of Tables

Table 3.1 TMC22071 Timing Options .. 34
Table 4.1 IMS B 108 JP 1-4 Connection ... 61
Table 4.2 IMS B 108 Control Link Switch Connections .. 62
Table 4.3 The Memory Usage of the Dedicated Image Processing Board 71
Table 4.4 Control Input Truth Table of Bt481A ... 73
Table 6.1 Unidirectional Transmission Test Results for Real-time Performance 95
Table 6.2 Unidirectional Transmission Test Results for a Full Image 96
Table 6.3 Bidirectional Transmission Test Results for a Full Image 97
Table 6.4 The Fastest Processing Time in Thresholding .. 101
Table 6.5 The Fastest Processing Time in Local Averaging 102
Table 6.6 The Fastest Processing Time in Sobel Operator ... 106

KW.Tse Page x

Ph.D Thesis A Parallel Image Processing System

Glossary of Terms Used

This thesis contains several abbreviations, some of which are in common usage

and some of which are specific to this research. Most of the abbreviations can be

found in this glossary of terms.

ADC Analog To Digital Converter
AHDL Altera Hardware Description Language
ANSI American National Standards Institute
CCD Charge Coupled Device
CMOS Complementary Metal Oxide Silicon
CPU Central Processing Unit
DAC Digital To Analog Converter
DIPB Dedicated Image Processing Board
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EEPROM Electrically Erasable Programmable Read Only Memory
EPROM Erasable Programmable Read Only Memory
FPGA Field Programmable Gate Array
HTRAM High-Performance Transputer Module
IC Integrated Circuit
I/O Input/Output
MFLOPS Millions of Floating Point Operations Per Second
MIPS Million Instructions Per Second
Mpps Million Pixels Per Second
MPU Microprocessor Unit
MUX Multiplexer
NDL Network Description Language
NTSC National Television System Committee
PAL Phase Alternate Line
PC Personal Computer
PCB Printed Circuit Board
PGA Pin Grid Array
PLD Programmable Logic Device
ROM Read Only Memory
SECAM Sequential couleur a memoire
SRAM Static Random Access Memory
VCP Virtual Channel Processor
VLSI Very Large Scale Integration
VRAM Video Random Access Memory

K.W.Tse Page xi

Chapter 1

~
Introduction

Image processmg is playing an increasingly important role in many

manufacturing processes, many of which require "real-time" performance. "Real­

time" performance requires an image processing system to capture, process and

display image data within one frame period and without any loss of frames [1].

To achieve this performance, with cameras capturing images at full frame rate,

requires considerable processing power. This can be achieved by either using a

very high performance single processor system, whose cost would make it

impractical for many applications, or by using many low cost interconnected

processors.

The T800 transputer based TIPS [2] image processing system was developed at

the University of Liverpool in 1990. This system overcame the traditional

problem of using transputers [3], which is the low data bandwidth of links, in

image processing applications by allowing multiple processors, up to 8, to

simultaneously process the captured image. This was achieved by allowing each

processor to have a full copy of the image in its own local memory through the

TIPS's backplane system. The image could then be processed and the results

displayed on an external monitor.

Recently, advanced VLSI technology has allowed parallel processors to perform

interprocessor communication, at a rate which is sufficient to transmit images in

real-time. The IMS T9000 transputer [4] and the TMS320C40 digital signal

processor [5] are parallel processors with high data bandwidth interprocessor

communication links, or ports, suitable for building parallel image processing

systems. Consequently, Quintek Ltd has built a modular image processing

K.W.Tse Page 1

Chapter 1 Introduction

system, based around the T9000 transputer, and Sundance Multiprocessor

Technology Ltd has built another with the TMS320C40 digital signal processor.

For the Quintek QT9 Multi-Capture and Multi-Display System [6], the functions

of image capture and image display are separately resident in the two T9000

transputer based boards, consequently at least two processors are involved for

any application, unless one of the functions is ignored. For the image processing

system developed by the Sundance, it is a combination of the SMT303 [7] frame­

grabber and the SMT304 [8] graphic accelerator. These two modules are

TMS320C40 DSP based and hence its basic configuration involves two

processors.

The aim of this research was to design and build a single image processing board,

which provides both the image capture function and image display function. In

addition, the frame buffers can be accessed by the capture subsystem, the display

subsystem and the processor system simultaneously. As. a result, the overall

image processing system is fully scaleable, enabling processing performance to

be enhanced by the addition of multiple processors to the basic single processor

system.

The second chapter of this thesis aims to discuss the key features of a processor,

and a programmable logic device, which can be used to construct a real-time

parallel image processing system. The IMS T9000 transputer and the

TMS320C40 digital signal processor, were investigated and one was chosen to

construct the image processing system. Altera and Xilinx are the two main

manufacturers of large scale programmable logic devices. The devices available

from these companies were investigated, and are discussed.

Chapter three describes the organisation and operation of the image processing

system. The system, in general, consists of a dedicated image processing board, a

number of IMS B927 HTRAMs [9], or IMS B926 HTRAMs [10], and the IMS

K.W.Tse Page 2

Chapter 1 Introduction

BI08 HTRAM motherboard [11]. The hardware design of the dedicated image

processing board is detailed in this chapter.

Chapter four introduces two configurations for the image processing system. The

configuration of the image processing system for Single-T9 mode is similar to

that for a T9000 single transputer network [12], and the configuration for Multi­

T9 mode is similar to that for a T9000 multi transputer network. Nevertheless,

this chapter explains the parameters used in the configurations, with particular

reference to the image processing system which has been built.

The aim of chapter five is to highlight some areas of interest concerning the

operation of the image processing system. The three frame buffers in the

dedicated image processing board are purposely managed for different

configurations and applications. For a parallel image processing architecture, the

image is divided into a number of sub-images, so that an image processing task is

shared by a number of processors. An image partition technique is required, and

the principle behind the technique is explained. The end of chapter five

introduces a number of image processing algorithms that were used to test the

performance of the image processing system in different configurations.

Chapter six presents the results of a number of tests on the image processing

system in different configurations. As the system performance is related to the

test conditions, such as the link connections, the program structure, the

programming language, and the number of processors; these conditions are

stated, and their influence on system performance is discussed.

Chapter seven contains conclusions on the work undertaken and

recommendations for future research.

K.W.Tse Page 3

Chapter 2

Determination of the Processor and the PLDs Used in the System

This chapter aims to discuss the key features of a processor and a programmable

logic device, which determine its suitability for the development of parallel image

processing systems. The T9000 transputer and the TMS320C40 digital signal

processor were considered for the processor, whilst the Altera and Xilinx devices

were considered for the programmable logic device. The programmable logic

devices were required to provide the glue logic between the processor, the video

digitizer, the video encoder, and the memory.

2.1 Processors

This section discusses the features which a processor should have in order to

construct a parallel image processing system. The T9000 transputer and the

TMS320C40 digital signal processor are parallel processors which are primarily

designed to facilitate system' configurability and provide massive parallelism,

with very little, or no, glue logic. These two parallel processors were investigated

and compared, and one of them was chosen as the processor for the system.

2.1.1 The Key Features of the Processor

Image processing is typified by large data structures, requiring many operations

to be performed at high speed, in order to achieve real-time processing. It

encompasses a wide variety of techniques and applications, such as image

enhancement, image restoration, and image segmentation. As different

applications require different processing speeds, a desirable trait of a parallel

K.W.Tse Page 4

Chapter 2 Determination of the Processor and the PLDs Used in the System

system is the ability to optimise the cost/performance ratio by changing the

number of processors.

Although the processing power of a parallel processing system can be increased

by employing additional processors, a processor with a high-speed integer unit

and a high-speed floating point unit is still advantageous. It is beneficial to have a

system which is powerful enough to deal with a number of basic image

processing algorithms, such as, a simple filtering operation for a whole frame

area, using a single processor.

In addition to high processing speed, a high data bandwidth for the memory

interface is also important. For some applications, a processor is required to read

the entire original image, and write the processed image to memory for display.

In this case, the data bandwidth must be high enough to support fetching

instructions from the program memory, and transporting data to and from the data

memory in real-time.

The address space of the processor should be large enough to access the program

memory, the frame buffer memory, the overlay buffer memory and some I/O

ports directly. Although the page memory system can make the processor access

physical memory outside the address space of the processor, the additional time

for paging memory would cause a reduction in the real-time processing

performance.

The video signal, generated by a camera, is asynchronous to the image processing

system. One method which can be used to synchronise the system and the video

signal, is to program the processor to repeatedly poll an input port which is

connected to the frame sync signal. Alternatively, an interrupt approach could

also be used. In this case, the interrupt pin of the processor is connected to the

frame sync signal, and the processor is interrupted once every frame period. For

K.W.Tse PageS

Chapter 2 Determination of the Processor and the PLDs Used in the System

this approach, the processor should have a pin for the interrupt and respond to it

in one percent of the frame period or less.

The frame buffers are designed to be a shared memory, which is accessed by

three parties, namely the processor, the frame capture subsystem, and the frame

display subsystem. A state machine [13] was designed to manage the time­

division multiplexing, such that each subsystem accessed the memory during its

allocated time. In fact, the frame capture subsystem and the frame display

subsystem are indirectly controlled by the same state machine, so this results in

no los8 of synchronisation between them. The processor and the state machine

are two individual units, and are not synchronised. With some arrangements, the

wait state [14] of a processor can be used, in such a way, that the processor is

synchronised with the buffer memory access time. As a result, the processor

should have a wait state pin for this purpose. Chapter three details the principle

of using the wait state for synchronisation.

The main purpose of the interprocessor communication ports of the processor, for

a parallel image processing system, is to transmit image data. The transfer rate of

the communication ports should be high enough to enable video signals to be

transmitted in real-time. In addition, the processor should be designed to provide

massive parallelism, with very little or no glue logic. Furthermore, the availability

of a C language [15] compiler for the processor is a great advantage, as it reduces

the time spent learning a new language for the processor and allows easy

portability of existing code.

Data traffic between processors in a parallel image processing system is quite

heavy. A separate unit which controls this data transfer is necessary as it can

maximise the CPU performance by alleviating this data transfer burden from the

CPU.

K.W.Tse Page 6

Chapter 2 Determination of the Processor and the PLDs Used in the System

2.1.2 Investigation of T9000 and TMS320C40

This section is aimed at providing introductions to the T9000 transputer and the

TMS320C40 digital signal processor. As these two processors have some features

which can fulfil the key features of a processor for building a parallel image

processing system, it is advantageous to summarise their structures and

operations before selecting which of the two will be used.

2.1.2.1 T9000

The T9000 transputer is a 32-bit CMOS microprocessor, which integrates a high

performance central processing unit, a 16 KByte cache [16] , a communication

system, and other support functions, on a single chip. Figure 2.1 shows its major

operational units.

K.W.Tse

Processor Pipeline

Generator FPU
Fetch Decoderl Workspace 1 Read Write

Address ~[J
Grouper Cache Address

Generator ALU
L-__ ~L-__ ~ ____ -L~2~L-__ ~

MemAddr2-31 C
MemDataD-63C

notMemRf­
MemWalt­

MemReqln­
MemO ranted -
MemRoqOut­

nolMomBootCE -
notMomRAS()"3 -
notMemCAS()"3-

notMomPS()..3-
notMemWrBO·3 -

16Kbyte
Cachel
Internal
Memory

Programmable
Memory
Interfaco

,.LL
!-' h ~

Crossba
4x32 bit

Datal
Address

M Bus
'0-1 r<-"

,
"

Scheduler

32 bit TImers

4 Event
Channels

Control Unit

Control
LlnkO

Control
Llnk1

System
Services

10- Evenlln()"3
r- Ev.ntOutO-3

R ••• t
I>-SlartFromROM
__ CLlnklnDataO

c~ln~O~tD~ o-Cn lntroO
-- CLlnkOutStrobeO

CLlnklnDatal
-- gl:ln~OutDatal

' 0- n tnStrobe1
-- CLlnkOutStrobe1

I

"~~''''~''J< ~iI¥~ I ... ProcClockOut
, r- CapPlul

Phase Locked c- CapMlnua
Loops ~ Clockln

1Jt:c===rr~' " ProcSp.edSelectO-2

1'\'l(!''''~~1l::I\~,:~I!!~:~ !~~'!!fil~!II:~,!jil~ j.~\LN .,,~,f'~~:II~ ,
LlnklnDataO - ' : 11 : ~'r ' LlnklnData2

LlnkOutDataO - OS LlnkO ~~" ~ OS Llnk2 ' ,'" L1nkOutData2
LlnklnStrobeO - .' Vlrt I "~'li - L1nklnStrobe2

LlnkOulStrobeO - I , . ", ua !~'~~l'" ... LlnkOutStroba2
'~,' "1'IIt,'~''<I';'~ r]l" Channel I ~I :,";.I;i .. ;)li' I

LlnklnData1 - ~~' Processor 'l"~ L1nklnDat.3
LlnkOutDatal .. :1l OS LI kl ~".'. ~'!:! OS Llnk3 ... UnkOutData3
LlnklnStrob., -fi: n '~' : ' - UnklnStrobe3

LlnkOutStrobel- ' , '~~\ ';;"'~'f'>1~~;t~'r' .. I, - UnkOutSlrobe3
I~ :'~I\'lM!ji .•• *nH~~;jjki,Hi<~Ii"!r.'lfi:~ 1 """l:t''''~'",t

Figure 2.1 Block Diagram of T9000 Transputer
[from The T9000 Transputer Hardware Reference Manual]

Page 7

i
i
I
!
I
i
I
i
I
I
! ,
1
I
I
1
1
j

I
I

Chapter 2 Determination of the Processor and the PLDs Used in the System

The T9000 transputer has a pipelined superscalar architecture, which allows

multiple instructions to be executed every processor cycle. Running at a

processor speed of 20 or 25 MHz, it is capable of reaching 100 MIPS and 12.5

MFLOPS.

The 16 KByte cache provides a peak bandwidth of 120 Mwords/sec. It can also

be programmed to function as 16 KByte of on-chip memory, or as 8 KByte of

on-chip memory and 8 KByte of cache. This allows small applications to run

with no external memory, and guarantees deterministic code behaviour for

applications where this is critical.

The highly integrated programmable memory interface has a 4 GByte physical

address space, and provides a peak bandwidth of 30 Mwords/sec. Four

independent banks of external memory are supported to build a mixed memory

system, which can contain DRAM, SRAM, EPROM and VRAM. The T9000

transputer has a 64-bit data bus, and each bank of memory can be configured to

be 8, 16, 32 or 64 bits wide.

Four Event I/O pins provide asynchronous handshake interfaces between external

events and internal processes, and can be used as interrupts or as controls for

external peripherals. The response time is sub-microsecond.

The T9000 transputer has four serial communication links for interprocessor

communication. The link speed can be configured up to a raw bit rate of 100

MbiUsec. The four OS-Links support a total bidirectional data bandwidth of 40

Mbytes/sec.

Virtual channels are used in the communication system to control the routing of

messages around a processor network. The operation of these channels is

implemented solely by a virtual channel processor, without burdening the central

processing unit. In addition, the VCP enables the T9000 to support up to 64k

virtual channels over its four serial links.

K.W.Tse Page 8

Chapter 2 Determination of the Processor and the PLDs Used in the System

Software support for parallel processing includes T9000 ANSI C [17] and T9000

occam 2 [18] toolsets, which were developed and are supported by INMOS.

2.1.2.2 TMS320C40

The TMS320C40 digital signal processor IS a 32-bit floating-point processor,

which integrates a high performance central processing unit, a program cache, six

communication ports, a six-channel DMA coprocessor and other support

functions, on a single chip. Figure 2.2 and Figure 2.3 show its major operational

units.

K.W.Tse

block diagram

0(31-0) ­
A(30-0)­

DE ­
Al'­

STAT(3-0) -
LoCi< ­

STRaii. SrRii -
Rlwo,AJW1 -

PAGED, PAGE1 -
iffiVO, RD'Y1 -

m.CEi -

RR~~:~ =:
::~~gg~ :::

NMi-
1I0t~~ ::

H1 . ­
H3 ...­

CVSS -+­

DVOO =::
OVas ~
1VSS -.-

LAOVoe -+­
LeOVoe -+-

~~~~ ::: 
SUBS -+-

I ClctM 
(512 Byt .. ) IRAM Block 0 

(4KDytH) I RAM Block 1 
{4I<Oytll, I ROM Block 

(R •• ..-ved) 

32 32 

/ ~fDATA. ,_BU'~ '~'\ "'. .~ r f' •• 
T 

I I I , 
" 

3. r f' 
U' .,' 

, ·t7lJ: .•. :1 '1iM! 

~ DQA1A',Qul',. ,J,; " , ,'~,: • 1ilio '.1'1 'i'>: ' I ~~;I! 

@ ~ ~1~~U'il ". . ;i ~ " 

li'!OAObR.t,BUlk-,t;, ~" , ~. "'h'4:h\~~:Jf~~~(' 'M4PJ! :t~elfil~ \ 

~I DM'ADATABu'- •• ~ t- •. !~ ",1" 1 'I~M'~ t J;r 

" " '/eMA'ADoR Bu .. •• " .... ~ ~, ... 'II," :., •• ' " .' " 'f. ~ 
[ ," 3. 3% 31 

/ MUX \. 

, 
,,~i 

I ~II 

, 

Figure 2.2 Block Diagram of TMS320C40 (Part One) 
[from TMS320C4x User's Guide] 

Page 9 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

block diagram (continued) 

32 

DMA Co roe ... ar 
DMA Channel 0 
OMA Channlll 
DMA Channel 2 
DMA Channel 3 
OMA Chnnnel 4 

OMA Channol 5 

Six DMA Channel. 

I~ 
11~ 

,I. 
I 
~ 

nmorO 
Global-Control R leter 

TIm ... P,rlod R, l,ter 
TImlr--Counllr R I,t ... 

Timer 1 
Global-conlrol Regia'., 

Tlm .. P"lod Regll'., 
Tlmer-Count.r Rlgll'e, 

PortConlrol 
Globa' 
Local 

LD31-LOO 
LA30-LAO 
tilE m 
LSTAT3-LSTATO 
iIliCi( 
ls'iA'Bo-LSTRB1 
LRIWO-LRIW1 
LPAGEO-LPAGE1 
LRDYO-IiiDvi 
LcEo.Im 

TCLKO 

TCLK1 

~ 

I 
l! 
en 

Figure 2.3 Block Diagram of TMS320C40 (Part Two) 
[from TMS320C4x User's Guide] 

The TMS320C40 CPU is configured for high-speed internal parallelism for the 

highest sustained performance. It is capable of 60 MFLOPS and 30 MIPS 

performance. Moreover, it provides hardware divide and square root support for 

improved performance. 

The TMS320C40 DSP has six parallel communication ports, with eight data lines 

and four control lines each, for interprocessor communication. Each port can 

achieve 20 Mbytes/sec bidirectional data transfer rate. In addition, no glue logic 

is required to connect processors together through these ports, and the 

communication software is easy to use. 

The six-channel DMA coprocessor is designed for concurrent I/O and CPU 

operation, thereby maximising sustained CPU performance, by alleviating the 

K.W.Tse Page 10 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

CPU's burden in 110 data transfer. This coprocessor can be auto-initialised, 

which further maximises the sustained CPU performance. 

Two identical external data and address buses support shared memory systems 

and a high data rate. Each consists of a 32-bit data bus with a peak bandwidth of 

120 Mbytes/sec ('C40-60), a 31-bit address bus and two sets of control signals. 

Both buses can be used to address external program/data memory or 110 space. 

The buses also have external RDY signals for wait-state generation, with wait 

states inserted under software control. 

On-chip program cache and dual-access/single-cycle RAM increase memory 

access performance. The 512-Byte instruction cache stores frequently used code 

and the 8-Kbyte single-cycle dual-access RAM stores data for easy access. 

The TMS320C40 supports four external interrupts, a number of internal 

interrupts, a nonmaskable external interrupt, and a nonmaskable external RESET 

signal, which sets the processor to a known state. The DMA and communication 

ports have their own internal interrupts. 

The TMS320C40 is supported by a host of parallel-processing development tools 

[19] for developing and simulating code easily, and for debugging parallel­

processing systems. The code generation tools include an ANSI C, C, C++ and 

Ada compilers. 

2.1.3 Discussions and Conclusion 

Section 2.1.1 has discussed the key features of a processor, which is suitable for 

applying to a parallel image processing system, and sections 2.1.2.1 and 2.1.2.2 

have introduced some features of two parallel processors. Before comparisons 

can be made, the spatial resolution and the intensity resolution of a frame must be 

fixed. Obviously, the higher the spatial resolution, and the intensity resolution, 

for each frame, the higher the required performance of the processor. 

K.W.Tse Page 11 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

In this image processing system, a Raytheon TMC22071 video digitizer [20] was 

chosen, which converts standard baseband composite NTSC or PAL video [21] 

into 8-bit digital composite video data. It also provides five timing options, 

including the PAL-601 standard, which was selected for use. With this option, 

the size of the frame was fixed at 864 pixels by 512 lines with 25 Hz frame rate. 

In the case of both input and output being full sized images, with the output being 

an improved version of the input, the required memory interface bandwidth is 

864 x 512 x 25 x 2 byte per second, or 21.1 Mbyte/sec. This calculation also 

applies to the interprocessor communication port. For the T9000 transputer, the 

memory interface bandwidth is 4 x 30 Mbyte/sec with 32-bit data bus configured, 

and the total bidirectional data bandwidth of the four links is 17.58 x 4 

Mbyte/sec, or 70.32 Mbyte/sec. For the TMS320C40 DSP, the peak memory 

interface bandwidth is 100 Mbyte/sec, and the bidirectional data bandwidth of 

each communication port is 20 Mbyte/sec. With consideration to the control bits 

used by protocol, there is no doubt that both processors are suitable. 

For the other criteria such as interrupt, wait state, software development tools, 

and the simplicity in constructing a parallel system, both processors are also 

suitable. To conclude, these two processors are very competitive in their 

suitability for this project. 

The Department of Electrical Engineering and Electronics, at the University of 

Liverpool, has built up considerable expertise in the construction of transputer 

based hardware. As a result, there was more technical support available if the 

parallel image processing system employed the T9000 transputer. This led to the 

selection of the 20 MHz T9000 transputer. 

K.W.Tse Page 12 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

2.2 Programmable Logic Device 

This section aims to discuss the features of programmable logic devices, discuss 

the key features which are applicable to the parallel image processing system and 

introduce two families of PLD for consideration. Of the PLDs currently on the 

market, the MAX7000 family of Altera [22] and the XC3000 series of Xilinx 

[23] were investigated and are discussed in this section. 

2.2.1 The Attractions of Programmable Logic 

Programmable logic devices are a category of Integrated Circuits whose ultimate 

function is determined by the designer. Programming is performed either by 

loading internal storage registers, or by inducing permanent or reversible physical 

changes in selected parts of the circuit. 

There are a lot of advantages to using PLDs in digital system design. Firstly, the 

number of ICs in a system can be reduced, as many logic gates and registers are 

fabricated into a single package. Secondly, minor circuit modification can be 

made conveniently at the prototype stage, by simply reprogramming the PLD 

without having to alter the board layout. Thirdly, the time taken building a 

system is much shorter than if discrete logic gates and registers are used, as 

interconnections of gates and registers are made by programming. Fourthly, the 

simulation function of the development tools can help the designer to quickly 

identify and correct logical errors. Finally, PCB design can be simplified because 

of the freedom to allocate signals to pins. 

2.2.2 The Key Features of The Device 

It is desirable to keep the number of chips used on the board to a minimum, so a 

programmable logic device should consist of a large number of gates and cells, so 

that one or two chips are sufficient to support all the combinational and 

sequential logic. In addition to the number of gates and cells available, the 

KW.Tse Page 13 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

number of 110 pins is also a factor which will affect the total number of PLDs 

required. 

For the prototyping board, a high density speedwire board with PGA area 

manufactured by VERO Electronics [24] was chosen. A PGA package was 

chosen to populate the PGA area. Since the width of the PGA area on the 

prototyping board was 17-way, the size of the PLD package must not be greater 

than 17 x 17. 

The frame buffer memory and the overlay buffer memory of the design are triple­

ported memory and dual-ported memory respectively. These memories are made 

up with static RAMs, tri-state buffers, and latches. The last two items are 

implemented by PLDs. Therefore the PLD must contain sufficient tri-state 

buffers. 

Since the state machines and counters are driven by a clock at 27 MHz, which is 

twice the pixel clock, the counter speed of PLDs must be equal to, or greater 

than, this value. The duration of each state of the system state machine is 

approximately 37 ns, so the propagation delay of any logic should be much less 

than 37 ns, so as to produce desirable timing waveforms. 

The PLD should be reprogrammable for the sake of quick and efficient 

modifications during design, development, and debug cycles. If the device can be 

electrically erasable, the time to erase the program in the PLD would be -

negligible. 

2.2.3 Investigation of Altera Devices and Xilinx Devices 

This section aims to give a brief introduction to the Altera MAX7000 family and 

the Xilinx XC3000 series of programmable logic devices. The devices from both 

the MAX7000 family and the XC3000 series are capable of meeting the key 

K.W.Tse Page 14 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

features mentioned in the previous section, but one device, the 

EPM7256EGC192-12, was preferable. 

2.2.3.1 MAX7000 Family 

In general, the MAX7000 family of high-density, high-performance CMOS 

devices is based on Altera's second-generation MAX architecture. Fabricated 

with advanced EEPROM-based CMOS technology, the MAX7000 family 

provides 600 to 5,000 usable gates, pin-to-pin delays as fast as 5 ns, and counter 

speeds up to 178.6 MHz. 

The higher-density members of the MAX7000 family, called MAX7000E 

devices, include the EPM7128E, EPM7160E, EPM7192E, and EPM7256E 

devices. These devices have several enhanced features, such as additional global 

clocking and additional output enable controls. 

MAX7000 devices are available in a wide range of packages, including plastic J­

lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack 

(PQFP), power quad flat pack (RQFP), and I-mm thin quad flat pack (TQFP). 

The MAX7000 devices use CMOS EEPROM cells to implement logic functions. 

The user-configurable MAX7000 architecture accommodates a variety of 

independent combinational and sequential logic functions. The devices can be 

reprogrammed and are guaranteed for 100 program and erase cycles. 

The MAX7000 family is supported by Altera's MAX+PLUS II development 

system [25], which offers schematic, text and waveform design entry; 

compilation and logic synthesis; simulation and timing analysis; and a device 

programmer. 

KW.Tse Page 15 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

2.2.3.2 XC3000 Series 

The XC3000 series Field Programmable Gate Array (FPGAs) provide a group of 

high-performance, high-density, digital integrated circuits. Using high­

performance CMOS static memory technology, this series provides 1,000 to 

7,500 logic gates, guaranteed toggle rates of 70 to 370 MHz, logic delays from 9 

to 1.5 ns, and system clock speeds in excess of 80 MHz. 

The FPGA user logic functions and interconnections are determined by the 

configuration program data, stored in the internal static memory cells. The. 

configuration program can be loaded into the device an infinite number of times. 

The XC3000 series devices are available in a wide range of packages, including 

plastic and ceramic surface-mount and pin-grid-array packages, as well as thin, 

and very thin, Quad Flat Pack (TQFP and VQFP) options. 

The XC3000 series is supported by the XACT step development system [26], 

which provides: schematic capture; automatic place and route; logic and timing 

simulation; an interactive design editor for design optimization; timing 

calculation; and interfaces to popular design environments. 

2.2.4 Discussion 

Programmable logic devices can be integrated together to implement a large logic 

design. Any device from a desirable family can be used, since they share the 

same features. However, the logic design for the image processing board involves 

a large number of gates, registers and I/O pins, so only devices with a large 

number of gates, registers and I/O pins were considered. For example, the 

address, data and control lines of the T9000 transputer are connected to PLDs, 

and the address, data, and control lines of the buffer memories are also connected 

to them. The number of these 110 pins is considerable indeed. 

K.W.Tse Page 16 



Chapter 2 Determination of the Processor and the PLDs Used in the System 

In the MAX7000 family, the EPM7256E is the top of the range. It has 5,000 

usable gates and 164 I/O pins. The 192-Pin PGA package is available for this 

device, and the size of this package is 17 x 17, which can be fitted onto the PGA 

area of the prototyping board. Thus, the EPM7256E was a suitable choice for use 

in this project. 

In the XC3000 series, the XC3195A is the top of the range. It is available in two 

PGA packages, one with 223 pins and the other with 175 pins. The 223-Pin PGA 

package does not fit onto the PGA area of the prototyping board because its size 

is 18 x 18 way, so it was not considered in the prototyping stage. However, after 

the prototyping stage, it could be used to build the hardware on PCB. For the 

package of 175-Pin PGA, it can be fitted onto the PGA area at the cost of the 

number of I/O pins dropped to 144, so this package was also considered for the 

design. 

In the University of Liverpool, the Computer Electronics and Robotics Research 

group of the Department of Electrical Engineering and Electronics, is currently 

using Altera's MAX +PLUS IT development system. Preference in choosing PLDs 

would be given to the Altera devices unless the Xilinx devices were much better 

than the Altera devices. Since the devices from Xilinx were comparable to 

devices from Altera, programmable logic devices were chosen from Altera and 

finally two devices, EPM7256EGCI92-12, were employed. 

K.W.Tse Page 17 



Chapter 3 

The T9000 Transputer Based Image Processing System 

This chapter describes the organisation and operation of the image processing 

system. This system consists of a dedicated image processing board for image 

capture, processing and display, a number of general purpose T9000 processor 

boards, such as the IMS B926 HTRAM or the IMS B927 HTRAM, which 

enhance the overall processing power, and an IMS B 108 motherboard, for 

supporting HTRAMs and providing the PC bus to DS-Link interface. 

3.1 The Dedicated Image Processing Board 

The dedicated image processing board was designed to convert an analogue video 

signal from a CCD camera into a digital video signal. It provides real-time video 

output of captured images, processed images, or captured images overlaid with 

processed results, as well as transputer access for image analysis. The major 

components are: a video decoder, a video encoder, the IMS T9000 transputer, 

three frame buffers, and one overlay buffer. As the three frame buffers are 

accessible by the frame capture subsystem, the frame display subsystem and the 

T9000 transputer, and the overlay buffer is accessible by the frame display 

subsystem and the T9000 transputer, a multiple bus system was built, which is 

controlled by state machines. One of these is the system state machine, which has 

eight states, as shown in Figure 3.1, that define the memory access sequence. 

This state machine is only used during bus multiplexing time, which occurs when 

pixel data is being written by the video decoder or read by the video encoder. At 

any time outside the bus multiplexing time, the bus for accessing the frame 

buffers is used only by the T9000 transputer. The text design file for the system 

state machine is shown in Appendix B [pp147]. 

K.W.Tse Page 18 



Chapter 3 The T9000 Transputer Based Image Processing System 

For Frame Buffer Memory:-

SO = Address set up for image capture 
S1 = Write data from ADC 
S2 = Address set up for T9000 
S3 = Write/Read data for T9000 
S4 = Address set up for image display 
S5 = Read data for DAC's P[7 .. 0] 
S6 = Address set up for T9000 
S7 = Write/Read data for T9000 

For Overlay Buffer Memory:-

SO = Idle state 
S1 = Idle state 
S2 = Address set up for T9000 
S3 = Read/Write data for T9000 
S4 = Address set up for overlay display 
S5 = Read data for DAC's OL[3 .. 0] 
S6 = Address set up for T9000 
S7 = Read/Write data far T9000 

Figure 3.1 The System State Machine 

3.1.1 Block Description 

Although the digitised image contained 8 bits per pixel, the data width of the 

T9000 transputer was set to 32-bit for the frame buffer memory in order to 

reduce the frequencies of both the frame capture subsystem, and the frame 

display subsystem accessing the frame buffer memory, by a factor of four. The 

advantage of this arrangement was to allow the T9000 transputer to have more 

time to read or write to the memory. The frame buffer memory access 

frequencies could have been further reduced if the data width was set to 64-bit. 

Unfortunately, the frame buffer memory would then have been cacheable, as this 

is a property of the T9000 transputer's memory interface, and hence prevents it 

being used as a shared memory. 

Figure 3.2 ~hows the main functional blocks of the dedicated image processing 

board. The CCD video camera encodes incoming images into a composite video 

signal, which is fed to a high-speed flash analogue to digital converter for 

digitisation. Four consecutive 8-bit digitised pixels are sequentially stored into a 

K.W.Tse Page 19 



Chapter 3 The T9000 Transputer Based Image Processing System 

32-bit buffer of the pixel-in box, to make it compatible with the 32-bit frame 

buffers, the top-left pixel being stored at the lowest address and the bottom-right 

pixel being stored at the highest address. 

VIDEO "'- ADC CAMERA / 

d;8 
PIXEL -IN 

BOX 

,/ v 32 

" 1/ 

BUS 
32 

1/ / "'- FRAME 
T9000 INTERFACE 0 1"// BUFFERS(3) 

/ 
:; 32 

/ I) 32 I 32 8 
,/ 32 ( / '" PIXEL -OUT BOX 1/" P[7 .. 0) 
~. / / / / / DAC 
I" / / 

/ "'- / " 
( v 32 

~ 
,/ 16 I / 1''6 

OVERLAY-OUT BOX / 4/ Ol[J .. O) 

1/ Y "1/ 

PROGRAM BUS / / '\ OVERLAY MONITOR 
MEMORY INTERFACE 1 " ~6/ BUFFER( 1) 

Figure 3.2 The Block Diagram of The Dedicated Image Processing Board 

Bus interface 0 allows the T9000 transputer, the frame capture and the frame 

display subsystems to access the frame buffers, whilst bus interface 1 allows the 

T9000 transputer and overlay subsystems to access the overlay buffer. There are 

three frame buffers, each being organised as 512 x 1024 byte with an 8-bit data 

width and one overlay buffer, which is organised as 512 x 1024 byte with a 4-bit 

data width. 

To display the contents of the frame buffers and the overlay buffer, 32-bit data is 

read from one of the frame buffers, stored into the latch of the pixel-out box, and 

then multiplexed as four groups of 8-bit data, which is sequentially fed to the 

pixel input of the digital to analogue converter. Similarly, the 16-bit data from the 

overlay buffer is stored into the latch of the overlay-out box, and then 

K.W.Tse Page 20 



Chapter 3 The T9000 Transputer Based Image Processing System 

multiplexed as four 4-bit data groups, which are sequentially fed to the overlay 

input of the digital to analogue converter. With the composite sync signal 

provided by the video sync separator device, the digital to analogue converter 

encodes the pixel data and the overlay data into the standard composite video 

signal for display on a monitor. 

3.1.2 Memory Map 

The external address space of the T9000 transputer was partitioned into four 

banks. The timing of each of the banks could be programmed separately, which 

enabled a mixed memory system to be used without the need for external 

hardware support. 

IAODOOOOO 

#AOCOOOOO 

IAOBOOOOO 

#AOAOOOOO 

IA0900000 

#A0800000 

lA0600000 

,A0400000 

#AOJOOOOO 

IA0200000 

IA0100000 

#AOOOOOOO 

#9047FFfC 
#90400000 

#9027FFFC 
190200000 

#9017FFFC 
190100000 

#9007FFFC 
#90000000 

#S07FFFFC 

Isooooooo 

DISPlAY MODE 

RESET ADC 

OAC MP INTERFACE 

ADC MP INTERFACE 

RESET INT Sfol 

RESET FRAf.4E SN 

DISPlAY REGISTER ________________ -.L ______ ~ 

CAPTURE REGISTER - - - - - - - - - - - - - - - - -+-------
ENABLE VHOV 

- - - - - - - - - - - - - - - - -+-------
RESET VH 

- - - - - - - - - - - - - - - - -+-------1 
FRANE SYNC INPUT 

- - - - - - - - - - - - - - - - -+-------1 
INVERT riD ________________ --'-______ -.1 

- - - - - - - - - -,--------, 
OVERlAY BUFFER - ________ --'---------' 

- - - - - - - - - -,--------, 
FRANE BUFFER 2 - - - - - - - - - --'---------' - - - - - - - - - -,--------, 
FRANE BUFFER 1 - - - - - - - - - --'--..,..--------' - - - - - - - - - -,--------, 
FRANE BUFFER 0 - - - - - - - - - --'---------' 

PROGRAf.4 MEMORY 

BANK 2 
32-BIT 
DRAM 

BANK 1 
32-BIT 

NON-DRAf.4 

Figure 3.3 Memory Map 

BANK 3 
32-B11 

NON-ORAN 

Figure 3.3 shows the memory map of the dedicated image processing board. As 

there was no pin on the T9000 transputer to indicate either memory access or I/O 

K.W.Tse Page 21 



Chapter 3 The T9000 Transputer Based Image Processing System 

access, all the I/O devices were mapped in the memory space. Bank 1 was 

configured to support Static RAMs, which were used for the frame buffers and 

the overlay buffer. Bank 2 was programmed to support Dynamic RAMs, which 

Were used for program memory. Bank 3 was assigned for I/O devices, the timing 

in this bank satisfied the timings of the microprocessor interfaces of both the 

analogue to digital converter and the digital to analogue converter, as well as 

some of the data latches. Bank 0 was not used. 

In order to simplify the address decoder circuitry, partial decoding [27] was 

employed. With partial decoding, the same memory cell can be accessed at many 

different memory addresses. All memory and I/O blocks were carefully placed so 

that they did not appear at the wraparound addresses of others. 

3.1.3 Memory Operations 

The performance of the microprocessor system is related to the speed of 

instruction code fetching. In general, the Dynamic RAM access time is longer 

than that of Static RAM, however, there are several reasons why Dynamic RAMs 

rather than Static RAMs were chosen to provide the program memory. 

First of all, the density of a storage cell of Dynamic RAM is much higher than 

that of Static RAM, so more storage cells can be put into a single chip, hence the 

number of memory chips required is reduced. Secondly, the T9000 transputer has 

16 Kbytes of cache memory, which stores the currently executed block of 

instructions for faster access by the CPU. Normally, 16 Kbytes of cache memory 

is large enough to significantly reduce the number of accesses to the external 

Dynamic RAMs for most image processing applications. Thirdly, Dynamic RAM 

is less expensive per bit than Static RAM. Fourthly, the T9000 programmable 

memory interface was designed to provide efficient support for Dynamic RAM 

without additional circuitry for refreshing and address multiplexing. 

K.W.Tse Page 22 



Chapter 3 The T9000 Transputer Based Image Processing System 

Video RAM [28] is normally used for frame memory. However, it was not 

chosen for this project as its serial port cannot be simultaneously accessed by the 

frame capture subsystem and frame display subsystem in real-time operation, in 

spite of a multiple bus interface which has been added to it. Instead, Static RAM 

equipped with a multiple bus interface was selected which enables the T9000 

transputer, the frame capture subsystem and the frame display subsystem to 

access the frame memory in real-time. 

3.1.3.1 Program Memory 

notijemWrB3 

notijemWrB2 

notijemWrBI 

notijemWrBO 

notMemRAS2 

no\l.temCAS2 

notijemPS2 

NemDoto31 - 24 

MemDoto23 - 16 

ijemDoto 15 - 8 

NemDoto7 - 0 I-- • • • • • • • • • • • • • • • • 0 C R W 0 C R W 0 C R W 0 C R W 
E A A E E A A E E A A E E A A E 

S S S S S S S s 

T9000 DRAM DRAM DRAM DRAM 
'-- 07 - 00 '-- 07 - 00 '--- 07 - 00 '-- 07 - 00 

- AIO - III r-- AIO - AD - AID - AD r-- AID - AD 

ijemAdd"2 - 2 

Figure 3.4 Program Memory Interface 

Four HM5117800 Dynamic RAMs [29] were used for the program memory. 

They were altogether organised as 2097152-word x 32-bit memory, in which 

each byte, within a word, can be selected for writing. Figure 3.4 shows these 

RAMs interfacing to the T9000 transputer. 

K.W.Tse Page 23 



Chapter 3 The T9000 Transputer Based Image Processing System 

The notMemWrBO-3 lines are the write strobes used for selecting a byte within a 

word for writing. The notMemRAS2, notMemCAS2 and notMemPS2 lines are 

programmable strobes which are allocated to bank 2, they are active only when 

the T9000 transputer accesses the addresses assigned for this bank. The timings 

of these strobes are controlled by the corresponding registers, which are detailed 

in chapter four. It should be noted that no external glue logic was required. 

3.1.3.2 Frame Buffer Memory 

DAC PIXEL-OUT BOX 
BUFFER 2 

BUFFER 1 

ADC PIXEL -IN BOX CHAN A BUFFER 0 

MUX 0 TRIO 

CHAN B 

T9000 CHAN A 
32 

MemDoto31-0 TRll MUX 1 

CHAN B LATCH 

Figure 3.5 Interface for The Frame Memory's Data Bus 

Twelve W241024AK-20 Static RAMs [30] were used for the frame buffer 

memory. They were grouped to constitute three frame buffers, each buffer has a 

memory size of 512 x 1024 bytes. 

As the W241024AK-20 Static RAMs are not multi-port memory devices, a 

multiple bus system was applied to these RAMs in such a way that the T9000 

transputer, the frame capture subsystem and the frame display subsystem could 

KW.Tse Page 24 



--

Chapter 3 The T9000 Transputer Based Image Processing System 

access anyone of these frame buffers in real-time. Figure 3.5 shows the main 

components in the multiple bus system for the data bus of the frame buffers. 

In Figure 3.1, the eight states for the frame buffer memory were defined. 

However, for simplicity, state 0 and state 1 are collectively called the ADC state, 

state 2 and state 3 the T9000 state, state 4 and state 5 the DAC state and, state 6 

and state 7 the T9000 state again. In the ADC state, channel A of multiplexer 0 

was chosen, the tri-state buffer 0 was enabled and the tri-state buffer 1 was 

disabled. In the DAC state, data was stored to the latch of the pixel-out box, tri­

state buffer 0 and tri-state buffer 1 were disabled. In the T9000 state for writing 

to the frame memory, channel B of multiplexer 0 was selected, tri-state buffer 0 

Was enabled and tri-state buffer 1 was disabled. In the T9000 state for reading 

from frame memory, tri-state buffer 0 was disabled, data was stored to the latch, 

channel B of multiplexer 1 was chosen, and tri-state buffer 1 was enabled. As 

mentioned before, the system state machine was only used during the bus 

multiplexing time. At any time outside the bus multiplexing time, if the T9000 

transputer reads from the frame memory, tri-state buffer 0 was disabled, tri-state 

buffer I was enabled, and channel A of multiplexer 1 was selected. Figures 3.6-

3.10 show the data paths for each of the situations. 

Figure 3.6 Data Path of the Frame Memory in the ADC State 

K.W.Tse Page 25 



Chapter 3 

DAC 

ADC 

T9000 
32 

!RI I 

The T9000 Transputer Based Image Processing System 

32 

~UX 0 !RI 0 

CHAN B 

!l)FfER 2 

BUFfER I 

BUFFER 0 

_ : DATA 

Figure 3.7 Data Path of the Frame Memory in the DAC State 

DAC 
BUFFER 2 

BUFFER I 

ADC BUFFER 0 
32 

MUX 0 !RI O 

CHAN B 

T9000 
32 

~'mDoloJ 1-0 !RI 1 

LA!CH 

_ : DATA 

Figure 3.8 Data Path of the Frame Memory in the T9000 State for Write Cycle 

DAC 

ADC 

T9000 

!RI 1 

32 

BUFfER 2 

BUFFER I 

BurF£R 0 

MUX 0 !RI 0 t+ •• 
CHAN B 

_ : DATA 

Figure 3.9 Data Path of the Frame Memory in the T9000 State for Read Cycle 

K.W.Tse Page 26 



Chapter 3 

DAC 

ADC 

T9000 
32 

The T9000 Transputer Based Image Processing System 

32 

8tHER 2 

8\HER 1 

BUffER 0 

TRIO P:~. 

LATCH 

_ : DATA 

Figure 3.10 Data Path of the Frame Memory When the T9000 Reads from the 
Frame Memory outside the Bus Multiplexing Time 

Figure 3.11 shows the organisation of the multiple bus system relating to the 

local address bus and the control bus of the frame memory. The frame capture 

subsystem and the frame display subsystem share the same address counters, and 

the contents of the counter remains constant during a cycle of the system state 

machine. A cycle starts from state 0 and ends in state 7. 

ADDRESS 
COUNTERS 

MemAddr 18- 2 

T9000 

nolMemWrB3- 0 

nolMemPSl 

MemAddr 31 , 29 
28, 22. 21, 20 

STATE 
MACHINE 

MUX 0 

CHAN B 

3 MUX 1 

8 

CHAN B 

SRAM SRAM SRAM 

A16 - AO A1 6 - AO A16 - AD 

.OE .OE .OE 

• • C W C C W 
S E S S E 

Figure 3.11 Interface for The Frame Memory's Address and Control Buses 

K.W.Tse Page 27 



Chapter 3 The T9000 Transputer Based Image Processing System 

In both the ADC and DAC states, channel A of multiplexer 0 and channel B of 

multiplexer 1 were selected; whereas in the T9000 state, channel B of 

multiplexer 0 and channel B of multiplexer 1 were selected. At any time outside 

the bus multiplexing time, when the T9000 accesses the frame memory, channel 

B of multiplexer 0 and channel A of multiplexer 1 were selected. Figures 3. 12-

3.14 show the signal paths for each of the situations. 

ADDRESS 
COUNTERS 

MemAddrl8- 2 

T9000 

nol ~emWrBJ-O 

nolMemPSl 

MemAddrJl. 29 
28, 22, 21, 20 

• : SIGNAL 

Figure 3.12 Signal Path of the Frame Memory in Both the ADC and DAC States 

ADDRESS 
COUN1ERS 

MemAddr 18- 2 

C 
T9000 S 

nol~emWrBJ-O 

nol~emPS l 

MemAddr J I , 29 
28, 22. 21, 20 

• : SIGNAL 

Figure 3.13 Signal Path of the Frame Memory in the T9000 State 

K.W.Tse Page 28 



Chapter 3 The T9000 Transputer Based Image Processing System 

ADDRESS 
COUNTERS SRAM 

A16 - AD 

tOE 

- - -T9000 w w W 
E E E 

• : SIGNAL 

Figure 3.14 Signal Path of the Frame Memory when the T9000 Accesses the 
Frame Memory outside the Bus Multiplexing Time 

3.1.3.3 Overlay Buffer Memory 

The organisation of the overlay buffer memory was very similar to that of the 

frame buffer memory. Instead of a triple-ported memory, a dual-ported memory 

was used to allow access for the T9000 transputer, and the overlay subsystem. 

Two W241024AK-20 Static RAMs were used to give a 524288 word x 16-bit 

memory. Figure 3.15 shows the multiple bus intelface for the data bus. 

T9000 

MemDoto27-24 
MemDoto 19- 16 

MemDoto 11 - 8 
MemDoto3- 0 

OVERLAY - OUT BOX 

16 

MUX 

16 

16 

16 

OVERLAY 
BUFFER 

Figure 3.15 Interface for The Overlay Memory's Data Bus 

KW.Tse Page 29 



Chapter 3 The T9000 Transputer Based Image Processing System 

There are eight defined states in the system state machine for the overlay buffer 

memory, as shown in Figure 3.1. For the sake of simplicity, the first two states 

are called the idle state, state 2 and state 3 are called the T9000 state, state 4 and 

state 5 the DAC overlay state and state 6 and state 7 are called the T9000 state. In 

the idle state, tri-state buffers 0 and 1 were disabled. In the DAC overlay state, 

data was stored in the latch of the overlay-out box, tri-state buffer 0 and tri-state 

buffer 1 were disabled. In the T9000 state for reading from the overlay buffer 

memory, tri-state buffer 0 was disabled, data was stored to the latch, channel B of 

the multiplexer was chosen and tri-state buffer 1 was enabled. As mentioned 

before, the system state machine is only applied when the local buses are 

multiplexed. At any time outside the bus multiplexing time, when the T9000 

reads from the overlay buffer memory, tri-state buffer 0 was disabled, tri-state 

buffer 1 was enabled, and channel A of the multiplexer was selected. In the 

T9000 state for writing to the overlay buffer memory, tri-state buffer 0 was 

enabled and tri-state buffer 1 was disabled. Figures 3.16-3.19 show the data paths 

for each of the situations. 

T9000 

MemData27 - 24 
MemData19- 16 

MemData11 - B 
MemData3- 0 

DAC OVERLAY -OUT BOX 

CHAN A 

MUX 

16 

16 

16 

16 

OVERLAY 
BUFFER 

_ : DATA 

Figure 3.16 Data Path of the Overlay Memory in the DAC Overlay State 

K.W.Tse Page 30 



Chapter 3 

T9000 

~emDoto27-2 4 
~emDoto I 9- 16 ~ •• 
MemOolo ll -8 1"1 
MemDoloJ-O 

The T9000 Transputer Based Image Processing System. 

16 

OVERLAY-OUT BOX 

16 

16 

OVERLAY 
BUFFER 

_ : DATA 

Figure 3.17 Data Path of the Overlay Memory in the T9000 State for Read Cycle 

T9000 

~emOolo21-24 
~emOolo I9- 1 6 ~ •• 
MemDolo ll - B 1"1 
~emDoloJ-O '---~ 

OVERLAY - OUT BOX 

16 

16 

16 

OV£RLAY 
BUFFER 

_ : DATA 

Figure 3.18 Data Path of the Overlay Memory When the T9000 Reads the Overlay 
Memory outside the Bus Multiplexing Time 

4 16 

I ~ lA / 
OAC OVERLAY- OUT BOX 

'I I 

16 j6 
..L .1. \ 16 

TRIO jJ.. OVERLAY I 'L J I 
BUFFER / , 

16 
T9000 11 I 

CIWH 
\'1 I - f- 16 

emOolo21-24 16 

emOolol9 - 16 1 J 
TRI I -~ MUX MemOolo 11 - 8 I I MemDoloJ- O 16 

CHAN B ~ LATCH F- • 
: DATA 

Figure 3.19 Data Path of the Overlay Memory in the T9000 State for Write Cycle 

K.W.Tse Page 31 



Chapter 3 The T9000 Transputer Based Image Processing System 

The local address bus, the output enable signal and the write enable signal for the 

overlay buffer memory are those used for the frame buffer memory. Figure 3.20 

shows how these buses provided for these two memories. 

17 FBO 17 FB1 17 FB2 

A16 - AO 
11\ AI6-AO 1-1\ AI6-AO 11\ A16- AO 

i+v L L 

I~ X I~ X 
~ *WE *WE *WE J L 

tOE 
/ 4 ~ 

tOE 
/4 l( 

tOE 
/ / / 

CS CS CS 

l' FBOCS /1" FB1CS /1" FB2CS 

17 OlB 

I / ~ A16- AO 
FBO : Frame Buffer 0 

*WEO -"" *WE 
FBI: Frame Buffer 1 
FB2 : Frame Buf fer 2 / 
OLB : Overlay Buff er 

"- tOE FBOCS : Chip Select For FBO 
/ 

CS 
FB 1 CS : Chip Select For FB1 
FB2CS : Chip Select For FB2 

/I~ OLBS : Chip Select Far OLB 

OLBCS 

Figure 3.20 Local Address and Control Buses For The Frame and Overlay Buffers 

3.1.4 Video Timings 

The operation of the image processing board, was closely related to the video 

timings, which are derived from the composite video signal, and a 2 x pixel 

clock, which is provided by the video decoder. The necessary video timings 

included in the board design were the composite sync signal, the field 

identification information, the vertical sync signal and the horizontal sync signal. 

The 2 x pixel clock was chosen for the system clock, which was synchronised to 

the incoming video signal. 

K.W.Tse Page 32 



Chapter 3 The T9000 Transputer Based Image Processing System 

3.1.4.1 Composite Sync and Field Identification Extraction 

The LM 1881 video sync separator [31] extracts timing information including 

composite and vertical sync, burstlback porch timing, and odd/even field 

information from the standard negative going sync NTSC, PAL and SECAM 

video signals. This chip was only used to extract composite sync and odd/even 

field information. The composite sync was fed to the RAMDAC Bt481A [32] to 

generate a composite video signal for display, and the odd/even field signal was 

used as one of the address lines for storing a frame in a non-interlace format. 

Figure 3.21 shows the circuitry of this sync separator. 

COMPOSITE SYNC 8 5V 
OUTPUT 

COMPOSITE VIDEO ----1 2 7 
INPUT 

NC 3 6 
680 K ohm 

4 5 NC 
LM1 881 

NC: NOT CO NN ECTED 

Figure 3.21 LM1881 Video Sync Separator Circuit 

3.1.4.2 Frame Sync Generation 

The TMC22071 video digitizer and the LM1881 video sync separator do not give 

a frame sync signal. However, a simple circuit with vertical sync and odd/even 

field signal can generate it. Figure 3.22 shows how this was achieved. The frame 

sync was used to signal to the T9000 transputer when the start of a frame 

occurred, so that the T9000 transputer could be synchronised to the incoming 

video signal. 

K.W.Tse Page 33 



Chapter 3 The T9000 Transputer Based Image Processing System 

FIELD IDENTIFICATI ON D 
___ >-__ FRAME SYNC 

VERTICAL SYNC _ 

FIELD IDENTIFICATION l ODD EVEN ODD EVEN 

I I I 
VERTICAL SYNC lJ 

U U U 
FRAME SYNC lJ 

U 

Figure 3.22 Frame Sync Generator 

3.1.4.3 Frame Timings 

The TMC22071 video digitizer can be configured to the different standards 

which are defined in Table 3.1. P AL-60 1 was chosen to set the dimension of a 

captured frame to be 512 lines x 640 pixels. With the line rate at 15.625 kHz, the 

time taken to store a picture consisting of 512 lines is 32.768 ms. This frame 

storage is managed by horizontal timing logic and vertical timing logic. The 

following two sections detail the functioning of this timing logic. 

Table 3.1 TMC22071 Timing Options 

3.1.4.3.1 Horizontal Timing Logic 

The main components in the horizontal timing logic, were the horizontal state 

machine and a pixel counter. The horizontal state machine was used to fi nd the 

start of a line, decide where to start capturing pixels in a line, where to stop 

capturing, and indicate that pixels were being captured. The pixel counter and 

K.W.Tse Page 34 



Chapter 3 The T9000 Transputer Based Image Processing System 

some logic gates assisted the operation of the horizontal state machine. The most 

significant eight bits of the counter were taken as part of the address lines for the 

frame buffer memory and the overlay buffer memory. Figure 3.23 shows the 

flow-chart of the horizontal state machine and Figure 3.24 is an overview of the 

horizontal timing logic. The first pixel was defined as the 42nd pixel of a line and 

the last pixel was defined as the (42 + 639)th pixel of the same line. The text 

design files for the horizontal state machine and pixel counter are shown in 

Appendix B [pp148-151]. 

START 

N 

CLEAR PIXEL COUNTER 

N 

y 

CLEAR PIXEL COUNTER 

N 

Figure 3.23 Flow-Chart of The Horizontal State Machine 

K.W.Tse Page 35 



-Shapter 3 The T9000 Transputer Based Image Processing System 

FIRST PIXEL -----I 
LAST PIXEL ----1 

PXCK -----I 
HSyNC __ --t 

07 
8g 

8~ 

HORIZONTAL STATE 
MACHINE 

FIRST 
PIXEL 

I--__ CLEAR 

1--__ PIXELS CAPTURING 

010 - 03 USED FOR 
ADDRESS LINES 

[ 
l-- 640 PIXELS ~ 

FIRST LAST 
PIXEL PIXEL 

ONE LINE PERIOD 

Figure 3.24 Horizontal Timing Logic 

LAST 
PIXEL 

3.1.4.3.2 Vertical Timing Logic 

The design of the vertical timing logic is similar to that of the horizontal timing 

logic. Instead of handling individual pixels, the vertical timing logic controlled 

the lines of pixels. The main components in the vertical timing logic were the 

vertical state machine and a line counter. The vertical state machine was used to 

find the start of a line of a field, decide where to start capturing lines in a field, 

Where to stop capturing and indicate that lines were being captured. The line 

COunter was driven by a system clock with an enable signal, so that one vertical 

sync increments the counter value by one. The eight bits of the counter were all 

taken as part ~f the address lines for frame buffer memory and the overlay buffer 

memory. Figure 3.25 shows the flow-chart of the vertical state machine, and 

Figure 3.26 shows the vertical timing logic. The first line was defined as the 35th 

line of a field and the last line was defined as the (35 + 255)th line of the same 

field. The text design files for the vertical state machine and line counter are 

Shown in Appendix B [ppI5I-I53]. 

-
KW.Tse Page 36 



Ehapter 3 The T9000 Transputer Based Image Processing System 

CLEAR LINE COUNTER 

N 

CLEAR LINE COUNTER 

N 

Figure 3.25 Flow-Chart of The Vertical State Machine 

FIRST LINE ----i 
LAST LINE ----i 

PXCK __ ~ 
VSYNC __ ~ 

VERTICAL STATE 
MACHINE 

I--__ CLEAR 

1--__ LINES CAPTURING 

07 - 00 USED FOR 
ADDRESS LINES 

FIRST 
LINE 

B~------II 

LAST 
LINE 

FIRST LINE ~I u \. 

I ONE FIELD PERIOD 

256 LINES ~ 

LASTLlNE~ 
hI 

Figure 3.26 Vertical Timing Logic 

---~~~----------------------------------------------------------I<.W.Tse Page 37 



Shapter 3 The T9000 Transputer Based Image Processing System 

3.1.4.4 Blank Signal Generation 

The RAMDAC Bt481A has a pin called BLANK. When this pin is a logical ~ero, 

the pixel and overlay inputs are ignored. This signal can be obtained from the 

Logical AND of the pixels capturing signal and the lines capturing signal. When 

both capturing signals are active or logically high, the output of the AND gate is 

high and hence the pixel and overlay inputs are displayed; on the other hand, 

when either of the capturing signals is inactive, or logically low, the output of the 

AND gate is logically low, and hence black is displayed. 

3.1.5 Frame Capture Subsystem 

The TMC22071 video digitizer was a main component in the frame capture 

subsystem. It converts standard baseband composite NTSC, or PAL video, into 8-

bit digital composite video data. It has a control register for configuration. This 

register is accessed through a microprocessor interface. The timing diagrams of 

the data read sequence and the data write sequence on the interface, are shown in 

Figure 3.27 and Figure 3.28 respectively. RI*W and AO are latched by the 

TMC22071 video digitizer on the falling edge of *CS, and data input DO is 

latched on the rising edge of *CS. Data read from DO is enabled by the falling 

edge of *CS and disabled by the rising edge of *CS. 

-KW.Tse 

R/*W J WZ1 WZ1 WZ1 WZ1 
AO~ 

DO 0>-----
Figure 3.27 Data Read Sequence of TMC22071 

Page 38 



Shapter 3 The T9000 Transputer Based Image Processing System 

R/*WJ~~~~ 

AO /W< 
DO ///////i ~ 
Figure 3.28 Data Write Sequence of TMC22071 

Further, Figure 3.29 and Figure 3.30 respectively show the timing diagrams of 

the read cycle and the write cycle of Bank 3 of the T9000 transputer, they were 

PUrposely set to match the timings required for the microprocessor interface of 

the TMC22071. 

CYCLE 
PHASES 

PROC CLOCK 

notMemCAS3 

notMemPS3 

ADDRESS BUS 

DATA BUS 

I 

CAS 
1 2 

I I I I 11 

\,--------,1 \\...---...JI 

\,--------,1 

FLOAT 
1 

I I I 

<'-------)>----

Figure 3.29 Timing Diagram of Bank 3 Read Cycle 

--~~------------------------------------------------I<..W.Tse Page 39 



~hapter 3 The T9000 Transputer Based Image Processing System 

CYCLE CAS FLOAT 
PHASES 1 2 1 

I I I I I I I I I 

PROC CLOCK 

notMemCAS3 \ / 
notMemPS3 

notMemWrB3-0 \ / 
ADDRESS BUS \ ) 

DATA BUS \ ) 

Figure 3.30 Timing Diagram of Bank 3 Write Cycle 

Signals generated for the interface are derived by the following logic equations. 

!* RESET ::: MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& MemAddr22 & !MemAddr21 & !MemAddr20 & !notMemCAS3 

DO ::: MemDataO 

AO ::: MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & !MemAddr20 & MemAddr16 

! ~ CS ::: MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & !MemAddr20 & !notMemCAS3 

RI *W ::: notMemWrBO 

There Were three frame buffers in the system. A 3-bit register, called the capture 

register, determined which buffer would store the digitised image data. The 

outputs of the register are logically connected to the chip selects of the frame 

bUffers. Bit 0, 1 and 2 are connected to the chip selects of frame buffer 0, 1 and 2 

--~~~-------------------------------------------------KW.Tse Page 40 



Chapter 3 The T9000 Transputer Based Image Processing System 

respectively. When the capture register stored a value of zero, none of the frame 

buffers were selected, and hence the data in the three buffers remained the same. 

The video digitizer outputs 8-bit digital image data; however, the frame buffer 

memory was 32-bit. Five 8-bit latches were grouped together in such a way that 

four consecutive digital image pixels were accumulated before going into 

memory. Figure 3.31 shows the whole picture of the design. Image pixels were 

continuously clocked into the latches sequentially by the outputs of the 2-line to 

4-line decoder, and hence a 32-bit data was obtained. Latch 4 was purposely 

added to buffer the least significant byte of the 32-bit data, so that this byte 

would not be overwritten before it was copied into memory. 

031 ~ 024 

oun 

023 - 016 

ADC OUT2 

8 
015 - 08 

OUT1 

07 - DO 

OUTO OUT2 

2-81T COUNTER 2-UNE TO 4-UNE DECODER 

PIXEl CLOCK ClK Q1 OUT3 
OUT2 

CLEAR ClR QO OUT1 
OUTO 

Figure 3.31 Architecture of PixeI-In Box 

Single-frame capture mode and multiple-frame capture mode can be achieved by 

programming. For the former, when a frame sync signal is detected a frame 

bUffer value is written by the T9000 transputer to the capture register for buffer 

-KW.Tse Page 41 



Shapter 3 The T9000 Transputer Based Image Processing System 

selection. Afterwards, the next frame sync signal is checked. When it is detected, 

a value of zero is written by the T9000 transputer to the capture register, so as to 

stop further image data being stored into buffers. Finally, a complete frame is 

stored. 

For multiple-frame capture mode, the procedure is just a repeated procedure 

prepared for the single-frame capture mode but with a little modification. When a 

frame sync signal is detected, a value is written to the capture register for buffer 

selection. Afterwards, another value is written to the capture register when the 

next frame sync signal has just arrived. If the above steps are repeated 

continuously, multiple-frame capturing is achieved. 

3.1.6 Frame Display Subsystem 

The RAMDAC Bt481A is the main component in the frame display subsystem. It 

supports 8-bit pseudo-colour format, generating RS-343-compatible video signals 

into a doubly-terminated load. It also supports a standard MPU bus interface, 

allowing the T9000 transputer direct access to the colour palette RAM, the 

Overlay colour registers and command register A, and indirect access to the 

Command register B. Figure 3.32 shows the timing diagram of the read and write 

cycles of the MPU interface. This interface was accessed by the T9000 transputer 

through Bank 3. 

RS2, RS', Rsa ==x VALID X 
*RD, *WR \ / 

07 - DO (READ) < DATA OUT ) 

07 - DO (WRITE) X DATA IN X 
Figure 3.32 MPU ReadlWrite Timing of Bt481A 

--~~------------------------------------------K.W.Tse Page 42 



Chapter 3 The T9000 Transputer Based Image Processing System 

Signals generated for the interface were derived from the following logic 

equations. 

RSO == MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & MemAddr20 & MemAddr16 

RS 1 == MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & MemAddr20 & MemAddr17 

RS2 == MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & MemAddr20 & MemAddr18 

*RD == MemAddr31 & MemAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & MemAddr20 & notMemPS3 

*WR == MemAddr31 & MernAddr29 & !MemAddr28 & MemAddr23 

& !MemAddr22 & MemAddr21 & MemAddr20 & notMemWrBO 

DO - D7 == MernDataO - MernData7 

A 3-bit register, called the display register, determined which one of the three 

buffers was going to be displayed. Bit 0, 1 and 2 were logically connected to the 

chip select of buffer 0, 1 and 2 respectively. If none of the bits are set high, 

nothing is displayed on the monitor. On the other hand, if more than one bit was 

loaded high, local data bus contention occurs in the frame buffer memory. In 

normal operation, only one bit was set high so that only one buffer was selected. 

The RAMDAC Bt481A was not compatible with the frame buffer memory with 

regard to the data width for pixel data. Five 8-bit latches incorporated with a 

multiplexer and a 2-bit counter, were used to interface them together. As shown 

in Figure 3.33, 32-bit data from the frame buffer memory was clocked into the 

latch 0, latch 1, latch 2 and latch 3. The 2-bit counter driven by the pixel clock 

operates the multiplexer so that 32-bit data is multiplexed into 8-bit data for the 

RAMDAC Bt481A. Latch 4 was added to buffer the most significant byte of 

data, so that it was not overwritten before it was copied to the RAMDAC. 

--~~-----------------------------------------KW.Tse Page 43 



Chapter 3 The T9000 Transputer Based Image Processing System 

DAC 

MULlIPll:.XI:.K 
8-SIT LATCH 4 8-SIT LATCH 3 

ClK 

8-SIT LATCH 2 

ClK 

8-SIT LATCH 1 

ClK 

8-SiT LATCH 0 
ClK 

'-------il----- WRiTE 

PI~L :: ~L-. __ 2-_B_1T _CO_UN_TE_R _.....J~ :: 

Figure 3.33 Architecture of The Pixel·Out Box 

031 - 024 

023 - 016 

015 - 08 

07 - DO 

The overlay part of the RAMDAC also required a circuit to multiplex 16-bit data . 
into 4-bit data, as the data width of the overlay input was not the same as that of 

the overlay buffer memory. The design of the circuit is the same as that applied 

to the pixel input, except for the width of data. 

3.1. 7 ns Link Interface 

The first generation of transputers, such as the T2, T4, and T8 transputers [33], 

made use of OS-Links [34] for point-to-point communication between devices. 

However, the T9000 transputer adopts DS-Link [35] technology for its 

communication links to support higher bandwidth serial communication between 

deVices, up to 100 Mbits/s, and also supports virtual channels. Each physical link 

consists of four wires, two in each direction, one carrying data and one carrying a 

strobe. The links are therefore referred to as data-strobe links or DS-Links. 

The dedicated image processing board was not designed to interface to the PC 

bus directly. Instead, it was designed to provide a standard control and data DS­

Link interface, and to make connections to the host computer through the IMS -K.W.Tse Page 44 



Shapter 3 The T9000 Transputer Based Image Processing System 

BI08 motherboard. With regard to the IMS BI08, it provides standard control 

and data link interface to the T9000 network, either internal or external. For 

convenience in making the prototype, the image processing board was designed 

to interface to the IMS BI08 externally. Since the IMS BI08 made use of the fast 

41-series transceivers [36] by AT&T for external connections, these transceivers 

Were also selected to buffer the DS-Link interface in the image processing board. 

vcc 

LinklnData __ -< Differential LinklnData 

vcc 

LinklnStrobe __ -< Differential LinklnData 

LinkOutData __ _ c:?- ~ ~ Differential LinkOutData 

y ~ 

c:?- y ~ Differential LinkOutStrobe 

~ 
LinkOutStrobe __ _ 

Figure 3.34 A Pair of Buffered DS-Links 

Only the 114IMK dual differential transceivers were available on the market 

during the image processing board development, so they were chosen. There are 

no built-in termination resistors in this package, so external resistors of 220 n 
were needed to connect between each driver pin and ground, and resistors of 110 

n Were used between the differential pair in each receiver. Figure 3.34 is an 

eXample of a pair of buffered DS-Links. Pull-up and pull-down 2.2k n resistors 

are Used to avoid inputs floating when they are not connected. The differential 

-~~-----------------------------------------I<..W.Tse Page 45 



5hapter 3 The T9000 Transputer Based Image Processing System 

signals go to the IO-way modular I/O connectors designed by Harting [37] for 

external connections. Figure 3.35 shows the DS-Link connector pinout. 

Signal Pin Pin Signal 

DoutPlus 1 a 2 a DoutMinus 

SoutPlus 1 b 2 b SoutMinus 

Reserved 1 c 2 c Reserved 

SinMinus 1 d 2 d SinPlus 

DinMinus 1 e 2 e DinPlus 

pca 

00000 
0 

0 VIEW FROM 

2 00000 CONNECTOR SIDE 

I I I I I 0 
e d c b a 

Figure 3.35 DS-Link Connector Pinout 

3.1.8 Control System 

The first generation transputer's system of reset, analyse and error, booting from 

link, peek and poke, and memory interface programming [38] is replaced by a 

system of control links on the T9000 transputer. The control links should be 

connected into a control network which is completely separate from the normal 

data link network. The T9000 transputer has two control links, ClinkO and 

Clink I , which are effectively the up and down control links, allowing them to be 

daisy -chained. 

The UplDown ports for reset signals are employed in the IMS BI08 and the 

. dedicated image processing board. The use of notResetIn and notResetOut allows 

the host PC to reset the external hardware under software control. In order to 

lllake sure of a complete reset chain, the reset acknowledgement signal must be 

-R~.W~.~T~se--------------------------------------------P-ag-e-4-6 



Shapter 3 The T9000 Transputer Based Image Processing System 

fed back to the master !MS B 108, which is the first element in a daisy-chained 

network. Figure 3.36 shows the Up/Down ports for the reset signals in the image 

processing board. The jumper 11 is set at position 2 if the board is at the end of a 

daisy chain; otherwise it is set at position 1. 

T9000 

[)---I RESET 
1 K 

notResetln _+-_~_{)-__ ----, 

cv I Jl 
notResetlnAck -+( ----0---

CD 
notResetOut _~ ______ ----' 

notResetOutAck _*-________ ----' 

CD and CV are jumper positions 

Figure 3.36 Up/Down Ports for Reset Signals 

3.1.9 The Topologies of The Systetit Synchronisation 

In the DedIcated Image Processing Board, there are a number of subsystems 

requiring synchronisation to other signals. For example, the pixel demultiplexer 

Was synchronised to the timing of the ADC state; the bus multiplexing mode 

SWitching was synchronised to the read or write cycle of the T9000 transputer 

when the read or write cycle for the buffer memory was operating, the frame 

bUffer memory or the overlay buffer memory accessed by the T9000 transputer 

Was synchronised to the system state machine and image capture to the buffer 

memory was synchronised to the incoming video signal. The following sections 

detail how the synchronisation was achieved. 

-
KW.Tse Page 47 



Chapter 3 The T9000 Transputer Based Image Processing System 

3.1.9.1 Pixel Multiplexer and Demultiplexer 

The pixel demultiplexer in the frame capture subsystem was indirectly driven by 

the pixel clock. The order of pix~ls at the output of the demultiplexer was 

dependent on the time to reset the 2-bit counter, which is shown in Figure 3.31. 

A state machine was dedicated to reset the counter such that four consecutive 

pixels, in the correct order, appear at the output of the demultiplexer during the 

ADC state and the next four consecutive pixels, in the correct order, appear 

during the next ADC state. Thus, 32-bit pixel data was available for memory 

storage in the allocated time. 

For the pixel multiplexer in the image display subsystem, a slightly different 

approach was used. The sequence of pixels clocked out from the pixel 

multiplexer depends on the time taken to reset the 2-bit counter, which is shown 

in Figure 3.33. Another state machine was assigned to reset the counter such that 

four bytes of data are multiplexed in an order with the least significant byte going 

first, and most significant byte going last. Thus, a sequence of 8-bit pixel data 

Was available for the RAMDAC pixel input port. 

3.1.9.2 Bus Multiplexing Mode Switching 

There are several internal buses for the frame buffer memory and the overlay 

bUffer memory. These internal buses are supported by the mUltiple bus interface 

so the frame capture subsystem, the frame display subsystem, and the T9000 

transputer could access the buffer memory through time-division-multiplexing 

mOde. In this mode, wait states were inserted to the T9000 transputer to maintain 

synchronisation. Actually, time-division-multiplexing mode was not needed 

When the frame capture subsystem and the frame display subsystem did not 

access the buffer memory, as only the T9000 transputer used the internal buses. 

Although the time-division-multiplexing mode could be applied all the time, in 

order to reduce the buffer memory accessing time of the T9000 transputer, this 

mOde Was only applied when the frame capture subsystem, and the frame display 

--~~------------------------------------------KW.Tse Page 48 



Chapter 3 The T9000 Transputer Based Image Processing System 

subsystem were active as wait states were not required outside the time of bus 

multiplexing. 

If bus multiplexing mode was switched whilst the T9000 transputer was 

accessing the buffer memory, it was likely that the read or write cycle would be 

corrupted. In order to avoid this corruption, a state machine was added to check 

Whether the T9000 transputer was accessing the buffer memory when it was the 

time to switch the bus multiplexing mode. If it was the case, the switching time 

Was delayed until the completion of the current read or write cycle. The 

following shows the text design file of the state machine written in AHDL [39]. 

SUBDESIGN vhdvsta 
( 

reset, pxck, t9nrasl, vhdv : INPUT; % t9nrasl showing chip enable % 

) 
sync_ vhdv : OUTPUT; 

VARIABLE , 
ss: MACHINE OF BITS (sync_ vhdv) 

WITH STATES (sO = b"O", sI = b"l "); 
BEGIN 

sS.elk = pxck; 
sS.reset = reset· 
CASE ss IS ' 

WHENsO=> 
IF vhdv & t9nras 1 THEN 

ss = sI; 
ELSE 

ss = sO, 
END IF: 

WHEN si => 
IF !vhdv & t9nrasl THEN 

ss = sO, 
ELSE' 

ss = sI; 
END IF' 

END CASE' 
END' ' , 

In this file, the vhdv was ~ signal to switch the bus multiplexing mode on or off, 

and it was not synchronous to the T9000 transputer's read or write cycle. The 

t9nrasl was a signal to indicate the presence of the T9000 transputer's read or 

Write cycle and it was checked by the state machine when it was time to switch 

the bus multiplexing mode. The sync_ vhdv was the output of the state machine, 

-I<..W.Tse Page 49 



Shapter 3 The T9000 Transputer Based Image Processing System 

it was synchronous to the T9000 transputer's read or write cycle and used to 

switch the bus multiplexing mode. 

3.1.9.3 T9000 Accessing Buffer Memory 

With reference to the system state machine, shown in Figure 3.1, there are four 

defined states for the on-board T9000 transputer. When the T9000 transputer 

accesses buffer memory, it is not synchronised to the system state machine so 

these accesses may not occur within the defined states. Obviously, the T9000 

transputer cannot access buffer memory directly by normal read or write cycles. 

Additional hardware was required to complete the memory access. The role of 

this hardware, was to keep tracking the system state machine and provide 

appropriate control signals.to the T9000 transputer and the buffer memory. 

For a write cycle, the hardware provides the memory wait signal to the T9000 

transputer, to suspend the current state of the cycle and, at the same time, finds 

the coming T9000 state to provide the 'write' control signal and chip select signal 

to the buffer memory at the appropriate time. After the 'write' control signal has 

been asserted, the memory wait signal is deasserted to let the T9000 transputer 

finish the rest of the cycle. Effectively, the write operation occurs during the 

T9000 state, relative to the buffer memory; however, it happened over a few 

system states relative to the T9000 transputer. During the above-mentioned 

T9000 state, the address and data were provided by the T9000 transputer, and the 

chip select signal and 'write' signal were supplied by the additional hardware. 

Figure 3.37 shows the relevant signals in the T9000 state for the write operatio~. 

The additional hardware is called assistant. 

-I<.W.Tse Page 50 



,S;hapter 3 

T9000 

MemAddr 

MemData 

notMemRAS1 

notMemCAS1 

notMemWrB3-0 

0-

The T9000 Transputer Based Image Processing System 

~z 
~ DECODER 

~ 
~ 
~ 
V 

ASSISTANT 

T' 
STATE OF 

THE SYSTEM 
STATE MACHINE 

BUFFER 
MEMORY 

1\ ADDRESS 

X DATA 
V 

1\ *WE3-0 
~ *OE 
~ CS2-0 

Figure 3.37 Relevant Signals in The T9000 State for Write Cycle 

For a read cycle, this hardware also provided the memory wait signal to the 

T9000 transputer to extend the cycle. Once the T9000 state is found, the located 

data Was latched from the buffer memory to a register, so that the data is still 

valid on the T9000 transputer's data bus before the conclusion of the read cycle. 

The memory wait signal was set low after the data had been latched. Effectively, 

the read cycle occurred during the T9000 state, relative to the buffer memory; 

however it happened over a few system states relative to the T9000 transputer. 

During the above-mentioned T9000 state, the address was provided by the T9000 

transputer, and the rest of the signals were provided by the hardware. Figure 3.38 

Shows the relevant signals in the T9000 state for the read operation. 

-~~------------------------------------KW.Tse Page 51 



~hapter 3 The T9000 Transputer Based Image Processing System 

T9000 

MemAddr 

MemDoto l;1. 
N 

S7 
~ DECODER 

~ notMemRASl 

notMemCAS1 ( 

~ notMemWrB3-0 
V 

32-81T Vt 
REGISTER N 

/1' 
ASSISTANT 

l' 
STATE OF 

THE SYSTEM 
STATE MACHINE 

BUFFER 
MEMORY 

1\ ADDRESS 
V 

DATA 

1\ *WE3-0 
~ 

*OE 
-K CS2-0 V 

Figure 3.38 Relevant Signals in The T9000 State for Read Cycle 

3.1.9.4 Frame Synchronisation 

The frame capture subsystem was partially controlled by the T9000 transputer, 

which can determine when to start capturing an image into the frame buffer 

memory, and when to stop it. In order to capture a complete image into the 

bUffer, the frame sync signal was fed to an input port, which was polled by the 

T9000 transputer, to check for the presence of the frame sync signal. For 

Capturing a single frame, a frame buffer is enabled when the frame sync signal is 

detected, and is disabled by the time the next frame sync signal occurs. 

3.2 PLD Design Verification 

The development of the PLD was accompanied with a large number of simulation 

files for verification. Four of them were chosen to show the timings of the ADC 

writing to the frame buffer memory, the DAC reading from the frame buffer 

lllemory as well as the overlay buffer memory, the T9000 transputer writing to 

-k~.W~.~T~se-------------------------------------------P-ag-e-5-2 



Chapter 3 The T9000 Transputer Based Image Processing System 

the frame buffer memory and the T9000 transputer reading from the frame buffer 

memory. T9000 transputer access to the frame buffer memory occurred only 

during the bus multiplexing time. 

3.2.1 Frame Capture 

In Figure 3.39, adcd[7 •. 0] represents the image data from the video digitizer, 

buffa[16 .. 0] the address for the buffer memory, buffnwr[3 •• 0] the write control 

signals for the buffer memory, and buffd[31 .. 0] the data for the frame buffer 

memory. 

The four pixels with values E2, E3, E4 and E5 from the video digitizer were 

continuously clocked into the latches and they appeared as a 32-bit word 

E5E4E3E2 at the buffd[31..0]. When this word appeared, the address 00306 

generated by the address counter and the write control signals generated by the 

state machine were given at the appropriate time, which was around 1.85~s. 

_Name: 1.5725us 1.66Sus 1.7S7Sus 1.8Sus 
[I] pXck LJ l J l J l~ LJ LJ l J l J LJ 
[i]ldv : I : I :J : l : I : I : I : I :J 
[I] adcd[7 .. 0] , E11 E2 X E3 X E4 X ES j E6 

[O]buffa[16 .. 0] 0030S: XX : 1ABE3 XX : 0030S Y1 1ABE4: X:· XX : 00306 

~ [O]bUffercS[2 .. 0J ' , 1 X, 0, A' 2, 0 X, 1 ' 

[O)overlaycs , , J: I: 
[O]bUffnwr[3 .. 0] ~: F: J..: 0: X: F 
[O)buffnoe ' f I , • l : I: 
[O]bUffd[31 .. 0) , E1 EODFDE h: ZZZZZZZZ : X : ESE4E3E2 y 
[O)olram[1S .. 0] ,ZZZZ 

I...-- -

Figure 3.39 Frame Capture Verification 

3.2.2 Frame Display 

In Figure 3.40, olram[15 .• 0] represents the data from the overlay buffer memory, 

bUffd[31..0] the data from the frame buffer memory, buffa[16 •• 0] the address for 

the bUffer memory, buffnoe the output enable signal for the buffer memory, 

--~~----------------------------------------KW.Tse 
Page 53 



Shapter 3 The T9000 Transputer Based Image Processing System 

bt481a_p[7 •. 0] the data for the pixel input of the RAMDAC and dacol[3 .. 0] the 

data for the overlay input of the RAMDAC. 

The 16-bit data ABD7 from the overlay buffer memory was read by providing the 

buffer address 00302 and setting buffnoe low. It was then multiplexed into 4-bit 

data in a sequence of 7, D, B, and A for the overlay input. The 32-bit data 

23456794 from the frame buffer memory was read by the same way, and it was 

multiplexed into 8-bit data in a sequence of 94, 67, 45, and 23 for the pixel input. 

There was no discontinuity in providing data for the RAMDAC. 

Name: 

[I) pxck 

[I)ldv 

[I) olram[15 •• 0) 

[I) bUffd[31..0) 

[O)buffa[16 .. 0) 

832.5ns 925.0ns 1.0175us 1.11 us 

[O)buffercs[2 .. 0) R==:!::.i==~=i=~~=:=~=i=~>*=~=V=C===*=:::!:::i===i===i=¥-=i==i==i===:=~ 
[O)buffnwr[3 .. 0) 

[O)buffnoe 

[O)bt481 a_p[7 .. 0) 45 ~==2~3=,==:;G===~9:=4 =,==<j::===;;67======\;==4;;=5=~ r===;===: 
[O)dacol[3 •. 0)A . ·7 . ,0 . ,8 . ,A ' 

Figure 3.40 Frame Display Verification 

3.2.3 T9000's Write Cycle 

In Figure 3.41, t9a31, t9a29, t9a28, t9a[23 .. 20] and t9a[18 .• 2] represent the 

address lines of the T9000 transputer, t9d[31 •. 0] the data from the T9000 

transputer, buffa[16 .. 0] the address for the buffer memory, buffnwr[3 .. 0] the 
.. 

Write Control signals for the buffer memory, buffd[31 •• 0] the data for the frame 

bUffer memory, and wait_state the signal connected to the MemWait pin of the 

T9000 transputer. 

The T9000 transputer started writing to the frame buffer memory when the logic 

level of t9a31 changed from low to high. At that moment, the system state 

machine was in the ADC state, so waiCstate was set high to suspend the write 

---U7~-----------------------------------------------------K.W.Tse Page 54 



Ehapter 3 The T9000 Transputer Based Image Processing System 

cycle. The 32-bit word 12345678 from t9d[31..0] appeared at buffd[31..0] during 

the following T9000 state. In this state, the address lABFO from t9a[18 •• 2] was 

selected to occur at buffa[16 .. 0] and the write signals buffnwr[3 .• 0] were given 

by the state machine to complete a write operation. 

_Name: 2.1275us 2.22us 2.3125us 2.405us 

[I] pxek J 1 J 1 J U U U U U L J l J ~ [I]ldv -I 
1 1 1 1 1 1 1 1 

[I] aded[7 .. 0] E9 X EA EB X EC X EO X 
[I] t9a31 

1 

[I] t9a29 

[I] t9a28 
1 

[I] t9a[23 .. 20] :0 X , :2 

[I] t9a[18 .. 2] 1ABE9i 1ABFO' 

[11 t9d[31 .. 01 1234567.8 

[I] t9nes 

[I] t9nps 

[I] t9nras1 l 
[I] t9noeg 

[I] t9noe 

[11 t9nwr[3 .. 01 ~ '0 

[O]bufla[16 .. 0] ~ : 00307 XX 1ABFO XX : 00307 XX : 1ABFO :X 00308 : 

[OluflereS[2 .. 0] 
==; 

X· X 2· 4· X, .--!?J . 1 . O· 1 

[O]overlayes . . 1 : 

[O]buflnwr[3 .. 0] ~: o. X F· O· F: X· O· XL 
[O]buffnoe 1 ' 

[O]bUffd[31 .. 0] . 1: E9E8E7E6 n zzzzzzzz : X: 12345618 A . 
[O]olram[15 .. 01 zzzz' 
[O]wait_state 1 :1 -

Figure 3.41 T9000's Write Cycle Verification 

3.2.4 T9000's Read Cycle 

In Figure 3.42, buffd[31 .. 0] represents the data from the frame buffer memory, 

t9a31, t9a29, t9a28, t9a[23 .. 20] and t9a[18 •• 2] the address lines of the T9000 

transputer, buffnoe the output enable signal for the buffer memory, wait_state 

the signal connected to the MemWait pin of the T9000 transputer, and t9d[31 •. 0] 

the data for the T9000 transputer. 

The T9000 transputer started reading from the frame buffer memory when the 

logic level of t9a31 changed from low to high. At that time, the system state 

---~~-----------------------------------------------------KW.Tse Page 55 



,S;hapter 3 The T9000 Transputer Based Image Processing System 

machine was in the ADC state, so wait_state was set high to suspend the T9000 

transputer read cycle. The addressed data 2345679F from the frame buffer 

memory was latched a short time after the second falling edge of buffnoe during 

the T9000 state. Finally, the latched data 2345679F appeared at t9d[31..0] until 

the end of the read cycle. 

Name: 1.11 us 1.295us 1.48us 1.665us 
[11 pxek n Jf-Y TITI ¥4iJ+¥-Y-hlY-hl Y-¥ J-Y J-Y [11 Idv 

[11 0Iram[15 .. 01 X ABDA X ABDB X ' . , , 0000 ABDF X 0000 ' X ABE3 X ABE4 
[11 bufld[31 .. 01 ~ : ~ : ~ : ~ : X2~45a7~9~ . : 234p6.7!!F: : X 234567AQ 
[11 t9a31 1 

[11 t9a29 

[11 t9a28 . 1 

[11 t9a[23 .. 201 0 . X '2' . X 0 
[11 t9a[18 .. 21 X 1ABDAX 1ABDB X ~ABDa X MBE3 : X : 1ABE4 
[11 t9nes 

[11 t9nps 

[11 t9nras1 1 , , 
[11 t9noe9 I 
[11 t9noe I 
[I] t9nwr[3 .. 01 'F 

[Olbufla[16 .. 01 :-::~~ 'I/. 0.0303 'l/.1ABDD:t{ 00304 'I/. 1 ABE3X{ 00304 'l/.1ABE3 Y 00305'1/.1 ABE3 ](i0305 ~ ~ 
[OlbuflereS[2 .. 01 3 ,0 ,x. ,2 ' X, ·0 ,X ' 1 'K ,0 ,2 ' X· ,4 ,X ' 1 ,0 'x. ·2 'F 
[Olbuflnwr[3 .. 01 '1" :F. 'A 0'1 :F. 0:1: :F. . , , , , , , 

[Olbuffnoe ' I: : I, , I: : r :r: 
[Olwait_state I : 1 
[Olt9d[31..01 : tztzztzt :'1/.: , , : 2345679F: '1/.: ." 

[Olt481a_p[7 .. 01 ~' 45' 23 97' 1 67' 45' X, 23 9F' X' 67' X, 45 }.. .. 23'~ -- .-~ 

.... [OldaeOI[3 .. 01 OX: B: X: A B: X 0: X: B: X: A: X: F: 0: X: B. X' A: X 3: 

Figure 3.42 T9000's Read Cycle Verification 

3.3 Prototype Construction 

The prototype of the dedicated image processing board was constructed in two 

stages. The first stage was to make a small PCB for the T9000 transputer and the 

DS-Link connectors. The second stage was to populate the speedwire board with 

all the required components and connect them together. 

-R~.WV.~T~se-------------------------------------------pa-g-e-5-6 



Chapter 3 The T9000 Transputer Based Image Processing System 

3.3.1 T9000 Transputer Adaptor Board 

The T9000 transputer was available in a 208 pin ceramic leaded chip carrier 

(CLCC) package. This package does not allow the T9000 transputer to be 

directly fixed on the speedwire board. A small PCB was made to extend the 

necessary signal lines of the T9000 transputer to the two connectors with pitch 

size compatible to the speedwire board. With this PCB fixed on to the speedwire 

board, the T9000 transputer could be connected to the on-board components. 

The DS-Link connectors also do not fit to the speedwire board. It is necessary to 

make an adaptor for them. As DS-Links are intended to be used in electrically 

quiet environments, these connectors were mounted on the same PCB. This PCB 

Was called T9000 transputer adaptor board and it is shown in Figure 3.43. 

Figure 3.43 T9000 Transputer Adaptor Board 

3.3.2 Full System Prototype Using Speedwire Board 

The prototype of the dedicated image processing board was built by using a 

speedwire board. This prototype is shown in Figure 3.44. It contains the 

-K.W~.T~se-------------------------------------------------
Page 57 



S:hapter 3 The T9000 Transputer Based Image Processing System 

populated T9000 transputer adaptor board, four DRAM chips, fourteen SRAM 

chips, two programmable logic devices, one video digitizer, one RAMDAC, and 

some support components. 

Figure 3.44 The prototype of the DIPB 

3.4 IMS BIOS and IMS B927 

The IMS BI08 is a full length PC-AT format HTRAM motherboard which 

sUpports up to two size 2 or size 4 HTRAMs. It also provides a standard control 

and data DS-Link interface between the PC-AT bus and a T9000 network. In the 

other words, the IMS B 108 can support small networks of HTRAMs which are 

Wholly inside the PC host, T9000 networks which are wholly external to the PC, 

or a network that is both internal and external. 

The IMS B927 is a second generation transputer module (HTRAM), which 

integrates the high performance IMS T9000 transputer with 8 Mbytes of fast 

DRAM. The memory is organised as four 64-bit wide banks, all of which are 

cacheable. The memory system performs automatic page mode accesses 

---n~------------------------------------------------------K..W.Tse Page 58 



Chapter 3 The T9000 Transputer Based Image Processing System 

whenever possible to provide maximum memory bandwidth. The IMS B927 is 

fUlly compatible with the IMS B 108 HTRAM motherboard. 

Figure 3.45 The IMS BIOS with the IMS B927 HTRAM 

--tt~-----------------------------------------KW.Tse Page 59 



Chapter 4 

The Configurations of The Image Processing System 

This chapter illustrates the configurations of the image processing system for two 

modes, Single-T9 mode and Multi-T9 mode. In Single-T9 mode, only the 

dedicated image processing board and the IMS B 108 are used. There is only one 

T9000 transputer involved in this mode. In Multi-T9 mode, the overall system 

consists of one dedicated image processing board, a number of IMS BI08's, and 

a number of IMS B927's. There is more than one T9000 transputer involved in 

this mode. 

4.1 Single-T9 Mode 

In Single-T9 mode, there is only one transputer performing the computation, so 

low processing power for this mode is expected. However, some applications, 

such as non real-time processing, do not require high processing power, so this 

mode may be sufficient to complete these tasks. 

4.1.1 System Interconnection 

The image processing system is not a stand-alone system, it is connected to a 

computer for downlo~ding and running programs. The global elements of the 

system in this mode are the computer, the IMS B 108, and the dedicated image 

processing board. Since data links are not used to transmit image data, only one 

data link is connected, which is required in the control system of the T9000 

transputer. Figure 4.1 shows the system interconnection in Single-T9 mode. 

----~-------------------------------------------------------------------------------------------------------KW.Tse Page 60 



S;hapter 4 The Configurations of The Image Processing System 

PC AT 

notResetOut /' , notResetln '- / 

ControlDown ..- ControlUp 

DotoO DotoO 
IMS B108 DIPB 

DIPB : Dedicoted Imoge Processing Boord 

Figure 4.1 System Interconnection in Single-T9 Mode 

In the !MS B 108, the data link jumpers enable reconfiguration of a small number 

of the data links from the two HTRAM slots and the data link ST Cl 0 1. The 

Jumpers must be used in pairs, JPl with JP2, and JP3 with JP4. Each pair of 

Jumpers can be in two positions. The inside position is defined as all jumpers 

towards the inside of a line drawn between the centres of the pins. The outside 

Position i~ defined as all jumpers towards the outside of the pins. Table 4.1 

presents the jumper positions and the selected connections. During Single-T9 

mode operation, JPl and JP2 are set to the inside position, as shown in the option 

at the top of the table. Jumpers JP3 and JP4 are set to either position since slot 0 

and slot 1 are not used. 

JP} and JP2 

JP3 and JP4 

JP3 and JP4 

I __ -:Positions 
Inside 

Outside 

Inside 

Outside 

Connectio s} 
ClOl Data to DataO 
SLOT 0 Links 0 and 1 N/C 
CIOl Data to SLOT 0 Link 0 
SLOT 0 Link 1 to DataO 
SLOT 0 Link 2 to Data2 
SLOT] Links land 3 N/C 
SLOT 0 Link 2 to SLOT 1 Link 1 
SLOT 1 Link 3 to Data2 

Table 4.1 IMS BIOS JP 1-4 Connection 

---K.W~.T~s~e------------------------------------------------
Page 6] 



Chapter 4 The Configurations of The Image Processing System 

The control links on the IMS B 108 are connected into a pipeline with options to 

reconfigure the connection of the head of the pipeline and to bypass slots. The 

actual control link connections on the board are selected by switches. Table 4.2 is 

the IMS BI08 control link switch connections. Switches SW-I, SWI-2 and SWI-

3 are all set to OFF, which is the option at the bottom of the table. 

,-SWl-t SWl·2 SWl·3 Connection(s) 
ON ON ON External ControlUp to SLOT 0 ControlUp 

SLOT 0 ControlDown to SLOT ] ControlUp 
SLOT 1 ControlDown to external ControlDown 

ON ON OFF External ControlUp to SLOT 0 ControlUp 
SLOT 0 ControlDown to external ControlDown 
SLOT 1 ControlUp and Down N/C (SLOT 1 jumped) 

ON OFF ON External ControlUp to SLOT 1 ControlUp 
SLOT 1 ControlDown to external ControlDown 

I- SLOT 0 ControlUp and Down N/C (SLOT Oju~ed) 
ON OFF OFF External ControlUp to external ControlDown 

SLOT 0 ControlUp and Down N/C (SLOT 0 jumped) 
'- SLOT 1 N/C Control Up and Down (SLOT] jumped) 

OFF ON ON CIOI Control to SLOT 0 ControlUp 
SLOT 0 ControlDown to SLOT I ControlUp 

I- SLOT 1 ControlDown to external ControlDown 
OFF ON OFF C10I Control to SLOT 0 ControlUp 

SLOT 0 ControlDown to external ControlDown 
i- SLOT 1 ControlUp and Down N/C (SLOT ] jumpe<!l 

OFF OFF ON ClOt Control to SLOT 1 ControlUp 
SLOT I ControlDown to external ControlDown 

I- SLOT 0 ControlUp and Down N/C (SLOT 0 jurnRed) 
OFF OFF OFF ClOt Control to external ControlDown 

SLOT 0 Control Up and Down N/C (SLOT 0 jumped) 
"""- SLOT 1 ControlUp and Down N/C (SLOT ] jumped) 

Table 4.2 IMS BIOS Control Link Switch Connections 

4.1.2 Hardware Configuration 

This section describes how to configure the hardware components of the system 

by file or program. The frame capture subsystem, the frame display subsystem 

and the T9000 transputer require configuration before they are ready for use. 

Hardware configuration for the T9000 transputer determines the transputer types, 

the root transputer, link speeds, how the transputers are to be booted, the amount 

----~------------------------------------------------------I<.W.Tse Page 62 



~hapter 4 The Configurations of The Image Processing System 

of on-chip memory to be used as cache, how the memory is to be configured and 

how the transputer is connected. Basically, the hardware configuration for the. 

frame capture subsystem requires the programming of the control register of the 

video digitizer TMC22071, whereas the hardware configuration for the frame 

display subsystem involves setting the look-up tables for pixel colour palette and 

overlay colour palette, and the programming of the command registers. 

4.1.2.1 Memory Interface Configuration 

The external memory interface is highly programmable, allowing large memory 

systems, containing different types of devices, to be built with little or no 

external logic. It has a 64-bit data bus, and each bank of memory can be 

configured to be 8, 16, 32 or 64 bits wide. All banks programmed to be 64-bit 

wide memory are defined as cacheable, and always transfer a full 64-bit operand 

to and from external memory to the internal cache, providing fast cache refill. 

4.1.2.1.1 Program Memory 

Four HM5117800BTT6 dynamic RAMs were chosen to provide the program 

memory. Figure 4.2 shows the section of the memory configuration file that 

handles this RAM which occupies bank 2. The dynamic RAMs were placed at 

the bottom of the address space, so the base address was #80000000. Since the 

total memory size is 8 Mbytes, the address mask is calculated as: 

Bank.Address.Mask = BITNOT (8 Mbtyes - 1) 

= BITNOT ( #007FFFFF ) 

= #FF800000 

The memory is 32 bits ( or 4 bytes) wide, so the two least significant bits of the 

transputer address select a byte within the width of the memory. The column 

address is the ten bits, 2 to 11, and the row address is the eleven bits, 12 to 22, as 

Shown in Figure 4.3. 

--~~--------------------------------------KW.Tse Page 63 



Chapter 4 

Bits: 

The Configurations of The Image Processing System 

Page 5 - Input Data, Bank 2 
------------------------------------------------------

Cacheable 
Bank.Address.Mask := FF800000 
Page.Address.Bits := 001FFFFC 

Ras.Strobe 
RAS2 
Active.During := Read & Write 
Time.To.Falling.Edge:= 2 Phases 
Time.To.Rising.Edge := 8 Phases 

Programmable.Strobe 
OE2 
Active.During := Read 
Time.To.Falling.Edge := 0 Phases 
Time.To.Rising.Edge := 7 Phases 

Ras.Precharge.Time := 1 cycle 
Ras.Cycle.Time := 1 cycle 
Bus.Release.Time := 1 cycle 

Bank.Base.Address := 80000000 
Port.Size := 32 bits 
Page.Address.shift := 10 bits 

Cas.Strobe 
CAS2 

Active.During:= Read & Write 
Time.To.Falling.Edge := 2 Phases 
Time.To.Rising.Edge := 7 Phases 

Write.Strobe 
WRITE2 

Active.During := Write 
Time. To.Falling.Edge := 0 Phases 
Time.To.Rising.Edge := 7 Phases 

Ras.Edge. Time 
Cas.Cycle.Time 
Wait.pin 

:= 2 phases 
:= 2 cycles 
:= Disabled 

Figure 4.2 Sample imem Display Page for the Program Memory 

31 22 11 2 0 
I I I I I I I I I 

I I I I I I I I I 

Bank Row Column Byte 
Selection Address Address Select 
Address Bits , / 

Connected to DRAM 
Address Pins 

Figure 4.3 The HM5117800BTT6 Dynamic RAMs Addressing 

Three parameters Ras.Cyc1e.Time, Page.Address.Shift and Ras.Edge.Time are 

provided to support multiplexed addresses. The parameter, Page.Address.Bits, is 

provided to support page mode. The Page.Address.Shift is the number of bits the 

row address must be shifted to place it on the DRAM address pins, which is lOin 

this case. Two addresses in this bank are in the same page (Le. the same row) if 

bits 12 to 22 are the same. The Page.Address.Bits parameter is the mask for the 

page address bits, i.e. the mask with bits 12 to 22 set, which is #007FFOOO in this 

case. However, when this value was checked, it was found not to work. With 

reference to the memory configuration file for the IMS B927, the parameter for 

--K.uW~.T~s~e------------------------------------------P-a-ge-6--4 



Chapter 4 The Configurations of The Image Processing System 

Page.Address.Bits is #001FFFFC. It is not a reasonable value for DRAM, but it 

did work. This phenomenon might be caused by a T9000's bug at the silicon 

level. With trial and error, it was found that the value used by the IMS B927 also 

Worked for the HM5117800BTT6 dynamic RAMs. 

The parameters for Ras.Strobe, Cas.Strobe, Programmable. Strobe, Write. Strobe, 

Ras.Precharge.Time, Ras.Edge.Time, Ras.Cycle.Time, Cas.Cycle.Time and 

Bus.Release.Time were set according to the timings of the HM5117800BTT6 

shown in the Hitachi data book. For the refresh section, it contains three timing 

parameters, which are called Dram.Refresh.lnterval, Dram.Refresh.Time and 

Dram.Refresh.Ras.High. 

Dram.Refresh.lnterval is the time, in cycles, between successive refresh cycles. 

The refresh period of the DRAM is 32 ms for 2048 cycles and the processor 

speed is 20 MHz, hence: 

Dram. Refresh. Interval = 32 x 20 x 1000 I 2048 

= 312.5 Cycles 

Dram.Refresh.lnterval can be set to 300 cycles which is less than the calculated 

value. 

4.1.2.1.2 Buffer Memory 

W241024A static RAMs were chosen for the frame buffer memory and the 

Overlay buffer memory. Actually, the buffer memory is not directly connected to 

bank 1 of the T9000 transputer, but the multiple bus interface is. The timing 

parameters of this bank are set so that the T9000 transputer can read or write data 

to the buffer memory via the bus interface. Figure 4.4 shows the section of the 

memory configuration file for the buffer memory in bank 1. The buffer memory 

\Vas placed at the address #90000000 and 16 Mbytes address space was reserved 
£ . 
or It. The address mask is calculated as: 

---~~----------------------------------------------------K\V.Tse Page 65 



~hapter 4 The Configurations of The Image Processing System 

Bank.Address.Mask = BITNOT ( 16 Mbtyes - 1) 

= BITNOT ( #OOFFFFFF ) 

= #FFOOOOOO 

Wait.Pin is enabled for incorporating the bus multiplexing mode. Bank 1 is 

marked as non-cacheable since the buffer memory is a shared memory. Cache 

coherency problems would occur if a shared memory was cached. 

Page 4 - Input Data, Bank 1 
------------------------------------------------------

Non-Cacheable 
Bank.Address.Mask := FFOOOOOO 

Strobe. 1 
RASl 
Active.During := Read & Write 
Time.To.Falling.Edge := 2 Phases 
Time.To.Rising.Edge := 14 Phases 

Programmable.Strobe 
PSI 
Active.During := Read 
Time.To.Falling.Edge := 2 Phases 
Time. To.Rising.Edge := 13 Phases 

Phases 

Cycle.Time 
Wait.pin 

:= 4 cycles 
:= Enabled 

Bank.Base.Address := 90000000 
Port. Size 

Strobe.2 
CAS1 

:= 32 bits 

Active.During := Read 
Time.To.Falling.Edge := 2 Phases 
Time.To.Rising.Edge := 14 Phases 

Write. Strobe 
WRITE 1 
Active.During := Write 
Time.To.Falling.Edge := 2 Phases 
Time.To.Rising.Edge := 13 

Bus.Release.Time := 2 cycles 

Figure 4.4 Sample imem Display Page for the Buffer Memory 

4.1.2.1.3 liD Devices 

Bank 3 is allocated for I/O devices. Although the timings for these devices are 

not unique, one set of timings is defined so that it is compatible with all t~e 

timings for the differ~nt devices. The devices to be considered are registers, the 

video digitizer and the video encoder. Registers were made using D type flip­

flops With an enable input. The interface for the register is shown in Figure 4.5. 

The ena signal must be set low before the end of valid data on the input of 

register. The rising edge of notMemWrBO in bank 3 must appear before the end 

of each cycle time. 

---u~~----------------------------------------------------------------------------------------------------------------I<..W.Tse Page 66 



~hapter4 The Configurations of The Image Processing System 

/1 
I 

MemData7-0 '\ 
./ D Q 

...... CK ..-System Clock 
t-'/ , 

...... , 
,- ena r-ena 

r-

ena = Decoded Address & ! notMemWrBO 

Figure 4.5 Interface of Registers 

The MPU interfaces of the video digitizer and the video encoder were discussed 

in the frame capture subsystem and the frame display subsystem sections of 

chapter three. Time.to.falling.edge of Cas.Strobe is purposely set for the video 

digitizer, whereas the parameters: Programmable. Strobe and Write. Strobe, are set 

for the video encoder. Figure 4.6 shows the section of the memory configuration 

file in bank 3. 

-KW.Tse 

Page 6 - Input Data, Bank 3 
=========================== 

Device.only 
AOOOOOOO 
Bank.Address.Mask := FFOOOOOO 

Strobe. 1 
Inactive 

Phases 

Phases 

Programmable. Strobe 
PS3 
Active.During:= Read 
Time.To.Falling.Edge := 1 Phase 

Phase 
Time.To.Rising.Edge := 5 Phases 

Phases 

Cycle.Time 
Wait.pin 

:= 2 cycles 
:= Disabled 

Bank.Base.Address := 

Port.Size 

Strobe.2 
CAS3 

:= 32 bits 

Active.During := Read & Write 
Time. To.Falling.Edge := 2 

Time. To.Rising.Edge := 6 

Write. Strobe 
WRITE3 
Active.During := Write 
Time.To.Falling.Edge := 1 

Time.To.Rising.Edge := 5 

Bus.Release.Time := 1 cycle 

Figure 4.6 Sample imem Display Page for the 110 Ports 

Page 67 



Chapter 4 The Configurations of The Image Processing System 

4.1.2.2 Network Configuration 

The Network Description Language [40] is used to describe the available 

hardware such as the types of processors, their attributes, and how they are 

connected. Processor attributes include a description of its memory map and its 

link speeds. The network description will not normally be changed unless the 

hardware is changed. Figure 4.7 shows a network description for the image 

processing system configured in Single-T9 mode. 

#INCLUDE "stdndl.inc" 

V AL memo base IS #80000000: 
VAL sys.size IS 2*K: 
VAL sram.size IS 2*M: 
V AL dram.size IS 8*M: 
V AL sram.base IS #90000000: 
V AL dram. base IS #80000000: 
VAL system.base IS dram.base + (dram. size - sys.size): 

CONTROLPORT host: 
NODE wingt9: 
ARC HostLink : 

NETWORK 
DO 

SET DEFAULT (link.speed.multiply := 10) 
SET DEFAULT (link.speed.divide := [1]) 
SET DEFAULT (control.speed.divide:= [8]) 

-- set wingt9 processor type 
SET wingt9(type :="T9000") 
SET wingt9(root := TRUE) 
SET wingt9(local.rom := FALSE) 
SET wingt9(pmi.config.inrom := FALSE) 
SET wingt9(cachesize := 16) 
SET wingt9(memconfig := "myramio.mem") 
SET wingt9(memory := [[dram. base, dram. size - sys.size, USER+RAM], 

-- Connect control tree 

[sram.base, sram.size, RESERVED+RAM], 
[system.base, sys.size, SYSTEM+RAM]]) 

CONNECT host[control] TO wingt9[control.up] 

-- Connect data tree 
CONNECT host[data] TO wingt9[link][0] WITH HostLink 

Figure 4.7 A Network Description for Single-T9 Mode 

--~~----------------------------------------------------------I<.W.Tse Page 68 



Shapter4 The Configurations of The Image Processing System 

4.1.2.2.1 Terminology 

Controlport is an interface to the host or controlling processor. It has a control 

link connection and a data link connection which will be used to initialize and 

load the system respectively. 

A node in a T9000-series network is a device, or part of a device, which is 

initialised by means of a control link or a ROM. For example, for the IMS T9000 

transputers, asynchronous packet switches, and system protocol converters, are 

all nodes. 

Connections to nodes, and to devices external to the network, are referred to as 

edges. An edge for an external device is also known as a network edge, or an 

external edge. 

Connections between nodes and the outside world are referred to as arcs. Arcs 

always connect edges, and arcs between nodes need not be named. If they are 

named, they can be referred to in the section of channel mapping or channel 

placement. 

4.1.2.2.2 The Declarations of Node, Arc and Control Port 

The host is the computer which incorporates the IMS B 108. Wingt9 represents 

the dedicated image processing board and HostLink is the connection of the 

host's data link to wingt9's data link. 

4.1.2.2.3 The Link Speed Attributes 

There are three attributes to set the link transmission speeds. Every link must 

have its transmission speed set. The link speeds may be set for individual devices 

and links, but normally the links of the entire data network will all run at a single 

speed, as will the links of the control network. 

---~~------------------------------------------------------KW.Tse Page 69 



Chapter 4 The Configurations of The Image Processing System 

The transmission speed of a link is derived from a 10 MHz base clock by 

multiplying and dividing by the available factors. For a single device, there is one 

multiplication factor for all the links. This is defined by the attribute 

link. speed. multiply and can take any of the values 8, 10, 12, 14, 16, 18 or 20. 

From this mUltiplied speed, each link can have its own speed division so that the 

links can run at different speeds. The speed divisions are set by the arrays 

link.speed.divide for the data links and control.speed.divide for the control links, 

and the division factor can be set to 1,2,4, or 8. 

With reference to Figure 4.7, link.speed.multiply is set to 10, link.speed.divide is 

set to 1, and control.speed.divide is set to 8. This resulted in setting all the data 

links' speeds to 100 Mbits/sec and all control links' speeds to 12.5 Mbits/sec. 

The lowest speed is purposely set for the control links so as to increase their 

reliability, for system control and monitoring. 

4.1.2.2.4 The Type and Root Attributes 

Since there is only one processor, called wingt9, it must be the root processor for 

the Whole system. The wingt9 node is actually an IMS T9000, so the node type is 

set to "T9000". 

4.1.2.2.5 The Memory and Memconfig Attributes 

The memconfig attribute is used to specify the name of the memory 

Configuration file. The memory configuration file for the dedicated image 

proceSSing board is called myramio.mem, and it defines all the timings of bank 1, 

bank 2 and bank 3. 

The memory is divided into blocks. Each block is declared with one possible 

Usage, either RAM or ROM, and RAM can be either USER, SYSTEM or 

RESERVED. Five constants, SYSTEM, USER, RESERVED, RAM and 

ROM, are defined to assign the usage. These constants are intended to be added 

---~~----------------------------------------------------KW.Tse Page 70 



Chapter 4 The Configurations of The Image Processing System 

together in various combinations, and Table 4.3 describes some of the possible 

cases. 

Usage 41 Explanation 
q. 

f-

f- ROM, used for any ROM 
SYSTEM + RAM used for RAM to be used during the loading and 

bootstrapping 
USER + RAM used for general purpose RAM, to be allocated by the 

configurer 
RESERVED used for special merpory ( such as screen RAM) and non-

.... memory devices 

Table 4.3 The Memory Usage of the Dedicated Image Processing Board 

Three blocks of memory are required for the program memory, the buffer 

memory and the system memory. The buffer memory includes the frame buffer 

memory and the overlay buffer memory. The memory space for the program 

memory is declared as USER + RAM since this memory is used for general 

purpose. The memory range for the buffer memory is declared as RESERVED + 

RAM for preventing the configurer from downloading the program code into this 

memory space. 

The memory locations for the I/O devices are not declared because they are not 

used as memory. If the I/O devices are accessed in a manner of memory access, 

they are declared as RESERVED + RAM in the memory attribute. 

4.1.2.2.6 The Control and Data Tree 

The T9000 transputer has a control.up link (CLinkO), a control.down link 

(CLinkl) and an array of four data links. The control port has one control link 

and one data link only. The control link in the host control port is connected to 

the control.up link of the wingt9 and its data link is connected to data link 0 of 

the T9000 transputer. 

----~--------------------------------------------------------KW.Tse Page 71 



Shapter4 The Configurations of The Image Processing System 

4.1.2.3 Setting Up The Frame Capture Subsystem 

For the frame capture subsystem, configuration IS only required for the 

TMC2207l video digitizer. In addition to this configuration, the state machine 

for the pixel demultiplexer should be reset before running application processes. 

The TMC22071 is controlled by a single 47-bit long Control Register [41]. Bit 0 

of the register is set to binary 1 to start and run the internal state machines. Bits 

3-1 are set to binary 100 for a PAL input signal and to set the pixel rate at 13.5 . 

Mpps. Since the video connector for the incoming video signal is connected to 

Vinl, bits 8-7 are set to binary 00. Video gain is set to unity by setting bit 9 to 

binary O. In order to keep the alignment of HSYNC and the incoming video, bits 

24-17 are set at binary value 01111 0 11. Bit 25 is set to low, so that the automatic 

gain control operation is continuous for two fields, and then held. Bit 26 is set to 

low to lock PXCK into incoming video. Bit 31 is set to high to enable GHSYNC\ 

and GVSYNC\. Bits 43-40 are set to binary 011 to fix the output sync level to the 

hexadecimal value 07. 

4.1.2.4 Setting Up The Frame Display Subsystem 

The only element requiring configuration in the frame display subsystem is the 

RAMDAC Bt481A. It is also necessary to reset the state machine for the pixel 

multiplexer before running application processes. 

Before the RAMDAC Bt481A is available for use, the command register A and 

the command register B need to be initialised and the look-up tables for the 

colour palette RAM data and the overlay/cursor colour data are filled with 

appropriate values. 

The RAMDAC Bt48lA was used to support an 8-bit pseudo-colour format. The 

Command register A is initialised to obtain this format. In the OCCAM [42] 

program, the procedure to initialise this register is: 

---~~----------------------------------------------------KW.Tse Page 72 



Shapter 4 The Configurations of The Image Processing System 

PROC write.command.reg.a 0 
SEQ 

rs2.rs1.nrsO ! #00 

where rs2.rsl.nrsO is the port used to access the command register A, and its 

location is #AOB60000 in the machine map. 

It is not necessary to initialise the command register B, since its default value at 

power-up is already appropriate for the system. 

-
~RS2 RSl RSO Addressed by MPU " 

I- 0 4 0 0 address register (palette write mode) 
t-- ""'" 0 d1 ? ' 'Y '1 })'1 address r~ster ~alette read mode) 

0 ., 0"" I,t l "p lico]our"palette RAM 
I- 0 'i 1 d 0 , pixeLread mask rt:~gister 
..... 1 ,,'W 0 ." " 0 addreSs register. (overlay write mode) 

l k~ " 'f 1 
.,' 

1 address register (overlay read mode) ..... 
t-- 1 0 1 overlay registers ' 

-- 1 J ;; 1 0 command register k 

Table 4.4 Control Input Truth Table of Bt481A 

Table 4.4 is the control input truth table of the RAMDAC Bt481A. To write 

colour data, the T9000 transputer writes the address register (RAM write mode) 

with the address of the colour palette RAM location which is to be modified. 

Then the T9000 transputer performs three successive write cycles (8 bits each for 

red, green, and blue), using RSO-RS2 to select the colour palette RAM. The 

fOllowing OCCAM program shows how a block of colour values, in consecutive 

locations, is written to the colour palette RAM, by writing the start address and 

performing continuous RGB write cycles until the whole block has been written. 

PROC write.color.palette 0 
SEQ 

nrs2.nrsl. nrsO ! #00 -- address register (palette write mode) 
SEQ i = 0 FOR 256 

SEQ 

nrs2.nrsl.rsO ! i 
nrs2.nrs l.rsO ! i 
nrs2.nrs l.rsO ! i 

----~~-------------------------------------------------------KW.Tse Page 73 



Chapter 4 The Configurations of The Image Processing System 

The nrs2.nrsl.nrsO is the port used to access the address register (palette write 

mode), which is located at #AOBOOOOO in the machine map, and the nrs2.nrs 1.rsO 

is the port used to access the colour palette RAM, which is located at 

#AOBIOOOO in the machine map. 

To write the overlay data, the T9000 transputer writes the address register 

(overlay write mode) with the address of the overlay location to be modified. 

Then the T9000 transputer performs three successive write cycles (8 bits each for 

red, green, and blue), using RSO-RS2 to select the overlay registers. The 

following OCCAM program shows how a block of colour values in consecutive 

locations is written to the overlay registers by writing the start address and 

performing continuous RGB write cycles until the entire block has been filled. 

PROC write. overlay 0 
SEQ 
rs2.nrsl.nrsO ! #00 -- address register (overlay write mode) 
SEQ i = 1 FOR 15 

SEQ 
rs2.nrs l.rsO ! i 
rs2.nrs l.rsO ! i 
rs2.nrs l.rsO ! i 

The rs2.nrs 1.nrsO is the port used to access the address register (overlay write 

mode) which is located at #AOB40000 in the machine map and the rs2.nrsl.rsO is 

the port used to access the overlay registers, which is located at #AOB50000 in 

the machine map. 

4.1.3 Software Configuration 

Software configuration is primarily concerned with mappmg. Processes are 

mapped onto logical processors, and logical processors are mapped onto physical 

processors. In addition, channels between processes are mapped or placed onto 

phYsical links. 

---~7=--------------------------------------------------------------------------KW.Tse Page 74 



Chapter 4 The Configurations of The Image Processing System 

In Single-T9 mode, all processes are mapped to the wingt9 processor, since it is 

the only processor in the system. As all processes are resident in one processor, 

no channel mapping is needed. 

4.2 Multi-T9 Mode 

In Multi-T9 mode, more than one T9000 transputer are integrated together for the 

purpose of increasing the computational power of the whale system. To illustrate 

this, a two transputer network is discussed in this section. 

4.2.1 System Interconnection 

The global elements of the image processing system are the computer, the IMS 

B927, which is fixed to the slot 0 position of the IMS BIOS, the IMS BIOS, and 

the dedicated image processing board. Figure 4.S shows the system 

interconnection in Multi-T9 mode. 

r- DIPS 
PC AT I 

ET 
notResetOut ./ " notResetln ...... ,/ 

8927 1 
Control Down .... ControlUp ,.,. 

DataD ,/ .... DLinkD .... ,/ 

Data2 ".- " DLink 1 ...... ... 

SLOT 0 I IMS 8108 Data1 ,- .... DLink2 .... ,/ 

I 
DIPB : Dedicated Image Processing Board 

Figure 4.8 System Interconnection for Multi-T9 Mode 

For the data link configuration in the IMS BIOS, JPl and JP2 are set to the 

Outside position, and JP3 and JP4 are set to the inside position [Table 4.1]. For 

the Control link configuration, switches SW-I, SWl-2 and SWl-3 are set to OFF, 

ON, and OFF respectively [Table 4.2]. 

---~~-----------------------------------------------------------------------------------------KW.Tse Page 75 



Shapter4 The Configurations of The Image Processing System 

As a result, the IMS B927 is connected to the host and so becomes the root 

transputer in the network. The data link 1, 2 and 3 of IMS B927 are connected 

externally to DLinkO, DLinkI and DLink2 of the dedicated image processing 

board respectively. Meanwhile, the CLinkI of the IMS B927 is externally 

connected to the CLinkO of the board. 

4.2.2 Hardware Configuration 

The hardware configuration for a two processor network involves two memory 

configuration files and one network configuration file. The contents of the two 

memory configuration files remain unchanged from those used in Single-T9 

mode, but the contents of network configuration file would be changed. For 

example, the contents of the data tree and the control tree sections of a network 

configuration file must be changed if the physical link connections, between two 

transputers, have been changed. 

4.2.2.1 Memory Interface Configuration 

The memory configuration file for the IMS B927 is provided by its manufacturer, 

and is called b927-20b.mem. This file is shown in Appendix D. The memory 

Configuration file for the dedicated image processing board is the same as that 

deSCribed in the Single-T9 mode section. 

4.2.2.2 Network Configuration 

Figure 4.9 shows a network description for the image processing system 

Configured in Multi-T9 mode. In order to set the links to consistent speeds, the 

link speeds are set by defaults with the desired parameters. For the attributes of 

the b927, the attribute, root, is set to TRUE because the b927 is connected to the 

host. For the rest of the attributes, they are set according to information provided 

by its manufacturer. All connected data links are declared so that they can be 

mapped to the logical channels if necessary. 

----~~---------------------------------------------------------------------------------------------------------KW.Tse Pa e 76 



Chapter 4 The Configurations of The Image Processing System 

#INCLUDE "stdndl.inc" 

VAL mem.base IS #80000000: 
V AL sys.size IS 2*K: 
VAL sram.size IS 2*M: 
V AL dram. size IS 8*M: 
V AL sram.base IS #90000000: 
V AL dram. base IS #80000000: 
VAL system.base IS dram.base + (dram. size - sys.size): 

CONTROLPORT host: 
NODEb927: 
NODE wingt9: 
ARC HostLink: 
ARC LinkO: 
ARC Linkl: 
ARC Link2: 

NETWORK 
DO 

SET DEFAULT (link. speed. multiply := 10) 
SET DEFAULT (link.speed.divide := [1]) 
SET DEFAULT (control.speed.divide:= [8]) 

-. set b927 processor type 
SET b927(type 
SET b927(root 
SET b927(local.rom 
SET b927(pmi.config.inrom 
SET b927(cachesize 
SET b927(memconfig 
SET b927(memory 

•• set wingt9 type 
SET wingt9(type 
SET wingt9(root 
SET wingt9(local.rom 
SET wingt9(pmi.config.inrom 
SET wingt9(cachesize 
SET wingt9(memconfig 
SET wingt9(memory 

-. Connect control tree 

:= "T9000") 
:=TRUE) 
:=FALSE) 
:=FALSE) 
:= 16) 
:= "b927-20b.mem") 
:= [[#80000000, #3FFOOO, RAM], 

[#803FFOOO, #1000, RAM + SYSTEM] ]) 

:="T9000") 
:=FALSE) 
:=FALSE) 
:= FALSE) 
:= 16) 
:= "myramio.memlt

) 

:= [[dram.base, dram.size· sys.size, USER+RAM], 
[sram.base, sram.size, RESERVED+RAM], 
[system.base, sys.size, SYSTEM+RAM]]) 

CONNECT host[control] TO b927[control.up] 
CONNECT b927[control.down] TO wingt9[control.up] 

•• Connect data tree 
CONNECT host[data] 
CONNECT b927[link][l] 
CONNECT b927[link] [2] 
CONNECT b927[link][3] 

TO b927[link][O] WITH HostLink 
TO wingt9[link][O] WITH LinkO 
TO wingt9[link][l] WITH Linkl 
TO wingt9[link][2] WITH Link2 

Figure 4.9 Network Description for Multi-T9 Mode 

---~~-----------------------------------------------------------KW.Tse Page 77 



Chapter 4 The Configurations of The Image Processing System 

4.2.3 Software Configuration 

Since the number of physical processors is two, software configuration is 

essential. Process mapping and logical processor mapping must be stated in the 

software description file. However, channel mapping is optional. If channel 

mapping is not mentioned in the software description file, the configurer will 

assign physical links to the channels which connect the two physical processors. 

---~~-----------------------------------------------------KW.Tse Page 78 



Chapter 5 

The Operations of The Image Processing System 

This chapter can essentially be split into four sections. The first section 

introduces the frame buffer management, which shows how the three frame 

bUffers are organised to serve different applications. The second section talks 

about the technique to divide an image into a number of sub-images so that the 

Work of image processing can be shared by a number of processors. The third 

section introduces four methods to transfer sub-images to a T9000 transputer 

network. The fourth section contains details of image processing algorithms 

Which were used to test the performance of the system. 

5.1 Frame Buffer Management 

In Single-T9 mode, the three frame buffers on the dedicated image processing 

board are usually organised for the four functions, image capturing, captured . 
Image reading, processed image writing, and processed image displaying. In 

Multi-T9 mode, they are usually arranged for image capturing, captured image . 
sending, processed image receiving, and received image displaying. Obviously, 

the three frame buffers need to be mapped onto the four functions. This frame 

bUffer mapping actually depends on the applications being carried out by the 

system. 

5.1.1 Single-T9 Mode 

Figure 5.1 shows an example of the organisation of the three frame buffers in 

Single_ T9 mode. In this case, one of the three frame buffers is simultaneously, 

------------------------------------------------------------KW.Tse Page 79 



Chapter 5 The Operations of The Image Processing System 

implementing two functions, captured image reading and processed Image 

Writing. The rest of the frame buffers only perform a single function. 

BUFFER 
0 c p 0 c 

BUFFER 
1 0 c p 0 

BUFFER 
2 

p 0 c p 

) TIME 
C = IMAGE CAPTURING 
P = IMAGE PROCESSING 
D = IMAGE DISPLAYING 

Figure 5.1 Frame Buffer Operation In Single-T9 Mode 

The operation principle behind this organisation is to process the image which 

has been previously captured into a buffer, and to display the image that has been 

previously processed. Firstly, buffer 0 is used for the capture operation, buffer 1 

for the display operation and buffer 2 for both the captured image reading and the 

prOcessed image writing operations. After the completion of one operation, the 

role of the buffers rotates downward such that buffer 1 is used for the capture 

operation, buffer 2 performs the display operation and buffer 0 is used for both 

the captured image reading and the processed image writing operations. In 

general, the role of the buffers rotates downward by one step after each 

operation. 

In some image processing algorithms, the result of processing a pixel depends on 

its nearest neighbours. The processed pixels should not be written back to their 

original positions immediately until their pre-processed values have all been 

referenced by their neighbours. If a 3 x 3 operator is used, for example, the nth 

prOcessed pixelline should not be written back until the (n+2)th pixel line is 

being processed, where the 3 x 3 operator is moving from the top of the image to 

the bottom of the image and the top line of the image is called the 1 st pixel line. 

--~~----------------------------------------------------------KW.Tse Page 80 



Chapter 5 The Operations of The Image Processing System 

If the processed image is allowed to shift upward, the first pixel line of the 

original image can be overwritten by the first processed pixelline, no buffering is 

required. 

Alternatively, the pixels going to be referenced by the other pixels are stored in 

arrays. The processed values can be written back to the original positions 

immediately, since the pre-processed values are already resident in arrays which 

can be referenced during subsequent processing. 

5.1.2 Multi-T9 Mode 

Figure 5.2 shows an example of the arrangement of the three frame buffers in 

Multi-T9 mode for real-time processing. In this example, the T9000 transputer on 

the dedicated image processing board does not process the image. Its single role 

is to handle the image transmission between the dedicated board and the external 

T9000 transputer network. One of the three frame buffers needs to perform two 

fUnctions, the image display function and the processed image receiving function. 

The rest of the frame buffers implement one function only. It should be noted that 

the rate of storing a processed image into a buffer must be higher than the rate of 

displaying the stored image in a real-time situation. 

BUFFER 
0 

BUFFER 
1 

BUFFER 
2 

c 

D~ 

, 

f--

L 

L 

C = IMAGE CAPTURING 
D = IMAGE DISPLAYING 

L = LINKS 

--+-7 L 

c 
D~<-L 

c 

D < 

-" L 

L 

C 

D~ 

----7) TIME 

Figure 5.2 Frame Buffer Operation in Multi-T9 Mode 

-" , L 

L 

---~~-------------------------------------------------------KW.Tse Page 81 



Chapter 5 The Operations of The Image Processing System 

The operation principle behind this arrangement is to send out the raw image, 

which has been previously captured into a buffer, to the external T9000 

transputer network for processing and to receive the image which has been 

previously processed by the transputer network for display. Firstly, buffer 0 is 

used for the capture operation, buffer 1 is used for the captured image sending 

operation, and buffer 2 performs both the display and the processed image 

receiving operations. Afterwards, the roles of buffer 0 and buffer 1 are swapped, 

whilst the role of buffer 2 remains the same. The operation continues in this 

manner until the end of the program. 

5.2 Image Division Techniques 

For the operation of the image processing system running in Multi-T9 mode, a 

captured image should be divided into a number of sub-images, which are then 

distributed to the elements of the T9000 transputer network for processing. 

USUally, the number of sub-images is equal to the number of the elements in the 

network. 

For the image processing algorithms which do not require a pixel to interact in 

some way with its immediate neighbours, the image division method is simple, as 

the image is just divided evenly into a number of sub-images. If the result of 

processing a pixel depends on its immediate neighbours, the image is not simply 

divided evenly into a number of sub-images, but additional pixels from adjacent 

sub-images must be· attached to the edges of each sub-image. Figure 5.3 

illustrates the second case, in which a 3 x 3 operator is employed for image 

processing, and the image is divided into two sub-images. The purpose of edge 

attaChment is to allow the pixels on the boundaries of the sub-image to interact 

with their immediate neighbours during image processing. In this case, one 

additional pixelline is attached to the boundary. Similarly, two additional pixel 

lines are attached to the boundary if a 5 x 5 operator is used. 

---~~--------------------------------------------------------------------------------------------------KW.Tse Page 82 



Chapter 5 The Operations of The Image Processing System 

r-----------------~" 

A A A A ... 
BB BB ... 5 C cc ... 

ODD ... 

BEFORE SPLIT 

A = PIXEL IN ROW A 
B = PIXEL IN ROW B 
C = PIXEL IN ROW C 
o = PIXEL IN ROW 0 

A 
B 
C 
0 

N 

AAAA ... 
BB BB ... 
CC CC ... 

~ ~ ~ ~ : : : 
N DODO ... 

AFTER SPLIT 

Figure 5.3 Illustration of Edge Attachment 

5.3 Image Distribution Techniques 

A 
B 
C 

~ " 
C 
0 

- N + 1 

r- N + 1 

The image distribution techniques used by the image processing system are 

closely related to the architecture of the T9000 transputer system. The T9000 

transputer was designed to use the high bandwidth DS-Links for data 

transmission. T9000 transputers may be connected directly, or via a network of 

IMs CI04 dynamic routing devices [43]. Communication channels can be 

established between any two processes, regardless of where they are physically 

located, or whether the channels are routed through a network, provided there is a 

connecting path via a communication network. Sub-images are distributed from 

the dedicated image processing board to the external T9000 transputer boards, in 

a way that it is appropriate to the types of the T9000 transputer network. The 

fOllowing sections discuss the image distribution techniques in four different 

tYpes of networks. 

---~~-------------------------------------------------------I<..W.Tse Page 83 



Chapter 5 The Operations of The Image Processing System 

5.3.1 The Non-routed Network 

Figure 5.4 shows a small non-routed, but fully connected, network of a parallel 

image processing system. The dedicated image processing board can directly 

communicate to the adjacent three T9000 transputer boards, therefore no 

software virtual-routing processes are required. 

T9000 

DEDICATED 

HOST IMAGE T9000 PROCESSING 
, 

BOARD 

T9000 

Figure 5.4 The Non-routed Image Processing System Network 

5.3.2 The Routed Network without IMS CI04 

Figure 5.5 shows a routed network of the parallel image processing system 

without the IMS CI04 device. The dedicated image processing board cannot 

directly communicate to the non-adjacent T9000 transputer boards, which ~e 
located at the corners of the network, therefore software virtual-routing processes 

are needed to implement the non-adjacent interprocessor communication. With 

regard to the comments given by INMOS, the performance of this kind of 

network is low. 

---~~-----------------------------------------------------KW.Tse Page 84 



Chapter 5 The Operations of The Image Processing System 

T9000 T9000 t--- T9000 

DEDICATED 

HOST T9000 IMAGE 
t--- T9000 PROCESSING 

BOARD 

T9000 T9000 T9000 

Figure 5.5 The Routed Image Processing System Network without IMS CI04 

5.3.3 The Routed Network with IMS CI04 

Figure 5.6 shows a routed network of the parallel image processing system with 

the IMS CI04 device. Basically, the !MS CI04 devices were used to improve the 

performance of interprocessor communications in multi-transputer networks. The 

Use of this network is recommended when the dedicated image processing board 

is integrated to a large multi-transputer network for parallel processing. 

T9000 

DEDICATED 

HOST IMAGE C104 PROCESSING 
BOARD 

T9000 

Figure 5.6 The Routed Image Processing System Network with IMS CI04 

---~~-------------------------------------------------KW.Tse Page 85 



Shapter 5 The Operations of The Image Processing System 

5.3.4 The Two-DIPB Network 

Figure 5.7 shows a network which makes use of two dedicated image processing 

boards. One of the boards is dedicated to image capture, the other one to image 

display. The use of this network is to reduce the data traffic in the frame buffer 

memory. This network is recommended when it is required to display a whole 

processed image. 

T9000 
I 

T9000 I I DIPS DIPS 
FOR I FOR 

CAPTURING DISPLAYING 

I T9000 I 

I 

T9000 
I 

HOST 

Figure 5.7 The Two-DIPB Network 

5.4 Image Processing Algorithms 

l'he application of this project involved implementing a wide range of image 

processing algorithms for use in different circumstances. This section introduces 

the image processing algorithms selected to test the performance of the system. It 

IS an advantage to give an overview of the functions and the complexities of these 

algOrithms before going to the next chapter, which presents the results of the 

sYstem performance tests. The selected image processing algorithms are 

---~~------------------------------------------------------I<.W.Tse Page 86 



Chapter 5 The Operations of The Image Processing System 

thresholding [44], local averaging [45], Sobel edge detection [46] and seam 

tracking [47]. 

5.4.1 Thresholding 

Thresholding is one of the most important approaches to image segmentation 

[48]. It is designed to extract objects that have characteristic grey level ranges. A 

simple algorithm for thresholding produces a binary image. The grey level of 

each pixel is compared with a threshold value. Those pixels with grey level equal 

to, or greater than, the threshold value are given a value equivalent to white and 

those with grey level less than the threshold value are given a value equivalent to 

black. Figure 5.8 shows the result of applying thresholding to produce a binary 

Image. 

(a) Original Image (b) Binary Image 

Figure 5.8 Result of Thresholding 

5.4.2 Local Averaging 

Local averaging is one of the methods used to reduce noise. This algorithm 

replaces the each pixel value with the average value of itself and its nearest 

neighbours. It should be noted that the degree of blurring in the resulting image is 

strongly proportional to the size of the window used. Figure 5.9 shows the result 

of applying this algorithm using a 7 x 7 window. 

--~~--------------------------------------------------------
KW.Tse Page 87 



Chapter 5 The Operations of The Image Processing System 

(a) Original Image (b) Result of Local Averaging 

Figure 5.9 Result of Local Averaging with 7 x 7 Window 

5.4.3 Sobel Operator 

The Sobel operator is one of the edge detection algorithms which are primarily 

designed for image segmentation. It detects abrupt changes in grey level, and the 

detected areas indicate the end of one region and the beginning of another. Figure 

5.10 shows the result of applying the Sobel operator. 

(a) Original Image (b) Processed Image 

Figure 5.10 Result of the Sobel Operator 

In Operation, two masks, X and Y, are convolved with the image to give an edge 

ll1agnitude for each pixel, as shown in Figure 5.11. The horizontal edge mask 

gives: 

---~~--------------------------------------------------------KW.Tse Page 88 



Chapter 5 The Operations of The Image Processing System 

GradH = {p(x -1,y -1) + 2(p(x, y -1)) + p(x + 1, y -I)} 

- {p(x-l,y+l) + 2(p(x,y+l) + p(x+l,y+l)} 

and the vertical edge mask gives: 

GradV = {p(x+l,y-l) + 2(p(x+l,y)) + p(x+l,y+l)} 

- {p(x-l,y-l) + 2(p(x-l,y) + p(x-l,y+l)} 

The gradient magnitude is approximated by I GradH I + I GradV I and the gradient 

direction is calculated by tan-1(GradV/GradH). 

1 2 1 -1 0 1 
(X-l,Y-l) (X,Y-1) (Xt1,Y-1) (X-l,Y-1) (X,Y-l) (Xt1,Y-1) 

0 0 0 -2 0 2 
(X-l,Y) (X,Y) (Xt1,Y) (X-1,Y) (X,Y) (Xt1,Y) 

-1 -2 -1 -1 0 1 
(X-l,Yt1) (X,Y+1) (Xtl,Yt1) (X-l,Yt 1) (X,Y+1) (Xt 1,Yt 1) 

(a) Horizontal Edge Mask (b) Vertical Edge Mask 

Figure 5.11 Sobel Operator Masks 

5.4.4 Seam Tracking 

Software was also implemented to track raised seam edges using a structured 

lighting technique. This algorithm could be applied to such tasks as robotic 

Cutting and welding. A low intensity laser stripe is used to detect the contours of 

a seam, The seam follower uses a laser stripe to produce a fine line which 

fOllows the contour of the seam. The laser line is seen by a CCD camera and an 

unage is captured by the dedicated image processing board. In order to eliminate 

other sources of illumination, which could obscure the seam position, the laser 

--~~----------------------------------------------------KW,Tse Page 89 



Chapter 5 The Operations of The Image Processing System 

line is viewed through a band pass filter. After the filter, the image appears as a 

bright distorted white line on a black background. Figure 5.12 shows the setting 

for seam tracking. The picture at the top right corner of this figure is an image 

viewed through a band pass filter. 

Figure 5.12 The Setting of Seam Tracking 

High speed computation using pixel thinning is used to observe the contour of the 

laser line. When the laser line illuminates a seam, there are two points at which 

critical changes occur in the shape of the laser line. These two points are 

determined by a differential operator which produces an array of gradient data. 

The positions of these two points correspond to the edges of the seam, and hence 

the position of the seam can be determined. Prior to the seam tracking, the whole 

lInage is scanned, but during tracking, a smaller window covering the current 

seam location is scanned so that the overall processing time is reduced. If the 

Software looses tracking, the whole image is scanned again until the position of 

the seam is determined. 

Figure 5.13 shows the flow chart of the seam tracking algorithm. Figure 5.14 

shows a sample image with the results overlaid on it. The result of finding the 

laser line profile, which is in black colour, is overlaid on the original laser line 

and the result of differential operations, which is in white colour, is shown on the 

right of the line. The two horizontal black lines denote the position of the seam. 

--7.~-----------------------------------------------------------I<..W.Tse Page 90 



Chapter 5 

Use Window 
ond Set Its 

Position 

The Operations of The Image Processing System 

Get Laser Line Profile 

Get Differential Profile 

Reset Window 
Size 

Figure 5.13 The Flow Diagram of Seam Tracking 

Figure 5.14 Image from the Seam Tracking 

---7~-------------------------------------------------------------
KW.Tse Page 91 



Chapter 6 

System Performance 

This chapter presents the results of a number of tests which were designed to 

investigate the performance of the image processing system for different 

configurations. The system performance varies with the test conditions which 

include the system configuration, the processor speeds of the connected 

transputers, the software environment and the structure of the test procedures; the 

relevant test conditions are stated in each test section. 

6.1 Image Transmission Rates 

This section examines the speed with which the dedicated image processing 

hoard can send and receive a full image and also send part of the full image to the 

external T9000 transputer network, in different configurations. The size of the 

full image was 640 pixels by 512 lines, and there were four system 

con(igurations used for these tests. 

The connectedtransputers were 25 MHz T9000 transputers of revision gamma 

E03. All connected data links were set to 100 Mbits/sec. The test programs were 

Written in the T9000 ANSI C language [17] and the compiled test programs were 

run under the irun environment [49]. 

6.1.1 System Configurations 

For convenience, the four configurations were named so that it was much easier 

to refer to them in the following two sections. T(3,4) was given to the 

Configuration which involved three T9000 transputers and four connected data 

links for image transmission. T(3,2) was given to the configuration which 

------------------------------------------------------------
KW.Tse Page 92 



Chapter 6 System Performance 

involved three T9000 transputers and two connected data links for image 

transmission. T(2,2) was given to the configuration which involved two T9000 

transputers and two connected data links for image transmission. Finally, T(2, 1) 

Was given to the configuration which involved two T9000 transputers and one 

connected data link for image transmission. These four configurations are shown 

in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 respectively. 

-

~ / "-

k7 1/ ~3 O~ 
HOST "-

~3 ~ ~2 

T9000 T9000 

_ :-PROCESS FOR IMAGE TRANSMISSION 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

/ 

/ 
"-

/ 
"-

Figure 6.1 Configuration T(3,4) 

~ / "-
~ 0 1/ 

HOST \ / "-- -
T9000 T9000 

_ :-PROCESS FOR IMAGE TRANSMISSION 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

/ 

2 /..-

" 

Figure 6.2 Configuration T(3,2) 

I<.W.Tse 

"-

"- OV 1 / I" -"- ~ 2 3 / 

DIPB 

"-

-"- 2 3 ~ / 

DIPB 

Page 93 



Chapter 6 System Performance 

O~ 3 
HOST 

~ 

~3 0 

T9000 DIPB 

_ :-PROCESS FOR IMAGE TRANSMISSION 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

Figure 6.3 Configuration T(2,2) 

~ / " 
~ " 0 1/ " 3 

HOST " / '" / 

~ ~ 

T9000 OIPB 

_ :-PROCESS FOR IMAGE TRANSMISSION 

OIPB :-DEDICATED IMAGE PROCESSING BOARD 

Figure 6.4 Configuration T(2,1) 

6.1.2 Unidirectional Transmission 

For the unidirectional transmission tests in Section 6.1.2.1, one image was sent 

Out from the dedicated image processing board to the connected T9000 transputer 

network. For the tests in Section 6.1.2.2, one image was sent out from the 

dedicated image processing board to the connected T9000 transputer network and 

then received back. 

--~---------------------------------------------------KW.Tse Page 94 



Chapter 6 System Performance 

The data links in between transputers were only used for this data transmission 

during the testing, and they were not shared with other channels for other 

pUrposes. 

6.1.2.1 Sending One Image 

The width of the image was varied from 512 pixels to 640 pixels for the tests. 

Real-time image transmission was achieved for a range of image sizes. Using the 

PAL video standard at 25 frames per second requires image transmission to take 

place in under 40 ms for real-time performance. Figure 6.5 shows the results of 

these tests and Table 6.1 lists the maximum width of an image, with which the 

image can be transmitted in real-time. 

-
I--

Unldlrectlon Transmission (Sending One Image) 

0.08 -r-~-------------------------':-;:;-';x"Zl: 
XXKXXX)(XXX~XX 

0.075 ...... . •••............. 'x;'~:oixox'xx , )< . ~ >: ~ •••• - • - ••• - • 

xxx>:'" 
0.07 _. - • • • - • • • • • - ' • \' X X ' x . - ..• - . - . . . . . - . . • - . . . . . . . • . . 

i 0.065 

g 
! 0.06 

E 
\:: 0.055 

~ 
!:! E 0.05 ., 
c: 

J: 0045 ........ . - ................. - ....... "."."" ..... ~~ •.. ~ ...........•. ,,"" .......... . 
0.04 •••••• - • ·.4 •• ~4 .. "~~ .... !'~·."~~·: .............. ,~ ... ~~·.·~~· .. -..... . . "" ... ".~ .. ~ ••............ 

0.035 ... ~~ ... ~~ ..• ~~ •.. ~~ .................................. . 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ § ~ ~ ~ ~ ~ ~ ~ ~ ~ * 

The Width 01 Image (pIKels) 

Figure 6.5 Unidirectional Transmission Test Results (1) 

-+-T(3,4) 

··· ... T(3,2) 
-<>-T(2,2) 
-x-T(2,1) 

Configurations T(3,4) T(3,2) T(2,2) T(2, 1) 
...... Maximum Width (pixels) 580 544 544 < 512 

Table 6.1 Unidirectional Transmission Test Results for Real-time Performance 

--~-------------------------------------
KW.Tse Page 95 



Chapter 6 System Performance 

6.1.2.2 Sending One Image and Receiving One Image 

For some image processing techniques, the full image is divided into an upper 

and lower part. The upper part of the image is processed by the DIPB and the 

lower part of the image is transmitted to the connected T9000 transputer network 

for processing. The image processed by the network is then sent back to the 

DIPB for display. The tests in this section were to find out the overall 

transmission time for sending and receiving different sizes of images using 

different configurations. The size of the upper part of the image was described in 

terms of the number of lines. Figure 6.6 shows the results of these tests and Table 

6.2 lists the results of the tests in which a full image was transmitted. 

0.11 

0.1 

~ 0.09 

a ! 0.08 

" ~ 0.07 
c: 
.2 ., 
~ 0.06 ., 
c: 

~ 0.05 

Unidirectional Transmission Tests (Sending One Image and Receiving One Image) 

"><>!~ .- .- • - - - - . - - - - ....... . .... ' .... . 
x.KxXlIl%< 

'" ~ .. .. .. .. '" .... ~ .. .. '" .. .. .. .. .. .. .... x)(.;: . ................... '" .. . 'l • .. '. .. .. .. • 
)(XX~, . . ~x'%< 

;><~)(" , • . .. - • ...... . , ••.. )(xx.~ ........•.... 
I<Xx)()( 

. ~x~ 
~ .. ..... . ' •..... ' . : .•.... .• .. •........•• ~l<" . : •.•.. 
•••• .......... ><x)(~ 

. "~ .. "~.~;:;:;:'~~~~ ................ ' ...... ~ .. ~~~,,~ . 
.......... ~~\~.... . .... ~ .... ~. • • • • • c • " • . • • • • • • • • • • • • • • t ....... "tf:4'4Ait.. . . . . . . '. ' . . . . . . ·· .. ·~.,.Mt .. 

0.04 .,................... . ... .....,.... • • ·~·!Af,'#-III/ili~.w. 

0.03 ••••••••••••••••••••••••.•.•••.•••••.•••.•.•.•. 

__ T(3.4) 

••• .. T(3.2) 
__ T(2.2) 

........ · T(2.1) 

§ ~ E ~ ~ 5 ~ ~ ~ ~ § ~ 8 ~ ~ § ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re re ~ re re ~ re 
Number of Lines Remained In The DIPB 

Figure 6.6 Unidirectional Transmission Test Results (2) 

- Configurations T(3,4) T(3,2) T(2,2) T(2,l) 
__ Transmission Time(s) 0.0842 0.0887 0.0892 0.1466 

Table 6.2 Unidirectional Transmission Test Results for a Full Image 

--~~---------------------------------------------------------------
KW.Tse Page 96 



Chapter 6 System Performance 

6.1.3 Bidirectional Transmission 

For the bidirectional transmission tests, two Images were sent simultaneously, 

one from the dedicated image processing board to the connected transputer 

network, and the other from the connected T9000 transputer network to the 

dedicated image processing board. The data links in between the transputers were 

also reserved for this transmission only, and the division of the full image was 

identical to that used in the unidirectional transmission tests. Figure 6.7 shows 

the results of the tests in which only part of the full image was transmitted and 

Table 6.3 lists the full image transmission test results. 

-

Bidirectional Transmission 

0.1 ,.-~-----::- ------.~~------

0.09 x- - - . . . . . . • - - - . - • . - - . . - - . - - - - - - • - . - . • - . - . . - - -. . - - . 
"xx 

Xx 
xxx 

0.08 •••••• .. M .. _ .................................. ' ... . ......................... .. 

0.07 

Xxx 
•• Kxw 

' ~.'\'" x.x •• • . ••••.• '1 "x' ... - ........ - ..... .... ........ . . 
~'.. "xxx. i AI.. xl( 

~. 0.06 •••••• - • • • "~·;&'''·'''A ... ~~)O(.I\"x · ••••••.•.••• . •.• . • . •••.• 
! •• ••••• "A.. X')(')()( 

~ •••••• A"'AA. XX,; 
1= 0.05 •••••••• t ...... .. . - ......... " .... ' X">c' •••••••.••••••••• 
c: ••• ·'4 Y x 
.2 •••• .... x 
~ ••• 4.... X ',l 1 0.04 •••• • •• • • •• • • •• ••• ~ .......... .;.~ •.• ,,,~.l"oh·.~ >:'X~'<""'-"; •••• •••• 

~ •••••• ••••• x)(xx 

0.03 • •••••••••••• • •• •• •••••••.••• . • •• ~ • ••• •••. ~.''' ... . ~"')(){ ' •. 
••••• ..~ ... X"x" 

••••• A\.~ ... , ... 
0,02 •••• " ••••••• • •••••••••• •.• .•.•.•.•.•••.•.• ....... . • , 

••• 
0.0 1 •••••••••••••••••••••••• • • .•. •.•••. 

o ~~~~~~~~~~~~~~~~~~~~~~~~~~~m~~ 
~ § S ~ 8 ~ ~ ~ ~ 8 § ~ ~ ~ £ ~ ~ ~ ~ ~ ~ ~ ~ re ~ g ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Number of Line. Remained In tha DIPB 

Figure 6.7 Bidirectional Transmission Test Results 

-+-T(3.4) 

.... ··· T(3.2) 

-+-T(2.2) 
-*"" T(2. 1) 

r- Configurations T(3,4) T(3,2) T(2,2) T(2,1) 
...... Transmission Time (s) 0.0736 0.0944 0.0954 0.1123 

Table 6.3 Bidirectional Transmission Test Results for a Full Image 

--~--------------------------------------------------------------------
K.W.Tse Page 97 



Chapter 6 System Performance 

6.1.4 Conclusions 

For the unidirectional transmission tests, Figure 6.5 and Figure 6.6 show that the 

transmission time for the configurations T(3,4), T(3,2), and T(2,2) are very close 

to each other, but the transmission time for the configuration T(2,1) is 

exceptionally high. The transmission rate through each link is limited by its 

bandwidth. Using two data links, however, reduced the transmission rate per link 

sufficiently to overcome this problem whilst still supporting the bandwidth of the 

frame buffer interface, in the unidirectional transmission. As a result, no 

significant reduction in transmission time was achieved by using the four 

connected data links in the T(3,4). For the configurations with two or more data 

links connected, the transmission rate is limited by the bandwidth of the frame 

buffer interface. 

For the bidirectional transmission tests, Figure 6.7 shows that the transmission 

time is decreasing as the number of connected data links is increased. Two data 

links are clearly not enough to support the bandwidth of the frame buffer 

interface in the bidirectional transmission, as four connected data links in the 

T(3,4) configuration further increases the transmission rate. 

6.2 Image Processing Rates 

This section examines the speed with which the dedicated image processing 

hoard with or without the connected T9000 transputer network, can process a full 

image, using different image processing algorithms and different configurations. 

The size of the full image was 640 pixels by 512 lines, and there were five 

system configurations set for the tests. The connected transputers were 25 MHz 

T9000 transputers of revision gamma E03. All the connected data links were set 

to 100 Mbits/sec. The test programs were written in T9000 ANSI C language 

[17] and the compiled test programs were run under the irun environment [49]. 

-KW.Tse Page 98 



Chapter 6 System Performance 

When performing the algorithms for local averaging and for the Sobel operator, 

each pixel in the image is read more than once. Since the frame buffer memory of 

the dedicated image processing board is not cacheable, but program memory is 

cacheable, image lines were purposely buffered in the program memory in the 

form of arrays, so that they would be stored into the cache memory and hence the 

processing time would be reduced. 

6.2.1 System Configurations 

For referencing purposes, the five configurations under test were given names. 

They were named Pent. nd, np), where nt is the number of T9000 transputers, nd is 

the number of connected data links, and np is the number of image processing 

processes. These five configurations are shown in Figures 6.8-6.12. 

-K.W.Tse 

r-'-. 

K- ) 0~1 ?-- ~3 
HOST " 

~3 ?-,- ~2 
T9000 T9000 

_ :-PROCESS FOR IMAGE PROCESSING 

DIPB :-DEDlCATED IMAGE PROCESSING BOARD 

~-

l/ " 1 i" / -1/ 
" 2 I" / 

DIPB 

FigUre 6.8 Configuration P(3,4,5) 

r-'-, 

( -) 0 ,,7 tk-

O~ 

3~ 

HOST - - -
T9000 T9000 

_ :-PROCESS FOR IMAGE PROCESSING 

DIPS :-DEDICATED IMAGE PROCESSING BOARD 

2/ 
" " 2 / 

DIPS 

Figure 6.9 Configuration P(3,2,3) 

31 

Page 99 



Chapter 6 

-
I<..W.Tse 

~ / 

?~ O~ 11/ " 3 
HOST " / I" / 

~ 
~3 v " 0 

I" / 

T9000 DIPB 

_ :-PROCESS FOR IMAGE PROCESSING 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

Figure 6.10 Configuration P(2,2,3) 

~ 

(- ~ 0 1v " 3 
HOST 

,,7 I" / 

~ ~ 

T9000 DIPB 

_ :-PROCESS FOR IMAGE PROCESSING 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

Figure 6.11 Configuration P(2,1,2) 

HOST 
o 

DIPB 

:-PROCESS FOR IMAGE TRANSMISSION 

DIPB :-DEDICATED IMAGE PROCESSING BOARD 

Figure 6.12 Configuration P(I,O,I) 

System Performance 

Page 100 



Chapter 6 System Performance 

6.2.2 Thresholding 

The system performance when implementing the thresholding algorithm, as 

described in Section 5.4.1, is shown in Figure 6.13. Table 6.4 shows the fastest 

time that could be achieved in the different configurations. The routine for the 

thresholding algorithm is shown below. 

for (y = 0; y < y-size; y++) 
{ 

-

for (x = 0; x < x_s ize; x++) 
( 
if (image[y][xJ > edge) 

result = 255; 
else 

result = 0; 
image[y] [x] = result; 

} 

Thresholdlng 

0.4 .,...-_-::--__ ---:------------:----::--------, 

0.38 .i..~ . . . . . . . . . . . . . . . . . . . . . ~XXxic)(~ · • . • . • • • . • • • . • . • . • . 

"'.. XA)( 0.36 .• 0 "'''''",0 0 ••• 0 •••• •• 0 0 •••• 0 • • • • 0 .~x . 0 0 • • • 0 0 • • • • • • •• 

. ••• ""x 

0.34 •.•••• • .,.~.~ ••• ~.~"': •• ~: . • • • • • 0 • • • • • • • 0 • • ~~~~~,.,:x~x><· x<" · 

~ 0.32 .............. ...... . 0 0 •••• 0 • 0 • 0 • 0 • 0 • 0 ••• 0 ••• 0 • o. • 
~ ~ ~ 
'" .~ 0.3 

....... . .... 
o 0 • 0 0 0 •• 0 • 0 • 0 0 0 • 0 , 0 0 •• ' • , 0 0 0 0 •• 0 0 0 • 0 , 0 , •• ...t. •••• 0 

. ~ ~ 
B ••• I.. 
£ 0.28 •• • 

• 0 ••• 0 • 0 • 0 , 0 • 0 , •••• 0 ••• 0 ' ' ''. u ' .. 0 0 ' 0 • ,. ..... . 0 ••• , ••• . ... . ...... 
"' ... '" 0.26 •••• • •••••••• .• • • • • • • • • • • . • . • . , .••• .•. • . , ••••. 

0.24 •• • • • •• ~ •••• 0 •• 0 • 0 •••• • •• '" 0 • • 0 0 0 0 0 0 • • , •••••• 0 ..... ....... 
0.22 •••••• ! ..... f •• 0 ••••• 0 ••••••• • , ••••••••••••••••••••• ...... .. ...... ... 

... f. ..... 

0.2 -IHtHAAHtHtAAI+AA+I+AA+_f\I+fH1 __ flfI+lIflfI+lIl+AA+ ___ AAHtflfl+llAAHtl+AA+f\I+fH1f\1+fH1AAHtflfl+lll+AA+l+AA+l+AA+_1IIlfItI1 

~ ~ ~ ~ § ~ 8 ~ ~ § ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
Number of Lines Remained In The DIPB 

Figure 6.13 Thresholding Test Results 

Configurations P(3,4,5) P(3 ,2,3) P(2,2,3) P(2, 1,2) 

Processing Time (s) 0.2053 0.2056 0.2671 0.3237 

Table 6.4 The Fastest Processing Time in Thresholding 

-+- P(3.4,5) 
.. ...... · P(3.2,3) 
__ P(2,2,3) 

.. ...... · P(2,1,2) 

P(1,O,l) 
0.5656 

--~--------------------------------------------------------------
KW.Tse Page 101 



Chapter 6 System Performance 

6.2.3 Local Averaging 

The local averaging algorithm was selected to test the system performance, using 

3 x 3, 5 x 5 and 7 x 7 windows. This algorithm was described in Section 5.4.2. 

The results for each window size are shown in Figure 6.14, Figure 6.15 and 

Figure 6.16, and Table 6.5 lists the fastest time that could be achieved in the 

different configurations. The routine for local averaging with a window size of 3 

x 3 is shown below. 

#define LOCAL_A VERAGE3(x) (char) «array 1 [x,1 ]+arrayl [x]+arrayl [HI ]+array2[x.J ]+array2[x] 
+array2[H I ]+array3 [x- J ]+array3 [x]+array3[H 1 ])/9) 

y =0; 
for (x = 0; x < x_size; x++) 

{ 

} 

pix = image[y][x]; 
array2[x] = pix; 

Y = 1; 
for (x = 0; x < x_size; x++) 

{ 

pix = image[y][x]; 
,array3[x] = pix; 
} 

for (y = 2; Y < y_size; y++) 
{ 

for (x = 0; x < x_size; x++) 
{ 
array 1 [x] = array2[x]; 
array2[x] = array3[x]; 

} 
for (x = 0; x < x_s ize; x++) 

{ 

} 

pix = image[y][x]; 
array3[x] = pix; 

for (x = 0; x < x_size; x++) 
{ 
result = LOCAL_A VERAGE3(x); 
image[y][x] = result; 

} 

-
"-

I-- Configurations P(3,4,5) 
Local Averaging 3x3 0.4145 

t-Local Averaging 5x5 0.6088 
Local Averaging 7x7 0.9025 

Processing Time (seconds) 
P(3,2,3) P(2,2,3) P(2,1 ,2) 
0.4449 0.5946 0.6345 
0.6428 0.8929 0.9450 
0.9226 1.3192 1.3577 

Table 6.5 The Fastest Processing Time in Local Averaging 

KW.Tse 

P(l,O,1) 
1.1134 
1.7309 
2.5674 

Page ' ]02 



Chapter 6 System Performance 

Local Averaging 3x3 

~~~~ .. ~ 
~ .. ~ ..

- - - - - - - ~ .. -... ~- - - - - - - - - - - - -.... ~~
.. ~

~~.. Xx
- - - - - - - - - - - - - - - - - -~.. x-,(X - - -

~"". xx,><x
... x I..... . ,><

- .. ~- .. 4 - - - ,x, x-x - - - - - - - - . -
"". XX

A. 4A ~AX/XX •••

0.9

0.8

'" ~ 0.6
.. " - - - "' - - - . -

!l
~ ••• * "lIlII

0.5 -' - - - _. - " -Ill - - - - - . • • - - • - - . - • -4 ' - - -

I

0.4

••••••• mUIIlMllnu ,._ M _ ... - .-••••• • • ••••••••••

o ~ ~ m ~ M ~ ~ ~ ~ § ~ S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re ~ ~ re re re re
Number 01 Linea Remained In the DIPB

Figure 6.14 Local Averaging 3 x 3 Test Results

Local Averaging SxS

1 .6 T---------~--~--------,

1.4 . _""" - - - - • - - - - - - - - - - - - - - - - - - • - • - - - - - • - - - - - - - - - • - • -I." ••

1.2

••••• """ • It ~ ,t)it: ~

". Xx
..... Xx

". X><"
....)(>\

~ 1 .. ~ A.A "Ir x.. • •
•••• Kxx - ~ •• '. ...

]
0.8

0.6

... .J!.
••••• •••• ••••••• • •• •

.......... ! !

.­
w­•••

_.. xxl< .".
•••••••
0:

o ~ ~ ~ ~ ~ ~ ~ ~ m ~ ~ 8 ~ ~ § ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re re ~ ~
Number 01 Lln .. Remained In the DIPB

Figure 6.15 Local Averaging 5 x 5 Test Results

KW.Tse

....... P (3 .4.S)

'-11- P(3.2.3)

-.r.- P(2 .2.3)

____ P (2. I .2)

-+- P(3.4 .5)

··a- P(3.2.3)
.-..- P(2.2.3)

....... P(2. 1.2)

Page 103

Chapter 6 System Performance

Local Averaging 7x7

2.3 . ---___ -----..,--------

2.1 ~ :,. <', ~ ,.

•••• •
1.9 :. ••••••••••••••••• •• • •••••• • • ••• ••••

••••
1.7 .. " .. x'X·x. ·· ~ , v x.

I ·· , i ·»X~'

1,.5 ~ ~~ : l< .>(~)<._~ ...•.•..•.... .,. ,
m·)< x" ;:;ll
E .l. ><'x ~.
~ ... x)<~ , . Q 'f 1.3 ••• - •••• •• ••••••• •• • •••• - • • • •••• ~.·,"~~II·:~ ~ ""' ·
... '" 11

1.1 • • : . : ''' ••••••.••••••• - • . •.

•••• " •• 11
•••••• ,... .",~ii '

0.9,..... to ~

0.7 • • ••••• • • • ••••• •• ' .,.,...... - . • • , •• , • • • • , • • . • • • • ,

0.5 -Im!;_t!lHHt!lHHt!lHH------------t!lHH-t!lHHfIffitIi-------#tI+Il
§ ~ 2 ~ ~ ~ E £ ! ~ § ~ 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re ~ re ~ ~ ~

Numbe' 01 Lln •• Remained In the DIPB

Figure 6.16 Local Averaging 7 x 7 Test Results

6.2.4 Sobel Operator

-+- P(3.4.5)

.,.' P(3.2.3)
-+- P(2.2.3)
··)<- P(2. 1.2)

The system performance when implementing the Sobel operator algorithm, which

Was described in Section 5.4.3, is shown in Figure 6.17. Table 6.6 shows the

fastest time that could be achieved in the different configurations. The routine for

the Sobel operator is shown below.

#define HORIZONTAL_MASK(x) (array 1 [x- l]+(2*array2[x- l])+array3[x- l])
- (array I [H 1]+(2*array2[H 1])+array3[H 1])

#define VERTICAL_MASK(x) (array 1 [x- I]+(2*arrayl [x])+array l [x+ 1])

Y==O;
for (x == 0; x < x_s ize; x++)

{

}

pix == image[y][x];
array2[x] == pix;

Y == 1;
for (x == 0 ; x < x_size; x++)

{

}

pix == image[y] [x] ;
array3[x] == pix;

KW.Tse

- (array3[x- l]+(2*array3 [x])+array3 [x+ 1])

Page 104

Chapter 6 System PerfOlmance

for (y = 2; y < y_size; y++)
{
for (x = 0; x < x_size; x++)

{
array 1 [x] = array2[x];
array2[x] = array3[x];

}
for (x = 0; x < x_size; x++)

{

}

pix = image[y][x];
array3[x] = pix;

for (x = 0; x < x_size; x++)
(
xmask = HORIZONTAL_MASK(x);
ymask = VERTICAL_MASK(x);
if (xmask < 0)

xmask = (-1) * xmask;
if (ymask < 0)

ymask = (-1) * xmask;
greylev = xmask + ymask;
if (greylev > edge)

result = 255;
else

result = 0;
image[y][x] = result;

}

Sobel Operator

1.3 ,----,,-:----:-----,----:-------:---------:--:-:-------....,

1.2

1.1

"" ". ~ M • • " •• " ~ J '

.to." ;;.~
•• .I..

.. ,,£ ~ .. " ~ X"X: ;.t '! • ,.

".. Xx
••• x "'~

I.... "><><
.......... " ~ x ' X ,,: , 9 I." ,,)< ...

109
~ "." ;,()o(>< _" .. ""

'"
.I.""" ><XXkX

. .. .I.'.;' _ J 0.8 .-' . •• •••• lr . 11 . • 0.7 liI' !II " ••• • • • • •• • • • ••• ••••

••••••
0.6 • • • • ! r· · ····-

••••• 7 • •

•••••••••••••
0.5 .• •• •• • • ••

.I!­I!!

.8
........

§ ~ ~ ~ ~ § ~ ~ ! ~ § ~ B ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re re ~ ~
Numb., 0' Lln •• Remained in tho DlPB

Figure 6.17 Sobel Operator Test Results

KW.Tse

-.-P(3, 4,5)
- •• P(3,2,3)

......... P(2,2,3)

....-P(2,1,2)

Page 105

Chapter 6 System Performance

Configurations P(3,4,5) P(3,2,3) P(2,2,3) P(2,1,2) P(1,0,1)
Processing Time (s) 0.5356 0.5701 0.7792 0.8250 1.4526

Table 6.6 The Fastest Processing Time in Sobel Operator

6.2.5 Seam Tracking

The seam tracking algorithm, which was described in Section 5.4.4, can be

implemented in real-time in Single-T9 Mode. The performance of the system

when implementing this algorithm was tested for the configuration P(1 ,0, 1) only.

The processing time for seam tracking is related to the size of the window which

contains the laser line contour. The window must be large enough to ensure that

the area of the seam, which is being tracked, is still inside the window after one

frame time. Different window sizes were set to test the processing speed. The

width of the window was fixed at 80 pixels but the height of the window was

varied from 81 pixels to 250 pixels. Figure 6.18 shows the test results.

Seam Tracking

0.05 -,....----:---;:---:-----:;:c-------c---~-___ - ___ ____,-....,

0.045 • - • • • - - • - • • • • • • • • • • • • • • •

0.04

I
~ 0.035 , P(1 ,O, l »)

0.03 _ ••• - ••• • ••••

0.025 • • •

0.02 -ltffii_f+H+I+#«+tl _______ f+H+I+#«+tl __ #«+tl __ #«+tl ___ ___ ~

~ ~ m ~ § ~ ~ ~ § ~ § ~ ~ ! § ~ § ~ E ~ ~ ! § ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Window Height

Figure 6.18 Seam Tracking Test Results

KW.Tse Page 106

Chapter 6 System Performance

6.2.6 Conclusions

The results of thresholding, local averaging and the Sobel operator show a

common feature of a diminishing return. The diminishing return is the point

where the fastest processing speed is achieved. For applications requiring fast

processing time, the diminishing return should be found so that the system

processing power is optimised.

For the configurations P(3,4,5) and P(3,2,3), the number of transputers involved

in computation is the same, but their processing times are different. The results

show that when two more data links are added to support data transmission, they

actually reduce the processing time. In addition, at the diminishing return, the

number of image lines allocated in the dedicated image processing board in the

configuration P(3,2,3) is greater than that in the configuration P(3,4,5). For the

configurations P(2,2,3) and P(2,1,2), a similar situation occurs.

For the results of seam tracking, the processing time is roughly proportional to

the height of the window. Even if the height of the window is 200 pixels, the

processing time is still less than 40 ms. As the seam tracking algorithm can be

finished within 40 ms using the dedicated image processing board alone, it is

unnecessary. to investigate the better results, which would be obtained by

connecting additional T9000 transputers. However, for using a faster camera such

as Dalsa, which can generate more than 25 frames per second, a smaller window

should be used.

K.W.Tse Page 107

Chapter 7

Conclusions and Future Research

This research has led to the design and construction of a genenc T9000

transputer based vision system, which is able, in real-time, to capture and process

image data, and to display the resulting image. The triple-ported memory

interface was successfully designed to integrate the three functions, capturing,

processing and displaying an image, onto a single board. From the evaluation

results, it has been shown that the processing power of the single board can be

enhanced by connecting additional T9000 transputers for shared computation.

By using Altera programmable logic devices, all the necessary combinational

logic and state machines have been provided by two EPM7256EGC192-12 chips.

As a result, the dedicated image processing board contains only thirty-three

integrated circuit chips.

The results in Chapter 6 show that the processing power varied for different

system configurations and was dependent on the size of the sub-image' assigned

to the connected T9000 transputers. In order to optimise the system for a fixed

number of T9000 transputers, experiments must be performed to find the

configuration and the sub-image size for which the highest processing power is

obtained.

The image processing algorithm for seam tracking, is a good example for

highlighting the main feature of this. image processing system, since this

algorithm can be implemented in real-time in Single-T9 mode. As a matter of

fact, it is not necessary to involve more than one T9000 transputers for any

application.

-
K.W.Tse Page 108

Chapter 7 Conclusions and Future Research

The result of bidirectional transmission tests show that the dedicated image

processing board is not able to send and receive a whole image with size of 640

pixels by 512 lines simultaneously in real-time. For some real-time applications it

will be necessary to display a whole processed image, if it is the case an

additional dedicated image processing board will be required for the display

function.

The performance of the system was evaluated for a non-routed network only,

there was no !MS CI04 packet routing switch involved. Further evaluation can be

done for a routed network with the !MS CI04, so that the potential power of the

image processing system could be further explored.

The input event channels of the T9000 transputer can be used as interrupt input

pins. An interrupt approach can then be employed to synchronise the T9000

transputer with the incoming video signal. Unfortunately, this was not included in

the system due to the time restrictions on the project. This, if added at a future

date, would result in the polling approach and the interrupt approach both being

available for use, and the system performance could be re-evaluated.

At present, the processor in the dedicated image processing board is a 20 MHz

T9000 transputer with revision gamma E03, which is the slowest of the available

T9000 transputers. For future research, a faster T9000 transputer could be used to

increase the processing speed, particularly in Single-T9 mode.

Unfortunately, from the latest Internet news, the future of T9000 transputer is

uncertain, the manufacturing of this product has already been terminated by SOS·

THOMSON. If the T9000 transputer becomes obsolete, there would be no more

technical support for T9000 transputer based systems. In this case, upgrading the

present system would mean replacing the T9000 transputer by another parallel

processor. In order to avoid considerable modification in the hardware design, the

memory interface of the parallel processor must be able to support a mixed

-K.W.Tse Page 109

Chapter 7 Conclusions and Future Research

memory system, providing at least three sets of memory-control signals. Since the

TMS320C40 digital signal processor can fulfil the above criterion, this could be

used to replace the present processor.

-
K.W.Tse Page 110

References

1 Chambers S P: "TIPS: A Transputer Based Real-Time Vision System", Ph.D
Thesis, University of Liverpool, U.K.,1990, pp62.

2 Chambers S P: "TIPS: A Transputer Based Real-Time Vision System", Ph.D
Thesis, University of Liverpool, U.K.,1990.

3 Jeremy Hinton & Alan Pinder, "Transputer Hardware and System Design", Prentice
Hall, 1993, Chapter One.

4 "The T9000 Transputer Hardware Reference Manual", Inmos Ltd, Almondsbury,
Bristol, U.K.,1993.

5 "TMS320C4x User's Guide", Texas Instruments, Houston, Texas, U.S.A.,1996.

6 "Quintek QT9 Multi-Capture and Multi-Display System", Quintek Ltd.,. 1995.

7 "SMT303 User Guide", Sundance Multiprocessor Technology Ltd, 1995.

8 "SMT304 User Guide", Sundance Multiprocessor Technology Ltd, 1995.

9 "IMS B927" Data Sheet, Inmos Ltd, Almondsbury, Bristol, U.K., 1994.

10 "IMS B926" Data Sheet, Inmos Ltd, Almondsbury, Bristol, U.K., 1994.

11 "IMS B 108" Data Sheet, Inmos Ltd, Almondsbury, Bristol, U.K., 1994.

12 '.'T9000 Toolset Hardware Configuration Manual", Inmos Ltd, Almondsbury,
Bristol, U.K., 1994.

13 Martin Bolton, "Digital Systems Design with Programmable Logic", Addition­
Wesley, 1990, Chapter 6.

14 John Uffenbeck, "The 8086/8088 Family, Design, Programming, and Intefacing",
Prentice-Hall, 1987, pp319-321.

15 Robert C. Hutchison, Steven B. Just, "Programming Using the C Language",
McGraw-Hill,1988.

16 D.A. Protopapas, "Microcomputer Hardware Design", Prentice-Hall International,
1988, ppI39-140.

17 "T9000 ANSI C Toolset User Guide", Inmos Ltd, Almondsbury, Bristol, U.K.,
1994.

18 -"T9000 OCCAM 2 Toolset User Guide", Inmos Ltd, Almondsbury, Bristol, U.K.,
1994.

19 "TMS320 Family Development Support Reference Guide", Texas Instruments,
Houston, Texas, U.S.A., 1996.

20 "Raytheon Semiconductor 1994 Data Book", Raytheon, Mountain View, U.S.A.,
pp2.5-2.26. .

21 Gordon 1. King, "Beginner's Guide to colour Television", Newnes-Butterworths,
1973.

22 "MAX 7000 Programmable Logic Device Family" Data Sheet, Altera Corporation,
Bucks, England, 1996.

I<.W.Tse Page 111

References

23 "XC3000 Series Field Programmable Gate Arrays" Data Sheet, Xilinx, 1996.

24 "ELECTROSPEED" Catalogue, Hampshire, U.K., 1996, pp793.

25 "Altera Data Book", Altera Corporation, Bucks, England, June 1996, pp531-593.

26 "Development Systems Products Overview", Xilinx, 1996.

27 John Uffenbeck, "The 8086/8088 Family, Design, Programming, and Intefacing",
Prentice-Hall, 1987, pp301.

28 "Hitachi IC Memory No. 3" Data Book, Hitachi, Berkshire, U.K., 1995, pp136-142.

29 "Hitachi IC Memory No. 3" Data Book, Hitachi, Berkshire, U.K., 1995, pp681-703.

30 "Memory ICs Data Book", Winbond Electronics Corporation, Taipei, Taiwan, 1994,
pp83-89.

31 "LM1881 Video Sync Separator" Data Sheet, National Semiconductor Corporation,
1986.

32 "Bt481A RAMDAC" Data Sheet, Brooktree Corporation, San Diego, U.S.A.,1993.

33 "The Transputer Data Book", Third Edition, Inmos Ltd, Almondsbury, Bristol,
1992, pp71-396.

34 "The Transputer Data Book", Third Edition, Inmos Ltd, Almondsbury, Bristol,
1992, pp35-36.

35 "Networks, Routers and Transputers: Function, Performance, and Applications",
Inmos Ltd, Almondsbury, Bristol, 1993, pp39-46.

36 "41MV, 41MW, and 41MX Dual Differential Transceiver Circuits" Data Sheet,
AT &T Microelectronics, 1993.

37 "IMS B 108 Installation and User Manual", Inmos Ltd, Almondsbury, Bristol, 1994,
pp33-39.

38 Jeremy Hinton & Alan Pinder, "Transputer Hardware and System Design", Prentice
Hall, 1993, ppI74-179.

39 "MAX+PLUS 11 AHDL", Altera Corporation, Bucks, England, 1994.

40 "T9000 Toolset Hardware Configuration Manual", Inmos Ltd, Almondsbury,
Bristol, 1994, ppI55-173.

41 "Raytheon Semiconductor 1994 Data Book", Raytheon, Mountain View, U.S.A.,
_ pp2.11-2.12.

42 INMOS Limited, "Occam 2 Reference Manual", Prentice Hall International, 1988.

43 "Networks, Routers and Transputers: Function, Performance, and Applications",
Inmos Ltd, Almondsbury, Bristol, 1993, pp46-54.

44 A. Rosenfeld and A.C. Kak, "Digital Picture Processing", Academic Press, 1976,
pp258-275.

45 R.C. Gonzalez & P. Wintz, "Digital Image Processing", Second Edition, Addison­
Wesley, 1987, ppI61-162.

46 R.C. Gonzalez & P. Wintz, "Digital Image Processing", Second Edition, Addison­
Wesley, 1987, pp336-338.

-
K.W.Tse Page 112

References

47 J.S. Smith, K.J. Howson, R.J. Chinneck and J. Lucas, "Vision systems for high
speed seam tracking" , Sixth International Conference, Computer Technology in
Welding, Lanaken, Belgium, 9-12 June 1996, Paper 46.

48 A. Rosenfeld and A.C. Kak, "Digital Picture Processing", Academic Press, 1976,
pp256-258.

49 "A server Programmers' Guide", Inmos Ltd, Almondsbury, Bristol, 1994, pp7-14.

-I<.W.Tse Page 113

Appendix A - The Schematic Diagram of the T9000 Transputer
Adaptor Board

CONNECTOR T9000 PROCESSOR

Top Level of the Hierarchy Display

_.
~.

-n fffiTn ~ ~~~~ ...
:::. ... '"' ... ~.yo~~~~~ I~ :::v._.

pp!. ~~~~~::::::::
T .tt-- :;:~:;~ ...

K.W.Tse

i

IMS T91'!1'!0
21218 p i.n cfu-l!Imic
l eaded chip carrier
cavi.ty down
top V iaw

T9000 Processor

RESET LINK

DSLINK

11

Page 114

Appendix A The Schematic Diagram of the T9000 Transputer Adaptor Board

- >- ..., r-
e--

r--=-=t-ProcC l ockOu t
>---- I-« >0-I- D0 NMEMP53 NMEMCA53

D1 D2 NMEMR~ NMEMP52
D3 D4 NMEMCA52 NMEMRA52
D5 D6 A3 1 A30
D7 D8 A29 -- A28
D9 D10 A27 A26
D1 1 D12 A25 A24
D13 D14 A 3 -- ><-- A22

15 D16 A~1 A20
D17 D18 A19 A18
D19 D20 A17 A16
D2 1 I- A15 A14
D D23 A 3 A12
D 4 D25 A1 1 A10
D 6 D27 A A8
D28 D29 A7 A6
D30 D3 1 AS A4

E03 :1' A2
E 2 E02 NMEMWRB2
E 11 E0 1 13- ~8 1 ><-- NMEMWRB0
E I 0 E00 13- A50 NMEMCA50
Rese t NMEM800TCE 13- 50 NMEMRA51

_MemReo MemGranted
: MSTROBE

NMEMPS1
MemReoln NMEMRF Me mWa i t

NRESETOUT
'---~ I- NRESETACKOUT 13 NRE ~ET IN

'-- I--« I- NRESETACKIN

WINGC~ -~ WINGC~ -~ - -

Connectors

~
I"""''''''

'01 W!ltlClJTI'llJ5

DI'

v"
HAf5fTWTIoI llrtlS

'El

m g;TACIC(r.a.I ' tM;

~
'NO

'"
NAfSfTACl'IHI'l.U5

'"
NAESflAClQ.mlltilS

Reset Links

KW.Tse Page 11 5

Appendix A The Schematic Diagram of the T9000 Transputer Adaptor Board

LIDJ eL IDe

LOO] CLone
LOS3 CLOS0

LIS3 CL lsa

LID2 CLIDI

LOD2 CLODI

LOS2 CLOS 1

L I 52 el lS!

L I Dl

LODI

LOS1

LIS1

LIne
LODe

Lose
LlS0

Hierarchical Blocks of DS Links

'01 RII'

'" fill ·

'u 1101'

'" HIWV 001-

/El 002-

GIlD 1101'

DI1 A12-

'" A12 ·

CLinkO

K.W.Tse Page 116 ,

Appendix A The Schematic Diagram of the T9000 Transputer Adaptor Board

~
r""''''''

"'"
All·

.11 RII ·

V" DDI'

/El Hlt.IV DOI-

Itl DD'· ... DOl t
7

DU RIl-

"'" RU'

CLinkl

ROI RII-
OWTPl..U5 I

.11 All-

V" 101'
J)WHUNUS . B

IEI HUN DOt -

'" "". OL/TWIt«J5 . 1

GN. "".
D" RI2 -

;tlJTPl~ I

"'" PIn·
mB IISWD2K2

Data Link 0

KW.Tse Page 117

Appendix A

~ res .. "".,

'01 RII'

'" RII ·

V" DOl.

I El JWN DOl ·

'"
"NO

'"
'01

UP.'--___ ---j 'Ill
"""'--- ----j '"

l E!

'" 00

-'-------j '"
>='---- - -j ""

KW.Tse

DO' ·

DO"

R12 -

RI1'

The Schematic Diagram of the T9000 Transputer Adaptor Board

RI RSIr4I2IC2

DOUlPlUS

GOOnmt./5

runmlJ5

50UTPLUS
""N

SINUINtJi

SINPLU!i

Data Link 1

Data Link 2

Page 118

Appendix A The Schematic Diagram of the T9000 Transputer Adaptor Board

112SlISt.lD2K2

ROI Al l .

,,, All -

y" DO"

'" HUrN DOl-

IEl D02-

7
,., D02 -

OIl R12 -

'01 Rllt

Data Link 3

KW.Tse Page 11 9

Appendix B - The Altera Design Files

MAX+plus 116.1 File: MAINVC.GDF Date: 03/29/9710:13:10 Page: 1

, . . , , , , , , , . . . , , . , . . o .. ~ . ';:.::o;;'::i~~'~' " . ' :' .. : .. ~ .. '.' . '.' . '.' . '.' , .. '.' . '.' . '.' . ' .' , . . '.' . '. ' .

•• • "1~~=:::=':, .~ . IISlil~·:'·:~f::·:·." ' ,r,"--rLLL .' : " ~ ',
•• , ••• ' ••• ' ••• ' ••• ' •••• ' __ ~OL .~ •• ' •• •••• , •• , •• •• •• ••••• • ' • • • , •• , ••• ' •• • ' • •

: .: •• ~ .. $e- ,cl~:'"~ ::8~ H · .. ~,~ , ;, , ; '. ' ••• ;:~.' ' ,.~:.,'
. -\ - . . - - ."" _>~:~'.:;~~~~~i -:- ~. - .

. . , . . , . . , , ,
• • ~ - - - , - • - , ' • ' . ' - - . ' • • I' - - ; • • ~ - • " - • - , - - - , ' - - - - • .:: • - "e""' - Q~ - - :'·.C;:l:~.~:I-" '~ I - . ' .: .. . ,' - .. - - " -' ,

" .• : •• 1;;; .;:;';; .• : •• ' •••••••••• : •• ~ ~' :t: '." " ••• : ••.•• : ••••••
' - - - - - _ •• _. I

I , ' "

' . , • J • • " • _ _, _ • . ' . - - I. • - I. _ _ ~ _ _ ! _ _ .' _ _ _ ' . _ . ' . _ . I . _ • I . _ • 1 • _ l _ _ . , • _ . ' . _ .' _ • • I. • _ '. • _ ! . _ . ' _ _ . ' • .

, • • , , , • , , , , • , I

_ . - ~ - - -' - - .' •• - - - - •• - " • • ~ •• ~ - • .' • •• ' - • , ' ••• I . __ " __ ~ __ : __ .' _ _ . ' _ •• I •• • ' • •• I ••• ! . . : . _ . ' ..
• • • , , I • , • • • • , , , I • I

-.. : . - .' - - , ' . . -' .. . ' , . - " - - : . - : .. .' . .. ' - .. ' ... ' ... ' .. . : .. : .. .' ... ' . - . ' ... '. - - '- . - : .. .' . - .' . -
, , , , ' , , , , , , , , , , , , " ".
, , , , ' • , , , , , , , , , , I ' , , • , ,

- . - ; . . " . . " - .. ,' . . " - . • ' .. i .. ; .. " ' . ' , .. - , ' - ' , - .. .- .. ; .. " . . " - . ' . ' . ' , ' .. " .. .- " . _ ' ,' .

, , , , ' , , , , , , , , , , , , . ,
- •• , •• ', " • ', " • " , ' •• " " • ,- • • r •• , •• ", " • -,' • -,- • " , ' " - I .• 'I' • ',' - 't ' • ',' • • " •• f • • , - " "I' " ', ' •

Top Level of the Hierarchy Display (Part One)

-
KW.Tse Page 120

Appendix B The Altera Design Files

MAX+plus 11 6. 1 File: MAINVC.GDF Date: 03/29/97 10:32:08 Page: 1

, , . , . , , , . , , ., ,,' , ...,'
' . • ~ • • ", • • ", ' - - I' • ',' • • .. • • r • • j • • " • • ',' • ',' • • .' • • .. • • i . . " . • '.' • ' . ' • '.' • '. - • • " . - j • • '. • • " • •

·· ···:··········_······· ············· M· •• · I_:t~~- •• ~~'; ••.••. .• :; ..•• = j~' .•• . · .•• ~ •. i:;~ . ~ .. ;~;:~ ' . :· •. · •••.

. . : _.,: "':=::-~'.~ :::: ... : ... : ... :- .. : ... : ... : .. -: . .. : . .. : ... :- .. : . . . ; ... : .. -: ..

~::;:~~ ~ ,~ .. : .. ; ~~ . ';~-. " '. ~~t;:,::: .. , .. ' : '§:;~:' -:-:.I~~~~~~~~:t::::::;::: ·· .: ... ' ... : .. ; ... : ..
r- - . ~ . - .: . . .: - - '. V'- • . • - , - . ' ,- " -~ • r -: '.' • -, - • - . - • - ,- - - f - - " • • ' . • • ' .' • ',' • • , - - • " • • T • • " • • " • -

, , , , ., "

-.. : ... : ~~.: ;:: ~.::~:.: :·:~l~~.;·~.~ :.,':' .. : ... : .. -:'~~~i;/~; ' . ·~~~~;~'~ · ·.:·r :. '~'~J~~':';;"':' .
.... . l ' .", •• ",'. ', ' • "," •• ,' •• I •• '\' - '," ' ,' • ',' • '," - • ,"' • I •• '\ •• " •• "," • '," • " •• r •• 1" '," •

Top Level of the Hierarchy Display (Part Two)

----~---I<.W.Tse Page 121

Appendix B The Altera Design Fi les

MAX+plu5 11 6.1 Fi le: DPORT.GDF Date: 03/12/97 12:54:20 Page: 1

.oc .ec

IQ ••

000.,. [7.0]

fo" __

_:;iI~ _ • _ • • _ ••

~" - -
• , clr-ado l

,7

"'000 ["" . . 0]

t:> ... U d [':!" .. O]

, (:.1 .. 0]

00 .. 0. [... . 0]

0 1""''''Y1 ('0 .0)

,. ,oc , ' 00 ,"

-,-

1-~ ___ ""::1'l~U;=::,"~:::.':'_<:T=.~=~~:.~ ~;'~rt:{J.;.~~~i. ~: . _
1-'----.;,'61'l1L"'"~~::.c.-<_r.==-~- t:.9 ~~.3 _1 :..' c:?J ___ •

I-.--___ "'~:;;~:'!"n!.!!r~"-_--<=.-=_-~.- i~!o~;~f~.~;;.] -... -

~: i ~ ~:~x~t~ ~~.2'!:~~:~:~- ; --:--------;---;-: -lcl·~··:=-· · ~.~ .. :!!!!oO!!:!.'.'"=:::'h J---:--"~=:~ :.ru~:=:~~~~",-~ -

."

>Q

--~
Sub-design Block of DPORT

----~--I<.W.Tse Page 122

Appendix B The Altera Design Fi les

MAX+plus 11 6.1 File: TRIDUAL 1.GDF Date : 03/13/97 10:21 :01 Page: 1

... : .. : ' , ': ' .. :' , ':' , -:' , ' ~111[i; ~::~:t";'" : r : ' , ': ' , ':' , ':' , ':' , ':- ' ':' , ':' , , :' , , : ' , : ' , : ' ,
, , ~ , ' ~ ~.~~~ ' ":' '.~~::::::~= .,~ ~ : ' ,,:L ,~,., .. il':": ':" ':' , ':' , ':' , ':' , ,~ , , ~ ,. :' ,

. , , " - - - - ... ' . . , " "" .
; - - ~ - - -. - - -, - - -, - - - , - - -, - - - " - - " - - ,- . - ~ - - ~ - - -, - - " - - -, - - " - - -, - - -, - - - " - - " - . " - - ~ - - -, - .

! • . : ••. ' . _. ' ... ' ... ' .. - - , ::::::::! .. ! - - . ' - - . ' - - -'. - -' - - -' - - -' - - - " - - '. - . ~ - . ! - - : . -. . ' . "" ' "
, , . ~ - . . - - .

.• •.. _, -" •. .• , f-;-,o~,.,.,....,-,. ... : . ~;;,;;;;,;:. : I::.·' !,'''';: ... I : - . - ! . - ~ - . .' - - . ' - - ,'- - - - - -. ., - - - - , ,
,. , ,',"., .. - . - _. _ --.. - : - . ,'- - .' - _ .' . - - - - - - - - - - - - - . .. '...,' , "

-
Sub-design Block of TRIDUALl

---~--I<.W.Tse Page 123

Appendix B The Altera Design Files

MAX+plus 116,1 File: DALATCH ,GDF Date: 03/13/97 10:23 :19 Page : 1

,'0 ,_a ,-a ,.0 ,100 " .0

Bbitd ff Bbltdff
' Q • ~("7 • • o l r " q[?.O) J <1 ['7 • . 0]

00

,;" .. - - . - p - - - ~ -

r J - - - - - .' - - - - -

Bbitd ff " ~q •

d [' o l . [' .. 0] r---
~ •. "" ' J : :

';a _ __ _ _

r - - - - • - - - - - - -
Bblt.dr r ,

~:t[... 7 .. 0 J .,[7 . . 0] I. :
'~ - - - - - Bbl l 4 l o1

.... q ____ J _____ .' __ • _ - .'- L.--.....;-- .. v •• .3 r ? . 0 1

0 ['7 •. 0)

>Q

Sub-design Block of DALA TCH

---I<.W.Tse Page 124

Appendix B The Altera Design Files

MAX+plus 116.1 File : ADLATCH.GDF Date: 03/13/97 10:40:43 Page : 1

.60 ,00 ,00

IQ . ::; -.O·.d~-~?·~:~~_'-_- ~~~-=·.='>-' .. ;",,~:!!:"-"U:!.T.:"'';'' _-, __ ~-;.;C(:;7:::.~;;~~i'"td"::;':;7:::.;;0;-'ll""';' ____ ';"'-___ "':"' ___ ":~~~"'u"'~·~_.~';"·T!i.·=.=· ::>.- ~~_~;~r ~ !-. ~2_~:i .- .- .-

,J
CH-Jt.3

PO"

out2

r - - • - - - - - - - - ,

<>, 1

. r.~:"B~b;""lt",d:ff;:;--;;;-l-"';"' ___ "';' ____ ';"'-___ ~'n?,i·";"T",_"'U'"ITC· ::'::>- '. - . - . - '. - ..
~:,[... 7 c] n [70] I ' .'9 _ _a~<?d(:5 .. B) _

I
,:;Jj - -

.q - - - -

~ - - ~~it~d';f - ,'0 " -' ~ I ~. -·-r.;(·(-:;~~· ~;b~I"'t"'d:ff~:;;;-l-":"'_~'O~U"'T:e~';'U'"lT'=::>
: I:~: ·· O J Q("~ J:1=:t:.: .01 ... [7 .. 0J I " . .:' : .:O~,?dJ? .Or] "" LO •

,~ - '~ -

10

---~
Sub-design Block of ADLATCH

----~~---KW.Tse Page 125

Appendix B The Altera Design Files

MAX+plus 116,1 File: DALATCH4_GDF Date : 03/13/97 10:42:04 Page : 1

,3 0 ,0 0 ,00 ,7 ,00 ,0 0

4bltdff 4bitdff

, 10 [3 .. 0]

~""' '''

q(,:, . 0) I <:I (::a •• o] q [::a . o) ~ -

P'> - - - -

4bit4 to '
q L---.....- ""00 • .-.:. f 3 .. 0]

... 101:>1.-.::1. [3 ., 0] ... '
_ =Y~1!1.':""~f-....;.--r;;-;~4:;;;"b!.!lt",d~f~f ;::-;;;-l-~'-;'---_ -_ -_ -_ -_-';'C"-1-1 1 .. 0;> '. , (::' .. 0] ; , ~n·lb·biob C .3· .. b 1 - -' t · · ,N ,.' d [3 .. 0] ClC3.0J I lobl . 0 [3.0J

- •• - -~ --.-.".- 'w-'; -r- ;--::::-)-'-r,:,"","-",u::-.~-,-"",,--:-l.!.!~ ____ ---.J , 01
~Q _ " ,',!' - - - - - . r~ _ - _ _ 1 • ';'0. ~ 00

0 ... , [3, .0]

.3 J

q . - - •

?q

Sub-design Block of DALATCH4

----:~---k.W.Tse Page 126

AppendixB The Altera Design Files

MAX+plus 11 6.1 File: ADCDAC1 .GDF Date: 03/1 3/9710:44:04 Page: 1

,30 ,0 ,00 ,0 ,0 , 1 1 0

1 Q • • • _ ~ • _ • _ _ .: _ _ _ _ _ _: _ • _ • _ _: _ _ _ _ _ _ :. _ _ _ _ _ ~ _ _ _ _ _ . : _ _ • _ • .: _ • • • • _ : _ _ _ _ _ _ :. • • • • _ ~ _ _ _ • _

, ,
Q - - - - "I - - - - - " - - - - - - , - - - • - - " • - - - - I' - - - - - - - - - - - - - • - • - -, - - - - • - " - - - - - I' - - - - - 1 - •• - -

Bb2to 1

d~.~.~.i<tl? ~) .:.: .: .: .:~;:~ : : . [7.0] I : ,,,,frp,,, ' .. , , . '
, 4 __ ad~l7 .. ~} __ . __ . _ : b [7 .. 0] ou t[7 .. o1 I ~ . _ . ___ ~t"..8 1 .a-pI~ .. oJ _' ,

~Q •••• : •••••• : ••••• • : •••••• ' ••• r···'~-·~~ ~ ~ . : ... ·f·· ··· ·f·· ····· ····· ···· ··
, !

, ,
.... q - - - - J _____ .' _ _ - - - - ' - - - - - - '. - - - - - ~DftE - - - r

r'. - - t9dO .'. - - - :.": • oPRNo
.' C' '=' r" -I 0lelJl"",-...!; _ __ -'-!>
~:;e~_~d~~ ~' ~- ~ :- ~-I~ ~ ENA RN

- - ' . , . - - - :. - - - - -
. l1'I.irwcORl I

'~~!O~'~l

Q - - - - ~ - - - • - . : . - • - - -: - - - - - - : - - - - • - :. - - - - - ~ - - - - - .: - - - - - - - - - - - -: - - - - - - :- - - - - • ; - • •••

'Q ' . . - .. ", - - - - - " - - - - - ' ,' - - - -

Suh-design Block of ADCDACl

----~~=---KW.Tse Page 127

Appendix B The Altera Design Files

MAX+plus 11 6,1 File: REGCS1 ,GDF Date : 03/13/9710:53 :09 Page: 1

,0 0 ,- ,- ,GO , l OO

. .
", ' . - - - - , - . - - - ',' - - - _. - - - _. - - --, . . , ,

. -, - - - - . ',' . - . - ' , ' - . - . - .. lQ _ __ _

Q - • - - ~ - - - - - .: - • - •• -: ••• - - - :- •• - • - ~ - •

~Q •• • - : ~- - .

4 Q __ • _

, .
. - - - - ' ,' - - - . ' ,' - - - , .

7'Q .

-
Sub-design Block of REGCSl

k.W.Tse Page 128

Appendix B The Altera Design Files

MAX+plus 11 6.1 File: TDMCSIG .GDF Date: 03/13/97 10:54:33 Page: 1

----- -~~=r=:t ~ ::,.,=:",,::::-_o, r-I : : : ~S . _ . _ .r~ _____ _
" - p~-,-

: ... - - - -, - - - - r '

. - ... - - - . - - -

Sub-design Block of TDMCSIG

K.W.Tse Page]29

Appendix B The Altera Design Files

MAX+plus 11 6.1 File: DELAYBOX.GDF Date : 03/13/97 10:55:33 Page: 1

,'u ,20 ,0 ,00 ,00 ,0 0 ."

~ .• •• • -, ••• - . ·:",':"""~ .. u,-,,'\,,,,;'!.Olt ... i-,-:'_' _._._.-<:'-::~.- :" -':g-Yl ~y'lt; I:~ ' - .. - ':- - :" . . - .. :
, , .

AQ •• •• ; ••• ••• : •• •

:~;~~R~Y~tb~;~tO~: ___ -,:_::~~.'~:-_~:9~u~\~o~u~tb~;~tOL, ___

"Q : . I I , ••

• ', ' •• • • ':" ••••• :" • •• - - ~9YfP'yt bJH3 -g-' ... :P'trp~;r" ~ ~ix~bI 'i3 .:0(~ ...

>Q -

Sub.design Block of DEL A YBOX

Page 130
---~~---KW.Tse

Appendix B The Altera Design Fi les

MAX+plus 116,1 File: ADDCTRL4.GDF Date : 03/13/97 10:57:06 Page: 1

.-~ ~.~.~;:.;~.~.:. :2:' ~'''''~'7-:iij~=i:j=:=;f~--'=~=J,--~'''''''It:::':>
r T: - - •• - - -,

f-'-~=""C.=.:)- -~~;~~~~~ ~ -: :
. .. loo

-
Sub-design Block of ADDCTRL4

----~~--KW.Tse Page 131

Appendix B The Altera Design Files

MAX+plus 116.1 File: ADDRAM4.GDF Date : 03/13/97 10:58:24 Page: 1

···_····t.

, O d D

0 .

Suh-design Block of ADDRAM4

----~~~---KW.Tse Page 132

Appendix B The Altera Design Files

MAX+plus 11 6,1 File : VHLORD,GDF Date : 03/13/97 11 :01 :13 Page: 1

,0 ,ao ,"0 ,70 ,"0 ,00 ,'00

IQ •• _ v lord

'''l , , , ·~W ----- r -----.,. -.

Q , , , ·ot..,-p';',-

~ ~
' :~ ... " : h_~oto_y olld h""""ol!!lte r"

"'_Olo_"'ollo

, -o U,..:.~- - • - -

, , , , ,
'" ',' ' . Y." "-' h .tort ' L __ :::"~=,~u.:C':E.[~".:.':, 02l-.t--:-:-:--:,-:-' ,;1'~~p",:=,.":,,_:", .. -~"t-:c':;' ?-. -. _~~-t.~~;~~i?·. :0) _ --aQ , , , ,

7Q

Sub-design Block of VHLORD

---~:7~--KW.Tse Page 133

Appendix B

MAX+plus 116,1 File : HMASTER.GDF Date: 03/13/9711 :02:13 Page: 1

,' 0

' Q -

, - .' 'p:.c C k- - .' - IN""-VT '

r".- ." r-. -. at-- .- .- .- IN"'-U~ 1

i"Q _ ,~ - -,- - - - - -.- - - -, _Ii-' _r---:-f----;-:---l 0-.-

Q -

-

fir- i:>ct'l l

j Q!' 1)(I

- lisync - - ' N~-U-t .
,$. - - - - - ~y,-,,,'-,-,-- ------,.------ll-..,.--l

f or h . tort

,.0 ,_0 ,70

hcn t l!l too

,eo

Sub-design Block of HMASTER

The Altera Design Files

,00 ,,00 " ' 0

----::--KW.Tse Page 134

Appendix B The Altera Design Files

MAX+plus " 6,1 File : VLORD.GDF Date: 03/13/9711 :03 :19 Page: 1

,' 0 , 0 ,0 0 ,0 0 ,0 0 ,"

, , . , . ,
I Q •• - '~3;--." ' pxck" t::::::),,~.~u_-t ; " bKCl< " • " - - - - - : - . ••• -, - • ••• "," • - • - - " - - - • - .. - - - - • ~ •••••

. ,
"'-q ••• • J • __ • •• ' ••• _ • • ' ••• _ • _ ~ • • • _ • ~ ••• __ J • ••••• ' - ••• • _' •• • ••• ' •••••• ' •••• • • I _ ••••

1 ve nt' I . , .

'c<a::""r:coJ~'tLQ ---'-'o-xc-k--:yl :~".. . " ... :~.: . 0] I: 'O:\~,:~: ~~":-~_"' t=::) .~;<;;'~n·ti.7·. _oj - - -
: . p .. ., .. ' ,"- '-""'.. '

- - . :- - . - ' - - .

IIIIQ _ • _ • .' • ___ •• ' •• __ •• ' ••• _ •• : _ •• _ • : _ •••• ~ ••• _ • .' •••••••••• __ ' _ • _ • _ • ' •••••• : • •••• , , . , . , ...
~~_ . . ' 'f'>!".c.- J::::::? ._N~·U.' :PXCk : I ::::"P ~ ':.:'. I : 'Qpg bl g

".0 .. _ .. _ ...
. - .. " - - ... -,- .. - . - ,-

Suh-design Block of VLORD

----~~=---KW.Tse Page 135

Appendix B The Altera Design Files

MAX+plus 11 6.1 File : ONEPULSE.GDF Date : 03/13/97 11 :04:11 Page: 1

,'0 •• 0 ,eo ,eu .' 0 .' 'u

1 Q • _ • _ ~ _ • ____ : __ • _ _ .: __ • ___ : ______ : _ ____ • ____ _ ____________ • ______ • :. ___ •• ~ _ • __ _

~Q •••• ; •••••• : • • ••••••••••••••• • •• ~ •• rc:' . .. :•..•......•......•...... :

Q •• '.'.~.'.'.'.'.'.-:".'.,~-','.'~: :,.:. ~~. ~ 1· I~y~ "., '~Pr0 a ,
,7 _ ; _ px~ __ • ___ - . , . ' Etu. :

, , ' , , ClR ,
q _ _ _ _ J _ _ • _ _ .' . _ _ _ _ _, _ _ _ _ ,_ ~ t ____ _

• I ' r~I~O_ c~ .. _ '
. , ' ,-;-'-->---,'-l--+-~--l

, , I : : :
.... • '~oF~:~~~~ ' : ':',~ '.".--: '~.' .- ... ;,,~< : : : '.n?~? ': ':':':

• , EHA
• , Cl.RN I •

--- -0- J __ ,2 ____ __ ___ _ .' ••• _ • ,' •••• __ '. _ _ • __ J ___ • _

1~ ~~ c:'8 ~

~Q ••• - ~ - • - • - ... L--'---_-'-------.J

, . ' , '"

rQ
•••• c : : : : c : :- : : ;

~Q - - - - - - ', ' . - - - -,- .

--~
Sub.design Block of ONE PULSE

----~~---I<..W,Tse Page 136

Appendix B The Altera Design Files

MAX+plu5 11 6 ,1 File : GOODFID,GDF Date : 03/13/97 11 :05:22 Page: 1

, ' 0 ,' 0 ,~O ,00 ,00 ,0 0 ,QO

1Q ' , , . " "
., - - - • - ' ,' •••• ' , ' - - - - - ,- •• - - -.- - - _ • • : - - - _. ' , - - - - - ', ' - • - • - ,- - - - - ''- - • - - - 7 • - - - •

~Q •••• ~ ••• • • • : •• ••• • : •• • • , . : • • • • • • : ••••• • ~ • :2~ &: ' . . : :.

f'Q : •.... : : : :,.,,1 '
_ : :.Jdl S; ~f-,' .c-.~ •. - .-+-.-.""".. • • • • • ••• • • • • ••• • . • . . ••• ••••• • ••

'Q

Q

--­l<.W,Tse

•• - • - - -It oR. • " - - . ,

~"- .· . - ' tid - " -- -~lIT: · ~90~)ci ·-- .
C=~~----~----~----~------P: . , : ~ ~ .

, . , . , ' . - - - . - - - - - - - - - - - - - . - - - _ . . - - - - - - - - .. - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - .. , " . ,

Sub-design Block of GOODFID

Page 137

Appendix B The Altera Design Files

MAX+plus 11 6.1 File : MEMI04.GDF Date : 03/13/97 11 :06:50 Page: 1

~". - .

~ij!l~IE~~:~~~·.~.~. j!~l~l~l~!~' ==

ro

0.

---­KW.Tse

. .

-~;~:~~ :~:;ES~~~~o~ --' -
Q , _. ___ ~"='!.a~._':'~t'q;-, _ •• 1

, __ • _ •• ~n.;::a_o:' c:!!'''!p __ ...
_ ,. .. .,; _. _. _ ~ ~o~_,:,c;:! -tp __ ... __ , •
~. ___ ,.'!.!t....;.r .. .?~._t a_

.... _ ,,.'!!_.t...,,ln.t_!O _ .

~ .. ,
. -:-;:-- .. .

'----:-- .. .
~f.;""' • .J'>-' __ <;c'a~o_C?_ • • '
~ ._ •• <:'!"I!' C!"!.. __ '

. J4:,:. -_':::;::~~f~;Q)~ ~
• _ d ~c_n.Vf"" • • _

" _ __ ~o~_n-,·_d _ _ . _

..... ,.". _"'!'"_""!I_"'.t_a~c __ _ . ..

Sub-design Block of MEMI04

Page 138

Appendix B The Altera Design Files

MAX+plus 11 6.1 File : FRAMSYNC.GDF Date : 03/13/97 11 :07:50 Page: 1

,'0 .~ "
.00 . '0 .00 .' ' 0

1 Q •••• ~ • ____ .: ______ : . ___ • _ :. ___ •• : __ • _ •• ~ • _ ••• .: ______ : ______ : ______ :. _ • •• • ; • • _ ••

PQ - - . - ~ - - - - .. : - - - .. _: - - - - - - :. - - - - - :. - - - - - ~ - - - - - " - - - - - " - - - - - . " - - - - -

, , . - - - - - - - - - -
,is_lmmeaync =>--,"M-!-' --~--~--~---,

!;oQ . , •• : .' .' " " .' .~ . ' . ' . ' . . . ' .:, . , . , . : ..•... ~ . , , .. : .

good lid",. , ' 'on;' . . :'rRJ.- , . . . , • , ,
~q - . __ ~:. ~- _ ~- _ ~-~!~~_ ~-_~- . ~' . ~- _ ~-~_~ _______ ~ ____ ~ _ . __ _ Jt_V: __ . _~.,.o.'''.' _~ _~_'. -.' '-"< _ ... :. __ . _ . : __ . _ .

, , " ..

Q
.• 'NCi12"""

,~ • ... hPOn···
L~.:,-l' IJ ;o-----:----j,i'".~.'_:.~.::::;.~. !ra~8_S'f!'C _ .. _

/,Q •••• ; •• , • , , : ••• , • ,: •• ••• , :. ' , ••• :. , • ' .• ; .•••• " • , •.• ' , ' •.••• :- ••••• : •••••. : •••••

>Q

-
Sub-design Block of FRAMSYNC

----~~~--------------------------------------KW.Tse Page 139

Appendix B The Altera Design Files

(to synchronise the pixel multiplexer and demultiplexer to the system state machine)
SUB DESIGN clradal
(

reset, pxck : INPUT;
c1r_adlatch, clr_dalatch : OUTPUT;

)

VARIABLE
ss: MACHINE WITH STATES (sO, sI, s2, s3, s4, s5, s6, s7, s8, s9, s1O);
c1r_adlatchd, clcdalatchd : NODE;

BEGIN
sS.clk = pxck;
sS.reset = reset;
clr_ad latch = DFF(clr_adlatchd, pxck, VCC, YCC);
c1r_dalatch = DFF(clr_dalatchd, pxck, VCC, VCC);

CASE ss IS

% time division multiplexing to access the buffers and overlay rams %
% this state machine is meaningful only when both v_data and h_data are valid %

WHEN sO => % first half time of adc %
clr_adlatchd = b"O";
clr_dalatchd = b"O";
ss = s I;

WHEN sI => % second half time of adc %
clr_adlatchd = b"O";
clr_dalatchd = b"O";
ss = s2;

WHEN s2 => % first half time of t9000 %
clr_adlatchd = b"O";
clr_dalatchd = b" I" ;
ss = s3;

WHEN s3 => % second half time of t9000 %
clr_ad latchd = b"O";
clr_dalatchd = b" I ";
ss = s4;

WHEN s4 => % frist half time of dac %
clr_adlatchd = b"O";
clr_dalatchd = b"t ";
ss = s5;

WHEN s5 => % second half time of dac %
clr_adlatchd = b"O";
c1r_dalatchd = b"I";
ss = s6;

WHEN s6 => % first half time of t9000 %
clr_adlatchd = b"O";
c lr_dalatchd = b"O";
ss = s7;

WHEN s7 => % second half time of t9000 %
clr_adlatchd = b"O";

---~~---K.W.Tse Page 140

Appendix B

clr_dalatchd = b"O";
ss = s8;

WHENs8 =>
clr_adlatchd = b" I ";
elcdalatchd = b"O" ;
ss = s9;

WHEN s9=>
clcadlatchd = b" I ";
clr_dalatchd = b"O";
ss = s10;

WHENsIO=>
clr_adlatchd = b"O";
elr_dalatchd = b"O";
ss=s lO;

WHEN OTHERS =>
elr_adlatchd = b"O";
clr_dalatchd = b"O";
ss=s10;

END CASE;
END;

(8·bit D.type flipflop)
SUBDESIGN 8bitdff
(

d[7 .. 0] , elk : INPUT;
q[7 .. 0] : OUTPUT;

)

VARIABLE
q[7 .. 0] : DFF; % D type flip-flop %

BEGIN
q[].clrn = VCC;
q[].prn = VCC;
q[].clk = clk;
q[] = d[];

END;

(2·bit counter)
SUBDESIGN 2bitcnt
(

elk, elr : INPUT;
q[1..0] : OUTPUT;

)

VARIABLE
eounter[1 .. 0] : DFF;

BEGIN
eounter[].elk = clk;
eounter[].clrn = !clr;
cOunter[].d = counter[].q + I ;
q[] = counter[];

END;

The Altera Design Files

---~---
KW.Tse Page 141

Appendix B

(8-bit 4-channel-to-l-channel multiplexer)
SUB DESIGN 8bit4tol
(

)

byte3 [7 .. 0], byte2[7 .. 0] , bytel [7 .. 0] , byteO[7 .. 0], sell, selO : INPUT;
out[7 .. 0] : OUTPUT;

BEGIN
CASE (sell, selO) IS

WHEN (0,0) => out[] = byteO[];
WHEN (0, I) => out[] = bytel [];
WHEN (I, 0) => out[] = byte2[];
WHEN (1, I) => out[] = byte3 [];

END CASE;
END;

(2-line-to-4-line decoder)
SUBDESIGN 2decode4
(

code[l..O] : INPUT;
out[3 .. 0] : OUTPUT;

)

BEGIN
CASE code[] IS

WHEN 0 => out[] = B"OOOI ";
WHEN 1 => out[] = B"OOIO";
WHEN 2 => out[] = B"OlOO";
WHEN 3 => out[] = B"IOOO" ;

END CASE'
END; ,

(32-bit tri-state buffer)
SUB DESIGN 32btri
(

in[31..0], oe : INPUT;
out[31..0] : OUTPUT) ,

BEGIN

outO = TRI(inO, ~e);
out! = TRI(in I, oe);
Out2 :: TRI(in2, ~e) ;
Out3 :: TRI(in3, ~e) ;
Out4 :: TRI(in4, ~e) ;
Out5 :: TRI(in5, ~e);
Out6 :: TRI(in6, ~e);
Out? :: TRI(in7, ~e);
Out8 :: TRI(in8, oe);
Out9 :: TRI(in9, ~e);
out) 0:: TRI(in lO, ~e) ;
outl[:: TRI(in 11, ~e);
outl2:: TRI(inI2, ~e);
oUtl3:: TRI(inI3, ~e);
oUt14:: TRI(inI4, ~e);
Outl5:: TRI(inI5, ~e);
oUtl6 :: TRI(in 16 ~e)' o ' ,
uti? :: TRI(in 17 ~e)' o ' ,
uLl8 :: TRI(in 18, ~e) ;

--­KW.Tse

The Altera Design Files

Page 142

Appendix B

outl9 = TRI(in19, oe);
out20 = TRI(in20, oe);
out21 = TRJ(in21 , oe);
out22 = TRI(in22, oe);
out23 = TRI(in23, oe);
out24 = TRI(in24, oe);
out2S = TRI(in2S, oe);
out26 = TRI(in26, oe);
out27 = TRI(in27, oe);
out28 = TRI(in28, oe);
out29 = TRI(in29, oe);
out30 = TRI(in30, oe);
out31 = TRI(in31, oe);

END;

(16-bit tri-state buffer)
SUBDESIGN 16btri I
(

in3[lS .. 12], in2[l1..8], inl[7 . .4], inO[3 .. 0], oe : INPUT;
out3[IS .. 12], out2[11..8], outl [7 . .4], outO[3 .. 0] : OUTPUT;

)

BEGIN
outOO = TRI(inOO, oe);
outOl = TRI(inOI, oe);
out02 = TRI(in02, oe);
out03 = TRI(in03, oe);
out14 = TRI(in14, oe);
outIS = TRI(inIS, oe);
outI6 = TRI(in16, oe);
out17 = TRI(in17, oe);
out28 = TRI(in28, oe);
out29 = TRI(in29, oe);
out21O = TRI(in2IO, oe);
out211 = TRJ(in211, oe);
out312 = TRI(in312, oe);
out313 = TRI(in313, oe);
out314 = TRI(in314, oe);
out31S = TRI(in31S, oe);

END;

(4-bit D-type flipflop)
SUBDESIGN 4bitdff
(

d[3 .. 0], elk : INPUT;

)
q[3 .. 0] : OUTPUT;

VARIABLE
q[3 .. 0] : DFF; % D type flip-flop %

BEGIN
q[] .elk == elk;
q[] == d[];

END' ,

The Altera Design Files

---~~--KW.Tse Page 143

Appendix B The Altera Design Files

(4-bit 4-channel-to-l-channel multiplexer)
SUBDESIGN 4bit4to I
(

)

nibble3[3 .. 0], nibble2[3 .. 0], nibble l [3 .. 0], nibbIe0[3 .. 0], sell , selO : INPUT;
out[3 . .Q] : OUTPUT;

BEGIN
CASE (sell, selO) IS

WHEN (0, 0) => out[] = nibbleO[];
WHEN (0, 1) => out[] = nibble l [] ;
WHEN (1 , 0) => out[] = nibble2[];
WHEN (1 , I) => out[] = nibble3[] ;

END CASE;
END;

(32-bit 2-channel-to-l-channel multiplexer)
SUBDESIGN 32bmula
(

b[31..0], a[31..0], selb : INPUT;
out[31 .. 0] : OUTPUT;

)

BEGIN
CASE selb IS
WHENO=>

out[] = a[];
WHEN 1 =>

out[] = b[];
END CASE'

END ' ' ,

(32-bit 2-channel-to-l-channel multiplexer)
SUBDESIGN 32bmull
(

b7[31..28] , b6[27 .. 24], bS[23 .. 20], b4[19 .. 16] : INPUT;
b3[IS .. 12], b2[11 .. 8], bl[7 .. 4] , bO[3 .. 0] : INPUT;
a7[31 .. 28], a6[27 .. 24J. as [23 .. 20], a4[19 .. 16] : INPUT;
a3[1S .. 12], a2[l1..8], a 1 [7 .. 4], aO[3 .. 0] : INPUT;
selb : INPUT;

) out[31 .. 0] : OUTPUT;

BEGIN

CASE selb IS
WHENO=>

Out[31..28] = a7[31..28];
out[27 .. 24] = a6[27 .. 24];
out[23 .. 20] = as[23 .. 20];
out[19 .. 16] = a4[19 .. l6] ;
Out[lS .. 12] = a3 [lS .. 12];
out[11..8] = a2[11..8];
out[7..4] = a l [7 .. 4];
out[3 .. 0] = aO[3 .. 0];

WHEN 1 =>
out[31..28] = b7[31..28];
out[27 .. 24] = b6[27 .. 24];
out[23 .. 20] = bS[23 .. 20];

---~;--KW.Tse Page 144

Appendix B The Altera Design Files

out[I9 .. 16] = b4[I9 .. 16] ;
out[I5 .. 12] = b3[IS .. 12];
out[11..8] = b2[11..81;
out[7 . .4] = bI [7 . .4] ;
out[3 .. 0] = bO[3 .. 0] ;

END CASE;
END;

(32-bit D-type flipflop)
SUBDESIGN 32bdff
(

d[3I .. O], clk : INPUT;
q[31..0] : OUTPUT;

)

VARIABLE
q[3I .. O] : DFF; % also declared as outputs %

BEGIN
q[].clk = clk;
q[] = d[];

END;

(32-bit 2-channel-to-l-channel multiplexer)
SUBDESIGN 32b2to I a
(

b[31..0], a[31..0] , selb : INPUT;
out[31 .. 0] : OUTPUT;

)

BEGIN
CASE selb IS
WHEN 0 => out[] = a[];
WHEN 1 => out[] = b[] ;

END CASE;
END;

(memory wait generator)
SUB DESIGN memwait
(

memwaiCfrom_sm, vh_data_valid : INPUT;
memwait to t9 : OUTPUT) - - ,

BEGIN

Ememwaiuo_t9 = memwai l_From_sm & vh_data_valid ;
ND;

(programmable strobe of T9000 transputer associated with state machine's signals)
StJBDESIGN t9inoe2
(

enable_From_srn, t9noeg, vh_data_ valid : INPUT;
) fOU 9inoe : OUTPUT;

BEGIN

E~.t9inoe = (! t9noeg & !vh_data_valid) # (enable_from_sm & vh_data_valid);
,

----~~---I<.W,Tse Page 145

Appendix B

(S-bit 2-channel-to-l-channel multiplexer)
SUBDESIGN 8b2to 1
(

a[7 .. 0J, b[7 .. 0], seleccb : INPUT;
out[7 .. 0] : OUTPUT;

)

BEGIN
out7 = (a7 & !selecCb) #

(b7 & seleccb) #
(a7 & b7);

out6 = (a6 & !selecCb) #
(b6 & selecCb) #
(a6 & b6);

out5 = (a5 & !selecCb) #
(b5 & seleccb) #
(a5 & b5);

out4 = (a4 & !selecCb) #
(b4 & selecCb) #
(a4 & b4);

out3 = (a3 & !seleccb) #
(b3 & seleccb) #
(a3 & b3);

out2 = (a2 & !selecCb) #
(b2 & selecCb) #
(a2 & b2);

out! =(a l & !select_b) #
(bl & selecCb) #
(al & b1);

outO = (aO & !selecCb) #
(bO & select_b) #
(aO & bO);

END;

(3-bit data latch)
SUBDESIGN 3bitregl
(

d[2 .. 0] , clk, enable: INPUT;
) q[2 .. 0] : OUTPUT;

VARIABLE
q[2 .. 0] : DFFE; % also declared as outputs %

BEGIN

q[] .clk = clk ·
q[].ena = en~b l e ·
q[] :: d[] · '

END; ,

The Altera Design Files

----D~--I<.W.Tse Page l46

Appendix B

(the time-division-multiplexing controller)
SUBDESIGN tdmctrl
(

pxck, phase [2 .. 0], adcregcs[2 .. 0], dacregcs[2 .. 0] : INPUT;
smt9csbuff[2 .. 0], smt9csoverlay, smt9noe, smt9nwr[3 .. 0] : INPUT;
smt9buffoe, smt90verlayoe : INPUT;
buffcs[2 .. 0], overlaycs, buffnoe, buffnwr[3 .. 0] : OUTPUT;
adcsel, t9buffoe, dacwr, t90verlayoe : OUTPUT;
phaseq[2 .. 0] : OUTPUT;

)

VARIABLE

buffcsd2, buffcsd 1, buffcsdO, overlaycsd : NODE;
buffnoed, buffnwrd3 , buffnwrd2, buffnwrd 1, buffnwrdO : NODE;
adcseld, t9buffoed, dacwrd, t90verlayoed : NODE;

BEGIN
buffcs2 = DFF(buffcsd2, pxck, VCC, VCC);
buffcs 1 = DFF(buffcsd I , pxck, VCC, VCC);
buffcsO = DFF(buffcsdO, pxck, VCC, VCC);
overlaycs = DFF(overlaycsd, pxck, VCC, VCC);
buffnoe = DFF(buffnoed, pxck, VCC, VCC);
buffnwr3 = DFF(buffnwrd3 , pxck, VCC, VCC);
buffnwr2 = DFF(buffnwrd2, pxck, VCC, VCC) ;
buffnwrl = DFF(buffnwrdl , pxck, VCC, VCC);
buffnwrO = DFF(buffnwrdO, pxck, VCC, VCC);
adcsel = DFF(adcseld, pxck, VCC, VCC);
t9buffoe = DFF(t9buffoed, pxck, VCC, VCC);
dacwr = DFF(dacwrd, pxck, VCC, VCC);
t90verlayoe = DFF(t90verlayoed, pxck, VCC, VCC);
phaseq2 = DFF(phase2, pxck, VCC, VCC);
phaseq 1 = DFF(phase 1, pxck, VCC, VCC);
phaseqO = DFF(phaseO, pxck, VCC, VCC);

bUffcsd[2 .. 0] = (adcregcs[2 .. 0] & !phase2 & !phase l)
(dacregcs[2 .. 0] & phase2 & !phase l)
(smt9csbu ff[2 .. 0] & phase]);

overlaycsd = (phase2 & !phase) # (smt9csoverlay & phase 1) ;

The Altera Design Files

!buffnoed = (phase2 & !phase l) # (!smt9noe &. phase !);
!buffnwrd[3 .. 0] = (!phase2 & !phase ! & !phaseO) # (!smt9nwr[3 .. 0] & phase !);
adcseld = (!phase2 & !phase l);
t9buffoed = (!phase2 & !phase l) # (smt9buffoe & phase !);
~acwrd = phase2 & !phase! & phaseO;

overlayoed = smt90verl ayoe & phase ! ;

END;

(system state machine)
SlIBDESIGN tdivsta4
(

reset, pxck : INPUT;
) Phase[2 .. 0] : OUTPUT;

VARIABLE

ss: MACHINE OF BITS (phase[2 .. 0])
WITH STATES (

sO:: B "OOO"
si:: B "OO I ":

----I<.W.Tse
Page 147

Appendix B

s2 = B"OIO" ,
s3 =B"011" ,
s4 = B"100" ,
s5 = B"IOI ",
s6= B"110",
s7 = B"lll ");

BEGIN
ss.c lk = pxck;
sS.reset = reset;
CASE ss IS

WHEN sO => ss = s I ;
WHEN s I => ss = s2;
WHEN s2 => ss = s3;
WHEN s3 => ss = s4;
WHEN s4 => ss = s5;
WHEN s5 => ss = s6;
WHEN s6 => ss = s7;
WHEN s7 => ss = sO;

END CASE;
END;

(control signals associated with the vh_data_valid signal)
SUBDESIGN ctrl sig l
(

vh_data_valid : INPUT;

The Altera Design Files

tdiv_buffcs[2 .. 0], tdiv_overlaycs, tdiv_buffnoe, tdiv_buffnwr[3 .. 0] : INPUT;
t9csbuff[2 .. 0], t9csoverlay, t9noe, t9nwr[3 .. 0] : INPUT;
t9state, tdiv_adcsel, t9buffoe, t90verlayoe, t9noeg : INPUT;
buffercs[2.,O] , overlaycs, buffnoe, buffnwr[3 .. 0] : OUTPUT;

)
select_t9, adcsel, adcoe, outoe : OUTPUT;

BEGIN

buffercs[2 .. 0] = (tdiv _buffcs [2 .. 0] & vh_data_ valid)
(t9csbuff[2.,O] & !vh_data_va lid);

Overlaycs = (tdiv_overlaycs & vh_data_valid)
, # (t9csoverlay & !vh_data_valid);
.buffnoe = (!tdiv_buffnoe & vh_data_valid)
, # (!t9noe & !vh_data_ valid);
.buffnwr[3 .. 0] = (!tdiv_buffnwr[3 .. 0] & vh_data_valid)

(!t9nwr[3 .. 0) & !vh_data_ valid);
selecU9 = (t9state & vh_data_ valid) # !vh_data_ valid ;
adcsel = tdiv_adcsel & vh data valid '
adcoe = (t9buffoe & vh_d;ta_v;iid) ,

(t9noeg & !vh_data_ valid);
autae = (t90verlayoe & vh_data_valid)

(t9noeg & !vh data valid) ' END; - - ,

(horizontal state machine)
SUB DESIGN hcntstaa
(

~xck , reset, firsCpixel , lascpixel, Isync, fid , for_h_start : INPUT;
) Ircnt, h_data_valid , latch_fid , h_start : OUTPUT;

VARIABLE

----~~---I<..W.Tse Page 148

Appendix B The Altera Design Files

ss: MACHINE WITH STATES (50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 510, 511 , 512);
BEGIN

ss,elk = pxck;
ss,reset = reset;

CASE ss IS

% revision a: h_start is a pul se to indicate the start ofh_data_valid %
% detect the falling edge of Isync %
WHEN 50 => % stay in 50 until Isync is high %

h_start = b"O";
latch_fid = b"O" ;
h_data_valid = b"O" ;
c lrcnt = b"O";
IF Isync THEN

ss = 51;
ELSE ss = sO;
END IF;

WHEN s l =>
h_start = b"O";
latch_fid = b"O" ;
h_data_valid = b"O" ;
c lrcnt = b"O";
IF !Isync THEN

ss = s2;
ELSE ss = s i ;
END IF;

WHEN s2=>
h_s tart = b"O" ;
latch_ fid = b"O";
h_data_valid = b"O" ;

% stay in s i untill sync is low %

clrcnt = b" 1 "; % clear counter %
ss = 53;

% detect the fid %
WHEN s3 =>

h_start = b"O";
latch_ fid = b"O";
h_data_ valid = b"O";
c lrcnt = b"O'"
IF fid THEN'

ss = s4;
ELSE ss = s3'
END IF' ' ,

% latch the fid %
WHEN s4 =>

h_start = b"O'"
latch_ fid = b" i ";
h_data_valid = b"O" ;
c lrcnt = b"O";
ss = s5;

% set latch fid to b"O" %
WHEN s5 :>

h_start = b"O'"
latch_fid = b"G";

--R.W~.T~se--
Page 149

Appendix B

h_data_valid = b"O";
clrcnt = b"O" ;
ss = s6;

% detect the ri sing edge of Isync %
WHEN s6 => % stay in s6 untill sync is high %

h_start = b"O";
latch_fid = b"O";
h_data_valid = b"O" ;
clrcnt = b"O";
IF Isync THEN

ss = s7;
ELSE ss = s6;
END IF;

WHEN s7 =>
h_start = b"O";
latch_fid = b"O";
h_data_valid = b"O";
clrcnt = b"t" ;
ss = s8;

WHEN s8 => % stay in s8 until for_h_start is found %

h_start = b"O";
latch_fid = b"O";
h_data_valid = b"O" ;
clrcnt = b"O" ;
IF for_h_start THEN

ss = s9 ;
ELSE ss = s8;
END IF;

WHEN s9=>
h_start = boo I ";
latch_fid = b"O";
h_data_valid = b"O" ;
clrcnt = b"O";
ss = s10;

WHEN sI0=>
h_start = b"O";
latch_fid = b"O" ;
h_data_valid = b"O";
clrcnt = b"O";
IF firsCpixel THEN

ss = sll;
ELSE ss = s lO;
END IF;

% h_start is set to high in this state %

% stay in s I 0 until first pixel is found %

The Altera Design Fi les

WHEN s ll =>
h_start = b"O";
latch_fid = b"O";
h_data_valid = b"l It;
clrcnt = b"t ";

% the horizontal counter is cleared in this state %

ss = s] 2;

WHEN s 12=>
h_start = b"O";

% data is valid in s lO %

--~~---I<..W.Tse Page 150

Appendix B The Altera Design Files

latch_fid = b"O";
h_data_valid = b"l to;
cJrcnt = b"O" ;
IF last_pixel THEN

ss = sO;
ELSE ss = s12;
END IF;

WHEN OTHERS =>
h_start = b"O" ;

latch_fid = b"O" ;
h_data_ valid = b"O";
clrcnt = b"O";
ss = sO;

END CASE;
END;

(horizontal counter)
CONSTANT true_field_id = 57 ; % it is counter[IO . .o] when the FID turns up %
CONSTANT true_for_h_start = 40; % it is counter[1O .. 2] when h_start should be triggered %
CONSTANT true_fi rsCpixel = ~2; % it is counter[I 0 .. 2] when the fi rs t pixel turns up %
CONSTANT true_lasCpixel = 160; % it is counter[10 .. 3] when the last pixel turns up %

% 640/4 = 160 %
CONSTANT sim_field_id = 3; % used for simulation only %
CONSTANT sim_for_h_start = 5; % used for simulation only %
CONSTANT sim_firsCpixel = 8; % used for simulation only %
CONSTANT sim_lascpixel = 12; % used for simulation only %
CONSTANT sim_IasCpixel_ l = 40; % used for simulation only %
SUB DESIGN hcnt
(

pxck, clr : INPUT;
q[7 .. 0], fid , firscpixel, lascpixel, for_h_start : OUTPUT;

)

VARIABLE
counter[10 .. 0] : DFF; % using counter[I 0 .. 3] to generate horizontal address %

BEGIN
counter[].clk = pxck;
counter[] .cJrn = !clr;
cOunter[].d = counter[] .q + I ;
q[] = counter[1O .. 3]; % the address rate = pxckl8 %
fid = (counter[7 .. 0] == true_fi eld_id);
for_h_start = (counter[8 .. I] == true_for_h_start);
first_pixel = (counter[10 .. 2] == true_firscpixel); % counter[I 0 .. I] = no. of pixels %
E~~~Pixel = (counter[10 .. 3] == true_lascpixel);

,

(vertical state machine)
SUBDESIGN vcntsta
(

pxck, reset, first_line, lasCline, vsync : INPUT;
) clrcnt, v_data_valid : OUTPUT;

VARIABLE

ss: MACHINE WITH STATES (sO, s I , s2, s3, s4, sS, s6, s7);

---u;;~---I<.W.Tse . Page 15 1

Appendix B

BEGIN
ss.elk = pxek;
sS.reset = reset;

CASE ss IS

The Altera Design Files

% find the start of a field by means of detecting the falling edge of vsyne %
WHEN sO => % stay in sO until vsyne is high %

elrent = b"O";
v_data_valid = b"O";
IF vsyne THEN

ss = s I ;
ELSE ss = sO;
END IF;

WHEN sI => % stay in sI until vsyne is low %
elrent = b"O";
v_data_valid = b"O";
IF !vsyne THEN

ss = s2;
ELSE ss = s I;
END IF;

WHEN s2 => % reset vent %
elrent = bOO] ";
v_data_valid = b"O";
ss = s3;

WHENs3 =>
elrent = b"O" ;
v_data_valid = b"O";
ss = s4;

WHEN s4 =>
elrent = b"O" ;
v_data_valid = b"O";
IF firsUine THEN

ss = s5;
ELSE ss = s4'
END IF' ' ,

WHENs5 =>
clrcnt = boo I ";
v_data_valid = boo I ";
ss = s6;

WHENs6=>
clrcnt = b"O";
v_data_valid = boo I ";
ss = s7;

WHEN s7 =>
clrcnt = b"O'" ,
v _data_valid = boo I ";
IF lasUine THEN

ss = sO,
ELSE ss' = s7'
END IF; ,

END CASE' ,

-KW,Tse

% the falling edge of vsyne has been found %

% clear vent %

Page 152

Appendix B The Altera Design Files

END;

(vertical counter)
% There are 23 Isync pulses in the specified interval %
CONSTANT true_firsUine = 35; % It is a number used to indicate the first line %
CONSTANT true_last_line = 255; % It is a number used to indicate the last line %
CONSTANT sim_firsUine = 10; % It is a number used to indicate the first line in simulation %
CONSTANT sim_lasUine = 10; % It is a number used to indicate the last line in simulation %
SUBDESIGN vcnt!
(

enable, clr, pxck : INPUT;
q[7 .. 0], firsUine, lasCline : OUTPUT;

)

VARIABLE
counter[7 .. 0] : DFFE; % using counter[7 .. 0] to generate vertical address %

BEGIN
counter[].clk = pxck;
counter[].clrn = !clr;
counter[].ena = enable;
eounter[].d = eounter[].q + I;
q[] = eounter[7 .. 0];
first_line = (q[] == true_firsCline);
last_line = (q[] == true_Iascline);

END;

(17-bit 2-channel-to-l-channel multiplexer)
SUB DESIGN 17b2to I b
(

t9[16 .. 0], vent[7 .. 0] , fid, hent[7 .. 0], seleeU9 : INPUT;

)
out[16 .. 0] : OUTPUT;

BEGIN

out16 = (t916 & se1eeU9) #
(vent7 & !seleeU9) #
(t916 & vent7);

outl5 = (t915 & seleeU9) #
(vent6 & !seleeU9) #
(t915 & vent6);

out! 4 = (t914 & seleeU9) #
(vent5 & !seleeU9) #
(t914 & vent5);

out! 3 = (t913 & seJeeU9) #
(vent4 & !seleeu9) #
(t913 & vent4);

oull2 = (t912 & seleeu9) #
(vent3 & !seleeu9) #
(t912 & vcnt3);

oulll = (t911 & seleeu9) #
(vent2 & !seJeeu9) #
(t911 & vent2);

-K.W~.T~s~e--
Page 153

Appendix B

out1O = (t91O & selecU9) #
(vcnt1 & !selecU9) #
(t91O & vcntl);

out9 = (t99 & selecU9) #
(vcntO & !selecU9) #
(t99 & vcntO);

out8 = (t98 & selecu9) #
(fid & !selecU9) #
(t98 & fid);

out7 = (t97 & selecU9) #
(hcnt7 & !selecU9) #
(t97 & hcnt7) ;

out6 = (t96 & selecU9) #
(hcnt6 & !selecU9) #
(t96 & hcnt6);

out5 = (t95 & selecU9) #
(hcnt5 & !selecU9) #
(t95 & hcnt5) ;

out4 = (t94 & selecu9) #
(hcnt4 & !selecu9) #
(t94 & hcnt4);

out3 = (t93 & selecu9) #
(hcnt3 & !selecU9) #
(t93 & hcnt3);

out2 = (t92 & selecct9) #
(hcnt2 & !selecu9) #
(t92 & hcnt2);

outl = (t91 & selecu9) #
(hcntl & !selecU9) #
(t91 & hcntl);

outO = (t90 & selecU9) #

(hcntO & !selecu9) #
(t90 & hcntO);

END;

The Altera Design Files

(to synchronize the bus-multiplexing switching to the current buffer read/write cycle of T9000)
SUB DESIGN vhdvsta
(

reset, pxck, t9nras I, vhdv : INPUT; % t9nras 1 showing chip enable %
sync_ vhdv : OUTPUT;

)

VARIABLE
ss: MACHINE OF BITS (sync_ vhdv)

WITH STATES (sO = b"O" ,
sI = bOO} ");

---~~~---KW.Tse Page 154

Appendix B The Altera Design Files

BEGIN
ss.elk = pxek;
ss.reset = reset;

CASE ss IS
WHEN sO =>

IF vhdv & t9nras 1 THEN
ss = sI ;

ELSE
ss = sO;

END IF;

WHEN sI =>
IF !vhdv & t9nrasl THEN

ss = sO;
ELSE

ss = s I ;
END IF;

END CASE;
END;

(reset signal for T9000 transputer)
SUBDESIGN resett9
(

nresetin, manual_reset: INPUT;
t9reset : OUTPUT;

)

BEGIN

t9reset = !nresetin # manual_reset;
END;

(inputJoutput decoder)
SUBDESIGN iodeeodl
(

a31, a29, a28, addr[3 .. 0J, t9nwrO, t9nes, t9nps , address[2 .. 0] : INPUT;
ena_swapfid, oe_framesyne, reseCvh, ena_envhdv, ena_adereg : OUTPUT;
ena_dacreg, reseCframsta, reseUntsta, adcaO, adcncs, adcrdnwr : OUTPUT;

)
dacrs[2 .. 0] , dacnwr, daenrd, nresetadc, ena_adedac : OUTPUT;

VARIABLE
t9selio : node;

BEGIN

t9selio = a31 & a29 & !a28; % 1010 = A %
ena_swapfid = t9selio & (addr[3 .. 0] == h"O") & !t9nwrO;
oe_framesync = t9selio & (addr[3 .. 0] == h" I ");
reset_vh = t9selio & (addr[3 .. 0] == h"2");
ena_envhdv = t9selio & (addr[3 .. 0] == h"3") & !t9nwrO;
ena_adcreg = t9selio & (addr[3 .. 0] == h"4") & !t9nwrO;
ena_dacreg = t9selio & (addr[3 .. 0] == h"6") & !t9nwrO;
reset_framsta = t9selio & (addr[3 .. 0] == h"8");
reseUntsta = t9selio & (addr[3 .. 0] == h"9");
adcaO = t9selio & (addr[3 .. 0] == h"A") & addressO·
I ' .adcncs = t9selio & (addr[3 .. 0] == h"A") & !19nes;
adcrdnwr = t9nwrO;

-
KW.Tse Page 155

Appendix B

dacrs[2 .. 0] = t9selio & (addr[3 .. 0] == h"B ") & address [2 .. 0] ;
!dacnwr = t9selio & (addr[3 .. 0] == h"B") & !t9nwrO;
!dacnrd = t9selio & (addr[3 .. 0] == h"B") & !t9nps;
!nresetadc = t9selio & (addr[3 .. 0] == h"C") & !t9ncs;
ena_adcdac = t9selio & (addr[3 .. 0] == h"D") & !t9nwrO;

END;

(address decoder)
SUBDESIGN adecode3
(

a3l, a29, a28, a22, a2l, a20 : INPUT;
t9selbuff, t9csbuff[2 .. 0], t9csoverlay : OUTPUT;

)
BEGIN

t9selbuff = a31 & !a29 & a28 & !a22;
t9csbuff2 = a31 & !a29 & a28 & !a22 & a2 1 & !a20;
t9csbuffl = a31 & !a29 & a28 & !a22 & !a21 & a20;
t9csbuffO = a31 & !a29 & a28 & !a22 & !a21 & !a20;
t9csoverlay = a31 & !a29 & a28 & a22;

END;

(state machine for control bus)
SUBDESIGN cbussta7
(

The Altera Design Files

reset, pxck, t9nras I, t9noeg, state[l . .Q] : INPUT; % t9nras I showing chip enable %
t9csbuff[2 .. 0], t9csoverlay, t9nwr[3 .. 0], t9selbuff : INPUT; % t9noeg showing read operation %
smt9csbuff[2 .. 0], smt9csoverlay, smt9noe, smt9nwr[3 .. 0] : OUTPUT;
latch_for_read, statebit[2 .. 0] : OUTPUT;

)
smt9buffoe, smt90verlayoe : OUTPUT;

VARIABLE
ss: MACHINE OF BITS (statebit[2 .. 0])

WITH STATES (
50 = B"OOO",
s lO = B"OOI ",
s20 = B "011",
s2 1 =B"OIO",
s22 = B"IOO",
s30=B"IOI" ,
531 =B"III",
s32 = B"IIO");

% statebit 0 is used for t9memwait %

Code[2 .. 0] : NODE;
latch_for_read_d : NODE;

BEGIN
ss.clk = pxck;
ss.reset = reset;
code2 = t9noeg;
code I = state 1 .
codeO = stateO:
I . '
atch_for_read = DFF(latch_for_read_d, pxck, VCC, VCC);

CASE ss IS

-K.W.Tse Page 156

Appendix B

% control signals generated for t9 read and write operation %
WHEN sO => % t9memwai t = 0 %

smt9csbuff[2 .. 0] = b"OOO" ;
smt9csoverlay = b"O" ;
smt9noe = b"1 ";
smt9nwr[3 .. 0] = boo 1111 ";
smt9buffoe = b"O";
smt90verlayoe = b"O";
latch_for_read_d = b"O" ;
IF !t9nras l THEN
ss=s 1O;

ELSE
ss = sO;

END IF;

WHEN s 10 =>
smt9csbuff[2 . .Q] = b"OOO" ;
smt9csoverlay = b"O" ;
smt9noe = boo 1 ";
smt9nwr[3 .. 0] = b"llll ";
smt9buffoe = b"O";
smt90verlayoe = b"O";
latch_focread_d = b"O";
CASE code[] IS

WHEN B"IOO" =>
ss = s20;

WHEN B "000" =>
ss = s30;

WHEN OTHERS =>
ss=s 1O;

END CASE;

% t9memwait = I %

% write operation %

% read operation %

WHEN s20 => % start of t9 write operation, t9memwai t = 1 %
smt9csbuff[2 . .Q] = t9csbuff[2 .. 0);
smt9csoverlay = t9csoverlay;
smt9noe = b" I ";
smt9nwr[3 .. 0) = t9nwr[3 .. 0) ;
smt9buffoe = t9selbuff;
smt90verlayoe = !t9selbuff;
latch_focread_d = b"O" ;
ss = s2 1;

WHEN s21 => % t9memwait = 0 %
smt9csbuff[2 .. 0) = t9csbuff[2 .. 0);
smt9csoverlay = t9csoverlay;
smt9noe = boo I ";
smt9nwr[3 .. 0] = b" 1111 ";
smt9buffoe = t9selbuff;
smt90verlayoe = !t9selbuff;
latch_for_read_d = b"O";
ss = s22;

WHEN s22 => % t9memwait = 0 %
smt9csbuff[2 .. 0] = b"OOO" ;
smt9csoverlay = b"O";
smt9noe = boo I ";
smt9nwr[3 . .Q] = boo 1111 ";
smt9buffoe = b"O";

The Altera Design Files

--~~---KW.Tse Page 157

Appendix B

smt90verlayoe = b"O";
latch_for_read_d = b"O";
IF t9nras I THEN

ss = sO;
ELSE ss = s22;
END IF; % end of t9 write operation %

WHEN s30 => % start of t9 read operation, t9memwait = I %
smt9csbuff[2 . .Q] = t9csbuff[2 .. 0];
smt9csoverlay = t9csoverlay;
smt9noe = b"O";
smt9nwr[3 .. 0] = b"lll] ";
smt9buffoe = b"O";
smt90verlayoe = b"O" ;
latch_for_read_d = b"O";
ss = s3 1;

WHEN s3 1 => % t9memwait = I %
smt9csbuff[2 .. 0] = t9csbuff[2 .. 0] ;
smt9csoverlay = t9csoverlay;
smt9noe = b"O";
smt9nwr[3 .. 0] = b"IIll ";
smt9buffoe = b"O";
smt90verlayoe = b"O";
latch_for_read_d = bOO 1 ";
ss = s32;

WHEN s32 =>
smt9csbuff[2 .. 0] = b"OOO";
smt9csoverlay = b"O";
smt9noe = boo I ";
smt9nwr[3 .. 0] = boo Ill) ";
smt9buffoe = b"O";
smt90verlayoe = b"O" ;
latch_for_read_d = bOO I ";
IF t9noeg THEN

ss = sO;
ELSE ss = s32;

% t9memwait = 0 %

END IF; % end of t9 read operation %
END CASE'

END' ' ,

The Altera Design Files

-~~~---------------------------------KW.Tse Page 158

Appendix C - The Memory Configuration File for the DIPB

Processor. Type := T9000
Dram.Refresh.lnterval := 300 Cycles
Dram.Refresh.Time := 2 Cycles
Dram.Refresh.RAS.High := 2 Phases

Bank 2 "DRAM BANK 2"
Device.Type
Cacheable

:= Dram

Wait.Pin := disabled
Bank.Base.Address := 80000000
Bank.Address.Mask := FF800000
PorLSize := 32 bits
--Page.Address.Bits := 007FFOOO -- this value is not working
Page.Address.Bits := 001 FFFFC -- this value is working well
Page.Address.Shift := ID bits -- II refresh address bits

Ras.Strobe "RAS2"
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time.to.ri sing.edge := 8 Phases

End.Strobe

Cas.Strobe "CAS2"
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time.to.rising.edge := 7 Phases

End.Strobe

Programmable.Strobe "OE2"
Active.during := Read
Time.toJalling.edge := 0 Phases
Time.to.rising.edge := 7 Phases

End.Strobe

Write. Strobe "WRITE2"
Active.during := Write
Time.toJalling.edge := 0 Phases
Time.to.rising.edge := 7 Phases

End.Strobe

Ras.Precharge.Time
Ras.Edge.Time
Ras.Cycle.Time
Cas. Cycle. Time
Bus.Release.Time

End.Bank

:= I Cycles
:= 2 Phases -- I Phases is not working
:= I Cycles
:= 2 Cycles
:= I Cycles

Bank 1 "SRAM BANK 1"

Device.Type
WaiLPin
--Cacheable

:= Non-Dram
:= enabled -- enabled normally working

Bank.Base.Address := 90000000
Bank.Address.Mask := FFOOOOOO
Port.Size := 32 bits

k.W.Tse Page 159

Appendix C The Memory Configuraion File for the DIPB

Ras.Strobe "RAS] "
Active.during := Read & Write
Time.toJalling.edge := 2 Phases -- 2 Phases normally working
Time.to.rising.edge :=]4 Phases -- 14 Phases normally working

End.Strobe

Cas.Strobe "CAS I" -- /OEG
Active.during := Read
Time.toJalling.edge := 2 Phases -- 2 Phases normally working
Time.to.rising.edge := 14 Phases -- 14 Phases normally working

End.Strobe

Programmable.Strobe "PS I" -- fOE
Active.during := Read
Time.to.falling.edge := 2 Phases -- 2 Phases normally working
Time.to.rising.edge := 13 Phases -- 13 Phases normally working

End.Strobe

Write. Strobe "WRITEl" -- /WE
Active.during := Write
Time.toJalling.edge := 2 Phases -- 2 Phases normally working
Time.to.rising.edge := 13 Phases -- 13 Phases normally working

End.Strobe

Cycle.Time
Bus.Release.Time

End.Bank

:= 4 Cycles -- 4 Cycles normally working
:= 2 Cycles -- 2 Cycles normally working

Bank 3 "I/O BANK 3"

Device.Type := Non-Dram
Device.Only
Wait.Pin := disabled
Bank.Base.Address := AOOOOOOO
Bank.Address.Mask := FFOOOOOO
Port.Size := 32 bits

Cas.Strobe "CAS3" -- /CS
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time.to.rising.edge := 6 Phases

End.Strobe

Programmable.Strobe "PS3" -- fOE
Active.during := Read
Time.to.falling.edge := I Phases
Time.to.rising.edge := 5 Phases

End.Strobe

Write.Strobe "WRITE3" -- /WE
Active.during := Write
Time.to.falling.edge := 1 Phases
Time.to.ris ing.edge := 5 Phases

End.Strobe

-- 8, 2 Phases or higher set for adc
-- 15,6 Phases

-- 4, I phases set for dac
-- 12, 5 phases set for dac

-- 4, I phases set for dac
-- 12, 5 phases set for dac

Cycle.Time
Bus .Release.Time

End.Bank

:= 2 Cycles
:= I Cycles

-- 4, 2 normally working
-- I , 1 normally working

-~~------------------------------------KW.Tse Page 160

Appendix D - The Memory Configuration File for the IMS B927

Memory configuration file produced
by the MEM package.

This fil e is intended for use on a 20MHz, 8Mbyte, 64bit Falcon HTRAM.

Processor.Type := T9000
Dram.Refresh.Interval := 300 Cycles
Dram.Refresh.Time := 2 Cycles
Dram.Refresh.RAS.High := 2 Phases

Bank 0 "DRAM BANK 0"
Device.Type
Cacheable

:= Dram

Wait.Pin := disabled
Bank.Base.Address := 80000000
Bank.Address.Mask := FFEOOOOO
Port.Si ze := 64 bits
--Page.Address.Bits := OOOFFCOO
Page.Address.Bits := OOlFFFFC
Page.Address.Shift := 9 bits

Ras.Strobe "RASO"
Active.during := Read & Write
Time.to.falling.edge := 0 Phases
Time.to.rising.edge := 16 Phases

End.Strobe

Cas.Strobe "CASO"
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time. to.rising.edge := 15 Phases

End.Strobe

Programmable.S trobe "PSO"
End.Strobe

Write.Strobe "WRITEO"
Active.during := Write
Time.to.falling.edge := 0 Phases
Time.to.rising.edge := 15 Phases

End.Strobe

Ras.Precharge.Time
Ras.Edge.Time
Ras.Cycle.Time
Cas.Cycle.Time
Bus.Release.Time

End.Bank

:= I Cycles
:= 2 Phases
:= I Cycles
:= 4 Cycles
:= 1 Cycles

Bank 1 "DRAM BANK 1"

KW.Tse Page 161

Appendix D

Device.Type
Cacheable

:= Dram

Wait.Pin := disabled
Bank.Base.Address := 80200000
Bank.Address.Mask := FFEOOOOO

:= 64 bits Port.Size
Page.Address.B i ts
Page.Address.Shift

:= 00 I FFFFC
:= 9 bits

Ras .Strobe "RAS 1 "
Active.during := Read & Write
Time.toJalling.edge := 0 Phases
Time.to.rising.edge := 16 Phases

End.Strobe

Cas.Strobe "CAS] "
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time.to.rising.edge := 15 Phases

End.Strobe

Programmable.Strobe "PS I"
End.Strobe

Write.Strobe "WRITEl"
Active.during := Write
Time.to.falling.edge := 0 Phases
Time.to.rising.edge := 15 Phases

End.Strobe

Ras.Precharge.Time
Ras.Edge.Time
Ras.Cycle.Time
Cas.Cycle.Time
Bus.Release.Time

End.Bank

:=] Cycles
:= 2 Phases
:= I Cycles
:= 4 Cycles
:= 1 Cycles

Bank 2 "DRAM BANK 2"
Device.Type := Dram
Cacheable
Wait.Pin := disabled
Bank.Base.Address := 80400000
Bank.Address.Mask := FFEOOOOO
Port.Size := 64 bits
Page.Address.Bits := OOlFFFFC
Page.Address.Shift := 9 bits

Ras.Strobe "RAS2"
Active.during := Read & Write
Time.to.falling.edge := 0 Phases
Time.to.rising.edge := 16 Phases

End.Strobe

Cas. Strobe "CAS2"
Active.during := Read & Write
Time.to.falling.edge := 2 Phases
Time.to.rising.edge := 15 Phases

KW.Tse

The Memory Configuration File for the IMS B927

Page 162

Appendix D

End.Strobe

Programmable. Strobe "PS2"
End.Strobe

Write.Strobe "WRlTE2"
Active.during := Write
Time.to.faIIing.edge := 0 Phases
Time.to.rising.edge := 15 Phases

End.Strobe

Ras. Precharge. Ti me
Ras.Edge.Time
Ras.Cycle.Time
Cas.Cycle.Time
Bus.Release.Time

End.Bank

:= I Cycles
:= 2 Phases
:= I Cycles
:= 4 Cycles
:= I Cycles

Bank 3 "DRAM BANK 3"
Device. Type
Cacheable

:= Dram

Wait.Pin := disabled
Bank.Base.Address := 80600000
Bank.Address.Mask := 0 1000000
Port.Size := 64 bits
Page.Address.Bits := 001 FFFFC
Page.Address.Shift := 9 bits

Ras.Strobe "RAS3"
Active.during := Read & Write
Time.to.faIIing.edge := 0 Phases
Time.to.rising.edge := 16 Phases

End.Strobe

Cas.Strobe "CAS3"
Active.during := Read & Write
Time.to.faIIing.edge := 2 Phases
Time.to.ri sing.edge := 15 Phases

End.Strobe

Programmable.Strobe "PS3"
End.Strobe

Write.Strobe "WRITE3"
Active.during := Write
Time.to.falling.edge := 0 Phases
Time.to.rising.edge := 15 Phases

End.Strobe

Ras.Precharge.Time
Ras.Edge. Time
Ras.Cycle.Time
Cas.Cycle.Time
Bus.Release.Time

End.Bank

K.W.Tse

:= I Cycles
:= 2 Phases
:= I Cycles
:= 4 Cycles
:= 1 Cycles

The Memory Configuration File for the IMS B927

Page 163

Appendix E - The Initialisation Procedures for the DIPB

#INCLUDE "hostio.inc" -- contains SP protocol
#INCLUDE "Iinkaddr.inc" -- contains event channel addresses

PROC WorldP (CHAN OF SP HostInput, HostOutput, CHAN OF [64]INT64 ImageData l , CH AN OF
[64]INT64 ImageData2, VAL INT32 Count)

#USE "hostio.lib" -- iserver libraries

--{ {{ Frame buffer locations
[512] [256]INT bufferOdata, bufferl data, buffer2data:
PLACE bufferOdata AT #4000000:
PLACE bufferldata AT #4040000:
PLACE buffer2data AT #4080000:
--} } }

--{ {{ Overlay buffer locations
[512] [256]INT overlaydata:
PLACE overlaydata AT #4100000: -- #9040 0000 in machine map
-- } } }

-- { {{ VO port locations
PORT OF INT TMC22071notAO, TMC22071 AO, TMC2207 I notRESET:
PLACE TMC22071 notAO AT #8280000: -- #AOAOOOOO in machine map
PLACE TMC22071AO AT #8284000: -- #AOA10000 in machine map
PLACE TMC22071notRESET AT #8300000: -- #AOCOOOOO in machine map

PORT OF INT changefid, framesync:
PORT OF INT envhdv, resetvh, adcreg, dacreg, resetframsta:
PLACE changefid AT #8000000: -- #AOOOOOOO in machine map
PLACE framesync AT #8040000: -- #AO 1 00000 in machine map
PLACE envhdv AT #80COOOO: -- #A0300000 in machine map
PLACE resetvh AT #8080000: -- #A0200000 in machine map
PLACE adcreg AT #8100000: -- #A0400000 in machine map
PLACE dacreg AT #8180000: -- #A0600000 in machine map
PLACE resetframsta AT #8200000: -- #A0800000 in machine map

PORT OF INT adcdac:
PLACE adcdac AT #8340000: -- #AODOOOOO in machine map

PORT OF INT nrs2. nrs l.nrsO:
PLACE nrs2.nrs l .nrsO AT #82COOOO: -- #AOBOOOOO in machine map

PORT OF INT nrs2.nrs l .rsO:
PLACE nrs2.nrs l .rsO AT #82C4000: -- #AOB 10000 in machine map

PORT OF INT nrs2. rs l.nrsO:
PLACE nrs2. rs l.nrsO AT #82C8000: -- #AOB20000 in machine map

PORT OF INT nrs2.rs l.rsO:
PLACE nrs2. rs l.rsO AT #82CCOOO: -- #AOB30000 in machine map

PORT OF INT rs2.nrs l.nrsO:

PLACE rs2.nrs l.nrsO AT #82DOOOO: -- #AOB40000 in machine map

PORT OF INT rs2.nrs l .rsO:

KW.Tse Page 164

Appendix E The Initiali sation Procedures for the DIPB

PLACE rs2.nrs 1.rsO AT #82D4000: -- #AOB50000 in machine map
PORT OF INT rs2.rs l .nrsO:
PLACE rs2.rs l.nrsO AT #82D8000: -- #AOB60000 in machine map

PORT OF INT rs2.rs l.rsO:
PLACE rs2.rs l.rsO AT #82DCOOO: -- #AOB70000 in machine map
-- } } }

-- { ({ PROC reset.adc 0
PROC reset.adc 0

TMC22071 notRESET ! INT(#OO) -- write any value to this port

-- } } }
--I {{ PROC write.control.word 0 -- Write a specific control word
PROC write.control.word 0 -- Write a specific control word

--INT i:
INT CtrlWdO. CtrlWd8. CtrlWd 16. CtrlWd24. CtrlWd32. CtrlWd40. Buffer:
SEQ

CtrlWdO := #90
CtrlWd8 := #00
CtrlWd16 := #6F
CtrlWd24 := #03
CtrlWd32 := #60
CtrIWd40:= #C2

--I {{ Write CtrlWd40

-- 10010000. bitO. I ,?
-- 00000000. bit 8.9 •...• 15
-- 0110 1111. bit 16.17 23
-- 0000 0011 . bit 24.25 •...• 31
-- 01100000. bit 32.33 •...• 39
-- 110000 I O. bit 40,41 •.. .46. LSB is useless

Buffer := CtrlWd40» 1 -- shift one bit to right
SEQ i =OFOR 7

SEQ
TMC22071 notAO ! Buffer -- write Buffer to bit 46,45 ,40
Buffer := Buffer» I -- shift one bit to right

-- } } }
--I {{ Write CtrlWd32
Buffer := CtrlWd32
SEQ i =OFOR8

SEQ
TMC22071 notAO ! Buffer -- write Buffer to bit 39.38 •. ..• 32
Buffer := Buffer » I -- shift one bit to right

-- } } }
--I {{ Write CtrlWd24
Buffer := CtrlWd24
SEQ i =OFOR 8

SEQ
TMC22071 notAO ! Buffer -- write Buffer to bit 31.30• 24
Buffer := Buffer» 1 -- shift one bit to ri ght

-- } } }
--{{I WriteCtrlWd16
Buffer:= CtrlWd16
SEQ i =OFOR 8

SEQ

TMC22071 notAO ! Buffer -- write Buffer to bit 23.22 16
Buffer := Buffer» 1 -- shift one bit to right

-- } } }

-- I {{ Write CtrlWd8
Buffer := CtrlWd8
SEQ i =OFOR 8

SEQ

TMC22071 notAO ! Buffer -- write Buffer to bit 15.14 •...• 8

K.W.Tse Page 165

Appendix E The Initialisation Procedures for the DIPB

Buffer := Buffer » 1 -- shift one bit to right
-- } }}
--{ {{ Write CtrlWdO
Buffer := CtrlWdO
SEQ i =OFOR 7

SEQ
TMC22071 notAO ! Buffer -- write Buffer to bit 7,6, ... ,1
Buffer := Buffer» I -- shift one bit to ri ght

TMC22071AO ! Buffer -- write Buffer to bit 0 and transfer$
so.write.nl(Hostlnput,HostOutput) -- data to Control Register
so. wri te. string.nl(HostInput,HostOutput, It ... Done It)
-- } } }

-- } } }

--{ {{ PROC reset.epldO
PROC reset.epldO

SEQ
resetvh ! INT(#OO)
resetframsta ! INT(#OO)

-- } } }

--{ {{ PROC write.color.palette 0
PROC write.color.palette 0

SEQ
nrs2.nrs l.nrsO ! #00 -- address register (palette write mode)
SEQ i = 0 FOR 256

SEQ
nrs2.nrs l.rsO ! i

-- } } }

--so.write.string(Hostlnput, HostOutput,ltWriting R It)
nrs2. nrs 1.rsO ! i
--so.write.string(Hostlnput, HostOutput,ltWriting G It)
nrs2.nrs l.rsO ! i
--so.write. string(HostInput, HostOutput,ltWriting Bit)

--{ {{ PROC write.overlay 0
PROC write.overlay 0

SEQ
rs2.nrs l.nrsO ! #00 -- address register (overlay write mode)
SEQi = I FOR 15

SEQ

-- } } }

rs2.nrs 1.rsO ! i
rs2.nrs 1.rsO ! i
rs2.nrs 1.rsO ! i

--{ {{ PROC clear.overlay.bufferO
PROC clear.overlay.bufferO

SEQ
so.write.string(Hostlnput, HostOutput, ItWrite starts *nlt)
SEQi=OFOR512

SEQ j=O FOR 256

K.W.Tse Page]66

Appendix E

SEQ
overlaydata[i][j] := #00
--so.write.hex.int(HostInput, HostOutput, i, 8)
--so.write.string(HostInput, HostOutput, " ")

The Initialisation Procedures for the DIPB

so.write.string(Hostlnput, HostOutput, "Write finished *n")

-- } } }

--{ {{ PROC initialisationO
PROC initialisationO

SEQ
reset.adcO
write.color.paletteO
write.overlayO
c1ear.overlay.bufferO
adcreg ! #0 1
dacreg ! #01
reset.adcO
write.control. wordO
envhdv ! #01
reset.epldO

-- } } }

initialisation 0 ---- Main Program

K.W.Tse Page 167

Appendix F - The Seam Tracking Source Programme

#include <misc.h>
#include <stdlib.h>
#include <time.h>
#include <process.h>
#include <stdio.h>
#include <process.h>
#include <iocntrl.h>

#include "hardware.h"
#include "fiIters.h"
#inc lude "wings.h"

void tracking(unsigned char data[ysize][xsize], int WINDOW_HEIGHT);

int window_top = 0, window_bot = 511, window_left = 0 , window_right = 639;
int pos_disp, difCdisp;

1* ACTIVE WINDOW VARIABLES *1
int pos_points, haICwindow_width, haICwindow_height;

1* ARRAY POINTERS *1
int x, y, i, j , c, image_bot, image_end;

1* AVERAGING AND DIFERENTIAL COREECTION OFFSETS *1
int av_offset, diff_offset, final_offset, x_offset;

1* VARIABLES FOR PRODUCING POSITIONAL ARRAY *1
int average_ val, array_index, biggesc val , biggesUoc;
int averaging_array [20] , av _intensity[xwindow], pos[ywindow];

1* ADDITIONAL VARIABLES FOR PRODUCING SMOOTHED POSITIONAL ARRAY *1
int smoothing_array[20], av_pos[ywindow];

1* ADDITIONAL VARIABLES FOR PRODUCING DIFFERENTIAL ARRAY *1
int dift'-points, diff[ywindow], av_diff[ywindow];

1* ADDITIONAL VARIABLES FOR FINDING THE SEAM EDGES ON THE PROFILE *1
int final_points, bOCdiff, top_diff, top_loc, boUoc;
int valid_top_peak, valid_bocpeak;

1* ADDITIONAL VARIABLES FOR V ALIDA TING THE SEAM EDGES *1
int max_hump, edge_threshold, top_edge, bocedge, width, lascwidth;
int image_data_ valid;

1* ADDITIONAL VARIABLES FOR EXTRACTING SEAM AND LASER POSITIONS *1
int seam_pos, laser_pos, line_pos_total, line_points;

Channel *in , *out;

int mainO
{

int buffer, xstart, xstop, ystart, ystop;
int WINDOW_HEIGHT;

K.W.Tse Page 168

Appendix F The Seam Tracking Source Programme

printf("Process to do local seam tracking runing\n");
printf("About to get channels\n");
in = gecparam(3);
out = geCparam(4);
printf("Got other channels \n");

1******** GET IMAGE PROCESSING OPERATIONAL VALUES FROM CONTROL ********1
#define SAMPLE_SPACE 2
#define VER_A VERAGING 10
#define HOR_A VERAGING 10
#define INTENSITY_THRESHOLD 10
#define WINDOW_WIDTH 80
#define DIFF_SPACING 5
#define TOPEDGE_THRESHOLD 2
#define BOTEDGE_ THRESHOLD -2
#define HUMP_THRESHOLD 25
#define SEAM_WIDTH 50
#define MIN_ WIDTH 20
#define MAX_ WIDTH 150

1* #define WINDOW_HEIGHT 150*1

image_bot = ywindow - I;
image_end = xwindow - I ;
av_offset = VER_A VERAGING/2;
x_offset = HOR_A VERAGING/2;
halCwindow_width = WINDOW_WIDTH/2;

1* halCwindow_height = WINDOW _HEIGHTI2; *1
difCoffset = VER_AVERAGING + DIFF _SPACING;
final_offset = difCoffset + VER_A VERAGING;
edge_threshold = HUMP _THRESHOLDI2;
lascwidth = SEAM_WIDTH;

do (
buffer = Chanlnlnt(in);

WINDOW _HEIGHT = ChanInInt(in);
hal C window _height = WINDOW _HEIGHT/2;
if (buffer == 0)

tracking(bufferOdata, WINDOW_HEIGHT);
else if (buffer == 1)

tracking(bufferl data, WINDOW_HEIGHT) ;
else if (buffer == 2)

tracking(buffer2data, WINDOW_HEIGHT);
ChanOutInt(out, 1);

}while (I);
exit(EXIT_SUCCESS);
return(O);

void tracking(unsigned char data[ysize][xsize], int WINDOW_HEIGHT)
(

1************************ IMAGE PROCESSING ALGORITHM ***********************1

1************* GET START INSTRUCTION, START TIMING **************1
1*
proc_start = ChanlnInt(fControl);

K.W.Tse Page 169

AppendixF The Seam Tracking Source Programme

starUime = clockO;
*1
1********************** GET LASER LINE PROFILE ******************1
pos_points = (window_bot-window_top) I SAMPLE_SPACE;
I*printf("pos_points = %d\n", pos_points);*1
1* FILL ARRAY POS WITH LINE CENTRE POSITIONS *1
for (i = 0; i <= pos_points; i++) {

}

Y = window_top + (i * SAMPLE_SPACE);
for U = 0; j <= HOR_A VERAGING; j++) averaging_array[j] = 0;
average_ val = 0;
array_index = 0 ;
biggescval = INTENSITY_THRESHOLD;
biggesUoc = 0;
for (x = window_left; x <= window_right; x++) {

}

average_val = average_val- averaging_array[array_index];
averaging_array[array_index] = data[y][x];
average_val = average_val + averaging_array[array_index];
av_intensity[x] = average_val I HOR_AVERAGING ;
if (av_intensity[x] > biggescval) {

}

biggesC val = av _intensity[x];
biggesUoc = x;

if (array_index >= (HOR_AVERAGING-I)) array_index = 0;
else array _index++;

1* CHECK FOR VALID INTENSITY LEVELS *1
if (biggesCval > INTENSITY_THRESHOLD) {

}

window_left = biggesUoc - haICwindow_width;
if (window_left < 0) window_left = 0;
window_right = biggesUoc + haICwindow_width;
if (windowJight > image_end) window_right = image_end;
pos[i] = biggesUoc;
l*printf("window_left = %d\n" , window_left);*1

else { 1* no pixels bright enough (set to -I) *1
window_left = 0; 1* reset scan limits *1
window_right = image_end;
pos[i] = -1 ;

}

1* FILL (-I) HOLES IN Y_POS ARRAY *1
c = I;
while (pos[O] == (-1)) {

if (pos [c] == (-1)) {
c++;
if (c >= pos_points) pos[O] = (xwindow/2) ;

}
else pos[O] = pos[c];

for (i = I ; i <= pos_points ; i++) {
if (pos[i] ==(-1)) pos[i]=pos[i-I] ;

1******** SMOOTH THE POS ARRAY TO PRODUCE THE A VPOS ARRAY *******1
for U = 0; j <= V ER_A VERAGING; j++) smoothing_array[j] = 0 ;
average_ val = 0;
array_index = 0 ;
for (i = 0 ; i <= pos_points; i++) {

K.W.Tse Page 170

Appendix F The Seam Tracking Source Programme

average_val = average_val- smoothing_array[array_index);
smoothing_array[array _index] = pos[i];
average_val = average_val + smoothing_array[array_index];
av _pos[i] = average_ val I VER_A VERAGING;
if (av_pos[i] < 0) av_pos[i] = 0;
else if (av_pos[i] > image_bot) av_pos[i] = image_bot;
if (array_index == (VER_AVERAGING-I)) array_index = 0;
else array_index++;

1****** ************* GET DIFFERENTIAL PROFILE ********* **********1
1* GET DIFFERENTIAL PROFILE DIFF FROM THE SMOOTHED ARRAY *1
diff_points = pos_points - (V ER_AVERAGING + (2*DIFF _SPACING)) ;
for (i = difCoffset; i <= (difCoffset+difCpoints); i++) {

diff[i] = av_pos [i+DIFF _SPACING] - av_pos[i-DIFF _SPACING];
}
for (i = 0; i < VER_AVERAGING; i++) smoothing_array [i] = 0;
average_val = 0;
array_index = 0;
for (i = difCoffset; i <= (difCoffset+difCpoints); i++) {

average_val = average_val - smoothin~array[array_index];
smoothing_array[array_index] = diff[i];
average_val = average_val + smoothing_array[array_index] ;
av_diff[i] = average_val I VER_AVERAGING;
i f (array_index == (V ER_A VERAGING-l)) array_index = 0;
e lse array_i ndex++;

1************************* FIND SEAM EDGES **********************1
final_points = diff_points - (2*VER_AVERAGING);
valid_top_peak = 0;
valid_bocpeak = 0;
top_diff = TOPEDGE_THRESHOLD;
bOCdiff = BOTEDGE_THRESHOLD;
for (i = final _offset; i <= (final_offset+final_points); i++) {

if (av_diff[i] >= top_diff) { 1* +ve peak *1
top_d iff = av_diff[i] ;
top_ loc = i;
valid_top_peak = I ;

}
else if (av_diff[i] <= boCdiff) {

boCdiff = av_diff[i];
boCloc = i;
valid_bot_peak = I ;

}

1* -ye peak *1

1**************** COMBINE PEAKS AND VALIDATE EDGES **************/
image_data_valid = 0;

1** BOTH EDGES ARE VALID, THRESHOLD HUMP **/
if (valid_top_peak && valid_boCpeak) {

max_hump = top_diff - boCdiff;
if (max_hump >= HUMP_THRESHOLD) {

1* HUMP MARKING SEAM IS FOUND *1
top_edge = window_top + (top_loc * SAMPLE_SPACE);
bocedge = window_top + (boUoc * SAMPLE_SPACE);
width = bocedge - tOP3dge;

K.W.Tse Page 171

Appendix F The Seam Tracking Source Programme

if «width>MIN_ WIDTH) && (width<MAX_ WIDTH)) {
image_data_ valid = I ;
lasCwidth = width;

/*printf(" first\n "); */

else {

}

/* INVALID SEAM WIDTH */
if (width> 0) {

}

/* CORRECT THE WEAKER EDGE */
if «0 - bot_diff) >= top_diff) top_edge = bocedge - lascwidth;
else bot_edge = top_edge + lasCwidth;
image_data_valid = 1;
printf("seeond\n ");

else image_data_valid = 0;

}
else {

/* CAN'T FIND HUMP - TRY AND FIND ONE EDGE */
if (top_diff > edge_threshold) {

}

/* TOP EDGE IS OK - CORRECT THE BOTTOM EDGE */
top_edge = window_top + (top_lac * SAMPLE_SPACE);
bocedge = top_edge + lascwidth;
image_data_ valid = 1;
printf("third\n ") ;

else if «0 - bot_diff) > edge_threshold) {

}

/* BOTTOM EDGE IS OK - CORRECT THE TOP EDGE */
boCedge = window_top + (boUoe * SAMPLE_SPACE);
top_edge = bot_edge - lasCwidth;
iinage_data_ val id = 1;
printf(" fourth\n ");

else image_data_valid = 0;
}

}
/********** TOP EDGE IS VALID - NO BOTTOM EDGE **********/
else if (valid_tap_peak && (!valid_bocpeak» {

}

if (top_diff > edge_threshold) {

}

/* GOOD TOP EDGE - ADD BOTTOM EDGE */
top_edge = window_top + (top_lac * SAMPLE_SPACE);
bocedge = top_edge + last_width;
image_data_ valid = I;
printf(" fi fth\n ");

else image_data_ valid = 0;

/********** BOTTOM EDGE IS VALID - NO TOP EDGE **********/
else if (valid_boCpeak && (!valid_top_peak)) {

}

if «0 - bOCdiff) > edge_threshold) {

}

/* GOOD BOTTOM EDGE - ADD TOP EDGE */
boCedge = window_top + (boUoe * SAMPLE_SPACE);
top_edge = bocedge - lasc width;
image_data_ valid = 1;
printf("sixth\n ");

else image_data_ valid = 0;

K.W.Tse Page 172

Appendix F The Seam Tracking Source Programme

else image_data_ valid = 0;

1*************** DISPLAY AND EXTRACT DATA ****************1
if (image_data_ valid) {

}

top_edge = top_edge - (VER_A VERAGING * (SAMPLE_SPACE+ I));
boCedge = bocedge - «VER_AVERAGINGI2) * SAMPLE_SPACE);
if (top_edge < 0) top_edge = 0;
if (boCedge > image_bot) bocedge = image_bot;
seam_pas = (top_edge + bocedge)/2;

else {

}

top_edge = 200;
bot_edge = 300;
seam_pos = 250;

1* FIND LASER LINE POSITION AT SEAM EDGE *1
if (image_data_valid) {

line_pos_total = 0;
line_points = pos_points - VER_A VERAGING;
for (x = VER_AVERAGING; x <= pos_points; x++) {

line_pos_total = line_pos_total + av_pos[x] ;
laser_pos = (Iine_pos_total/line_points) - x_offset;
if (Iaser_pos > image_end) laser_pas = image_end ;
else if (laser_pas < 0) laser_pas = 0;

}
}

1******************* DISPLAY FEATURES ********************1
1* DISPLAY LASER LINE POSITION PROFILE *1

for (y = window_top, i = 0; y < window_bot; y = y + SAMPLE_SPACE, i++)
{

pos_disp = av_pos [i];
if (pos_disp > 639) pos_disp = 639;
else if (pos_disp < 0) pos_disp = 0;
data[y][pos_di sp] = (unsigned char) OxOO;
data[y+ I][pos_disp] = (unsigned char) OxOO;

1* DISPLAY DIFFERENTIAL PROFILE *1

for (y =window_top, i = 0; Y < window_bot; y = y + SAMPLE_SPACE, i++)
{

difCdisp = (2 * av_diff[i]) + (Iaser_pos+75) ;
if (difCdisp > 639) difCdisp = 639;
else if (difCdisp < 0) difCdisp = 0;
data[y][difCdi sp] = (unsigned char) Oxff;
data[y+l][difCdisp] = (unsigned char) Oxff;

1* PROCESSING COMPLETE - RETURN RESULTS *1
for (i=0; i < 100; i++)
{
data[top_edge][\aser_pos+i] = (unsigned char) 0;
data[top_edge+ 1][\aser_pos+i] = (unsigned char) 0;

data[bot_edge][laser_pos+iJ = (unsigned char) 0;

K.W.Tse Page 173

Appendix F The Seam Tracking Source Programme

data[bocedge+ 1][Iaser_pos+i] = (unsigned char) 0;

1*
ChanOutInt(tControl, image_data_ valid);
if (image_data_ valid) (

ChanOutlnt(tControl, top_edge);
ChanOutInt(tControl, bot_edge);
ChanOutlnt(tControl , laser_pas);

*1
1***************** SET NEW WINDOW VALUES ***************1
if (image_data_valid && (window_top < window_bot)) {

I*printf("top_edge = %d bot_edge = %d\n" , top_edge, bOCedge);*1
window_top = top_edge - haICwindow_height;
if (window_top < 0) window_top = 0;
else if (window_top> (image_bot-WINDOW _HEIGHT)) window_top = image_bot -

WINDOW_HEIGHT;
window_bot = bot_edge + haICwindow_height;
if (window_bot < WINDOW _HEIGHD window_bot = WINDOW_HEIGHT;
else if (window_bot> image_bot) window_bot = image_bot;

I*printf("window_top = %d window_bot = %d\n", window_top, window_bot) ;*1

else (
printf("Reset Window size\n") ;

window_top = 0;
window_bot = image_end;

}
1*
stop_time = clockO;
proc_time = (1000 * (stop_time - starUime)) I 15625;
ChanOutlnt(tControl, proc_time);
*1

K.W.Tse Page 174

