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Abstract 

ABSTRACT 

This thesis describes the experimental techniques used and the results obtained 

from an investigation into the properties of novel auxetic honeycombs , 

comprising re-entrant shaped cells, and conventional honeycombs containing 

hexagonal cells. 

Existing work on the properties of honeycomb materials is reviewed with 

particular reference to in-plane elastic deformation and modelling of the re-entrant 

cell structure. 

The popular flexure model has already been used to accurately predict the in-plane 

behaviour of conventional honeycombs which deform by flexing of the cell 

walls. However, two additional mechanisms by which honeycombs may deform 

in-plane can be identified, namely stretching and hinging of the cell walls. 

Mathematical models are developed here to describe these latter types of 

deformation. The models relate the material properties of the cell walls to the 

geometry of the cell and writing each model in terms of a force constant enables 

the three deformation mechanisms to be combined into a general model. 

Tensile and compressive tests on aluminium and card honeycombs have been 

used to validate the flexure and hinging models respectively, for both hexagonal 

and re-entrant cell shapes. 

In-plane indentation behaviour was investigated using both flat and semi-circular 

indenters. The re-entrant celled honeycombs were observed to have a higher 

resistance to indentation than their hexagonal cell counterparts due to densification 

of the material below the indenter as a result of the effective Poisson's ratio being 

negative. 



Abstract 

Conventional hexagonal cell honeycombs deform anticiastically when bent out of 

plane due to the effective Poisson's ratio of the honeycomb being positive. When 

the Poisson's ratio is negative, as for the re-entrant cell shape, the out of plane 

curvature becomes synclastic enabling domed shapes to be produced naturally. 

For the card honeycombs the extremely low forces required to operate the hinges 

combine with the synclastic curvature to produce highly flexible cores with which 

it is possible to generate very tight curvatures without damage to the cell 

structure. This has obvious advantages over conventional honeycomb in the 

fabrication of doubly curved surfaces e.g. radomes, boat hulls. 

Finally the general model is shown to be a useful first order calculation for 

predicting the properties of molecular, cellular structures without having to resort 

to time consuming and expensive computer techniques for molecular modelling 

and finite element analysis. 
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Development & l7IQ1Iufacture athoneycomh core materials 

1) DEVELOPMENT & MANUFACTURE OF 

HONEYCOMB CORE MATERIALS 

1.1 Development of honeycomb core materials 

Sandwich structures, incorporating a lightweight core separating two strong stiff 

skins, occur naturally in, for example, the human skull or a bird's wing (Gibson 

et aL 1988a). The principle of a sandwich panel is the same as that of an Hr' beam, 

i.e. the amount of material in the region of the neutral axis is reduced to a 

minimum. When a panel is bent the high strength skin material carries the 

maximum stress at the surface where the strain is highest, while near the neutral 

axis where the stresses and strains are small a relatively low yield, low weight 

core material is all that is required (Rao, 1978). The core material must, however, 

be stiff enough in shear to prevent the skins from sliding over each other and stiff 

enough in compression to keep the skins the correct distance apart (Johnson et al. 

1986). 

The first man-made sandwich panels were constructed from natural cellular 

materials such as cork and balsa wood. Balsa wood cut perpendicular to the grain 

and sandwiched between plywood skins was used in the construction of the de 

Havilland DH91 Albatross airliner in 1937 (Middleton, 1990) and again to great 

effect in the DH98 Mosquito fighter/bomber, the world's fastest combat aircraft of 

it's day (Hardy, 1977). Balsa is still used in the modern aircraft industry for 

example in the cargo floors of the Boeing 747 and in applications where complex 

curvatures are required (Colucci, 1990) since it has been found to be more 

durable and cheaper than synthetic equivalents. It's disadvantage however, is that 

as a natural material it cannot be grown or produced to a specified density and it's 

strength and stiffness are affected by the absorption of moisture (Wood, 1989). In 

serious cases rotting can occur. 
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Development & manufacture of honeycomb core materials 

The Second World War created the need for easily produced core materials with 

controllable and uniform properties which would remain unaffected by moisture. 

Experiments were carried out with foamed resin cores but it was found that lighter 

and more structurally efficient sandwich panels could be produced using a 

honeycomb structure as the core. This lead to the development, in 1943, of 

Oufaylite™ (a phenol-formaldehyde resin impregnated, all-wood, kraft paper 

honeycomb) by Dufay Ltd. in colla1::x)[ation with the Royal Aircraft Establishment 

(May, 1957., Gordon, 1978.). This material was successfully used in radomes 

and many other military applications. 

The modem equivalents of these early paper materials are manufactured from 

aluminium, stainless steel and GRP. The non-metallic Nomex™ core, 

manufactured by Ou Pont and licensees, is p~oduced from paper-like sheets of 

synthetic aromatic polyamide fibres and fibrids (fibre/film hybrids with a high 

surface area) coated with a phenolic resin (Wood, 1989). 

1.2 ,Manufacture of commercial honeycombs 

The most common methods of producing commercial honeycomb are shown 

schematically in Figs. 1.1 & 1.2. 

roll of raw 

~'ri" 

_ expanded = ........... V.l honeycomb 

Fig .1.1 Expansion process for manufacturing honeycomb. 
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DeveloQment & manufacture a,fhoneycomb core materials 

Aluminium foil honeycombs are produced by the expansion route (May, 1947). 

Parallel lines of adhesive are accurately printed on to the upper surface of sheets of 

material which are then stacked together, each sheet off-set from it's nearest 

neighbours by half a glue-line spacing. Heat and pressure are applied to the stack 

to cure the adhesive. Slices, sometimes called "hobe (honeycomb before 

expanding) slices", of the required thickness are then cut from the stack and 

expanded to produce conventional hexagonal cell material. (N.B. in the expanded 

core the direction of the adhesive bonds is called the 'ribbon direction'). 

A similar process is used to produce honeycombs from Nomex™ paper, but in 

this case the whole stack is dipped in resin after expansion. The density is 

controlled by the number of dippir}g operations, and after curing, the expanded 

stack is cut into slices of the required thickness. 

roll of raw 
materi a l 

corrugati ng 
rol ls ~ 

corrueated sheets 
'\ adheSively bonded 

\ or welded 

Fig .1. 2 Corrugation process for manufacture of honeycomb. 

Stainless steel and titanium honeycombs, for use in jet engine and other high 

temperature applications, are produced from heavier gauge material which must 

flrst be corrugated between profIled rollers. Individual sheets are then spot welded 

together by either resistance or laser welding (Fig.1.2). 

Many types of core material are now available and the selection of an appropriate 

core is determined by the flnal application of the component being fabricated 

3 



Development & Ul4Dwacture a[honeycomb core materials 

(Parker, 1990). The operational environment is particularly important since, for 

example, aluminium honeycombs may be susceptible to certain corrosive media 

whereas resin based cores can be affected by high temperatures. A sample of the 

wide variety of applications for which honeycomb cores are now used is shown in 

Table. I. ! 

Core material 

Cardboard 

Nomex 

GRP 

Aluminium 

Stainless steellNickel based superalloys 

Titanium 

Application 

Packaging 
Interior doors & partitions 

Helicopter rotor blades 
Aircraft luggage racks 
Boat hulls, bulkheads & decks 

Missile & spacecraft components 

Aircraft floors, tailplanes etc. 
Helicopter platforms 

Jet engine abradeable seals 

Jet engine compressor blades 

Table 1.1. Applications o/honeycomb core materials. 

1.3 Properties of honeycomb cores 

it is obvious from examination of a 2-D honeycomb structure that deformation in a 

plane perpendicular to the axes of the cells can arise from bending, hingeing or 

stretching of the cell walls. 

Commercially available honeycombs are considered to deform elastically by 

flexing of the cell walls. This behaviour has been quite accurately described by a 

flexure model based on the assumption that the cell walls bend like beams (Gibson 

etaL 1982). 
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Development & manufacture ojhoneycomb core materials 

Fig. 1. 3 A hexagonal cell, cardboard honeycomb demonstrating characteristic 
antidastic curvature. 

Fi g. 1 . 4 Double-flex™ - aflexible aluminium core produced by Hexcel C01p. 

5 



Development & manufacture of honeycomb core materials 

Experiments with card honeycombs (Caddock et ai. 1991. Masters et ai. 1993) 

have shown that hinging can be the dominant mechanism. ie. deformation occurs 

by a change in the cell angle alone. The final mechanism is stretching. in which the 

cell angles are considered fixed and deformation occurs by axial extension of 

transversely stiff cell walls. Gillis (1984) and Wei (1991) have both combined 

hinging and stretching mechanisms to describe molecular behaviour. Gibson el 

ai. (1988b) considered both flexing and stretching for a honeycomb under in-plane 

biaxial stress. In this thesis the stretching and hinging models are developed 

separately in chapter 3 for elastic deformations only. 

In general maq-o-honeycomb, of the type used in sandwich structures, will 

deform by either flexing or hinging since out-of-plane stiffness precludes 

stretching. The particular mechanism which operates is determined by the 

properties of the cell wall material and the cell geometry. Stretching only becomes 

significant on a molecular scale. However. it is feasible to imagine that all three 

mechanisms could operate concurrently and that a general elastic deformation 

model can be obtained by combining the appropriate equations. 

1.4 Limitations of the hexagonal cell shape 

As can be seen from Figs. 1.1 & 1.2 hexagonal celled honeycomb is very simple 

to produce. but it has the disadvantage. that when a sheet of core is bent out-of

plane. it produces the anticlastic or saddle shaped curvature shown in Fig.1.3. 

This is because the effective in-plane Poisson's ratio of the honeycomb structure. 

in common with that of nearly all known materials, is positive. 

The first attempt to overcome this problem was made by Dufay Ltd. during the 

1950's (May. 1957). A flexible paper core was produced for use in radomes etc. 

by making the length of the glued joints in the honeycomb only half the core 

thickness enabling the top of the joint to open when the core was bent to shape. 

Three methods are used commercially today. Firstly changing the cell angle; ego by 
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Develapment & manufacture ojhone:ycomb core materials 

over expanding the core to give square or rectangular cells enables cylinders to be 

generated. Secondly incorporating corrugations in the cell wall makes the core 

more flexible ego Double-flex™ Fig. 1.4 allowing compound curves to be formed. 

It should be noted however, that even this type of core will naturally assume an 

anticlastic curvature when bent out of plane. Compound curvatures can only be 

achieved by forcing the core to the required shape, a process made easier by the 

corrugations in the cell walls. 

The third method is to machine a block of conventional, hexagonal cell 

honeycomb to the required contours but this is obviously expensive both in 

material and machining time. 

Synclastic curvatures will only occur naturally if the core structure has a negative 

Poisson's ratio. This is achieved by making the cells re-entrant in shape as shown 

in Fig.l.5. The synclastic curvature is an obvious benefit and although the 

theoretical behaviour of such structures have been examined (Almgren, 1985., 

Evans, 1990., Warren, 1990), very little experimental work has been carried out 

on re-entrant celled honeycombs. 

Fig .1. s. A network made up from re-entrant cells. 

1.5 Aim and scope or this research 

The primary purpose of the research presented in this thesis was to investigate the 

properties of the re-entrant celled honeycomb using both mathematical modelling 
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and practical experimentation and comparing them with those of the more 

conventional hexagonal celled honeycomb. 

Existing work studying the properties of 2-D honeycombs is reviewed in the 

following chapter. Extending this work, models for the deformation mechanisms 

of stretching and hinging are developed and combined with the existing flexure 

model to produce a general deformation model in chapter 3. The behaviour of the 

separate models is investigated in chapter 4 by varying the cell geometry. Chapter 

5 describes the experimental techniques used for determining the properties of 

both re-entrant and hexagonal celled honeycombs and the results of these tests are 

presented in chapter 6. These results are analysed in chapter 7 and a more general 

discussion on the benefits and applications of the re-entrant structure is contained 

in chapter 8. Finally conclusions from the research and some ideas for future work 

are listed in chapter 9. 
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Literature review 

2) LITERATURE REVIEW 

2.1 Introduction 

The hexagonal cell structure is commonly found throughout nature from the bee's 

honeycomb to the structure of balsa wood (Easterling et at., 1982) and cork 

(Gibson etaL,1981). When honeycombs began to be manufactured artificially the 

hexagonal cell proved to be the cheapest and easiest cell shape to produce as 

described in chapter 1. The elastic behaviour of a sheet of honeycomb under an 

applied load is similar to that of a solid material. Using simple mechanics the 

elastic properties of the honeycomb structure can be related to the properties of 

the cell wall material and the cell geometry. 

2.2 Relationship between the elastic constants 

For an anisotropic 3-D solid the compliance matrix is made up of 21 elastic 

constants (Gibson, 1981). Honeycombs are anisotropic because of the 2-D 

arrangement of the cells: in the plane of the honeycomb the moduli are detennined 

by the flexing, hingeing and stretching of the cell walls: nonnal to this plane they 

are detennined by their axial extension or compression. A honeycomb however, 

has orthotropic symmetry meaning that the structure has three perpendicular 

mirror planes. This symmetry reduces the number of moduli and if the axes of 

loading are aligned with the normals to these planes the compliance matrix 

simplifies to a set of nine independent compliances (Eqn. 2.1) 

_1 -V21 -V31 

El E2 E3 

-V12 _1 -V32 

El E2 E3 

~ ~ _1 

s= El E2 E3 
-L 
G23 

_1_ 
G31 

_1_ 
G12 (2.1) 
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where Ei=Young's modulus in direction i. 

Gij=Shear modulus in plane ij 

Literature review 

vij=Poisson's ratio in plane ij due to load applied in direction i. 

2.3 Out of plane shear modulus 

Early work on the properties of honeycomb cores concentrated on the out of 

plane shear and compression properties since in their primary use as sandwich 

panel cores a high shear strength is essential to produce a stiff rigid beam (Allen, 

1969). 

Kelsey et al. (1958) used unit load and unit displacement methods to derive 

expressions for the through thickness shear modulus of a hexagonal celled 

honeycomb core. Comparison of the two methods detennined a set of upper and 

lower limits which defined the shear modulus. They established that the shear 

modulus was a function of direction in which the shear forces were applied 

across the cells and achieved good agreement between the theory and 

experimental results obtained using commercially available hexagonal cell 

honeycomb. 

1 

h 

2 

Fig. 2.1 The hexagonal cell of depth b showing the nomenclature used to 
describe its geometry. 

12 
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The shear modulus expressions derived by these workers are quite complicated 

and cumbersome but a simplified expression has been developed by Oibson et 

al. (1988a) using a strain energy method. Again upper and lower bounds are 

defmed in the two orthogonal directions. 

Using the nomenclature shown in Fig.2.1 the upper limits are 

013 S (hll + 2sin2 8) xl. 

Os 2(hll + sin 8~os 8 1 
and 

Q.u s cos 8 xl. 
Os (hll + sin 8) 1 

Where Os = Shear modulus of cell wall material 

013 = Shear modulus of cellular structure in direction 1 

0 23 = Shear modulus of cellular structure in direction 2 

(2.2) 

(2.3) 

Comparison of equations (2.2) and (2.3) with the results of Kelsey et al. (1958) 

for aluminium and steel honeycombs show good agreement (Gibson, 1988a). 

(Using -8 in these equations gives results for a re-entrant cell structure). 

It has been observed experimentally (Reichard,1972) that the shear modulus in 

direction 2 is approximately 40% lower than that in direction 1, the ribbon 

direction. At first this does not appear to agree with the theory of Oibson since 

when equations (2.2) and (2.3) are evaluated for regular hexagonal cells i.e. h=l 

and 8=30°, we obtain the result 

(2.4) 

If however the double wall thicknesses in direction 1 are allowed for then 

equation (2.2) becomes 

Qu < (hll + sin2 8) 1. 

Gs -(hll+sin8~os 8 xl (2.5) 
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Substituting hIl= 1 and 8=30° into this equation gives 

%;- = 0.96~t) 
(2.6) 

or 0 23 ::= 0.6013 as stated by Reichard. 

If expressions (2.3) and (2.5) are equated it is possible to obtain the conditions 

required for unifonn modulus in both the 1 and 2 directions. For an hexagonal 

array with h/l =1 then 8=24°. This is greater than the angle of 15° suggested by 

Kelsey et al. (1958) to obtain isotropy in the plane . 

.c .... 
ell = ~ 
s.. .... 
ell 

s.. 0.8 
~ 
~ 
.c 
~ 

25 50 75 100 

Core thickness (mm) 

Fi g.2.2 Graph of shear strength ratio vs. core thickness for paper honeycomb 
used in the American construction industry (Reichard, 1972). 

Equations (2.3) and (2.5) imply that the shear modulus is independent of the 

thickness b of the core material. It should be noted however, that work carried 

out in the U.S.A. (Reichard, 1972), on paper honeycombs used in the 

construction industry, has shown that the shear strength is dependent on the core 

thickness, particularly when b is small (Fig.2.2). 

Chang et al. (1961) studied the effect of the cell geometry on the shear modulus 

of sandwich panel cores. They made six basic assumptions to enable them to 

describe the behaviour of the honeycomb. 

14 



(1) The cell walls of the core behave elastically 

(2) No buckling of the cell wall occurs 

Literature review 

(3) The geometrical shape of the cell remains the same in each plane parallel 

to the sandwich faces. although displaced. 

(4) The bond between the two cell walls is perfect 

(5) The direction of the applied load shear force is the same as the direction of 

the shear displacement. 

(6) The thickness t of the cell wall is much smaller than the characteristic 

dimensions l. The bond length h is also much larger than t. The 

thickness of the core b should also be larger than t. 

By considering the deflection of a plane parallel to the basal plane of the cell. 

through an angle q,. the expression derived for the relative shear modulus for a 

load applied in the ribbon direction (direction 1) is 

and direction 2 is 

G131 _ hll +sin2e 

Gt - cose(h/I + sine) 

QnL_ cos e 
Gt - hll + sin 9 

(2.7) 

(2.8) 

These are identical solutions to the upper limits derived by Gibson when allowing 

for the double wall thickness in direction 1 (Eqns 2.3 and 2.5). 

2.4 CQre density 

Chang etal. (1961) went on to describe how the core density is dependent on the 

cell geometry. In their calculations they have allowed for both the double wall 

thickness in the 1 direction and also the mass and thickness of the adhesive used 

to bond the foil sheets together. 

Their expression for the relative core density is 

15 



where Pbond=density of adhesive 

It,ond=bond thickness 

P s=density of cell wall material 

Literature review 

(2.9) 

If we assume that the bond thickness is negligible then this expression is 

simplified to 

Pcore = l. x (1 + hll ) 

Ps I cos e (hll + sin e) (2.10) 

The equivalent expression derived by Gibson et al. (1988b) is 

Pcore = (2 + hli ) X til 

Ps 2cos e (hll + sin e) (2.11) 

which reduces to Eqn. 2.10 when the double wall thickness is taken into 

consideration. 

2.5 Qut-of-plane Youne's modulus 

When a honeycomb is loaded in a direction parallel to the axis of the cells (i.e. 

direction 3 perpendicular to the page in Fig.2.1) the cell walls are extended or 

compressed elastically and no bending occurs. This makes the moduli much 

larger than those calculated for the in-plane loading. 

As shown by Gibson et al. (1988a) the modulus E3 of a honeycomb is just the 

modulus Es of the cell wall material scaled by the area of the load bearing section 

i.e. 

fu = [ hll + 2 ~ = Pcore ... 1. 
Es 2(hll +sin e~os e JI Ps I (2.12) 

for cells of uniform wall thickness. Similarly if we have double wall thicknesses 

in direction 1 then 
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E3 _ [ hi I + 1 t _ Peore 

Es - (hI! +sin 8~os 8 JI - Ps 

Literature review 

(2.13) 

If the cell walls are considered to behave as plates constrained along two edges 

lying parallel to the direction of a compressive load, then the load at which elastic 

buckling occurs is given by 

K E t 3 
Pelastie = s x-

(1- v~) I (2.14) 

Gibson et al. (l988c) suggest that the constant K=4 for a honeycomb structure. 

Hence the stress at which elastic buckling occurs is 

(Oelastich _ 2 (llh + 2) (ti3 
.:........::.:.::::.:.:~- x x -, 

Es (1 -~) (hll + sin 8~os 8 I (2.15) 

Plastic collapse and failure of the honeycomb occurs when the stress in the plane 

perpendicular to the cell walls exceeds the yield stress Oys of the cell wall material 

(Gibson et al., 198&1). This defines an upper limit of the plastic collapse strength 

of 
[Oplb _ (hil + 2) t _ PeoTe 
--- x----

Oys 2cos 8(hll + sin 8) I Ps (2.16) 

for honeycombs of uniform wall thickness. Wierzibicki's analysis gives an 

estimate of plastic buckling stress as 

[oplb ::::; IT x (hll + 2) x (L Y 
Oys 4 cos e(hll + sin 8) I (2.17) 

2.6 Relationship between the elastic properties for a 2-D network 

In the case of a 2-D cellular network like a honeycomb the stiffness in direction 3 

is large and the resistance to shearing through the thickness is also great so that it 

can be assumed that 

_1 =_1_=_1_=0 
E3 G13 G23 (2.18) 
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When a load is applied in the 1 or 2 directions forces and displacements 

perpendicular to the plane i.e. in direction 3 are negligible so the honeycomb can 

be considered to be under plane stress conditions. Hence 

(2.19) 

which reduces the number of independent constants to four. The compliance 

matrix thus becomes 

s= 

l :Yz.l 
El E2 
-V12 _1 
El E2 

_1_ 
G12 (2.20) 

A core comprising regular hexagonal cells (Fig. 2.1) is isotropic in the plane 

(Lempriere 1968. Gibson et al. 1988e) which further simplifies the matrix so the 

relationship 

G= E 
2(1 + v) (2.21) 

is obeyed. However. in nearly all commercially available honeycombs these ideal 

conditions are rarely achieved because of the double wall thickness in the I or 

ribbon direction. and the considerable variation in the cell angles. As a result the 

in-plane shear modulus G12 remains independent ofEl• ~. V12 and v21· 
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2.7 In-plane Youm:'s modulus 

The first work to look at the in-plane properties of honeycombs (Abd EI-Sayed 

et al., 1979) was based on the assumption that the double-thickness walls (h in 

Fig.2.1) remain straight when a load is applied and that the single-thickness cell 

walls I defonn by flexure. Using a free energy method, the displacements of the 

centre points of the single-thickness cell walls can be detennined and the Young's 

modulus calculated. Considering elastic deformation alone the expressions for the 

Young's moduli in orthogonal directions are 

El = 2Est 3{hll + sin e) 

1 cos e(2/ 2cos28 + 2t 2sin28 + th cos e) (2.22) 

and 

(2.23) 

Gibson et aI. (1982, 19880 also calculated the moduli by assuming flexure of the 

cell walls but only considered the case of all cell walls being of uniform thickness 

t. Each cell wall is imagined to behave like a beam guided and loaded at one end 

and using simple mechanics the relative displacement of one end of the beam to 

the other can be calculated. From these deflections the strains induced in the cell 

and hence the moduli of the network can be calculated for uniaxial loading. This 

gives the somewhat simpler expressions 

El = Es(hll + sin e}t 3 

[3cOS38 

E2 = Est 3cos e 
1 ~h/l + sin e~in2e 

(2.24) 

(2.25) 

Gibson (1981) extended the original flexure model to include stretching and shear 

deflections of the cell walls. but these refinements where found to provide 

negligible improvement due to the non regularity of the cells in commercial 

honeycombs. Equations 2.24 and 2.25 have been shown to give good agreement 

with experimental results for both metal and rubber honeycombs (Gibson et ai .• 
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1982., Gibson et aL, 19880. 

2.8 In-plane Shear modulus 

The in-plane shear modulus GI2 is derived by noting that because of symmetry 

there is no relative movement of the points A, B and C in Fig.2.3 (Gibson et al. 

1982) 

F 
c= 

I~ 
D 

M 
hl2 

F/2_? B ~ _F_/2 ....... _ 

A C 

Fig. 2. 3 Forces acting on the unit cell of an hexagonal cell honeycomb due 
to in-plane shear in direction 2. 

All the shear deflection is entirely due to the bending of the beam BD and its 

rotation about the point B. Assuming BD behaves as a cantilever the deflection, 

due to shear, of the mid-point of the cell wall length h can be calculated. 

The angular rotation is obtained by treating the cell wall I as an encastre beam 

when the supports move. The expression obtained for shear modulus is 

G12 - (1. r hli + sin e 
Es - I (hil f(1 + WI ~os e (2.26) 

For commercial honeycombs it can be assumed that the double thickness walls in 

the ribbon direction do not flex (Klintworth et al .• 1987) so equation (2.26) is 

modified to 

Q.u _ t 3{hll + sin e) 
Es - h 21 cos e 
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2.9 In-plane Poisson's ratio 

The Poisson's ratio v is simply the ratio of the lateral or transverse strain £or and 

longitudinal strain £L developed in a body when it is subjected to a uniaxial stress 

(Hearn, 1982) i.e. 

(2.28) 

For nearly all known materials Er is of opposite sign to cL so, for convenience 

the mathematical definition of Poisson's ratio includes a negative sign to make the 

ratio a positive value. Obviously a material which defonns such that cT and cL are 

of the same sign will produce a Poisson's ratio of negative value. 

The Poisson's ratio is a specific characteristic of a material and as such is one of 

the elastic constants. Poisson himself tried to relate v to the material 

microstructure (Rothenburg et al., 1991) by considering a material made up of 

randomly packed smooth spheres interacting by forces acting along the line 

connecting the centres of the spheres. For this system he showed that v = 0.25. 

Strain energy methods show that for an isotropic solid -1::; v::; 0.5. 

During the early use of synthetic, cellular core materials it became apparent that 

the effective Poisson's ratio of a honeycomb structure could be much larger than 

those encountered in conventional materials, depending upon the shape and 

orientation of the cells. Poisson's ratios for commercially available honeycombs 

have been evaluated using a strain energy method (Hoffman, 1957) by assuming 

the walls of the cell to be'S' shaped elements which, under small elastic 

deformations defonned by bending alone. A similar approach was used by Abd 

EI-Sayed (1979) and again by Gibson et at. (1982) and both derived the 

following expression for the ratios V12 and v21 which is identical to the solution 

obtained by Hoffman. 

V12 = l = sin e(hll + sin e) 
V21 cos28 (2.29) 
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Hoffman and Gibson showed that for certain geometries the Poisson's ratio can 

greatly exceed 1. As the Poisson's ratios in the plane are the same for either 

tensile or compressive loading the bending of a slab of core material is analogous 

to the bending of a plate. Hoffman also shows that the effect of large variations in 

the effective Poisson ratio of the core was negligible upon the stiffness of a 

sandwich panel. 

2.10 In-plane indentation 

Klintworth et al. 1988 studied the behaviour of conventional hexagonal cell 

honeycombs under in-plane or transverse loads. The bulk of the work was 

concerned with the elastic and plastic buckling of the honeycombs under large 

deformations for which several modes were identified. However they confirmed 

that honeycombs under in-plane loads initially deform in a linear elastic manner 

described by the flexure model (eqns. 2.24, 2.25, 2.29 & 2.27). The limit of the 

elastic behaviour occurs when the cell structure looses its elastic stability or the 

yield strength of the solid is exceeded. 

The same authors went on to study the in-plane indentation of honeycombs by a 

flat indenter (Klintworth et ai., 1989). Again the prime area of interest was the 

elastic yield of the honeycomb. Under normal loading in both the 1 and 2 

directions the honeycombs defonned in a linear elastic manner up to a yield point 

after which further deformation occurred by progressive collapse of bands of 

cells. The elastic stiffness was higher in direction 1 than direction 2 and the 

authors observed that the indentation hardness of Aeroweb specimens was 30% 

to 60% greater than the uniaxial strength as a result of the lateral expansion of the 

crushing bands and the constraint provided by the neighbouring cells. 

Lakes et ai., 1993 investigated the indentation of conventional and re-entrant cell 

copper foams by a 3.3mm diameter flat ended indenter. Re-entrant foams were 

observed to yield at stresses higher than those for conventional foams of the same 
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density despite being more compliant 

Little work seems to have been carried out concerning the indentation of cellular 

networks by spherical or hemispherical indenters. The initial elastic response of 

honeycombs loaded in-plane can possibly be related to the Hertz equation (Tabor, 

1951) originally derived to describe the penetration of an isotropic elastic surface 

by an elastic ball. 

_[lW (I-V~ I-v~I~3 a- gr --+--
4 EB EM 

where a = diameter of indentation 

W = applied load 

g = acceleration due to gravity 

r = radius of ball 

VB= Poisson's ratio of ball 

ED= Modulus of ball 

vm= Poisson's ratio of material 

Em= Modulus of material 

(2.30) 

If the ball is considered to be infmitely stiff and we assume that a thin section of 

honeycomb deforming under a semi-circular indenter behaves in the same way as 

a surface under a ball then the equation 2.30 can be rewritten in terms of the load 

and depth of indentation d. 

(2.31) 

2.11 Out-or-plane of curvature of honeycomb plates 

Hoffman (1957) observed that identical values of the Poisson's ratios v 12 and V21 

were obtained from both tensile and compressive tests on honeycombs. Hoffman 
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therefore believed it was acceptable to define the effective Poisson's ratio for a 

honeycomb in bending to be the same as that for axial loading, thus permitting an 

analogy between a slab of core material and a plate in bending. 

Fi g. 2. 4 Section of a beam subjected to pure bending 

When the beam shown in Fig.2.4 is bent the strain (E) generated at a distance y 

from the neutral axis is given by 

where CJ = stress at a distance y from the neutral axis 

R 1 = radius of curvature 

E = Young's modulus 

This implies that 

-L-~ 
Rl - Y 

(2.32) 

(2.33) 

The strain El induces a secondary strain (-VEl) at right angles to the beam which 

induces a curvature R2 also at right angles to the beam such that 

(2.34) 

If the radius of curvature in the plate is large, then conventional beam bending 
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theory is applicable. i.e. when a beam or plate is bent the radius of curvature R is 

related to the applied moment M by the expression (Hearn, 1981) 

(2.35) 

where E = Young's modulus 

I = Second moment of area 

By considering an anisotropic plate subjected to moments Ml and M2 acting 

along adjacent edges it can be shown (Timoshenko, 1970., Evans, 1991a) that 

(2.36) 

(2.37) 

If M2 = 0 then M 1 generates a primary curvature Rl and a secondary curvature 

R2 = - Rllv12 and if Ml = 0 then M2 generates a primary curvature R2 and a 

secondary curvature Rl = - R21v21. Thus it is possible to measure the Poisson's 

ratio of a core material by measuring the two radii of curvature of a sample 

(Caddock et aI., 1991). 

Abd EI-Sayed (1979) also investigated the out-of-plane bending of conventional 

honeycombs. He related the degree of bending to the torsional stiffness of the cell 

walls, since the walls of length I twist when the core is bent out-of-plane. Using 

a strain energy method for a regular hexagonal cell it is possible to relate the radii 

of curvature to the applied bending moment as follows, 

and 

_1 = 
Rl 

-L- M2 _....ML 
R2 -4~ 4GsJ 

25 

(2.38) 

(2.39) 



where G s=shear modulus of cell wall material 

l=torsion constant 
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From these equations it can be inferred that for any values of M 1 and M2 

&. =-1 
Rl (2.40) 

This agrees with the solution obtained from plate bending theory for a regular 

hexagon. 

2.12 Re-entrant cellular honeycombs 

Recent interest in materials with a negative Poisson's ratio, sometimes termed 

auxetic materials (Evans, 1991b), has returned attention to the re-entrant cell 

shape which has appeared several times in the patent literature during the last 30 

years. Significantly, it has only appeared outside the patent literature in the last 5 

years. 

The first mention of a re-entrant celled honeycomb occurs in U.K.Patent 850,197 

(and the equivalent U.S.Patent 3,018,205) filed by Y.l.Barut and published in 

1960. The re-entrant cell was perceived as the solution to three problems which 

had been identified with the conventional hexagonal cell honeycomb:-

a) Hexagonal cell honeycomb reduces in width with respect to the original block 

when expanded. 

b) Expansion is not uniform, being more pronounced at the ends than at the 

centre. 

c) The expanded core has a concave proflle along its longitudinal edges. 

Barut suggested using textile machinery to "box pleat" the material prior to 

bonding together in a stack. The increase in both length and width when a block 

of material, cut from the stack, is expanded is noted but this cell shape appears to 

have been suggested purely as an alternative route for producing irregular 

hexagonal cell honeycomb avoiding the problems mentioned in (a - c ) above. 
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May (1965) suggested improvements on Barut's patents by scoring and folding 

slabs of the pleated material at 90° to the line of the pleats in U.K.Patent 

992,117. This allowed automatic registration of the pleats in adjacent layers 

during the glueing process. No alternative methods for box pleating or potential 

uses of the re-entrant cell honeycomb were suggested. 

In 1969 the United States Atomic Energy Commission obtained U.K.Patent 

1,115,097 for a cellular core material which was sufficiently compliant to 

produce "complex geometrical shapes such as complete spheres or hollow 

toroids" from a flat sheet without crumpling or rupture of the honeycomb cell 

walls or glue lines. This again is done using a re-entrant cell structure generated 

by gluing together sheets of box pleated material. Reducing the width of the glue 

line in relation to the width of the pleat greatly enhances the flexibility. 

The re-entrant structure appeared again in U.K.Patent 1,214,291, filed by 

Messrs. Molyneux and Smith in 1970. for the sole purpose of generating a 

synclastic curvature when bent out-of-plane thereby achieving greater structural 

efficiency in panels of compound curvature with reduced manufacturing costs. 

The fmal mention in the patent literature of the re-entrant cell shape is in the 

U.K.Patent GB 2,195,953A (Saitoh et al., 1988) which is nothing more than a 

series of modifications to Barut' s patent 850.197, for the specific case of 

processing stainless steel. Several different cell shapes are achieved by altering 

the width of the glue lines and the positions of the fold lines. The re-entrant 

structure again is only used as a precursor to the production of irregular 

hexagonal cells and no mention is made of the enhanced flexibility resulting from 

this geometry. 

Despite the number of patents published, two of which make specific reference to 

the synclastic curvature and great flexibility of the re-entrant structure, it appears 

that no such honeycombs have been produced on a commercial or even 
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development scale. The only experimental data available for a re-entrant structure 

is that of Gibson et aL (1988g), who measured the in-plane Poisson's ratios of a 

2-D rubber network with the geometry h/l =2, 8=-300 , and Lakes et al. (1993) 

who has investigated the properties of re-entrant cell 3-D foams. 

2.13 Modelljne of the re-entrant honeycomb 

The fe-entrant structure shown in Fig.2.5 has been identified by several workers 

(Almgren, 1985., Gibson et al. 1988g, Evans, 1990., Warren, 1990.) as 

producing a negative Poisson ratio. 

1 

h 

~----------------------~·2 

Fig. 2.5 Re-entrant cell structure with cell walls length h and I, cell angle (J 

Almgren used a 2-D array of rigid rods joined by elastic hinges, like that shown 

in Fig.l.5, from which a 3-D model with a negative Poisson's ratio is developed. 

He describes the latter as isotropic in its macroscopic elastic properties, but 

orthotropic would perhaps be a more accurate description. Almgren showed that 

the 2-D model is not isotropic in the plane although the properties in the 1 and 2 

directions are equal i.e. V12=V21=-1 when h/l =2 and 8=-3()O. Evans (1991) 

28 



Literature review 

describes this condition as square symmetric since measuring Poisson's ratio 

along directions away from the principal axes yields values differing from -1. It 

should be noted that the same symmetry can be achieved with other combinations 

of IrA and 9. 

To describe the deformation of 3-D foam structures Warren et al. (1987) and 

Warren (1990) used a combination of stretching and hingeing to develop a 3-D 

model for the Poisson's ratio of both hexagonal and re-entrant cell structures. Wei 

(1991) has generalised their models to describe the Poisson's ratios of polymer 

molecules. In these types of structures the orientations of the cells are random 

unlike the periodic honeycomb structures and consequently the results differ from 

those found in the more conventional 2-D models. 

Milton (1992) has investigated producing composite structures which possess a 

negative Poisson's ratio. These basically consist of a deformable matrix 

containing an elastic network. The networks are made up of extensible but rigid 

beams. Several structures are suggested for the networks but nearly all consist of 

a hexagonal structure to ensure uniform dilation when an external load is applied 

since the rods can only deform by stretching. Again the hexagonal structure 

generates true isotropy. Deformation of these networks is only considered in a 

2-D plane. 

2.14 Graphite structure and molecular IDodelljD& 

A natural example of a material possessing a hexagonal cell structure on a 

molecular scale is graphite. In the basal plane the atoms are arranged in a 

hexagonal structure with each atom connected by strong covalent bonds to three 

neighbours (Barrett etal., 1980). The atom spacing within each layer is O.14nm. 

The layers are bound together by weak Vander Waals forces and the separation is 

0.33nm (Wyatt et aL, 1974) as shown in Fig.2.6. 
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Fig. 2.6 The crystal structure of graphite 
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The mechanical properties of graphite reflect the anisotropy of the structure with 

strength and stiffness being high in the direction parallel to the hexagonal planes 

but low in a perpendicular direction. Gillis (1984) quotes the measured elastic 

stiffness constants as:-

~ (parallel to hexagonal plane) = 1060 GPa 

E:3 (perpendicular to hexagonal plane) = 36.5 GPa 

Numerous workers have attempted to detennine the elastic properties of graphite 

single crystals (Reynolds, 1968., Blackman, 1970) but it is not possible to 

measure all the elastic constants directly by experiment. The remainder must be 

computed from the stiffness and compliance matrices. 

A theoretical model has been proposed (Gillis, 1984) which accurately 

reproduces three of the four independent elastic constants (including the shear 

modulus) using a stretching force constant and a bending force constant. A more 

detailed description of the force constants is given in Chapter 3 but briefly the 

stretching force constant relates the axial extension of an atomic bond to the force 

acting along its axis. The bending force constant is better described as a hinging 
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constant as it relates the change in cell angle to the force applied perpendicular to 

the cell wall which causes the angle change. 

This model predicts that for a uniaxial load applied in direction 1 (Fig.2.1), 

parallel to the plane of hexagonal cells, the moduli are 

S 11 = ..L = (ill) (1.8. + ~) 
E2 24 Ks Kb (2.41) 

S 2 2 = _1 = (ill) (.1.8. + ....6...-) 
El 24 Ks Kb (2.42) 

(2.43) 

using the nomenclature defined in Fig.2.1. Ks and Kb are the stretching and 

hinging constants respectively. 

Gillis (1984) observed that in the graphite structure three times as much 

deformation is caused by bond stretching as by changes in the bond angles since 

valence angle deformation is greatly stiffened by the network structure. This is an 

interesting observation since, as will be shown in chapter 3, a regular hexagon 

deforming by stretching due to an in-plane, uniaxial load has a negative Poisson's 

ratio. Gillis did not evaluate the in-plane Poisson's ratio and it is not recorded if 

direct measurement has yielded a negative value for this particular elastic constant 

in graphite. 

Other workers (Nkansah et ai., 1994) using finite element analysis to model the 

deformation of closed cell molecular structures, of the type shown in Fig.2.7, 

have only compared their results to the flexure model and do not appear to have 

considered stretching or hinging as possible mechanisms. Baughman (1993), 

using similar techniques to Nkansah et al., has designed a hypothetical carbon 

phase incorporating a bond which acts like a hinge. The molecules have been 

shown to have a negative Poisson's ratio and also a negative volumetric thermal 

expansion coefficient. 
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Fig.2.7 Closed cell molecular structure o/the type modelled by Nkansah, et al. 
1994. 
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Models for the deformation Q,f honeycombs 

3) MODELS FOR THE DEFORMATION OF 
HONEYCOMBS 

3.1 Introduction 

As previously mentioned there are three principal mechanisms by which a 2-D 

honeycomb structure can defonn, namely flexing and stretching of the cell walls 

or hinging of the cell wall junctions. Stretching and hinging have tended to be 

disregarded in relation to honeycomb core materials since the popular 'Flexure' 

model developed by Gibson et al. (1982, 1988a) has given good agreement with 

experimental data. However, this model has been shown (Evans et al. 1991) to 

consistently over estimate the the values of Poisson's ratio v for theoretical 

molecular networks when compared with a molecular mechanics approach. This 

phenomenon has been attributed to the fact that stretching (and rotation) of the 

molecular chains, which tend to increase longitudinal defonnation at the expense 

of transverse, are not accounted for by the flexure model. 

Several workers have considered both stretching and hinging mechanisms for 

modelling defonnations on a molecular scale. The model derived by Gillis (1984) 

for the hexagonal structure of graphite, combines these two mechanisms, and is 

particularly suitable for application to periodic network structures such as 

honeycombs. Gibson et aI. (1988b) considered flexing and stretching of the cell 

walls for a honeycomb under biaxial stress, whilst Jones et al. (1991) have 

combined bending and stretching to describe the elasticity of rigid, disordered, 

3D molecular networks. 

In this chapter the stretching and hinging elements of the Gillis model are 

separated out and expanded to allow for other cell geometries. To aid comparison 

of the three models it is useful to write them in terms of force constants Ki' This 

also facilitates combining the three mechanisms to produce a general equation 

which describes the deformation of a 2-D honeycomb by anyone, or combination 

of the three mechanisms Le. flexure, stretching and hinging. 
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Graphs of the elastic constants vs. cell angle for each model have been generated 

for the specific case hA =2 which enables plots to be made for the full range of 

cell angles from -900 to +9QO. The effects of varying the hA and til ratios are 

considered in chapter 4. 

The relative importance of the three mechanisms of deformation are then 

considered in relation to both conventional and auxetic phenomena. The 

importance of these considerations is highlighted with regard to the important 

technological problem of producing doubly curved honeycomb cores for 

sandwich panels and to the problem of deformation in auxetic molecular 

structures. 

3.2 Force Constants 

The elastic constants of a honeycomb can be derived by considering the 

displacement of a single cell. from which the honeycomb is produced by 

translational repetition, under appropriate loading conditions. In order to provide 

a general form of the model. use is made of force constants for the behaviour of 

the cell walls. 

The force constants relate the displacement of the cell wall of a honeycomb to the 

applied force which causes it For all three deformation models the force constant 

is defined by the general relationship 

F=~O (3.1) 

where F = Force applied 

Ki = Force constant appropriate to the mode of deformation 

o = Displacement 

The force constant contains details of the mechanical properties of the network 

structure itself. For example. in a molecular network Ki can be related directly to 

the atomic force constants. The conventional case of a macroscopic honeycomb 

of cell wall lengths 1 and h • thickness t and depth b (see Fig.2.1) is considered 

here and it is assumed that the elastic constants of the material forming the cell 
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walls are known; Es being the Young's modulus and Gs being the shear modulus. 

Explicit relationships between Ki and the properties of the cell wall can therefore 

be derived for each of the deformation mechanisms of flexure. stretching and 

hinging. 

3.2.1 Flexure force constant Kr 

A cell wall of length 1 deforming by flexing can be likened to a cantilever beam 

loaded and guided at one end and fixed at the other (Gibson et aL 1982). The 

deflection of the guided end due to flexing is given by Roark et al. (1976) as 

I:-~ 
u - 12EsI 

where M = Applied moment = FI 

I = Second moment of area of cell wall = bt 3112 

Therefore 

Comparing this with equation (3.1) gives 

Kf= Esbt
3 

13 

3.2.2 Stretcbim: force constant Ks 

(3.2) 

(3.3) 

(3.4) 

The extension of a cell wall. length 1. due to the axial force F acting along it. is 

8=-1L 
btEs 

Comparing this with equation (3.1) gives 

Ks = bt Es 
1 

3.2.3 Hinlinl force constant Kh 

(3.5) 

(3.6) 

Finally, for a cell deforming by hinging, we assume that the cell wall is rigid 

along its length and deflection occurs at the junction with other cell walls by a 
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change of angle ~8. Hence 

o=lsin~8::::l~8 

if ~8 is small. Substituting into the general fonnula (equation 3.1) gives 

(3.7) 

(3.8) 

The actual mechanism by which hinging occurs can be envisaged as one of two 

processes; global shear or local bending. 

In global shear the relationship of Kh to material parameters is obtained by 

assuming that hinging occurs by shearing of the material at the cell wall junction 

(Fig .3. I ). 

, , 

, 
" 

F ig.3.1 Schematic diagram o/hinging by shearing o/the cell wall. 

Using the standard definition of shear modulus we can say 

Gs =_F_ 
bll~8 (3.9) 

where Gs is the shear modulus of the cell wall material and F is the force applied 

perpendicular to the beam. Again comparing with equation (3.8) gives 

(3. 10) 
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The shear mechanism is important when considering small celled foams and 

molecular networks but is unrealistic for the macro networks, like the 

honeycombs considered in this thesis, where hinging is obviously a local effect. 

To model the latter type of behaviour we can imagine the hinge to be a short 

curved beam, of axial length q, in the vicinity of the cell node (Fig.3.2) 

h 

Fi g.3.2 Schef1Ultic diagram ofhingeing achieved by local bending of the cell 
wall 

Assuming that a curved beam behaves in accordance with simple bending theory 

(Roark et al. 1965) then the change in angle 'I' to '1" due to an applied moment M 

is given by 

(3.11) 

l.e. (3.12) 

But as can be seen from Fig.3.2, '1'=90-8 and 'V'=90-8-~8. Hence we can say 

(3.13) 
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where 8 is the cell angle. 

If q<<i then the moment acting on the hinge is approximately 

Hence 

M....FL 
2 

Comparing this with equation (3.8) and substituting for I we obtain 

Kh=Esbt 3 

6L2q 

(3.14) 

(3.15) 

(3.16) 

Note that when q tends to l we do not achieve the global shear expression 

(Eqn.3.10) due to the different boundary conditions. 

3.3 Flexure Model 

Using the geometric configuration and co-ordinate system of Fig.3.3, Gibson 

and Ashby assumed that deformation occurred by flexing of the cell walls when 

an external load was applied. 

Fi g.3.3 Hexagonal cell deforming by flexure when a tensile load is applied in 
direction 2 

Treating the cell walls as beams and using simple mechanics they were able to 

derive the following equations for the elastic properties of honeycombs. 
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EI = Est ~hll + sine) 
[ 3cos3e 

E
z 
= Est 3cose 

[~hli + sine ~in2e 

sine(hI[ + sine) 
VI2 = ----'----~ 

cos28 

{hll + sine )sine 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Where E I , E2, V12' V21 and G 12 are the elastic constants for the honeycomb; Es 

etc. are the elastic constants for the material constituting the honeycomb. 

An auxetic honeycomb is produced by the simple expedient of making e negative 

(see Fig.2.5). 

This model has been shown to be very successful for modelling a great variety of 

conventional honeycombs and reticulated foams (Gibson et aL 1988). To enable 

direct comparisons to be made with the other models presented here it is 

convenient to rewrite the moduli equations as 

EI = Kr(hll + sin e) 

b cos3e 

Ez = K~os e 
b (hll + sin e)sin2e 

G12 = K~hI[ + sine) 

b (hil f( 1 + 2h11 );ose 

(3.22) 

(3.23) 

(3.24) 

where Kf is the flexural force constant (q.v. Section 3.2.1), combining the details 
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of the deformation of the cell wall itself within a single constant Graphs for the 

flexure model when h/l =2 are shown in Fig.3.4. 

N.B. Gibson et a1. (1982) has shown that the Young's moduli and Poisson's ratio 

expressions for the flexure model comply with the reciprocal relation 

El v21=E2v 12 derived from linear elasticity theory. 
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Fig.3.4 Theoretical plotsjor the flexure model when hJl=2 
(a) Modulus vs. cell angle derived from equations (3.22) and (3.23) 
(b) Poisson's ratio vs. cell angle derived from equations (3.19) and 
(3.20) 
(c) Shear modulus vs. cell angle derived from equations (3.24) 
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3.4 Stretchine 

This model assumes that the cell walls, like the shock absorber model used by 

Rothenberg etal. (1991), are only able to deform by stretching along their axes 

with no change in angle. A model was constructed from perspex tubes, rods and 

springs to demonstrate this type of behaviour and is shown in Fig.3.5. The top 

right hand corner shows the displacement occurring in both directions I and 2 

when the model is pulled in direction I 

Consider a hexagonal cell (Fig.3.6) subjected to a tensile load 0'2 in the 2 

direction. 

Fi g. 3.6 Hexagonal cell deforming by stretching of the cell walls due to tensile 
load applied in direction 2. 

The load acting on the unit cell due to the applied stress 0'2 is w=b (l sinS + h )0'2 

and the com ponent P of w acting along the cell wall of length I is 

(3.25) 

But P=KsO where Ks is the force constant for stretching, therefore 

(3.26) 

The strain e2 in the 2 direction caused by the extension 01 is 

(3.27) 
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Fig.3.5 Model constructed from perspex rods, tubes and springs 10 
demonstrate deformation of a cell by stretching alone. The top right 
hand corner shows the effect of loading the frame in direction 1. 
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Therefore the modulus in direction 2 is 

E2 Ks 
b cose(hll +sine) 

The strain in the 1 direction due to the extension 01 is 

The Poisson's ratio is therefore 

V21= - ( sine ) 
sin9+hll 

(3.28) 

(3.29) 

(3.30) 

By considering the forces acting on the cell edge when loaded in direction 1 

(Fig.3.?) similar equations can be derived . 

......... 
...... 

I 
I 
I 
I 

w 

Fig.3.7 Hexagonal cell deforming by stretching of the cell walls due to a 
tensile load applied in direction 1. 
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However, in this orientation it should be noted that the cell walls of length h also 

extend. The force constant (~h) for these walls is 

K~ = Esbt 
h 

Comparison with equation 3.6 enables us to write Ksh in terms of Ks i.e. 

and thus the strain in direction 1 is given by 

2b olh cose (b OIL cosesine~ine e 1 + "'-----=--:----.....!.-,.---

I Ks(hll + sine) 1 Ks(hll + sinS} 

(3.31) 

The strain in the 2 direction is 

£ b CSlcosSsinS 
2 Ks (3.32) 

The modulus in the 1 direction is therefore 

El Ks(hli + sine) 

b cosS(2h11 + sin2e) (3.33) 

and the Poisson's ratio is 

-sine(hll + sine) 
V12 :---!._-_..!.. 

2hll + sin2e (3.34) 

Note that when e is positive, i.e. the cell is hexagonal in shape, both V12 and V21 

are negative in value. Substituting (-9) into these equations produces the 

equivalent expressions fOl: the Ie-entrant cell. It should also be noted that in the .• 
re-entrant case the direction of the forces in the walls of length I is reversed 

whilst the forces in the other walls remain unchanged. Unlike the other models 

the relationship 
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does not apply except for specific conditions e.g. M =1, 9=300 and h/l =2, 

9=0°. The reciprocal relation V12~=V21El however, holds true for all cell 

geometries. 

Gibson et al. (1988b) derived Young's moduli and Poisson's ratio expressions 

for a hexagonal cell honeycomb subjected to a biaxial stress defonning by both 

flexure and stretching of the cell walls. It can be shown (Appendix 1) that for the 

conditions of a uniaxial applied stress and deformation only occurring by 

stretching that these equations reduce to 3.28, 3.33, 3.30 and 3.34. 

The in-plane shear modulus can be obtained by considering the shear stresses 

acting on the cell node shown in Fig.3.8. 

h 

, 

t, 
D 

c 

, 

Fig.3.8 In-plane shear deformation of the unit cell due to stretching of the cell 
walls. 
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The horizontal shear stress 't acting on the unit cell is given by the expression 

't = F2 
21b cose (3.35) 

where F 1 and F2 are the forces acting in the 1 and 2 directions respectively. Re

arranging this equation enables F 1 to be written in terms of F2 i.e. 

and 

Fl = F2(h + 1 sinS) 
21 cosS 

't2 = F 
2lb cosS 

'tl = P(h + I sine) x 1 = _~F_ 
2l cose (h + I sine)b 2lb cose 

The component p* of F2 acting along member AC is given by 

p* = Fcose 
2 

and the component p* * of F 1 acting along AC is 

P** F . e rih + I sine~ine = Ism = _q..l--__ --!. __ 

21cosS 

The total force P acting along AC is therefore 

P=P**+P* 

P = Fcose + P(h + I sine )sinS 
2 21cosS 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

The point A moves an amount OAC to A' due to the force P. This extension is 

obtained from the expression for the stretching constant Ks (Eqn.3.6) 
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(3.42) 
Substituting for P gives 

s:: F [ 9 (h +1 sin9 ~in9] 
UAC = 2K cos + 

s 1 cos9 (3.43) 

The horizontal deflection O2 due to the extension 0 AC is given by 

s:: _ L[ 29 (h + 1 sin9~in9] 
U2 - 2Ks cos + 1 (3.44) 

The vertical deflection 01 across the unit cell is 

(3.45) 

The factor of 2 arises because the member CB shortens as much as AC extends. 

Therefore 

s:: Esin.e..[ 9 (h + 1 sin9~in9] Ul = cos +.l..-__ ----' __ 
Ks 1 cos9 

CD .s 
C'-I .... 
+ 

.:::: 
I 
I 

21cos9 j lJ 2lcos9 

~;~-'-----~ 

Pure shear 01 

L~=~,+ ~" 
Simple shear 

Fig. 3.9 The relationship between pure shear and simple shear. 
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If the unit cell is considered to defonn by simple shear then, as can be seen from 

Fig 3.9, the shear strain 'Y is given by 

'Y = ~h + 82 

21 cose h + 1 sine (3.47) 

F [ e (h + 1 sine ~ine] [ (cose) (Sine)] 'Y = - cos + + -'----"-
2Ks I cose h + I sine l cose (3.48) 

The shear modulus G is the ratio of the shear stress and the shear strain i.e. 

G='tty 

Therefore 

Graphs for the stretching model are shown in Fig.3.1O. 

For a regular hexagon equation 3.5 reduces to 

K 
G12=bA 

(3.49) 

(3.50) 

which is the same result as obtained from Gillis' graphite model (Eqn.2.38) when 

Kh=oo, i.e. when only stretching occurs. 
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Fig. 3.10 Theoretical plots for the stretching model 
(a) Modulus vs. cell angle derivedfrom equations (3.28) and (3.33) 
(b) Poisson's ratio vs. cell angle derivedfrom equations (3.30) and 
(3.34) 
(c) Shear modulus vs. cell angle derived from equation (3.50) 
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3.5 Hinging 

The hinging model relies on the cell walls being stiff in both the axial and 

transverse directions. Elastic hinges at the joints enable the cell to deform when a 

load is applied and restore the cell to its original shape when the load is removed. 

The cell deforms by changes in the cell angle alone. Fig.3.11 shows the cell of a 

cardboard honeycomb defonning by hinging . 

Fi g. 3.11 Re-entrant cardboard cells unloaded (left) and deforming by hinging 
due to load applied in direction 2 (right). 

Fig.3.12 Hexagonal cell deforming by hinging due to load 
applied in direction 2. 

Consider a hexagonal cell as shown in Fig.3 .12. If we assume that the material 

from which the cell is manufactured has a 'Force Constant' Kb which detennines 

the deflection 0, caused when a load is applied to the cell wall (Fig 3.13), 
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p 

Fig.3.13 The hinging mechanism. 

we can say that 

(3.51) 

where P=Applied Load 

8=Deflection 

If the cell is subjected to a compressive load in direction 2 then the forces acting 

on the cell edge of length I are given by 

P=Wsin9 

where W=(j2(h + I sin9)b 

b= Honeycomb thickness 

Substituting for P and W gives 

8 (j2b1 sin9(hll + sin9) 
Kb 

The strain in direction 2 is therefore given by 

-(j2b sin2e(hll + sine) e2 :---==----_---1-___ ....<. 

Kbcos9 

and the modulus in direction 2 by 

E2 Khcos9 

b sin2e(hll + sine) 

The strain in direction 1 is 
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(J2b sinScosS 
el Kb (3.56) 

and hence the Poisson's Ratio in the 2 direction is 

{hli + sinS)sinS (3.57) 

If the honeycomb is compressed in direction 1 then by a similar method we can 

determine that 

£2 
(JIb cosSsinS 

Kb (3.58) 

£1 
-(JIb COS3S 

Kb(hli + sinS) (3.59) 

El 
Kb(hll + sinS) 

b cos3S (3.60) 

V12 
sinS(hll + sinS} 

cos2S (3.61) 

Comparing this result with the expression for V2l we can see that 

Again by substituting (-S) into these equations we obtain expressions to describe 

the behaviour of a re-entrant cell. 

As in the stretching model the in-plane shear modulus is obtained by considering 

the effects of the shear stresses 't acting along the sides of the unit cell in both the 

1 and 2 directions (Fig.3.14). The cell walls are rigid so that no flexing or 

stretching occurs. All the movement occurs due to the hingeing at point C. 

The point A is subjected to a force Fl acting in direction 1 and a force F2 acting in 

direction 2. As previously shown if 
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then 

Fl = P(h + I sine) 
21 cose (3.62) 

The component p* of F2 acting perpendicular to the member AC is given by 

p * = .Esi.ne. 
2 

The component p** of Fl acting perpendicular to AC is given by 

p" = _ Flcose = _ F(h + I sine) 
21 

(3.63) 

(3.64) 

N.B. This expression is negative because P"'* causes counter clockwise rotation 

of the member AC. 

A 

't/2 

't, 
D • 

• • • 

Fi g.3.14In-plane shear due to hinging. 

't/2 

The total (orce P acting perpendicular to the member AC is therefore 

P=P*+P** 
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(3.65) 

The force P rotates AC through an angle A 8 such that the point A is deflected an 

amount 5AC' From Eqn.3.1 we know that 

5AC =L 
Kb 

The displacement in direction 2 due to 5 AC is 

and the horizontal displacement of point D due to the force F2 is 

(3.66) 

(3.67) 

(3.68) 

where C is a constant, enabling Kbb ' for a cell wall of length h, to be written in 

tenns of Kb ' the force constant for a wall length I. For the bending mechanism 

(eqn. 3.16) C=(1Ih)2 and for shear (eqn. 3.10) C=IIh. The total deflection in 

direction 2 is therefore 

(3.69) 

and the total displacement in direction 1 is 

51 = 2PcosS = _ Fh cosS 
Kb Kb l (3.70) 

IT we assume that the unit cell shown in Fig.3.14 defonns by simple shear then 

the shear strain y is given by 

y= 51 + 52 
21 cosS h + 1 sinS 
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"( = -L [21 - Ch sine _ 11] 
2lKh (h + I sine) I 

The remote shear stress 't is given by 

Hence the shear modulus is 

't= F 
21h cosS 

012= F x2lKh [ CZ(h +ZsinS) ] 
2lb cosS F Ch(h + 1 sine) + (21 - ChsinS) 

0
1
2 = Kh [ CZ(h + 1 sine) ] 

b cose CM...h + 1 sine) + (21 - Ch sine) 

Evaluating equation 3.73 for a regular hexagon give 

0 12=& 
hf.1 

(3.71) 

(3.72) 

(3.73) 

which is the same result obtained from the Gillis graphite model when only 

hinging occurs. i.e. Ks=oo 

9raphs for the Young's moduli, Poisson's ratio and in-plane shear modulus 

obtained from the hinging model when M =2 and Kh=l are shown in Fig.3.15. 

Compare these graphs with those for the flexure model shown in Fig.3.4. The 

Young's modulus plots are the same since we put Kh=Ks=1 but in reality we 

would expect Ks«Kh and hence the modulus would be proportionately lower 

The Poisson's ratios are always identical and the shear modulus for hinging is 

significantly lower than that for flexure. 
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Fig.3.IS Theoretical plotsjor the hinging model when hll=2 
(a) Modulus vs. cell angle derived from equations (3.55) and (3.60) 
(b) Poisson's ratio vs. cell angle derived from equations (3.57) and 
(3.61) 
(c) Shear modulus ys. cell angle derivedfrom equations (3.73) 
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0'\ 
t-...) 

Flexure 

Stretching 

Hinging 

El 

Kr(h/l + sin e) 

bcos3e 

K.lh/l + sin e) 

b cos e (2h11 + sin2e) 

Kh(h/l + sin e) 

bcos3e 

El 

Kccos e 
bsin2e(h/l + sin e) 

K. 
b cose (hll + sine) 

%cos S 
b sin2e(hII + sin S) 

Vu 

sin e(h/l + sin e) 

cos2e 

- sin e (hII + sin e) 

2h/l + sin2S 

sin e(hll + sin e) 

cos2S 

Vll 

cos2 e 
(h/l + sin e)sin e 

-sin e 
h/l + sin e 

cos2 e 
(h/l + sin e)sin e 

G 

Krl~h/l + sine) 

bh~2h/l + I) cose 

&~ 1
2
cos e(hII + sin e) J 

b (Icos2s +1 (h/l + sin S ~in ef 

~ [c(hII + sin e)] 
bcosS 2 +qMf 

Table 3.1 Summary of expressions for elastic constants obtained from the flexure, stretching and 
hinging models. 
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3.6 A General Model 

A summary of the equations derived for the elastic constants of each model is 

given in Table 3.1. By summing the deflections in directions 1 and 2. we can 

combine the three models to obtain a general model. For example. if we consider 

a honeycomb loaded in direction 1 then the strains in direction 1 arising from 

defonnation by stretching and hingeing are given by equations 3.31 and 3.59. 

The strain in direction 1 caused by flexure of the cell walls has been shown by 

Gibson et al. (1982. 1988a) to be 

(3.74) 

where I=Second moment of area of the cell wall. Rewriting this in terms of the 

force constant for flexure Kf (Eqn.3.4) gives 

(3.75) 

The total strain in direction 1. obtained by summing equations 3.31. 3.59 and 

3.75. is thus 

ETotalJ CJ'tbcos e I~ + ~ + 2hll +sin2e] 
lh11 + sin e Kf Kb Ks (3.76) 

The modulus in direction 1 is then given by 

hence 

El= . 1 
b cose [~+ ~ + (2h11 + sin

2e)] 
(hll + sin e) Kf Kb Ks (3.77) 
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The strain in direction 2, due to flexing, arising from the applied stress 0'\ is 

given by the expression 

Writing in tenns of the force constant this becomes 

0' 1 bcos 9sin 9 
£2 .--'-----

K f 

(3.78) 

(3.79) 

Summing this expression with 3.32 and 3.58 gives the total strain in direction 2 

£Iotal = O'\b cos 9sin 9[-.L _.l~] 
Kf Kb Ks 

Dividing this expression by 3.76 gives the Poisson's ratio 

[ 

__ 1 __ 1 +_1 ] 
V12 = - sin 9 Kf Kb Ks 

(hli + sin 9) ~ + ~ + 2htl +sin29 
Kf Kb Ks 

(3.80) 

(3.81) 

Using a similar method the following general expressions can be obtained for E2 

and v2 \. 

(3.82) 

V21 = [. 2 Kf K~ 2 Ks ] 
(htl + sin 9) _ sm 9 _ sm 9 + ~ 

Ktcos 9 KbCOS 9 Ks (3.83) 

Gibson's expression for the shear strain written in terms of the flexure force 

constant is 

Fh2(1 + 2h) 
l--2K-fl-3(~h-+-l-sin~9--:-) 
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Summing this with expressions 3.47 and 3.71 the general shear modulus 

expression is obtained 

G
I

2 = I [bh 2(1 + 2h )cOSS] ~, Ch 2 + 2/2 1 S \ 
Krl ~h + 1 sinS) + KhlcI{h + 1 sinS) J cos 

\

+ b (I cos2S + (h + 1 sinS)sinS) r. cosS + Sins] I 
Ks l(h + I sinS) cosS (3.85) 

If, for example, we put Kh=Ks=oo the above equations reduce to those for the 

flexure model. Similarly putting Kh=oo we obtain a flexing and stretching model 

with identical solutions to those obtained when evaluating the Gibson's biaxial 

loading model (Appendix 1) for a uniaxial applied stress. It must be emphasised 

however that these expressions are only valid for small elastic displacements in 

which geometric nonlinearities can be ignored. 
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Theory discussion 

4) THEORY DISCUSSION 

4.1 Introduction 

In the first part of this chapter the effects of variations in the cell geometry are 

investigated for each of the three models. The moduli El and~. and the 

Poisson's ratios v 12 and V21 are plotted against the cell angle e for various values 

of M. and til. To simplify the calculations the plots have been obtained by putting 

Es=h=l=b=l for various values t and putting Es=l=b=l. t =0.1 for various 

values of h and using the shear model for hinging. 

4.2 The force constants 

The properties of the force constants K f, Ks and Kb are compared in Fig.4.1 

having evaluated the equations 3.4, 3.6 and 3.16 for the conditions: 

Es=l =b =1. Gs=Ei3=1I3. q=lllO 

The shear modulus of the bulk cell wall material G s=E/3 is a general assumption 

for an elastic material and using this value we can evaluate the global shear model 

for Kb (Eqn.3.10). In reality to evaluate this shear model for Kb we need to 

know GH• the shear modulus of the material in the "hinge". which is not 

necessarily the same as G s and is likely to be considerably lower (see on). The 

local shear model for Kb (Eqn.3.16) is obtained directly from Es' 1/10 may at 

first appear to be rather large as an estimate for the effective length (q) of ... 

the hinge. but for the card honeycombs used in the experiments the folds were 

typically Imm in width and I was a constant length of lOmm. 

It is apparent from the three models discussed here that if the force constant Ki is 

high in value then the contribution of that particular mechanism to the overall 

deformation will be small. For the honeycombs used in these tests the value of 

til is in the range 0.01 to 0.02 so that Ks (Eqn.3.6) is large compared to K f 

(Eqn.3.4) and Kb (Eqns.3.l0 & 3.16) and stretching can be ignored (Fig.4.1). 
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Stretching only becomes a significant mechanism when til > 1. 

Kf (Eqn.3.4) has the lowest value and thus explains why the flexure model has 

been so successful. However, as already stated the properties of the material 

operating as the hinge can be significantly different from those of the bulk cell 

wall material. If they are lower, as might be expected, due to local damage from 

the folding of the card then Kh<Krand hinging for example, will dominate as 

shown with the card honeycombs. Of the two proposed hinging mechanisms 

local hinging (Eqn.3.16) predominates over global shear deformation 

(Eqn.3.10) when til <0.2. 

4.3 Effects of cell geometry on the flexure model 

Fig.4.2 shows the modulus El plotted against the cell angle. Very high moduli 

are achieved when the cell angle is numerically large (Le. 400S191S900 ) and the 

cell walls of length I become oriented parallel to the load direction. It is obvious 

that for hexagonal cells, as the hA ratio is increased there is a significant increase 

in the value of El particularly when the cell angle is large. The curves are all 

skewed to the left so that the minimum value of E 1 is achieved at 9=-50 when M 

=3 and 9=-100 when M =2. The modulus El of a honeycomb of given M is 

thus reduced as the angle becomes negative. 

For a given M ratio, to obtain the same value of E t in a re-entrant cell as in an 

hexagonal cell it is necessary to increase the size of the re-entrant angle i.e. 

making it more negative. For example, a hexagonal cell of the geometry M =2 

and 9=300 , has a modulus, from FigA.2, of E t =4. To achieve an equivalent 

modulus in a re-entrant cell of the same M ratio requires a cell angle of -500 

which almost doubles the relative density of the core (Fig.4.3). 

The maximum values of E2 occur when the cell angles are small and the walls of 

length l lie along the direction of loading. Interestingly, increasing the M ratio 

reduces the value E2 for a given cell angle (Fig.4A). The graph of ~ vs. 9 is not 

quite symmetrical, with a minimum at 9=00 , so that a re-entrant cell of geometry 
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h/l =2, 8=-300 has a higher modulus E2 than the corresponding hexagonal cell of 

geometry h/l =2, 8=300 . 

Figs.4.5 & 4.6 show the effect of fA ratio on the moduli Eland E2 respectively. 

For these particular plots Es=h =1 =b =1. Again the plot of El is skewed to the 

left and greatly increases when fA ~0.1. For most honeycomb structures however 

t «1 so small variations in til have little effect on the value of E l' As before ~ 

decreases as El increases but by a smaller amount 

The Poisson's ratio is only affected by the value of hIl since equations 3.19 and 

3.20 are independent of t. Figs.4.7 and 4.8 show the effects of h/l on the 

Poisson's ratios V12 and V21 respectively. A significant feature of both these 

graphs is that ratios much less than -1 and much greater than + 1 are achieved. As 

can be seen from Fig.4.6 increasing the value of hIl increases the numerical value 

of the effective Poisson's ratio of both hexagonal and re-entrant cells. v21 is 

correspondingly reduced Fig.4.8. It should also be noted that the graphs are not 

symmetrical. For example a hexagonal cell of geometry h/l =2, 8=300 has a 

Poisson's ratio v12=2 whereas the re-entrant cell h/l =2,8=-300 has V12=-1. A 

limitation of the model is that at large angles approaching +900 and -900 inftnite 

Poisson's ratios are predicted. This is clearly unrealistic as at 8=±900 the cell has 

completely collapsed and all the cell walls are aligned in the direction of the 

applied force, in which case V12 must be the same as the Poisson's ratio of the 

cell wall material. i.e. v12=vs' 

The maximum shear modulus (FigA.9) is achieved at 8=±900 since when 

cos 8=00 in equation 3.33, G 12=00. Increasing the value of h/l reduces the value 

of 012 over the majority of the cell angle range. 

When t «I there is a small scaling effect on the shear modulus. When fA >0.1 

large increases in shear modulus occur (Fig.4.lO) since KFf(fA)3. 
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4.4 Effects of cell eeometry on the bjneeine model 

The graph ofEl vs. e (Fig.4.11) and E2 vs. e (Fig.4.12) are identical in shape to 

those for the flexure model, only differing in the value of the force constant Ki. 

This is obvious when the equations (3.22) and (3.60), (3.23) and (3.55) are 

compared. The hingeing mechanism is operative at much lower forces than those 

required for flexure. The effects of h/l on the modulus El and ~ are significantly 

reduced as a result. Similarly the effects of til on the moduli El (Fig.4.13) and E2 

(Fig.4.14) are identical to those on the flexure model only differing in the value 

of the force constant Kh 

Comparison of equation (3.19) with (3.61), and (3.20) with (3.57) shows that 

the effects of hA on the Poisson's ratios v12 and v21 are identical to those for 

flexure model and are shown in Figs.4.7 and 4.8. 

Fig.4.15 shows the reduction in the in-plane shear modulus caused by increasing 

the hIl ratio for a conventional hexagonal cell. 

Changing the til ratio has the same scaling effect on the in-plane shear modulus 

for the hingeing model as it does in the flexure model. The values of shear 

modulus for hinging are however much smaller (Fig.4.16). 
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4.5 Effects of cell eeometry on the stretchine model 

Unlike the modulus graphs for flexure and hingeing the moduli Eland E2 both 

reach their maxima at ±900 i.e. the cell walls lie parallel or perpendicular to the 

applied force. Fig.4.17 shows that the plot of E 1 is skewed to the left with the 

minimum value of E1 moving further to the right as h/l is increased. The value of 

E1 rapidly rises when the cell angle lies in the ranges 8>60° and 8<-70°. 

Increasing the value of hIl causes an increase in E1 for a given angle for re

entrant cells and a decrease in E1 for hexagonal cells. 

The effects of h/l on E2 for stretching are less marked than on E1 (Fig.4.18).E2 

decreases as hA increases and the graph is skewed to the right. This latter effect 

is caused by the (h/l + sin 8) term in equation 3.27 the minimum value of which 

increases as hA increases. When the cell becomes re-entrant the effect of hIl is 

much more dramatic. For a cell angle of -300 , changing h/l from 3 to I causes 

an almost five fold increase in E2. 

As expected the til ratio is important to the moduli in stretching since the latter is 

directly related to the cross-sectional area of the cell walls and the amount of 

material available to stretch. As fA increases so does E1 (Fig.4.19). As already 

mentioned in most applications t «1 so significant changes in E1 only occur 

when 8 approaches 900 • 

The graph of E2 vs. 8 (Fig.4.20) is skewed to the right with a minimum at 

8=30°. Again this modulus increases rapidly as fA increases but in the majority 

of cases t «1. For a hexagonal cell a high value of E2 is achieved as 8 

approaches 900 . 

The plots for Poisson's ratio are shown in Figs.4.21 and 4.22. The most 

important feature is that both v12 and v21 are positive for re-entrant cells and 

negative for hexagonal cells. The plots are not symmetrical. Increasing h/l 

increases the numerical value ofv12 (Fig.4.21) and decreases the value of V21 

(Fig.4.22). For the plots shown square symmetry (Le. VI2=V21) can only be 
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acheived for the conditions of hll=2 when e is negative and for values of hli 

when 8 is positive. 

The plot for the in-plane shear modulus is shown in FigA.23. Unlike the models 

for flexure and hingeing, changing the value of the hJI ratio does not have a 

simple effect. When hJI ~1 increasing the value of Jlil moves the maximum value 

of G 12 further to the right. However for the particular case of 8 =300 changing 

the value of JIll seemingly has no effect. 

In the region 3cP<8<9CP reducing JIll causes a small increase in the value of G 12 

and when 8<300 increasing the value of hJI gives rise to a dramatic increase in 

G 12. It is worth noting that the maximum values of shear modulus can only be 

achieved when JIll s2 • 

Increasing the til ratio causes a small increase in the shear modulus when t«/, 

the effect being most pronounced when 8=3cP (FigA.24). Again when tll>O.1 

there is a dramatic increase in shear modulus. 

Using the geometries for the experimental honeycombs the elastic constants, 

written in terms of the force constants, are listed in Table 4.1. 
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4.6 The effects of double wall thickness in direction 1 

The honeycombs used in the tests (cf. Sections 5.6 & 5.7), and most commercial 

honeycombs, have a double wall thickness in the ribbon direction (1 in Fig.2.l) 

because of the way in which they are manufactured. As already seen in Chapter 2 

this can affect the mechanical properties of the core. 

The equations for the three models, summarised in Table 3.2, assume a uniform 

cell wall thickness t, and as t<<h or 1 the width of an individual cell has been 

approximated to 2lcos e. To more accurately model commercial honeycombs the 

double wall thickness in direction 1 can be allowed for by adding 2 t to the width 

of the cell FigA.25 and calculating the deflections of the walls length h using a 

width 2t. The modified equations incorporating the double wall thickness in 

direction 1 are listed in Table 4.2. 

2l cos 8 2l cos 8 + 2t 
~ .. .... ~ 

Fig. 4.25 Approximation of cell width for uniform cell wall thickness t (left) 
and for double wall thickness in direction 1 (right). 

FigA.26 compares the uniform wall thickness and double wall thickness 

equations for the flexure model. As can be seen from the graphs there is minimal 

effect on the Young's moduli and Poisson's ratio so equations 3.19, 3.20, 3.22 

and 3.23 are quite adequate to describe both cases (Gibson, 1988). 
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The shear modulus G12 is however increased as might be expected (Klintworth 

et al., 1988) due to the increased stiffness of the walls of length h. (N.B. 

Klintworth et al. modified Gibson's expression to obtain the equation 2.27 

simply by assuming that the double thickness walls were infinitely stiff and do 

not flex at all). In this thesis the small amount of flexibility of the double 

thickness wall is allowed for. 

Figs.4.27a show an obvious increase in the modulus E 1 for the stretching model 

due to the increase in the cross-sectional area of the cell walls of length h. There 

is no effect in direction 2 as all the deformation occurs due to stretching of the 

single thickness walls of length 1 alone, as in the case of uniform cell wall 

thickness. 

The Poisson's ratio in direction 1 is increased (Fig.4.27b) because the extension, 

and hence the strain, of the honeycomb in direction 1, for a given load, is reduced 

due to the increased cross sectional area of the walls length h . The strain in 

direction 2 remains unaffected. As 

the value of v 12 increases due to the reduction in £1' 

The shear modulus G 12 (Fig.4.27c) is unaffected by the double wall thickness in 

direction 1 since all movement occurs due to the stretching or compression of the 

members length I. 

As with the flexure model there is little or no effect on the Young's moduli or 

Poisson's ratios for hingeing (Fig.4.28a & b). This is because the increased 

thickness of the cell walls length h does not affect the dimensions of the cell 

walls length I, hence the moments causing the walls to rotate remain the same. It 

is surprising therefore, that there is a significant reduction in the in-plane shear 

modulus G12 (Fig.4.28c). 
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It is obvious then, that for the honeycombs used in the tests described here that 

the following expressions may give a better fit to the experimental data than 

equations 3.24, 3.33 and 3.34. 

Aexure model G12 = Krl ~h +1 sin S) 
bh 2(1 + h 14Xt +1 cos S) (4.1) 

E - Ks(h +1 sin S) Stretching model 1 - ----:'--~--:'-:---..!---.,.. 
b (I cos e + t ) (hit +sin2 e) (4.2) 

S hi od 1 
- (h +1 sin e)(sin e cos e) 

tretc ng m e V12 = ...,.:...---.,...:.,..:.------,.:.. 
(I cos e + t) (sin2e + hll ) (4.3) 

K b( £os S+t Xh +lsin S) 
Hinging G12~~-----~-~~-~~-~~--~~--~----~ 

Cb(hcos S- sin Srcos e(h +lsin e) + sin S(/cos S+t)] + 2ri"cos S+tr 
(4.4) 



00 
00 

Aluminium models deformina by flexure 

El Ez v12 vZl G12 

(Eqn.3.22) (Eqn.3.23) (Eqn.3.19) (Eqn.3.20) (Eqn.3.24) 

Hexagonal cell 

h=l=lOmm, b=2Omm, 8=+30° 0.1155Kr 0.1155Kr 1.0 1.0 0.0287Kr 

Re-entrant cell 

h=b=20mm, l=lOmm, 8=-30° I 0.1l55Kr 0.1155Kr -1.0 -1.0 0.0043Kr 

Card models deformina by hineina 

El Ez v12 vZl G12 

(Eqn.3.60) (Eqn.3.55) (Eqn.3.6l) (Eqn.3.57) (Eqn.3.73) 

Hexagonal cell 

h=b=2Omm, L=lOmm, 8=+30° 0.193Kh 0.069Kh 1.667 0.6 0.0241Kh 

Re-entrant cell 

h=b=20mm, l=lOmm, 8=-30° I 0.1155Kh 0.1155Kh -1.0 -1.0 O.Ol44Kh 

Table 4.1 Comparison of the theoretical elastic properties and relative densities for the 

honeycombs used in the experimental tests in terms of the force constants KJ 
and KIJ • arul the cell wall thickness t. 

Pulps 
(Eqn.2.11) 

0.1151 

O.I54t 

Pulps 
(Eqn.2.11) 

0.0921 

O.l54t 



Flexure 

00 
Stretcbing I \0 

Hinging 

EI El VI2 VlI GU 

K.<bA + sin 0) ~cosO +III) sin O(M + sin 0) cos olcos 0 +tII) K~2(M + sin oj) 
bcos2olcos a + ~ bsiola(M + sin a) cos oleos 0 + till) (M + sin a)sin a bh21cos 0 + tII~ I + hl4~) 

K.IM + sin 0) K.(cos a +.nIl - sin 0 cos a 1M + sin aD ~cosa +~ina K. [ 121cos 0 + tIIXM +sin aD , J 
b lcos 0 + III)(M + sioloj) b cos20(M + sin oil (cos a + IIIXM + sin2O) (hII+sin~a b (21~cos a + tIIXM + sin 0 ~in 6cos aD + sin2(h + Isin If + cos2o(Jcosa + If 

K~(M + sin 6) K~(cosO + till) sin 6(h11 + sin 0) cos olcos 0 + III) K, [ Qcos 6 + IIIXhII + sin aD J 
bcos20(cos 0 + til) bsin26(M + sin 0) cos o(cos a +I~ (bII + sin 6)sin 6 b c{hcos 0 - lSin ~(cos olM + sin aD + sin O(cos 6 + til)] + z(cos 0 + tIIf 

Table 4.2 Summary of expressions for elastic constants obtained from the flexure. stretching and 
hinging models. allowing for double wall thickness in direction 1. 
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Fig.4.26The effects of double wall thickness in direction 1 on E, v and Gfrom 
the flexure model are shown above by plotting against the results for 
specimens with all cell walls of uniform thickness.(h/l =2) 

a) Youngs moduli E1 andE2 - no effect. 
b) Poisson s ratio v12 and V21 . no effect. 
c) Shear modulus G 12 . small increase especially in the the region 
6(fJ <8<9rP. 
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Fig. 4.27 The effects of double wall thickness in direction 1 on E, v and G 
from the stretching model are shown above by plotting against the 
results for specimens with all cell walls of uniform thickness.{hA =2) 
a) Young s moduli Eland E2 - E 1 is increased slightly over the full 
range of angles. There is no effect on E2. 

b) Poisson s ratio v12 and V21 - Magnitude of VJ2 is increased over 
the full range of angles. No effect on V21 except when e approaches 
::t9rP. 
c) Shear modulus G12 - no effect. 
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Fig. 4.2 8The effects of double wall thickness in direction 1 on E, v and G from 
the hinging model are shown above by plotting against the results for 
specimens with all cell walls of uniform thickness'(h/l =2) 

a) Youngs moduli E1 andE2 - no effect. 
b) Poisson's ratio V12 and V21 - no effect. 
c) Shear modulus G12 - decreases over the full range of angles. 
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Experimental methods 

5) EXPERIMENTAL METHODS 

5.1 Introduction 

Gibson's flexure model (1982, 1988) was successfully developed to describe the 

elastic properties of conventional hexagonal cell honeycombs when loaded in the 

plane of the material, and also showed good agreement with experimental results 

derived for the specific case of a rubber re-entrant cell of geometry h/l =2 and 

8=-300 . More recent work on the re-entrant cell structure, using cardboard 

honeycombs (Caddock 1991, Masters, 1993), has demonstrated the existence of 

the hinging. mechanism for which an elastic deformation model has been 

derived; q.v. Chapter 3~ The main area of interest for the experimental tests was 

therefore the measurement of the in-plane elastic properties of both re-entrant and 

hexagonal celled honeycombs, made from various materials, and comparison of 

these results with predictions from the models. 

Tensile and compressive tests enabled the effective moduli and Poisson's ratios of 

the honeycomb materials to be determined and a 'picture frame' rig was used for 

measuring the in-plane shear moduli. 

When examining the re-entrant structure it is apparent that as it is compressed 

there is a significant increase in the density due to the negative Poisson's ratio. 

An interesting extension of this phenomenon is to consider what happens when a 

section of auxetic honeycomb is subjected to local indentation. We might expect 

the densification of the material under the indenter to resist further deformation 

and to investigate this, tests were performed, in-plane, on both card and 

aluminium specimens with differently shaped indenters. If the indentation 

behaviour of the core can be related to the models described in Chapter 3 then 

these same models may be of use as a simple method of predicting the indentation 

behaviour of 3-D foams. 
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The main use of honeycomb materials is as a core in sandwich panels, where its 

ability to withstand an out-of-plane crushing load is important e.g. aircraft 

internal floors and cargo liners. The increased density of the re-entrant 

honeycombs is naturally expected to increase the maximum crushing load due to 

the greater area of cell wall material available to support the load. Of more interest 

however. was to determine whether or not any potential benefit was obtained 

from the acute angle in the re-entrant cell inhibiting the onset of cell wall buckling 

and ultimate failure. thus raising the strength of the panel. To investigate this 

compression tests were performed on small areas of honeycomb containing 

multiple cells. Another critical factor for the failure load is the thickness b of the 

core (Reichard, 1972), so tests were performed on single cells of varying 

heights. 

The radii of curvature have already been shown (Section 2.11) to be related to the 

Poisson's ratio of the material. A slight modification to the method described by 

Caddock et al. (1991) for measuring the radii of curvature, enables the typical 

curvatures achievable with the re-entrant structure to be demonstrated. 

Finally the plate deflection test was devised as a method of comparing the out-of

plane flexural stiffnesses of the hexagonal and re-entrant celled honeycombs. 

The experiments undertaken can be divided into three categories 

1) Determination of moduli of the cell wall materials 

2) Measurement of the effective. in-plane, elastic properties of both hexagonal 

and re-entrant honeycombs 

3) Examination of specific properties of the core materials e.g. out of plane 

crush strength. radii of curvature, drapeability. 

with the following primary objectives:-
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a) to examine the validity of the hinging model which was developed to 

describe the particular deformation mechanism demonstrated by card 

honeycombs, 

b) to demonstrate that both the hinging and flexing models could be applied 

equally well to either re-entrant or conventional cell cores. 

c) to compare the behaviour of hexagonal and re-entrant cell core materials in a 

number of useful applications. 

5.2 Material selection 

Aluminium foil used in commercial honeycomb manufacture was provided by 

Ciba Geigy. The foil could be simply cut on a guillotine and easily folded by 

hand in a jig to produce preforms of specific cell angles. Cartridge paper was 

selected for making out-of-plane compression specimens because of its 

absorbency. Polyester resin was selected for use on these compression specimens 

as its low viscosity enabled the paper honeycombs to be easily dipped. 

Clay coated card, used extensively in the packaging industry, was chosen for 

making the cardboard honeycombs as it could easily be folded by hand without a 

great reduction in strength and was readily bonded with polyvinyl acetate (PYA) 

paper adhesive. 

5.3 Basic material properties 

5.3.1 Elastic properties of paper. paper/resin and card materials 

The moduli of the card used in these experiments were determined by performing 

tensile tests on parallel sided specimens of material cut to the dimensions 

specified in BS 4415 Part II (Fig.5.1). 

The specimens were tested using flat jaws, card end tabs being used to prevent 

tearing of the specimen at the jaw edges. The end tabs were bonded to the 

specimens using PYA paper adhesive. Specimens were cut both parallel and 

perpendicular to the the fibre direction of the paper. 
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35 mm 180 mm 35 mm 
~ .. ~--~ .... ~ .. ~--------------------~...... .. 

Gauge length 

Fig. 5.1 Dimensions for card tensile specimens according to BS 4415 Part II 

Folding the card must obviously alter its properties in the vicinity of the crease 

line. Tensile tests were therefore carried out on short specimens with a single fold 

at the centre, perpendicular to the tensile axis. The gauge length was taken as the 

width of the crease line (lmm approx.). 

5.3.2 Elastic properties of Aluminium 

The modulus of the aluminium was measured using a 12.5mm wide specimen of 

foil to the dimensions shown in Fig.5.2 

6mm rad. 
12.5 mm 

... 78mm 
Gauge length 

Fig. 5.2 Dimensions of aluminium foil tensile specimens. 

Specimens were cut both parallel to and perpendicular to the rolling direction. 

Several specimens were prepared at once by clamping sheets of foil between 

hardened steel formers. The excess was removed with a file and then the 

specimens were finished to size with a fme grade abrasive paper to ensure there 

were no stress raisers at the edges of the specimens. As the material was in the 

annealed state no difference in properties was found between the specimens 

produced in different directions. The tests were performed on an Instron 1185 

servo-mechanical testing machine. 
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5.3.3 Determination of Kr and Kb 

Er was obtained by measuring the initial gradient of the load/extension curves 

from the tensile tests on strips of aluminium foil (q.v. section 5.4). Substituting 

into equation (3.4) gives the value Kf• 

To directly measure Kb a piece of card 100mm wide was folded in half after 

scoring along the centre line with a blunted scalpel blade. The material on one 

side of the fold was bonded to a flat rigid surface, and that on the other side was 

stiffened by folding up about 5mm of material along each edge. Known loads 

were applied to the uppermost edge and photographs taken, from which the 

change in angle could be measured. The arrangement is shown schematically in 

Fig.5.3. 

Load 

~ 

Fig. 5.3 Schematic diagram showing the arrangement for measuring Kh• 

From the original definition of the force constant (Eqn 3.1) we can write 

K =E=Wcos ex 
hoi sin ex 5.1 

where W is the applied load and F is the component of W acting perpendicular to 

the member length t. Plotting W cos ex against /sin a., Kh can be obtained. 
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It proved difficult to measure the spring constant Kb of the card directly but by 

plotting the experimental results against the theoretical curves for El and E2 

obtained for various values of Kb a best fit value was obtained. This value was 

used for all subsequent evaluation of the models. 

5.4 Cell &:eometries 

In general three cell types were selected for investigation and these are shown in 

Fig.5A. 

20 

Fig. 5.4 Primary cell configurations used for specimens 
(All dimensions in mm) 

The re-entrant cell geometry of h =20mm, 1 =lOmm was chosen to allow all cell 

angles between 00 and -900 to be achieved. The hexagonal geometries were then 

selected to give an equal cell area by selecting the equivalent positive cell angle 

when h =lOmm and I =lOmm, and identical cell wall lengths for the equivalent 

positive cell angle when h =20mm and I =lOmm. 

5.5 Fabrication of honeycombs in tbe laboratory 

To verify the mathematical models, examples of both hexagonal and re-entrant 

cell honeycombs were fabricated by hand in the laboratory to the dimensions 

listed in Table 5.1. 
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Honeycomb 
Hexagonal cell cardboard 
Re-entrant cell cardboard 

Hexagonal cell aluminium 
Re-entrant cell aluminium 

11 (mm} 
20 
20 

10 
20 

Experimental methods 

l (mm} l!. (mm} 
10 20 
10 20 

10 10 
10 10 

Table 5.1 Cell dimensions of honeycombs used for tensile tests. 

Card honeycombs were made by folding narrow strips of 0.21 mm card along 

crease lines, pre-marked by scoring with a blunt edge, to form box pleats which 

were then glued together using a PYA paper adhesive. 

Aluminium honeycombs were made from 0.1 mm foil cut into lOmm wide strips 

and folded around appropriately shaped formers (Fig.5.5) to produce either 

hexagonal or re-entrant cell shapes. The folded strips were degreased in acetone 

prior to glueing together to form a honeycomb. Attempts to bond these folded 

preforms together using an epoxy resin were unsuccessful as its high viscosity 

prevented easy application without seriously deforming the thin preforms. 

Aluminium soldering was not considered practicable and the most successful 

method of bonding was found to be cyanoacrylate ("superglue") adhesive. The 

instantaneous bonding of this type of adhesive also facilitated fabrication of the 

honeycomb specimens. These specimens performed well under the low strains 

used for in-plane testing but it was found that the "superglue" bonds failed easily 

at the on-set of buckling in the out of plane compression tests. This was 

inconsistent with the usual modes of failure observed in out-of-plane 

compression of metal honeycombs (Wierzibicki, 1983). It was therefore decided 

to produce compression test specimens, which deform by elastic flexing, by 

soaking paper honeycombs, produced from 0.16mm cartridge paper, in polyester 

resin. 
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Fig. 5.5 Jig for produci1lg hexagonal and re-elllrant cell preforms from 
aluminium strip. A hexagollal preform is shown during mallufacture -
fhe blflcks arolllld which fhe strip is folded are illlhe foreground. 

5.6 Effective properties of core materials 

5.6.1 Measurement of Elastic properties of honeycombs 

The elastic properties of the honeycombs were determined by performing tensile 

tc t on specimen of honeycomb with their long axes oriented parallel to both 

the 1 and 2 direction of the hone comb. Due to the relati el large cell ize 

(Fig.5.4) used the specimen required for the tensile test were of the order of 

1m in length by O.15m wide to enable dimension changes to be measured with 

reasonable accuracy and also to avoid end effects. To establish the gauge length 

required to eliminate end effects in the mechanical te ts, two gauge lengths were 

marked on each specimen. The great Oexibility of the honeycombs (particularly 

the card structures) meant that specimens of this length deformed under their own 

weight and it was therefore necessary to support the specimens horizontally on 

rollers during the tests (Fig.5.6). 

(N.B.Friction loses in the pulley arrangement were investigated by wrapping the 

wire once around the pulley and hanging known masses on the end. The 
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Spring balance 

Travelling microscope 

Fig.5.6 Experimental setup JOT measuring elastic propeTlies oj }wneycombs. 

differences between the actual masses and those recorded by the spring balance 

were negligible). The load was measured directly with a spring balance and the 

extension of the two gauge lengths measured with a travelling microscope. 

Stress/strain plots were generated for both gauge lengths. The procedure was 

repeated for different specimen lengths until the stress/strain plots coincided. 

Tests were performed in both 1 and 2 directions. It was established that to avoid 

end effects the gauge length needed to be ~1I6 of the specimen length. 

Having established the optimum gauge length the tensile tests were repeated, but 

in addition to measuring the longitudinal extension the lateral 

expansion/contraction was also measured. Gibson's work (1988) shows 

aluminium honeycombs behave elastically up to 10% strain whilst Fig.5.7 shows 

that card honeycombs can be assumed to behave elastically below 5% strain. 

The moduli were determined from the initial gradients of the load/extension 

curves and were plotted against cell angle for each honeycomb. Poisson's ratio 

for each increment in load was calculated from the true longitudinal and lateral 

strains and again plotted against the cell angle. In order to compare these with the 

theoretical values of El and ~ for the flexure and hingeing models it was 

necessary to obtain values for K f and Ki, as described in section 5.3.3. 
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Fi g.5. 7 Load vs. strain plots for hexagonal (top) and re-entrant (bottom) card 
honeycombs loaded and unloaded in direction 2 and not exceeding 5% 
strain. 
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To avoid buckling effects compression tests were performed on 20mm thick, 

square (approx. lOOmm x 100mm) specimens of honeycomb. Known loads 

were applied to a lightweight plate laid across the top of each specimen by means 

of a rod which was free to slide in a vertical guide tube (Fig.5.8). The deflections 

were recorded photographically using a camera of fixed focal length. 

Rod -------t 

Guide tube ---v 

Bench 

Fig.S .8 Arrangement for in-plane compression tests 

5.6.2 In-plane shear test 

These tests were performed on specimens of honeycomb contained in a "picture 

frame" rig as shown in the diagram Fig.5.9. 

The pins at the corners are a sliding fit in the holes allowing the frame to hinge at 

the corners with a minimum of friction. The cut edges of the specimen were 
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bonded to strips of thin card the same size as the inside faces of the rig using a 

PYA paper adhesive. The outside of the strips were in turn bonded to the inside 

faces of the jig using an impact adhesive. To prevent the specimens shearing due 

to the frame deforming under its own weight the frame was held in the horizontal 

position and a force applied across diagonally opposite corners. The force P was 

measured directly using a spring balance and the deflection L\ from the dial test 

indicator. 

Dial gauge 

Pins, sliding fit to 
reduce friction --~ 

Fig. 5.9 Sketch oj "picntre frame" rig showing major dimensions. 

A detailed analysis of the forces acting in a "picture frame" rig has been provided 

by Penzien et al. 1964 but a much simpler approach, similar to that of Gibson 

et at. (1982), is used here since the forces required to deform the specimen are so 

small that increased friction in the pins due to lateral loads can be ignored. 

From Fig.5.10 it is apparent that the shear strain can be calculated directly from 

the deflection of the frame i.e. 

(5.2) 

From Fig.5.11 we obtain the relation between the applied force and the shear 

stress 
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r--~-

Fig. 5.1 0 Schematic diagram of simple shear showing how the shear strain y 
and the deflection L! can be obtained from the "picture frame" rig. 

p 

" , , 

Fi g. 5.11 Schematic diagram showing the relationship between the applied 
force P and the resultant shear force '!. 
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't = P.cos (45 - cp) (5.3) 

which can be rewritten as 

't = P.cos (45 - f) 
(5.4) 

for the particular condition of using a square frame. 

The in-plane shear modulus G 1 2 is simply obtained by measuring the gradient of 

the 't vs. y plot. 

5.7 Specific core material tests 

5.7.1 In-plane indentation tests 

These tests were conducted using the long specimens made for the tensile tests 

standing on their edge and a load applied to an indenter placed along the side of 

the specimen. Two indenters were used. one with a flat face lOOmm wide and the 

other with a semi-circular face of 200mm diameter. The specimen was taped to 

the bench at the bottom corners to simulate the constraint of a large bulk of 

material. Vertical supports were not required as the specimens were sufficiently 

thick to prevent buckling out of the plane. The indenters were then pressed into 

the surface of the specimens using the same method as for the in-plane 

compression tests (Fig.5.S). and the depth of penetration below the surface was 

recorded photographically. Enlarging the photographic image. which also 

provides a useful deformation map for the material beneath the indenter 

(e.g.Fig.7.22). the penetration could be measured and related to both the applied 

load and the area of the indenter in contact with the specimen. 

5.7.2 Out of plane compression tests - Multiple cells 

To examine the effects of the re-entrant cell on the crush strength of honeycombs. 

samples of paper and resin coated paper specimens were manufactured in 

accordance to the dimensions specified in ASTM Specification C365-57. The 

samples made used the minimum number of cells required in this specification 

due to the time necessary to manufacture honeycombs by hand. The top and 
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bottom surfaces were bonded to skins of glass fibre, chopped strand mat (CSM) 

and polyester resin. This was done by laying a suitably sized piece of CSM on 

waxed glass plate and thoroughly wetting it through with resin. The honeycomb 

was then pressed into the wet skin and a weight applied to the top surface whilst 

the skin cured. The specimen was then turned over and the second skin was 

bonded to the core by the same method. 

By making several specimens at once between two glass plates ensured that the 

top and bottom skins of each specimen were parallel. Specimens were then post 

cured in an oven at 80°C for 3 hours. For the resin coated cores the card 

honeycomb specimens were dipped in a bath of resin and the excess allowed to 

drain off prior to the application of the second skin. 

To investigate the effects of the hA ratio on the properties of the honeycomb 

compression specimens were made with the cell geometries listed in Table 6.2. 

The compression tests were performed between platens, at a rate of 1 mm per 

minute, on an Instron 4204 machine using a computer controlled data acquisition 

package. Plots of load vs. deflection were obtained for both hexagonal and re

entrant cell honeycombs. 

5.7.3 Out or plane compression tests • SjDlie cells 

The effect of the core thickness was investigated using single paper cells of 

various lengths from b =5mm to 200mm sandwiched between thin card 

skins. Compression tests were performed on single cells of both re-entrant and 

hexagonal cells with cell angles of -300 and +300 respectively. The cells were 

made to different heights (b) and included all the contacting walls cut to half their 

length (Fig.5.4). Card "skins" were bonded to each end of the cells to maintain 

the cell angles during the tests. By marking the cell shape on the "skins" prior to 

glueing them into place the cell angles could be controlled quite accurately. 
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5.7.4 Poisson's ratio by curvature measurements 

The curvature measurements were made by using a modified version of the 

method described by Caddock et al. (1991). An approximately square sheet of 

honeycom b was bent over a former of known radius R l' aligned with direction I 

in the honeycomb. to generate an orthogonal secondary curvature R2 in direction 

2. The latter was measured photographically. using a camera with a fixed focal 

length to maintain a constant magnification. Focusing was achieved by moving 

the camera back and forth on a focusing rail. With anticlastically curved panels a 

fine thread was strung across the centre of the curved specimen to enable the 

focus to be sharp at the plane of the primary or secondary curvature. With 

synclastically curved specimens the thread was draped along these planes to 

follow the convex contours of the deformed core. 

The photographic negatives were mounted in transparency frames and a 

conventional projector was used to form an enlarged image of each curvature on a 

sheet of paper. The enlarged curvature profile was traced onto the paper for 

measurement. Care was taken to ensure that all these tracings were made at the 

same degree of enlargement. From the profiles. measurements were made of the 

arc heights BD at various chord lengths AC (Fig.S.12). 

D 

A c 

Fi g. 5.12 Determination of radius of curvature. 
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From Fig.5.12 we can see that 

(5.5) 

and 

(5.6) 

where the angle ~ is given by 

(5.7) 

Substituting for BC2 in equation 5.6 we obtain an expression for the radius r 

r- BD 
2sin2~ (5.8) 

Hence using the measured values of BD and AC in equations 5.7 and 5.8 we can 

obtain the radius of curvature R2• For each specimen measurements were made 

over three primary curvatures of radius O.5m, O.7m and 1.0m. The curvature 

ratio method gives the best estimate of v when the curvature approaches zero 

(Caddock et aL 1991). The ratio of the two radii is equal to the Poisson's ratio as 

shown in section 2.11. 

5.7.5PJate deflection tests 

To examine the flexibility of the core when constrained, a square section of 

material was clamped along two opposite edges and left unsupported on the 

others. The specimen was also clamped between plates at it's centre so the 

specimen could really be described as two flat plates side by side each with one 

clamped and fixed edge and the other clamped but with a movable support 

Fig.5.13. 

The elastic deflections of the central region of the specimen due to a load applied 

at the centre were recorded using a dial test indicator. By gradually increasing D 

and thus reducing the effective length of each plate Y we eventually reach a point 
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Plates clamped 
together through 
specimen 

Fig. 5 .13 Schenultic diagram of set up for plate deflection test 

where we are measuring the through thickness shear of the honeycomb. Plots of 

deflection VS. load were made for various beam lengths. 

Tests were carried out on cardboard, resin coated cardboard and aluminium 

honeycombs. 
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6) EXPERIMENTAL RESULTS 

6.1 Introduction 

In this chapter the results obtained from experiments with aluminium, card and 

paper honeycombs are presented. Analysis and interpretation of these results is 

carried out in chapter 7. 

6.2 Elastic properties of raw materials 

The load versus extension plots for the tensile tests on the paper, paper/resin and 

hinged card materials are shown in Figs.6.1 - 6.3. The initial moduli obtained 

from these plots are listed in table 6.1 

Material 
Paper 
Paper + resin 
Aluminium 
Card, hinged 

Modulus (GPa) 
2.79 
3.58 

25.00 
0.24 

Table 6.1 Mean moduli for materials used to fabricate the honeycombs 

Examination of the surface of the card and paper showed a preferred orientation 

of the fibres resulting from the manufacturing technique. For the card and paper 

specimens it was therefore necessary to cut specimens both parallel and 

perpendicular to the fibre direction. It is obvious from the initial gradients of the 

two plots that the properties are affected by the fibre orientation. As the 

honeycombs had been made from strips cut both parallel and perpendicular to the 

fibre orientation the mean value of the two moduli was used in any calculations. 

The aluminium strip was supplied in the annealed condition and as can be seen 

from Fig.6.4 there is no particular variation in the modulus of specimens cut 

parallel to or perpendicular to the rolling direction. Again the mean value of the 

modulus was used for all calculations. 
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Fig.6.1 Load vs. extension curves for 150j1m cartridge paper specimens cut 
parallel (-) andperpendicular ( ••• ) to the fibre direction. 
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Fig.6.2 Loadvs. extension curvesfor resin impregnated, 150j1m cartridge 
paper specimens cut parallel (-) and perpendicular ( ••• ) to the fibre 
direction. 
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Fi g. 6.3 Load vs. extension curves for hinged, 210j1m clay coated cardboard 
specimens cut parallel (-) and perpendicular ( ••• ) to the fibre 
direction. 
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Fi g. 6.4 Load vs. extension curve for 0.1 mm annealed aluminium foil, for 
specimens cut both parallel (- ) and perpendicular ( • •• ) to the 
rolling direction. 
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6.3 Determination of Kr and Kh 

As already mentioned in chapter 2 the flexure model of Gibson et al. ( 1981 , 

1982, 1988) has been successfully used to describe the behaviour of commercial 

honeycom bs C e.g. Nomex T~) which deform by flexing of the cell walls. The 

Gibson equations can be rewritten in terms of a force constant Kr Cq.v. Section 

3.2) which is simply evaluated by substituting the modulus Es for the aluminium 

(Table 6.1) into equation 3.4 giving the result Kr=O.SNmm-1. 

For the cardboard honeycombs the flexure model is no longer applicable since all 

the deformation occurs by the operation of hinges at the cell wall junctions. A 

model to describe this behaviour was-developed in chapter 3 and again the 

equations can be written in tenns of a force constant Kh (a function of the cell 

wall modulus and the cell dimensions b,l and t). Fig.6.S is a plot of Load vs. 

angle (a) for a hinge in 21O,um clay coated cardboard obtained by measuring the 

change in angle of a single hinge due to the application of known loads. Kh was 

determined from the gradient of the plot by evaluating equation 5.1 . 

0.07 

0.06 * 
0.05 

..-
Z 

0.04 '-' 

"0 
~ 0.03 Q 
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0.02 

0.01 

0 
35 40 45 50 55 60 65 
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Fig.6.S Applied load vs. anglejor a single hinge in 210,um clay coated card. 
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Fig.6.6 shows that greater the number of times the hinge is operated the less 

resistant to defonnation it becomes. 

0.03 

(j x 5 
(IJ x 1 
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Fi g.6.6 Plots of Load x cos avs. l x sin L1afor 210j.1m clay coated card 
specimens folded xl, x5 and xl 0 along the hinge line. The gradient 
of the plot equals the hinge constant Kh. 
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6.4 LoadlExtension curves for cardboard and aluminium honeycombs, 

Specimens of card and aluminium honeycombs were loaded in tension and 

compression until complete debonding or collapse of the cells had occurred. to 

establish the overall shape of of the load/deflection curve. The data is presented 

here as load rather than stress vs. strain enabling a direct comparison between 

specimens which are an equal number of cells wide. The load can thus be related 

to the number of columns of cell walls deforming rather than the cross-sectional 

area of the specimen which alters significantly during the test. 

Fig.6.7 shows the typical plot obtained for specimens of a hexagonal cell 

(h =20mm, l =lOmm, 9=300 ), cardboard honeycomb loaded in the 1 and 2 

directions. The maximum elongation is seen in direction 1 as when loaded in this 

direction the cell walls of length 1 =lOmm rotate through an angle of 600 until 

they become aligned in the direction of the applied load which then rapidly rises 

to the maximum strength of the cardboard. 

Large extensions are achieved in direction 1 (Fig.2.1) for very small loads as the 

walls of length 1 lie almost perpendicular to the applied force thus providing the 

maximum moments around the points of hingeing. 

When loaded in direction 2 the cell walls can only rotate through a relatively small 

angle of 300 which causes very little extension of the specimen before all the 

walls are aligned in the direction of load. 

Fig.6.8 shows the equivalent plots for a re-entrant celled card honeycomb of the 

same cell wall dimensions and a cell angle of -300 . The degree of extension in 

direction 1 (Fig.2.1) is greatly increased as the moving walls must now rotate 

through an angle of 1200 before becoming aligned in the direction of the force. 

The point of inflection at an extension of approximately 20% corresponds to the 

the point at which 9=0°. Beyond this point the cell shape becomes hexagonal. 
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Again when loaded in direction 2 only a small amount of extension is achieved 

due to the small angle change (-300 to 00 ) and the force rises rapidly to its 

maximum. 

It is apparent from Figs.6.7 & 6.8 that the initial parts of all four curves are 

approximately linear. Thus by keeping the strains to a maximum of 5% we can 

investigate the linear elastic behaviour of the cardboard honeycomb structures. 

Figs.6.9 and 6.10 show the load/extension curves for the equivalent aluminium 

honeycombs. The plots for loading in direction 1 are of a similar shape to those 

for the card specimens (Figs.6.7 & 6.8) although there is a pronounced 'knee' at 

the beginning of the curve which can be attributed to the onset of plastic hingeing 

(Gibson et ai. ,1988., Klintworth et aI., 1988). 

The plots for loading in direction 2 initially rise steeply, showing linear behaviour 

as expected, but soon reach a plateau during which progressive failure of the 

adhesive bonds occurs. Very little permanent plastic deformation was observed 

for specimens orientated in this direction, suggesting that the honeycomb was still 

predominantly elastic when the adhesive bonds failed. 

Figs.6.11 - 6.14 show the equivalent plots for aluminium and card honeycombs 

loaded in compression. The significant features to note are that again the initial 

deformation is approximately linear and that for both card and aluminium 

honeycombs loaded in direction 2 the re-entrant core is more resistant to 

deformation than the hexagonal. The latter effect was not observed for loading in 

direction 1 but this was probably due to masking of the effect by local collapse of 

the cells when the walls of length h move out of alignment with the direction of 

the applied force. 
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Fig.6. 7Typicalloadlextension curves for hexagonal cell (h=20mm, l=10mm, 
f):::4rP), card honeycombs loaded in direction 1 (- ) and direction 2 
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Fi g.6.8Typicalloadlextension curves for re-entrant cell (h=20mm, l=10mm 
f)=-320 ), card honeycombs loaded in direction 1 (- ) and direction 2 
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Fi g.6.9 Typicalloadiextension curve for a hexagonal cell (h=I=10mm,8=2SO) 
aluminium honeycombs Loaded in direction 1 (-) and direction 2 ( .. ). 
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Fig.6.10 wad/extension curve for a re-entrant cell (h=l=10mm,8=-230) 
aluminium honeycombs loaded in direction 1 (-) and direction 2 
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Fig.6.11 Load/compression curves for hexagonal cell (h=20mm, l=10mm, 

8::4SO) card honeycomb. 
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Fig.6.12 Load/compression curves for re-entrant cell (h=20mm, l=10mm, 

8=-310 ) card honeycomb. 
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Fig.6.13 Load/compression curves for hexagonal cell (h=10mm, l=10mm, 
8=370 ) aluminium honeycomb. 
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6.5 Elastic modulus of boneycombs under small strains. 

A typicalloadlextension curve for a card honeycomb, obtained using the method 

described in section 5.4 is shown in Fig.6.15 and shows that for the low strains 

«5%) used in these experiments that linear behaviour is a reasonable 

assumption. The equivalent plot for aluminium honeycombs is shown in 

Fig.6.16 Results for both card and aluminium honeycombs compressed in 

direction 2 are shown in Figs.6.17 and 6.18. Note that in compression, unlike 

tension, the re-entrant structure is stiffer than the hexagonal. 
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e=2'jO) and (· )re-entrant cell (h=20mm, l=lOmm, e=-3go) cardboard 
honeycombs loaded in direction 2. 

2 ~--~----~----~--~----~--~ 

1.5 

--Z 
'-" 
"'0 1 eu 
0 
~ 

0.5 

o~--~~--~----~----~--~----~ 
o 0.5 1 1.5 2 2.5 3 

Extension (mm) 

Fig.6.16 Tensile load vs. extension plot for a (o)hexagonal (h=l=10mm, 
(J=380) and (e)re-entrant cell (h=20mm, l=lOmm, (J=-360) 
aluminium honeycombs loaded in direction 1. 
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Fig.6.18Compressive load vs. Extension pLot for a (o)hexagonal (h=l=10mm, 

()=450 ) and (e)re-entrant cell (h=20mm, l=10mm, ()=-24o) lOOJ.1m 
aluminium honeycombs loaded in direction 2. 
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6.6 In-plane shear modulus 

The tests performed give a direct comparison between the shear properties for 

equal areas of hexagonal and re-entrant cores. The load displacement curves are 

shown in Figs.6.19 - 6.22. It is apparent that the re-entrant cores despite having a 

higher density than the hexagonal equivalents have a much lower resistance to 

shear. 
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Fig.6.19 Load vs. displacement curve for a regular hexagonal cell (h=l=10mm, 
8=31°), aluminium honeycomb under in-plane shear. 
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Fig.6.20Load vs. displacement curve for a re-entrant cell (h=20mm, l=10mm, 

8=-23°) aluminium honeycomb under in-plane shear. 
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Fi g.6.21 Load vs. displacement curve for a hexagonal cell (h=20mm, l=lOmm, 

8=400) cardboard honeycomh under in-plane shear. 
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Fi g.6.22Load vs. displacement curve for a re-entrant cell (h=20mm, l=lOmm, 

8=-300) cardboard honeycomb under in-plane shear. 
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6.7 In-plane indentation resistance 

Tests were carned out on specimens orientated in both the 1 and 2 directions but it 

was difficult to obtain consistent results for elastic deflections in direction 1. This 

was because the double thickness walls are initially lying in the direction of the 

force and contacted on their ends by the surface of the indenter, quickly become 

misaligned (particularly with a circular indenter) and this, combined with 

irregularities in the construction of the honeycombs, results in local deformation 

of the cells directly under the indenter. Since we are primarily interested in the 

elastic deformation only, the results for loading in direction 2 will be considered 

here for analysis. 

Figs 6.23 and 6.24 show the load deflection curves for hexagonal and re-entrant 

cell cardboard honeycombs loaded with a l00mm wide flat indenter and a 200mm 

diameter circular indenter respectively. In both cases the re-entrant core offers a 

greater resistance to indentation as can be seen by the steeper gradient of the 

plots. Similar behaviour was observed with the aluminium honeycombs as can be 

seen from Figs.6.25 and 6.26. 
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Fig.6.23 Load vs. deflection plots for (o)hexagonal (h=20mm, l=10mm, 
()=4SO) and (e)re-entrant cell (h=20mm, l=lOmm, 8=-27°) card 
honeycombs indented in direction 2 by a lOOl1un wide flat indenter. 
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Fig.6.24 Load vs. deflection plots for (o)hexagonal (h=20mm, l=10mm, 

()=4SO) and (e)re-entrant cell (h=20mm, l=10mm, ()=-31 0 ) card 
honeycombs indented in direction 2 by a 200mm diameter indenter. 
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Fig.6.25 Load vs. deflection plots for (o)hexagonal (h=l=10mm, 8=34°) 
and (e)re-entrant cell (h=20mm, l=lOmm, 8=-17°) aluminium 
honeycombs indented in direction 2 by a 100mm wide flat 
indenter. 
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Fig.6.26 Load vs. deflection plots for (o)hexagonal (h=l=10mm, 8=45°) 
and (e)re-entrant cell (h=20mm, l=lOmm, 8=-23°) aluminium 
honeycombs indented in direction 2 by a 200mm diameter indenter. 
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6.8 Out-of-plane compression tests 

For the paper and paper/resin models used in these tests it was difficult to preset 

the cell angles to a specified value although as can be seen from table 6.2 the 

variation was nonnally kept within 50 for each set of specimens. 

The purpose of these tests was to evaluate the effect of varying the M ratio, and 

typical load vs. deflection curves for compression tests on small areas of 

paper/resin honeycombs, sandwiched between GRP skins, are shown in Figs. 

6.27 and 6.28. Similar plots (Figs.6.29 and 6.30) were obtained for the paper 

cores. The mean failure stresses, obtained by dividing the failure load by the core 

area, are listed in Table 6.3 for both the paper and paper/resin honeycombs. The 

strains to failure are listed in Table 6.4. 

Compression strength (kPa) 

hli =1 hll =2 h/I =J 

Hexagonal paper 167.62 103.37 

Re-entrant paper 163.27 124.46 

Hexagonal paper+resin 826.51 506.43 

Re-entrant paper+resin 965.15 475.86 

Table 6.3Mean failure stresses for paper and paper+resin honeycombs 
compressed in a direction parallel to the cell axes (Max error 
±12.5%). 

Strain to failure 

bll = 1 bll =2 bll =J 

Hexagonal paper 0.0051 0.0057 
Re-entrant paper 0.0051 0.0065 

Hexagonal paper+resin 0.0159 0.0146 

Re-entrant paper+resin 0.0138 0.0118 

Table 6.4Mean strain to failure for paper and paper+resin honeycombs 
compressed in a direction parallel to the cell axes. (Max. error 
=±20%) 
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Specimen Cell angle (Degrees) 
Specimen fuL hll-lOIlO hll=201l0 hll=301l0 

Hexagonal paper HP1.l 36.7 
HP1.2 35.1 
HP1.3 36.2 

HP2.1 34.2 
HP2.2 34.2 

HP2.3 37.1 

Hexagonal paper+resin HR1.1 42.3 
HR1.2 38.4 

HR1.3 41.9 
HR2.1 34.1 

HR2.2 35.8 

HR2.3 36.6 

Re-entrant paper RPl.l 44.1 

RP1.2 39.8 
RP1.3 39.1 

RP2.1 50.0 
RP2.2 46.8 

RP2.3 47.7 

Re-entrant paper+resin RR1.1 41.4 
RR1.2 43.7 

RR1.3 40.9 
RR2.1 45.3 

RR2.1 50.0 
RR2.3 41.9 

Table 6.2 Cell angles Jor specimens used in out-oj-plane compression tests. 
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Paper and paper/resin honeycombs showed the same relative behaviour between 

the re-entrant and hexagonal cell shapes. It is apparent from the Tables 6.3 and 

6.4 that in both the hexagonal and re-entrant cases the failure stress, and the strain 

to failure, are reduced as the hIl ratio increases. This is not unexpected as the 

density of the core is reduced as hIl increases thus reducing the amount of cell 

wall material available to support the load over a given area of honeycomb. The 

re-entrant cell honeycombs have higher densities than their hexagonal 

counterparts and thus have significantly higher failure loads. 

All the specimens were compressed by 10mm from their original gauge length of 

approximately 50mm. On removal of the load a degree of recovery was noticed 

(Fig 6.31) with all the specimens but was particularly noticeable with the re

entrant paper/resin samples (Table 6.5). 

Each specimen was retested again by compressing down to 40mm length. The 

load was found to gradually increase up to the point at which the first test was 

tenninated, showing that there was no recovery in strength (Figs.6.27 and 6.28). 

Hexagonal paper 
Hexagonal paper+resin 

Re-entrant paper 

Re-entrant paper+resin 

~ean recovery (~) 

hll=101l0 

30.2 
49.0 

hll=201l0 

46.0 
49.8 

53.8 

61.8 

hll=301l0 

72.5 

73.5 

Table 6.S Mean recovery, expressed as a percentage of the original thickness 
(50mm), of paper and paper+resin honeycombs on removal of the 
load after being compressed by 10mm along their cell axes. 
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Fig.6.27Typicalloadideflection plot (a) for a 50mm thick hexagonal cell 
paper/resin honeycomb compressed lOmm in the direction of the cell 
axes. (h=l=lOmm). Curve (b) shows that there is no recovery of 
strength when the same honeycomb is reloaded up to lOmm 
deflection. 
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Fig.6.28 Typical loadldeflection plot (a) for a 50mm thick re-entrant cell 
paper/resin honeycomb compressed lOmm in the direction of the cell 
axes. (h=20mm, l=lOmm). Curve (b) shows that there is no 
recovery of strength when the same honeycomb is reloaded up to 
lOmm deflection. 
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Fi g.6.29 Typicalloadldeflection plot (a) for a 50mm thick hexagonal cell paper 
honeycomb compressed lOmm in the direction of the cell axes. 
(h=l=lOmm). Curve (b) shows that there is no recovery of strength 
when the same honeycomb is reloaded up to lOmm deflection. 
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Fi g.6.30 Typicalloadldeflection plot (a) for a 50mm thick re-entrant cell paper 
honeycomb compressed lOmm in the direction of the cell axes. 
(h=20mm, l=lOmm). Curve (b) shows that there is no recovery of 
strength when the same honeycomb is reloaded up to lOmm 
deflection. 
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a) 

b) 

Fig.6.31 a) 50ml11 high secTion of hexagonal cell paper/resin honeycomb 
before (left) and after being compressed by 10ml11 (right). 
b) 50111111 high ection of re-entrant cell paper/resin honeycomb 
before (left) and after being compressed by 10111111 (right). Note the 
large amollnt of recove,y compared to the hexagonal honeycomb. 
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6.9 Out-of-plane sin21e cell compression tests 

To evaluate the effects of the core thickness b on the out-of-plane strength, 

compression tests were performed on single cells of different axial lengths. To 

simulate the constraining effects of adjacent cells adjoining cell walls of lengths 

hl2 and U2 (Fig.SA) where included in the tests. A plot of failure load vs. b is 

given in Fig.6.32. 
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Fi g.6.32 Peak failure load vs. core thickness for single paper cells 
compressed along the cell axis. Hexagonal cells (0) h=20mm, 
l=10mm, (}=300, (0) h=l=10mm, (}=300. Re-entrant cell (.) 
h=20mm, l=10mm, (}=-300. 

All three geometries used in these tests show significant increases in the load to 

failure when the axial length of the cell is less than SOmm in length. The regular 

hexagonal cell (h=l =lOmm) and the re-entrant cell (h =20mm, l =lOmm) have 

very similar cell wall cross-sectional areas and as can be seen from Fig.6.30 have 

similar behaviour. The change in cell angle from +30 0 to -300 seems to have little 

effect. The irregular hexagonal cell (h =20mm, 1 =lOmm) has a much larger cell 

wall cross sectional area and this can account for the higher failure loads 

observed. 
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The strain to failure is plotted against the core thickness (b) for single paper cells 

in Fig.6.33. The hexagonal and re-entrant cells show very similar behaviour over 

the range of cell lengths tested. Little variation in the strain is observed when 

50<b<200 but it rises rapidly when b<20mm 
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Fi g.6.33 Strain to failure vs. core thickness for single paper cells 
compressed along the cell axis. Hexagonal cells (CJ) h=20mm, 
l=lOmm, ()=3rP, (0) h=[=lOmm, ()=3rP. Re-entrant cell (e) 
h=20mm, l=lOmm, ()= -3rP. 
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6.1 ° Poisson's ratio by curvature measurement 

Figs.6.34 - 6.37 show the plots of radius R2 in direction 2 vs. radius Rl in 

direction 1 when a comparatively thin (20mm) sheet of honeycomb is bent out-of

plane. We know from Section 2.11 that the ratio of the two radii of curvature is 

equal to the Poisson's ratio. Hence evaluating equation 3.19 or 3.20 for the 

particular cell geometry under test we can predict the theoretical variation of Rz 
with RIo This is shown by the solid lines on the graphs. (N.B.The ratio 

RI/R2=v12·and R2/RI =v21)' 

Both the hexagonal (Fig.6.34) and re-entrant (Fig.6.35) card models achieve 

similar gradients to those predicted by the theory although the radii (Rz) are larger 

than expected. The increased flexibility of the cardboard structures, particularly 

the re-entrant cell structure, we would expect to improve drapeability and hence 

provide smaller radii than those predicted by the theory. 

For aluminium, the hexagonal honeycomb deviates from linearity when Ri>0.5m 

i.e.R2 is much larger than expected and is possibly explained by smaller value of 

hll (1.0) which makes the honeycomb much stiffer reducing the range of 

curvatures over which R1/Rz= Poisson's ratio applies. The aluminium re-entrant 

honeycomb is much more flexible and behaves as predicted by the theory. 
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Fig.6.34Ratio of curvatures for a hexagonal cell (h=20mm, l=10mm, 8=42°) 
cardboard honeycomb determined by setting to known curvatures in 
direction 1 and measuring that in direction 2. (-) shows the 
theoretical variation of R2 with R 1. 
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6.11 Plate deflection tests 

Experiments with the cardboard honeycombs were inconclusive as it was difficult 

to obtain repeatable results. This was because of the high flexibility of the card 

honeycombs and the difficulty in producing a central clamping plate which was 

sufficiently stiff not to defonn itself under the applied load and yet light weight 

enough not to defonn the honeycomb under its own weight since the high 

flexibility of the core meant only very small loads were required. The resistance 

of the dial gauge also affected the results. However the stiffness of the 

honeycomb plate was observed to increase as the length was reduced. 

The tests with the aluminium honeycombs were more consistent and the results 

for a honeycomb bent in a plane parallel to direction 1 are shown in Fig.6.38 and 

6.39. Unfortunately insufficient material remained to fabricate honeycombs 

oriented in direction 2. It can be seen from Figs.6.38 and 6.39 that the hexagonal 

core is stiffer than the re-entrant and that in both cases the stiffness increases as 

the beam length is shortened. 
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Fig.6.38Load vs. deflection plots for hexagonal cell, aluminium honeycomb 
beams, of varying length, bent in the plane of direction 1. 

10~--~--~----~--~--~----r---~ 

8 

-. 
Z 6 
'-' 

2 

--¢-- 60mm 

oL-~--~--~~~~~~~ 
o 0.2 0.4 0.6 0.8 1 1.2 1.4 

Mean deflection (mm) 
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beams ,of varying length ,bent in the plane of direction 1. 

145 



References 

GIBSON,L.J. 
"Elastic and plastic behaviour of cellular materials" 
Ph.D Thesis (Cambridge) 1981. 

Experimental results 

GIBSON,L.J., ASHBY,M.F.,SCHAJER,G.S. & ROBERTSON,C.I. 
Proceedings of the Royal Society, London 
\Ol.382, Page 25. 1982. 

GIBSON.,L.J. & ASHBY,M.F. 
"Cellular Solids : Structure & Properties", 
Chapter 4, Pages 76-82 
Pergamon Press, London, (1988). 

KLIN1WORTH,J.W. & STRONGE,W.J. 
International Journal of Mechanical Science, 
\b1.30 No.3/4, Pages 273-292, 1988. 

146 



Discussion Part I 

7) DISCUSSION Part I 

7.1 Introduction 

The manufacture of all the specimens by hand was extremely time consuming and 

limited the number which could be made. To overcome this problem most of the 

tests were repeated on the same specimens. 

For the aluminium this is acceptable provided the deformation remains within the 

elastic limit. For the cardboard specimens their is a problem in that the value of 

the hinging constant Ktt reduces the more times the hinges are operated (q. v. 

Section 6.3). This probably accounts for the spread in the results as ideally new 

specimens should have been used for each test. (N.B. Making specimens by 

hand it is difficult to keep the cell angles consistent, particularly with the card 

honeycombs where considerable variation can occur from one area of honeycomb 

to another. Thus it is unlikely that had new specimens been used for each test that 

degree of error in the results would have been much reduced). The small number 

of specimens actually used means that the results are more qualitative than 

quantitative but provide an insight into the behaviour of re-entrant celled cores 

and honeycombs which deform by hinging. 

7.2 Determination of Kb 

As already shown in section 5.5 the hinging constant Kh is the gradient of the 

W cos a vs. I sin a plot where W is the applied load, I the length of the cell wall 

and a the angle of the hinge. This graph for the card material is shown in Fig.7.1 

and has a gradient = Ktt=2.05 Nm-1• 

Assuming that Gs::::{1I3)Es and using the value of Es for hinged card listed in 

Table 6.1, equations 3.10 (global shear model) and 3.16 (local bending model) 

can be evaluated for the dimensions of the specimen used in the experiment. 

These equations yield the results of 248kNm-1 and 8.8 Nm-1 respectively. The 
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global shear model grossly over-estimates the value of the hinge constant but the 

local hinge model provides a value which although slightly higher than that found 

directly by experiment, is of the same order of magnitude. This suggests that 

local hinging is a reasonable model for describing deformation by hinging and 

a.s has already be shown in section 6.3, Kb is affected by the number of times the 

hinge is operated. The value of Kb=67.2Nm- 1 was found to achieve the best fit to 

the experimental data, obtained by applying uniaxial loads alternately in directions 

1 and 2. It should be noted however that for each cell in a honeycomb eight 

hinges have to operate therefore for a fair comparison to the directly measured 

result we must divide 67.2 by 8. This implies that Kb",,8 which is of the same 

order of magnitude as that predicted by the local hinging model. 

7 .3 In-plane properties 

7 .3.1 Elastic modulus 

The moduli El and E2 obtained from the load deflection curves are plotted against 

cell angle for a re-entrant card honeycomb in Figs. 7.2 and 7.3. For comparison 
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with the experimental results the theoretical equations (3.55) and (3.60) have 

been evaluated for different values of Kb• The experimental results follow the 

theoretical curves although the models appear to over estimate the values of E 1 

and under estimate~. Comparing the equations (3.22 and 3.23) for the flexure 

model with those for the hinging model (3.55 and 3.60) we see that the 

expressions for the moduli differ only in the respective values of K f and Kh• As 

the force constants are functions of the Young's modulus of the material, the 

moduli for the aluminium honeycomb are expected to be much higher than those 

for the cardboard and this can clearly be seen by comparing the values of E2 in 

Figs.7.3 and 7.7. In both cases M =2. 

K f and Kb are sensitive to small deviations in the values of I since they are both 

functions of (M )3 (Eqns. 3.4 and 3.16) if local hinging is considered. The 

minor errors which exist in the geometry of the handmade honeycombs used in 

these experiments can account for the small discrepancies between the theory and 

the experimental results. Therefore within the limitations of the methods used 

here we can say that the flexure model applies equally well to re-entrant structures 

defonning by that mechanism. Similarly the hingeing model provides a simple 

method of predicting the elastic behaviour of card honeycombs. 

For the specimens used in these experiments the re-entrant samples have a higher 

density than their hexagonal counterparts and have shown a small increase in E2 

combined with a reduction in E 1 as predicted by the theory. Examination of the 

equations for the models shows that the elastic properties are governed by the 

ratio of the cell wall lengths (ie. M ) if the cell angle is kept constant. Thus 

specific values of Ei and Vij can be obtained for any required density of 

honeycomb. The limiting factor governing the density is the physical size of the 

cells, for a given wall thickness. 
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Fig.7.2 Experimental(·) and theoretical( -) Young s modulus E 1 (for various Kit 
in Eqn.3.60) plotted against cell angle for a re-entrant cardboard 
honeycomb loaded in direction 1 (h=20mm, l=10mm). 
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Fig,7,3 Experimental(·) and theoretical( -) Young s modulus E2 (for various Kh 
in Eqn.3.55) plotted against cell angle for a re-entrant cardboard 
honeycomb loaded in direction 2 (h=20mm, [=10mm). 
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Fig.7.4 Experimental(e)andtheoretical(-) Youngs moduli (for Kh=67.2Nm-1 

in Eqn3_60) plotted against cell angle for a hexagonal card 
honeycomb loaded in direction 1 (h=20mm, l=lOmm). 
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Fig.7.S Experimental(e)andtheoretical(-) Youngs moduli (for Kh=67.2Nm-1 

in Eqn3.55) plotted against cell angle for a hexagonal card 
honeycomb loaded in direction 2 (h=20mm, I=lOmm). 
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Fig.7.6 Experimental(e) and theoretical(-) Youngs moduli (for Es=25GPa) 
plotted against cell angle for a re-entrant aluminium honeycomb 
loaded in direction 1 (h=20mm, l=10mm). 
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Fig.7.7 Experimental(e) and theoretical(-) Youngs moduli (for Es=25GPa) 
plotted against cell angle for a re-entrant aluminium honeycomb 
loaded in direction 2 (h=20mm, l=lOmm). 
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Fi g. 7.9 Experimental(e) and theoretical(-) Youngs moduli (for Es=25GPa in 
Eqn.3.23) plotted against cell angle for a hexagonal aluminium 
honeycomb loaded in direction 2 (h=l=lOmm). 
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7.3.2 Poisson's ratio for honeycombs under small strains 

The Poisson's ratios are independent of the load and are determined by the cell 

geometry alone (Table 3.1). Figs.7.10 - 7.13 show the Poisson's ratios for 

hexagonal and re-entrant cardboard honeycombs in the I and 2 directions. 

Direct measurement of the cell walls with a ruler established that they typically 

deviated from their nominal lengths by ±lmm. The maximum (2.33) and 

minimum (1.73) values of hA resulting from this deviation were used to evaluate 

the Poisson's ratio equations over the appropriate range of cell angles and these 

results are also shown on the plots. The experimental results predominantly lie 

between the upper and lower theoretical values showing good agreement with the 

model. 

Figs.7.14 and 7.17 show the equivalent plots for aluminium honeycombs. There 

is considerably more scatter in the experimental data and the values measured are 

smaller than those predicted by the theory in both I and 2 directions. The degree 

of scatter can be accounted for by the increased error in reading the much smaller 

displacements which occur in the stiffer aluminium honeycombs. 
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Fig.7.11 Experimental( e) and theoretical(·) Poisson ratios plotted against cell 
angle for a hexagonal card honeycomb loaded in direction 2. 
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Figo7.12Experimental(·) and theoretical(-) Poisson ratios plotted against cell 
angle for a re-entrant cardboard honeycomb loaded in direction 1. 
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Fi g. 7 .13 Experimental(·) and theoretical( - -) Poisson ratios plotted against cell 
angle for a re-entrant cardboard honeycomb loaded in direction 2 
(h=20mm, l=10mm). 
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Fi g. 7.15 Experimental(e) and theoretical(· -) Poisson ratios plotted against cell 
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7.3.3 Shear modulus 

The in-plane shear modulus required the use of a special "picture frame' rig 

similar to that used by Kelsey etal. (1958). The analysis of the forces produced 

in this experiment is quite complex and there has been some debate in the 

literature as to the suitability of this test for the measurement of shear modulus 

(Bowles et aL. 1986, Lee et al. 1986). However, for the experiments reported 

here the same frame was used for all the specimens allowing a direct comparison 

of results. 

The Abelbeck Software 'Kaleidagraph' programme was used to fit second order 

polynomial curves (by the least squares method) to the shear modulus data in 

Figs.6.14 - 6.19. Using the equations of these curves, expressions 5.2 and 5.4 

can be evaluated allowing shear stress to be plotted against shear strain 

(Figs.7.18 & 7.19). The shear modulus is the gradient of the 't vs. 'Y plot. 

All specimens were tested under identical conditions and the experimental shear 

modulus values are listed with the theoretical values obtained for the geometries 

used in Table 7.1. There is some error in the results but in both cases (ie. card 

and aluminium) the shear modulus is significantly less for the re-entrant core than 

the hexagonal equivalent, as expected from the theory. N.B. this is true for both 

cell configurations of h =20mm,l =IOmm and h =1 =10mm. 

Sample Cell angle GI2Theory G I2 Experimental 
(Deg) (kPa) (kPa) 

AI. hexagonal +31 34.7 79.7 
AI. re-entrant -22 7.2 17.8 

Card hexagonal +40 0.9 9.4 
Card re-entrant -29 0.6 0.8 

Table 7. 1 Experimental and theoretical in-plane shear moduli (obtained from 
equations 4.1 and 4.4) for aluminium and cardboard honeycombs. 

The results for the aluminium honeycombs are approximately double those 

predicted by the models. For the card models the discrepancies between the 
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theory and experimental results are not as consistent. This suggests that the errors 

are at least partly due to the friction of the 'picture frame' rig arising from lateral 

forces exerted on the pins during the test. Using a larger specimen would then 

produce more reliable results. 

7.3.4 Indentation 

7.3.4.1100mm flat indenter 

Classical elasticity has been used to predict the behaviour of an elastic solid 

beneath an indenter (Johnson, 1983). Using this theory the stress fields beneath 

different indenters can be described by various mathematical expressions 

provided that the material is infinitely large in comparison to the size of the 

indenter. The large cell size used in these experiments enables strains at the edge 

of the indenter to be relieved and in addition the comparatively thin layer of 

material in relation to the size of the indenter so that the stress fields can pass right 

through the specimen. Thus by assuming that a block of material the full width of 

the indenter deforms through the complete thickness of the specimen we can use 

the expressions derived in chapter 3 to predict the indentation behaviour. 

We know that the general definition of the force constant (Eqn.3.l) relates the 

displacement 6 of the cell wall length l to the applied force. For the hinging 

mechanism the displacement 6 is achieved by a small change in the cell angle ~e 

(Fig.3.13). Thus if a cell is compressed in direction 2 (Fig.3.12) the change in 

the width of the cell bx is given by 

bx=-2l cos8+21 cos(8+~8) (7.1) 

When a piece of honeycomb is indented in-plane we can envisage three ways in 

which the indenter can be accommodated. 

a) All deformation occurs in the single, uppermost row of cells directly in 

contact with the indenter (Fig.7.20). 

b) All cells directly under the indenter deform by an equal amount through the 
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thickness of the specimen (Fig.7.21) i.e.bxtotal =bxN where N is the 

number of rows of cells. 

c) The degree of defonnation decays through the specimen from a maximum 

in the top row of cells in contact with the indenter to approximately zero at 

the bottom of the specimen. 

For comparison with the experimental data ~8 was calculated, for each increment 

in load used in the experiment, from equation 3.8 using K h=67.2Nm- 1 (q.v. 

section 7.2) for the particular cell geometry under test. bx was then obtained from 

equation 7.1 bx was then obtained from equation 7.1. A simple decay law which 

assumes the amount deflection occurring in any particular row of cells is half that 

occurring in the row above is easily obtained using the expression for the sum of 

a geometric series 

b total bx[ I - ( 112 )N] 
x 1 - 112 (7.2) 

where N =No. rows of cells. 

For these experiments N>5 so that defonnation in the Nth row, according to 

equation 7.2 is approximately zero. 

Fig.7.22 shows the load deflection curve of a hexagonal card honeycomb 

together with the theoretical plots from eqns 7.1 and 7.2 for the cases listed 

above. The experimental data points lie between the predictions for the decay law 

and all cells defonning equally. 

Fig.7.24a clearly shows that the assumption that all the cells beneath the indenter 

defonn equally is valid for a hexagonal cell, but the model overestimates the 

degree of indentation. This effect can be explained by the fact that the model does 

not allow for the lateral constraint imposed by the surrounding material away 

from the indenter. 
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-----, ,----, 

Fig.7.20Schematic diagram showing the effect if only the top row of cells 
under the indenter deform. 
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Fig. 7 .21 Schematic diagram showing the effect if all cells under the indenter 
deform 
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Fig.7 ,22 Load/Displacement plot for a card hexagonal cell honeycomb 
(8=500 ), h=20mm, l=lOmm) indented in direction 2 with a JOOmm 
wide flat indenter. The lines show the displacements predicted by the 
theory if only the top row of cells deforms (-) and when all cells 
under the indenter deform ( .... ) 
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Fig. 7 .24 a) Hexagonal cell card honeycomb((}=500, h=20mm, l=lOmm) 
indented in direction 2 by lOOmm wide flal indenter. 
b ) Re-entrant cell card honeycomb ((}=-35°, h=20mm, 1=10mm) 
indented in direction 2 by a lOOmm wide flat indenter. 
Note that in both case ' all cells beneath the indenter appear to deform 
equally. 
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For the re-entrant cell honeycomb the assumption that all cells deform equally is 

valid (Fig.7.24b) although in this case the model underestimates the degree of 

indentation. This is possibly be explained by the increased flexibility of this type 

of core. 

In the case of aluminium honeycombs under a flat indenter the displacements are 

much smaller than for the card but again all the cells beneath the indenter appear 

to deform equally. The deflection 6x due to flexing of the cell walls is again 

derived from the general force constant equation (Eqn3.1). In the flexure model 

however, the cell angle does not change, all the deformation arises from the 

flexing of the cell wall. If the end of the cell wall is deflected by a force P in 

direction 2 then the component F of P acting perpendicular to the wall is given by 

F=Psin e (7.3) 

The deflection 62 in direction 2 is simply 

(7.4) 

Substituting these expressions into equation 3.1 we obtain a linear relationship 

between the displacement ~ in direction 2 and the applied force i.e., 

(7.5) 

N.B. this relationship is only valid for small deflections in the elastic region. The 

change in the width Ox of a single cell (Fig.33) is thus 

(7.6) 

Figs.7.25 and 7.26 show the load vs. displacement plots for hexagonal and re-
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cells deforms (-) and when all cells under the indenter deform (" ... ) 

5.-----,----r------.-----r----.....---.. 

4 

3 

2 

. 
I .. 

j / 

I / 

I ./ . : , .. ... 
, ,I 
.I .. 

• 

• 
___ Single cell deforms 
___ •• _ •• ___ All cells deform 

Decay law 
• Mean Exp 

05---~----~--~--~~--~--~ 
12345 

Displacement (mm) 
o 6 

Fig.7 .26 Load/Displacement plot for an aluminium re-entrant cell honeycomb 
indented in direction 2 with a JOOmm wide flat indenter. The lines 
show the displacements predicted by the theory if only the top row of 
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entrant aluminium honeycombs loaded in direction 2 with a lOOmm wide flat 

indenter. Also included on the plots for comparison are the predicted load 

deflection curves obtained from equation 7.6 assuming a) only the top row of 

cells in contact with the indenter defonn b) that all cells below the indenter defonn 

equally through the thickness of the specimen and c) the degree of deflection 

decays through the specimen (using result of eqn.7.6 in eqn.7.2). The equal 

deformation assumption agrees most closely with the experimenta l data in the 

case of the hexagonal honeycomb (Fig.7.25). 

For the re-entrant honeycomb (Fig.7.26) all three models over estimate the 

observed resi stance to indentation. 

7.3 A.2200mm diameter indenter. 

When we try to interpret the results obtained with a curved indenter we must 

consider the changing contact area of the indenter. If we assume that there is no 

"sinking" or "piling up" of the honeycomb in the vicinity of the indenter i.e. the 

specimen surface remains flat and the indenter remains in contact with the surface 

across the full width of the indentation, then we can more accurately describe the 

load as an applied stress obtained by dividing the applied load by the projected 

contact area of the indenter (Fig.7.27). 

Indenter 

Projected length of indenter 
in contact with specimen 

Specimen '-l lL 
Indentation 
depth 

t 
surface ~- ~ 

----~-~t 

Fig. 7 .27 Schematic diagram showing the indentation afthe surface by a semi
circulaJ· indenJer. 
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Fig.7.28 Load/Projected area vs displacement plot a card hexagonal cell 
honeycomb indented in direction 2 with a 200mm diameter indenter. 
Downward deviation of data points from linearity is due to material 
being pushed aside by the indenter. 
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Fig.7 .29 Load/Projected area vs displacement plot a card re-entrant cell 
honeycomb indented in direction 2 with a 200mm diameter indenter. 
Upward deviation of data poims from linearity is due to densification 
of the material as a result of the -ve Poisson '5 ratio. 
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The projected area is determined by measuring the depth of i~dentation from the 

photographic image obtained during the experiment. Using equation 5.5 the 

chord length can be calculated and multiplying this by the thickness of the ~ore 

gives the projected area. Plots of load/projected area vs displacement are shown 

in Figs.7.28 and 7.29 for card honeycombs. The solid line on the plots 

represents the theoretical defonnation obtained from equation 7.1 in which ~e 

was calculated from the applied stress which changes with the contact area. For 

the hexagonal honeycomb there is a downward deviation from the theoretical line 

as the cells collapse locally and material is 'pushed' aside by the indenter. For the 

re-entrant honeycomb there is a slight upward deviation from the theory as the 

resistance increases due to densification of the material below the indenter. 

Taking the mean displacements from the load deflection plots and assuming that 

all the cells deform equally we can plot load/projected area vs strain. Fig.7.30 

shows the plot for a hexagonal cell aluminium honeycomb. The theory 

underestimates the indentation resistance as expected (constraint of surrounding 

material) but the gradients are the same. 

For the re-entrant aluminium case the initial gradient is similar to that predicted by 

the model (Fig.7.31) but the experimental data deviates as the single column of 

cells under the tip of the indenter deform. Only when the indenter contacts the 

adjacent columns of cells (Figs.7.32) does the resistance increase and the gradient 

returns to that predicted by the theory. The same behaviour is seen with the card 

honeycombs(Figs.7.33 and 7.34). 

Application of the Hertz equation to the in-plane indentation analysis of 

honeycombs is not really a fair comparison since hand l should be much smaller 

than r the radius of the indenter. Also we have to assume that the properties of the 

material do not change during the test, which we have already shown to be 

incorrect since the elastic properties of the honeycombs are functions of the cell 

geometry. However using values of E and v, calculated from the initial cell 

geometry, in the Hertz equation (2.31) produces the plots shown in Figs.7.35 
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and 7.36 for hexagonal and re-entrant celled, card honeycombs respectively. In 

both cases there is an initial linear region which can explain the apparently good 

fit between the experimental indentation results and the models for honeycombs 

under compression. It is also significant to note that the Hertz equation also 

shows that despite having reduced in-plane shear and Young's moduli the re

entrant honeycombs offer greater resistance to indentation. 

This increased indentation resistance of a re-entrant structure despite reduced 

modulus compared to the equivalent hexagonal cell honeycomb was also 

observed by Lakes (1993) during his examination of the indentation of copper 

foams. 
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Fig. 7 .30 Load/Projected area vs strain for a hexagonal cell, aluminium 
honeycomb. The solid line is the theoretical curve derived from the 
flexure model. (Loaded in direction 2) 
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Fig,7 .31 Load/Projected area vs strain for a re -entrant ceil, aluminium 
honeycomb. The solid line is the theoretical curve derived from the 
flexure model. (Loaded in direction 2) 
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Fig. 7 .32 Photograph of re-entrant honeycomb being indented by a 200mm 
diameter indenter. 
a) single column under tip of indenter deforming 
b) adjacent columns of cells deforming 
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Fig.7.35 Plot of the Hertz equation for a semi-circular indenter indenting a 
hexagonal cell card honeycomb in direction 2 (e=51.7rP, 
K h=67.2Nm-l ) 
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Fig.7 .36 Plot of the Hertz equation for a semi-circular indenter indenting a re

entrant cell card honeycomb in direction 2 (e=-30.91°, 
K h=67.2Nm- l ) 
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7.4 Out of plane properties 

7.4.1 Sinele cell compression 

Discussion Pan I 

As already shown in section 6.8 the failure strengths for the hexagonal cells 

appear to be higher than those for the re-entrant cells. There are however, two 

important factors which affect these values of strength; the area of the core and 

the cross-sectional area of the cell walls supporting the load. Obviously these two 

areas are related and are functions of the core density. If we define the area 

fraction as 

Area fraction = Cross-sectional area of cell wall 
Area of a single cell (7.7) 

then we can normalize the results, to give a measure of the failure stress per unit 

weight of core, by calculating the failure stress as 

Failure stress = Failure load x 1 
Core area Area fraction (7.8) 

The results listed in Table 6.3 are recalculated using equation 7.8 and shown in 

table 7.2 

Hexagonal paper 

Hexagonal paper+resin 

Re-entrant paper 

Re-entrant paper+resin 

~ 

7384 

25122 

(GPa) 

I1.L1:=.l 
5018 
17403 
4219 

16498 

3576 

10528 

Table 7.2Failure stresslAreajractionfor paper and paper+resin honeycombs 
loaded parallel to the cell axis. 

Again the hexagonal cells are stronger than the re-entrant cells and it is apparent 

that the hA ratio is fundamental to the strength since as hA increases the failure 

strength of both the hexagonal and re-entrant honeycombs is reduced. More 
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significant however is the blh ratio were b is the thickness of the core. 

Again calculating the failure stress as defined in equation 7.8 the results for the 

single cell tests shown in Fig.6.26 can be replotted against the h/b ratio as shown 

in Fig.7.37. 

= 8000 0 .- I I • I -~ ~ 
t!: • 
~ 

7000 - -
~ • ... • < -...-. 6000 - • ..... 1"1 -
~ e • • -~ Z • ~ , ... ,.:,d 5000 .. -~ '-" - • • • - • • ~ • ~ • ::: 4000 :-e •• A • Hexagonal cell bIl=10mm - • 
ell -.. • Hexagonal cell h=20mm, 1=10mm = I • Re-entrant cell h=20mm, l=lOmm ~ ... 

3000 -V'J 0 1 2 3 4 5 

h/b 

Fig.7.37 Mean compressive strength vs h/b jar single cartridge paper cells. 

As expected (Reichard, 1972) the strength rises rapidly when h/b <1. Also as can 

be seen from the plots for the hexagonal cells the strength is reduced as the h/l 

ratio is increased, confirming the results shown in table 7.2. The significant 

feature is the reduction in out-of-plane strength of the re-entrant cell compared 

with the conventional hexagonal cell which must be related to the h/b ratio. 

The latter behaviour can be explained when the structure of the cell is considered 

(Fig.7.38).When h/l is small (i.e. of the order of 1) the cell walls A are 

constrained from buckling by their adjacent neighbours. As h/l increases A can 

buckle more easily and the twisting of the cell wall increases the local stresses at 
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h 

c B b 

A 

Fig. 7 .38 Single hexagonal cell. 
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Fig.7.39 Strain to peak load vs h/b for paper and paper resin honeycombs 
loaded along the axis of the cells. 
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the cell wall junctions. The maximum load at which the junctions rupture, and 

failure can be considered to have occurred, thus decreases as h increases. When 

h is large there is a greater degree of elastic buckling which allows the 

honeycomb to recover when the load is removed. It can be seen from tables 6.3 

and 6.4 that as h/l increases the failure load decreases and the amount of recovery 

increases. 

The dimensions of the cell walls A are thus the important factor as the failure load 

decreases with increasing b for a fixed cell geometry (i.e. h =1 =Constant, 

9=Constant) especially when b >h .. 

Plotting strain to maximum load against the h/b ratio (Fig.7.39) shows that strain 

increases with b as expected and also appears to show that the re-entrant core 

fails at lower strains than the equivalent hexagonal cell core. This is probably due 

to the acute angles between the cell walls in the re-entrant cell being less able to 

accommodate the stresses building up from elastic buckling. 

7.4.2 Plate deflection tests 

To gain a better insight into the effect of beam length on the stiffness of the 

honeycomb we can plot P/d vs beam length, where P=load and d=deflection, as 

shown in Fig.7.40. To enable a direct comparison of the hexagonal and re-entrant 

cell tests P/d has been multiplied by N·} where N is the number of cells in the 

width of the beam. 

The hexagonal cell produces a much stiffer honeycomb which can be attributed to 

the longer cell length (Fig.7.41). If the beam length is less than the cell length 

then the stiffness of the hexagonal and re-entrant cell honeycombs is 

approximately the same and corresponds to the through thickness shear modulus 

of the cell walls in direction 3. When the beam length is greater than the cell 

length the stiffness is reduced but the re-entrant cell becomes much less stiff than 

the hexagonal cell as the beam length increases. This can be explained by the 
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Fig.7 .40 Load/deflection vs beam length plots for hexagonal and re-entrant cell 
aluminium honeycombs bent in the plane of direction 1. 
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Fi g. 7.41 Schematic diagram highlighting the difference in the effective cell 
lengths of the hexagonal and re-entrant cells. 
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shorter effective cell length of the re-entrant cell which provides the greater 

flexibility. Insufficient material was available to make / sheets of honeycomb 

oriented in direction 2. However it is anticipated that as there is no difference in 

the lateral dimensions of the re-entrant and hexagonal cells, their behaviour when 

bent in the plane of direction 2 will be identical. 
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8) DISCUSSION Part II 

8.1 Benefits of the re-entrant cell shape 

As already shown in the previous section the re-entrant structure has a lower 

shear modulus than the hexagonal cell and the Young's modulus is lower in 

tension for the re-entrant structure and higher in compression. The latter effect is 

also observed in in-plane indentation and is attributed to the densification of the 

honeycomb under the indenter. 

The hinging mechanism requires such low loads to operate that comparatively 

small areas of honeycomb can deform under their own weight. When the 

honeycomb is bent out-of-plane twisting of the cell walls length 1 occurs (Abd EI

Sayed, 1976). Increasing the core thickness b increases the core stiffness making 

it more resistant to bending out of plane. 

The radii of curvature generated by elastic deformation, when bending a core out 

of plane, are controlled by the cell angle and the hA ratio. This is predicted by the 

plate deflection theory (section 2.11) which relates the radii to the effective 

Poisson's ratios of the core, which are of course functions of h/l The effect of 

varying the h/l ratio for a hexagonal honeycomb is shown in Fig.8.l. When 

bending a hexagonal cell honeycomb out of plane the positive Poisson's ratio 

requires the curvature to be anticlastic (Fig. 1.3). The contrary curvatures, which 

must be achieved in the plane of the honeycomb to generate this, have a stiffening 

effect 

In the re-entrant case where the curvature is synclastic this stiffening effect is lost, 

resulting in a core which can readily deform under it's own weight. This 

produces a highly drapeable core (Fig. 8.2). In a re-entrant card honeycomb the 

presence of hinges at the cell wall junctions, which operate at extremely low 

loads. results in a further reduction in stiffness. 
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Section AA : h=20mm. 1=5mm 
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Fi g.8.2 A 210f.1.m card honeycomb demonstrating the drapeability of the re
entrant cell structure. (h=20mm, l=10mm) 

Fig.8.3 240mm diameter GRP dome backed by a re-entrant cell, resin coated 
card honeycomb. (h=20mm, l=10mm) 
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Fig.S.4 240mm diameter GRP dome backed by a hexagonal cell, resin coated 
card honeycomb. (h=l=lOmm). Note the damage to the core compared 
with Fig. 8.3. 

Unlike the hexagonal celled core the re-entrant core can be forced into very tight 

curvatures without damage to the cellular structure. To illustrate this a 240mm 

diameter dome, comprising a GRP skin backed with a resin coated, re-entrant 

celled (h =20mm, I =lOmm), 21O~ card honeycomb was constructed and this 

is shown in Fig.8.3. The honeycomb conforms well to the shape of the dome 

without damage to the cellular structure. Fig 8.4 shows a similar dome produced 

using a hexagonal celled core (h =1 =lOmm), note how the core has become 

overstretched in direction 2 leading to rupture of the glued joints. 

The disadvantage of the re-entrant celled structure is however, its much increased 

density over the hexagonal cell (typically 66% for cells of an equivalent area) 

particularly as the smaller the radii required the smaller the cell size which must be 

used. 
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8.2 Optimum core geometry. 

The selection of a particular cell geometry is a careful balance between the 

required elastic properties and the density of the honeycomb. 

The Young's moduli for all three models are functions of the hJI ratio and the cell 

angle 8 (Table 3.2) but are also governed by the physical size of the cells since 

Kj=f(tll,b ). The Poisson's ratio is only controlled by the hJI ratio and 8 and is 

thus independent of the cell size. 

The most common application of honeycombs is in sandwich panels where their 

low density is important The effect of density on the moduli can be examined by 

dividing the modulus equations 3.22 and 3.23 for the flexure model and 3.55 and 

3.60 for the hinging model by the relative density (Eqn. 2.10). The resulting 

graph (Fig.8.5) is of similar shape to the E j vs 8 plots shown in FigA.2. The 

plot for El is skewed to the left and increasing the hJI ratio gives an increase in the 

modulus per unit density. It is apparent that for any specific modulus there is a 

choice between a conventional or auxetic cell shape. 

Fig.8.6 shows the corresponding plot for ~/relative density. The plot is 

symmetrical about 8=00 where ~ tends to co and 0 at 8=±900 . Unlike E 1 the 

best values of ~ per unit density are achieved when hJI is small. 

The effect of relative density on the in-plane shear modulus is shown in Figs.8.7 

and 8.8 for the flexure and hinging models. Again the highest and therefore best 

values are obtained by the hexagonal cell shape for both models although the 

actual maxima are only achieved when 75°<fJ<9fP. 

The most important properties in sandwich panel applications are the through 

thickness shear moduli G 13 and G 23 since these prevent the skins from sliding 

over one another (Allen. 1969). If we assume that for most applications we 

require G13=G23 then by combining equations 2.2 and 2.3 we obtain the 
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Fig.8.9 Plot showing the values of hll and f) required to achieve equal 
through thickness shear moduli in directions 1 and 2 when all cell 
walls are of uniform thickness (-) and when th =2t[ (- - - ). 

relationship 

hi/. =2-4sin28 

if all the cell walls are of equal thickness and 

hA =1-2sin28 

(8.1) 

(8 .2) 

if we allow for the double thickness (Eqns.2.3 and 2.5) of the walls length h i.e. 

th =2t/ . These equations are plotted in Fig.8.9. It is apparent that for the 

hexagonal cells all geometries in the ranges O<hI/. <2 and 00 <8<450 are 

pennissible when tl =th' When 2t,=th.hA must lie in the range O<hll <1. 

The range of angles available for the equivalent re-entrant cells is controlled by 

the hi/. ratio. The limits of the pennissible values are shown by the shaded area in 

Fig.8.9. 

The minimum density for the core is achieved when hA is maximum i.e. hi/. =2 
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when tl =th' and hli =1 when 2tl =th" For both these conditions 8=00 thus 

producing a perfectly square cell for the first case and a rectangular cell for the 

latter. 

8.3 Molecular Modelling 

Nkansah et al. (1994) used the flexure model of Gibson to determine the 

Young's moduli and Poisson's ratios for theoretical structures of the type shown 

in Fig.8.9. They compared their results to those obtained from a proprietary 

molecular modelling programme ('Polygraf™ ') and finite element analysis. 

To evaluate the model they used the constants listed in Table 8.1. The moduli Es 

was determined from the average of the radii and experimental force constant data 

of a C-C single bond and a C=C triple bond. Their results for moduli El and E2 

are reproduced in Table 8.2 together with the results obtained from the general 

model (Eqns. 3.72 - 3.75). The Poisson's ratios are shown in Table 8.3. 

As already shown by Nkansah et al. the flexure model consistently over estimates 

the values of E and v predicted by molecular modelling. This implies that 

although flexure is the dominant mechanism, as might be expected from 

examining Fig. 4.1 in the range O.13<tll <0.18, there must be contributions from 

the other mechanisms. As Es is known K f and Ks can be determined from 

equations 3.4 and 3.6 to evaluate the general model. The value of Kh is obtained 

by assuming either local bending (eqn. 3.16) or global shear (eqn. 3.lO). In the 

latter case it is assumed that Gs::::(1/3)Es which results in a value of % very close 

to that of 70Nm-1 used by Gillis (1984) for a C=C bond in graphite. As can be 

seen from Table 8.2 the general model, in which global shear is assumed, agrees 

well with the results from molecular modelling. 

The Poisson's ratios v12 (Table 8.~from the general model, again assuming global 

shear, lie between those values obtained from the molecular model and the finite 
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element model and agree more closely than the flexure model alone. The values of 

v21 for the general model are higher than those obtained from the other models 

particularly for the auxetic molecules. 

These results suggest that this approach may be a rapid first order technique for 

predicting the properties of more complex 2 and 3D molecular networks 

constructed from molecular repeat units, for which the force constants K r, Kh and 

Ks have been established by experiment or from molecular modelling. 
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Fig. 8.10 Two of the theoretical molecular structures investigated by Nkansah 
et al. (1994). The structures are termed 1,4 flexyne (top), 1..4 
reflexyne (bottom) where the numerals refer to the number of C=C 
bonds. 
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1.40evDC 2.60evDC 2-20ex)'pc 1·4 rc-Oel)'pc 2·6 re·Ocx)'pc 2·8 re·Ocx)'nc 

h(m)= 1.38E-09 1.56E-09 9.02E-l0 1.38E-09 1.86E-09 2.34E-09 

l(m)= 6.63E-l0 9.02E-l0 9.02E-l0 6.64E-l0 9.04E-l0 9.04E-l0 

b(m)=t(m)= 1.21 E-l 0 1.21 E-l 0 1.21E-l0 1.21E-l0 1.21E-l0 1.21E-l0 

Theta(Dea}= 3.ooE+Ol 2.99E+01 2.99E+01 -2.82E+Ol -2.82E+Ol -2.83E+Ol 

1beta(Rad)= 5.24E-Ol 5.22E-Ol 5.22E-01 -4.93E-Q1 -4.91 E-Ol -4.94E-Ol 

Es(Pa)= 6.82E+ 12 6.82E+ 12 6.82E+ 12 6.82E+ 12 6.82E+ 12 6.82E+ 12 -'£ Kf(N/m)= 5 2 2 5 2 2 

Kh(N/m) local bending:: 8 3 3 8 3 3 

Kh(N/m) global shear:: 101 74 74 101 74 74 

Ks(N/m)= 152 111 111 151 111 111 

Table8.! Constants used for the calculation of young's moduli and Poisson's ratios 
from molecular. finite element and analytical models (Nkansah et al. 1994) 



1.4 QeUDe kCi Oeupe 2.2OCUPc 1·4 reOex)'QC 2·6 reOcx)'pe 2.8 reOcxyne. 

Molecular Tension El 143.75 56.82 23.rn 117.39 25.74 33.90 

model E2 55.87 19.74 34.78 85.00 38.64 22.50 

Compression El 135.87 72.22 35.00 120.00 34.00 45.45 

E2 51.78 14.86 27.86 78.33 28.38 30.21 

Finite element El 197.32 81.15 56.31 116.53 47.82 59.39 

model E2 66.64 28.32 55.31 119.58 51.09 35.75 

-\0 166.85 65.34 VI F1exure model El 38.34 98.35 65.34 51.19 

E2 56.24 22.75 38.71 102.20 22.75 30.71 

General model (local bending) El 92.81 33.65 23.17 54.rn 22.52 29.66 

E2 33.07 15.80 23.39 5954 24.82 18.48 

General model (global shear) El 133.69 50.14 35.45 79.34 33.96 44.4 

E2 48.86 24.17 35.78 87.61 37.86 28.19 

Table 8.2 Comparison of moduli (CPa) resllltsfrom the molecular. finite element and analyticlll models. 



1-40elYDc 2-6 DelYnc 2-20cx)'QC 1-4 reOex)'QC 2-6 reOeX)'ne 2-8 reOcx)'ne 

Molecular Tension vl2 0.769 1.379 0.897 -0.313 -0.647 -0.849 

model v21 0.295 0.503 0.858 -0.378 -0.877 -0.664 

Compression vl2 0.965 1.205 0.781 -0.292 -0.741 -0.943 

v21 0.347 0.447 0.796 -0.253 -0.726 -0.541 

Finite element vl2 1.492 1.565 0.936 -0.853 -0.893 -1.188 

model v21 0.504 0.547 0.920 -0.874 -0.952 -0.714 -~ Flexure model vl2 1.722 1.695 0.995 -0.981 -0.963 -1.291 

v21 0.581 0.590 1.005 -1.019 -1.038 -0.774 

General model (local bending) vl2 1.501 1.380 0.952 -0.859 -0.896 -1.183 

v21 0.663 0.710 1.052 -1.122 -1.(1)3 -0.815 

General model (global shear) v12 1.403 1.332 0.929 -0.805 -0.862 -1.130 

v21 0.663 0.729 1.080 -1.183 -1.125 -0.839 

Table 8.3 Comparison of Poisson's ratio results from the molecular, finite element and analytical models. 
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9) CONCLUSIONS & FUTURE WORK 

9.1 Introduction 

The main conclusions of this work fall into three categories:

the applications of re-entrant, auxetic honeycombs, 

general models for predicting the material properties of honeycombs, 

the use of this modelling approach in molecular honeycombs 

9.2 Conclusions 

1) The re-entrant cell shape generates a negative in-plane Poisson's ratio which 

results in synclastic curvature when the honeycomb is bent out-of-plane. 

This combined with the low forces required for hinging produces a highly 

drapeable core. 

2) The hinging mechanism requires much lower forces to operate than the 

flexure mcxiel and thus dominates and as a result is particularly advantageous 

in producing highly drapeable cores. 

3) The re-entrant structure provides much greater resistance to in-plane 

indentation than the hexagonal cell due to densification of the structure. 

4) In general however, the mechanical properties of the re-entrant celled 

structure are lower than the equivalent hexagonal celled cores and the density 

is increased. 

5) Honeycombs will deform by one or a combination of three mechanisms: 

flexure, stretching or hinging depending on the cell geometry and the elastic 

properties of the cell wall material. The examples examined here were 

aluminium which deforms predominantly by flexing and card honeycombs 

which deform predominantly by hinging. 
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6) A general model based on force constants for all three mechanisms can be 

used as a simple method of estimating the properties of both hexagonal and 

re-entrant cell honeycombs. 

7) The models can be used to predict the behaviour of both hexagonal and re

entrant molecular structures, with a view to providing a rapid first order 

calculation of their properties. 

9.3 Futufe work 

The use of drapeable, re-entrant celled honeycombs requires further 

development, particularly in the area of fabrication by an automated route. This 

would increase the availability of material enabling more thorough and rigorous 

evaluation of auxetic honeycombs to be undertaken. An important area to look 

at is their performance as a core in sandwich panels which would necessitate 

undertaking:-

1) Through thickness shear tests 

2) Three and four point bend tests on sandwich panels containing re-entrant 

celled honeycombs. 

3) Static and dynamic impact tests on curved sandwich panels containing re

entrant celled honeycombs. 

More useful materials than card should be investigated, one possibility being 

thermoplastics in which hinges could easily be formed by local necking of the 

material (cf. lids on shampoo bottles etc.), and also the development of 

structural applications where the densification during compression or 

indentation could be exploited e.g. in energy absorption. 

Finally comparison between the simple analytical approach developed in this 

thesis and full molecular modelling of 3D molecular structures requires further 

investigation. 
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Appendix J 

APPENDIX 1 - Biaxial, in-plane loading. 

Oi bson et a1 (1988) developed a def onnation model for a honeycomb subjected 

to biaxial loading, by considering both stretching and flexing of the cell walls. 

The following equations for strain were derived in which the first tenn is the 

flexing component and the second the stretching component. 

If we assume that no flexing occurs (i.e.E1 and E2 are (0) and set 01 =0 then 

equations Al.l and Al.2 reduce to 

O?sin acos a 
£1 = - Es(tll) 

The Poisson's ratio vZl is given by 

V - £1 - sin e Z1-----
£2 hll +sin a 

and theYoung's modulus ~ by 

Ez = Oz = Es(tll) 
£2 cos 8(hll + sin a) 

Re-writing the latter in tenns of the force constant Kg (eqn. 3.6) gives 

E2= Ks 
b cos e(hll + sin 81) 

(A 1.3) 

(A 1.4) 

Similarly putting 02=0 we obtain the following equations for V12 and El when 

the honeycomb is loaded in direction 1. 
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sin 6(hll + sin 61) 
V12=-~~------~ 

(2h11 + sin26 ) (A 1.5) 

En = _ Ks(hll + sin 6) 

- b cos 6(2h11 + sin26) (A 1.6) 

These are the same equations derived for the stretching model in chapter 3, 

section 3.4. 
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