
GENDER AND PROGRAMMING:

A DIFFERENCE IN STYLE?

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor in Philosophy by

Peter McKenna

March 2002

TEXT
BOUND INTO THE

SPINE

Preface

The work reported in this thesis is original and carried out solely by its author.

Its conceptualization, design and implementation have been effected by the

author, with the direction and assistance gratefully received from his

supervisor, colleagues, and students. The analysis, s}1lthesis, judgment, and

critical ideas which contribute to the new knowledge presented by the thesis,

are those of the author, based on critical reading, observation and experience.

The third-party information contained within the thesis is derived either from

published literature and data, or from data collection conducted by the author

within the specified institutions of higher education. The American

Psychological Association (AP A) style for reference citations and reference

lists has been used to acknowledge and clarify the use of all such information.

Signed:

Peter McKenna

March 2002

TABLE OF CONTENTS

o. INTRODUCTION ... 1

1. SEX, GENDER: WHAT'S THE DIFFERENCE? - A LITERATURE

REVIEW .. 5

1.1. INTRODUCTION•...•.............•................•.............................•................•. 5

1.2. A BRIEF 'ITh1ELINE•....•....•...•.•.•.••....•..•...•.......•....•..••.•..•..••.•..•....••.••. 6

1.2.1. 'First Wave' ... 8

1.2.2. 'Second Wave' ... 8

1.2.2.1. Standpoints ..•.•....................•....................•......•••....•••.............• 11

1.2.2.2. Gilligan and difference .. 14

1.3. DIFFERENCE AND EQUAliTY ..••••......•.....................•............•...•••..•......... 18

1.3.1. Equality versus Difference 20

1.3.3. Poststructuralism ... 24

1.4. GENDER AND SEX .. 27

1.5. GENDER AND NATURE ... 32

1.6. CONCLUSION ... 39

2. GENDER AND COMPUTING ... 42

2.1.IN1RODUCTION .. 42

2.2. GENDER DICHOTOMIES IN SCIENCE AND TECHNOLOGY42

2.2.1. Sex and Gender .. 42

2.2.2. Gender and Science ... 43

2.2.3. Stereotypes ... 45

2.3. GENDER AND COMPUTING: ISSUES OF REPRESENTATION47

2.4. STATISTICALDIFFEREN'CE ..•••••••.••••..•..••••.•.•...•.•.••••....•.•.•••.•.•.....•.•...•••.•. 49

2.4.1. North America ... 49

2.4.2. Great Britain. ... 50

2.4.3. Hard and Soft Difference ... 53

2.5. ExpLAINING nm GAP .•..•..•••.....•...••.•....•...•...•••...•...•...•.•.•••.•...•.....•••...•... 54

2.5.1. Attitudes ... 55

-111-

2.5.2. lAnguage ... 57

2.5.3. Mathenzatics ... 58

2.5.4. School .. 58

2.5.5. Curriculum delivery issues ... 59

2.5.6. 'Culture' and Male cultures ... 60

2.5.6.1. Games ... 61

2.5.6.2. Intelligent Agents .. 64

2.5.6.3. Internet .. 67

2.6. INDUS1RIAL DMSIONS OF LABOUR: WOMEN INTO COMPUTING? 70

2.7. CONCLUSION ... 73

3. GENDER AND PROGRAMMING: AN INTRODUCTION •••••••••••••••••• 75

3.1. INTRODUCTION .. 75

3.2. TURKI..EAND PAPERT ... 77

3.3. PROGRAMMING PSYCHOANALYSED: PATIENTS AND PROGNOSES 78

3.3.1. hard and soft nzastery ... 78

3.3.2. Style and Realities: Examples 80

3.3.2.1. Anne [soft] .. 81

3.3.2.2. Jeff [hard] and Kevin [soft] ... 82

3.3.2.3. Henry [hacker] .. 83

3.3.2.4. Deborah [poor] and Bruce [rlch] .. 84

3.3.2.5. Usa [soft] .. 85

3.3.2.6. Robin [soft] ... 86

3.3.2.7. Alex [soft] ... 87

3.3.2.8. Alex [hacker] .. 88

3.3.2.9. other women ... 89

3.3.2.10. other men .. 90

3.4. SlJl\.WARY ... 91

4. PROGRAMMING DISCOURSE: ABSTRACTION AND BLACK

BOXES ... _ 93

4.1. WHATAPROG~DOES ... 93

-IV -

4.1.1. Job Titles ... 94

4.1.2. The nature of a program .. 95

4.2. THE SOFTWARE CRISIS AND THE IMPULSE TO FORMAllTY 97

4.2.1. The software crisis ... 97

4.2.2. Fonnal Methods ... 100

4.2.3. I..anguage ... 101

4.3. I..ow AND fIIGH LEVELS ... 104

4.4. ABSTRACTION IN PRACTICE: A DEMONSTRATION 1 06

4.5. BUILDING BLOCKS AND VERSA1TIlTY .. 111

4.5.1. Sub-procedures 113

4.5.2. Parameters .. 114

4.5.3. Modularity and Encapsulation ... 114

4.5.4. Typing of data .. 11 5

4.5.5. Abstract data types ... 116

4.5.6. Pointers and Opaque types ... 117

4.6. AN EXAMPLE OF COMPLEXITY AND ERROR: WINDOWS DLLs 118

4.7. CONCLUSION ... 121

5. TURKLE'S ABSTRACT AND CONCRETE PROGRAMMERS: AN

ANALYSIS .. 123

5.1. EXISTING CRITICISM OF TURKLE AND P APERT 123

5.2. OTIIER PERSPECI1VES .. 124

5.3. THE PSYCHOLOGICAL MACHlNE .. 125

5.3.1. Machine Bugs and Personality Quirks ... 125

5.3.2. Real World or DisneyLand? ... 128

5.3.3. Art, design, and the abstract .. 129

5.3.4. Documentation and egoless programming 130

5.4. PSYCHOLOGY, CONTEXT, AND TACTILITY ... 134

5.4.1. Mzatcontext? .. 134

5.4.2. Bricolage .. 136

5.4.3. "Abstract": what's in a word? ... 137

5.5. 'TRANSPARENT AND OPAQUE BOXES .. 139

-v-

5.6. CONCLUSION ... 143

6. ASPECTS OF THE CONCRETE: OBJECTS, AND VISUAL

PROGRA.MMING ... 145

6.1. lNTR.oDUCTION .. 145

6.2. FRoM OBJECT-RELATIONS TO OBJECT-ORIENTED? 146

6.3. OBJECT ORIENTATION .. 147

6.3.1 How people think? .. 147

6.3.2. History of Objects .. 147

6.3.3. Encapsulation: abstraction's child ... 148

6.3.4. inheritance: connected hierarchy ... 150

6.3.5. messages and polymorphism .. 151

6.4. JAVA:. DIFFERENT KINDS OF 'BLACK BOXES' ? 152

6.4.1. 'Hello World' ... 1 52

6.4.2. Java packages and classes: prepackaged routines 155

6.5. VISUALPROG~G ... 155

6.6. AUTHORING SOFTWARE AND SCRIPTING ... 158

6.6.1.Prepackaging in Authoring Software: behaviours and widgets 162

6.6.2. Web 'languages' .. 165

6.7. SELF: OBJECTS WITHOUT CLASSES ... 166

6.8. CONCLUSION ... 168

7. METHODOLOGY .. 170

7.1. THE lJTER.ATURE REVIEW .. 170

7.1.1. Multiple disciplines .. 170

7.1.2. Sources .. 171

7.1.2.1. Data .. 171

7.1.2.2. literature .. 172

7.2. THE QUESTION .. 173

7.2.1. The influence of the researcher .. 176

7.2.2. Environmentalfactors .. 178

7.2.3. Quantitative or Qualitative methodology 180

- Vl-

7.3. THE SURVEYS .. 181

7.3.1. Hypothesis testing: terms ojrejerence .. 182

7.3.1.1. What a black box means .. 182

7.3.1.2. Exernplification ... 184

7.3.2. Sampling 186

7.3.3. The questions 187

7.3.4. Distribution .. 188

7.3.5. Analysis ... 188

7.3.6. Interviews .. 188

7.4. CONCLUSION ... 189

8. EXEMPLIFYING TIlE CONCRETE .. 190

8.1. RAnONALE ... 190

8.1.1. The need to exemplify ... 191

8.2. UvERPOOL HOPE UNIVERSITY COLLEGE .. 192

8.2.1. The sample ... 192

8.2.2. The course ... 192

8.2.3. Relationships and other contexts .. 194

8.2.4. The questionnaire ... 194

8.2.5. Analysis oj data 195

8.2.5.1. Question 1 ... 196

8.2.5.2. Question 2 ... 197

8.2.5.3. Question 3 ... 198

8.2.6. Further Observations ... 199

8.2.7. Conclusion: Liverpool Hope .. 199

8.3. THE MANCHES1ER MElROPOUTAN UNIVERSITY 201

8.3.1. The sample ... 201

8.3.2. Further Background ... 202

8.3.3. The course ... 203

8.3.4. The questionnaire ... 206

8.3.5. Administration ojthe Questionnaire ... 208

8.3.6. Analysis oj data .. 208

- Vll-

8.3.6.1. Question 1 ... 209

8.3.6.2. Question 2 ... 210

8.3.6.3. Question 3 ... 212

8.3.6.4. Question 4 ... 213

8.4. INTERVIEwS .. 215

8.4.1. Tania ... 215

8.4.2. Maria ... 217

8.4.3. Son-Yong ... 218

8.4.4. Rupa .. 219

8.4.5. mida ... 220

8.5. CONCLUSION ... 223

9. SUM1\f.A.RY AND CONCLUSION ... 22S

APPEND IX A .. 230

APPENDIX B .. 231

APPEND IX C .. 232

APPENDIX D .. 233

REFEREN CES .. 234

- Vlll -

LIST OF FIGURES

Number Page

FIGURE 1 .. 51

FIGURE 2 .. 105

TABLE 1 ... 196

TABLE 2 ... 196

TABLE 3 ... 197

TABLE 4 ... 197

TABLE 5 ... 197

TABLE 6 ... 197

TABLE 7 ... 198

TABLE 8 ... 198

TABLE 9 ... 198

TABLE 10 .. 209

TABLE 11 .. 209

TABLE 12 .. 210

TABLE 13 .. 211

TABLE 14 .. 211

TABLE 15 .. 212

TABLE 16 .. 212

TABLE 17 .. 213

TABLE 18 .. 213

TABLE 19 .. 213

TABLE 20 .. 214

TABLE21 .. 214

- IX -

ACKNOWLEDGMENTS

I wish to acknowledge the help and support of my partner Natalie Seeve,

supervisor Janet Strivens, my sons Declan and Leo (for their computer games

expertise, and enlightening me about Sonja Blade), the students and staff of

Uverpool Hope University College and the Manchester Metropolitan

University; and to dedicate the work to my daughter Simone.

- x-

O. Introduction

The deeper motivations for the research lie in a passion for equality, and a

knowledge and experience of the under-representation of women, and over

representation of men, in the ever-important discipline of computer

programming. As a parent and educator whose work teaching programming to

undergraduates has coincided exactly with the trials of working parenthood -

and of part-time PhD study - gender has been more present (or immanent) than

ever.

A more particular trigger for the research has come from the background

reading engaged in by a supposed computer 'scientist' from an Arts tradition -

notably literature that crosses over from social science into computer science by

eXamining the sOciology of computing. At a general level, this research makes

that crossover in reverse, but at the same time returns to familiar territory.

The idea which is central to the research, and which is brought into question by

it, is that women and men program in particular ways that are different but of

equal epistemological value. It was first advocated by science sociologist and

psychoanalyst Sherry Turkle (1984), then developed in collaboration with

Seymour Papert, the co-developer of LOGO at Massachussetts Institute of

Technology (MIT), and LEGO Professor of Learning. Their analysis, along

with the corresponding dichotomy between the 'soft' or 'concrete' and the

'hard' or 'abstract' styles of programming, has been subsequently accepted

without serious question (Sutherland and Hoyles, 1988; Kvande and

Rasmussen, 1989; Frenkel, 1990; Peltu, 1993; Grundy, 1996; Stepulevage and

Plumeridge, 1998).

The ready acceptance of such a stylistic dichotomy may be due to the automatic

resonance it has in traditional cultural perceptions of women and men: where

the 'hard' or 'abstract' programmer uses abstraction, decomposition, structured

programming and algorithmic reasoning, the 'soft' or 'concrete' stylist engages

and communicates with the computer (and 'computer Objects') in an artistic and

holistic manner. Soft stylists, it is alleged, are naturally given to this more

1

human style, and, Turkle and Papert claim, are repelled by the coldness of the

'abstract' approach.

Turkle and Papert have sought to validate both the concrete style, and a

polarised dichotomy between it and the 'canonical' abstract style. This gender

mapping links back into wider theories: most notably to feminist epistemology.

and by means of boldly generalised conflations with object relations theory and

the ideas of Carol Gilligan (1982) and Evelyn Fox Keller (1983, 1985). The

validity and consistency of such interdisciplinary linkages require particular

examination in the light of a fuller understanding both of the concrete and the

abstract in programming, and of the modulations of gender in computing

culture. Initial doubts have also infonned this direction of enquiry. In the wider

gender perspective, there is an immediate concern that assumptions of inherent

gender difference can be too easily made - that what is being explained has

already been assumed; that such gendered styles may propagate stereotypes,

linking women's capabilities once again to their 'nature' , and valorising a

hacker style that actually invokes detachment from the real world as a corollary

of attachment to the computer. Concerns at a more specifiC level include the

cross-relation of programming concepts - such as abstraction and objects - to

their philosophical and psychoanalytical homonyms; and the possible confusion

of learning strategies with programming strategies.

The question of 'styles' concerns the way in which programs are actually coded

by individuals. While Turkle and Papert's emphasis is on an approach to coding

rather than on the software product (a fact which is itself problematic,

.particularly because the notion of equal validity is so central), it is at least

implied that the software produced by both styles will be equally good. The

question is a serious one in that this hypothesiS of gendered styles is widely

accepted - and if it really were true, then equal access to programming-related

education and employment would depend on teachers and trainers accepting the

equal validity of the 'soft' approach. Turkle would be correct to suggest that

giving the 'abstract' approach a privileged position results in the "exclusion" of

women from computing (1992, p.3); and commentators such as Peltu (1993)

2

would have a reasonable case when they propose that structured programming

be removed from the computing curriculum because it is inimical to women.

It is therefore also of the utmost practical importance that these claims be

scrutinised rigorously and, ideally, subjected to more practical testing. The

research is set in the context of the unequal representation of women and men

in computing. The need for action to remedy this gender inequality in the

defining technology of computer programming is particularly urgent: but if

proposed action is not grounded in sound theory, then it runs the risk of actually

compounding rather than redressing problems. Assumptions about gender and

programming can be counterproductive if they are actually based on

misconceptions and stereotypes. To present what appear to be experimental and

concrete approaches to learning as a fully-fledged style of programming, is

problematic enough: to identify such a style with women, runs the risk of

marginalizing half of the population in a world where real programming

projects simply cannot succeed without the tools of abstraction.

This is the spirit in which the research has been engaged. Such a thorough

theoretical examination has not previously been attempted, and would therefore

- regardless of the conclusions - result in the development of new knowledge.

Insofar as the conclusion of the theory critique - and of the supporting survey

research - confirms the preliminary concerns about the existing theory, then this

knowledge would be more than incidental. Early findings have therefore been

disseminated, by means of peer-reviewed journal publication, both in relation to

the analysis (McKenna, 2000) and the data collection (McKenna, 2001); and

variations on the analysis have also been presented to a computing audience -

the primary audience - at a range of international conferences (McKenna, 1996;

McKenna and Waraich. 2000a; McKenna and Waraich, 2000b).

This question has largely been ignored within the computing 'fraternity' on the

one hand, and Turkle's analysis uncritically accepted by most of those within

the field of gender studies on the other. It has been caught between disciplines _

the superficial programming knowledge of sociologists, psychologists, and

3

gender theorists, matched by computer scientists' lack of understanding -

where there is concern at all for the underlying issue of gender inequality - of

gender discourse. The thesis intends to allocate equal emphasis and depth to

each disciplinary component, in order to unravel the rationale of this hypothesis

concerning gender and programming style.

The literature review therefore begins by providing a general background to the

understanding of feminism and gender theory, difference and equality, along

with a more particular focus on aspects which have a bearing on the

psychological theory that underpins the concept of gendered programming

styles. It will frame Turkle and Papert's programming style hypothesis as a

product of a broader ideology, and provide the basis for a critique of that

hypothesis. The second chapter deals with the literature on gender and

computing, examining inequality in computing alongside explanations other

than and complementary to those concerning programming styles, and how

gender theory has influenced this literature. The importance of the gender and

programming is also placed in the wider context of computing.

The third chapter sets out the literature on programming styles, focusing on the

most important details and illustrations of Turkle and Papert's theory of

gendered programming styles. Prior to the main critique of this theory, but with

that theory now in mind, the relevant programming concepts of abstraction and

black boxing are elucidated and explored in the fourth chapter. These concepts

can then be compared in detail to the gender theory concepts that Turkle and

Papert apply to programming, and the fifth chapter provides the major critique

of their gendered programming styles theory, with the sixth chapter follOwing

the trajectory of Turkle and Papert's theory into the nature of object-oriented

and visual programming. The seventh chapter discusses methodology issues

and thesis structure, and in particular examines how to proceed as a resuh of the

serious objections to Turkle and Papert's theory. The issues involved in

devising an empirical test of their hypothesis are discussed, and a practical

method developed to acquire data. The collection and analysis of data at two

4

Higher Education institutions is described in the eighth chapter. The ninth and

final chapter summarises and concludes the research.

1. Sex, Gender: what's the difference? - A Literature

Review

1.1. Introduction

Gender and feminist theory provides a context that is essential to an

understanding of the research issue. In particular, the concepts of difference and

equality lie at the heart of the research: do extrinsic differences in the

representation of females and males in computing have intrinsic correlatives?

Are there differences in the way women and men understand and relate to the

world? What does actual 'equality' mean, and is it desirable? Most speCifically,

are such differences reflected in the programming styles and philosophies of

females and males, and to an extent that fundamental changes in the approaches

to the learning and teaching ofprograrnming are needed? Turkle's hypothesis is

based on feminist theory in general, and feminist object relations theory in

particular. This chapter will critically examine the fundamental concepts on

which the questions above are premised, in order that the meaning and cultural

resonance of those questions may first be clarified.

Feminist theory represents the only body of knowledge and literature that

explicitly addresses gender. It is this that most clearly differentiates it from

other discourses. While definitions of feminism are constraining, and it is as

diverse as cultures and individuals, it is not without boundaries. In different

forms, it questions assumptions across and at the core of a wide,

interdisciplinary range of disciplines and contexts. Feminism is also, at least in

principle, concerned with praxis and change, with a defining emphasis on

advancing the position of women. It is a reflection of existing inequities that

serious study of gender has been conducted largely by and about 'women'. This

does not have to imply that masculinity is given and not in need of

deconstruction: that men are agents, and women objects of study; that men are

people, and women, women. The masculine bias embedded in dominant ideas

distorts the masculine as well as the feminine. Men have 'gender', and so are no

5

more coherently defined than women. An examination of masculinities must

also be important in any investigation into inequities, the more so when the

context is traditionally 'masculine' .

The epistemologies and methodologies of feminism are the obvious starting

point for any analysis of gender differences. The notion of difference is central

to feminist theory, and we will examine two intersecting debates centred around

difference: the 'difference versus equality', and 'gender versus sex' debates.

The extent to which equality can accommodate dichotomised differences -

whether essential or extrinsic - constitutes important parameters for the

consideration of inequality and change. The difference between socially

determined 'gender' and biological 'sex' - and the extent of any uncertainty in

between the two - is clearly important in qualifying overall differences. Gender

is the benchmark of feminism and gender theory: the process of its 'discovery',

along with its interpretative nuances, will be briefly outlined.

1.2. A brief timeline

The notions of sequence and category are useful to any summary, and in the

case of feminist thought, can also provide a context for development and

theoretical nuance - in this case, a context for the key themes that underpin the

research question.

The efforts of women to reflect on and/or change their status and roles in

society, are likely to embrace all of recorded history. For most of that history,

however, the recorders and interpreters have been men, women have been

largely excluded, and their interests often actively opposed. Discourse

concerning women's condition, however, precedes explicit reference to gender,

but nonetheless addresses implicit gender inequality. Miles (1993) refers to the

(male) author of a 1505 book titled Of the Nobility and Superiority of the

Female Sex, as a ''proto-feminist''. Goreau (1983) identifies Aphra Behn, a

seventeenth century English novelist, as a "feminist" who expresses anger at

discrimination. In the eighteenth century, Mary Wollstonecraft's Vindication of

the Rights of Woman (1792) demanded citizenship at the time of the French

6

Revolution. Margaret Fuller has been described as the nineteenth century

inspiration for American feminism (Urbanski, 1983). In broad terms, the

European Enlightenment of the 18th century established the possibilities of

destinies being both shaped and changed by human endeavour, and exposed to

reasoned enquiry that which had previously been accepted. As a generalised

intellectual 'grand narrative', the Enlightenment set the context for other

metanarratives - such as feminism, the study of power and wealth, and the

rationalist concepts of citizenship and equality.

The idea of a universal human nature and human rights is a foundation of

feminism: that this idea found intellectual expression in the Enlightenment, has

convinced subsequent western intellectuals (postmodern and liberal alike) that

human rights are uniquely derived from that stage of their own culture. The

endeavour of feminism may be said to be rooted in the struggles of ordinary

people - across the world and throughout history - at least as much as in the

academic taxonomies and analyses of western intellectuals.

The coming-out of modem western 'feminism' as an expliCit 'theory' , however,

is often dated to the 1960s, and a period of 'latent' feminist theory is identified

with the years between the changed social roles during the Second World War,

and the 1960s (Delphy, 1993). However, the feminism of Simone de

Beauvoir's The Second Sex (published in 1949) - while it is more analysis than

activism - is far from latent. The Second Sex examined the position of woman in

Western culture from an existentialist perspective. It revealed that position to be

secondary in relation to men, and explained it in terms of social environment

and control rather than in terms of nature.

One is not born, but rather becomes, a woman. No biolOgical,
psychological, or economic fate determines the face
[translation amended] that the human female presents in
society; it is civilization as a whole that produces this creature,
intermediate between male and eunuch, which is described as
feminine. (194911954, p.295)

7

Inequality thereby produces profound psychosocial 'difference'. As we shall

see, Beauvoir's existentialist philosophy essentially dismisses nature in favour

of nurture, and contradicts much that subsequent feminists have had to say

about differentiation in infancy.

1.2.1. 'First Wave'

Betty Friedan was a focus for the 'first wave' in the USA, with the publication

of The Feminine Mystique in 1963, and the founding of a National Organization

of Women in 1966. Friedan, sometimes referred to as the "mother" of

feminism, is credited - in spite of Beauvoir' s seminal work two decades

previously - with exploding the myth of the happy housewife, and with

identifying ''the problem without a name". The focus of the 'first wave' was

generally on identifying this problem and the enormity of it, and on the

inviSibility and omission of women. Landmark publications by Germaine

Greer, Shularnith Firestone, and Kate Millett followed in 1970, which

concentrated on the visible - the distorted representation of women - and

identified the nameless problem as male power and malice.

1.2.2. 'Second Wave'

The concept of the personal as political led into the 'second wave', and a

preoccupation with difference, as manifested and experienced in lived identity

and psychology. A more studied 'gynocentrism' was said to be needed, in order

to counter women's deeply-internalised image of themselves as lesser beings.

One such focus has been on sexual relations - sexuality is theorised as

something that is not just the neutral territory of pleasure and affection, but as

characterised and defined by dominance and subservience (Rich, 1981;

Dworkin, 1987). Power is exposed as the dynamic of sexual desire, and this

domination is seen to define gender. The ambiguity contained within the word

'sex' is confirmed: gender and sexuality are intrinsically linked.

Within the context of all-defining male-supremacy, identity is "constituted by

women's position as victim" (Nicholson 1997, p.148). Such a status can imply

8

struggle rather than passivity. A wide range of theorists explored positive

aspects of identity which appeared to diminish the victim position, in a spirit of

resistance. Part of this positive gynocentrism appeared to accept positions

denied by materialist theorists: Chodorow's positive aspects of difference

included the psychology of motherhood (1978), and an object relations theory

that credits girls with natural relational competence because they do not have to

repress their bond and identification with the mother. With the second wave's

emphasis on the subjective and personal, psychoanalysis presented as a useful

theoretical tool:

The centrality of sex and gender in the categories of
psychoanalysis, coupled with the tenacity, emotional centrality
and sweeping power in our lives of our sense of gendered self,
made psychoanalysis a particularly apposite source of feminist
theorizing. (Chodorow, 1989)

Object relations theory - essentially a development of Freudian psychoanalytic

theory - holds that relationships, beginning with the mother-infant dyad in the

first year of infant life, are primary to an individual's identity and sense of

personal boundaries in relation to others. The notion of an 'object' represents

anything that is internalised as a psychological structure, particularly those

formed through early experiences. (This concept will be particularly important

to an understanding of the research question). According to Klein (1946), this

process of "introjection" leads to the splitting off, and projection into another

person, of parts of the self. The classic example of this process - and the one on

which gender difference (and hence feminist object relations theory) is often

premised - is that of the infant needing to feed: the feeder (and first significant

object) is assumed to be the mother (the primacy of the mother-infant dyad is

implicitly interpreted as natural rather than socially constructed). The hungry

infant splits off and projects its longing and rage into the mother. In order to

make itself whole again, the infant must identify itself with the mother; as the

nature of identification is assumed to be profoundly gendered, only female

infants can do this. Males - and females whose mothers have not consistently

accepted their projected feelings - will continue to be repressed in adulthood.

9

The feminist perspective on this theory focuses on relations as crucial to an

understanding of sex, gender, and male dominance. Instead of the traditional

Freudian father-son relationship, however, it is the pre-oedipal mother-child

relationship that is posited as definitive. Benjamin (1995) sees acceptance of the

primacy of this relationship, and of the mother's subjectivity within it, as a

prerequisite for seeing the world "as inhabited by equal subjects". However, the

theory's feminist properties are frequently ambivalent - an ambivalence perhaps

epitomised in its apparently essentialist reassertion of the primary role of the

mother. Chodorow and others may examine the consequences of mothering as

difference, but not the premise of it.

Object relations theory lends itself to the idea - one that permeates much of

second-wave feminism, and is important to the research question - that there is

a true female nature, and that women possess innate characteristics that are

devalued by men. Object relations theory ensures that this 'nature' cleaves to

traditional characteristics: a key characteristic is "a capacity to nurture and care

for others" (Evans 1983, p.356). This 'capacity' is celebrated as distinctively

feminine (counterposed by an equivalent masculine incapacity), and is

frequently conflated with biological rather than social determinants. It might

conceivably be considered part of the traditional femininity that Beauvoir

criticised as a socially-determined revelling in "immanence". Delphy criticises

Segal's (1999) desire to "hold on to what being a woman means, while

contesting the cultural and social meanings given to 'femininity"', as a

contradiction in terms (Delphy 2000, p.160). The revaluing of existing or

observed behaviours does not have to imply acceptance of them as the inherent

characteristics of women and men - they can constitute a gender resource rather

than a destiny, and a desideratum for males. However, as long as 'caring' is

interpreted as natural rather than learned behaviour for females and not for

males, there would appear to be little prospect of equality in this respect. Where

traditional feminine behaviours are explicitly identified and celebrated as

natural and intrinsic, they serve to determine (rather than be determined by) and

to reinforce traditional social and economic roles. Where they are seen as

natural, any vision for change and equality will inevitably be constrained.

10

1.2.2.1. Standpoints

'Standpoints' feminism represents a deepening of the emphasis on difference

and personal, gynocentric experience, presenting extremity of difference as an

epistemology. As such - given the emphasis placed on gendered differences in

epistemological and programming styles - it deserves special attention.

In advancing the notion of a "feminist standpoint" as "an important

epistemological tool", Hartsock (198311997, p.216) adapts the Marxist idea of a

unique proletarian 'standpoint' or 'correct' class position. Viewing waged

labour as "activity more characteristic of males in capitalism", she argues that

"the position of women is structurally different from that of men, and that the

lived realities of women's lives are profoundly different from those of men"

(p.217). It is ''women's activity as contributors to subsistence and as mothers",

as producers of people and ''producers of goods in the home", that determines

the sexual division of labour. Standpoint epistemology is structured in terms of

"a duality oflevels of reality" (p.218), and a woman's reality represents ''the

deeper reality". A woman's 'standpoint' is not just an interested position - it is

an "engaged" position. Women's lives offer a ''privileged vantage point on

male supremacy" (p.217)

In making this analysis, Hartsock pursues at least an element of universalism -

a belief in common characteristics shared by all women. She uses a quotation

from Marilyn French's The Women's Room (1977) to assert that the unique

feminist standpoint is available "to even non-working-class women" - that

"women's work in housekeeping involves a repetitious cleaning" such as the

cleaning oftoilet bowls used by males (p.224) - whom Hartsock designates as

the "ruling gender" (p.218). While women have "constant contact with material

necessity", the male lives a life "at the furthest distance from contact with

concrete material life" (p.224). This appears to differ only in interpretation from

Beauvoir's earlier perception that women were taught ''patience and passivity"

by the waiting on and obedience to the material elements of domestic duty.

11

There are undertones of essentialism - the idea that there is a fundamental

feminine nature or essence - in the emphatic and even inextricable linking of

housework and childcare to women. There is also an implication that the

sacrifice of domestic inequity may redeem women by endowing them with

special insights. This adds an element that resembles religious fervour -

encompassing duty, sacrifice, and spiritual reward. The division of labour

facilitates "an intensification of class consciousness" that is analogous to the

perspective afforded the proletariat in Marxist theory (Hartsock, 198311997).

The revolutionary, however, emphasises even small acts of revolution at the

same time as examining actual conditions. The correctness or truth of the

proletarian's perspective is only a means towards an end. With Hartsock's

standpoint, in the absence of any consequent ideology (analogous to the Marxist

dictatorship of the proletariat) or manifesto for action, it is the standpoint itself

that becomes its own manifesto. As such, it can appear to reclaim rather than

challenge the division of labour.

The key to women's experience being more valuable than men's is repeatedly

expressed in terms of what may be perceived as social role rather than intrinsic

female characteristics:

.. the vantage point available to women on the basis of their
contribution to subsistence represents a deepening of the
materialist world view and consciousness ... (Hartsock
198311997, p.165)

Hartsock distinguishes between the invariant and the changeable, suggesting

that the "fact" that "women and not men rear children .. .is clearly a societal

choice"; however, she goes on to conjoin childbearing and childrearing as part

of a production process:

Women's activity as institutionalised has a double aspect
their contribution to subsistence, and their contribution to
childrearing. Whether or not all of us do both, women as a sex
are institutionally responsible for producing both goods and
human beings and all women are forced to become the kinds of
people who can do both. (p.222)

Although qualified by reference to its institutionalisation, this conflation of

women's activity with their biology is an important determinant of the feminist

12

standpoint The greater depth of a woman's perspective is explained not just in

terms of institutionalised lived reality, but also in terms of "nature" in generaL

and childbirth in particular: "The female experience in reproduction represents

a unity with nature which goes beyond the proletarian experience of

interchange with nature" (p.225). Childbirth appears to merge into childcare in

changing the consciousness of the woman, and enhancing her vision.

Hartsock calls upon object relations theory to identify women's experience as a

unique and truer reflection of reality. While this unique achievement of non

conflictual individuation is general to the entire 'class' of women, Standpoints

feminism further ascribes special value to individual experience. Certain lived

experiences are valued above others: those outside the perceived western

mainstream - often related to experience of racism and/or sexual orientation -

are of particular value in describing and revealing reality. Their authenticity

depends entirely on the subjective accounting of experience. Writers such as

Andrea Dworkin have emphasised the primacy of their own personal

experience, and their right to assert reality. (It is therefore perhaps paradoxical

that Dworkin should be accused of insisting that all women will or should

experience certain things in given ways (Grant, 1992)). This represents a

privileging of distinctive subjectivity, not just a philosophical reliance on

subjectivity: as such, it may imply solipsism, and certainly raises questions as to

what possibilities exist for communicating knowledge if it is unique and hidden,

and premised on individual experience.

The instantiation of the individual's own experience - or own class or group -

for universal experience is not, however, unique to second wave feminism and

its emphasis on the personal. hooks (1984, p.2), for example, criticises

Friedan's identification of ''the problem with no name" as a deSCription of ''the

plight of a select group of COllege-educated, middle and upper class, married

white women-housewives" rather than of women. Even in a postmodern age,

theorists can often fall back on universalised identities that are in fact derived

from their own experience within narrow western academic circles: Irigaray

13

asks (in rhetorical good faith), "What woman has not read The Second SexY'

(Rodgers 1998, p.74).

Whatever its unconscious presumptions about the universal, the women's

movement in the 1970s did aspire towards a universalising of a common

women's experience. Clearly this concealed the many differences between

different women's experiences: as hooks (1984, p.2) says, Friedan "did not

speak of the needs of women without men, without children, without homes.

She ignored the existence of all non-white women and poor white women. She

did not tell readers whether it was more fulfilling to be a maid, a babysitter, a

factory worker, a clerk, or a prostitute, than to be a leisure class housewife."

Yet an implication of Standpoints is that some women - if, for example, they

are not mothers (or even not traditional mothers) - can only have a less valid

understanding of the 'essential' position of women, and of reality itself. Barrett

and Phillips (1992) identify an alternative focus on "the active creation and

recreations of women's needs or concerns" (p.6), but wonder whether "such

developments leave feminists with nothing general to say" (p.7). If there are no

universals, there may well be nothing general to say: just individual and

personal experience and testimony. If difference is such that access to another's

position is denied, the possibilities of enlightenment and therefore progress

would appear to be restricted.

1.2.2.2. Gilligan and difference

Difference informs the work of Carol Gilligan: she embraces difference

between two universalised gender experiences, and roots it in object relations

theory. Her themes of female attachment and male attachment are defining

influences on Turkle's work. The idea that women see the world in a

categorically different way from men, is elaborated by the fact that the male

view is regarded as the orthodox default, and universalised as human rather

than male. Gilligan (1982) exposes male bias in academic work and ethical

theory in tenns of object relations theory: that which is accepted as normative

actually reflects the male side of object relations. The male model of

individuation and distance from the object, is privileged at the expense of

14

women's relating and caring. Gilligan accepts the underlying dichotomy, but

simply revaluates the female model. The basic premise of Freudian theory is

accepted -with negative characterisations of female psychology (such as

weaker ego boundaries) eclipsed by positive ones (such as stronger empathy).

Gilligan concurs with Chodorow's attribution of "certain general and nearly

universal differences that characterize masculine and feminine personality and

roles" to ''the fact that women, universally, are largely responsible for early

childcare" (cited in Gilligan 1982, p.200). Her agenda is not to question or

change these characteristic differences, but primarily to present a more

gynocentric (or at least non-masculine) perspective on them. In doing so, it may

be that she is at least partly guided by prior assumptions about characteristics

and subjective experience, into self-fulfilling observations of objective

phenomena. The fact that, in game observation, boys were able to resolve

disputes more effectively than girls, is not explained in terms of negotiational

skills, but rather in terms of the boys' obsession with "legal elaboration of

rules", against the girls' ''more tolerant" and "pragmatic" attitude to rules. The

girls are said to have "subordinated the continuation of the game to the

continuation of relationships" (p.202).

Gilligan even accepts the notion of ''moral weakness" ascribed to women by the

androcentric perspectives of Freud and Piaget - but again revaluates it as

positive. This stereotypical "deference" by women to others, is said to be

rooted not only in their social subordination but also in the
substance of their moral concern. Sensitivity to the needs of
others and the assumption of responsibility for taking care lead
women to attend to voices other than their own and to include
in their judgment other points of view. Women's moral
weakness, manifest in an apparent diffusion and confusion of
jUdgment, is thus inseparable from women's moral strength, an
overriding concern with relationships and responsibilities.
(Gilligan, pp.206-207)

These revaluations represent a corrective to androcentric perspectives. On the

other hand, in celebrating the value of feminine 'characteristics' • many of the

assumptions that underpin those perspectives are still accepted. Gilligan is

15

concerned with "women's place in man's life cycle" - a place which she says

"has been that of nurturer, caretaker, and helpmate, the weaver of those

networks of relationships on which she in turn relies" (p.207). Women have

''taken care of men". The importance of care, she argues, has been diminished

because it has been regarded as "intuitive" to women, "a function of anatomy

coupled with destiny". However, it is only the degree of importance, not the

natural intuition, that is in dispute. And when she says that women define

themselves "in a context of human relationships", and judge themselves "in

terms of their ability to care" (p.207), it is seen as fundamental to fulfilling the

essential role of woman in the human lifecycle.

Gilligan's work is intended as a corrective to the apparently androcentric

assumptions made by Freud, Piaget, and Kohlberg, concerning moral

development. The traditional concept of moral maturity - as taken for granted

by society as well as these theorists - reflects the individuation that is said to

characterise male development, rather than the cooperation and care that is also

said to characterise female development. Masculine morality is said to be

oriented around rules for legalistic individual rights - which emphasise

"separation rather than connection". Women's moral decisions, she claims, are

driven by "caring" considerations rather than rules. Their "conflicting

responsibilities" and relationships, and moral problems manifest "a mode of

thinking that is contextual and narrative rather than formal and abstract"

(p.208).

While this critique accepts many of the assumptions made by Freud and Piaget,

the difference - which characterises Gilligan's work as 'feminist' - is that she

disputes their designation of 'feminine' moral development as something that is

appropriate to the home, but deficient in public life. She agrees that women's

morality "appears inconclusive and diffuse", but values the "insistent contextual

relativism" that underlies it. Gilligan makes no claims for true universality -

just for universality within the respective gender of the separate masculine and

feminine perspectives; her claim appears to be for the valorisation of traditional

feminine perspectives (like caring) as different but equal. This is crucial- at

16

least by analogy - in the context of the current research, as is her conclusion that

the canonical ''morality of rights and non-interference may appear frightening

to women in its potential justification of indifference and unconcern" (p.21 0).

This intra-gender universality appears to be premised on prior assumptions -

and material from Freud, Piaget, and Kohlberg is selected to illustrate those

assumptions. From ancient Greek myth to Freud, ideas and symbols are drawn

to, and coalesce around, this seemingly inevitable dichotomy of gender. In

particular, Gilligan (1982) appears to extrapolate generality from one male and

one female interviewee of Kohlberg: yet the questions asked of each appear to

be different - those asked of the man inviting an 'objective' response, and those

asked of the woman inviting an equally 'subjective' response. The universal

masculine perspective is characterised as one of "non-interference" on the basis

of the man's reference to "not interfering" with the rights of others. Ultimately

she references an a priori female psychology ''that has consistently been

described as distinctive in its greater orientation toward relationships and

interdependence" (p.210). There is also no consideration of variables other than

gender - the responses to the questions about morality clearly differ in terms of

their political perspective, and there could conceivably be variations in the

expressive discourse that are interpreted as more substantial variations in

meaning.

Valorisation of the traditionally feminine does not necessarily remove

subordination; indeed, some of the characteristics are said to be actually rooted

in social subordination. Gilligan does not take into account the existence of

group-based ideologies, cultures and societies which value cooperation, but

which are also male-dominated. The assumed perspective is western-bourgeois

- perhaps consequent upon the emphasis on subjectivity and concrete context.

While 'difference' is explained as a product of the given that ''the primary

caretaker in the first three years of life is typically female" (Gilligan, p.200),

there are - as is often the case - no indicators of change. Few theorists speculate

about alternative object relations, where children are brought up either by men,

17

or by both sexes equally. Shared is frequently assumed to be maternally

delegated parenting. Pruett (1987) indicates that children raised by fathers

thrive, but accounts for this in terms of the input of two parents; and as Lamb

(1987) points out, such studies are conducted in situations where the father

chooses his role. Such studies do not address the impact on traditional object

relations theory, and few point to a future where heterosexual partners might

actually discuss which of them will care for their children during these years.

Indeed, some explicitly wish to retain the assumptions of such responsibility -

to exclude men from "child care and home life", and thereby to implicitly

accept and maintain at least one half of the traditional division of labour

(Cockburn, 1985). And Gilligan declares that ''the continuation of the mother

daughter relationship" is "in some mysterious way" tied to the very "fertility of

the earth", viewing the human lifecycle as arising from "an alternation between

the world of women and that of men" (Gilligan 1982, p.2ll). This would seem

to be an essentialist perspective, recognising and valorising characteristics that

have been hitherto unrecognised and devalued, while offering the benefits of

enhanced connectedness instead of an ideology of empirical change.

1.3. Difference and Equality

The concept of sexual 'difference' is therefore of pivotal importance to feminist

theory. Indeed, Irigaray (198411993) has claimed that it is the question of our

time - one which would be our salvation if we thought it through. It is also

central to the research question, which is concerned with difference and

equality.

We have seen the distinction made between those who emphasise difference

(and, usually, reposition perceived or given female cultures in terms of relative

value), and those who emphasise equality (with a broad predispOSition to a

'sameness' that is sometimes criticised as masculine) and rights. While the so

called "first wave" of feminism was primarily concerned with equality, the

concerns of the "second wave" were more with difference (Humm, p.ll) - a

difference more fundamental than, and autonomous from, other differences.

18

Where 'first wave' feminism was concerned with the object, 'second wave'

feminists gave expression to the subject: the first was preoccupied with

materialism, the second with materiality. Second-wave feminism expresses

identities and standpoints, and to do so frequently adopts and adapts concepts

and techniques (exemplified by object relations theory) from psychoanalysis.

This accentuates essential (rather than material) differences - between women

and men, and between different women:

"Currently feminism attacks universalism and describes and
celebrates the experiences and identities of many 'different
women'" (Rumm. p.l93).

Second-wave feminists frequently position themselves as inheritors of the first

wave, building upon the material achievements of the former. While the value

of perception and experience is undoubtedly compelling and of the utmost

importance, these subjectivities were frequently more than important: they

defined theory. More recent materialists such as Delphy suspect that reliance

on psychoanalysis implies belief in "some trans-histOriCal, unchangeable

bedrock of human nature, whose mechanisms of 'identification' and 'desire'

are impermeable to social construction" (Delphy, 2000).

Butler (1993) criticises the general use of psychoanalysis in feminist theory to

theorise sexual difference "as a distinct and fundamental set of linguistic and

cultural relations" (p.167), relations that assume and embody a

heterosexualised symbolic and "racial injunctions". She suggests that gender

difference is most often a deterministic framework.

When difference is foregrounded, therefore, the reality of 'equality' can be hard

to confirm: continued subordination can sometimes be read into the acceptance

of difference - as with Gilligan's female protector and modifier of man's

lifecycle. The corrective and protective role of smoothing over hard masculine

edges is recognisable in traditional and stereotyped gender relations. Moreover,

Gilligan's identification of rights with a masculine perspective on morality,

implicitly undercuts the pursuit of equality: instead, women and men have their

own "worlds" - worlds which alternate but do not meet, save for "woman's

19

place" as a corrective to man's lifecycle. This role is itself described in

traditional terms - woman will continue to "protect" the female recognition of

the importance of attachment, while orthodoxy continues to intone "the

celebration of separation, autonomy, individuation, and natural rights" (p.211).

As such it provides an essentialist echo of what might have been assumed to be

just a description of an historical or actually-existing role of nurturer and

helpmate.

1.3.1. Equality versus Difference

The embracing of subjectivity can be interpreted as a move away from

rationality and objectivity - abstractions which the new emphasis on

'difference' often characterised as 'masculine'. Although. as Meijer (1991)

points out, difference and equality may be based on each other, theorists such

as Kristeva and Irigaray reject equality in favour of difference. Kristeva - who

appears to have repudiated feminism as such but is regarded as feminist by

Anglo-American feminists, and frequently cited and included in 'second-wave'

feminist readers - explicitly rejects the pursuit of material equality in what they

see as 'masculine' territory (Oliver, 1993). For Kristeva, the 'power' of public

equality represents "phallic power", and its pursuit a distortion of women's true

nature (Kristeva & Oliver, 1997). Indeed, she conjoins the epithet ''phallic'' to

the term "equality". Difference is desirable, and equality denies difference. The

'first wave', to her, was attuned to the 'masculine'. Second-wave theorists can,

for example, equate Beauvoir's perspective as ''masculine'' because she

studiously refused to appropriate the "feminine" on the basis that it connotes

subordination. Evans (1983) sees "rationality, personal autonomy and

independence" as masculine characteristics, and Beauvoir's entire argument as

one "for women to become rather more like men".

Materialist feminists on the other hand, set about deconstructing the notion of

sex difference, and in so doing expose the inadequacy of accepting it. In the

words of the Editorial Collective of Questions Feministes (1977), women need

"access to the neuter, the general"; to "reclaim for ourselves all human

potentials, including those unduly established as masculine".

20

The feminist perspective on equality is therefore often filtered through a

wariness of identifying 'sameness' with a dominant masculine default. Yet this

domination of the masculine can also playa part in actually defining the

'difference' that some feminists accept and celebrate. Resolving the

coexistence of difference and equality is difficult; yet the difference is often

ascribed to women, and also seen to actually define 'equality': in Peggy

Seeger's words, 'different therefore equal' (1979). A relationship between

supposed gender differences, and their (equally supposed) social and political

manifestations as inequality, implies that inequality is determined by the

characteristics of women and men. The position represented by Seeger - in

common with the conservative position of established religion - not only

accepts these differences, but moreover actually celebrates them in order that

they might be regarded more equally.

Humm (1992) uncritically poses a second-wave question that also contains

some of these assumptions: "do we need a room of our own as well as more

space in the boy's locker room?". The reclamation of what had seemed like

socially imposed and entrenched gender stereotypes during the first wave, led

to what some would regard as a deterministic ceding of the material, public

arena to the masculine. The view of public life and the workplace as ''the boy's

locker room" is often accompanied by a retreat into 'the women's room'.

Traditional feminine practices are frequently valorised and celebrated (and

perpetuated) as distinctively female experience and culture.

Kristeva's rejection of equality as ''phallic power" (and of any human potentials

characterised by Delphy as ''unduly established as masculine"), casts difference

and equality as competing claims. Claims for difference frequently do not

challenge roles and stereotypes that manifest the difference. Many feminist

academics (in common with popular contemporary women's publications) seek

out difference in order to celebrate it.

21

The ideological drive for reassuring difference can therefore mean that the

empirical case for there being a difference is left unexamined. For example,

Hemnann's study of 'garage sales' in the USA (1996) declares that women are

"empowered" by garage sales because they "valorise" their "housekeeping and

shopping skills". The study identifies garage sales as an area for feminist

research on the grounds that 66% of participants are women, and it does not

seek to make any comparisons with male participants. Nor is there any notion

that role-based traditional 'abilities' could be counterbalanced by traditional

'inabilities' . Other feminists seek to link given social roles to women's biology:

Rossi's argument (1970) that female nurturance is innate (rather than a

circumstance of male hegemony), is based, like Hemnann's study, on studies

only of women (and in this case only mothers).

Kristeva in any case attacks (as masculine) the whole notion of building

arguments on the basis of empirical evidence. Phenomena such as language

itself are thereby rendered into 'objects', in accordance with the masculine

agenda of distance from, and control of, the 'other' (Sellers 1991, p.48). She

identifies the force of motherhood, and the web of female interrelations -

expressed through women's bodies - with chora, a metaphysical term from

Plato's Timaeus. The chora has no substance, but is permanent; associated with

nourishment, it is primordially female in nature - a positive version, perhaps, of

Beauvoir's negative 'immanence'. This primal 'space' has prior existence, has

no form, and cannot be perceived by reason. The essentialist argument for

extreme difference thereby proposes different epistemologies based on sex,

while at the same time closing itself off from debate.

Within the framework of difference, technology is frequently examined as a

means of enhancing the performance of 'women's work', and proposals for

sometimes radical change often focus on revolutionising technological

organisation so that it facilitates traditional roles, rather than on subverting the

underlying social division of labour. Kramarae (1988), for example, thinks that

public transport should be planned in a way that enables women to fulfil the

tasks 'expected' of them: "obtaining medical and dental care for family

22

members, transporting children to school and social activities, carting

, groceries" (p.8).

Such analyses imply an acceptance and even promotion of predetermined

gender difference. Scott (1988) provides a practical illustration of the equality

versus difference debate, as enacted in a sex discrimination complaint brought

in the USA by the Equal Employment Opportunities Commission against Sears.

Scott recognises that although 'difference' and 'equality' do not mean the same

thing, there can be a symbiotic relationship between the two ideas - and that

'difference' can be reframed as constant 'differences' which are "the very

meaning of equality itself'. Traditional bipolar 'difference', which naturalises

the traditional roles of women and men, obscures these 'differences' at the

same time as it fixes rather than challenges gender identity. In rejecting singular

difference, she suggests that the antithesis of feminine and masculine hides an

interdependence, and that in that interdependence one term must be dominant or

prior, and its opposite subordinate and secondary. The terms 'woman' and

'man' should be open to scrutiny, rather than allowed to define each other.

'Equality' is concerned with challenging the gendering of power. Bern (1993)

qualifies the common reference to male power as signifying ''the power

historically held by rich, white, heterosexual men" (p.3), while other feminists -

commonly associated with the epithet 'radical' - would identify 'men' as a

ruling class. While the concept of 'power' broadly signifies ownership and

overall control, the concept of feminine 'empowerment' (as typically used in

the garage-sales study) often denotes control within traditionally feminine

aspects of interpersonal interactions and domestic decision-making - often

within an overall environment of material and traditionally 'public'

disempowerment.

One might interpret such a use of 'empowerment' as a further manifestation of

a movement towards localised and personal notions of power - which itself is

interpretable as a 'feminised' inclination. Feminist academic adaptations of

post-structuralism and post-modernism have also led to a movement away from

23

larger theory - or grand narratives that attempt to explain everything - and

towards local studies.

The emphasis on difference is likely to be premised on an underlying

acceptance of a primary and profound dichotomy between female and male.

The traditional first-wave feminist analysis of the male default - "man

represents both the positive and the neutral ... whereas woman represents only

the negative, defined by limiting criteria" (Beauvoir, 194911954) - was taken

and transfOImed by virtue of the celebration of the 'difference' as positive

rather than neutral or negative. The challenge of the underlying dichotomy is

marginalised. It may be the 'becoming' of Beauvoir's famous axiom, that is

celebrated, and augmented by appeals to nature and biology. The 'women's

room' may be a place - different from, but in the likeness of the locker room -

where strategy can be decided and morale lifted, rather than a locus of

biological determinism. The main shift in emphasis, however, was away from

the notion that the feminine is shaped by society - "it is civilisation as a whole

that produces this creature" (Beauvoir 194911954, p.295) - and towards

subjective identity. To identify differences between men and women as

products of gender identities rather than of biologies, however, validates the

primary dichotomy, and at the same time leaves open the question of how those

identities are produced.

1.3.3. Poststructuralism

Notwithstanding the androcentrism and misogyny within Freud and Lacan,

post-structuralism's emphasis on external structures such as gender, combined

with an emphasis on psychoanalysis, has presented as a theoretical framework

attractive to feminism. Lacan's (1966) view of women as essentially driven by

a desire to be wanted (rather than loved or fully known) - of women existing

for men - may translate into an immutable reduction in personhood and self

determination, a location of being in others rather than in the self, and of power

in an image rather than in actions. Yet versions of these characteristics fit with

female identities that have been celebrated within feminism; and Lac an 's

emphasis on the subject - distinct from the ego and linked to the symbolic - and

24

his elaboration of object relations theory, appear to appeal to a localised and

essentialist interpretation of feminism.

Lacan (1966) and Levi-Strauss (1966, 1969) hold sex difference to be

fundamental to psychoanalysis and cultural deconstruction respectively. Lacan

repositions the phallus as the cultural symbol of masculinity which forms the

individual and rules language. Such structuralist and poststructuralist notions

appear to echo object relations theory in terms of separation from the mother

and the experience of absence as a child's first object (the mother, of course,

experiences the child as 'missing' phallus) (Lechte, 1994, p.69). Again, many

feminists have simply revalued rather than challenged these factors. The

positive-negative polarity of the cultural phallus and the biological penis in

relation to the feminine-maternal is simply reversed. The conflation of the

feminine and the maternal is thereby not assumed to be problematic. While

Lacan's conceptualisation of woman as some sort of not-man is fundamentally

masculine, feminist critics such as Jrigaray (197411985), point out this

masculine character, but reverse the polarities and take the feminine side.

Difference, albeit positive, might thereby appear to be defmed in terms of a

masculine default. Within this influential Lacanian perspective, woman is seen

as sign rather than person: the generality of the masculine and the particularity

of the feminine is inherent in Lacanian terminology. Jrigaray identifies the

Freudian masculinist assumptions (as exemplified by Lacan's phallus-centred

world) that have been incorporated into post-Freudian psychoanalytical theory,

and extends the terminology, adding the labia as a signifier of plurality to the

penis as signifier of unity (Jrigaray, in Cameron, 1992, p.171; and in Sellers,

1991). The dominant way of expressing meanings is seen as imbued with

masculinity. The implicit alternative is that of female communality versus a

male individuality that is often dysfunctional. Proximity and difference in

relation to the 'other' is a recurring theme in Jrigaray's discussion of gender

'difference' .

The French materialist feminist Cixous (1994) has identified the extent to

which Freudian and post-Freudian discourse relies on its own assumptions

25

"Jut sex. Cixous sees the discourse as reductive, and determined by cultural

models of biology. The terms 'masculinity' and 'femininity' are, to her,

pOlitically and culturally determined markers, between which people of both

sexes fluctuate. Patriarchal law defines, and appropriates, gender difference. As

Delphy (2000, p.162) observes, "biology is the contemporary name of nature".

Butler (1987, 1993), critical of the essentialism implicit in the distinction and

emphasis given to sexual difference within psychoanalysis, sees gender as

performance, and convention as repeated performance. Gender is something

that people do, rather than something that is. Butler refers to Derrida's focus on

''those ostensibly 'structural' features of the performative that persist quite apart

from any and all social contexts" (1993, p.18 8), but suggests that, as

performance, gender is not rigid, and is rather constantly open to new

signification. ,

Wearing (1984) argues that motherhood is an ideology, an allocation of

responsibility that is crucial in determining the division of both domestic and

social labour - and, thereby, gender relations. She cites Oakley's identification

of women's instinct and propensity for child care as a myth, and elaborates on

this myth as a construct and an ideology that is generated and communicated by

official and semi-official 'caretakers'.

Post-structuralist analyses based on the work of Derrida as well as Foucault,

claim to identify a common base for both the minimisers and the maximisers of

'difference'. In psychology the two positions are referred to as alpha and beta

bias (over- and under-estimation of gender difference), and Hare-Mustin and

Maracek (1988) conclude that:

alpha and beta bias have similar assumptive frameworks
despite their diverse emphases. Both take the male as the
standard of comparison. Both construct gender as attributes of
individuals, not as the ongoing relations of men and women.
Neither effectively challenges the gender hierarchy, and
ultimately neither transcends the status quo (p.69).

26

"Paradoxes arise", Hare-Mustin and Maracek maintain, ''because every

representation conceals at the same time it reveals". A focus on gender

differences "marginalizes and obscures the interrelatedness of women and men,

as well as the restricted opportunities of both", and can also obscure

institutional and structural factors. Beta-bias, on the other hand, merely affirms

the male default (1988, p.462).

The multiplication of differences within gender identities appears to reach

beyond simple alpha-bias. However, while Derrida has explicitly criticised the

'essentialism' of 1970s feminism, this position may in tum be criticised for an

overemphasis on local differences that has actually slowed down or impeded

broader progress (Gallop, 1997, p.17). It may also be argued that the shift from

binary dichotomy to degrees of granularity of difference, and intra-gender

difference, has indeed - as Barrett and Phillips (1992) speculated - left nothing

general to say. The 'question of our time' appears to have locked gender

discourse into a double-bind: the promise of defining the identity of 'woman' is

as compelling as its failure is inevitable. This, and the dependence of identity

on that which must be repudiated - what Lacan (1966) calls 'foreclosure' - has

perhaps inevitably led to rancour, division, and marginalisation.

1.4. Gender and Sex

We have seen how feminist accentuations of difference may have compromised

the sex-gender distinction, embraced aspects of essentialism, and become

caught up in paradox. Even the conceptual clarity of the distinction between

gender and sex may appear somewhat modernist in a post-modem ambience.

Some theorists use the affirmation of 'differences' as being in any case deep

seated parts of a core identity, to apparently bypass the biology versus society

issue. However, the concept of gender as distinct from sex cannot be dismissed

without argument, bound inextricably as it is into the very notion of difference.

In the social sciences, the differentiation between biological 'sex' and socially

constructed 'gender' (Oakley, 1972) has been almost axiomatic. Oakley was not

the first to draw the distinction, and herself acknowledges the earlier (non-

27

feminist) work of, inter alia, the psychoanalyst Stoller (1968) and the sex

research of Money (1965). Oakley says that "'Sex' is a biological term:

'gender' a psychological and cultural one" (p.158); and concludes that "gender

has no biological origin, that the connections between sex and gender are not

really 'natural' at all" (p.188). This idea is important to feminist theory, at least

insofar as biology has traditionally been used to justify the position of women

in society. However, the perceived negativity of early feminist theory towards

women's 'biology', has produced a reaction that may in tum be perceived as a

reclamation of biology.

In 1970 Shulamith Firestone, for example, identified the biology of

reproduction as the basis of women's oppression, and the goal of feminism as

not just the elimination of male privilege, but also of ''the sex distinction itself'.

Genital differences should no longer matter culturally (Firestone, 1970). Before

her, Beauvoir appeared to depict women's biology as troublesome, and to

represent relative physical strength within an assumed competitive framework.

She referred critically to woman's identification as "a womb, an ovary". This

perspective also led her to point to biological similarities rather than differences

in the early years of childhood: "it is through the eyes, the hands, that children

apprehend the universe, and not through the sexual parts". It is only with

external intervention that children think of themselves as "sexually

differentiated" (Beauvoir, 1949/1954).

Biological studies suggest that hormonally there are at least five broadly

'different' categories of people, with differing balances of 'female' and 'male'

hormones cutting across the traditional sex dichotomy (Bleier, 1986). This

suggests that 'sex' may be rather less binary and more analogue than culture

and convention determines. Hood-Williams (1996) indicates that studies of

chromosomes are ambiguous, and culturally filtered. There are also indications

that these subtle gradations may be largely unspoken features of people's

experiences of discrimination. Woolston (2001) quotes a professor of chemistry

at the State University of New Y orIc, as identifying discrimination centred on

more subtle nuances of 'gender': she accounts for the lack of respect she often

28

receives in terms of gradations of the 'feminine' and 'masculine' - to her

"wispy voice and youngish face" - and indicates that "soft-spoken, young

looking men also seem to have trouble getting ahead in science". Studies of

househusbands show that both traditional women and traditional men question

the masculinity of men who take on a caring role (Grbich, 1992).

Biologically, sex may appear to be more significant than other more obviously

pseudo-biological social taxonomies, such as 'race' - although it may be argued

that the significance of, say, reproductive 'differences' is culturally given rather

than biologically determined. Yet studies of embryonic development, and of

hermaphrodites, can suggest that even these physical 'differences' are not so

absolute. Even then the familiar' gender' debates do not go away: does such

evidence point to 'sameness' or diversity, and must sameness defauh to the

culturally dominant gender? The ancient one-sex model (implicit in Genesis,

and explicit in Greek and Roman texts) held that women were an imperfect

version of men. (This is not, perhaps, all that far from Freudian and post

structuralist models!) In the second century AD, Galen, as cited by Hood

Williams (1996), believed the vagina to be an internal penis, the labia a

foreskin. This could well be a model of sameness, were it not for the latent

androcentrism. Modem biology, identifying the common embryonic roots of

female and male, indicates that, in fact, the prostate is a residual vagina, and the

scrotum parallels the labia, just as much as the clitoris is a residual penis.

When comparison is made with other life-forms, 'sex' differences can certainly

seem marginal; and differences among females, and among males, can be more

significant than differences between male and female. The dichotomous

categorisation on the basis of genitalia is obviously a feature of a society which

attaches considerable social importance to gender, and as such appears to be a

defining feature of patriarchy. While biological difference is significant in

terms of reprodUction, it does not absolutely follow that it must therefore be

socially significant. Even the politics of sexual relations does not inevitably

follow, if sexual orientation is not perceived as biologically determined.

Different roles in reproduction become socially significant. It may be argued

29

that it is the largely social construction of different experiences of parenthood

which fomlS the bedrock for not only the obvious social differences of

inequities, but also for a wide range of deeper gendered cultural tendencies.

Stemming from this, power in the public sphere is therefore exercised in the

name of biological difference, and the actual 'difference' which this exercise of

power represents. becomes its own, self-fulfilling, rationale.

In spelling out what he sees as a 'post-mortem' for the sex-gender distinction,

Hood-Williams (1996) draws on previous studies of hermaphrodites and

chromosomes to rehearse the arguments that biology is not fixed, there is no

clear biological definition of female and male, and biology too is part of the

cultural domain in which 'gender' only has traditionally been located:

Gender is always already implicated within the attempts to
define sex - whether as difference or similarity. (p.13)

The contribution of this apparently significant article to the debate is not clear.

In examining the sex/gender distinction, Hood-Williams assumes it implies that

gender must be based on sex, and the biology of reproduction. This does not

necessarily follow, and in many ways 'sex' has not been so much an objective

correlative within the debate as a loose comparative metaphor for all those

things which, for practical purposes, are not subject to change. The fact that

biology may not be fixed does not alter the theoretical or ideological distinction

between that which may be changed and that which may not be, or the fact that

people will disagree as to what mayor may not be changed. The denial of the

distinction can therefore still serve as a basis for the full range of opinion - from

those who believe that gender roles are biologically determined, to those who

regard everything as socially determined. The whole point of much of the

gender discussion is that ties to biology are artificial Hood-Williams sees the

Freudianism of 80s feminism and, like Barrett and Phillips (1992),

'postmodernism', as "extremely corrosive" of the sex/gender distinction,

without clearly demonstrating how this is so. Wilmott (1996), in a response to

Hood-Williams, believes that rejecting the distinction renders sociology

impossible. Cultural phenomena are not self-explanatory, and biology, whether

it be dichotomous or not, fixed or otherwise, largely precedes culture, and is

30

one basis on which, for instance, the prevalence of patriarchy might be

understood.

The scope and manner of the correlation between gender and sex, and the bias

of 'explanation' of gender, is the heart of contention - and this is where the

'mutability' , or cultural and economic interpretation, of biology as if it were

gender, may be conceptually useful. Places in society are not permanent by

virtue of being historical, traditional- or even 'biological'. Similarly, the

positions of women and men in society may well be traced back to reasons of

biology without implying a biologically deterministic perspective. In seeing

biology as the origin of gender, many make a leap of reason to argue that

gender roles are therefore biologically determined - including, as we have seen,

theorists whose declared perspective is feminist. Implicit in this 'leap' is faith in

'nature'. Feminists who assert the social primacy of mothering, both as

definitive of women, and as the superior and natural form of parenting - often

appeal to the same models as male advocates of a woman's place - primates,

and 'primitive' human societies. Yet as Burgess (1997) indicates, non-human

primate parenting behaviour is varied and not fixed, and the notion that so

called primitive human societies are 'natural' and not culturally mediated, is a

Eurocentric prejudice. Indeed, in many cases these societies are more directly

shaped by harsh economic forces, which vary greatly from culture to culture. In

the case of the Aka Pygmies of the African Congo, both parents share the

nurturing role due, it would seem, to the fact that they share the co-operative,

family-based hunting activity on which their subsistence depends (Hewlett,

1991, as cited in Burgess, pp.87 -88).

Delphy (1993) suggests that it is essential to challenge the assumption that sex

precedes gender: if one wishes to change reality, then it is necessary to abandon

assumptions about it. She suggests that "when historical 'gender' is taken

seriously, there is no more room for ahistorical 'sexual difference"', a concept

that is ''part of the problem, not of the solution" (2000). The framework of some

second-wave feminist discourse is that of assumed roles - even when it

recognises the cultural determination of those roles. Delphy traces the

31

acceptance of gender-differentiated characteristics back to Mead's 1935 work

on sex and temperament in 'llrimitive" societies (1996) - and finds this valuing

of gender and the 'feminine' still reproduced in recent feminist writing (Delphy

2000). Mead's wish to take advantage of apparent benefits of the division was

accompanied by a belief that there were no traits other than feminine and

masculine ones. The division of labour consequent upon acceptance of a

division of characteristics was therefore allowed to be seen as 'natural' - with

the naturalness being premised on the twin differences in reproductive functions

and physical strength. It has been observed, however, that the less 'primitive' a

society is, the more elaborate is the male domination and consolidation of

inequality, and that science as well as religion serve as elaborate instruments of

injustice (Miles, 1993).

1.5. Gender and Nature

The 'rationalisation' of inequities in terms of the 'nature' of perceived groups

of people has been manifested in a wide variety of theories. The phenomenon of

'scientific racism' , for instance, found 'natural' explanations for inequities a

useful distraction from environmental and economic reasons. In the 19th

century, human skulls were measured, and jaws profiled, in the pursuit of

genetic 'differences' whose 'natural' quality would place the status quo beyond

challenge (Stanton 1960, p.25). As far as gender is concerned, bone

measurements, and robust versus gracile skulls, may well serve as a forensic

means of identifying male and female remains - although even in this context

sex is, according to Henderson, "a continuous variable with a clear bimodal

distribution" (1989, p.78), with broad overlapping between both sexes. It is the

attachment of ordered values to 'differences' that results in - and is the product

of - racism and sexism. Scientific racism was often conflated with a scientific

sexism. In the words of Carl Vogt, a professor of natural history at the

University of Geneva and a contemporary of Darwin: "The grown up Negro

partakes, as regards his intellectual faculties, of the nature of the child, the

female, and the senile white." (Gould, 1977, p.217).

32

The brain-related 'reasons' for male 'superiority' have varied historically: brain

size, frontal and then parietal lobe positions, hemisphericallateralisation, have

all been related to intelligence for as long as comparisons appeared to be

favourable to Anglo-Saxon males. Bleier (1986, p.7) argues that these theories

are groundless, including the more recent: that the hemispherical variability

between individuals of the same sex is greater than any variability between the

sexes. Prenatal hormone theory (e.g. Imperato-McGinley, Peterson, Gautier,

and Sturla, 1979) points to a differential development of male and female brains

in utero. According to Bern (1993), however, there is no evidence that prenatal

hormones serve as a primary influence on the functioning of the primate brain;

even rat behaviour is influenced by social interaction. Yet many of these ideas

have gained widespread cultural acceptance - presumably because they reflect

and legitimise assumptions that are already culturally rooted.

Bern points out and exemplifies that throughout history, biological theory has

been used "to naturalise, and thereby perpetuate, social inequality" (1993, p.6).

She examines biological determinism at its crude roots in the deterministic

evolution theory of Herbert Spencer - whereby existing social structures were

biologically ordained and optimised by evolution. While Darwin did not relate

evolution to social organisation, he did presume that males of each species are

subject to more selection (and hence more highly evolved). This state of affairs

may have been modifiable, but it presented a case for de facto male superiority

and dominance. Bern indicates the extent to which inequalities were naturalised

in the late 19th/early 20th century by citing the fact that feminists of the time

resorted to racial difference.

Persistent social conditions are sometimes designated as virtually natural. The

social organisation of gender, and the differentiation of the public and domestic

spheres hinge, according to Chodorow (1978), on the social construction of

mothering. The traditional family reflects a division of labour that is prehistoric

- a division so long-standing that its 'construction' is often treated as if it were

'natural' . Bioevolutionary accounts see existing patterns as a product of this,

though the idea ''that women have greater mothering capacities than men apart

33

from lactation" (p.17) is at least disputed by many first-wave and materialist

feminists. As we have seen, it is commonly argued that masculine identity is

harder for males to obtain because they are brought up by women; and object

relations theory has not been tempered by investigations into children nurtured

by men. Chodorow (1978) argues for shared parenting as beneficial for both

genders and for boys, and 'people's sexual choices might become more

flexible, less desperate" (p.218). Mothering "creates a psychology of male

dominance, and fear of women in men" (p.219). The "ideology of women as

mothers extends to women's responsibilities as maternal wives for emotional

reconstitution and support of their working husbands" (p.219). Assumptions

that child care is indistinguishable from child bearing continue to "serve as

grounds for arguments against most changes in the social organisation of

gender"; and "resistance to changes in the sex-gender system is often strongest

around women's maternal functions". Chodorow sees "conscious organisation

and activity" leading to shared parenting, but does not indicate what

organisation or activity.

A considerable body of feminist writing moves beyond the identification of

women with their 'natural' reproductive capabilities, to identify women even

more essentially with Nature. Feminists such as Susan Griffin (1992) use this

essentialist identification to value rather than devalue women. In Woman and

Nature: The Roaring Inside Her, she extends the identification to

communication with trees and the dead. Man is "set on this world as a

stranger", while "woman speaks with nature" (Griffin, p.76).

Such an essentialist identification - far from advancing the position of women -

may actually conform to the ethos and tradition of patriarchy. Sherry Ortner

(1972) has argued that such assertions represent a thinly veiled extension of the

identification of women with their procreative functions (something that

Kristeva does explicitly). Ortner concludes that woman is not in reality any

closer to nature than man (p.506). Griffiths (1988) is also critical of the

essentialist ramifications of this perspective, and presents one negative

interpretation: women are seen as perceiving the world in a fundamentally

34

different way; they are ''part of natural things; men are in control of them"

(p.132). She sees the stereotypes of feminine/female connectedness, intuition,

and natural communicativeness as basic expressions of this essentialism.

Lowe and Hubbard (1983) present a series of essays to demonstrate that there is

a vast range (across classes and societies) of stereotypes of woman's nature,

rather than one single myth. While the effects are seen to be varied, those in

power often use ideas of biologically inherent limitations to limit women and

resist change. The 'universal' myth of the passive, nurturing woman that

focuses on motherhood and domesticity, is seen in particular as a white middle

class myth.

Lowe and Hubbard go on to criticise the dangers of feminist approaches that

rely on notions of woman's nature - be they assuming the ineluctable

oppression of women by men, or the innate superiority of women "because of

traits they trace to female reproductive capabilities". Yet they also appear to

conflate biological motherhood and socially-constructed childcare and related

duties in validating this equal 'women's work', rather than challenging its

allocation.

Difference, and the sex/gender dichotomy, have figured prominently, albeit in

different ways, in every strand of feminism. The fact that both issues are

problematic - and in particular that the two sides of the standard dichotomy

between sex as biology, and gender as social construct, are themselves

occasionally thrown into doubt - may appear to undermine the foundations of

traditional 1970s feminism. Barrett and Phillips (1992) state that the need to

identify a cause of women's oppression is common to every traditional

tendency - whether it be personal attitudes, the capitalist system, or men.

Barrett and Phillips go on to argue that the assumption of cause - and, therefore,

the debate about difference - has been rendered irrelevant by the problemising

of the sex/gender distinction, as well as by anti-racist perspectives that

introduce possibly more significant variables.

35

Sexual difference therefore came to be viewed as more
intransigent, but also more positive, than most 197 Os feminists
had allowed. This shift was variously signalled in the growing
interest in psychoanalytic analyses of sexual difference and
identity, in the analysis of women's experience of mothering as
forming the basis for alternative (and more generous)
conceptions of morality and care; and in its most "essentialist"
moments, the celebration of Woman and her Womanly role.
The impulse towards denying sexual difference came to be
viewed as capitulation to a masculine mould.

Yet these tendencies coincide with central aspects of patriarchy and sexism

when they identify women and their social roles with and through nature. In

asserting 'difference', feminists such as Hartsock (198311997, p.162) define

women in terms of biological reproduction, and social caring roles. It is a

popular truism in the late 90' s that "women" are a) good communicators, and b)

'jugglers'. In this regard, the academic and the popular frequently reflect each

other. Comment on the 1997 intake of female Members of the United Kingdom

Parliament regularly refers to these characteristics, irrespective of the personal

circumstances of the individual women. Glenda Jackson, for instance - echOing

Hartsock's quotation from Marilyn French - asserts that women make better

MPs because "all women" do a 16 hour day by definition, and "women are used

to having to do several things at once" (Uverpool Echo, 22-7-97). In talking

about the right to work flexibly and the right to parental leave, Government

ministers consistently target women rather than men.

In feminist theory, Hartsock also defmes women, uniquely and universally, in

terms of their "double-day" (198311997, p.165), an experience that is

apparently assumed to be inherent in the condition of being female. There

appear to be at least two tensions to resolve: firstly, the tension between

acknowledging that domestic responsibilities are gendered but not universal to

all women, and the desirability of using inclusive language as part of a will to

change; and secondly, the tension between combating subordination and

celebrating the skills (often as intrinsic female skills) that arise from that

subordination. The latter is perhaps a defensive mechanism, as Wajcman points

out:

36

Retaining overall managerial responsibilities for the family
appears to be one way in which women exercise power within
the home and retain their gender identity (Wajcman 1991,
pp.62516)

This is rarely problemised, and there is little sense that 'domestic' change may

be a precondition to equality in the more traditionally public domain. The

universal assumption - and the territorial reluctance to use proactively inclusive

language - implies an acceptance that domestic work is actually a feminine

duty. In Wajcman's own study of senior managers' domestic lives, she qualifies

the need of female managers to adapt to long working hours by hiring domestic

help, but leaves unquestioned the underlying gendering of domestic

responsibility:

Given that women managers have had to conform to the male
model of work, they have little choice but to transfer these
tasks to others. (Wajcman, p.622)

The arguments of 'biology' perhaps inevitably extend into the territory of social

construction. Hartsock (198311997) asserts the unique ''unity of mind and

body" involved in women's experience of bearing and raising children. This

notion of "connectedness" as the defining characteristic of "women" (which

makes them good with people rather than 'things') is always based on

definitions of women in terms of their bodies' reproductive characteristics. In

Hartsock's version, it is the "challenges to bodily boundaries" represented by

women's experience of "menstruation, coitus, pregnancy, childbirth, lactation".

This "connectedness" is therefore premised on biology, and is also dependent

on the continued conflation of childcare with childbirth, insofar as it allegedly

privileges a woman with attributes that are suited to the care of children.

We can therefore perhaps better understand how feminist object relations theory

could arise naturally from traditional object relations theory, and some of the

problems inherent to it: both assume the universal dominance of mothering as

an inevitable corollary of women's reproductive role, and the focus for

individuation; and both tend to define women in terms of their biology. Males

deny the body, females accept and become it; females successfully individuate,

males do not. The feminist emphasis ultimately rests upon the different

37

experiences of girls and boys in this respect, the mutual identification of mother

and daughter, and of boys with a distant father. That this may appear to be an

entirely recursive description - males are distant because they model themselves

on distant males - of something that is in fact social convention, is frustrating,

not least because it is usually left impervious to the prospect of change, and

ultimately may justify existing sexual divisions of labour in terms of innate

differentiation between female and male skills. Any revaluation of the feminine

versus the masculine does not detract from the intimations of more traditional

scientific sexism.

To characterise the female as communal and plural, while associating the male

with individuation, may not only validate gender, but also deny women

individuation. Such a characterisation may have much in common with the

failure to regard women as people - and with the reason why one has to become

a woman. Standpoints, however, embraces essentialism through a fIlter of

personal individualism, and reacts to the notion of individuation: "Women's

failure to separate then becomes by definition a failure to develop" (Gilligan

1982, p.201). The positive response, that individuation is not a goal because it

is seen as masculine, can be problematic. The individualism of standpoints, and

the rejection of universalism, is compatible with categorical rejection of this

concept of 'individuation' because it is masculine, and characterised by

detachment rather than connectedness. By the same (self-defeating, ironic?)

logic, the aspiration that women should be regarded as people may be

compromised if 'people' default as masculine. Beauvoir's concept of women as

"existents" (rather than "a womb, an ovary") becomes a masculinist aspiration,

relinquished in favour of the very revelling in "immanence" that Beauvoir

deplored as the existential burden of women's oppression (Beauvoir, p.208).

Evans (1983) complains that Beauvoir operates "in a male world" when she

notes that ''wives'' at parties congregate and talk to each other. She suggests that

some feminists might even want to call her an "Aunt Tom" (p.352), because of

her denial that women have ever constituted "a closed and independent society"

in favour of terms of reference whereby women ''form an integral part of the

38

group, which is governed by males and in which they have a subordinate

place".

On the other hand, Delphy makes a convincing case that it is those who value

gender difference - and femininity - and regard it as if it were natural, who are

the reformists, who want to live with things fundamentally as they are, but with

more emphasis and value placed on women's traditional roles and abilities.

Segal (1999), like many other North American theorists, "does not want sexual

difference to stop being socially significant, just to stop being so hierarchical"

(Delphy 2000, p.161). These issues, concerning subjectivity, stereotypes, and

the interpretation of gender, therefore need to be carefully navigated when

studying both the social definition of computing 'culture', and the subjective

identification of programming 'styles' in the context of that culture. Gender as a

social arrangement can be rendered predetermined and unalterable, and styles as

subjective interpretations can be misinterpreted in the light of essentialist

assumptions.

1.6. Conclusion

We have critically surveyed a range of perspectives on gender. This has enabled

us to explore the reasons that may be given to account for inequality, and the

thinking behind those reasons. Gender theory is a crucial background for key

gender and computing concepts, and a range of feminist theory has been

covered, with a trajectory that has broadly led from material politics to

psychological individualism, tracing a growing role for 'reclaimed' versions of

biological essentialism. This trend is reflected in Turkle and Papert's ideas, and

this chapter has therefore given particular emphasis to those wider theoretical

ideas. For example, Gilligan's contextual and narrative mode of thinking has

been examined as an important theoretical basis for Turkle and Papert's

'concrete' programming style, just as her identification of a canonical policy of

non-interference is analogous to their 'abstract' programming style. Object

relations theory is also important to their conceptualisation of black boxing in

programming.

39

In addition, we have identified broad tendencies in gender theory that we

believe are also reflected in Turkle and Papert: the promotion of change as just

a change of emphasis - a revaluation of perceived existing roles and abilities

which does not represent fundamental change; and an emphasis on difference at

the expense of material equality. The tradition of 'connectedness', premised on

(reproductive) biology and nature, and on gendered child care, as a positive and

distinctively female attribute, is implicit in Turkle and Papert's theory. So too is

a denial of the broad categorical sameness of sensory apprehension of the

world, in favour of fundamental and biologically based difference.

The position of the researcher is critical of these aspects, and therein generally

aligns with the perspective of Beauvoir and contemporary materialist feminists

such as Delphy. While there may be different gradations of gender - as socially

exemplified by Woolston's (2001) wispy professor, or as biologically

postulated by Bleir (1986) - the gender categories of the empirical study

inevitably mirror the terms of reference of the official statistical data, where

gender is mapped onto biological sex. In order to challenge the binary division,

it is necessary first to accept it as a statistical category, as the premise of that

division. Yet no evidence is found for significant intrinsic categorical

differences between females and males. Indeed, the researcher's position is to

challenge difference itself, as representing inequality rather than plurality.

Within a materialist perspective, variations of 'gender' across cultures still

present as the behaviours of female subordination and male dominance

(Delphy, 1993). Material conditions produce gender, and gendered

consciousness. Those conditions are largely amenable to change: an equality

which is not premised on difference is fully achievable. Masculine (and

feminine) conquered territory is reclaimable, and women and men can be open

to a full range of potentials.

This perspective will be brought to bear in critiquing the more specific literature

on gender and computing, and gender and programming. It is also intended, in

the empirical part of the thesis, to avoid any emphasis on difference that might

actually reproduce difference, and to minimise the explicitness of gender

difference in the format and conduct of the empirical study.

40

We have therefore critiqued ideas - in their original context - that are to

underpin much of the literature on gender and programming, along with the

deeper assumptions which inform that literature. In particular, we shall see that

the notions of object relations theory, and gendered styles, have been

interpreted, and applied by means of analogy, to the discourse around gender

and computing, and gender and programming in particular. Before examining

the meaning of this discourse as informed by this wider context, we will need to

situate our analysis within the more immediate context of difference and

inequality in the domain of computing.

41

2. Gender and Computing

2.1. Introduction

Where gender and computing is concerned, 'difference' manifests in two main

senses: a) the difference between female and male rates of participation in

computing work. study, and leisure; and b) attempts to account for this

difference in terms of underlying differences between females and males in

computer-related approaches, attitudes, aptitudes, and abilities. Difference in

subject-category, or in what is meant by 'computing', is a further factor that

would affect both of these concepts.

The purpose of this chapter is to examine - within the context of the feminist

theory studied and analysed in the previous chapter - the anatomy of the social

construction of gender in computing as a general domain (first placed in the

context of gender dichotomies in science); to study statistical data to identify or

measure difference between female and male participation in computing; and to

review critically the most salient trends in the gender and computing literature

concerning 'reasons' for the difference in participation. This should enable new

ideas to arise from the analysis of gender in the previous chapter, and provide a

stronger context for the more specific study of gender difference and

programming.

2.2. Gender dichotomies in Science and Technology

2.2.1. Sex and Gender

We have already seen that inequities are frequently rationalised in terms of

alleged cognitive differences, and that these may in tum be justified by biology

- be it brain-sizes and sides, or hormones. Additionally. women's roles and

abilities have been frequently viewed as defined by (and subsidiary to) their

reproductive role - the 'biological' quality of which is frequently extended to

encompass childcare as well as childbirth. The exclusive assumption of such a

role inevitably produces differences and inequalities in 'public' life - which

complete the equation between biology and inequality, and reinforce the

42

contrast between males as existential agents and females as passive elements of

nature. Science, technology, and computing are no exception: indeed, within

these domains women's roles and abilities have if anything been more

diligently set out in tenns of women's 'nature'.

2.2.2. Gender and Science

This emphasis on what Beauvoir called immanence in women, may have a

'feminist' pennutation: nurture, connection to earth and nature, with the

consequent social implication that one is more acted upon than acting. In such a

view, science and technology are masculine, nature feminine; and science acts

upon nature, penetrating its mysteries -at best the dissection and abstraction of

nature, at worst the rape of nature (Turkle and Papert, 1990).

The debate arising from feminism that is most fundamental to the research

question, therefore concerns whether or not feminism and science are mutually

compatible or exclusive. This debate largely concerns the relationship between

objective truth and science as a social product: is science purely relative to its

social shaping, or does it allow for intrinsic objectivity? Keller (1983) attempts

to distinguish between the masculine character of science, and its objective

character; between that which is ''parochial'', and that which is ''universal'': she

believes objectivity to be the goal of science, albeit science has been

masculinised. For Keller, however, a purely relativist analysis "dooms women

to residing outside of real politik modem culture", negates the emancipatory

potential of science, and deprives science of enhancing discourses (Harding,

p.233). Given a relativist perspective, it is possible to abandon science and

rationality as part of the male domain, and instead embrace feminine

subjectivity and intuition (Harding, p.237). Keller's intention was to reclaim

science through 'feminine' elements and discourses denied by canonical male

science (Harding, p.238). (We will later see this template of feminine

reclamation applied in the defining studies of gender and programming.) Keller

also uses object relations theory to link personality development to the assumed

maternal environment of infanthood, and to associate being female with

"merging", and being male with" separateness" (Harding, p.239). Objectivity,

43

associated with the separation of subject from object, is thereby associated with

masculinity, and objective competence with alienation.

Keller's 1983 biography of Barbara McClintock, A Feeling for the Organism,

provides a gender critique of science, analysing its discourses, contexts, and

social construction. She draws attention to differences in McClintock's

technique - differences that she reads as 'feminine'. In studying the maize

plant, McClintock dedicated herself to achieving comprehensive understanding

of the organism, rather than applying to it experimentation designed to produce

a result

As has been observed in the opening chapter, traditional object relations theory

can be deterministic of gender roles and identities: women are seen as more

likely to sustain a primal impulse to attach themselves to objects or people, and

are capable of being whole through identification with their first internalised

object and repository of separated feelings. Men on the other hand are seen as

repressed - and possibly obsessive - in adulthood, because they are unable to

identify with a female primary object.

Israelsson (1993) goes beyond identifying science as masculine, to a position

where even "analysis" is seen as masculine. She asserts that science or

technology is "generally analytical and thus does not fit into the female way of

conceiving reality as a whole." She refers to ''the female holistic approach to

reality". Pohl (1997) alludes to traditional programming approaches as "based

on the analytical style of 'Western' philosophers" (p.192). The very act of

dissection is framed as inherently masculine, a violation of the whole that is

inimical to women's nature.

It has been noted in the natural sciences that it was patriarchy and male bias

which propagated "stereotypes of 'the feminine', and thereby made it seem self

evident that women were totally unsuited for 'penetrating' nature's mysteries"

(Bleier, 1986). In gender and computing, the stereotypes which are used to

rationalise inequity. are sometimes also deployed as part of the 'solution'.

44

Writers on gender and computing may not always appeal directly to the

supposed biology of testosterone and brain lateralisation, but it is not

uncommon, in the literature, to refer to female biology as a basis for different

attitudes to computers (Turkle, 1988). The use of object relations theory is

commonplace (based on the unique biological experience of pregnancy and

childbirth - and an assumed unique social experience of childcare) as a basis for

the received stereotype that females are 'connected' and good with people,

while males are disconnected and good with things - hence explaining a

perceived male aptitude for traditional computing, which in tum explains

empirically observed inequity.

Studies on gender and computing - as elsewhere in women's studies -

frequently accept the socially constructed conflation of childbirth with

childcare, and identify all women with mothers or potential mothers who have a

unique responsibility to care for their children (Etzkowitz, as cited in Frenkel,

1990). In a study which otherwise radically challenges the masculine

construction of technology study, Cockburn (1985) explicitly supports the

exclusion of men from "child care and home life". Within such a framework,

'solutions' will frequently work from or around, rather than challenge,

fundamental social stereotypes and basic divisions of labour.

The vehicle for the metaphor of 'stereotype' is to be found in print technology.

The defining characteristic of the metal printing plate cast is that it is

permanently fixed. We use this term therefore when gender characteristics or

roles are cast as essential or immutable, and where this casting is linked with

differentiation and discrimination.

2.2.3. Stereotypes

Gendered dichotomies profoundly influence computer systems, computer

studies, and computer culture. In many studies, stereotypes are reclaimed - to

embrace and strengthen the stereotypically 'female' paradigms - men like

machines and obsession, women like people and communication. Ideologically,

45

this may produce a relatively new division of labour, with women in

PRlService type jobs, and men where they've always been.

Some areas of computing are frequently cited as more suitable for women than

others. Artificial Intelligence (An is seen as a "natural" area for women because

its cognitive content is related to the stereotype, asserted as an axiom, that

"women are generally more introspective, attuned to psychology, and more

verbal than men" (Strok, 1992). However, the UCAS data show that women are

considerably less likely than men to study Artificial Intelligence as a degree

subject - and that the disparity is even greater (15 :85) than that which holds for

Computer Science generally.

Various other areas, such as Human Computer Interaction, and Systems

Analysis, are sometimes claimed in the pursuit of subdivisions (or ghettos) that

are distinctively matched to supposedly intrinsic feminine capacities. The

implicit inverse of this is that software and hardware production - and other

areas that are not primarily concerned with presentation - is suited to men's

nature.

Even in post-industrial economies, technology-based companies' recently

discovered need for women, as we shall see, is frequently based on perceptions

of woman's 'nature', and on the acceptance of larger traditional roles. It is

characterised by 'positive' stereotypical (apparently innate) abilities and

characteristics that are often based on the traditional domestic servicing role of

women. Kramarae (p.217) refers to women's responsibility "for the household

and family"); and Morris (p.63; p.71) sees childcare as being necessitated by

mothers working.

Eden and Hulbert (1995), Wajcman (1991), and Cockburn (1985), see the

computer as intrinsically a 'male machine'. Cockburn, however, deploys

feminine stereotypes in proposing, as a solution, "to domesticate technology".

This leads to, at the extreme end of role stereotyping, computers being seen in

affluent societies as helping women in their traditional roles - allowing women

46

to shop, exchange recipes, and liase with their children's schools (Gurton,

1995). A 'smart' multimedia system called MOM, provides daytime TV,

shopping, digital aerobics videos, a multimedia kitchen (the adverts for which

are not dissimilar to the old ads for a new-fangled kitchen: 'the rest is push

button magic'). In the economies that service consumer societies, the labour of

computer assembly and data entry has been 'domesticated' - feminised - on the

basis of women's 'natural' aptitudes.

The tradition of binary dichotomies would present only one alternative for

women - to adopt the male stereotypical traits to succeed - "Be good, hungry,

driven, and aggressive" - and try to ignore gender: "Never think in terms of

gender where work and ability are concerned" (Strok, 1992).

The ramifications of stereotyping are considerable, and they may lie deeply

embedded or hidden in feminist critiques as well as in normative ideas. In

considering the research question, it is therefore vital that latent stereotypes be

elicited and identified.

2.3. Gender and Computing: issues of representation

The central gender issue in computing is generally assumed to be the lower

partiCipation rates or achievements of females when compared to males. Some

writers suggest, however, that women do in fact achieve in computing, and

commonly cite people such as Augusta Ada Byron Lovelace and Grace Murray

Hopper as examples of women who played a vital role in the development of

computing (Gurer, 1995). Reference to such historic figures does not

necessarily contradict the thesis of underachievement: Lovelace and Hopper are

frequently used as positive role-models who demonstrate the equal capacity of

women to make significant contributions to computing. It is interesting that the

contribution of both Lovelace and Hopper was specifically in the field of

programming: Lovelace is known as the first conceptual computer programmer,

Hopper as "the grandmother of COBOL" (Shashaani, 1993, p.171). In addition,

many of the first programmers, in wartime, and in programming ENIAC (the

post-war Electronic Numerical Integrator And Computer) were women, Adele

47

Goldstine being only the best-known. Sr. Mary Kenneth Keller contributed

significantly to the development of BASIC; and Jean Sammet and Mary Hawes

helped develop a common business language (CBL), with Sammet also

responsible for the development of FORMAC, the first popular symbolic maths

language. Her 1969 work, Programming Languages: History and

Fundamentals, is a seminal work on programming languages.

The basic variations in general feminist approaches suggest themselves also in

relation to computer science: add women theorists and practitioners (and stir);

reject the body of knowledge and start again; or deconstruct the body of

knowledge and amend it as appropriate. Two nuanced positions also arise: one

does indeed maintain that the participation and performance of females is equal,

and that to see this we need to redefine what computing is; the second accepts

that female participation in what is traditionally recognised as computing is not

equal, but that it does not matter because such partiCipation is not desirable, and

the subject of computing is of no interest to the 'feminine' standpoint. This

would echo, at least in part, feminist adaptations of Kristeva's assertion that

traditional materialist feminism represents the pursuit of ''phallic power".

Some therefore suggest that equal representation in this area is something that

women can do without: that either differences in representation do not matter,

or that indeed such differences may be positively desirable (Siano, 1997).

Whether differences in participation are significant is therefore not just a

statistical question. The traditional case, however, is that computing

technologies constitute the defining technology of post-industrial and globalist

economics, and that women's under-representation within them is

disempowering. Powerful technology that can be used to control, can also be

used to empower: computer literacy is, in this view, analogous with literacy

(Smith and Balka, 1988) .

Various reasons are sought for the under-representation. We will examine the

main reasons given in the literature, and attempt to ascertain the relevance of

differences in attitude and psychology to levels of participation. First of all, it is

48

necessary to establish the premise of difference in representation by examining

the statistical evidence.

2.4. Statistical Difference

2.4.1. North America

In North America, the Taulbee Survey. the Computer Research Association's

(CRA) annual survey of U.S. and Canadian Ph.D.-granting Computer Science

and Computer Engineering departments, indicates that for 1999 85% of

Computer Science Ph.D. recipients were male. and that 82% of Bachelor's and

Master's recipients were male. These figures reflect those of previous years. In

1999. the female percentage of new Ph.D. enrolments (which had risen steadily

from 16.2% in 1996. 17.0% in 1997. to 18.8% in 1998) had declined to 17%.

13 % of new tenure-track faculty staff were women; while the proportion of

female professors remained stable at 16% assistants. 12% associates. and 8%

full professors. CRA authors Irwin and Friedman comment: "At this rate, it's

going to take a very, very, very long time to attain gender equity" (Irwin and

Friedman. 2000).

Other specifically US-based statistics can appear to vary from this data -

indicating perhaps different definitions of Computer Science as much as

discrepancies between Canada and the USA. Spertus (1991), for example,

reports that in 1991 women "received a third of the bachelor's degrees in

computer science" in the USA. In 1998, girls represented 17 percent of students

who took high school computer science advanced placement tests. Women

received less than 28 percent of computer science bachelor's degrees, down

from a high of 37 percent in 1984. The decline in female participation from

virtual parity at high-school level, through figures around 20% at first degree

level. to single-figure percentages for full professors, is traced by Camp (1977),

and identified as the "pipeline shrinkage problem". Camp also traces a steady

latitudinal decline in the percentage of US women acquiring first degrees in

Computer Science from 1984 (37.1 %) to 1994 (28.4%). The Taulbee North

American figure for female bachelor recipients in 1996 was 16% (Andrews

49

1997). The Taulbee data, however, conflates Computer Engineering data with

Computer Science. As Camp observes, ''the percentage of degrees awarded in

CE to women is dramatically lower than the percentage of degrees awarded in

CS to women". However, from 1997 the Taulbee figures break the bachelor

statistics down, and the number of CS degrees greatly outweighs CE, and the

CS statistic (16% in 96-97) is identical to the overall figure. Camp acquires her

data from the National Center for Education Statistics at the U.S. Department of

Education, which classifies Computer Science departments within the category

of "Computer and Information Sciences" (CIS). She therefore uses the acronym

'CS' ''to represent all the fields of study in CIS". While most of the degrees

within this category are still traditional 'computer science', it also covers

information systems and information science. The Taulbee survey covers the

USA and Canada, and collects data directly from departments of computer

science and computer engineering: the number of respondents varies from year

to year.

Mayfield (2000) indicates that the declining numbers of women obtaining

computer science degrees is in contrast to an increase in the numbers acquiring

science and engineering degrees.

2.4.2. Great Britain

The under-representation of women in British University Computing courses is

also well-documented (Hoyles, 1988; DfE, 1994; UCAS, 1996-2001). Figure 1

shows the applications received by the Universities and Colleges Admissions

Service (UCAS) in the year 2000 for Computer Science degree courses, along

with other subjects which they categorise as "Mathematical sciences and

informatics". Software Engineering has also been highlighted - as a subject

directly relevant to the research question. No finer distinctions are made within

the subject-category of Computer Science. The final two columns show the

percentage of males and females actually accepted onto degree course places.

50

Subject

G6 Computer systems engineering

Applied

Men Women

639 73

Total

712

M: F:

90% 10%

Accepted

M F

88% 12%

G8 Artificial intelligence 80 12 92 87% 13% 85% 15%

G7 ~of~are engineering:: ;1~5~~: :;<: ~O~<~1892 <84%1 ~~f:.~4%: 16%:

G· '5' C' 0" 'm' '. p'" u" t'er' ... ;';"c' 'I' e'n" 'c"e':: :, :.::::::: 1'9' :6' 6' '3' :', :4' '. 48' 8' '2'4' :1' 5'1' ': .••. :. : ••. :. :,8.', 1', ':0, .'."'. <.'.::',1',. 9' ':O.~.·:/ .. ·• ", :,,:::,,:, :,' .'8', "1,' ':0, ~,/O:, '.:. :., /1',' :g' . ~.i/O".: :.'' . ".. . ::: ":i:::>; . ' .. "",',:,,::,: :t '.' ~ 70 Ie II
..... : : , ' :
G1 Mathematics 2,421 1,504 3,925 62% 38% 61% 39%

G4 Statistics 60 42 102 59% 41 % 57% 43%

Figure 1

Women represent 18.58 % of applicants to Computer Science degrees, and only

15.96% of Software Engineering places. The idea that the under-representation

of women in Computer Science is due to mathematical content, would appear to

be undermined by the significantly more balanced figures for Mathematics as a

subject in its own right.

It is interesting that none of the Physical Sciences show as Iowa ratio of

women to men in the same year. Of the most popular physical sciences,

Geography was 45:55 (Geography as a Social Studies discipline was 50:50),

Chemistry 42:58. Even the ratio for Physics show higher female applications, at

21 :79. Only in the Engineering disciplines do comparable figures occur: 14:86

for general Engineering, 10:90 for Aeronautical Engineering and for Electronic

Engineering, with Mechanical Engineering at 8:92. The ratio for Chemical

Engineering, however, was higher (30:70), and a majority of applicants for

Polymers and Textiles was female. The number of applicants for Computer

Science, however, was greater than the total number of applicants across all

Engineering disciplines.

One area that presents as 50:50 overall is that of Business and Administrative

Studies. Within that category, however - while the major subject of Business

Management (the only subject with a larger number of applicants than

Computer Science) reflects the overall equity, there is a finer breakdown of

subject, with men more highly represented in applications for Financial

51

management, and for Land and Property Management, and women more highly

represented in applications for Industrial Relations, and for MarketinglMarket

Research. One problem is that there is no similar breakdown for the subject

designated as Computer Science.

The overall gender balance in HE applications has shifted gradually from

virtually 50:50 in 1994, to a female majority of 53:47 in 1999 and 2000. Figures

for those accepted have been slightly more pronounced. This may be reflected

in the fact that the percentage of Computing applications from women in 2000

was slightly higher than in the previous year, when only 18.04% of Computer

Science, and 14.71 % of Software Engineering, applicants were women. In

1998, the figures were 17.87% and 12.25% respectively; in 1997,17.28% and

10.23% respectively.

Prior to the creation of the new Universities in the UK, the old UCCA and

PCAS figures showed female participation varying over an extended period of

time. Henwood (1993) compares old UCCA "computer studies" entrance

figures of 24% women in 1980, to 10% in 1987; while O'Dubchair and Hunter

(1995) compare UCCA female acceptances for "Computing courses" of 13% in

1985 to 15% in 1993, and PCAS figures of 12% and 20% respectively. The

latter represented a more rapid growth than the acceptance of females on all

courses - but the current figure of 19% reflects the wider fluctuating pattern

rather than this particular trajectory. Department for Education data for 1994,

however, give a lower figure, indicating that for the academic year 1993-94,

places on computing courses for UK domicile women and men in Great Britain,

were 1004 females and 7388 males (Le. 13.5% female). This discrepancy would

suggest that the UCCAIPCAS categorisation differed from the Department for

Education's. In any case, the UCAS figures do not include students doing

Computer Studies or Information Technology as part of a Combined degree:

these will fall into either Combined Sciences or "Science combined with social

studies or arts". These figures are not finely distinguished in terms of

component subjects, but are in any case relatively small when compared to

Computer Science. Computer systems engineering, software engineering and

52

artificial intelligence (as with the Taulbee figures) were included within

"Computer Studies" category until 1996.

In relation to teaching staff at British Universities. Grundy's relatively infonnal

survey of academic computing staff in 28 UK universities in the early 90s

showed women representing 6% of senior staff and 10.7% of all staff (Grundy,

1996, p.152). In the USA at the same time, Spertus (1991) reported that only

7.8% of faculty staff in computing were female.

Gender segregation in computer-related jobs is also well documented (Strober

and Arnold, 1987). While women are under-represented in systems analysis and

programming. they are over-represented in the low-paid areas of data entry and

computer assembly. Women are better represented in software than in

hardware.

Frenkel (1990) cites statistics from 1989 that show women starting out with

comparable pay in the USA, falling 25% behind their male counterparts after

ten years. Spertus (1991) reports that the salary gap widens after about six

years.

2.4.3. Hard and Soft Difference

Researchers from the Washington Research Institute and the School of

Computer Science at Carnegie Mellon University gathered 250 Advanced

Placement Computer Science teachers across the country in summer sessions to

train them in two tracks: C++ and gender equity (Margolis, Fisher and Miller,

2000). They found that the contextualisation of computing was characteristic of

women rather than men: in other words. they were interested in putting the

technology to a use, rather than in the technology for its own sake. The fact that

many courses often emphasise the latter rather than the former. is perhaps

definitive of the divide between 'soft' ''Information Technology" (IT) and

'hard' Computer Science. And by definition, contextualised IT skills are seldom

discretely valuable in themselves, deriving relative value from the context: it is

therefore very difficult to ascertain whether they are remunerated as well as

53

Computer Science skills. There is also insufficient statistical particularity to

determine whether there is a gender division between IT and Computer Science.

IT is associated with office and business courses; most courses devoted

specifically to IT are not at degree level: those that are, generally form a part of

a combined degree, and/or are taught at non-PhD granting institutions of Higher

Education.

Many early studies - typically from the early 1980' s - were conducted at a time

when programming and computer literacy were treated as being virtually

synonymous. This accounts in part for the very wide gender discrepancies that

existed then in terms of computer literacy (e.g. Hess and Miura, 1985, Hawkins,

1985).

2.5. Explaining the gap

The statistics therefore show that women are significantly under-represented on

Computer Science degree courses, and that the under-representation occurs at

the application rather than the selection stage.

Traditionally the question concerning the reasons for this has been posed in

terms of 'what puts women off!' . Rather than enquiring into larger structural

and systemic reasons, there has been an assumption that there must be

something, either about the courses in particular or about computing in general,

that intrinsically 'puts women off - and that if that something can only be

identified, changing it can at least help remedy the 'problem'. In searching for

that something, stereotyped views of gender can sometimes offer convenient

terms of reference. In line with the tendencies within feminist theory at the time

of the 'information revolution' • subjective attitudes and experiences have been

most frequently pursued.

54

2.5.1. Attitudes

Given that the under-representation occurs at the application stage, attitudes

would appear to be a potentially productive area to explore - much more,

certainly, than any biological concept. The elicitation and exploration of

attitudes requires careful consideration if it is not to reproduce preconceived

assumptions.

Various scales have been developed that purport to measure attitudes to

computers. These include CAGE, a scale that is specifically intended to

measure attitudinal gender differences. While studies with children can show

significant differences in attitude between girls and boys (Wilder, Mackie and

Cooper, 1985), when educated adults take similar questionnaires (e.g. Francis

1994 using Gressard and Loyd's CAS), there is seldom any significant

difference. This perhaps points to the inadequacy of these scales in measuring

affective attitude, and/or the irrelevance of attitude as a differentiating factor.

Hoyles (1988) reports on a different technique used by Siann et al (1986) where

half of the otherwise identical questionnaires related to female computer

scientists, and half to male; no difference was found.

Uao's (2000) meta-analysis of gender differences in attitudes towards

computers suggests that the methodology used does not significantly affect the

outcome. Uao' s study integrated data from numerous journal articles and

theses: differences were more observable the more recent the study had been

conducted - and were more pronounced in studies with smaller sample sizes.

He suggests that "gender differences on computer attitudes" are observed only

in small to medium sample size samples, and are not evident in larger sample

studies. The larger sample studies will of course carry greater statistical power.

He concludes that minor gender differences do exist - female attitudes are

slightly less positive than male attitudes. While this gap increases slightly with

age, the differences are still so small as to be statistically insignificant

Females and males who do not undertake computing study or work usually

share the same reasons. The "we can, I can't" paradox mentioned by Francis

55

(1994) - women allegedly believe that women can, but they personally can't -

can have positive nuances. In a recent survey concerning Internet awareness,

100% of men aged 18-35 said they knew what the Internet is; yet when asked to

define it, more than 50% got it "totally wrong". Only 50% of women

interviewed claimed to know what it is, but only 8 % were wrong (Personal

Computer Magazine, March 1996). While this may imply a greater openness to

learning, linn (1985) found males more optimistic and females more

pessimistic in the use of a computer-based strategy game, leading males beyond

the information given.

Arch and Cummins (1989) found that there was little or no difference in female

and male students' attitudes towards computers where they had received a

structured introduction to computers; and that only among those whose use was

unstructured and voluntary, males had more positive attitudes. This would

suggest a difference in attitude only the hobbyist end of the spectrum

Levin and Gordon (1989) concluded that home ownership (or other prior

exposure) among students in Tel Aviv had more influence than gender on

students' attitudes toward computer - though boys were more likely to have

home computers.

Research suggests that, while males may often have more computer experience,

there is also the likelihood that they inflate how much they know, and

underestimate their abilities (Sax 1995; Lundeberg, Fox and Puncochar 1994).

The extent of the statistical difference between female and male representation

on Computer Science courses is therefore not reflected in any remotely similar

level of difference between female and male attitudes to computers. The

questions concerning female under-representation remain unanswered: it is

necessary to bring gender analysis to bear on the question, and to look more

deeply into the cultural and cognitive background of computing.

56

2.5.2. Language

The use of vocabulary such as "execute" or "abort" in computer interfaces has,

according to Sherry Turkle, "kept women fearful and far away from the

machine" (Turkle, 1988). Turkle, however, provides no evidence. The "hard

methods" of science generally allegedly involve violent language: the

"language of male domination and female submission". This language reflects

an aggressive "distance" from nature, and is associated with the whole notion of

"objectivity in science": "If science is first a rape, it is then a due!." (Turkle and

Papert, 1990).

"Programs and operating systems are 'crashed' and 'killed.'
We write this chapter on a computer whose operating system
asks if it should "abort" an instruction it cannot "execute." This
is a style of discourse that few women fail to note. (Turkle and
Papert, 1990)

The 'execution' of a computer program, however, refers to the performance of a

sequence of instructions. Its use is therefore based on its original meaning, and

any association with capital punishment is a homonymic accident or

contrivance.

Other comment on language focuses on the use of 'metaphors' such as

engineering and even science. Grundy (1996) states that one powerful reason

for using these two terms to describe a subject she identifies as ''the use of

computers", is to ''put women off and help to mark out computing as

predominantly male territory" (89). The very designation of computing in these

terms is said to be using a name that will consistently ''put off half the potential

market". Tellingly, Grundy compares it to marketing a car with a large boot to

men as a 'Ford Shopper' ! This reflects a rather deterministic view of gender

roles and traits, with the intention of challenging only the most superficial

manifestations of those roles.

The 'actual' meaning of words, however, is not necessarily relevant to how

those words are perceived: a word's meaning is mutable, and it may well be

that it is the culture that redefines these words as puerile rather than the words

that define the culture. Even if the words did not represent an affected combat

57

language that is reminiscent of boys' games, the words would possibly still

serve as tokens that demarcate territory that is already the boys' room.

2.5.3. Mathematics

Mathematical content, along with the historical association of computing with

mathematics, is frequently cited as something that 'puts women off (Frenkel

1990; Collis, 1987). Both the fundamental theory and the original application of

computers are mathematical in nature - yet mathematics is often unnecessarily

linked to computing as a subject, both in terms of academic organisation and

curriculum content. However, the data above show clearly that more women

study mathematics than computing degrees. Kramer and Lehman (1990) also

report that mathematics grades do not significantly predict success in higher

education computer courses. In any case, the transferral of the problem to

another domain is of limited use. Reducing or eliminating unnecessary

mathematical content may make educational sense, but there is no evidence to

suggest that it would encourage more women to do computing degrees.

2.5.4. School

Although school has been identified as the wide end of a pipeline that shrinks

through higher education, school has frequently been identified as the source of

gender inequality in computer participation. Hess and Miura (1985) surveyed

over 5,000 students in summer camps and classes that offered training in

programming for microcomputers, and found that three times as many boys as

girls were enrolled, and that the ratio in favour of boys increased with grade and

level of difficulty.

Newton (1991) has suggested that the use of personal computers in secondary

schools may be responsible for the decline in female entrance to computing

courses in UK universities. This is commonly accounted for in terms of the

association of computers in schools with mathematics and science - which are

in turn associated with males. Henwood (1993) questions whether these

associations really explain the production of a masculine computer culture. In

58

any case, the daisychaining of 'masculine' subjects in this way, at best defers

any fundamental explanation.

In school, girls are commonly supposed to be less likely than boys to have a

home computer, and less likely to be involved in extra-curricular computer

activities. Studies such as Culley's (1986) find substantial discrepancies in

home computer ownership, and project the inequities into examination results

and job opportunities - yet the discrepancies are not explained. Many studies

show that, even in schools, boys effectively elbow the girls out from the

computers (Carmichael et al, 1986). Chivers (1987) suggests girls-only

computer clubs run by female teachers and technologists as a way forward.

Kohl and Harman (1987) found that institutional and economic barriers to

computer literacy were more important than gender; and Miura (1987) also

found that gender differences were mediated by the socioeconomic status of

students.

2.5.5. Curriculum delivery issues

A purportedly 'new' approach to teaching computing is reported in Frenkel

(1990). Danielle Bernstein (1992) suggests starting computer science courses

with software packages. These, she says, "are less tied to mathematics, and

allow students to do something functional quickly". As well as avoiding

mathematics, Bernstein also takes as given the stereotype that "women use

computers as tools", and that women prefer group-work. All these things. she

claims, are served by introducing students to computing via software packages.

This approach is commonplace in 'softer' computing 'studies' or informatics

courses, such as those delivered in the UK at Colleges and Institutes of Higher

Education. While it may have a lot to recommend itself in general, Frenkel does

not provide any empirical evidence of its inherent and particular suitability for

women, and is more concerned with establishing whether or not it is really

computer science. Such courses may well attract more female applicants, and

59

Frenkel's concern is pertinent, given that the traditional association of office

technology courses with women parallels that of computer science with men.

2.5.6. 'Culture' and Male cultures

The adoption of total dedication to work as a benchmark for professional worth

is an obstacle, in any profession, to anyone with child care commitments. The

traditional social model places responsibility for childcare on women, and

accepts that senior positions will be held largely by men who are either single

or domestically serviced. These men in tum reinforce the culture to which they

owe their positions. The phenomenon is perhaps particularly acute in higher

education, where research is an open-ended pursuit that can 'require' a virtually

unlimited amount of personal time; and also in computing, where the need to

update is constant, and software is never, ever, ready on time. Etzkowitz,

Etzkowitz, Kemelgor, Neuschat, and Uzzi (1990) report that the main barriers

to female chemistry, physics, computer science, and electrical engineering

faculty members in a study based in New York State University, are what they

term "structural and cultural" obstacles. What this means is the ''male model of

total devotion to the worksite", and women faculty members who are pursuing

careers "in tandem with family responsibilities". Such studies will usually

identify the work-culture, but not the allocation of domestic responsibilities, as

the cause of disadvantage. Inequity in 'family responsibilities' is perhaps

inevitably reproduced in the workplace - yet studies into gender inequity in

computing tend to accept this underlying inequity as given.

There can be no doubt that computing has a particularly masculine culture: the

statistics alone evidence this. Much of the literature refers very generally to this

masculine image of computing, and positions it, in general terms, somewhere

along the male-autistic spectrum. Margolis et al (2000) cite the obsessiveness

of male behaviour on computing courses - but as something that is necessary

for success, that is definitive of the culture, and which puts women off:

"women students who enter with high enthusiasm and interest in computing

quickly lose faith in their ability and their interest in the subject."

60

Consumer computer buyers (and hence private computer users - although

personal computers are increasingly bought for family use) are traditionally

men. Hoyles (1988) reports that in 198296% of computer buyers were men.

The readership of computer magazines are also traditionally men. AdvertiSing

is therefore commonly targeted at men, including father/son combinations.

Hughes et al (1985) equate advertisements for computers with those for cars

and motorbikes, as "likely to show men sitting at the keyboard in full control,

while women are more likely to be draped provocatively around the visual

display unit". They also cite computer book covers as appealing to boys rather

than girls because they allegedly "often use space fantasy images". Hoyles

quotes Ware and Stuck's findings, also from 1985, that men appeared in

computer magazine illustrations almost twice as often as women, and that

women were over-represented as clerical workers and sex objects.

Advertisements, book illustrations, and publicity material frequently show

women and men together at a computer. While much is often made (e.g.

Hughes, above) of the body-language implied in many of these images, it is not

clear how much of this is in the eye of the socially-conditioned beholder rather

than intrinsic to the image: when a male is standing, he is 'standing over',

telling the sitting female what to do; when a male is sitting, is the seatless

female watching while he shows her what to do? It is, perhaps, analogous to the

perception of the few men in advertisements for domestic products, as helpers

for the women.

2.5.6.1. Games

Computer games culture is overwhelmingly masculine. Computer games act out

traditional masculine fantasies: Jenkins (1998) suggests that one of the

functions of playing games "is to rehearse and explore what it means to have a

gender". Yet until recently popular games have contained virtually no strong

female characters (Huff and Cooper, 1987; Provenzo, 1991). Psychologists

have also indicated that children learn significant cognitive skills when they

play computer games, and suggest that these abilities will differ between boys

61

and girls because boys play more than girls (Subrahmanyam and Greenfield

1994). Both this and the identification issue inevitably extend into edutainment

and educational software, and the whole computer culture.

There are now increasing numbers of apparently 'strong' female characters in

computer games: central games characters such as Lara Croft - and, contrary to

Cassell and Jenkins' (1998) erroneous assertion that "none of the warriors is

female no women play active roles" in Mortal Kombat, Sonja Blade - led the

way for a raft of TV characters (Xena, Buffy, Alias, Dark Angel). However, it

may reasonably be argued that both the mould and the main audience for these

characters is traditionally male; indeed, such characters are referred to in the

popular media as "action babes" (Sky, 2002).

Studies have shown that typical computer games make boys more aggressive,

but have no effect on girls. However, when non-gendered protagonists were

used in games, they made girls slightly more aggressive (Huff and Cooper,

1987). This identification issue extends into educational software, and the

whole computer culture.

The realisation of violent machismo in popular games culture presents a high

profile image, and the symbiotic relationship between unreal games, and real

smart weapons and warfare, cannot be ignored in considering computer culture.

Military Simulations Inc's Web page blurbs its latest game, "Back to Baghdad":

"You are going Back To Baghdad to finish the war that George Bush stopped

prematurely. You're the flight leader of an F-16C Block 50 with all the

armament needed to get the job done". Users are invited to 'bomb' a real city,

within the context of an extreme-right political agenda. Military contractors and

games companies cooperate mutually - Holderness (1996) cites Sega and

Lockheed.

In a 1996 press release, Psygnosis Ltd present their new CD game product,

Deadline, and describe the target audience as "15-25 Males". The game is

described as an "anti-terrorist" siege and raid game that offers "fully

authenticated (by ex SAS personnel) weapons and missions". The catCh-phrase

62

is - "don't forget the Deadline and protect your men". Interestingly, P~S and

store support information is to be obtained by telephoning a named new

member of their sales team, a woman who, we are told, "is going to be a great

asset".

The difficulties concerning games mirror those that present themselves

generally in considerations of gender and computing, and gender and

programming: whether to incorporate females, and if so, how to do so without

"colluding in stereotypical understandings of femininity" (Brunner, Bennett and

Honey,1998). When 'better' games are produced for girls, they frequently

reflect the broader marketing strategy of the toy companies to polarise gender

stereotypes, and prepare girls for their traditional roles in life. Games

companies seek out easy marketing hooks: their interest is in promulgating, not

understanding or modifying, a masculine desire to conquer the world and score

points, and feminine preoccupations with living and appearing for others. It is

perhaps also the case that computers are less capable of subtlety - of

representing, for instance, persuasion rather than conquest.

When asked to describe a ''perfect instrument", girls typically invented

"human-like household helpers" (such as ''the Season Chore Doer"), while boys

invented instant transport devices with "elaborate model numbers" (Brunner et

al, 1998). In this study, women's inventions are characterised by the researchers

as representing a view of technology as "a fellow creature on the

earth ... needing care and guidance to grow to its best potential within the

balance of things surrounding it, within the social and natural network in which

things live". However, the actual detail of a typical female invention appears

simply to reflect traditional women's cultures and roles: "a beautiful piece of

platinum sculptured jewelry, worn around one's neck ... would operate all day

to-day necessities to communicate and transport people". It is perhaps not

surprising that such research would reproduce dominant cultures: however,

these cultures are characterised by the researchers as female-positive and male

negative. They speculate that if the Season Chore Doer had been designed by a

boy, it would ''pulverize'' rather than tidy up things, and affirm that girls "are

63

interested in thinking about the issues that adult women must face these days,

including how to juggle career and family". Stereotypes are thereby implicitly

accepted - at the same time as their more obvious manifestations are rejected,

both in Mortal Kombat, and in McKenzie & Company (girl scenario software

that centres around make-up, how to dress, and how to handle boyfriend

problems). Brunner et al advance the idea that games about ''being chosen"

might be "extremely interesting to young women" - with the proviso that they

are interested only in the results of being chosen, not in having any say about it.

Computer-controlled games combine software with more traditional toys. Lego

bricks have been linked to the Logo programming language in LEGO

Mindstorms. A commercial development of Seymour Papert's MindStorms and

the MIT "programmable brick", Lego MindStonns had its first prototype in the

Lego 'Dacta' schools system. Incorporating Papert's 'learn by doing'

constructionist philosophy, it invites children to construct programmable robots

and vehicles; to create scenarios and personal devices, and LEGO creatures that

can explore their environment. Papert - who has collaborated with Sherry

Turkle in analysing the gendered nature of programming styles - presents it as

''the culmination of over a decade of both theoretical and technical development

in educational infoITIlation Technology". Yet it presents culturally as a deeply

masculine toy for the construction of zappy control machines. Inevitably,

perhaps, battlebots and Lego weapons arise among the community represented

on the Mindstorms website. Mindstorms.lego.com offers a drop-down menu

item entitled 'girls', which jumps to a page on Lego's main site, featuring (non

mechanised) games for girls, and illustrating fairy tea party games, puppies, and

various pink items. This is particularly interesting, given Papert's contribution

to the literature on gender and programming.

2.5.6.2. Intelligent Agents

The 'problem' of the game developer, who gains easy marketing and

recognition through gender stereotyping, is replicated in the developing area of

so-called 'intelligent' agents. Agents are virtual characters who help the user at

the interface: as such, they have the potential to transform the apparently

64

gender-neutral way in which most people interact with computers, into a

highly-gendered zone. They are particularly deserving of consideration given

predictions that they will provide the next major metaphor in computing,

transforming computers from tools into assistants (Ball et al, 1997).

The key to the virtuality of agents is whether the user is able to suspend

disbelief in them as computational objects, and recognise them instead as

psychological companions. They need therefore to be responsive to the user: the

user will suspend disbelief only if interactions with the agent occur within the

bounds of the user's existing cultural and social norms. Virtual believability is

clearly not synonymous with realism: characters are shaped to meet the user's

predilections, and not to be independent in any genuine way. In other words,

their vicarious quality is not necessarily diminished.

Stereotypes present a clear attraction: ready-made templates that are both easily

recognisable and easily constructed. Reilly (1997) states that "believable agents

are defined to be interactive versions of quality characters in traditional artistic

media like film". Agents may therefore be shaped by social assumptions: as

with games, these hazards are compounded by the limitations of digital

representation. Laurel observes that "[w]hen we anthropomorphize a machine

or animal, we do not impute human personality in all its subtle complexity; we

paint with bold strokes, thinking only of those traits that are useful to us in a

particular context" (Laurel, 1997).

Human personality is 'analogue' in that its 'values' lie on a continuum and

cannot be fully quantized, or represented as a series of discrete values. In

digitising personality, the problem of 'aliasing' is inevitable. Where a picture

rendered into a finite set of pixels, or a soundwave sampled at discrete intervals,

may exhibitjaggy staircasing or noise, the 'jaggies' in a digital personality may

manifest as stereotypes.

Categorization is therefore an attractive method for digital analysis and design.

Pisanich and Prevost (n.d.) suggest a personality taxonomy, based on five

65

'types' (introverted, conscientious, intezpersonal, emotional, and intellectual).

Petta (1998) seeks to define and systemise even "emotional processing",

building it into an agent architecture framework.

Agents frequently 'participate' in on-line Multi-User Domain (MUD)

communities. Participants also include a minority of males who identify and

pursue characters bearing female names; male characters who log on under

female names and behave in the sexually aggressive way that they would like

women to behave; and by male characters who assume that a woman will need

their help and their company. (Bruckman, 1996): the level of unwanted

attention and harassment in virtual worlds is an exaggeration of - although a

fulfilment of intentions that undoubtedly exist in - the real world. Some of the

best-known agents -like Julia - are built to respond to this social environment.

Agents that are simplistically responsive to the user are frequently shaped by

such minorities. A female agent may not have to be young and photogenic like

Lara Croft or a Hollywood star: an agent that is even ready to flirt or look pretty

builds a particular social environment that is not likely to encourage or motivate

women and girls. MUDs of course are also used as environments for teaching

and learning - to teach, for example, writing and communication - and for

educators and scholars to share experiences and information. While such

educational environments could be expected to be more wholesome, educators

frequently look to ready-made TinyMUD robots as retrainable and adaptable

agents, and it is still necessary to pay attention to the general pitfalls of

constructing stereotyped and gendered agents.

There is no particular shortage of (usually male-authored) female agents. They

are often defined as female - whether descriptively or graphically - by details

concerning hair and other bodily features. They will have an extensive range of

one-liners for sexualised exchanges with males (which appears to pass as

'emotional intelligence'). It may be argued that this reflects the reality of life in

a sexist society, and in particular that the defensive strategies are similar to

those frequently adopted by women when in the company of predatory males.

Yet it may also be argued that there is no need for such strategies on the part of

66

an AI, and that such characterizations shape expectations as much as it reflects

reality - that it is a facile way of attaining the reality of the male 'user'.

85% of the source code of one 'female' agent program, "Julia", is the same as its

programmer's other prototype robot, Colin (Foner, 1993). Foner comments that

"a large percentage of Julia's code deals with detecting and deflecting passes".

One might therefore deduce that this code has been added on to a male-default

in order to represent the quality of femininity.

The growth in female agents can perhaps be ascribed in part to the discovery of

"emotional intelligence" as a key to the simulation of humanity: a feminine

stereotype in itself. Flirting often appears to go with the territory of feminine

psychological attunement: Erin O'Malley, a prototype character described by

Hayes-Roth (1998), is a bartender, who needs ''to flirt a little", even if "she

won't let those conversations go too far". Traditional gender traits may be

subtly remodulated and repositioned, yet still ultimately reinforced. Clearly

even the newest technologies have at least as much capacity to be shaped by, as

they have to shape, social attitudes.

2.5.6.3. Internet

The Internet - originally a network for military intelligence - has historically

been dominated by men. The Internet has in the past been an overwhelmingly

masculine environment. Even in (unmoderated) feminist newsgroups,

(alt. feminism, soc. women) around 80% of messages were reportedly posted by

men (Shade, 1993). Morahan-Martin (1998) views the metaphors used to

describe it (cyberspace, superhighway, the electronic frontier) as 'masculine',

and indicative of dominant attitudes on the Internet. On the other hand, as Stein

(1999) suggests, interactive communication metaphor is central both to the

Internet and to modern computing in general. Indeed, much appears to have

changed rapidly towards the end of the 1990s, leading to reinterpretations of the

Internet as a communicative medium Plant (1996) refers to the (post-serial)

computer itself as '''connectionist' machine", and presents cyberfeminism as an

inevitable development from, and analogy to, the technological development of

67

the distributed and communicative technology that coalesced into the Internet.

Plant is pleased that matrix is Latin for womb, and (somewhat vaguely)

associates cyberferninism with subversive hacking.

More recent data suggests that women actually now constitute the majority of

Internet users in countries with the highest usage: according to Nielsen

NetRatings, as of June 2001, 51.7 percent of active US Internet users were

women - an exact reflection of their population ratio. However, males still use

the Internet more, in that they do it more often, spend more time online, and

view more pages. Nielsen attribute this to Internet pornography. Inevitably

given the dramatic rise in the female figures in recent years - women are less

likely to have years of experience; though, according to Content Intelligence

[http://www.contentintelligence.comlci_litel] women are ''three to six times

more likely than men to become frequent Internet users within two years" from

2001. Content Intelligence monitors women's online behaviour closely, and

advises e-commerce content providers ''to focus on capturing the attention of

online women". because "women control the majority of the consumer

purchasing dollars in the United States".

Nielsen Netratings further indicate that Internet use by women is also

increasing in the Asia-Pacific region - in south Korea (45%), Hong Kong

(44%), Singapore (42%). and Taiwan (41 %) (Nielsen NetRatings, as cited in

South China Morning Post, July 4.2001). Hafkin and Taggart (2001) indicate

that "women constitute 22 percent of all Internet users in Asia, 38 percent of

those in Latin America, and six percent of Middle Eastern users". They indicate

that no figures by sex are available for Africa, and that economic and

educational imbalances constrain women's access.

Herring (1994) claims that the Internet does not neutralise distinctions, but

rather that women and men demonstrate different "communicative ethics", and

have "recognizably different styles in posting to the Internet". Herring's

"different characteristic online styles", by her own admission, do not

characterise ''the majority of users of each sex", but are said to be

68

"recognizably-even stereotypically-gendered". This somewhat paradoxical

admission perhaps 'characterises' the ambivalence of much of the literature

with regard to gender stereotyping. Herring categorically describes women and

men as "different discourse communities in cyberspace", and cyberspace as

"inhospitable to women" because of ''masculine net culture". She advocates

"women- centered lists", and the reformulation ofnetiquette rules on women's

own terms.

PoW (1997) reports that feminist researchers are divided "as to whether the

Internet is a more 'feminine' technology than more traditional computer

technology". She cites Turkle's regard for the Internet as "a female technology

which supports special female abilities"; even Dale Spender's more critical

analysis still regards the Internet as supporting ''the communicative skills of

women" (pohl, p.191). Pohl goes on, however, to argue against the definitive

categorisation of feminine and masculine cognitive characteristics, as well as

the homogenisation of 'the Internet'. Harcourt's collection of essays (1999)

dwells less on essentialist considerations, but looks at the Internet in a more

active, concrete way, and seeks to build new cultures rather than reproduce old

ones. She concludes that ''the Internet is a tool for creating a communicative

space" (p.219), within which ''the cyborg woman" can develop an identity

broken free from her body and from domestic space (p.224).

Even in the USA - where Content Intelligence identify women as critical to the

successful commercialisation of the Internet - women's participation is

coloured by traditional roles and characteristics: ''Women in the U.S. generally

use the Internet to find information that will make their lives easier as well as

improve the quality of life for themselves and their families" (Hafkin and

Taggart, 2001, p.21).

On the other hand, DeLoach (1996) refers to "grrrls on the Web" as women

who ''make no apologies for holding and disseminating feminist views", but

who reclaim individualism for women. RosieX, founder of the cyberzine

"Geekgirl", seeks also to reclaim 'geekiness' (grrris enjoy playing action games

and winning), and rejects the idea of a movement as

based on an older style feminist rhetoric which tended to
homogenize women with the same wants/needs/desires Heh,

69

a bunch of us girls really like each other but we certainly don't
pizz in each others pockets for ideas and strengths. Oh well, I
can't speak for everyone ...

2.6. Industrial divisions of labour: women into computing?

The idea that there is men's work and women's work, and that the differences

may be explained by biological differences between men and women, is

commonplace: men do strenuous tasks that require skill (such as hunting), and

women "have a nurturant character, and in their pursuit a responsible carrying

out of established routines is likely to be more important than the development

of an especially high order of skill." (Barry, Bacon, and Child, 1957). Such

commonplace ideas are frequently asserted or refonnulated in more modem

discourse about women and computing, both within post-industrial societies

and in the offshore electronics industries established by Western companies in

less developed economies.

The pursuit of cheap labour has led western industrialists to workers who are

'offshore' and female. The pattern of feminising labour is often accompanied

by fostering of belief in the 'natural' suitability of women - in the case of data

entry or computer assembly, it is the "routine, yet careful repetition" that

women are said to be innately suited to (Enloe, 1992). Where men might

present with or acquire individual skills, women, even in the employment

market-place, are identified as women: women are attributed with non-physical

characteristics that are intrinsic to their womanhood and make them suited to

particular work. They are also seen as docile and reluctant to unionise. The

belief that their wage must by defInition be supplementary, is premised on the

assumption that childcare is a woman's primary responsibility (and

bread winning a man's). Nor is it restricted to 'underdeveloped' economies: this

assumption is fundamental to UK governmental initiatives - childcare is needed

because mothers are at work; women are needed to work in an emergency -

such as a severe shortage in computing staff - where their womanly skills can

be put to good use. Grossman (1985) quotes Intel's Personnel Officer in

Penang, Malaysia as saying that the company hires "girls because they have

less energy, are more disciplined, and are easier to control". It is also reported

that the Penang plant's practices of holding beauty contests, and make-up

70

classes, are not unusual. Grossman comments that the workers are allowed ''to

feel they are part of a global culture which includes the choice between A von

and Mary Quant products, posters of John Travolta and Farah Fawcett-Majors

by their beds "

Henwood (1993) explicitly addresses equality and difference, and draws a

distinction between a 'women in technology' , and a 'woman and technology'

approach. The former is concerned with superficial 'equality' and mechanisms

for getting women into technology - usually to serve the declared needs of

business; whereas the latter emphasises the division of labour and changing

gender relations, but can assume that 'feminine' and 'masculine' associations

and attributes are predetermined. Henwood is concerned that thinking about

gender and technology is "caught between the twin dangers of technological

determinism and essentialism" (p 43), and that this strategically hampers the

prospects of change. Gender discourse around technology can too often serve to

reproduce and reinforce difference and inequality rather than to understand its

source and change it.

Cornputerisation has frequently been viewed as a threat to traditionally female

occupations in offices and banks: the repetitive, routine tasks that women are

stereotypically supposed to be suited to, are also those most suited to

computerised automation. However, the economic argument for increasing

women's participation is Ubiquitous, and premised on the notion of a critical

labour shortage (Camp, 1997; Pearl, Pollack, Riskin, Thomas, Wolf, and Wu,

1990). The argument is usually promulgated by government and industry, who

are all too willing to reclaim stereotypes, and promote PR and service-related

jobs as women's work.

This might be viewed as airline hostess syndrome - where communicative

women service mainly male customers. While computer buyers are mainly

male, sales teams and support are often fronted by young women. Advert

readers are frequently encouraged to "give Dawn a call", usually accompanied

by a superfluous photograph of the smiling woman in question.

71

Women in any case have, for well over a decade now, been sought out by

employers and Government, "as if they were an endangered species", because

of their "instinct to look after not only themselves, but their families too"

(Morris, 1989). This is not dissimilar from the advancement of women's

'natural' aptitude for the "routine, yet careful repetition" of cheap, offshore data

entry (Enloe, 1992): in both cases, it is woman's nature rather than women's

individual skills that identifies them as suitable for computer work. While

nature is clearly one basis for skills, the point here is that the mapping between

skills and nature has been strictly and artificially gendered, and is at least in part

premised on the continued acceptance of traditional social roles.

The rhetoric surrounding this 'women into computing' movement is

reminiscent of the wartime demand for women to fill in the gaps left by male

combatants. In the Eighties, Morris referred to the "drastic shortage of skilled

personnel" (1989, p.60) in computing - one that could only be filled by women.

Most recently, the deputy chair of the UK Equal Opportunities Commission,

referring to an alleged five-year demand for a million extra computing

professionals, asks: ''Where are these people going to come from? Girls and

women are going to have to fill in those gaps". (Haughton, 2002). To solve this

always ''urgent'' problem (MOrris, p.88), women "are now being pursued and

wooed as if they were an endangered species" (Morris, p.94). Women are said

to intrinsically have skills of ''management, logic, creativity,

organisation" ... and their "instinct to look after not only themselves, but their

families too, makes them superior to men as managers" (Morris, p.95). The

Director of UK government business at mM asserts that women "like

collaborating and working in teams, and like taking data and looking for

creative connections" (Haughton, 2002).

"Family responsibilities" are often officially identified with women

(Department of Trade and Industry, 1995); this is seen both as a natural

corollary of a set of suitable skills innately unique to women, and as the key

72

(rather than the obstacle) to getting women to work in IT - hence the childcare

portfolio approach targeted at women.

Women into Technology (WIT) is one of several women's organisations that

have taken an approach which, as Henwood (1993) comments, is deterministic

both in terms of technology and gender. They quote, with enthusiasm, an

employer as saying that "women are indeed more loyal if you treat them

properly" (cited in Henwood 1993, p. 36). This approach tends to accept and

serve the stated needs of industry - what Henwood refers to as the "perceived

skills shortage" (p. 35) - and might be even more harshly criticised as part of an

overall corporate strategy for reducing costs. Mayfield (2000) refers to women

as "a valuable talent pool in the employee-starved computer science world",

and writes about patching the "leaks" that occur through school and university.

Kozen and Zweben (1998) also indicate that bringing women into programming

is critical to a labour shortage:

With fewer women programmers and designers entering the
field, fewer women workers will help fill the increasing IT job
shortage, advocates fear.

Assertions about labour shortages are made in the face of a constant stream of

job-losses and redundancies in IT, and high levels of graduate unemployment.

In the USA, Matloff, testifying to the U.S. House Judiciary Committee

Subcommittee on Immigration in 1998, refuted the notion that there was a

desperate shortage of software developers.

2.7. Conclusion

We have seen that there is a significant numerical difference between the

representation of women and men in Computing degree courses. The dominant

culture is masculine - a construct that in part reflects a wider cultural

dominance, but which is also distinctive to computing. We have seen larger,

socially gendered patterns, inequalities, and stereotypes replicated within the

discipline of computing, and how carefully one has to proceed in extrapolating

and categorising reasons that are specific either to computing, or to 'different'

73

cognitive and psychological characteristics. There has been a readiness in some

of the women and computing literature to use existing roles in seizing on

aspects that present themselves superficially as culprits. This strand appears to

arise out of the detenninistic and essentialist trends within feminist thought.

While Internet usage has dramatically levelled out within a few years, it has

been suggested that this is due to differentiation in motivations and patterns of

usage - a differentiation that is not reflected within Computer Science curricula.

Gender data along such lines - on the distinction between application-driven IT

and more technical Computer Science - is not available: however, it would be

of limited relevance, given that the subject under scrutiny is Computer Science.

The question as to whether differentiation (in the form of different or more

varied content) should be actively introduced to the Computing curriculum, is

therefore limited. The core of Computer Science - the sub-discipline that most

differentiates it from application-oriented and other curricula - is the creation of

software by means of computer programming. It is the activity and body of

knowledge that is most identifiable with both power and empowerment in

computing; and yet, in the words of one University admissions tutor, "it is the

programming that puts people off' (Krechowiecka, 2002).

74

3. Gender and Programming: an Introduction

3.1. Introduction

While there is a recognised body of literature concerning programming styles

and paradigms (e.g. Weinberg, 1971; McConnell, 1998; Halpern,1990; Gray

and Boehm-Davis, 1996), little has been written specifically about gender and

computer programming. Programming at least gives the appearance of being a

highly engaging mental activity. It is therefore perhaps unsurprising that what

gender-driven interpretation there has been of programming, should gravitate

toward Chodorow's (1989) "apposite" source of feminist theory,

psychoanalysis. Personal 'styles' denote how one engages with the process of

programming and learning to program. A 'style' reflects one's beliefs about

knowledge and objectivity, as well as cognitive tendencies and learning

preferences. In general tenns, the dimensions of styles are bipolar, often

allocated to particular population groups, and - echoing the essentialist and

deterministic implications previously identified within gendered psychoanalytic

study - can coincide with biologically deterministic notions such as

analyticallholistic brain lateralisation (Freedman, 2001).

Within the discipline of computer science itself, even literature on the

psychology of programming avoids the issue of gender. Mendelsohn et al

(1990), for example, in a study of factors that might make programming easier

to learn, recognise that "computing remains inaccessible to many people", and

provide a list of exemplary categories that includes ''the old, the very young, the

disabled, and those with low educational achievements", but not girls or

women. These exclusions are in spite of the best efforts of ''the computing

fraternity" (p.176). Others distinguish between different programming styles,

mapping them onto different cognitive models (Green, 1980), but do not

attempt to attach any gender significance to those styles.

The Kristevan argument ('Kristevan' in the sense that the argument accepts

established boundaries of gender difference, rejecting the pursuit of equality or

phallic 'power' in 'masculine' territory) which commentators such as Siann

75

advance in relation to computing generally, may be attached more specifically

to programming. Programming can be viewed as an inherently intense

occupation that promotes (or even requires) obsessiveness, a character trait, it

has been said, which is more common and more accepted in men than it is in

women (Huang et al,1998). It might not, therefore, necessarily be desirable to

either increase the representation of women in programming, or to dress up the

cultures of programming to be more acceptable to women.

On the other hand, the argument that valorises the historical and existing role of

women in computing, points to the fact that the major female pioneers were -

as we have seen - involved specifically with programming. Lovelace, the first

programmer, after whom the programming language Ada is named; Hopper,

who developed some of the first high-level programming languages, recognised

how important such languages would become, and coined the terms 'bug' and

'debug' that are central to programming cultures; and Keller, who conducted

pioneering work on algebraic languages, and participated in the development of

the BASIC language. The earliest programmers, during the Second World War,

were almost all women (Gurer, 1995), then designated as "computers" rather

than "programmers". Indeed, GUrer cites early career literature to indicate that

women have previously been stereotyped as being naturally suited to the task of

programming: "Programming requires lots of patience, persistence and a

capacity for detail and those are traits that many girls have".

These two perspectives are not entirely incompatible. A view frequently

expressed by many of the pioneering female programmers, is that the gender

roles imposed by society in the period from the end of the Second World War,

generally restricted women to jobs that were compatible with domestic and

childcare responsibilities, while pushing men into a more dedicated,

concentrated commitment to providing financially for the family. These roles

were temporarily disrupted and redefined in many countries by war - hence the

prominence of women in early computer programming. Programming may be

viewed as an occupation - whether the activity is deemed intrinsically

obsessive or not, and whether this characteristic is socially determined or in the

76

nature of programming - that requires levels of time commitment that are not

compatible with persistent levels of domestic commitment. Part of the speCific

cultural determination of the time-intensive culture may well be inherited from

the frontline urgency with which wartime work was conducted: Judy Clapp, one

of the programmers on Whirlwind, the first real-time, timesharing computer,

refers to feeling like she was "on the forefront, working day and night,

inventing as we went" (Gurer, 1995).

3.2. Turkle and Papert

The only original attempt to psychoanalyse different styles of programming has

been that of Sherry Turkle who, along with Seymour Papert, has developed the

notion of 'hard' and 'soft' styles of computer programming. Gender values are

attached to these different styles (unsurprisingly, 'hard' is masculine, and 'soft'

is feminine), on the basis of analogies with key concepts from psychology and

psychoanalysis, in combination with observations of selected young children at

U.S. schools and interviews with programming students at Harvard and the

Massachusetts Institute of Technology (Mm. Turkle and Papert's research, and

the issues that arise from it, is hugely influential, and lies at the heart of the

research question.

The influence that this gendered dichotomy of hard and soft has had is reflected

in its frequent reiteration: commentary on gender and computing regularly

emphasises, on the basis of Turkle and Papert's work, that a structured

approach to programming, and the use of abstraction, alienates women

(Sutherland and Hoyles, 1988; Kvande and Rasmussen 1989; Frenkel 1990;

Mahony and Van Toen 1990; Grundy 1996; Stepulevage and Plumeridge

1998). Miller et al cite Turkle in stating that, while every computer user is

different, "Nowhere are the style differences more dramatic than between the

male and female approaches to use of computer technology and the

programming for this computer technology" (2001, p.126). Where

commentators and analysts have an interest in education, this has inevitably

given rise to proposals for refonn. Turkle is concerned that teachers of

programming are trained to recognise hard mastery as the only real way to

77

program, whereas it is only 'male mastery'. This, it is claimed, amounts to

"discrimination in the computer culture" (Turkle and Papert, 1992, p.8). To

bring women into computing, teachers must recognise that this canonical

orthodoxy is inimical to the psychological make-up and preferred learning

styles of women, and instead "encourage students to develop" soft mastery

(1984b, p.49). Others go further, insisting that structured programming should

be dropped from the computing curriculum in order to encourage more women

to study computing (Peltu 1993).

The response, however, from what Mendelsohn et al (1990) call the 'computing

fraternity' , has generally been to ignore Turkle' s work. (Out of nineteen

contributors to this collection published as 'The Psychology of Programming' ,

eighteen are identified only by initials: the nineteenth is called 'Diane'.)

Yeshno and Ben-Ari's paper, "Salvation for Bricoleurs" (2001), deals with

Turkle's distinctive concept of programming styles as its subject, but contains

no reference to gender, women, men, girls or boys (other than in the citation of

Turkle's article in the Journal of Women in Culture and SOciety, and of the

International Journal of Man-Machine Studies).

3.3. Programming psychoanalysed: patients and prognoses

The development and nuances of Turkle' s, and Turkle and Papert's, analyses,

will be traced in more detail before it is critically scrutinised.

3.3.1. hard and soft mastery

In her first publication about programming, Turkle describes two different

programming styles. The first is exemplified by ''programmer X" - a man who

equates his style with "a kind of wizardry", and whose style is explicitly

identified with the 'hacker' subculture. The second is exemplified by

''programmer Y" - again, a man, but one who likes to work on precisely

defined and specified projects; be also "enjoys documentation" (Turkle 1980,

p.20). Documentation is the means whereby the meaning and use of code is

clarified and communicated to people other than the programmer, in order to

facilitate both team development and subsequent maintenance by third parties.

78

It incorporates both external paper-based documentation, and explanatory

comments within the code of programs.

It is Programmer X's hacker approach as a "soft mastery" that subsequently

comes to be identified as a communicative and feminine "mastery of the artist"

(1984b, p.49). Programmer Y's ''hard mastery" conversely became

"masculine"· "the mastery of the engineer".

The seeds of paradox are, however, planted early. In apparent contradiction to

the identification of Programmer X with a female-friendly style, Turkle in the

same year describes the hacker's world as a "male world ... peculiarly unfriendly

to women" (1984a, p.216). By 1990, Turkle and Papert reformulate soft and

hard mastery as "concrete" and "abstract" styles of programming respectively.

They come to explicitly acknowledge the similarity between the supposedly

feminine soft/concrete style and the "culture of programming virtuosos, the

hacker culture", but valorise hacking as "countercultural" (1990, p.141; 1992,

p.16). The masculine characteristics of the hacker "counterculture" are therefore

set aside, and it is structured programming that is labelled a ''Western male

gender norm". Hard masters treat "computational objects" as "abstraction", soft

masters treat them "as dabs of paint" (1992).

For the hard master the keynotes of programming are
abstraction, imposition of will, and clarity. For the soft master
they are negotiation and identification with the object (1984a,
p.133).

It is observed at an early stage that "girls tend to be soft masters, while the hard

masters are overwhelmingly male" (1984b, p.49). "While both types are

''masters'', the soft-master female is characterised by sensitivity and intuitive

artistry: she will ''try this, wait for a response, try something else, let the overall

shape emerge from an interaction with the medium" (1984b, p.49). She will try

things out at the keyboard instead of planning them first on paper. Indeed, she

will not like any sort of documentation. This specific sense of 'hacking' is part

of a culture that, as Turkle herself illustrates in The Second Self (1984a), is

intensely masculine. The hacker· as Mahony and Van Toen, citing The Second

Self as support, argue (1990, p.326) • is the epitome of the competitive techie

79

machismo that is indulged in mainstream computing culture. Where a

masculine obsession with inanimate objects is disconnected and weird, its

feminised equivalent is connected and fusional.

3.3.2. Style and Realities: Examples

Turkle and Papert's exemplification focuses on the individual: examples of

actual programming tasks are rare. University students and school children are

most frequently interviewed about their attitudes to programming and to

learning to program. With the undergraduate subjects, there is no reference

either to a language or to specific examples, and the interview discourse is very

generalised. They are MIT undergraduates - and the references that Turkle and

Papert use to directly support their central idea of gendered concrete versus

abstract approaches to programming, are either by the author(s) or by MIT PhD

students. Where reference is made to a programming language, it is to the

children using Logo. Although BASIC and PILOT are cited as other languages

that the children use (Turkle, 1984a, p.93), they are not subsequently referred

to. Logo is a graphically oriented language that is strongly associated with

children's education, in particular with a philosophy of constructivism whereby

children learn, not just through 'constructing' their own mental models as in

mainstream constructivism, but through concrete experimentation and actual

extraneous construction. Turkle's partner and colleague at MIT, Seymour

Papert (whose long-standing association with Logo - and Lego - has already

been noted in chapter 2) indicates that an acceptance of "negatives" is

characteristic of ''the Logo spirit". "Logoists", he asserts, "reject School's

preoccupation with getting right or wrong answers as nothing short of

educational malpractice." In other words, Logo encourages the use of 'errors'

as opportunities to explore and learn, as settings for the practice of bricolage.

This suggests that the programming environment studied is weighted towards

the 'concrete' style and 'soft' mastery in a way that more typical environments

may not be.

The children are pupils at a private school which Turkle calls Austen, and

which was the site of a computer research project. Fifty children were selected

for a particularly immersive experience, fifteen of which were further chosen

80

(on the basis of their "backgrounds, interests, and talents") for intensive study.

Of these fifteen, Turkle concentrates on those who responded enthusiastically to

the computer-rich environment provided by the project (l984a, p.96). The

children provide the few illustrative programming examples: they use LOGO to

draw shapes and scenarios. These scenarios, along with some of the more

important individuals, will therefore serve as the best means of expressing

Turkle and Papert's ideas.

3.3.2.1. Anne [soft]

One of the children, a nine year old called Anne, 'relates' strongly to the

computer, and has "strong views about the machine's psychology": she

anthropomorphizes it even more than the other children, believing that it

'thinks' and has preferences just "as people do", and "insists on calling the

computer 'he'" (the male-default identification goes unremarked). When Anne

"programs the computer she treats it as a person" (1 984a, p.110).

Anne is introduced as "artistic" (1984a, p.98), and subsequently described as

"an expert at writing programs to produce visual effects of appearance and

disappearance" (1992, p.30). She has, it is implied, transferred her artistic skills

to the domain of computer programming. In order to make birds of various

colours disappear, she rejects the "algebraic" method of assigning the colour of

each bird to a different variable. Instead, Anne masks each bird with a sky

coloured sprite, makes each sprite travel with its assigned bird, and makes the

sprite appear to render the bird invisible, disappear to render it visible. This,

Turkle indicates, enables Anne to "feel" and relate to the screen objects rather

than use "distant and untouchable things that need designation by variables":

"she is up there among her birds". Although part of Anne's ''woven''

philosophy believes that the computer is "close to being alive because he does

what you are saying" (1984a, p.ll 0), Turkle - in one of many echoes of object

relations theory - says that each sprite in her program is "not to be commanded

as an object apart from herself'. Anne "is programming a computer, but she is

thinking like a painter" (p.113).

81

Anne's ''programming style is characteristic of many of the girls in her class":

her method allows her to feel that her programming objects "are close". The

girls respond to computer sprites as physical, and their work with them is

"intimate"; while the boys respond to them as abstract, as "something radically

split from the self', and their work with them is characterised by distance.

"Most of the boys seem driven by the pleasures of mastering and manipulating

a formal system" (p.114).

3.3.2.2. Jeff [hard] and Kevin [soft]

Like Anne, Kevin is described as "artistic", and is also judged to be warm,

"easygoing", and to have "interest in others". He is contrasted with Jeff, a

meticulous boy whose dialogue is more harshly perceived by Turkle as

"tending to monologue", and who is said to be recognisable as "someone who

conforms to our stereotype of a 'computer person' or an engineer" (1984a,

p.99). Moreover, the lacklustre Jeff "doesn't draw, or paint, or play an

instrument" (127). These characterisations are important to Turkle because she

believes that ''programming style is an expression of personality style" (103).

Jeffs approach to developing a space-shuttle program is characterised by the

fact that he makes a plan, "conceives the program globally", then "breaks it up

into manageable pieces". This is said to represent the top-down divide-and

conquer strategy that is officially approved 'good programming style'. Kevin

on the other hand talks about how he feels, and about ''the aesthetics of the

graphics". He doodles, and ''works without plan, experimenting, throwing

different shapes onto the screen". His work is not "systematic", and his

programs "emerge - he is not concerned with imposing his will on the

machine". He is "like a painter who stands back between brushstrokes" (102).

This is perceived to be an "open, interactive" approach (103). Jeff is

characterised as inherently 'technical': when he makes a mistake, he calls

himself stupid and "rushes to correct his technical error"; when Kevin makes a

mistake, his response is a little more effusive, he is said to be frustrated but not

82

resentful, and the mistake "leads him to a new idea". A model of

constructionism in action, he experiences mistakes as learning opportunities.

like Anne. Kevin's perception of the program is not 'abstract' in that he does

not see it as something "apart from his everyday life"; he places himself

imaginatively in his program: "Kevin says that, as he works, 'I think of myself

as the man inside the rocket ship On the other hand. however. Jeff also

projects himself into the program, only in a different way: "When Jeff programs

he puts himself in the place of the sprite; he thinks of himself as an abstract

computational object." The difference between this and Anne's being 'up there

among her birds' is not immediately obvious. but it is implied that Jeff either

separates himself from. or even supplants. the sprites. Although the distinction

may appear to be somewhat subtle. Jeff and Kevin are therefore said to

"represent cultural extremes" (102). And although Kevin is a boy, "girls tend to

be soft masters. while the hard masters are overwhelmingly male" (p.107). In

addition, compared to Kevin. "Anne does something more". moving further in

the direction which Turkle explicitly calls "feminine", of "seeing the sprite as

sensuous rather than abstract" (p.117).

3.3.2.3. Henry [hacker]

Henry, an Austen pupil. is described as having "a hybrid style" (1988. p.133).

While he "takes pleasure in imposing his will over the machine", and "revels in

technical detail". for him the "keynote of programming is not clarity but

magic". Although Turkle does not make it explicit, Henry appears to be the

bridge between hard and soft mastery that is the hacker. His identification with

the computer is said to go "far beyond anything that we have seen soft masters

do", in that he "actually identifies with the computer". The distinction with the

soft master is not entirely clear: it may be that the soft master identifies with

computational objects, and anthropomorphises the computer as another person.

Henry sees the computer as "a person he could control", and wants people to be

more like machines. Henry's style is psycho analysed as a "schizoid style".

having its roots of course "in infancy and early childhood", and centred on the

mother. The schizoid style betrays a crisis of "basic trust" which interferes with

83

''the process of differentiation of the self from the mother", and precipitates a

paradoxical "terror of intimacy and a terror of being alone". This is said to be

"Henry's paradox", and his strategies involve both not feeling, and seeking

admiration. Magic is said to be his means of implementing these strategies.

Although the magician of the machine - the computer wizard with special

powers - may appear to be a traditionally male posture, Turkle and Papert

appear to conflate this hacker style with the soft style. Its only ambiguity lies in

the perspective that the computer "offers a unique mixture of being alone and

yet not feeling alone" (147).

3.3.2.4. Deborah [poor] and Bruce [rich]

Deborah is a thirteen year old pupil at a school which Turkle calls the Jefferson

Middle School (1988, p.140). As part of a government-funded programme

involving MIT researchers as well as the local school committee, the children

were provided with the facilities to program in Logo. Sixteen children were

subject to closer study, and Turkle returned to the school two years after their

computing experience began. Turkle explains how 'turtles' can be programmed

to form paths and shapes on the computer screen, and in particular gives a clear

explanation of how more complex patterns can be constructed from

functionality packaged up as subroutines. So houses, for example, can be

constructed by using subroutines for drawing rectangles. Unfortunately Turkle

does not relate any of her case-studies to this example, or indeed to the hard and

soft mastery dichotomy. The older pupils at this school are psycho analysed, but

are not explicitly put into either camp. Her later work with the schoolboy Alex

(see below) gives some indication, however, of how a soft master might relate

to such an example of structured abstraction.

like practically all of Turkle's subjects, Deborah likes computers. Every day

she can't wait for computer classes to start. She likes the computer because she

puts her feelings in it: ''the computer can be just like you if you program it to

be, your thoughts, your pictures, your feelings, your ideas" (145). Turkle writes

about the time when Deborah first ''met'' the computer. It is through

programming that she is able to identify so strongly with the computer.

84

However, although she has the soft master's identification with the computer,

Deborah uses the computer to gain control through rules and careful planning.

She does so, Turkle thinks, because her family is poor, and her reality involves

"drink, drugs, and sex".

Bruce, on the other hand, is ''well off'. He programs in a way that is

unpredictable and ungoverned by rules and plans. Although he is also

emotionally and artistically oriented, he wants the computer to be predictable,

and the idea of a feeling computer makes him cringe.

3.3.2.5. Lisa [soft]

Usa is an 18 year old first-year Harvard student on an introductory

pro gramming course, who considers herself to be a poet, good with words and

bad with numbers. Having rejected mathematics in high school because she

"wanted to work in worlds where languages had moods and connected you with

people", she finds it "scary" that she has become, according to Turkle, "an

excellent computer programmer" (1988, p.44/42). Lisa tells of young men at

high school "turning to mathematics as a way to avoid people", and some

''turning to computers as 'imaginary friends''': she decided to avoid such

people, and reject the computer "as a partner in a 'close encounter'''. Turkle

feels that "computational reticence" is felt by women because they want to keep

their distance from the formal systems and regimentation that the computer

embodies. Her solution is that women should be "encouraged toward a more

personal appropriation" of computer technology (1988, p.59).

Turkle relates how it was therefore a surprise to Lisa that she initially found the

undergraduate programming course easy. However, as the course progressed,

she was forced to ''think in ways that were not her own". Although previously

irritated by the identification of mathematics as a language (1988, p.55), when

presented with a progranuning 'language' (unidentified by Turkle), she had

wanted to ''manipulate computer language the way she works with words as she

writes a poem", to

"feel her way from one word to another," sculpting the whole.
When she writes poetry, Lisa experiences language as

85

transparent; she knows where all the elements are at every
point in the development of her ideas. She wants her
relationship to computer language to be similarly transparent.
When she builds large programs she prefers to write her own
smaller "building block" procedures even though she could use
prepackaged ones from a program library; she resents the
latter's opacity. Her teachers chide her, insisting that her
demand for transparency is making her work more difficult;
Usa perseveres, insisting that this is what it takes for her to feel
comfortable with computers.

As the course progressed, Lisa was told

that the "right way" to do things was to control a program
through planning and black-boxing, the technique that lets you
exploit opacity to plan something large without knowing in
advance how the details will be managed. Usa recognized the
value of these techniques-for someone else.

There is no concrete example of how Lisa ''feel(s) her way from one word to

another" in a programming language, or how this experience reveals the

computer as "a partner in a great diversity of relationships". The programming

terminology neither contextualised or explained: it is left to be broadly

understood in general terms. A proper explanation of it will be necessary to

inform a critique of this case study - which we will return to after we have met

Usa's Harvard colleague, Robin.

3.3.2.6. Robin [soft]

Where Usa was described as a poet, Robin - a second year student at Harvard -

is said to be a pianist. Robin has "gone through much of her life practicing the

piano eight hours a day", but "rebels against the idea of a relationship with the

computer" because she "doesn't want to belong to a world where things are

more important than people" (1988, p.46). She too has observed compulsive

young men forming relationships with the computer. Having some empathy

with their compulsive intensity, Robin has more to do with these people than

Usa - although she finds them gross because they relate to machines. They

advise her that she is going about programming in the wrong way, and tell her

that she is "not establishing a relationship with the computer". To Robin this is

86

"gross", and completely different from her own acknowledged "relationship

with her piano" (1992, p.27).

Just as Usa feels her way from one word to another, Robin "masters" music

by perfecting the smallest "little bits of pieces" and then
building up. She cannot progress until she understands the
details of each small part. Robin is happiest when she uses this
tried and true method with the computer, playing with small
computational elements as though they were notes or musical
phrases. (Turkle and Papert. 1990)

Robin is also "frustrated with black-boxing or using prepackaged programs",

and is in conflict with her teachers:

"I told my teaching fellow I wanted to take it all apart. and he .
laughed at me. He said it was a waste of time, that you should
just black box. that you shouldn't confuse yourself with what
was going on at that low level." (1992, p.7)

3.3.2.7. Alex [soft]

Alex is a nine year old pupil at the Hennigan Elementary School in Boston,

USA. Turkle and Papert describe him as "a classic bricoleur". The concept of

the bricoleur is adapted from Levi Strauss (1966), with the general meaning of

someone who tinkers around with objects, and uses them - in perhaps .

unexpected ways - to improvise solutions or makeshift repairs. The literal

meaning of the original French (masculine) word is 'handyman'.

The programming Alex is involved with is, again, "Logo programming and

computer controlled Lego construction materials" (1992). When dealing with

Lego wheels and motors, Alex "looks at the objects more concretely; that is,

without the filter of abstractions", He uses the wheels as robot shoes by placing

them on their sides, and using "one of the motor's most concrete features: the

fact that it vibrates" to move the robot.

"When Alex programs", Turkle and Papert say, "he likes to keep things------..·.

similarly concrete", Using the Logo turtle, Alex wants to draw a skeleton:

Structured programming views a computer program as a
hierarchical sequence. Thus, a structured program TO DRAW

87

SKELETON might be made up of four subprocedures: TO
HEAD. TO BODY. TO ARMS. TO LEGS. just as TO
SQUARE could be built up from repetitions of a subprocedure
TO SIDE. But Alex rebels against dividing his skeleton
program into subprocedures; his program inserts bones one by
one, marking the place for insertion with repetitions of
instructions. One of the reasons often given for using
sub procedures is economy in the number of instructions. (1992.
p.13)

For Alex. the packaging of functionality into subprocedures inhibits his "sense

of where I am in the pattern". He prefers a non-structured approach because "it

has rhythm", and apparently thinks that

using subprocedures for parts of the skeleton is too arbitrary
and preemptive, one might say abstract. 'It makes you decide
how to divide up the body, and perhaps you would change your
mind about what goes together with what. Like, I would rather
think about the two hands together instead of each hand with
the arms. (1992, p.13)

He is said to have "resisted the pressure to believe the general superior to the

specific or the abstract superior to the concrete". The prescribed packaging is

assumed to be exemplified by "hands as a subset of arms", and for Alex this is

too far away from the "reality of real hands". Rather than starting, like a

structured programmer, "with a clear plan defined in abstract terms", Alex "lets

the product emerge through a negotiation between himself and his material".

_------~~ Turkle and Papert compare this to ''the style of chefs who don't follow recipes

but a series of decisions made as a function of how things taste." Alex shapes

the whole program gradually, rather than build it out of components.

3.3.2.8. Alex [hacker]

Another Alex is a straightforward hacker. He spends fifteen hours a day on his

computer. three eating, and six sleeping. When he's programming, it feels like

"one of those Vulcan mind melds" from Star Trek (1988. p.217). He does not

think of the computer as a person, but does feel as if it is one - "someone who

knows just how I like things done". If the computer is invested with a

psychology by this Alex, it is one that more explicitly services and reflects his

own.

88

3.3.2.9. other women

The other women that Turkle speaks to about programming all appear to have a

standard feel for insides and components, for personalised computers, and a

dominant interest in arts and crafts. Lorraine has dreams "about what the

program feels like inside", imagines "what the components feel like", and says

that programming is "like doing my pottery". (1984a, p.116). Shelley thinks of

''moving pieces of language around", not like a poem, but ''more like making a

piece of language sculpture". (1984a, p.116). Tanya "has a passionate interest

in words and the music of speech", calls her computer "Peter", has a ''personal

relationship with Peter" that "showed the intensity of the most driven

programmers", and comes, through the mediation of the computer as

"derniperson", to "define herself as a writer", mostly of poetry (1984a, p.124).

Doris, a professor of history, does not program, but is said to use her word

processing software in the same tactile, 'soft' way that Anne does: she is

interested "in transparent understanding". This focus on transparency is said to

be characteristic - in a somewhat unclear distinction - of the philosophy of the

computer hobbyist, rather than the more mysterious culture of the hacker

wizard, which focuses on 'magic'.

How this aligns with the soft-hard dichotomy is not immediately clear. A

plurality of styles is being presented. However, soft masters want black boxes

and computational objects to be transparent, but Turkle says that both Anne, an

advanced 'soft' programmer, and Henry, a young hacker, ''put the highest value

on magic", and try ''to keep the computer mysterious. They do not try to

understand it completely." In other words, soft masters want transparency in

computer objects, but not in computer hardware. Turkle explicitly aligns the

hobbyist with the hard master: the hard style of programming "is an element in

a coherent system of thinking about the computer as transparent and under

control" (1988, p.198).

89

3.3.2.10. other men

Many of the men in Turkle's study of personal computer owners are not

explicitly categorised as hard or soft masters. Indeed, they appear to draw

characteristics from both camps - although the ambiguity is not commented on

by Turkle. Howard, for instance, has some of the purported hallmarks of a soft

master: he takes risks and has magician's fantasies when he programs, and he

"finds documentation a burdensome and unwelcome constraint" (p.180). Carl,

on the other hand, enjoys documentation: "he likes to have a clear,

unambiguous record of what he has done", and derives a "sense of power over

the program" from mastering "its precise specifications". We may recall that

programmer Y, the prototype for the hard master, enjoyed documentation,

where his concrete counterpart found it a burdensome "constraint" (Turkle,

1980, p.21): it is part of the "pursuit of clarity" that characterises hard mastery.

However, the soft/hard dichotomy that this suggests, appears to be contradicted

by more significant information. In terms of programming language preference,

it is Howard who prefers high-level languages, and Carl who prefers low-level

assembly language. It is Carl who is said to enjoy "contact with the bare

machine and its logic", for the "feeling of having direct contact with what is

'really going on' in his computer". He "wants to feel in close contact with

machine logic", and to have "a direct relationship with the CPU"; but he also

"wants the reassurance of step-by-step mastery". Carl, Significantly, dislikes

black boxes: he wants to work "in an environment where there were no black

boxes" (184). Howard, on the other hand, is said to have lost the ''transparent

relationship between the steps written by the programmer and events taking

place in the machine". In terms of the characteristics that appear to be at the

core of Turkle' s dichotomy, it must be Howard who is largely a hard master,

and Carl the soft master. Indeed, Carl is later listed along with Doris and Anne,

as someone with "a tactile, 'soft' access to a world of hard rules" (196).

Many of the male computer hobbyists whom Turkle studies, are frustrated by

hardware 'black boxes', and "labor to make the computer transparent" (1988,

p.194). Another adult male, Arthur, teaches himself high-level languages, then

90

wants to expand his knowledge vertically: "I wanted to get down there and play

with the machine. 1 liked getting inside, changing things around, seeing that 1

really understood them" (1988, p.193). Like the soft master, he wants to get

inside the machine, but with an apparently different psychological motivation.

He becomes "a master of 'peeks' and 'pokes"', whereby memory locations and

CPU registers are directly manipulated, and describes this sort of programming

as "a very sexual thing".

3.4. Summary

Turkle's rejection of black boxes appears to originate in the perception that, in

the words of another MIT student, Jessie, "playing around with things that you

don't understand requires a certain amount of self-confidence". The implication

is drawn that women, who lack that self-confidence, need to understand those

things before they can use them. And to do so by 'relating' to them and how

they work inside.

We have seen that there are several subtle nuances here, presenting

considerable potential for criticism: because women are identified as being

willing to accept "risks in relationships" (1998, pp.48-49), the hacker's

relationship with the computer appears to suggest itself as a means whereby

women might overcome their 'computational reticence'. On the other hand, an

important part of the hacker's risk-taking is that they 'play around' with the

hidden internals, and, in Jessie's words, solve problems "by means other than

the 'right procedure"'. These are the elements that appear to lead Turkle into a

seemingly paradoxical pOSition of reclaiming for women aspects of the

'countercultural' male hacker culture. Women, she says, "see themselves as cut

off from a valued learning style" when they look at the male ''programming

virtuosos around them" who resent black boxes and take risks, recognising the

by-rights feminine virtue of "computational 'intuition'" leading to close

relationships (1988, p.49).

Turkle acknowledges that the "characteristics of soft mastery" are culturally

"taught" (1984a, p.l 07), and a model of socially constructed "correct behavior".

91

Girls nurture and relate to human dolls, boys erect and control inanimate

objects. Nonetheless, she presents traditional soft mastery positively as a

feminine style. The roots of this lie in her conviction that these models of

correct gender behaviour are validated by object relations theory, and that

object relations - and parenting roles - are natural and beyond social

construction. In identifying the territory of object relations theory as "far

earlier" than the giving of dolls and blocks, she appears to be locating the

defining processes at a foetal and primal stage. The unconventional aspect of

her apparently essentialist analysis, is that she reinterprets the computer as a

suitable object, not just for masculine obsessive infatuation, but for feminine

bonding skills as well.

In order to analyse this dichotomy between concrete and abstract styles in

programming, it is necessary first to establish a fuller understanding of the

discourse which is particular to programming, but which Turkle and Papert

have generalised and conflated with the discourses of sociology, psychology,

and gender studies. To construct a meaningful critique, the most relevant

aspects of programming will require clarification and exemplification: what

abstraction, packaged procedures, and black boxes mean and look like; the

meaning of 'high' and 'low' levels in programming; and the job of a

programmer, as well as different ways in which its art or science may be

experienced.

92

4. Programming discourse: abstraction and black boxes

The key literature on gender and programming has been set out. In order to

critique that theory. it is necessary first to place it in the particular context of

programming - especially so because the literature itself is written for a non

specialist audience. and works on assumptions of a generalised understanding

based on the ready transference of concepts from other disciplines. The purpose

of this chapter is to explain the particular programming concepts that have been

identified in the literature review as central to the characterisation of gendered

programming styles; to unpack the 'canonical' approach to programming; and

to elaborate and contextualise abstraction and black boxing. This critical

understanding is essential not only to a critique of the literature. but also to any

practical testing of the key propositions in that literature. The literature has been

examined first. before any explanation of the programming terminology.

because it is the primary concern of the research. and any technical explanation

should be informed first by the relevant theory (rather than vice-versa); because

the literature does not offer any such explanation; and because a careful

deconstruction of its terminological generalisation will therefore be a

prerequisite and central part of any serious critique.

An examination of the nature of programming, the discourses. metaphors. and

paradigms within it, and the applied meaning of the abstract and the concrete,

will therefore start the critique of Turkle and Paper!' s key ideas concerning

programming style and gender. It will moreover begin the process of

identifying concrete contexts and examples, preparatory to testing the validity

of those ideas.

4.1. What a Programmer does

People who produce software are of crucial importance in computing. In post

industrial economies. the number of software development jobs is

overwhelmingly greater than the number of hardware development jobs.

93

Matloff (2001) indicates, for example, that in the USA there are currently 11

times as many. Software development is an activity that is carried out, not just

by and for software publishers such as Microsoft, but also for a full range of

employers who need dedicated 'bespoke' software for their own particular

needs.

4.1.1. Job Titles

The job title of a professional programmer has various interchangeable

designations, including Software Engineer, AnalystIProgrammer, Software

Developer, and Computer Engineer, as well as the by now rather old-fashioned

Programmer. Title differences mainly reflect differences between countries or

business sectors, with software houses leading the way in the introduction of

grander-sounding designations. However, they also reflect changes over time in

programming technology. Matloff (2001) notes that, while in the past, being a

Programmer rather than an Analyst "was considered low skill work", now

coding is perfoImed by practically everyone involved in software development.

Networked Personal Computers (PCs), and readily available tools that instantly

compile and run code, collapsed the old hierarchical division of labour, from

the Analyst who produced diagrams, to the Programmer who translated these

into code, to the people in Data Entry who converted the code to punched cards,

and the Operators who fed batches of cards into the computer. It may also have

helped facilitate a movement, within the actual programming process, away

from hierarchical team structures and toward communicative 'egoless'

programming.

Although different job titles may carry different connotations, they do not

necessarily explain what the 'programmer' does, nor how herlhis activity may

be conceived or characterised. The term 'engineering' suggests a rigorously

systematic science for the development of machinery - a metaphor which

software development academia and industry have for some time now

attempted to convert into a reality. However, even the 'engineering'

interpretation can be ambiguous. In his 1998 manifesto to promote the

aesthetics of computing, David Gelemter denies that programmers are either

writers or mathematicians: he defines programmers as designers of virtual

94

machines - the most complex 'machines' in the world - but sees aesthetics as a

driving principle of their design. So while the building of a virtual machine

might be described as an engineering endeavour, it need not be a

mathematically-based engineering, at least insofar as most software does not

model rules of physics. Nor can such complex 'machines' be constructed by

means of technical 'writing'.

4.1.2. The nature of a program

The virtuality of the software product immediately raises issues concerning the

concrete and the abstract. Within a simplistic interpretation, everything in

programming may be conceived of as 'abstract', in that it is the logic rather

than the physical medium of a program that constitutes its essence. Software

per se is 'abstract': it is, invisible and untouchable, primarily available to the

intellect rather than to the senses. It does not occupy space, other than the

medium on which it is stored, and the computer memory within which it is run.

What the programmer designs is in effect a virtual machine - one that is

quickened by another, physical, machine. Together, software's virtual machine

and hardware's physical machine constitute a multi-purpose machine that can

handle and process almost any kind of data.

However versatile, useful or powerful this combination may be, it does not

generate meaning or sensation. The relevance of the artificial intelligence

debate, and Turkle's conceptualisation of the computer as a psychological

machine (on which her psychoanalysis of programming is based), is reviewed

in more depth later.

Software is 'abstract' in a different way, not just in terms of its virtuality: as a

final product - and within its development - the computer-specific detail of how

it works has been removed (abstracted) and replaced by detail that is

understandable by people.

In computer terms, it is the software that is abstract, the hardware that is

concrete. As Brooks (1986, p.363) says:

95

An abstract program consists of conceptual constructs:
operations, data types, sequences, and communications. The
concrete machine program is concerned with bits, registers,
conditions, branches, channels, disks, and such

The 'concrete' in this sense is closer to the machine, the 'abstract' closer to the

human user.

It is because of its intangibility, as well as its complexity, that programmers -

and users - frequently have to use metaphor in order to talk more clearly about

software and its development. The most basic metaphor - and the one that

possibly encourages a view of programming as analogous to an artistic activity

- is that of 'writing' in a 'language'. The mathematical notion of a 'formal

language' , however, serves as the root for the language metaphor, rather than

expressive, communicative language. And there are of course many kinds of

'writing': the vehicle for the metaphor is closer to the writing of (extremely

complex) recipes or knitting patterns rather than short stories or poems.

Furthermore, the 'text' of the program represents a process - the sole point of

which is to generate a product (in a way that recipes and other written

instructions do not). This fact in part explains the more recent drive towards an

engineering paradigm. Developers now talk, not of writing, but of ''building''

software. The 'building block' is part of this metaphor, which extends into

engineering, as in 'software engineering': 'specifications' are followed, and

'components' assembled.

Gelernter argues that it is the complexity of software that makes the principle of

'beauty' so important: "Beauty is our most reliable guide, also, to achieving

software's ultimate goal: to break free of the computer, to break free

conceptually." Gelernter is an advocate of intuition rather than mathematics: he

bemoans the dominant perception that "mathematics is serious, aesthetics not",

and the fact that computer scientists "would far rather pursue mathematical

solutions, so-called formal methods, than teach programmers about beauty". He

approvingly quotes Feynman's claim that real programming successes "come to

those who start from a physical point of view, people who have a rough idea

96

where they are going and then begin by making the right kind of

approximations" (p.25). In the debate and competition between the mM

command-language interface and the Apple Macintosh graphical interface, he

notes that the Apple designers saw themselves as artists, and cites as the heart

of the matter a technology columnist's comment that the mM PC is "a man's

computer designed by men for men" (p.36). Technology "is a man's world", he

notes, and "elegance is sissy".

For Gelernter, the attainment of artistic beauty is fundamentally intertwined

with the attainment of transparency - breaking free from the computer. He does

not conceive of the computer as a partner: it is ''the machine's transparency and

willingness" that can amplify the thought of the programmer (p.26). Indeed, one

of the virtues of the transparent machine is instant accommodation of the

programmer's idea: ''no backtalk. no bargaining" (p.26). The virtual machine is

presented as a concept that "frees us to think of software design as machine

design". The talent and training required for pro grammers is "of the sort that

makes for structural engineers, automobile deSigners, or (in a general way)

architects - not for writers or mathematicians".

This drive - however qualified - towards making software development at least

a direct analogy of engineering, is fundamental to the question of programming

'styles', and to the idea of a 'canonical' way of programming. We will now

examine both the inspiration and implications of this paradigm.

4.2. The Software Crisis and the impulse to formality

As a prelude to examining the real significance of 'abstraction' in computer

. programming, this section examines the discourse of the more formal software

development culture, and the extent to which it relates to how Turkle and Papert

conceive of the abstract style.

4.2.1. The software crisis

The idea that software development was or is in a state of crisis first arose as

early as the mid-1960s. Most major software projects would not be delivered on

97

time; many that were delivered, would not be used; and some would either be

significantly reworked, or abandoned entirely (Brooks, 1975). The issues that

were central to the software crisis have become increasingly important over the

years, as cheaper and smaller computer technology has been integrated into

virtually every part of life in post-industrial societies, and dependence on

software has increased dramatically. The so-called millennium bug - and the

huge investment in averting a potential disaster - has been only one prominent

symbol of this dependence.

A particular difficulty has been that the complexity of software needs has also

increased dramatically. Software's role in safety-critical applications, and in war

technology, has grown, and such programs are immensely large and complex.

In the US space flight programme, the number of instructions contained within

software increased hugely - from a few million for Gemini, and even Apollo, in

the 1960s, to around 80 million for a space station in the 1990s (Gibbs, 1994).

The earliest pressure to transform software development into an engineering

discipline - and the identification of the software crisis - came from military

sources such as NATO (Naur and Randell, 1968). The exponential increase in

the power of computers has meant a similar increase in the problem of

programming them. As an intangible entity, there is no real physical constraint

to the level of complexity that software can attain to.

The identification of the "software crisis" was therefore accompanied by calls to

bring greater consistency and rig our to the process of developing software - to

turn software development into a systematic and repeatable process, with all the

methods and tools appropriate to an engineering diSCipline. Various factors

were blamed for software failure. In addition to errors in logic, what is often

classified as 'human error' • is in many instances attributable to poor design of

the software user interface, or to limitations and assumptions that have been

embedded into the construction of the software. Traditionally piecemeal and

individual approaches to development were sharply criticised, along with the

neglect of interface and interaction design. Analysis and design were frequently

said to be centred around either the technology or the analyst. All of these

98

factors led to two major themes: pressure for more communication with the user

(and understanding of the user-domain and requirements); and pressure for

more methodical and 'egoless' approaches to software development.

The urgent demands that were made at the time, are still periodically repeated,

if anything with increased urgency. The US National Science Foundation's

report (1998) on a Software Research Program for the 21 st Century refers to the

engineering of "the large, unprecedented systems of the next century", and

indicates that software developers need to "develop the empirical science

underlying software as rapidly as possible". Dramatic software failures occur

with increasing frequency, and it is specifically programming style factors such

as individuality, intuition, and solipsistic artistry that are blamed:

A quarter of a century later software engineering remains a
term of aspiration. The vast majority of computer code is still
handcrafted from raw programming languages by artisans
using techniques they neither measure nor are able to repeat
consistently. (Gibbs, 1994).

"Intuition", Gibbs comments optimistically, "is slowly yielding to analysis".

In June 1978, the United States Department of Defence specified a five-set

stage of requirements for high order programming languages. These were -

rather tellingly - entitled Strawman, Woodenman, Tinman, Ironman, and

Steelman. The IEEE! ACM use the similar titles Strawman, Stoneman, and

Ironman to describe cyclical stages in the development of a Software

Engineering Body of Knowledge (SWEBOK). The idea of robustness and

dependability appears to be associated both with masculinity and with physical

building materials.

The proposition that software development should be based on the application

of scientific principles, is frequently referred to as 'software engineering'. Such

engineering principles would be characterised by rigour and repeatable

reliability.

99

Although there is still no recognised standard body of 'software engineering'

knowledge (and no consistent professional certification), the 'software crisis'

gave rise to the creation of numerous systematic and methodical approaches to

software development. Methodologies for analysing and developing systems -

for example, the Structured Systems Analysis and Design Methodology

(SSADM) - constitute a part of that movement that is broadly located at the

design stage. These are generally referred to as 'structured methodologies', and

involve systematic and structured conventions for analysing the information

content and flow of existing systems, as well as designing structures for new

systems. Probably the key component of the subsequent claims of software

development practice to being an engineering discipline, however, is a sub

discipline that is strongly associated with implementation and coding, and is

known as "formal methods".

4.2.2. Formal Methods

Turkle and Papert appear to confuse formal methods with a logical approach to

computing in general, and structured programming and abstraction in particular:

What does concern us is that the new trends -- icons, object
oriented programming, actor languages, society of mind,
emergent AI -- all create an intellectual climate in the
computational world that undermines the idea that formal
methods are the only methods. (1992, p.32)

The phrase 'formal methods', however, denotes something very specific in

computer science and programming. They will be examined briefly in order to

clarify this misunderstanding and its possible link. to the misunderstanding of

abstraction.

Formal methods use mathematics to formulate a problem, specify its solution,

and prove that the solution is correct and meets the original specification. They

are seen as important in the development of military software, but have proven

too time-consuming (and difficult in themselves) for the great majority of

commercial software development. Proofs are obtained by means of deductive

reasoning, which is modelled by symbolic logic, independent from natural

100

language and its multiple ambiguities. Fonnal methods are founded on

mathematics that are known as "discrete". Their discreteness reflects its concern

with discrete elements (such as integers) rather than a continuous number line

(real numbers), and with finite sets and boolean (falseltrue) values in particular.

Where classical physics and applied mathematics are concerned with the

continuous values that are found in the real world, computation is discrete and

programs are finite. Both discrete and non-discrete mathematics may of course

be abstract, but whether it is through the particular nature of discrete

mathematics or the general nature of mathematics, fonnal methods are

associated with the mainstream meanings of "abstraction". As Denvir (1986,

p.ix) says, "mathematics is perhaps the most abstract fonn of thought the human

mind can contrive". Sets, relations, and functions are used to specify data types,

and algebras to specify procedures, along with propositional and predicate

logic. The formalism and complex mathematics of fonnal methods, may indeed

be legitimately regarded as 'abstract' in the sense of being separated from the

concrete. These methods are not, however, a concomitant feature either of

structured programming, or of 'abstraction' as a programming tool.

4.2.3. Language

Although formal methods undoubtedly represent an extremely fonnal and

mathematical approach to programming, they have nonetheless also been

represented in artistic tenns:

Computer programs are built of abstractions at all levels. They
are like poems whose language is pure thought, whose fonn is
of science, and whose power, if controlled by an engineering
discipline, can be put to extending ourselves and our
environment or destroying them. (Denvir, 1986, p.ix)

This appears to resonate with the comparisons which Turkle and Papert make

between writing code in a programming language, and natural language

composition. Such a comparison is explicitly made in the cases of the Harvard

student Lisa who wants to "manipulate computer language the way she works

with words as she writes a poem", and Shelley, who thinks of programming as

101

"moving pieces of language around"; and it is implicit in the general depiction

of the creative soft stylist. This section considers whether the association is

appropriate, and whether it may be a false analogy - as with the sense of

'abstract' - that distorts their analysis.

The concept of 'language' is undoubtedly an ingrained part of the discourse of

programming. Programmers 'write' programs in a programming 'language' that

has a syntax and semantics. Much of the theory of programming language

syntax has indeed been developed from Chomsky's work on natural languages.

Work on programming language semantics has its basis in mathematics and

logic. The abstract roots of programming 'languages' are, as we have seen,

mathematical, and the semantics of first order languages are based on set

theory, functions, and propositional logic.

Mathematics, logic, and programming, may all be viewed as language in the

semiotic sense of symbol manipulation that generates meaning. Bolter refers to

Galileo's claim that "the book of nature was written in the language of

mathematics", and describes mathematics as "a special kind of writing",

mathematical theories as "symbolic text of the highest order". He sees "formal

language" as "the natural language of computers" (Bolter 1991, p.9-10), and

uses the example of the building of data structures through pointers to suggest

that "programming itself may be defined as the art of building symbolic

structures in the space that the computer provides - a definition that makes

programming a species of writing" (p.19). When the programmer writes, s/he

writes, in a language that is intermediate, a 'text' that is known as source code:

in this primary act of writing, the manipulation of the written signs is deferred:

when its instructions are actually carried out, the program itself "creates writing

of the second order" (p.185).

However, there are those within the programming community who dissent, and

see the language concept only as a metaphor, one that programmers should

move away from. Holmes (2000) suggests that programmers' accuracy is

compromised by a need to make their code resemble readable prose: without

102

the language paradigm, programmers would feel more comfortable with, for

example, systematic rather than natural spatial alignment of symbols and

punctuation. Semi-colons, for instance, are used as statement separators in most

bigh-Ievellanguages: because they are psychologically understood as

punctuation maries, they are traditionally placed at the end of each line of code.

As the source code of programs by definition has extreme ragged-right margins

- in other words, lines of code are not at all of any consistent length - it is harder

to spot when a semi-colon is missing. The absence of a semi-colon will often

mean that a program will not compile, but can also result in a program that runs

incorrectly or crashes at a crucial point. Holmes refers to a suggestion from the

early 1960s, that, rather than placing semicolons at the end of statements, they

should all be aligned vertically at the beginning of each statement. He suggests

that, while this would make debugging easier, it did not fit with the average

programmer's psychological conception of programming as "a literary practice".

Holmes gives an account of the hostility with which this suggestion was met -

including, interestingly, his being told that this was "not structured

programming". He concludes that the computing profession "would be wise to

promote a more considered view of programming that contrasts coding and

literary endeavor", and suggests that a good start would be ''to abandon

expressions like 'programming languages' and 'writing programs' in favor of

'coding schemes' and 'program coding"'.

Holmes's suggestions also contain recommendations for abbreviating identifiers

- including removal of all vowels. This is supposedly to avoid dangerous

spelling errors by systemisation. However, it is not explained how shortening

words will improve spelling accuracy (especially with the added cognitive

burden of following a secondary set of rules for abbreviation); and in any case

modem programming languages normally require the prior declaration of all

identifiers, and compilers will therefore in any case detect misspellings and

refuse to compile such code. The objection on the grounds of "the coding effort

required" (in other words, typing) seems equally specious. Bolter makes the

more profound point that "we cannot understand 'higher' or cognitive mental

103

activity except by analogy with writing" (186), and describes computer

programming as the manipulation of signs - as "applied semiotics" (195).

While there is a tendency within the programming community to overly

dehumanise the process of coding, the similarities between natural language

and writing on the one hand, and programming languages and coding on the

other, are not sufficiently meaningful to justify Turkle and Papert's assumptions

in this respect. This does not mean that coding is not an art - simply that it is

not the art of creative writing. Such analogies are likely to create false

expectations of programming, and undermine the concept of the 'soft' style.

4.3. Low and High Levels

The 'signs' of programming languages are understood at different levels - by

the programmer and by the computer; and by the user of the program's product,

the software. The packaging of signs from one level, into signs at another, is

crucial to the communication of meaning. Low-level essentially describes the

characteristic of nearness to the computer's own electronic binary language,

and high-level signifies greater closeness to people than computers. As Turkle

herself says, ''The logic of high-level languages is adapted to how people think,

no to how the machine 'thinks'.tt And ''when you program in Logo or BASIC,

the internal structure of the machine need never cross your mind" (1988,

p.183). Turkle does not categorise programmer preference for high and low

level languages, but does comment that high level languages are "less

satisfying" for programmers who have a "desire for transparency" (1988,

p.183). We will consider what is meant by 'transparency' in the next chapter.

The high-to-Iow scale, mapped onto traditional gender stereotypes in relation to

other technological objects, is traditionally translated as female-to-male:

women using, say, the engine and controls of a motor car, as effective black

boxes without any concern for the workings of the internal combustion engine,

and men wanting to know their inner workings. The turning of the ignition key

is an abstraction of the process of ignition, the turning of the steering wheel an

abstraction of the implementation of the steering: it does not matter to the driver

how it has been implemented, as long as they know how to use it. Black-boxes

104

use functionality but do not reveal it. Different levels of detail are available on a

need-to-know basis: the mechanic does not need to know how the spark-plug is

assembled in order to place it in the engine. In programming and program

design terms, the range of this high-low scale may be exemplified as in figure

2:

High natural language Human

i Structured English J,

i graphical 'direct manipulation' interface J,

i 4th Generation languages J,

i scripting languages J,

i third generation languages J,

i assembly language J,

Low binary code Machine

Figure 2

Each level up the ladder represents a more "abstract" level than the level below.

The higher level 'language' allows the programmer to use functionalities or

data structures without knowing the details of how they are implemented at a

lower level. Abstraction is the removal, or 'abstraction', of unnecessary detail

the temporary disappearing of a whole level of complexity. A key feature of

procedural abstraction is that a routine may be handled by the programmer in

terms only of its functionality - what it does, and how it is used. The

programmer does not need to know how it works. It may be treated as a "black

box".

By "prepackaged program" Turkle and Papert mean a module, procedure or

routine within a programming environment. The case of Alex the soft master

introduced the notion of the procedure by inference, as something inimical to

his style; yet while Deborah also identifies with the computer, her turtle

programming appears to involve the packaging of more complex functionality,

such as a rectangle-drawing subprocedure that makes it possible to draw houses

and other substantial everyday objects. The latter actually provides a simple but

105

concise example of the use of abstraction in computer programming. A

procedure encapsulates a number of operations that work together to achieve a

single purpose. It can be called by name when needed, without the necessity to

repeat the full sequence of its constituent operations. In design, a procedure

usually corresponds to one of the divide-and-conquer sub-task statements of

what the program needs to do. Procedures may be 'prepackaged' by the

language designer, the software house that developed the language compiler,

the writer of a commercial library of routines, or by another member of one's

programming team.

Every programming language has 'prepackaged' routines. The Write procedure

in Pascal, for instance, enables Pascal programmers to output text and numbers

to a screen, printer, or disk file. They do not need to know how it does this -

they know that it will do it with data of any elementary type, and that they can

use it. Such prepackaged routines are coded using lower-level language: a

lower-level 'out' procedure would write a given byte to a given Input/Output

port. While the items which Write deals with will be of a humanly recognisable

type - strings of letters, whole numbers - the code that implements it will deal

with variables of computer-understandable types such as WORD and BYTE,

and will include hexadecimal numbers, memory addresses, processor registers,

and assembly-language commands. Normally the programmer does not see this,

and certainly is unable to change it. At some point even the most prying,

technically-acquisitive, mind will give up before it reaches all the zeros and

ones.

4.4. Abstraction in practice: a demonstration

A 'concrete style of reasoning' is perhaps nowhere more essential than in

discourse about programming! Concrete exemplification is needed to illuminate

the range of arguments concerning 'abstract' and concrete styles. A practical

illustration of the uses of 'abstraction' in programming will provide insight into

what abstraction actually means in practice, and what difficulties are entailed in

rejecting it In order to facilitate easier understanding, we will express solutions

106

in English-like pseudocode rather than in an actual programming language, and

use a constructive graphical example.

We will start then with a problem that, like Turkle and Papert's examples, is

limited and visual in nature. We want to draw a block of stars, or asterisks, on

the computer screen - initially one that is twelve stars wide and three deep.

Using a 'concrete' approach (and having first found a precise width and depth

for the block) we could output each star one by one - rather like Anne does with

her Logo birds, or Usa 'feeling her way from one word to another' in Turkle

and Papert. We would have to tolerate some sort of prepackaged routine (such

as FORWARD in Logo, or Write in Pascal) to do this. (A feature of the

'concrete' approach appears to be going straight to a chosen computer

language, without any 'abstract' planning.) We could produce one line by

writing out a sequence of asterisks, followed by a carriage return for a new line,

then repeat the same steps two more times, and the problem is solved:

write out "************"

write out a carriage-return

write out "************"

write out a carriage-return

write out "************"

write out a carriage-return

The output from these steps - a 12 by 3 block of stars - will be the same as that

produced by an 'abstract' -style process, so it appears to be of equal 'quality'.

However, not only has the 'solution' involved a lot of typing (depending on

how large the block is to be), but, more significantly, it is entirely static: if it is

for a block which is ten stars wide and four high, it will need recoding if a block

which is 12 wide and 6 high is required.

A 'loop', or repetition, is a key feature of 'structured programming'; it is also,

essentially, an 'abstraction' of a lower level of detail wherein the repetition of

an action is literally represented (do x - do x - do x) rather than simply 'do x 3

107

times'). In a non-structured approach, it is represented less intuitively by

creating a label at the start of the action, then putting a GOTO direction at the

end of it, that will go back to the label if a given condition has not been

fulfilled. This has the effect of repetition, but a 'control structure' for iteration,

such as WHILE, FOR, or REPEAT, is more linguistically intuitive, and

packages up the repetition with a single entrance and a single exit point. The

FOR loop is used to perform the action a set number of times. If we know that

the block of stars is 12 wide and 3 high, then we' can draw one line of it by

repeating the star 12 times; in turn, we can draw 3 lines by packaging up this

single-line routine and doing that 3 times. This involves 'abstraction', or 'black

boxing': if we can work out how to draw one line, then instead of writing out

the detail of that 2 more times, we can 'black-box' it into a reusable 'draw one

line' routine.

We can do this either top-down by starting with the overall block:

draw a block of stars

FOR line count from 1 to 3

draw one line of stars

write a carriage-return

END FOR

- where the detail of 'draw one line of stars' is postponed, or 'abstracted' until

the overall logic is settled. Alternatively, we can do it in a more bottom-up

fashion by first working out how to draw a line of stars:

draw one line of stars

FOR star count from 1 to 12

write out '*'

END FOR

Either way, we are using functional decomposition and abstraction to enable us

to understand the problem a bit at a time rather than all at once. For a novice

programmer, it would be tricky to work out the required logic of the nested

108

loops without using these techniques - in particular, the location of the carriage

return in relation to the loops would be difficult to understand with any

certainty. When the 'black-boxes' are slotted together, however, it is relatively

straightforward. In the top-down version,

FOR line count from 1 to 3

draw one line of stars

write a carriage-return

END FOR

we substitute the detail of 'draw one line of stars', to get the solution:

FOR line count from 1 to 3

FOR star count from 1 to 12

write out '*'

END FOR

write a carriage-return

END FOR

The 'bonom-up' model is not strictly either bottom-up or top-down, but a

combination of both. Its advantage is that it allows the programmer to test out

the 'draw one line of stars' routine first. This incremental approach to

development is essentially a 'concrete' (and often bottom-up) approach that still

depends on abstraction and stepwise refinement. It is indicative of the plurality

and diversity that is in fact inherent in the practical use of abstraction and

stepwise refinement - top-down, bottom-up, middle-out.

This may all seem harder (and more 'abstract') than the initial solution of

writing out three sequences of asterisks and carriage returns. However, this is

only true for extremely small variations of the problem. The direct approach

loses all practicality with a very large number of stars and/or lines - or indeed if

the number of stars and lines needed to vary in response to input from the user.

If the problem were a little more meaningful- say, to write out given characters

in blocks of asterisks - then we have to move to a higher level of abstraction

again (I am choosing to present this problem in a "bottom-up" manner). At that

109

level of abstraction - printing out a capital L, for instance - we can in tum use

our 'draw a block of stars' as a black-box building-block. The only problem so

far would be that the dimensions of the vertical part of the 'L' differ from those

of its horizontal part. We cannot, therefore, package the routine above, and call

it several times. We would need to spell it all out two times, each time stepping

both the line count and the star count to different specified numbers.

Call the routine once and we get:

.*******.***

So call it four times and we get the main body of the 'L':

--* _--*-*
----*-------*---_ ••• _.*.

--------_.
----**-_._-*

'*'***'****

In order to go in a horizontal direction now, to flnish off the 'L', we will need

to draw a further block that is wider than it is long. This means writing a new

routine. And this is just for one letter - other characters will require a large

number of other new routines.

110

It would be easier if we write one routine that enabled us to vary the

dimensions. Instead of drawing 3 rows, draw however many lines are required

in a particular situation; and instead of 12 columns, however many columns are

needed - so a DrawBlock routine could be called as DrawBlock (3, 6), or

DrawBlock (8, 12), or whatever:

DrawBlock (height, width)

FOR line count from 1 to height

FOR star count from 1 to width

write out 1*'

END FOR

write a carriage-return

END FOR

lbis routine could then be used flexibly to build up letters of a given size (with

appropriate adaptations to write indents). Building the letters star-by-star, or

even line-by-line (bone-by-bone, as Turkle and Papert's 9 year old Alex wants

to do with a skeleton), would be an inunense task, with the constituent elements

atomised and divorced from their meaning. It is easier to handle it initially at

the highest level, in segments that are human-recognisable and that match the

terms of the problem - in other words, as letters. Even drawing them block-by

block makes less intuitive sense than designing letter-drawing procedures for

each letter. lbis is the highest level of abstraction: drawing blocks is the next

level down; and drawing stars is the lowest level. It is often true that novice

programmers cannot see the wood for the trees, but whether a flexible top-down

approach is used or not, abstraction is a fundamental tool for reducing the

complexity of the problem. Like any tool, its usefulness is clearer in concrete

situations.

4.5. Building Blocks and Versatility

Black boxes, at varying levels of abstraction, increasingly mean that the

programmer can become a user, and the user a programmer. From a different

perspective, it is likely that there will be two types of programmers in future:

111

those who develop the reusable components, and those who use them. This

convergence is not new: Myers, Hudson and Pausch (200012002, p. 226) cite

spreadsheet users as the first end-user programmers, and refer to ''productivity

applications" (such as the Microsoft Office suite) that are "becoming

increasingly programmable". They predict that "end-user programming will be

increasingly important in the future". It is likely that software in the future will

consist of reusable software components which end-users can plug together to

meet their particular needs. Such components present the prospect of "making

every computer user a programmer". The new 'programmer' will only know

how to use the available components and tools in order ''to solve the problem at

hand" (Cox 1990/1995, p.385): they will not be distracted by the hidden

complexity. Such a situation would represent the use of ''prepackaged routines"

to facilitate user-friendly 'programming' - two things which Turkle sees as

antithetical.

At the highest practical level, the principle of the 'prepackaged program'

defines any commercial software package: a word processor is essentially a tool

presented to users at a very high level of abstraction. And in using any feature

of a language above binary code, programmers are using a prepackaged routine,

an abstraction, a 'black box'. A simple integer calculation - such as 4 x 5 -

makes use of an abstract data type that is usually built into a programming

language compiler: we do not need to (or usually want to) think about the

definition of the data type and that of the multiplication operation. Processing

text - a string of characters - usually involves using predefined types (such as

STRING) and operations (such as Write or Read): again, we do not need (or

have the time) to know how the STRING abstract data type is implemented.

In many languages, routines are defined and implemented separately. This

provides a means for hiding the internal workings of modules from any

program (or programmer) that uses them. The program, or programmer,

therefore only knows what they need to know in order to make use of the

routine. This sealproofs the server module, as a client program cannot

inadvertently change some aspect of the server module. In this way, black-

112

boxing dramatically reduces the possibilities and complexities of errors and

side-effects, and greatly simplifies maintenance, modification, and the isolation

and correction of bugs. At the same time, the black-box module is also

protected from any deliberate interference on the part of a hacker-programmer.

4.5.1. Su b-proced ures

The concept of the sub-procedure, or local procedure, utilises the packaging of

code in order to control the visibility of names and items within a piece of code.

The solution for a sub-problem is packaged into a sub-procedure, which is

nested within the larger procedure that calls it. Variable data items that are only

needed within the sub-problem (or sub-sub-problem), are only visible and

usable within that sub-procedure: they are invisible to the rest of the procedure

outside. The dominant principle is that the more code a variable is visible to, the

more chance there is of it being incorrectly set, and, in addition, the less chance

there is of the programmer understanding all the possible permutations. It is

therefore more likely that the program will be both accurate in its functionality

and clear in its readability to other programmers; and that the program will

consequently be easier to maintain in terms of correction, extension, adaptation,

and other modifications.

Nested subprograms can, however, become unduly complicated as the level of

nesting deepens. The less sharing there is of data, the more independent a

subprogram will be. However, procedures can normally access any data that is

used in sub-procedures that lie inside (rather than outside) it. Unless it is a

compelling part of the logic and structure of the problem, it is often more

desirable to separate out sub-programs, and place them at the same level. They

can still call each other, but cannot access or change each other's internal state.

Their independence will be stronger, and they can be separately tested, enabling

the programmer to develop the program in an incremental way - making sure

one part works before moving on to the next. The 'canonical' view of

programming practice is that the procedure (or other packaged code) should be

a self-contained unit: its internal state cannot be changed from without, and it in

tum should not be dependent on any global data. Its interactions with the rest of

the program should be controlled through parameters.

113

4.5.2. Parameters

The concept of parameters has been exemplified in the block-drawing routines

above - where they allowed blocks of different widths and heights to be drawn.

Parameters generalise a procedure, allowing it to vary the detail of its

functionality by using specific data supplied as its argument or arguments when

it is called. So the DrawBlock procedure can be called to draw, not just a set

block, but a six-by-three block, or a four-by-two block, or a block of any

practical dimension. When the procedure is called, it is supplied with these

arguments, or actual parameters: their values are input into the procedure. In

this way information can be passed between procedures where it is necessary

for the accomplishment of a procedure's task, rather than having it declared

globally to all procedures.

A formal parameter is declared in the procedure's declaration, in the

parentheses that follow the procedure name, and is effectively implemented as a

local variable; however, it is changed only when the argument is input. If the

input value is to be processed and a result output, it is necessary to use either a

function or, if the language allows, a variable parameter, to get the information

out of the procedure.

4.5.3. Modularity and Encapsulation

Some procedural languages take the idea of the prepackaged procedure, and the

restriction of access to data, a step further. Modular languages such as Modula-

2 and Ada are themselves constructed out of modules. Usually they need a bank

of library modules in order to function at all. In this respect they provide a clear

illustration of the rationale for modules. For example, in Modula-2, basic input

and output routines (reading from the keyboard, writing to the screen) are

provided by a service module. Typically this is the InOut service module

published by Niklaus Wirth, the author of both Modula-2 and Pascal- although

alternative modules can be provided by third parties and as a part of

commercial compilers. Without such a module, the programmer would have to

114

write input and output operations within the body of their own program. Such

embedded code would - apart from its intrinsic complexity - obscure the logic

of the actual problem that the program itself solves. The InOut module serves to

abstract that unnecessary complexity from the logic of the specific task at hand.

This principle can also be used by the programmer to reduce complexity by

abstracting coherent types of detail into separate modules. When the

programmer needs particular functionality, it can be imported. Detailed

operations are referred to in an abstract way, and the code that the programmer

is writing can focus on solving one particular aspect of the overall problem.

In addition to encouraging modular design, modular languages also require the

programmer to keep the interface and implementation separate. An interface

module will simply define what a procedure does, and everything else the

programmer needs to know in order to use it: its name, its purpose, and the

order and type of any arguments that should be supplied to it when it is called.

The detail of how it is actually implemented, must be kept separately. In some

procedural languages, this will mean in a separate section, in others - such as

Modula-2 - the detail must be kept in an implementation module that is a

physically separate file. All modules - including definition and implementation

modules - are compiled separately in Modula-2, and a definition module must

exist before a corresponding implementation module can be compiled. When

changes are made to an implementation module, only that module needs to be

recompiled, but the integrity of its links to other modules are still checked. As

we shall see, the theme of modularity with abstraction is developed further in

object-oriented programming.

4.5.4. Typing of data

The difficulties of coding on a large scale are legion, and are not necessarily

resolvable by formal methods. The example of a Venus probe that strayed off

course is instructive. The spacecraft was sent permanently off course by an

error in one out of many hundreds of thousands of lines written in FORTRAN:

DO 3I=1.3

115

had been encoded, instead of the correct

DO 3I=1,3

Instead of executing a repetition that would have stepped the variable I from 1

to 3, the code instead assigned the value 1.3 to a new variable DO 31. The error

at its source is more likely to have been a typing error than a logical error. In

addition, aspects of the programming language and compiler facilitated the

error: a more strongly-typed language would have required all variables to be

pre-declared, and to be of a given type. Such a language would not have

allowed the false assignment to have occurred, because the new variable had

not been declared: the program would never have compiled, and the error

would have been identified.

4.5.5. Abstract data types.

Real-world problems usually involve non-trivial data structures. Programmers

need to develop such structures along with the operations needed to manage the

data. Modular languages allow the programmer to do this separately from

actually producing the code. This means that the programmer can focus on

reflecting the real-world structure rather than be guided by the peculiarities of

the programming language.

Some structures occur so frequently in problem solving that their names - and

the names of their access operations - are standard, and implementations are

often provided with a compiler: stacks, queues, and linked lists are among the

most common examples. The nature of the structure determines the particular

operations needed: a stack of trays, for instance, needs an operation to take a

tray off the top of the stack (pop), and one to place a tray on the top (push); in

the case of a queue of people - where it is important to preserve order - these

adding and removing operations would take place at the bottom and top

respectively.

116

4.5.6. Pointers and Opaque types

An abstract data type need only consist of a structured data type and a group of

operations to access data items of that type. Opaque types, supported by some

languages, represent greater levels of hiding, and make abstract data types even

more abstract. In Modula-2, implementing a data structure by using pointers

means that its declaration need not be visible to clients. If implemented as a

static array, a data type must be declared in full within the definition module.

If the structure of the data is declared in the definition module, any programmer

could use this lmowledge to bypass the access routines provided and alter the

elements of the array directly. The access routines supplied with the data type

would be robust - they would, for example, check that a structure was not

empty before attempting to take an item from it - and would therefore in theory

ensure that no attempt was ever made to remove an item from an empty

structure. This safeguard is removed if the internal structure of the data item is

visible: the programmer can, whether deliberately or accidentally, bypass the

standard access procedures. As a result, illegal operations would become

possible. Such bugs would be more difficult to locate, because the means of

accessing the structure is not standardised. The service module itself would

have also been interfered with, and would be unlikely to recover from any such

misuse.

The dimensions of arrays have to be declared within the type definition. This is

a consequence of the way the language physically separates definition from

implementation: client programs are compiled separately, and need to know

how much memory to allocate. If the declaration is not included in the

definition module, this information is not available and the program will not

compile. Doing so exposes the location of each individual data item. Pointers

remove this problem by allocating memory dynamically: the dimensions of a

structure can be dynamically altered at runtime. It is therefore not necessary to

declare dimensions within the definition module. Pointers store the memory

locations of data, rather than (as with static variables) the data itself. This has

the added benefits that unnecessary storage need not be allocated, and that no

117

size limit need be observed. In declaring such a structure, it is necessary only to

declare its identifier in the definition module: its full declaration, not just the

implementation of its access procedures, can be hidden in the implementation

module, in which case it is said to be an opaque type. The only operations that

can be used on items of that type - apart from Simple equality tests and same

type assignments - are those supplied with the procedures. The opaque type

hides implementation detail more thoroughly, and decouples the

implementation module from client modules - and even from its own definition

module.

4.6. An example of complexity and error: WindOWS DLLs

This section explains the centrality of prepackaged functionality and black

boxes within Graphical User Interfaces, and further illustrates the way in which

software complexity necessitates a modular approach, highlighting this by

means of the complexity to be found even in an ostensibly straightforward

software package such as a word processor.

Modular programming in the Windows graphical user interface - as well as the

Sun and Acorn Archimedes operating systems - is characterised by the use of

dynamic linking. In Windows, this is implemented through the use of dynamic

link libraries - better known as DLLs. Most features of the user environment are

common to all applications that run within that environment. Rather than have

all Windows software include these code elements within the final compiled

programs, libraries can be linked to each and every application program as and

when that program is loaded or run. Windows programs - and the Windows

interface itself - access common compiled functions located within these

library files. DLL files are normally Microsoft files that are shared by several

programs - although programmers can compile their own DIL files to serve as

libraries for their own software. In either case, DLLs break code down into

reusable chunks, and serve to make the interface appearance and functionality

consistent across different applications, as well as to ensure that special

functionality is loaded only when it is needed.

118

It should be noted therefore that the entire endeavour of the direct manipulation

graphical user interface is cOIIUllonly based on the use of libraries of pre

packaged functionality. Given the complexity of representing graphical

interfaces such as the Windows environment, it is hard to conceive of it being

otherwise.

However, both graphical interfaces and the modularity on which they are

founded, can also have their disadvantages. The Windows environment is

particularly vulnerable to problems with the integrity and consistency of DLL

files: for example, one software program might need to access a function within

a DLL. only to find that the particular routine has been updated in the more

recent version installed and required by another piece of software. Or the DLL

could have been removed when another program was uninstalled. Newly

installed software can replace more recent versions with older versions. It is

seldom clear which program installed (or removed) the Original file. Moreover,

DLLs can frequently depend on code within each other, and there is therefore

considerable potential for different versions to be out of step with one DLL and

still be in step with another.

The software will invariably crash (or refuse to start) as a result of any such

lack of compatibility, and the friendly graphical interface will present the user

with a decidedly unfriendly message telling them that the software has caused

an invalid page fault. in a specified DLL module. at a specified memory

location. At this pOint, the friendly, high-level graphical environment takes

refuge in long and impenetrable lists of memory registers and locations of file

bytes that are both meaningless and useless to virtually every user.

Ahernative failure scenarios are linked to the complexity ofprogramrning at the

relatively low level usually required in the development of DLLs. The point of

a black box is that it cannot be corrupted by external routines, and that any

errors that emerge can be confined to the black box. However. although the

DU functions are black boxes that are to be used with reference to what they

do and not to how they do it, it is possible for a Windows application developer

to write code which, when it calls a Microsoft function, will produce an error.

Such problems are, by definition. bugs in the DLL file. One of the more

frequently encountered bugs in Windows applications at the time of writing

119

(2001) is the generation of an "invalid page fault in Msvcrtdll". While

Microsoft advise that application developers "need to ensure that their

applications are using the C run-time small-block heap correctly" (Microsoft

Product Support Services, 2001), the problem fundamentally arises out of heap

management changes implemented in a newer version of this DLL, which can

result in the referencing of bad pointers. In other words, errors in the

programming both of application packages, and of the user interface

environment itself - and in the interfaces between both - are not uncommon,

and cause software and computers to fail, or 'crash'.

Pointers are a particular source of problems. Pointers allocate memory

dynamically, and depend on the validity of the links between particular memory

locations. It is sufficient to understand that programming with pointers is

usually complex; that they are part of most high-level languages; and intrinsic

to object orientation. The corruption of Microsoft Word documents is a useful

illustration, in that it has been experienced by large numbers of computer users!

Word is object-oriented: a Word document consists, internally, of a linked list

of the objects it contains - where an 'object' is anything in a Word document,

and will have several properties that define how it appears and behaves. Objects

are connected to these properties by pointers to byte locations in the Word file.

Most objects will have many such pointers. and some pointers may in turn point

to collections of standard properties for common types of objects. As Word has

developed, the number of potential objects and properties has increased hugely:

the number of potential combinations of objects and pointers is exponentially

vast - and not all potential combinations will necessarily be valid.

The multiple tables containing the complex network of pointers that constitutes

all the properties of a Word document - and that makes sense of the binary

content of the rest of the file - are stored within the document. Section Breaks

are used as containers for this purpose. Every Word document has a default

Section Break, which is effectively located within the last paragraph mark - a

mark that is contained within every document, and which cannot be deleted

because it contains binary information that is fundamental to the structure and

content of the document.

120

Master Documents in Word represent a concrete example of the strong potential

for conuption, of a faultiness that is in practice inherent, due to the complexity

of software. A Master Document incorporates a number of related

subdocuments: a typical use (if the facility worked) would be to organise and

edit the chapters of a book or thesis. All of the subdocuments will have their

own default Section Breaks, (along with any number of user Section Breaks).

The structure - and the exponential potential for conflicts - is simply too

complex to be sustained: Master Documents consistently become conupt, and

text consequently disappears irrevocably from the file.

The modularity represented by object-based programming, and by dynamic link

library files, is necessitated by the sheer complexity of representing software

interfaces and interactions in a way that is visual and responsive. The further

layer of application functionality obviously represents another layer of

complexity that also intricately interacts with the complexity of the

environment. The complexity even of individual modules - and the daily failure

of these, that has so characterised environments such as Windows - is often

overwhelming.

4.7. Conclusion

In examining the nature and difficulties of programming, we have discussed

different discourses and metaphors at different levels, and what different styles

can mean in practice. The meaning and purpose of abstraction has also been

illustrated in order to facilitate a more focused critique of Turkle and Papert's

reading of gendered programming styles. The subsidiary theme of top-down

decomposition as part of the programming 'canon' has also been exemplified.

The analysis suggests that Turkle and Papert have conflated top-down

approaches with abstraction, and have missed the full meaning and significance

of 'abstraction' or black bOxing in programming. We are now in a position - in

the light of gender theory, of the general position of gender in computing, and

of a more particular understanding of programming - to develop a focused

critique of their specific propositions concerning the gendering of programming

styles.

121

122

5. Turkle's abstract and concrete programmers: an

analysis

5.1. Existing criticism of Turkle and Papert

As indicated in chapter 3, Turkle's analysis has rarely been questioned:

Wajcman (1991) does express reservations about Turkle's underlying

acceptance of "sexual difference in cognitive skills" (p.l57), and is generally

sceptical of the evidence for such difference. She also touches upon the implicit

contradiction between Turkle's idea that males follow rules, and research in

mathematics that shows girls tend to follow rules diligently. She comments:

This would lead one to suppose that girls would be the

hard masters in computing. Are we now to believe that in

computing boys follow the rules and girls are practising an

alternative style? (Wajcman, p.157)

However, it may be argued that Turkle is dealing with a level of psychology

beneath the level of outward conformity that rule-based systems demand, and

seeks to uncover what lies beneath the mask of what she calls 'computational

reticence'. In any case, as a sociologist, Wajcman does not examine Turkle's

particular evidence concerning programming, and accepts her less fundamental

proposition that there are indeed gendered styles of programming that are

unfairly valued. She sees Turkle's ferninised concrete style as an instance of

"getting the right results by the wrong method" - a concise summary of

Turkle's own argument - but does not give any insight into the significance of

process and method in an activity where 'right results' may not be what they

seem, and need constant care and maintenance.

Wajcman explains Turkle's deterministic tendencies in terms of the influence of

the work primarily of Gilligan (1982), but also of Keller (1983, 1985), and

Chodorow (1978). As she points out, binary oppositions (between what is

female and what is male) often lend themselves to an essentialism or

123

romanticism that depends on biological sex rather than socially constructed

gender.

5.2. Other perspectives

There is, therefore, no direct critique of the essence of Turkle and Papert's

influential work on computer programming. Some studies outside of the

literature on gender, do touch upon the same territory in relation to

programming - but without necessarily relating it to gender.

At a system level, Goguen (1992) identifies a "drY' culture, which sees

programming as a branch of mathematics and computer programs as

mathematical objects; and a ''wet'' culture, which regards social factors as the

crucial determinant of success for software. Green (1980) makes a similar

distinction among computer programmers between "neats and scruffies", as

well as between 'neat' and 'scruffy' programming languages. The

characteristics of "scruffies" include a predilection for languages, such as C,

that allow the programmer ''to get at the internals of the machine" (p.22), and a

desire to take risks and not to be inhibited by strict rules. The 'scruffy'

programmer therefore shares significant characteristics with the soft/concrete

programmer, and the 'neat' programmer similarly with the hard/abstract

programmer.

Neat languages, such as Pascal, are well defined, and prevent the programmer

"from doing things that might be 'dangerous"'. Green comments that 'scruffies'

"regard that as a paternalistic, even authoritarian, attitude, and programmers in

scruffy languages are expected to look after themselves". The dichotomy is

summarised in terms of style and preference: "Some people enjoy writing

cryptic code, while others enjoy writing self-evident code" (p.24). Turkle's

concrete stylist will write code in 'negotiation' with the machine: while the

driving style may be creative, the resulting code will inevitably be more cryptic.

The thought processes are individual, shared with the machine, but hidden from

others. The feminine and masculine stereotypes of 'mystique' and individuality

converge to produce equally difficult code.

124

Green et al (1993) point out that texts on neat and scruffy programming

languages tend to reflect the corresponding culture: C identifiers tend to be

short and cryptic, while Pascal identifiers tend to be long and more meaningful.

In discussing the different 'pedagogical traditions' associated with each

language, Green says that 'neal' language students are "exhorted not to start

coding until they have fully analysed the problem, nor to approach the

computer until the coding details are fully worked out". Scruffy books often set

tasks that are

domain-specific problems, such as interacting with the
operating system, or algorithms for natural-language parsing,
rather than to analytical reasoning. Students are expected to
think in code, and to get the feel of hands-on experience as
soon as possible ... understanding is gained by making 'fruitful
mistakes'.

Such a culture tends to look for solutions that are strongly tied into a particular

programming language, rather than design software as an abstract, conceptual

construct that would yield multiple representations and still remain the same.

5.3. The Psychological Machine

5.3.1. Machine Bugs and Personality Quirks

Turkle's categorisation of the computer as "a psychological being" (Turkle

1984a, p.54; 1984b, p.50), or "psychological machine" (Turkle 1988, p.50) with

an "intellectual personality" (Turkle and Papert, 1992, p.3), raises ontological

problems: if the computer really is "a psychological being", at least "on the

border between mind and not mind", it follows that a sensitive person would

not tell it what to do, and would certainly not expect it to be perfect. Soft

masters therefore do not expect their programs to be 'perfect'. Just as the Austin

pupil Anne would tolerate and negotiate around imperfections in people, as a

pro grammer she ''makes no demand that her pro grams be perfect". In Turkle

and Papert's model of programming psychology, only proponents of ''male

mastery" are obsessed with debugging - removing ''the small errors". Soft

masters are tolerant of such "small errors". In this respect the soft master's

demand for total understanding appears to be waived: "People can be

understood only incompletely: because of their complexity, you can expect to

125

understand them only enough to get along, as well as possible for maintaining

the kind of relationship you want". Boys are criticised for believing that

programs are "either right or wrong" - wanting to have "small errors" removed

is seen as petty and unforgiving (1984a, p.ll 0). The Venus probe incident

referred to in chapter 4 is just one real-world example of a "small error" - many

more such incidents have resulted in loss of life.

Turkle indeed reclaims the bug as a personality trait - somewhat like a flaw. An

example she gives concerns a student, Mary. Where painter Anne's soft

mastery is graphically expressed , "Mary differs strikingly from Anne in having

a soft style that is verbal" (1984a, p.IIO). Mary's programs are "marked by her

interest in language". This appears to reflect - or be reflected in - the fact that

her programs use text dialogue. Turkle gives an example of this verbal soft

style: when the user has finished playing Mary's game program, the program

wants to know whether they want to play another game, or want to exit. She

writes lines of code in Logo. which Turkle. describing them as a 'program',

renders into pseudocode:

Ifwhat-the-user-types is 'Yes,' start a new game.
If what-the-user-types is 'No,' print score and stop.

When these lines of code run, the result is "not quite as Mary originally

planned". If the user types in 'No', the program asks again whether they wish to

exit, and finally exits when it is typed in a second time.

The softness of Mary's approach lies in the fact that she likes this error, and

decides not to fix it, seeing it as a "humanlike quirk" that gives the program

''more of a personality". The personality trait imputed is that "He will not take

no for an answer" (Mary. like Anne, insists on using the male pronoun to refer

to the computer). It is not clear how this attitude is ascribed to the interaction;

how it represents 'personality'; nor how it helps Mary relate to the computer.

Although consistency is not something that can be expected of people, it is a

dominant theme in the literature concerning the construction of user-friendly

human-computer interaction. Users (rather than programmers) tend to need

126

consistency in behaviour, and to resent unpredictable 'quirks'. The behaviour

imputed by the bug is not backed up by any variation in the response (for

example, 'are you really sure?'): the response is the same one, and the obvious

danger is that the user, confronted with a prompt that has not changed, will

think either that their response has been ignored, or that the program has just

stopped working.

The bug/quirk is, as Turkle says, easily fixed (though she does not explain

how). Turkle accounts for it by explaining that the computer "is a serial

machine; it executes each instruction independently". This is not an entirely

precise representation either of how a program executes, or of the reasons for

the bug: a computer program will normally store needed information in

memory 'variables' , and the execution of instructions will in fact depend on the

contents of those variables. In this case, the typed response of the user would

have to be stored in a variable (in spite of Turkle' s identification. in Anne's

case, of variable use with a hard 'algebraic style of thinking"), and there would

be no need to read the response twice. Mary's problem would appear to be that

her program reads the answer once for each condition, within two separate if

statements. She has the computer wait for "what-the-user-types" twice rather

than once - within an if statement used for 'Yes' responses, then within a

second if statement used for 'No' responses. If the answer is 'No', the computer

still waits for a 'Yes' response first. It would be more natural to ask once, and

then decide (with a single if-else), a course of action on the basis of this one-off

response. Mary's 'error' is therefore more logical than verbal- it is 'verbal' in

the superficial sense that the output and input are textual; and perhaps insofar as

one would not normally ask two questions where one would do just as well.

The soft master negotiates with the computer rather than the user "about just

what should be an acceptable program" (1984a, p.lll), because the framework

of an individual artist-and-canvas metaphor does not have any significant place

for a user. Such an approach would be potentially disastrous in the world of

software development.

127

5.3.2. Real World or Disneyland?

Computer programming as a profession is located in what Turkle casually

refers to as "real organisations" (1995, p.51). To avoid accident or social and

economic damage in this real world, the "small errors" are critical: programs

have to be not just debugged, but also debuggable. This means that, for

maintenance purposes, people other than the individual programmer have to be

able to understand how the program has been written, and ideally to pinpoint a

clearly discrete sub-section that contains the bug. Furthermore, if it is to be of

use, the program itself needs to translate to the users' experience of their real

world environment and tasks. In Turkle's evaluation, programming is a means

of ''working through personal issues relating to control and mastery" (1980,

p.15). It is the user who appears to be most significantly left out of this personal

and tactile relationship between programmer and computer. And within a

programming team, the individualistic intimacy is at odds with the

communicative practice essential to holding large projects together. FOCUSing

on "negotiation, relationship, and attachment" (1992, p.9) with machines at the

expense of real people is not something that is traditionally perceived as a

feminine trait.

Indeed, Margolis et al (1999) quote a female programmer who associates

programming with the real world rather than the computer, and who explains

"how this people-oriented purpose for computers is what resonated with her

desire to connect computer science to real world problems" . They also refer to

the drive to "figure out how it works" as something that was "prevalent in the

male interviews and very rare in the female interviews", positioning the male

students "in a very active relationship with the machine". This appears to

contradict Turkle's account of soft female programmers wanting to take things

apart - programmers like Anne, who does not want to "forget about 'how the

bird works'" - and her positiOning of relationship and connection as feminine

cognitive virtues. In addition, women in this survey ''talk about the pleasure in

'systematic thinking'" - something which Turkle and Papert describe as a

predilection of ''the hards" (1992, p.9).

128

In her later popular work, Turkle is concerned with MUDs, cybersex, and other

fantasies, rather than the real world of programming. It is apparent in this work

that she confuses the act of programming a computer with the usable software

product. And it is consequently programming as well as software that is

confused with DisneyLand, where "the representation exists in the absence of

the real thing" (1995, p.47). Post-modem theorists may well "write of

simulacra. copies of things that no longer have originals" - but however

intangible software is, it does represent something - and the fidelity of the

representation of real-world needs and environments is vitally important.

Relating to computer objects, or "lines of computer code" (1995, p.59) in the

way that Turkle suggests, may be at the expense of the real world people and

things that those objects and lines represent: real-world environments are not

like Disneyland's Main Street (1995, p.47; p.236).

5.3.3. Art, design, and the abstract

The metaphors and applications of programming suggest the possibility of

artistry. As we have seen in Chapter 3, we 'write' a program in a programming

'language'; and Logo, the language that Turkle and Papert focus on, is

commonly used to draw shapes. Turkle and Papert exemplify soft mastery

through people who are poets, musicians, potters, and artists. The real artist

does not normally communicate the process of composition - nor is it usually

desirable or even possible to do so: it is the final work of art that the artist

'communicates', multivariously, ambiguously, and indirectly. They ignore,

however, the implications of transferring this pattern to software development.

Software produced in this way is unlikely to be maintainable: only the 'artist'

would be able to fix or update it.

The "soft mastery" school of thought not only denies the need to document

software design. but the very need for a design stage at all. In general, Turkle

tends to ignore or overlook the distinction between program design and

programming - or to deny the necessity of this stage of software development,

perhaps as part of an idealised analogy with the artist, and because the

distinction separates, or 'abstracts'. design from the act of implementation.

Because designs are made regardless of the language of implementation, this

129

may be perceived as indicative of the 'abstract' style. Indeed, design is

normally interpreted as "laying out at some level of abstraction, the pieces of

the solution and their interrelations" (Pennington and Grabowski, 1990).

Grundy identifies even "advance planning" as something that soft masters do

not get involved in (Grundy, 1996, p.142). This is a valid extension of Turkle's

position, in that 'some level of abstraction' is intrinsic to design. However,

design in anything other than trivial computer programming is ineluctable -

whether it is done meticulously and methodically, or directly between brain and

keyboard, some advance planning takes place.

Edwards (1990, p.1 05) sees computers as "a medium for thought", and

compares it as such with language: "In order to think with a computer, one has

to learn its language". Design, however, also mediates between human thought

and the programming languages 'understood' by the computer. The informal

language of design - sometimes referred to as 'structured English' , or

'pseudocode' - is intermediate between natural language and high-level

programming language, between a user's requirements and a computer solution.

It is a medium for thought that is positioned between the human and the

computer programming language.

Brooks, in his No Silver Bullet paper, noted that the "essence of a software

entity .. .is abstract in that such a conceptual construct is the same under many

different representations" (1987). The software developer who thinks through a

problem in terms of the domain of that problem rather than in the language of

implementation, can represent a solution in any suitable language. Such a

solution may be distanced from the computer, but it is closer to the problem

domain in the real world.

5.3.4. Documentation and egoless programming

In order to communicate the purpose and functioning of program elements,

programmers write not just the program code, but additional 'documentation'.

Knuth (1984), in his concept of "literate programming", extends both the

writing metaphor element of programming, and the bridging between the real

world problem domain and code. A "literate programmer" will write programs

130

explicitly as if they were essays for humans: the program code is incorporated

into a comprehensive design document, incorporating a table of contents,

conceptual and physical design, and full code documentation. In a study by

Bertholf and Scholtz (1993), programmers set the task of completing an

incomplete program were considerably more likely to find a solution if they

were given such a 'literate' program.

Whatever its extent, location or manner of presentation, documentation is

written in natural language, and may be separate from or embedded into the

program code. It is written, not for the computer (which skips over embedded

comments), but for people. Documentation might therefore be reasonably

generalised as a human-communicative practice.

Turkle, however, characterises documentation as asocial, part of a culture of

"individualism": to the concrete-style hacker, it is "a burdensome and

unwelcome constraint" (Turkle, 1980, p.21). The magician of the machine

wishes to share the secrets of their wizardry only with the computer. For

Turkle, one aspect of soft mastery is that "the keynote of programming is not

clarity but magic". The pursuit of clarity is seen as an obsession of hard

masters, like the luckless Austen pupil Jeff, who "wants his programs to be

clear so that he can share them and be famous". The "creation of a private

world" is inevitably part of fOrming a relationship with the computer, and the

development of "labyrinthine code" is one means of facilitating that privacy

and mystery (1988, p.133).

Egoless programming is based on the need for open, shared and understandable

code within a team-working context. It lies at the heart of the dominant 'formal'

culture of progranuning, and is essential to teamwork on large projects

(Weinberg 1971, p.72). The key to the decentralised, egoless team is ''that no

single individual feels private ownership of any piece of the program" - it is "a

shared work product and decisions concerning it are reached by consensus"

(Curtis and Walz, 1990, p.255). Abstraction provides communicative clarity in

this free flow of information; and by expressing structure, it allows the parts of

131

a large programming project to be shared out. The sense of a development

'lifecycle' - where the whole is larger than the individual parts - may

reasonably be characterised as more holistic than the solipsism of the

programmer who sustains an intimate relationship with the computer.

The concept of ''programming in the large" is a central concern. Even advocates

of independent styles analogous to soft mastery, who believe that good

programmers "leap intuitively ahead, from stepping stone to stepping stone,

following a vision of the final program" (Green 1980), recognise this:

Development laboratories need freedom to experiment; but in
commercial software production of large systems that are
intended to have a long life, each program has to interact with
other programs, written and maintained by other people, over
long periods of time, and the impetus must be towards
standardization and simplification - similar solutions to similar
problems, standard coding and documentation styles, and
formalization of change procedures. The non-
conformist ... would experience very strong pressure to change.
(p.306)

Curtis and Walz (1990, p.256) identify creativity as well as complexity as two

of the conditions favourable for an egoless team structure. They also note that

''most of the empirical research on software development has been performed

on individual programming activities" because most psychologists engaged in

study have not been social or organisational psychologists, and it is more

difficult and expensive to conduct team and organisational studies. While the

psychosocial study of group and organisational dynamics - whether, for

instance, a programming team functions better on egalitarian cooperation or

authoritarian leadership (Weinberg, 1971) - is both interesting and diverse, we

are concerned only with the impact of group and organisational factors on

individual programming style.

In the 'formal' culture that Turkle eschews, 'problem' programmers are ego

programmers, they are "territorial", and resist peer review (McConnell, 1998).

Her 'concrete' programming culture, defined by "negotiation and

experimentation with the machine" and by an antipathy toward documentation

and design (Turkle and Papert, 1990), is inevitably in tension with the 'egoless'

132

aspect of this culture. The account Turkle and Papert give of children (Anne

and Alex) and college students (Robin and Usa) is of learner programmers with

a narrow focus on self-satisfaction: while this is probably inevitable with

learners assigned to small problems that do not require collaboration. Turkle

and Papert are emphatic that this approach is a complete "different way of

knowing", an equal style rather than an early evolutionary stage of knowing.

Indeed, the differences between the formal and concrete cultures are not always

clearly exemplified: how Anne's mask sprites are to be rendered visible and

invisible without "designation" and "command" is not, for example, explained -

nor how this differs significantly from showing and hiding the birds directly.

Such a solution does not reflect reality, or treat birds as birds: birds 'disappear'

and appear on the horizon. rather than fly around with shields; they are also

liable to pass or land on objects that are not sky-coloured, or to fly across skies

of irregular appearance. And on the other hand, the alternative 'structured'

solution uses elementary rather than structured components - though a

structured programmer would use a single composite data structure (such as an

array of records) rather than a multitude of individual variables; and structured

programming would designate variables by meaningful identifiers rather than

by the letters Turkle suggests. Anne's feeling that she is in the company of the

birds may be a subjective feeling unconnected either to feminine

'connectedness' or to the fact that she makes mask sprites disappear rather than

bird sprites.

Software concerns the real world, and other people. Fundamental problems

arise if people - and women in particular - are led by Turkle and Papert's

analysis into adopting an 'ego' approach. Software is developed by teams of

people within real-life scenarios involving real people. From benefit clerks and

claimants to airline pilots and passengers, they have real needs. However

unfortunate it may be, those needs are unlikely to be met by an approach that

treats programming as a private, self-satisfying relationship with the computer.

133

5.4. Psychology, context, and tactility

Turkle transfers theoretical concepts from disparate fields into the study of

computer programming, without any suggestion that such a transfer might be

anything other than entirely unproblematic. Keller's focus on "a feeling for the

organism" or object of study, and Gilligan's "ethics of care", are applied very

generally, without any justification for the application, or much clarity as to

what it is they are applied to. While traditional studies of the psychology of

programming are largely concerned with cognitive psychology, the most

fundamental lens of analysis which Turkle uses is that of psychoanalysis. Just

as cognitive psychology has not necessarily transferred well into computer

based learning in the form of instructional design (Laurillard, 1993, pp.74-75),

so the imposition of psychoanalytical theory rests uneasily on top of the

intricacies and subtleties of programming discourse and practice. A key

problem is that concepts and terminology that are mapped, by means of

analogy, into other analytical fields, have contexts within programming that are

specific and significantly different.

5.4.1. What context?

Turkle and Papert conflate their concrete, hacker style with Carol Gilligan's

description of a countercultural, concretely contextualised (as opposed to

abstract) style of moral reasoning. The hacker style is thereby associated with a

feminine, connected style. Also adapted is the notion, from object relations

theory, that females are more given to attachment because they do not have to

separate their identity from the mother. Differentiation, objectivity, and

precision are said to be inherently masculine (Turkle 1984a, p.l 09), their

gendered status being derived from the natural experience of the foetus and the

infant. To Turkle, the 'images' of object relations theory "suggest" a relation

between programming style and gender (1984a, p.l08). As women are assumed

to be good at fOrming relationships, they are further assumed to want "a

personally meaningful relationShip with a computational object", to

instinctively need to "treat the computer as much like a person as they can"

(Turkle and Papert, 1990: 145; 149). If females are strongly linked to a concrete

style of reasoning, and are less 'abstracted' from interior space, then, it is

134

asserted, they will be naturally predisposed to a 'concrete' rather than an

'abstract' style ofprograrnrning.

Gilligan, however, refers to concrete reasoning in terms of real-world contexts.

Turkle translates Gilligan's sense of the "importance of attachment in human

life", into women's preference for "attachment and relationship with

computers" (Turkle and Papert, 1990, p.l57;150); Gilligan's need to "stay in

touch with the inner workings" of arguments, into the need to stay in touch with

the inner workings of the machine. The concreteness of the hands-on,

experimenting programming style resides therefore in the computer rather than

in the real world of the client or user. It may conversely be argued that it is

actually abstraction which allows for Gilligan's "contextual and narrative"

mode of thinking. The expressiveness of abstraction allows reasoning within

the context of the real world, and provides the 'language' to bridge between

human understanding in the real world and its representation on computer.

Without this bridge to the real world, it is difficult to make sense of a program.

In an empirical study of forty professional programmers' strategies for

comprehending program code, Pennington (1987) refers to "a cross-referencing

strategy", whereby programmers "think about both the program world and the

domain world to which the program applies while studying the program". Such

programmers are compared to those who adopt strategies "in which

programmers focus on program objects and events" or on domain objects and

events, but not both. The results showed that the programmers who attained

high levels of comprehension were those who adopted the cross-referencing

strategy. This supports Brooks' concept (1983) of program comprehension as

one of reconstructing and cross-relating knowledge about the problem domain

with other domains such as the algorithm and language domains. While Brooks

insists that the process of understanding is necessarily a top-down process, the

essential process of refining an initially vague hypothesis by reading increasing

levels of detail of the code could easily be reframed to allow more flexible and

mixed-level strategies.

135

The computer-centric culture of programmers is often blamed for the frequent

failure of computer software: they have communicated with the technology

rather than with the people who need and will use their software. Indeed, the

"millennium bug" would hot have arisen if programmers had been more

connected to the real worl.d than to the immediate burden on their computer's

'memory'.

5.4.2. Bricolage

We have already encount~red the 'classic bricoleur' in Alex, the nine year old

Hennigan pupil. Turkle's 'use of this concept dates to 1984, when she first

associated hard and soft Dlastery with Levi-Strauss's "discussion of the scientist

and the bricoleur" (103). Western science and hard mastery are identified as "a

science of the abstract", aJ:ld 'preliterate' science and soft mastery as "a science

of the concrete". The teml "bricolage" later again denotes the "concrete

science" of what Turkle a.Qd Papert call non-Western ''primitive societies"

(1990, p.135). The hard IUaster "thinks in terms of global abstractions", where

the soft master tinkers: "31:Tanging and re-arranging" concrete elements of the

problem. The hacker's pehchant for "experimentation" invokes a comparison

with tactile experimentati<m in the sciences: the 'soft master' with a 'concrete'

style is designated a 'briCGleur'. Notwithstanding that scientific

experimentation is an inte~ral part of mainstream 'canonical' science (as is

implicitly acknowledged by references to scientific discovery and Nobel

laureates (1990. p.130». it is not in any meaningful way analogous to

programming by trying things out on the computer. There is also perhaps an

implicit primitivism where:by women as well as ''primitive'' societies are

automatically associated \Vith what is regarded as 'natural'.

Yeshno and Ben-Ari (2001) pick up on Turkle and Papert's adaptation of the

term, but they "reserve thQ term bricolage (and use it more or less pejoratively)

for aimless trial-and-error". Aimlessness in this context means that the trial

and-error does not lead to "refinement of concepts", and ultimately concentrates

"on task performance rather than on understanding", Their study explores the

importance of teaching "aJ:l explicit conceptual model", They cite the

136

observation of Smith et al (1993), that knowledge can often be constructed on

top of misconceptions, where misconceptions are defined "as prior knowledge

that is used outside of the context in which it is viable". Turlde would

presumably question the notion of what is or is not viable, but this observation

is perhaps equally applicable to her own use of knowledge from different

contexts in the study of progranuning psychology.

Bricolage represents a "style of organisation", and is one aspect of 'soft

mastery' . A second aspect of the soft style is filled out at the same time: the

psychoanalytical concept of "closeness to the object" is linked to object

oriented progranuning (Turkle and Papert, 1992). This is a potentially complex

issue, and will be dealt with separately.

5.4.3. "Abstract": what's in a word?

Turlde frequently interprets the meaning of abstraction in programming as

broadly synonymous with the everyday use of the word. The term 'abstract' can

indeed be used in this general way when talking about programming. When

Kahn (1999) writes about "concretisations" (in relation to his logic

programming environment for children) as ''mappings between programming

language abstractions and tangible objects", for instance, he.is referring to

concepts that are 'abstract' in the normal sense - such as clauses and constants

in a programming language.

When Turlde and Papert present a 'concrete' style of programming, it is as a

hands-on style that is intimately closer to reality, lends itself to a

communicative, 'soft' style, and is thereby a 'feminine' approach. 'Abstract' is

taken to be the opposite of the 'concrete'. and is interpreted simplistically as an

antonym to concrete - as in "an abstract idea" (1990, p.131). Jeff, the young

hard master from the Austen school, was seen to take an approach that was said

to be 'abstract' because he saw the Logo sprites as "something apart from his

everyday life" (1984a, p.1 05).

137

Abstraction in programming, however, is not so simple. Abstract does not

mean, as it does in fine art, something that has no representational qualities. In

program design, abstraction signifies the removal of complex computer-specific

detail and its replacement by human-specific actions and things. In a digital

world, it is abstraction that facilitates a human-recognisable representation of

reality. In Turkle's own words (referring to a word processor):

The art of writing a program that must be accessible to the
computationally unsophisticated, consists of designing an
abstract, artificial world so that it feels like a familiar physical
one. (Turkle 1988, p.194).

Detail is concealed within 'abstractions' that are more 'concrete' and less

complex. The sense of the abstract in programming discourse may therefore be

argued to be directly antithetical to that of 'abstract' art: while in abstract art it

is figurative representational details of reality that have been removed, in

program design and development abstraction translates detail of the computer's

reality into detail of the user's reality.

Where Turkle and Papert associate the concrete style of reasoning with a

"closeness to objects" (1990, p.147), however, it may be argued that the

concrete 'objects' of the machine are either real microchips, bits, registers,

buses, disks; or virtual interface 'objects'. Consequently, abstraction can

actually be viewed as the means by which the 'concrete' objects close to the

machine are used to represent the real world: it is only by abstracting low-level

detail that software can move closer to the human user.

In breaking down a problem, abstraction also provides scope for creativity and

expression. There is seldom one orthodox 'reality': the 'ideal' representation

will inevitably vary according to the individual (Cox and Bma, 1995). Indeed,

the stronger the machine's role in the solving of a problem, the less expressive

and communicative the process is likely to be for the programmer(s).

A further confusion with abstraction is the frequent failure to distinguish

between teaching programming in an 'abstract' way, and 'abstraction' as a tool

in problem solving (Turkle 1990; Stepulevage and Plumeridge 1998).

138

Discovery-based learning and reinforcement through practice does not represent

an approach to programming, concrete or otherwise, but rather a pedagogical

approach to the teaching of programming. One of the advantages of such an

approach is that it can serve to build up a genuine understanding of abstraction:

abstraction can be used and taught in practical ways. While the amount of

exemplification and practice may frequently be inadequate on programming

courses, there is also often insufficient emphasis on making sense of software

development through abstraction and its practical benefits. Indeed, Hoadley et

al (1996. p.1 09) advocate "instruction that emphasises abstract understanding".

and can go on to indicate, without inconsistency. that learners need "practice

and concrete examples" in order to gain an abstract understanding of patterns

and reusable templates for problem-solving.

5.5. Transparent and opaque boxes

In the same way as an assessment of 'abstraction' must depend on what it is

that is being abstracted, and from what, so the nature of transparency is defined

by what it is that can be seen through the transparency: in the case of the black

boxing of routines in programming, whether it is the machine or the task that is

visible or invisible. Turkle briefly glimpses this ambiguity in Life on the Screen,

where she refers to the Macintosh's transparency as "somewhat paradoxically, a

kind of transparency enabled by complexity and opacity" (1995, p.42). The

confusion, however, runs through her analysis.

On the one hand, the soft-mastery of Turkle' s Harvard students is defined by

their desire to experience programming as transparent - hence their resentment

of opaque black boxes: Lisa. a poet, "resents the opacity of prepackaged

programs" and wants to take them apart or write her own (1990, p.128). She is

"frustrated with black-boxing or using prepackaged programs" (Turkle and

Papert, 1992, p.7). Oddly, however, George, a hard-master physicist, in

language remarkably reminiscent of that used to describe the resentment the

soft master feels for black boxes, also "feels threatened by opaque objects that

are not of his own devising" (1995, p.39). In terms of computer operating

systems. Maury, a sociology student, prefers the "old-time modernist

139

transparency" of MS-DOS and Windows over the opaque Macintosh, because

"Windows is written in e" and his ability to program in C means he can see

into it (1995, p.38). It is also a hard master, Henry, who "revels in technical

detail" (1988, p.133). Soft-master and Apple aficionado Joel, however, unlike

George and Maury, loved "to create programs that were opaque" so that one

had no idea how it worked and one "could forget that there was something

mechanical beneath" (1995, pAD).

The notion of transparency is therefore deeply ambiguous in Turkle's analysis:

soft masters insist on transparency in computational objects, but they also do

not want to understand the computer completely. Hard masters (and hobbyists),

want the computer to be transparent so that it can be under control: and

'transparency' in code is part of their pursuit of clarity and precision. However,

it is extremely difficult to insist that the software be transparent, but not the

hardware - given that. as a virtual machine, software ultimately works by

relating to the physical machine. The use of structured programming is regarded

as a quest for clarity, ''using nested subprocedures to give programs a

transparent, hierarchical structure", Hard masters work to ''make transparent"

the logic of their processes. The source of a soft master's "personal, magical

power", however, must be "buried deep and hidden within the machine" (1988,

p.133).Turkle therefore hints at a distinction between software and hardware

transparency, but does not explicitly address the issue.

Robin is told by her teachers not to take apart the prepackaged

programs, and not to concern herself with ''what was going on at that

low level" (Turkle. 1988, p.59; Turkle and Papert. 1990, p.l34). In this

way, teachers are said to impose the orthodoxy of black-boxing on

unwilling women. Yet in Life on the Screen, Turkle favours the

'opaque' Macintosh interface because it "hid the bare machine from its

user" (1995. p.23), and is antithetical to "the traditional modernist

expectation that one could take a technology, open the hood, and see

inside" (1995, p.35). She goes on to dismiss the "reductive

understanding" of those who want to "open the box" (PA3), and

140

approvingly observes that we "have grown less likely to neutralize the

computers around us by demanding, 'What makes this work?' 'What's

really happening in there?'" (1995, p.42). Turkle herself was

uncomfortable with the old command language interface of her Apple II

because it embodies the hard master theory ''that it was possible to

understand by discovering the hidden mechanisms that made things

work" (p.33). It is said to have been designed ''to make it easy for

people who wanted to get at its 'innards'" (1988, p.192).

However, where software development is concerned, black-boxing makes

structured programmers "exultant": they "feel a sense of power when they use

black-boxed programs" because it is not to be changed by others (1992, p.16).

Yet lisa herself, while she may resent programs packaged by others, and does

not appear to consider letting other people use her programs, makes her own

black boxes. She does, after all, prefer ''to write her own, smaller, building

block procedures" (1990, p.l33).

It is puzzling that this is taken to exemplify a non-structured approach: it

appears in fact to be a clear example of a novice programmer carrying out

structured programming and 'divide-and-conquer' techniques. These "building

block procedures" may not be prepackaged, but they serve as 'black boxes'

nonetheless. Within the same article, Turkle and Papert maintain that it is the

soft master who makes the "demand for transparency" (1990, p.133), and when

confronted with a prepackaged program written by someone else "wanted to

take it all apart" (p.134). Confusingly, they go on to indicate that it is hard

masters who demand ''transparent understanding" of programs made by others,

and want to know "how the program works" (p.140).

To write "her own, smaller, building-block procedures", lisa would have to

make use, at some level in her programming language, of procedures that have

been prepackaged by others. Each level up the ladder represents a more

"abstract" level than the level below. The higher level 'language' allows the

programmer to use functionalities or data structures without knowing the details

141

of how they are implemented at a lower level. At each level, the unnecessary

detail below has been abstracted. In a very general sense, the entire enterprise of

computer language is to move towards people and away from computers, by

means of abstraction.

In using any feature of a language above binary code, programmers are using a

''prepackaged routine", an abstraction, a 'black box' . A simple integer

calculation - such as 2 + 2 - makes use of an abstract data type that is usually

built into a programming language: we do not think about the definition of the

data type and that of the addition operation. As Sebesta points out, "all built-in

types are abstract data types" (Sebesta 1993, p.375). The Write procedure in

Pascal, for example, enables Pascal programmers to write text and numbers to a

screen, printer, or disk. They do not need to know how it does this - only how to

use it. As we saw in Chapter 4, such prepackaged routines are coded using

lower-level language: a lower-level 'out' procedure would write a given byte to

a given computer port. While the items which Write deals with will be of a

humanly recognisable type - words and numbers - the code that implements it

will deal with variables of computer-understandable types such as WORD and

BYTE, and will include hexadecimal numbers, memory addresses, processor

registers, and assembly-language commands.

Abstraction and prepackaged black boxes are everywhere in user-friendly

computer programming: from the use of a meaningful variable identifier (rather

than a raw memory address), to the use of a control tool for drawing screen

objects in Visual Basic (rather than the low-level plotting and drawing of that

object) - or third-party VBX custom controls that may be plugged in and used.

Within a team working on a large project, where nobody is able or needs to

understand everything at a low level of detail, a divide-and-conquer breakdown

of the problem is fundamental. Each sub-group or individual will produce

routines that are black-boxed so that others understand how to use it, rather than

how it works inside. The future of programming may well rely on reusable

components which end-users can plug together to meet their needs.

142

Procedures may be 'prepackaged' as part of the language, by the software

house that developed the language compiler, the writer of a commercial library

of routines, or by another member of one's programming team. A procedure

encapsulates a number of operations that work together to achieve a single

purpose. It can be called by name when needed, without the necessity to repeat

the full sequence of its constituent operations, and combined with other

procedures to perform more complex functions. In design, a procedure usually

corresponds to one of the stepwise refinement (divide-and-conquer) sub-task

statements of what the program needs to do.

In many programming languages, routines are defined and implemented

separately. This provides a means for hiding the internal workings of modules

(the implementation) from any program or programmer that uses them - while

separately specifying precisely how each procedure should be used (the

definition). The program, or programmer, therefore only knows what they need

to know in order to make use of the routine. This sealproofs the server module,

as a client program cannot inadvertently change some aspect of the server

module. In this way, black-boxing dramatically reduces the possibilities and

complexities of errors and side-effects, and greatly simplifies maintenance,

modification, and the isolation and correction of bugs.

5.6. Conclusion

Turkle and Papert misquote Gilligan as speaking of the "importance of

attachment in human life" (Turkle and Papert, 1990, p.1S7): like the male

hackers they model the 'concrete' style on, they appear to curtail and lose sight

of the larger "life cycle" perspective (Gilligan, p.23), and choose a narrow

individual attachment to the computer rather than a holistic and social

understanding of the real world and its human contexts. In so misconceiving the

nature of computer programming, they may unwittingly consign women to an

amateur computer role that is wholly inappropriate and more in keeping with

the original literal French meaning of bricoleur: one who tinkers around at odd

jobs (as in the French D-I-Y chain, Monsieur Bricoleur!). The idea that

structured programming, and abstraction in particular, is inimical to women or

anyone with a holistic style of learning, is potentially quite damaging. The

143

aesthetic and elegance of abstraction, its power to invest complex problems

with context as well as understanding and resolution, should mean that it is

considered in more depth, beyond superficial analogy. If properly understood

and used, it may even have the potential to make programming, and computing,

available to everyone.

We have seen that the concept of an 'object' - and one's closeness to it - has

been important to wider considerations of gender difference, and it is perhaps

not surprising therefore that the object-oriented programming paradigm has

been drawn into the discussion concerning programming style and gender. Such

a discussion can bring to its sharpest focus our analysis of the sense in which

abstraction is in fact strongly linked to real concreteness.

144

6. Aspects of the concrete: objects, and visual

programming

6.1. Introduction

Having critically scrutinised the process whereby "computational objects" have

been instantiated for the 'objects' of object relations theory within Turkle and

Papert's gender analysis of programming, we will now examine the nature of

'objects' in object-oriented programming (OOP). This is a distinct area, which

Turkle has identified (1992, 1996) as specifically suited to, and illustrative of,

the concrete style. Along with other cognate aspects - such as multimedia and

web authoring - it also represents the cutting-edge, up-to-date face of computer

programming, and is for that reason also essential to the development of our

analysis.

A key characteristic of 'soft masters' and their "concrete style of reasoning" is

closeness to, and identification with, what they call "computational objects".

The proximal use of objects is counterposed, as a way of thinking and knowing,

with ''the rules of logic" - the "abstract formulae that maintain reason at a

distance from its objects". This is then related to object relations theory:

children develop by forming either "a proximal or distant relationship" to

objects, and their use of either ''the abstract and analytic or concrete and

negotiational style of thinking follows." The analysis is said to be based on

Evelyn Fox Keller's (1983) identification of canonical science and objectivity

as a separation of scientific objects from everyday life. This separation is said to

reflect the "earliest experiences" of men, whereby they are left "with a sense of

the fusional as taboo", and an investment "in objective relationships with the

world" (Turkle and Papert I 984a, p.IIS). Keller (1983) describes Barbara

McClintock, a Nobel laureate in biology, relating to chromosomes to such an

extent that she "wasn't outside", but became ''part of the system". Although

Keller comments that this fusional experience is also experienced by male

scientists, Turkle hypothesises that McClintock could more fully exploit such

an experience ''because she is a woman" (1984a, p.117), and states that this is

"surely the case for the girls in the Austen classrooms". There is a will to

145

transpose object relations theory as gendered, onto computer programming:

'computational objects' in general can be related to "in a way that is not

separate from the experience of the self'. They are likened to "transitional

objects" in psychoanalytic theory - objects such as baby blankets or teddy

bears that ''mediate between the child's closely bonded relationship with the

mother and his or her capacity to develop with other people who will be

experienced as separate, autonomous beings" (p.118). The existence of object

oriented programming appears to be at least a terminological gift to such an

analysis.

6.2. From object-relations to object-oriented?

Turkle and Papert herald object-oriented programming as the fulfilment and

"revaluation" of the 'concrete' approach (1992, p.29): it is, they say, ''more

congenial to those who favor concrete approaches", and ''puts an intellectual

value on a way of thinking that is resonant with their own" (p.155). Turkle even

indicates that the object oriented programming paradigm "associated

computation with the object-relations tradition in psychoanalytic thought"

(1995, p.296). Grundy too equates object-Oriented programming with a concrete

(as opposed to abstract) style of programming, interpreting the growing

popularity of the object-oriented paradigm as "a surge of interest in a concrete

style of programming" (1996, p.142).

Objects are called 'objects' because they frequently model real-world objects.

Yet texts on object oriented programming repeatedly emphasise that an object

is also a black box - indeed, objects are the ultimate in black boxes. The

programmer knows and works with an object in the way that a customer uses a

vending machine: the customer need not know how the machine works, only its

state (whether specific drinks and change are available, how much money has

been entered), and the actions to be performed by the customer and the

machine. The details of the machinery are kept hidden and secure from the

customer, to avoid misuse, but also because the customer simply does not need

to have access to it.

146

6.3. Object orientation

6.3.1 How people think?

The respective proponents both of logic-based programming (as exemplified by

languages such as Prolog), and of object-oriented programming, have advanced

both paradigms as more 'natural'. Mendelsohn et al (1990), however, suggest

empirical research shows that logic "is not how people think" (p.25). In respect

of object-oriented programming, Green (1980) correctly points out that is far

from being 'artless': programming 'objects' are very complicated yet at the

same time do not reflect the intricacies of real world objects. Object oriented

programming is not. therefore, 'natural'. Nor is it necessarily easy. Indeed,

various aspects of object oriented programming render it more difficult to learn

than traditional structured programming: in particular, identifying object

boundaries, and getting objects to communicate with each other, are highly

challenging aspects of OOP.

In her personal account of life as a software engineer, Close to the Machine,

Ellen Ullman (1997) tells how object orientation was a test of whether she was

"technical". As a project manager, she says that ''there is really only one thing

programmers want to know: are you technical or notT. Her particular 'test' was

to locate a problem within some object-oriented C++ code:

Object-oriented software: small hunks of code, understandable
only if you know a whole hierarchy of logic. Tiny window,
fifty-line viewport, to see little blocks in an elaborate pyramid.
Murk and confusion. (Ullman, p.112).

6.3.2. History of Objects

Objects are fundamentally based on the earlier code-packaging concept of the

procedure. The technique and philosophy of object oriented programming can

be traced back to the design of the Simula 67 programming language in 1967.

Simula was inspired by an earlier language, Algol 60, and in particular by the

use of reusable packages of code in the form of procedures or sub-routines. The

fact that Algol's procedures created their own mini-environments, ones that

were both individual and self-contained. led to the innovative concept of

147

allowing such 'environments' to persist after they had 'finished', so that they

could communicate with other such entities. It is probably significant that

Simula was a language designed to build simulators: it was intended to develop

software that ideally reflected real-world structure. The concept was developed

by researchers at Xerox, who developed both Smalltalk, and the first graphical

user interfaces.

6.3.3. Encapsulation: abstraction's child

In traditional 'imperative' or 'procedural' programming, the "unit of thought" is

said by Turkle and Papert to be "an instruction to the computer to do

something", but "in object-oriented programming the unit of thought is creating

and modifying interactive agents within a program for which the natural

metaphors are biological and social rather than algebraic" (1992, p.31). The

language of object oriented programming does indeed use such metaphors:

child, parent, inheritance, message-passing, properties. However, the essence of

objects lies in encapsulation, and in the separation of what an object does from ,

how it does it.

Abstraction is fundamental to object oriented programming: as Sebesta puts it,

"object-oriented programmingis an outgrowth of the use of data abstraction"

(1993, p.375). Objects represent the guaranteed level of information hiding that

was provided by abstract data types that use opaque data types: the access

procedures are encapsulated along with the data, so that access to the data is

strictly and intrinsically limited to the access procedures. While the philosophy

is different from that of functional decomposition, object oriented programming

is nonetheless a fulfilment of the promise of the 'abstract' approach, not, as

Turkle and Papert would have it, of the 'concrete' approach. The features of

object oriented programming are clearly indebted to the characteristics of what

they call hard mastery.

Turkle and Papert observe that "hierarchy and abstraction are valued by the

structured programmers' planner's aesthetic", and that the formal approach

"decrees" the design of "a set of modular solutions" (1990, p.13 6). On the other

hand, soft mastery is characterised by a "non-hierarchical style" (1992, p.9).

148

Hierarchy, abstraction, and modularity, however, are defining characteristics of

object orientation. Gorlen et al (1990, p.l) refer to data abstraction as the

"necessary foundation" of object oriented programming. Encapsulation in the

object oriented programming paradigm is synonymous with "information

hiding" or black-boxing: it provides a "cover", in Satzinger and 0rvik's words,

''that hides the internal structure of the object from the environment outside"

(Satzinger and 0rvik, 1996, p.40). The object-oriented paradigm abstracts data

as well as processes, and binds the processes to the data - in a way not

dissimilar to the 'hard master' who would create her or his own abstract data

types (ADTs) in separate modules with a public functional interface and a

private implementation. An 'object', normally an abstraction of an entity in the

real world, is therefore roughly analogous to a module containing ADTs: it is

the ultimate 'black box'. Its defining characteristic is that no other object needs

to be aware of its insides: its internal data structure, and the methods for

manipulating instances of it, are hidden. It is the behaviour, rather than the

internal implementation, of an object that matter. An object prevents client

programs from directly accessing its internal elements; it makes data elements

and their operations

behave analogously to the built-in or fundamental data types
like integers and floating-point numbers. We can then use them
simply as black boxes which provide a transformation between
input and output. We need not understand or even be aware of
their inner working ... (Gorlen et al, 1990, p.1).

What Turkle and Papert disapprovingly present as the formal, hard master's

alternative to Anne's "dazzling" bricolage with the masked birds (1992, p.1S),

is therefore in fact a basic object-oriented strategy:

From their point of view, Anne should design a computational
object (e.g., her bird) with all the required qualities built into it.
She should specify, in advance, what signals will cause her bird
to change color, disappear, reappear, and fly. One could then
forget about "how the bird works"; it would be a black
box. Structured programmers usually do not feel comfortable
with a construct until it is thoroughly black-boxed, with both
its inner workings and all traces of the perhaps messy process
of its construction hidden from view. (Turkle and Papert,
1990, pp.139-140)

149

In object-oriented programming, the class is the major unit of programming. It

"represents the abstraction of a number of similar (or identical) objects" (Bell

and Parr, 1998, p.624). The more general the class is, the more 'abstract' it is:

for example, the class of mammals is an abstract class because, while specific

instances of mammals exist, mammals as such do not exist. In Java, a truly

'abstract class' exists only to serve as a modifiable template, and cannot be

instantiated. In order for this to be useful - and, indeed, for classes to be

reusable - the characteristics of classes in the hierarchy must be inheritable.

6.3.4. inheritance: connected hierarchy

Hierarchy is clearly a key organising principle for any large body of

information - taxonomic classification helps to manage complexity and

information access. It is analogous to decomposition in structured

programming, in that it requires a breakdown of elements according to a

structure that represents different levels of abstraction. As with abstraction

generally, the higher levels focus on the essentials, and leave the unnecessary

detail till later. In object-oriented programming, the filling in of those details

along with any changes or variations - is neatly handled by inheritance. The

same methods, inherited from the most abstract class (the parent, or superclass),

can be used to manipulate a range of objects of different classes (the child, or

subclass); and anything unique to a particular subclass, can be kept within that

particular subclass.

Satzinger interestingly borrows the example of a (non-gendered) baby from

object relations theory in order to illustrate the concept of object hierarchy and

at the same time show that hierarchy is a natural way of learning and organising

information.

The new-born baby's model of the world initially consists of mother (or

primary carer) and other things. This gradually extends to mother-people-other

things, refining to parent-people-living things-other things, to parent-big

people-people-living things-things. The characteristics and behaviours of

instances of each category are inherited down the classification hierarchy: a

150

person, for example, inherits the properties of a living thing, and adds some

extra just for itself. This process, Satzinger says, "allows the baby to infer

information about newly encountered objects" (11), both in terms of new

classes (e.g. small people) and instances of classes (e.g. a new aunt). This

notion of a connected 'hierarchy', based as it is on set membership and linkage

rather than on value ranking (as conceptualised by Gilligan), can be seen as

more analogous to Gilligan's sense of context and association. Learning is

premised on a facility to link new things to that which is already known:

Learning something new often means associating a new
concept with a previously known concept while the new
concept "inherits" everything known about the previous
concept. (Satzinger, p. 42).

This is made possible by the combination of abstraction with inheritance, and is

antithetical to the "soft master" desire to break apart rather than reuse that

which has already been accomplished and packaged. Although they laud object

oriented programming as concrete and in tune with the soft-feminine bricoleur

style, Turkle and Papert's characterisation of the canonical style actually

reflects these characteristics of the object-oriented paradigm:

The bricoleur scientist does not move abstractly and
hierarchically from axiom to theorem to corollary ... [the
canonical approach] decrees that the "right way" to solve a
programming problem is to dissect it into separate parts and
design a set of modular solutions that will fit the parts into an
intended whole. Some programmers work this way because
their teachers or employers insist that they do. But for others, it
is a preferred approach; to them, it seems natural to make a
plan, divide the task. use modules and subprocedures. (Turkle
and Papert 1992, p.12)

6.3.5. messages and polymorphism

Much of the language of object-Oriented programming is based on

communicative metaphor. Interactions with and between objects involve

sending "messages" back and forth (rather than 'input and output' , or

'commands') in order to perform one of the actions associated with the object's

data. These 'object relationships' whereby objects may be associated with each

other are often defined through inheritance. The terminology of communication

151

theory is used to describe message-passing: a 'sender' sends a 'message' to a

'receiver'. 'Where a soft master such as Turkle and Papert's Alex insists on

"repetitions of instructions" (1990, p.137) to get a feel for the program,

messages obviate the need for duplication of data, and help to keep the detail

packaged inside objects discrete.

Meaning is a dynamic process in object as in human communication: the same

'message' may be interpreted in different ways by a variety of different

receivers. This principle is described in the object oriented programming

paradigm as 'polymorphism' . A corollary of inheritance-based messaging,

polymorphism allows for the same method (message) to be reused and

interpreted differently by different types of black-boxed objects. The same

command can be sent to different objects, and it is the object that decides what

action is appropriate for the command. This cornerstone of authentic object

orientation - message-passing and polymorphism - therefore also falls, as

Graham notes (1994, p.14), ''under the general heading of abstraction".

6.4. Java: different kinds of 'black boxes'?

Java is the most popular object-oriented programming language in use today.

We will examine two aspects of it that can elicit significant nuances in the

meaning of black boxing and abstraction. Firstly, that there is a distinction

between black boxes and abstraction, and the deferral of detail in the learning

process. There are features of some programming languages that make it

educationally difficult if not impossible to explain or understand everything at

once: this is a significant educational issue, but it is categorically different from

the deliberate deferral of detail that is used in programming abstraction.

Secondly, however, many programming educationalists attempt to overcome

some of these difficulties by using their own black boxes.

6.4.1. 'Hello World'

The 'Hello Wor ld' program - or variations thereon - is frequently presented in

introductory programming texts to illustrate how a simple program is

constituted in a particular language. Before the shift to popular object-oriented

152

languages, Universities typically used programming languages such as Pascal

and Modula-2 to teach programming. All aspects of a Hello World program

written in these languages were immediately explainable. The program would

typically read as follows:

PROGRAM HelloWorld;
BEGIN

END.

In Java, however, the most basic program immediately presents complexities.

Hello World typically reads as follows:

public class HelloWorld
(

public static void main String args[])
{

System.out.println(-Hello World!"};

Deitel and Deitel (1999) 'explain' the first word, the public keyword, thus:

Several times early in this text, we ask you to simply mimic
certain Java features we introduce as you write your own Java
programs. We specifically do this when it is not yet important
to know all the details of a feature to use that feature in Java.
All programmers initially learn how to program by mimicking
what other programmers have done before them. (p.38)

This is typical of the way in which Java is introduced in textbooks. The idea

that it is not necessary to "know all the details of a feature" in order to use it,

appears to echo the concept of the black box. However, there is an important

and fundamental difference, and it is expressed above in the word "yet". The

programmer uses black boxes as a programming tool, and does not at any point

need to know how it works. On the other hand, the programmer does need to

understand how every part of the 'Hello World' code works. The fact that some

basic features of Java may not be immediately explainable, is a learning and

teaching problem, one that may be intrinsic to the design of the Java language.

This deferral of detail in teaching programming is therefore completely distinct

from the deliberate use of opaqueness as a tool in program design. Full ,
understanding is being deferred. In some ways this pedagogical problem might

153

be identifiable with the problems that Turkle and Papert associate with the

programming tool of abstraction.

A holistic learning approach might require that the learner understand all that

they need to mow from the outset. Instead, the Java texts consistently defer this

understanding. In Pascal, the program will begin simply with the word

''begin''; in Java, it begins with the header public static void main

String args []). Bailey and Bailey explain that the public prefix makes the

class or method accessible, but that the keywords static and void "are technical

terms we will get to later" (p.3). Parsons bravely attempts to explain static as

well as public and void, but indicates that "[t]he meaning of the square brackets

([]) will also be explored later" (p.22). Bell and Parr indicate (1998, p.18) that

the only piece the reader needs to understand "for some time to come" is the

output line - g.drawString("Hello", 50, 50); the line of code public void

paint (Graphics g) is just 'explained' as "a heading specifying that the

statements that follow are the statements that paint ... the window". Rebelsky

(2000), referring again to the main method header, says that "For now, we

won't worry about why it looks like this; it just does." (p.3). Savitch (2001,

p.28) advises readers ''for now" to "ignore the following few lines that come at

the start of the program", explaining that they "set up a context for the program,

but we need not worry about them yet". Savitch goes further and passes over

the println statements too, explaining that "for now" the reader can consider

these lines to be "a funny way of saying 'output what is shown in parentheses"'.

Skansholm (2000) comes close to explaining every part of his Hello World

method header. When he gets to the parameters of main, however, he falters:

'We will not go further into this now but will merely state that this is the form

it must have" (p.12).

The typical approach in programming texts is to provide the 'Hello World' code

and then examine the pieces of the program. Bishop (2001) takes a slightly

different approach. She does not attempt to explain anything about the hello

world program code beyond what it does: "At this stage we shall note only a

154

few points about the program" (200t, p.t?). Her emphasis, however, is on the

student running the program, and changing the message. Through concrete

experimentation, the student gains familiarity with the 'physical' programming

environment

6.4.2. Java packages and classes: prepackaged routines

The difficulty of the main method header is not the only way in which Java is

front-loaded with complexities that are inappropriate to the level of the

beginner. Another major difficulty which arises early on concerns user input. In

Pascal and Modula-2, keyboard input is read from the user by the direct use of

simple built-in procedures, such as Read. In Java, reading and processing input

is much more complicated: input objects need to be created, and the initial input

will then usually need to be converted to an appropriate type, using further

object-oriented notation, before it can be processed. To display the result, the

processed data would then often have to be converted back into a type

compatible with the output object used to display it on screen!

Rather than subject beginners to this sort of detail. textbook writers normally

provide their own simple methods for input This means that the authors write

their own 'packages', which provide simplified routines that the beginner can

use with ease. A problem with such packages is that they are non-standard;

however, one of the major features of Java is the package, and the possibilities

it provides for customisation and reusable libraries of routines.

6.5. Visual programming

Turkle and Papert appear to conflate graphical interfaces with object oriented

programming: using computer software at the interface, with authoring that

software as a progranuner. They state that the graphical user interface typified

by the Macintosh and its icons, reflects a deeper ''philosophy of 'object-oriented

programming''', The Macintosh's replacement of command language with

"concrete icons", they declare, "has theoretical roots in a style of programming

usually called 'object oriented"',

155

The debate concerning differences in user interface dialogue-styles has been

widely described (Booth, 1989; Schneiderman, 1998), and relates to the

underlying concept of a ''psychological machine". However, visual

programming is quite distinct from the pervasive graphical user interface. The

SWEBOK guide (Bourque et al, 1999) breaks software construction down into

three major styles of construction interfaces, one of which is visual (the others

being linguistic and mathematical). While visual programming environments

(such as Visual Basic) and customisable software components appear to blur

the distinction between programmer and user, using software to process data is

categorically different from designing and implementing the set of data

structures and instructions that facilitate the performance of these specific

content-based tasks. The purpose of human-computer 'dialogue' is usually

conceived of in terms of "control" of an "information exchange". Sheehy

(1987) suggests that we can best acquire this information by suspending

disbelief at the interface and imagining that we are communicating with another

person (cited in Booth. 1989). Turkle appears to take this suspension of

disbelief somewhat more earnestly, and as more than a means to an end.

Using graphical user interfaces such as the Macintosh operating system or

Microsoft Windows does not, of course, involve the user in object oriented

programming. What is probably being suggested is that such interfaces, as well

as presenting a concrete representation of data and actions that is more directly

manipulable, follow an object oriented design and implementation philosophy.

It may be further deduced that perhaps, instead of using programming

environments analogous to the user's command language dialogue, the

programmer could use a programming environment analogous to the graphical

user interface. Rather than type "proposition-like commands", the programmer

could - like the Macintosh user - manipulate "concrete icons".

Object oriented programming languages, however, are not necessarily or

intrinsically linked to graphical environments. Many compilers are text-based,

and ultimately all programming languages are text-based languages. Visual

environments are now often superimposed on languages - usually, but not

156

always, object-oriented or object-based - to make programming easier and

more powerful Such graphical development environments (or 'Integrated

Development Environments') provide packaged functionality and powerful

tools - for instance, the developer can simply drag a button onto a form. rather

than write all the code themselves. Such a button is a concrete 'object' in the

immediate sense that it is a potentially manipulable and functional user

interface object. However, it is also an 'object' in a deeper sense: it is a

programming 'object', implemented usually as an instance of a class.

In Java, for example, an on-screen button may be implemented by instantiating

an object of the class Button (or JButton, depending on which library is being

used). Usually this is a constructor which takes the button's visible label ('OK',

'Next' or whatever) as a parameter. A visual integrated development

environment will allow the programmer to do this by dragging and dropping

rather than by typing in the appropriate code, and by simply typing in the

caption. lbis will generate the necessary code (which the programmer would

otherwise write).

myButton = new Button(-WelcomeW)i

add (myButton)

This code is relatively simple because the Button class is a library class that has

already been written: all that is left to do is create an object that is an instance

of that class, using the new constructor. The real concealment is that of the class

code that underlies the button - whether it is created by dragging and dropping

at the user interface, or by keying in the actual program code at the keyboard.

lbis distinction between an on-screen interface 'object', and the underlying

software 'Object'. is fundamental to Turkle and Papert's misunderstanding. On

screen interface objects are normally implemented as 'objects'. and there will

be a close correlation between the two senses of the word. An interface push

button, for instance, is experienced in terms of its properties (such as its colour.

or its caption) and its actions (such as what happens when the mouse pointer

moves over it. or when the user clicks on it). It is also typically implemented as

an instance of a button class, which will contain methods for setting its colour

and other attributes, and for handling specific events.

157

However, such objects are merely the means by which the user interfaces with

the main functionality of a program: the objects involved in that functionality

are drawn from the real world rather than from the world of computer interface

conventions. A major shortcoming of the only detailed study of programming

that Turkle provides, is that the only objects which the artistic Austen children

program are screen graphics: the objects they are manipulating have intrinsic

graphical representation on the computer screen. An object in real-world

functionality will be any 'thing' relevant to the domain of the software being

developed: if it were a payroll program, an object could be an employee, the

data associated with it might include name, address, and age instance variables

inherited from a parent class (such as Person), along with its own data (such as

job title and salary). An object could also perform computer-specific

functionality: a specialised data structure for compressed encoding of a text or

music file. or another one for handling a print queue. While the Austen children

may imaginatively project themselves into spaceships and flocks of birds. the

data objects that actually arise in modem software development are rather more

difficult to represent and identify with on the computer.

6.6. Authoring Software and Scripting

The development of media-rich software raises new questions about approaches

to software design. and about levels of abstraction. that do not naturally arise

with the development of data-oriented software. Authoring software provides a

higher-level software development environment than programming languages

such as Java and C. Their key features are the level of pre-programmed

elements for developing interactive multimedia, and scripting languages that are

integrated with these components. They allow for significantly easier and faster

software development than traditional programming languages: their emphasis

is on rapid development rather than efficiency. To a considerable extent,

interfaces and even functionality can be built, without any programming, but

simply by using commands and tools that are available from the interface - in

the same way as they are in a word processor. However. the ability to write

158

scripts and attach them to the interface-created elements, provides the developer

with considerably more power and versatility.

The general metaphor of authoring software is that of an "author" - perhaps a

little grander than that of a writer. This aspect is reflected in the fact that

'authors' do not always have to program; and when they do, it is 'scripting'

rather than 'programming'. More specific artistic metaphors include, as we

shall see, 'pages' in a 'book' - although these pages are more 'constructed' than

they are written.

There are two taxonomies commonly used to categorise authoring software.

The first relates to the extent to which programming or scripting is required, as

opposed to interface-driven development; and the second is based on the

metaphor used for the construction of software. Probably the most intuitive

metaphor is the page-based metaphor. Apple's Hypercard was the first popular

example of this: 'cards' containing different media assets - text, graphics,

audio, video, animation - were organised into 'stacks', and contained

hyperlinks between each other. ToolBook requires authors to place media on

'pages' which together form one or more 'books': links can be made between

pages, and more intricate functionality and interactivity can be scripted into any

object on any page.

Macromedia Director, and its scripting language, lingo, is used to produce

stand-alone interactive multimedia software, and highly functional Shockwave

material within web browsers. Its metaphor is reflected in its name: the

software developer is a 'director' of a 'movie', and needs to create a 'cast',

members of which are moved onto a stage, and their sequencing and interaction

arranged and scripted in a 'score'.

From the perspective of teaching people to program. authoring software has the

potential to allow people to 'program' as users initially - using interface-driven

commands to build screens, place objects, and set up basic interactive

functionality. When they are confident with this environment, they can move on

159

to 'script' the same objects, within a familiar environment. This moves beyond

what Bernstein (1992) and Frenkel (1990) saw as a new curriculum paradigm

for computer science - (female-friendly) package-based problem solving. It is

more convincingly computer science: it does not eschew programming

languages, but still allows students to achieve something functional quickly.

Such rapid prototyping provides pedagogical scaffolding, encourages

exploration, and boosts confidence by allowing the development of significant

software products.

The scripting languages of authoring software are broadly similar to

programming languages, but they operate at an even higher level. This is

reflected in their syntax, and in their use. The syntax is more like English or

pseudocode, and is accordingly much less rigid than third generation

programming languages. They are generally interpreted languages. The

metaphor of interpretation versus translation suggests the distinction between

interpreted and compiled languages. Unlike compiled languages - which

translate an entire piece of code into a self-contained executable program-

lines of code written in an interpreted language are performed immediately,

within the interpreter and without separate translation. There is also no need

(and often no way) to declare type information for variables. The primary

function of scripting languages within authoring software is to control media

assets, the behaviour of media and interface elements, navigation (including

hypermedia); however, they have the full range of control structures and

operations, and can also be used for normal algorithmic and data-oriented

development. It follows that it is often considerably 'easier' to script in a

scripting language than in a third-generation programming language. Its looser

syntax, its function as a 'glue' that can dynamically combine separately written

and packaged components, and the fact that it is generally interpreted rather

than compiled, tends to lead to a more experimental and spontaneous style. This

is not - as we shall see - necessarily synonymous with Turkle and Papert's

'concrete' Style.

Authoring software is usually event-driven and object-based. Event languages

are oriented around the actions of users at the graphical user interface - such as

160

mouse clicks - and as such are commonly regarded as user-oriented, "since the

user is in charge of generating events that the application handles" (Myers et al

2000/2002, p. 217). While proper, data-oriented object-oriented scripting is

possible in some environments, 'object-based' broadly refers to screen

'objects', the hierarchy they must be placed in, and the messages that they pass

to each other in accordance with this object hierarchy. A further aspect of this

model is that of 'properties'.

Properties are analogous to variables, but they are attached to an object rather

than defined separately. As such, they can usually be either built-in (as part of

all instances of that type of object) or user-defined (for a particular object).

They are manipulable and definable both through the user interface, and by

direct scripting. In terms of the task that Turkle and Papert's bricoleur

programmer, Anne, performs with the flock of birds, both the current and the

original colour of each bird would be stored in properties that were attached to

the birds, rather than in 'distant' variables. Each bird would cany with it, as a

user property, its original colour, along with - usually as a built-in system

property - its current colour. These properties - along with visibility, size, and

position properties - would be a more intuitive and integral representation of a

bird, enabling it to (in Turkle and Papert's words) "exhibit a greater complexity

of behavior" than if it carried a camouflage shield around with it (which, for

Anne and for Turkle and Papert, is "how the bird works"). For example, a bird

could change, within itself, its colour or visibility in relation to other internal

properties such as its position. Further properties (or sometimes functions) can

typically also be used to handle relative group behaviour, such as intersection or

touching. Whatever the behaviour, it would be triggered by a signal- a

message that is sent, perhaps 'spontaneously' during the course of animation,

when the user initiates an event, or when the developer explicitly sends the

message. This is made possible by the fact that the construct is (again in Turkle

and Papert's words) "thoroughly black-boxed" (1992, p.16).

It is clearly deeply problematic to characterise such a process as "formal" and

"abstract", and antithetical to Anne's 'intuitive' and 'concrete' approach. The

161

root of the problem lies again in a misapprehension of the nature of black

boxes, and in superficial practical assumptions about 'transparency' and

'concreteness'. Authoring software provides opportunities to develop objects,

each of which is both highly concrete, and has "all the required qualities built

into it" (1992, 16-17). It is the technical, computer-oriented detail of ''how the

bird works" that is hidden in a 'black box' and forgotten about. Its "inner

workings and all traces of the perhaps messy process of its construction" are

"hidden from view" - to enable it as a model of a bird, rather than of a

computational object.

6.6.1.Prepackaging in Authoring Software: behaviours and widgets

Authoring software packages are defined by their high-level 'packaged'

functionality: interfaces, structure, navigation, and basic interactions, can be

built without the need to program. They enable a much wider range of people -

for example, graphic designers, linguists, educationalists - to develop software.

More of the developer's focus can be concentrated on the purpose of the

software - on its external rather than its internal functionality. In this respect,

authoring software represents the ultimate in black-bOxing, in high-level

prepackaging, and thereby liberates programming from its more exclusive and

specialised technical and mathematical roots.

However, the black-box versus glass-bOX issues that these authoring packages

raise, can be a little more complicated. Part of the black-boxlglass-box question

under scrutiny is the distinction between just lOOking inside a glass box, and

altering or creating its contents oneself. With regard to the core functionality of

authoring software packages, at the highest level it is generally no more

possible to view the 'prepackaged' code than it would be to inspect the code

behind the functionality of a word processor. While some software developers

may wen resent the lack of power and fine control offered by such packages in

comparison with third generation programming languages, for the confirmed

user, inspection of underlying code is not an issue. Where the possibility of

inspection does arise, however, is in the use of 'additional' functionality that is

provided in the form of library palettes or catalogues of drag-and-drop objects.

162

Such functionality is not built into the core interface of the package, although it

can be achieved by scripting. The drag-and-drop library objects again bypass

the need to script for oneself - but because they are external library objects,

they generate script code and place that code where the developer would

nonnally write their own.

For example, in a Macromedia Director 'movie' the default state is for the

movie to play straight through to the end. One of the most basic tasks is

therefore to keep it still at particular points, so that static 'screens' can be

displayed, awaiting the user's actions. This can be done from the user interface

by using a prepackaged 'behaviour' from a library Palette. The appropriate

behaviour, titled "Hold on current frame", is dragged from a library Palette,

and dropped onto the frame in question. This process is very quick, and

provides the required functionality (as long as the behaviour is dropped at the

correct location and on the correct Object). There are similar facilities (known as

"widgets") made available in Asymetrix Toolbook - which we will look at

shortly.

Dropping the 'Hold on Current Frame' behaviour onto an object generates the

following lingo script, which is immediately available for inspection:

-- DESCRIPTION --
on getBehaviorDescription me

return ".,
HOLD ON CURRENT FRAME"&RETURN&RETURN&".,
Drop this behavior into the Script Channel of the Score
or onto the Stage .,
in order to keep the playback head in the current
frame. "&RETURN&RETURN&".,
PARAMETERS: None"
end getBehaviorDescription

on getBehaviorTooltip me
return ".,

Frame behavior. "&RETURN&RETURN&".,
Holds the playback head still."
end getBehaviorTooltip

-- HISTORY --
-- 3 November, written for the D7 Behaviors Palette by
James Newton

on exitFrame me
go the frame

end exitFrame

163

If, on the other hand, the developer had chosen instead to write their own code,

it would have a decidedly less intimidating appearance:

on exitFrame
go the frame

end

The verbosity of the behaviour relates primarily to documentation that is

deemed to be necessary for the 'user' of the authoring software, in the fonn of

descriptions that appear in the Behaviours Palette - but it is all copied into the

user's own code. In this case, seeing inside the box is considerably more

daunting than composing it for oneself.

The core handler code that is generated, is almost the same, but is more

complicated again because it operates at one remove: 'me' is the current

instance of the behaviour - a parameter that identifies the object which the

behaviour is currently attached to, and which is receiving the event. Again, a

conceptual meta-level has been introduced. In the case of this particular

behaviour, it is generally unnecessary: the practical purpose of the parameter is

to enable access to the properties of the individual object that the behaviour is

attached to. In order to hold on a frame, however, it is not necessary to know

anything about any properties of that frame.

Widgets perfonn a similar function in ToolBook. Simply by dragging a widget

from the widget catalogue, dropping it on the page, then using a combination of

menu commands and dialogue box completion, one can display a video clip in

a page. When this entirely interface-driven process is completed, the developer

can view the script that has thereby been generated and attached to the frame in

which the video plays:

to handle buttonclick
send ASYM_Trigger to self

end

This appears relatively simple at first sight - except that the handler sends

another message to its object. The ASYM_Trigger message is in tum defined at

a higher level of the object hierarchy. The task of this message, however, is not

restricted to displaying the video clip in the frame: because it is a widget, it

164

needs to translate from the general to the specific: it needs to handle all inputs

and eventualities that might occur during the interface-driven process of using

the widget. 1bis level of meta-functionality includes checking if various options

were mistakenly missed out - if the developer neglected, for instance, to specify

a video clip to play in the frame. It also sends several further messages - for

instance, to set the video controls. 1bis large script (about twelve pages of A4)

also contains further functions and messages that it needs - to get the

specification of the particular clip to be played, or to set the controls to those

selected.

By way of contrast, if the developer chose not to use a widget, a minimalist

script could be attached to a play button or an enterPage handler could be coded

as follows:

mrnPlay clip -myVid- in stage "Video Stage-

The more intricate the automated task is, the more complex the generated script

becomes. ToolBook, for instance, provides widgets for generating quizzes.

Altering - or even understanding - such generated scripts is again usually a

hugely difficult task, because of the meta-layer that is needed to generate them

from author-input at the interface.

6.6.2. Web 'languages'

The page metaphor is of course now commonplace in the form of the World

Wide Web, where it is associated more with 'mark-up language'. Mark-up

languages (such as HTML - HyperText Markup Language) are more analogous

to desktop publishing than to coding: they are used to determine layout and

appearance. The intention of mark-up languages is that the presentation of

material should be separated from its actual structure. They are not 'languages'

in any sense that programming 'languages' might be: they have no logical

constructs (repetitions and selections), do not deal with any time-based process,

with 'tags' that identify spatial elements of a document and render them in a

particular way. While they are not procedural, the process of composing pages

165

in these 'languages' is frequently referred to as 'programming', and the

composition as "source code".

The elegance and power of markup languages is that they separate the

presentation of a document from its structure. In the case of the Cascading Style

Sheets extension - which also uses the 'property' concept - content is also

separated from style. The principle is one of modularity and decoupling, or

'abstraction', for the purposes of reduced complexity, flexibility, and

maintainability. Increasingly complex and powerful extensions to the markup

'languages' that generally originate in SGML (Standard Generalised Markup

Language) appear to bring the process of web page development somewhat

closer to that of traditional 'programming'.

Web-based plug-in technologies frequently come with their own scripting

languages. Animation software such as Macromedia Flash, utilises very high

level interface-driven pseudo-programming, as well as the additional facility of

its own scripting language, ActionScript. In addition, J avascript code can be

embedded into HfML with a <SCRIPT> tag, and interpreted, on the client

machine, by JavaScript-aware browsers to perform data validation functions

and change the appearance of the web page.

6.7. SELF: objects without classes

Classes are at the heart of the mainstream object-oriented paradigm. A class

"represents the abstraction of a number of similar (or identical) objects" (Bell

and Parr, 1998, p.624). Experimental research at Sun Laboratories, on a

language known as SELF, attempts to dispense with these meta-objects

altogether.

In visual programming environments, the programmer can inspect and alter the

properties or state of objects - whether they are visual screen elements like the

button, or conceptual objects such as employee records. Packaged functionality

is clearly an example of 'prepackaged procedures': however, the tools used to

view and edit both interface and conceptual objects, present a layer that

166

mediates between the object in the program and the 'object' on the screen.

Chang et al (1995) argue that, while transparency in tools can lead to direct

manipulation of objects, the programmer by default interacts with this layer of

tools and views, rather than with the objects directly. This is a conceptual meta

layer that is in addition to - and on top of - the existing conceptual meta-layer

(of objects as instances of classes) that dominates object-oriented programming.

ToonTalk (Kahn 1999) is described by its developers as a "game world .. .in

which the objects and actions map directly onto programming language

constructs". Developed for children, to help in learning the principles of logic

programming, it provides "concretizations" for programming language

abstractions in the form of ''tangible objects". So, for instance, a clause may be

represented by a robot, and putting robots into a truck may express a procedure

call

At first sight, SELF appears to do something similar. SELF is an object

oriented language that contains neither classes nor variables, but instead uses

prototypes as its means of creating objects. State information can only be

obtained by means of such objects sending messages to 'self'. The developers

of the language characterise it as a language for "exploratory programming",

and its metaphor as one "whose elements are as concrete as possible" (Ungar

and Smith, 1991).

Whereas traditional object-oriented programming languages use a plan or

template based metaphor in creating objects via the instantiation of classes,

SELF does so by directly cloning, or copying, a prototype. A prototype is more

concrete in that it deals with examples of the object, rather than plans for it -

plans that require interpretation. There is no meta-object in the form of a class.

Without instantiation, relationships are simpler, insofar as there is no need to

conceive of objects as both instances of a class, and subclasses of another class.

Instead of two relationships, there is only the one inheritance relationship. And

the emphasis on behaviour and message-passing further presents an object

model that is intended to be more intuitively active than the traditionally

167

passive object. Objects are defined by what they do: ''The only way to know an

object is by its actions" (Ungar and Smith, 1991).

As has already been remarked, the meaning of abstraction in the ToonTalk

context is a general reference to conceptual ideas that need to be learned. The

typical object, too, functions as "a concrete analog" - a representation, a

metaphorical mapping based on an environment that is familiar to the user.

These objects facilitate conceptual learning, and also enable the user to generate

rather than write code. Interface 'objects' in visual programming languages

such as Visual Basic also generate code based on direct manipulation of tools

and menus (though these objects do not function on the basis of analogy, but

are what they appear to be - interface objects).

However, the 'object' in a language such as SELF is an actual programming

object, rather than an analogue of such an object. The object is therefore

represented directly as itself.

6.8. Conclusion

We have studied objects in programming because of claims that they represent

an affirmation of the concrete style, and because they are such a fundamental

aspect of modern programming. In relation to objects and style, we have

reached the opposite conclusion, and found in them a valorisation of

abstraction. As a concept, the 'object' has little direct relevance to object

relations theory. Objects do manifest in the programming product as user

friendly direct manipulation visual interfaces, as software that more closely

reflects the real world, and as modular, plug-in software, where common

components are reused across packages, and may be significantly adapted to the

individual user's needs. Objects therefore present a product that can reasonably

be said to be highly 'relational', providing 'concrete' and more representative

on-screen 'objects'. The same can also be said in the very different but parallel

context of the programming process itself - but it is because of, and not

contrary to, the techniques of abstraction.

168

The theoretical analysis of this dichotomy- between a soft-feminine, concrete

style, and a hard-masculine, abstract style - has thus proceeded to a 'logical'

conclusion at the object-oriented paradigm and beyond. The analysis has raised

questions that have produced a substantial argument against the dominant

hypothesis that identifies and genders these styles. The concept of abstraction

and black-boxing has proven to be both the most crucial, and the most

misunderstood, aspect of the argwnent. We will now consider how to exemplify

this concept and thereby test the validity of the dominant hypothesis.

169

7. Methodology

This chapter justifies the overall research process, indicating the ways in which

all of the major parts of the research work together to address the research

question. It explains how the central research question was formulated, and

discusses the issues that arise in making the question precise and testable. The

importance of the preceding theoretical analyses as research is emphasised, and

its contextual relationship to decisions made in collecting evidence is clarified.

7.1. The Literature Review

7.1.1. Multiple disciplines

A gender analysis of programming must inevitably be interdisciplinary. The

research question concerns several different domains of knowledge - gender,

how people learn, computer cultures, and programming among them. This

interdisciplinary aspect, however, requires care: the input of different

disciplines calls for fine integration and distinction, not wholesale juxtaposition

and transference; studied translation rather than impressionistic transliteration.

Gender is clearly at the heart of the question: gender and feminist theory is a

body of knowledge that interrogates inequities, deconstructs underlying

'differences'. and seeks to explain attitudes, cultures and contexts. Perhaps

most crucially, it can illuminate how and when other bodies of knowledge - and

ways of knowing such 'bodies' - are socially and psychologically constructed,

and how assumptions can define defaults and received wisdoms. In itself it is

multidisciplinary, with considerable pertinent input in particular from

psychoanalysis.

While particular premises have been drawn from gender analysis - such as the

promotion of the position of women - and taken as essential to the research, it

cannot serve as the only (or even the most prominent) body of knowledge in

this study. The literature on gender and programming in particular has, to date,

presented such an imbalance, relying on gender analysis at the expense of

programming knowledge and theory.

170

The main context of the research is that of students learning to program - but

the focus is finnly on the act of programming rather than the learning of

programming. Because programmers never write the same program twice, the

way in which people learn is part of the context. Yet the process of learning,

and the process of programming, should not be conflated: distinctions between

learning (or teaching) methods and styles, and programming methods and

styles, are too easily blurred. A grounded understanding of programming is

necessary in order to make these distinctions - along with some understanding

of how and why learners and others do not understand.

These are diverse disciplines, but their discourses appear to intersect in the form

of similar (or at least analogous) vocabulary. Issues concerning the concrete and

the abstract, opacity and transparency, and relationships to objects, arise in

gender studies and in programming; and pedagogy is concerned with moving

from the concrete to the abstract. Without a proper depth of analysis across the

different disciplines, this might present by default as a shared discourse. Yet

even within the area of computer culture and programming, the same

terminology can be used in different senses. A study of literature in each of the

disciplines has therefore been essential to clarify the terms and expression of

the argument This review has been structured and ordered to move from the

general, to the specific as informed by the general - though this does not imply

any relative precedence or depth of study. However, given the multidisciplinary

scale, the less specific layers must inevitably be representative rather than

necessarily exhaustive in terms of the literature reviewed. The most specific

literature on gender and programming has been scrutinised very closely, and the

research relies heavily on this analysis.

7.1.2. Sources

7.1.2.1. Data

The statistical data concerning inequity have primarily concerned degree level

Computer SCience courses in the United Kingdom and in North America. Data

from English-speaking countries is more readily available and accessible to the

researcher. However, there is a more substantive contextual rationale: the

research being critiqued was largely conducted among degree level students in

171

the USA, and the situated research in this study is to be conducted to reflect the

context of those students, but to be located in the UK. There is also the

argument that, in terms of programming theory and practice, the USA and UK

are currently most definitive of computing culture and the programming

'canon'. Additionally, the statistical identification of Computer Science (as

distinct from applications software and other courses) is clearer in the USA and

UK than it is, for example, in many European countries. There is a clear

relationship between the deeper nature of a society and representation in

computing, and this will obviously vary to some extent between different

societies; however, the review refers to surveys and literature which find that

attitudes do not It is also very generally true that, however different its

manifestations, all societies may at present be characterised as patriarchal.

Programming, as a diSCipline that is important to careers in computing and

programming, is a crucial part of Computer Science, and neither applications

software courses, nor the question of whether Computer Science courses should

be applications software courses, is substantively material to the question.

Programming is simply the diSCipline under examination: there is no point in

deferring or displacing this emphasis.

7.1.2.2. Literature

The theoretical material reviewed is again characterised by the predominance of

US and UK sources. Again, this is the context of the study: it does not in any

way suggest that either feminism or computing is only a USIUK concern -

although some aspects of western feminism may be products of specifically

north American culture.

The literature concerning gender and programming specifically, is limited. The

analysis - and the research question - focuses on the research and articles of

Sherry Turkle, along with Seymour Papert, firstly because this work represents

the substantial part of the dedicated literature, and secondly because their

analysis has been so widely and uncritically accepted. While it is likely that

their analysis would not be so readily accepted within computing circles, this is

172

to be expected, and has not been articulated in detail or within the original

temlS of discourse and context of gender theory. The central critique is

therefore focused on these authors: the critique is original, and represents the

creation and interpretation of new knowledge.

7.2. The Question

The central research question that arises from the fact of unequal representation

in Higher Education, and the analysis of the literature, is whether women have a

negative attitude to black boxes in computer programming: whether abstraction

in programming is 'inimical' to women. The question is of considerable

significance: the techniques associated with abstraction are fundamental to the

current teaching and practice of programming. Such techniques include the

decompOSition of problems into sub-problems, and the packaging of common

functionality into discrete chunks of code that can be reused - and used by

others - on the basis of knowing what these 'black boxes' do, rather than how

they do it. It has been proposed - by Sherry Turkle and Seymour Papert

principally, but also by others - that allowing the individual to reject these

techniques is a prerequisite if "equal access" to computation is to be achieved;

and that structured prograrruning should be removed from programming

courses in order to open up the field to women. The opening up of computing is

thereby linked to the opening up of the black box, via broad associations with

'interior space' and holistic understanding. The validity of these associations -

and therefore of the linkage between black boxes and gender - has been closely

interrogated in the analysis of the literature, and in the light of the critical study

of gender theory. In order to formulate the question more clearly, Turkle and

Papert's analysis is expressed as a testable hypothesis: that abstraction

techniques are more likely to 'put women off computer programming than

men.

A less 'grounded' expression of Turkle and Papert's hypothesis might be

formulated, but would not readily meet the criterion of testability: the more

theoretical and 'objective' idea that such techniques are 'inimical' to an

epistemological style common in women, for instance, is not easily

demonstrable by means of attitudinal surveyor observation. Turkle and Papert's

173

research emphasises the subjective styles of programmers, and repeatedly

illustrates these intellectual styles by citing attitudes to particular programming

techniques.

Turkle and Papert's hypothesis concerns attitude and 'epistemology'. They

clearly assume that students, of both sexes, hold attitudes to black boxes, and

that these attitudes can be elicited by means of interview. Attitudes are

notoriously difficuh to measure - seldom expressible (if at all) in precise terms,

and easily influenced by the research process itself. While other techniques -

for example, the observation of actions - might or might not be more

meaningful than the elicitation of attitudes, my research is in response to Turkle

and Papert's theory. As such, it makes the same ontological assumption, that

attitudes exist about black boxes and are knowable - and entails many of the

same problems that are inherent to attitudinal research methods.

These problems are evident in Turkle and Papert's work, and it is essential that

they should as far as possible be minimised in my own research. The

vocabulary they use to describe attitudes is vague: abstraction is 'inimical' to

women, women are 'frustrated with', 'resent', and do not 'want to use',

prepackaged programs. The most specific common expressions involve

'wanting'. The alleged stylistic dichotomy is presented as a matter of

'preference' and 'tendency' as well as a 'stance'. The epistemological notion of

a 'mode of thinking' is expressed in terms of 'openness' or otherwise to "a

close connection with the object of study" as gendered ways of knowing the

essence of programming. While it would be difficult to test the degree of

distance or closeness in a person's "relationship with the object of study", the

harm that abstraction might do to women, or to decouple any abstraction-related

frustration from other causes, it should be possible to test the extent to which

people want to use black boxes. This in turn would allow for the testing of the

notion that there is a natural gender pattern in the extent to which women and

men want or do not want to use, construct, and see inside black boxes.

174

The second aspect of tenninology and meaning concerns what is meant by

abstraction (and other programming-related terms), and what the 'object of

study' is and should be.

The analysis in the previous chapters raised these questions, and considered, as

particular issues, the identification of what abstraction means in computer

programming and in other fields, and what proponents of concrete and glass

box approaches mean when they would prefer not to use it. It was observed that

'abstraction' had been assumed to have a single meaning - to have the same

meaning in computer programming as, for example, abstraction in philosophy

and mathematics; that concepts valid within the study of science, psychology

and ethical reasoning were loosely transferred into computer programming; and

that in particular styles from music and poetry were also uncritically transposed

into computer programming. The analysis concluded that it is the

'mathematical' implementation detail of a problem that abstraction techniques

remove, so that it may be readily understood within the human domain: in other

words, that the function and nature of 'abstraction' in computer programming

was, in most respects, the opposite of what Turkle and Papert assumed it to be.

This confusion was seen to be founded on the identification of the computer -

rather than the problem domain and user context - as the object of study in

programming for the concrete-style advocates, who therefore perceived

abstraction or distancing from the computer as a characteristically masculine

epistemological style.

Abstraction in programming is misinterpreted as the ascription of meaning

without context, reflecting the sense of 'abstract' in pure mathematics or

philosophy. More specifically, it is conceived of as a distancing from the object

of study - which, in the case of computer programming, is assumed by Turkle

and Papert to be the computer.

This meaning is ascribed at the level of interpretation: at the broad level of

exemplification given by Turkle and Papert, they correctly identify black

boxing, and the use of prepackaged procedures, as applications of 'abstraction'

175

in computer programming. While the theoretical meaning of the term

'abstraction' is disputed, the question can therefore use a practical meaning that

accords with the real meaning of the term in computer programming, and at the

same time reflects the substance of their field research and analysis.

7.2.1. The influence of the researcher

A key problem with attitudinal research is the extent to which the investigator's

attitudes may influence the research. The analysis of the literature specifically

indicates not only that Turkle and Papert's interpretation of the abstract and

concrete in computer programming was confused - but also that their

respondents often shared the misunderstandings of the researchers.

The observation that Turkle and Papert's respondents appeared to share some of

their misconceptions, has significant implications in terms of methodology. As

has been observed, the notion of objectivity has frequently been rejected within

feminist methodology in favour of subjective experience. Maher and Tetreault

(1993, p.31) liken the feminist researcher's relationship to their informants to

that ofteachers with their students. Pohl (1997) observes that Turkle's main

source of data is interviews, ''rather than the concrete practices they adopt", and

cites Halpern's 1992 study as evidence that ''the actual differences in cognitive

style between women and men are less obvious than the images people form

about them" (192). This additionally raises a problem that is perhaps more

significant than the researcher's apparent closeness to her subject: the power

relationship between researchers and informants where the relationship is in

actuality a teacher-student relationship. There is some indication that Turkle's

students reflect her ideas, and share her misinterpretations of fundamental

programming concepts. There is a strong possibility that their observations and

responses reflect Turkle's own psychosocial theories, and that these theories are

reshaped on the basis of her presumptions concerning programming. (In

addition, Turkle often uses descriptive vocabulary that subtly appears to lend

weight to her thesis: Anne's "way of seeing", for instance, is said to be

"woven" (1984a, p.l10».

176

There was clearly an equal danger in my own research that student respondents

could be unduly influenced by what they felt their teacher expected of them.

While care could be taken to ensure that there was no explicit set of

expectations, the most ingrained dangers would concern the extent to which the

curriculum and its delivery implied expectations of how students should

approach programming. Turkle's students presumably overcame the alleged

epistemological orthodoxy of their course at least in part through her assistance:

if there is a 'canonical' style, then perhaps students might not otherwise

overcome the pressure to conform. Some of these concerns could be allayed by

a curriculum that did not explicitly address abstraction, combined with delivery

methods that used concrete learning environments - and, of course, by

respondent anonymity.

The decision in favour of anonymity has implications for follow-up interviews

and descriptive accounts of the ways in which respondents experience

programming. Respondents could only be asked to volunteer for interview. The

limited extent to which this was achieved placed severe constraints on any

possible follow-up interviewing: in the case of the first research site, a trivial

number of males volunteered for interview; and in the case of the second, no

females volunteered.

It was decided to use questionnaires rather than interviews as the primary

source of information in order to minimise the researcher's influence. In

interviews, the researcher participates in and shapes the conversation - and

indeed needs to establish a rapport with the subjects in order to elicit responses.

These responses then have to be interpreted - by the researcher - as attitudes.

While survey questions may invite particular answers in the same way as

interview questions frequently do, the researcher has less direct influence. The

potential benefits of interviews - richer data, and clarity of understanding - can

be added in by means of supplementary interviews after the completion of the

survey. On the other hand, there is a danger that a questionnaire could impose

clarity rather than explores attitudes, and could even furnishes attitudes that the

respondents would not otherwise wish to express.

177

7.2.2. Environmental factors

Anthropologists and community sociologists claim that ethnographic

studies enable them to obtain information that it is not possible to get

otherwise. According to Wilson (1977), ethnography is based on ''two

sets of hypotheses about human behaviour: (1) the naturalistic-ecological

hypothesis and (2) the qualitative-phenomenological hypothesis ... "

(1977, pp.247-249).

The naturalistic-ecological hypothesis holds that setting is a crucial

influence on research, and should therefore be studied as an integral part

of the research. As laboratory and field results can be very different, there

is a need to conduct research "in settings similar to those the researchers

hope to generalise about" (Wilson 1977, p.248). Particularly where the

research concerns attitudes, these can be strongly influenced by

"internalised notions of what is expected or allowed" (Wilson 1977,

p.249). For this and other reasons it has been argued that responses

collected by means such as questionnaires do not necessarily fully reflect

the information that can be obtained from observing actions.

Although Turkle and Papert's main focus ins on explicit attitude, their

study of programming styles among children involved field research:

children were observed, over a period of time, undertaking programming

tasks; observations were followed up with interviews. It might therefore

be deduced that observation was a practical option in terms of my own

research. However, it is significant that Turkle and Papert's observation

work was restricted to children: their study of programming styles among

adults appears to have involved interviews, but no observation. The

programming that was performed by the children involved the simple

manipulation of graphical sprites on screen: its processes were almost

entirely visible as direct output, and could therefore be easily observed.

The same is not true of the kind of programming that is taught in Higher

Education, and which is commonly practised by professional

178

programmers in commerce and industry. The task of making significant

and comprehensive observation of programming behaviour would be

immensely complex even with a single individual. It would be very

difficult to devise practical situations that were likely to provide a realistic

opportunity for eliciting the extent of predilections for the use of black

boxes. The mental processes of non-trivial algorithm development are

very difficult to extemalise in a demonstrable way, and it would also be

extremely difficult to identify the reasons for particular actions or

decisions - for example, between those taken because of a lack of

knowledge or understanding, and those taken because of an attitude or

inclination.

A key problem identified by ethnographers is - as observed earlier - the

extent to which the subjects of research might have a "sense of the

behaviour that is either appropriate or expected", and "desire to be

evaluated positively" (Wilson 1977, p.248). The major issue in this

respect for the current research, would concern the extent to which

students might have been taught that using black boxes was a good thing.

In the case of both studies - one at Liverpool Hope University College,

and one at Manchester Metropolitan University - the level of the course

was chosen to ensure firstly that the tasks represented would be

understood, but also secondly because the concepts of 'good practice' in

relation to black boxes had not yet been made explicit. However, the

purpose and implementation of procedures (or methods) had been

explained. On the other hand, many students found the concept of

procedures with parameters difficult. And any sense of conformity that

might have been transmitted by virtue of the teaching of procedures, may

well have been balanced by the possible perception that they might also

be expected to choose the more difficult options - which would involve

rejecting black boxes. It is this problem that led to the decision to ensure

that the questionnaires could be returned anonymously. It also contributed

to the decision not to conduct observations.

179

7.2.3. Quantitative or Qualitative methodology

A quantitative strategy may be seen to imply a more impersonal and 'abstract'

approach. Particularly within the context of the debate at hand, quantitative

methods may alternately be seen as 'abstracting' experience, or as making

abstract concepts concrete and definite. However, in the light of the literature

analysis and the nuances and inconsistencies obsexved above, several

compromising aspects of qualitative factors were carefully considered: the

influence of subjective stereotyped perceptions on discourse; the influence of

the researcher; the self-selecting nature of any volunteers; the likelihood that

discourse and vocabulary could reproduce the misunderstandings of transferred

concepts - such as what abstraction means in the context of programming -

particularly within the context of the teacher-student relationship. Qualitative

methodology would have the capacity to develop, on the part of both the

researcher and the respondents, a dependence on gender, and a self-conscious

knowledge of gender as an issue. Turkle and Papert's research with first-year

programming students is characterised by the absence of clear exemplification.

Quantitative methods had not been used before, and had the capacity to

minimise side-effects; also, one of the weaknesses of previous research was the

lack of attention to the specifics of programming in regular 3rd generation

systems programming languages. Ironically, there is virtually no concrete

illustration of 'concrete' and 'abstract' styles at work. Children are obsexved

using Logo in the classroom, but the study of university students provides no

practical exemplification. In the general epistemological terms apparently

espoused by Turkle and Papert, we can best understand what it is to program in

a concrete or abstract way, first by providing concrete exemplification, then

theorising on that basis. To test whether these styles are gendered, a specific

and representative aspect of typical introductory programming would need to be

unambiguously and fairly exemplified.

The identification of a testable aspect, and the choice of examples - and

questions - would therefore be crucial, and require very careful consideration.

The concept of black boxes is fundamental to the concrete/abstract stylistic

dichotomy, and the assertion that females "shun prepackaged procedures" and

180

"dislike the opacity of the black boxes" (Grundy, 1996) is central to its

gendered interpretation.

It was therefore decided to use quantitative methods in order to minimise side

effects that might prejudice results, and to clarify meaning by the use of specific

exemplification. The scope for subjective interpretation, misunderstanding, and

prejudice, could be curtailed by making concepts concrete and presenting a

statistical analysis of responses. To quantify attitudes, it would be necessary to

formulate questions carefully, focus on the specifics of programming in regular

3rd generation systems programming languages, and ensure that gender acted

as an independent variable.

7.3. The Surveys

A more detailed explanation of the process of sampling- and the context of the

surveys - is given in the following chapter. This section sets out and discusses

the salient methodological issues within the larger context.

To examine the validity of Turkle and Papert's central thesis, it was decided to

ask questions of a sample from a broadly similar population to that used in their

research. In this respect it was decided to focus on the student rather than the

school population. As has been observed (in chapter 3), Turkle and Papert's

children were highly atypical in that they were the product of an ultra-selective

process that isolated a handful of the most talented and enthusiastic children

from a larger body that had itself been selected for a uniquely immersive

computer experience. This part of their study ignores the less responsive and

talented individuals even within a highly selective larger population.

Additionally, the programme of activities that the children were engaged on,

appears to have been specifically driven by constructionist principles which

explicitly seek to encourage bricolage and concrete styles. To replicate or

parallel such a scenario could not provide a valid or neutral testing ground for

the hypothesis.

181

The student population does not any present such immediately obvious

problems: representative populations were available, along with representative

curricula. Again, this will be explored in more detail in the following chapter.

The choice of questions was also crucial: a key intention was to provide

concrete exemplification of what it meant to use prepackaged routines. The

questionnaires and results are discussed in more detail in the following chapter.

What follows is presented as methodologically underpinning.

7.3.1. Hypothesis testing: terms of reference

The hypothesis that women are more likely to reject the techniques and 'way of

thinking' of abstraction is questioned by the exposition of the theoretical

contradictions and weaknesses of the hypothesis. This process undermines the

hypothesis; however, it cannot render the hypothesis superficial, given its

Significance.

The hypothesis is reasonably clear, but it is equally clear that it requires

practical interrogation; whether it is in a form that permits it to be thus tested,

will depend on further exploration of the meaning of the terms in which it is

expressed. It is necessary in particular to clarify what is meant by black boxes,

and then to consider how a hypothesis about attitudes to black boxes might

reasonably be tested.

7.3.1.1. What a black box means

The concept of black boxing in programming has a wide connotative remit: it is

used, for instance, to describe a method of testing and debugging a program;

and can also imply a top-down approach to problem solving. Turkle and Papert

use the concept in its generally understood sense: they repeatedly equate

blackboxing with opacity and abstraction - with detail being hidden. They

explain blackboxing as ''the technique that lets you exploit opacity to plan

something large without knowing in advance how the details will be managed".

Something that is ''thoroughly black-boxed" has "both its inner workings and

all traces of the perhaps messy process of its construction hidden from view"

182

(1992, p.16). The tenn 'black boxing' is directly conflated with the use of

opaque library procedures: "black-boxing or using prepackaged programs".

The equation of black boxes and 'prepackaged programs' is repeatedly

emphasised throughout Turkle and Papert's publications. Usa and Robin (who

feature as a prominent part of the argument in all of Turkle and Papert's joint

papers, and in Turkle's two books) want to write their own procedures rather

than ''use prepackaged ones from a program library". Usa "resents the opacity

of prepackaged programs" (1990, p.128). Again, in Turkle's Life on the Screen,

Usa is said to prefer "to write her own smaller subprograms even though she

was encouraged to use prepackaged ones available in a program library. She

resented that she couldn't tinker with the prepackaged routines" (1996, p.53).

What is described is a dissatisfaction with library procedures, and a desire to

"take it all apart" and look at what's "going on at that low level". It is this

attitude that Turkle and Papert characterise as more likely to be a female trait.

The use of prepackaged routines is not quite all that is meant by black boxing -

but it is the strongest exemplification of it within the terms ofTurkle and

Papert's argument Turkle and Papert do occasionally appear to treat 'top

down' as synonymous with abstraction: when a top-down approach is referred

to, it is used loosely as a shorthand for an 'algebraic' approach that uses

opacity. So Anne's approach is generally said to be opposed to ''the top-down

approach", but as an approach it specifically "dramatises what was so salient

for Usa and Robin: the desire for transparency". The use of variables to store

sprite colours is identified as an obstacle to transparency, and is also referred to

as 'algebraic' because it assigns the colour of each bird to a different variable.

Anne's nervousness about black boxes is elaborated as her not wanting ''to

package her constructs into opaque containers"; it is explained that "in

engineer's jargon, it [hOW the bird works] could be treated as a black box",

Anne's example - analysed in Chapter 6 - indicates that black boxing is

inimical to the concrete programmer not just in terms of the use of third-party

library routines, but also as a strategy for writing and organiSing their own

183

code. In 'Ufe on the Screen', Turkle conflates the notion of 'structured

programming' with the separation of subprograms:

After you create each piece, you name it according to its
function and close it off, a procedure known as black boxing.
You need not bother with its detail again." (1996, p.S1)

Programs, or segments of code, are "black-boxed and made opaque": the "black

box" is "designed not to be touched".

However - as Chapter S illustrated - rejection of a top-down approach does not

equate to a rejection of abstraction. The separation of different levels of

abstraction does not have to be top-down in nature: it can commence at the top,

the bottom, or somewhere in between (e.g. Clancy and Unn, 1992). Hayes-Roth

and Hayes-Roth (1979) refer to this kind of approach as "opportunistic

planning", in which, according to Pennington and Grabowski (1990), ''the plan

exists at different levels of abstraction simultaneously and the planner

continually alternates between levels".

7.3.1.2. Exemplification

Exemplifying the use of black boxing would therefore appear to be relatively

trivial: prepackaged routines are an intrinsic part of most introductory

programming courses. Two aspects of this triviality, however, raise concerns:

firstly, prepackaged routines are unavoidable in any high-level programming

language; and secondly, bypassing such routines is undeniably more difficult.

While both of these issues point to deeper weaknesses in Turkle and Papert's

analysis, both must be addressed. It is impossible to ascertain what constitutes a

satisfactory level of primitives: in her earlier work, Turkle refers to her

prototype concrete 'programmer X' wanting all elements of the program to be

available to the programmer "as primitives" (1980, p.17). While the meaning of

this cannot be ascertained in the absence of concrete exemplification, it was felt

that it would be unreasonable to focus solely on packaging built into either the

programming language or the compiler. It was therefore decided that routines

which had explicitly been prepackaged by a known third-party, over and above

this inherent 'prepackaged' prepackaging, should be tested. The issue of

184

difficulty may appear to be more intractable: many students have a perhaps

natural inclination to avoid difficulty! However, while there is the possibility

that this might prejudice against wanting to take prepackaged routines apart,

this should not impact on the question of gender preference.

Relative difficulty is something that Turkle explicitly (and perhaps proudly)

recognises as a concomitant of soft mastery. It is acknowledged that Lisa and

Robin's insistence on doing their own '''building-block' procedures ... makes

their job harder" (1988, p.49). Anne's way of making birds appear and

disappear "doesn't make things technically easy", and on the contrary requires

unnecessary ''technical sophistication and ingenuity" (1984a, p.113). All of her

soft masters do not need to look inside the black boxes, and they know that they

are choosing the difficult route. The fact that students 'do not need to know'

how something works is the crux of the black-box question: it is all the more

necessary to try to establish who actually wants to know. A black box

'abstracts' the detail that the programmer does not need to know, so that they

can concentrate on what it does, rather than how it does it. Turkle and Papert's

hypothesis is that the learning and programming style of concrete programmers

(such as Robin) compels them to want to know how it does it - to make the

black box transparent, or else rewrite it themselves.

It was decided to devise concrete examples to test this inclination, and to ask

learning programmers a small number of closed questions about their attitudes

towards specific prepackaged routines, then conduct a statistical analysis of the

results. While a quantitative strategy might be seen to imply a less

contextualised and more 'abstract' approach, this was adopted precisely because

of some of the problems seen to arise from Turkle and Papert's more qualitative

research: the likelihood that discourse and explicit vocabulary could reproduce

similar misunderstandings of transferred concepts (such as what abstraction

really means in the context of programming); the prejudicial influence of the

researcher's perspective and background, and the expectations of self-selected

volunteers; and the probability that a self-conscious knowledge of gender as an

issue would arise.

185

The 'concrete' style of programming is characterised by specific instantiation

rather than general abstraction; the methods adopted here are founded upon the

assumption that it is also desirable to make specific what is meant by the

concepts of 'concrete' and 'abstract'. The experiential discourse of Turkle and

Papert's first-year programming students inclines towards abstract generality

and conceptualisation: in particular, it is characterised by an absence of clear

exemplification.

7.3.2. Sampling

While the population of interest was in a broad sense people learning to

program, the individuals who expressed the attitudes and styles that Turkle and

Papert's thesis is based upon, were students in the earlier part of undergraduate

programming courses. It was therefore decided to sample this population, and

to do so in institutions with different proflles and different courses. On the one

hand, Combined Honours students from an Arts background were chosen to

reflect most closely the background of Turkle and Papert's sample. On the other

hand, this particular population was largely female, and therefore

unrepresentative of the national statistics. It was therefore decided to take a

second sample, this time from a more traditional Computer Science course in a

male-dominated student-body and Department. While they were also first-year

programming students on Combined Honours degree courses, they were all

studying for a BSc at a large 'new' University. The degree was located in the

Department of Computing and Mathematics, which in turn forms part of the

Faculty of Science and Engineering. Both the Department and the Faculty have

-unlike liverpool Hope - an overwhelmingly male profile.

To minimise extraneous pressure, it was decided to survey the students at a

point in their course where they had not been explicitly taught that abstraction

and black boxing was a good thing. In addition, to again minimise the

assumption of predetermined positions, it was decided to conceal the gender

theme of the questionnaire.

186

The first sample size was 41 (24 female, 17 male), and the second was 50 (11

female, 39 male). Given the use of quantitative methods, a larger sample would

have been preferable. However, this was not available within the respective

institutions, and the intention was to treat each group - as a product of a

particular micro-culture - as a coherent whole.

While the samples were in many respects similar to Turkle's, the strategy

adopted, both in formulating the questions, and analysing the responses, was

very different

7.3.3. The questions

In order to test the hypothesis concerning black boxes, therefore, attitudinal

questions would have to be formulated that were specific and applied, in a way

that would reflect the meaning of the central research question and be

meaningful in the context of the students' actual experience. The specific detail

would need to be such that a reasonably full range of students would understand

the questions sufficiently to respond in a way that accurately represented their

attitude. In order to quantify results, responses would be gauged on an ordinal

scale, and a X2 test then used to compare available female and male responses.

Questions were therefore closed, and the attitudinal scale was limited to three

points to better measure attitudinal dichotomy. Some triangulation would be

conducted by means of interviews with respondents who indicated that they

were willing to talk in detail about their attitudes.

The hypothesis would be tested by establishing whether female students

learning to program largely shared Lisa and Robin's dissatisfaction with

prepackaged programs from a program library, and whether they too wanted to

'take it all apart' or write their own. Prepackaged programs were exemplified

both in terms of library routines provided within the larger software

development environment (Visual Basic), but also in terms of higher-level

routines that had been prepackaged at course level by a tutor known to the

students.

187

7.3.4. Distribution

The programming units at both institutions were delivered by a team of several

tutors. The questionnaires were therefore distributed, with a minimum of

additional infonnation, by the tutor with whom each group was familiar.

Students completed and returned the questionnaire at the beginning of a

laboratory session, at a time of year when they knew enough to understand the

questions, but were not under irrunediate pressure to prepare assessed work.

7.3.5. Analysis

The objective of the sampling was to establish whether the sample of attitudes

fitted the pattern proposed by Turkle and Papert - or whether it fitted a pattern

that might be suggested by our critique As the original pattern was broadly

conceived as a predilection on the part of one gender for or against black boxes

- and the suggested alternative either no significant difference, or the opposite

predilection - it was decided to use a Chi-Square test for goodness of fit. This

test would measure the extent to which observed response frequencies differed

from the frequencies one would expect, given the null hypothesis of no

difference between women and men, and conclude whether or not the observed

data fitted the distribution indicated in the null hypothesis.

7.3.6. Interviews

While it did not prove practicable to directly follow up anonymous

questionnaires with interviews, it was still desirable to temper and triangulate

the quantitative data with finer, more impressionistic accounts. It was decided

to conduct a limited number of interviews about programming, with gender and

abstraction explicitly on the agenda To best fulfil this agenda, it was decided to

restrict the interviews to female students who in terms of programming

knowledge and experience had moved Significantly beyond the level of the

surveyed students, and who had some additional qualities. Knowledge of a

range of prograrruning languages, expertise in psychology, and musical

expertise, for example, could all provide strong links to particular facets of

Turkle and Papert's ideas and personal accounts. Interviews were also a means

of bringing gender out into the open, to see if this made a difference. And it

188

offered a way of representing women's voices and subjective experiences, as a

correlative for the more impersonal 'objective' analysis.

These interviews were arranged informally and by invitation, on the basis of the

researcher's personal knowledge of individual students and their interests and

backgrounds. In most cases the interviewees were well known to the researcher.

Interviews took place within the respective Universities, and generally included

an open question about the student's experience as a female programming

student, followed by questions or comments related to their particular expertise,

and to their experience of black boxes. The first interview took place in 1997,

and the last one in 2002. One was conducted bye-mail, and the rest were

conducted in person - of which one was recorded on tape, the others initially

recorded in handwritten notes. While the topic of research was made explicit to

interviewees, the author's own views and interpretations were not at any point

discussed. At the time of interview, none of the students was studying on a

programming course for which the author had any responsibility; two were

studying on another (non-programming) course for which the author had

responsibility; the rest were not studying - or going to study - on any course for

which the author had responsibility. Two had already completed their degrees.

7.4. Conclusion

The research question has been justified as significant, and examined and

clarified in several relevant contexts, including feminist methodology;

qualitative and quantitative research methods; conceptual confusions across

different discourses; and the researcher- respondent relationship. A method for

testing the hypothesis that the teaching and use of abstraction techniques puts

women off computer programming, and to a greater extent than men, has been

carefully constructed in this light. Given the critical nature of the review of the

literature on programming style, particular care has been taken to ensure that

the test is reasonable and non-trivial. The rationale for the initial sample has

been explained, and the data from this survey will now be examined.

189

8. Exemplifying the Concrete

8.1. Rationale

Turkle and Papert's central thesis is substantially based on interviews with

undergraduate students in the relatively early stages of a programming course.

To examine its validity, it was therefore decided to ask questions of another

group of first-year programming students with an arts background, and follow

this up with a similar survey of a more traditional student body. The choice of

questions was crucial: a key intention was to provide concrete exemplification

of what it meant to use prepackaged routines.

Within the context of the issues that have arisen, quantitative methods as such

might be interpretable as an 'abstracting' of experience; on the other hand, it

may be pointed out that the 'concrete' style is characterised by specific

instantiation rather than general abstraction, and the methods are founded upon

the assumption that it is also desirable to make specific what is meant by the

concepts of 'concrete' and 'abstract'. The experiential discourse of Turkle and

Papert's first-year programming students inclines towards abstract generality

and conceptualisation: it is characterised by an absence of clear exemplification.

As we have seen, the interpretation of this discourse is also variously influenced

by:

• a misunderstanding (on the part of the researchers as well as the

respondents) of abstraction in computer programming;

• a simplistic transferral of gender ideas, from psychology and ethical

reasoning, to computer programming;

• an uncritical acceptance of the transferral of styles from music and

poetry to computer programming.

The methods adopted were therefore chosen with the intention of minimising

the scope for subjective interpretation and prejudice by making concepts

concrete and presenting a statistical analysis of responses.

190

8.1.1. The need to exemplify

The empirical research on which Turkle and Papert's claims are based, involved

observation and interview of children, as well as degree students. This was

conducted at Hennigan School, Harvard, and Massachussets Institute of

Technology (MIT) in the 1980s, with students learning to program. It is not,

however, described in detail in any of their publications (1980; 1984a; 1984b;

1988; 1990; 1992; 1996). 'While they cite 14 out of 20 girls favouring the 'soft'

approach, as opposed to 4 out of 20 boys, it is not clear how the statistics were

arrived at. In exemplifying 'hard' and 'soft', 'abstract' and 'concrete', there are

few concrete programming examples. Those that are given are largely based on

the use of a special-purpose language, LOGO, in a school context: they tend to

be intrinsically visuo-spatial in nature, and do not reflect common real-world

programming scenarios. Student programmers are interviewed, and their views

form the practical support for the analysis. "Robin", who is said to be

"frustrated with black-boxing or using prepackaged programs", gives typical

testimony when she is quoted, talking about 'prepackaged programs':

"I told my teaching fellow I wanted to take it all apart
and he laughed at me. He said it was a waste of time,
that you should just black box, that you shouldn't
confuse yourself with what was going on at that low
level." (1992, p.7; 1990, p.134)

There is no description, or even exemplary identification, of 'it' - the

prepackaged routine she wanted to dismantle.

The basis of my research was to describe 'it': to give novice programming

students practical examples of prepackaged routines, and find out who "wanted

to take it all apart", In this way Turkle's hypothesis could be put to the test: if

true, one would expect that women would be more inclined to look inside the

black box and to take it apart.

We will look at each of the two sample groups in tum.

191

8.2. Liverpool Hope University College

8.2.1. The sample

As a beginners' course, the Hope programming unit did not irrunediately reflect

real-world programming problems. In this respect, it would appear to be similar

to the course referred to in Turkle and Papert's studies. The strategy adopted,

both in formulating the questions, and analysing the responses, was, however,

different. Specific and applied questions were formulated, gauging responses on

an ordinal scale, and a X2 test used to compare available female and male

responses.

As already indicated, the students surveyed in the first group were Combined

Honours students at a liberal arts college of Higher Education in liverpool,

England. Their first year course of study consisted of Information Technology

(IT) and two other subjects. The IT provision assumed no previous experience

upon entry: students generally took up IT to learn more about computers, and

not to become programmers. All students had completed a compulsory first

year module on programming and problem-solving. They would know enough

to understand practical examples, but had not encountered abstraction and

black-boxing as explicit concepts. Students had no awareness either of the

debate represented by Turkle and Papert, or that gender was a key part of the

questionnaire. It was therefore possible to test the hypothesis with minimised

contamination: students would not prejudice their responses in relation to the

debate.

The sample size was 41, of whom 17 were male and 24 female.

8.2.2. The course

In previOUS years, the liverpool Hope first year programming unit had used

Pascal as its language, and had included more material and concepts. Some of

these were dispensed with on the basis that students experienced great difficulty

grasping the ideas: enumerated types and pointers were dispensed with first,

then arrays of records. In the year preceding the development of the unit as run

192

during the research, a new case-study approach to teaching program design and

development - still using Pascal- was adopted. This involved looking at much

larger programs, understanding how to read the code, and how to work in

groups to add to it. Common design patterns or 'templates' were identified and

reapplied. The success of the approach was in part compromised by team

tutors' reluctance to depart from the traditional syntax-based drill teaching with

which they were familiar. Student results were still a matter of concern, so the

language was changed, and yet another new unit developed.

The new unit employed a simple environment that was developed in-house at

the college: PieEater provided a two-dimensional grid environment through

which a small character (the eponymous pie-eater) could be directed, eating

pies on request along its way. Students could see on-screen the immediate

effects of their instructions. In this respect it shares some of the characteristics

of the Logo environment used by some of Turkle's subjects. It does not, of

course, reflect realistic or typical programming tasks, but presents a simple

environment within which basic principles may be learnt, and immediate results

can be seen. The implicit teaching approach would be described as 'concrete'. It

is important that teaching and learning in a concrete way - by exemplification

and practical manipulation - should not be confused with programming in a

concrete way. The PieEater environment represented a strongly exploratory and

concrete pedagogical approach to the teaching and learning of programming,

yet, for ease of understanding, it made extensive use of black-boxing, requiring

students to use pre-packaged routines written in Visual Basic. These routines

were written by programmers other than the student, but the student is not

taught how to make their own black boxes. The student would largely use these

. routines, with occasional direct use of routines native to Visual Basic itself. The

questions to be asked would concern attitudes to the use of black boxes, not

attitudes to learning by exemplification and manipulation, and not the

temporary use of glass boxes for learning purposes.

193

8.2.3. Relationships and other contexts

The small size of the institution, and the high proportion of mature students,

both led to relatively personal and informal relationships between students

(including respondents) and staff (including the researcher). The questionnaire

was not identified with a specific member of staff, and its concern with gender

was not revealed or discussed. It was presented as part of general research into

the ways students learn to program, and was distributed, in different groups by

different tutors, to be completed either before or after the completion of the

class. All staff were experienced programming lecturers, three male and one

female. The classes were practical sessions, where student numbers were

restricted to a maximum of 20. The response rate represented the attendance

rate in the week of distribution.

8.2.4. The questionnaire

As noted above, the course made little or no explicit reference to the design

concepts of abstraction or black boxes: it was therefore neither possible nor

desirable to ask questions that referred explicitly to these concepts. The guiding

principle in formulating the questions was to provide concrete exemplification

of what it meant to use prepackaged routines. Preferences in relation to black

boxes would be elicited by asking implicit and strongly exemplified questions.

The learning environment (PieEater) made specific use of what Turkle and

Papert call 'prepackaged routines', so practical examples of these were

presented to students, and their reactions elicited.

Three simple questions were framed: the first asks whether the student is

curious just to know the inner workings of typical PieEater routines:

1. In PieEater, routines were provided to enable you to move or tum the

pie-eater. Have you ever wondered, or wanted to know, how the move

and tum routines were implemented?

This is the basic 'glass box' question, testing the weaker end of Turkle and

Papert's thesis: it entails a desire only to look inside prepackaged routines.

194

The second goes further, and asks if the students would prefer to actively write

their own routine instead:

2. Would you rather have written your own routine to move and turn the

pie-eater. so that you knew exactly how things work?

The third moves on to Visual Basic itself - would the student wish to write their

own routine rather than use Visual Basic's pre-packaged routines:

3. Visual Basic allows you to create objects on the screen - such as

buttons and windows - without having to write the code to do so

yourself.

Would you prefer to write your own sub-routine to draw a button?

This question tests the 'strong' end of the thesis.

The scale used was a simple three-point Likert scale, from definite rejection (1),

through a willingness to consider the notion (2), to definite confirmation (3).

Personal data was also requested: age-group, sex, previous experience and

qualifications. The additional data ensured that the spotlight was not on gender,

and provided information concerning other potential variables.

8.2.5. Analysis of data

Higher scale points indicate respectively that the student would prefer to 1) see

inside a prepackaged routine; 2) write their own routine instead of a routine

prepackaged by the tutor; and 3) write their own routine instead of a routine

prepackaged by Microsoft. lfTurlde's thesis were accepted, there would be a

marked difference between the response of female students and that of male

students: females would register high scale points more frequently than males,

and males would register low scale points more frequently than females.

As the responses were measured on a three-point ordinal scale, a X2 test was

used to examine how much the observed response frequencies differed from the

195

frequencies that would be expected given the null hypothesis of no difference

between women and men.

8.2.5.1. Question 1

Observed frequencies for responses to the 'glass box' question are indicated in

table 3.

Observed data Oij

Male count 1

3

Table 3

The expected frequencies. under the hypothesis of no difference. are shown in

table 4:

Expected data Eij

Table 4

It may be noted from this that the number of female responses at points 2 and 3

on the scale was actually lower that would be expected. and higher for 1.

The calculation of the value ofX2 is shown in table 5.

0.0478

. 0.0817

196

TableS

With two degrees of freedom, and a 5% significance level, the critical value of

X2 is 5.991. With Calc X2 0.093 < Tab X2 5.991, the null hypothesis was

accepted for the glass box question, and it was concluded that there was no

Significant difference between the responses of women and men.

8.2.5.2. Question 2

Observed frequencies for responses to the question which asked students if they

would prefer to write their own routines instead of the prepackaged routines,

were as follows:

Observed data Oij

Table 6

Expected frequencies, under the hypothesis of no difference, were calculated:

Expected data Eij

Table 7

The calculation of the value of -l is shown in table 8:

TableS

197

Again. Calc X2 0.187 < Tab X2 5.991. and the null hypothesis was accepted.

There was no significant difference between the responses of women and men

to the proposition that they write their own routine instead of a prepackaged

routine.

8.2.5.3. Question 3

The observed responses to the question which asked whether students would

wish to write their own routine in place of Visual Basic' s own pre-packaged

routines, are shown in table 9:

Observed data Oil

Male count

Table 9

The null hypothesis expected frequencies are shown in table 10, and the value

of l in table 11:

Expected data Eil

Table 10

Table 11

198

The null hypothesis is again accepted, with Calc X2 < Tab X2. There was no

significant difference between the responses of women and men to this

question.

8.2.6. Further Observations

It may be observed that there is a marked difference in the overall responses to

questions 1 and 3 respectively: while question 1 tempted a third of respondents

to peek inside a prepackaged routine, only one respondent was definitely

inclined to self-author a routine prepackaged in Visual Basic. Black boxes

appear to be more welcome in complex situations. It may also be noted that,

apart from the fact that this single respondent to the most unpopular proposition

was female, females were generally less likely to respond at the higher end of

the scale than males - and therefore slightly more likely than males to prefer

black boxes. This difference, however, is not statistically significant.

8.2.7. Conclusion: Liverpool Hope

University programming courses typically emphasise high-level understanding

and transferable problem-solving skills, rather than quick-fix practical solutions

specific to the individual problem, language, and programmer. The perception

of principles that lead to greater reusability and maintainability, patterns in

different representations, transferable problem solving strategies, techniques to

facilitate team-working on large projects, are all important. Such objectives

should lend themselves to - but by no means guarantee - a deep approach to

teaching and learning. This approach may involve both concrete and abstract

teaching styles. The PieEater environment represented a strongly concrete

strategy, encouraging students to explore problems in a hands-on way, and

providing concrete representation of actions. As in Kolb' s learning cycle, this is

the starting-point in a cycle that moves on to reflection and conceptualisation,

and then links back to the experimental (Kolb, 1983).

199

Turkle and Papert view the concrete approach as neither a learning style nor a

stage of development. but as a fully-formed "intellectual style" (92: 11). This is

clearly debatable - as is the conclusion that this style is in contrast to and as

good as the use of abstraction and black-boxed library routines. What is

suggested by this study, however, is that women are not more likely than men

to shun black boxes.

200

8.3. The Manchester Metropolitan University

8.3.1. The sample

The sample group consisted of first-year Combined Honours undergraduate

students, all of whom were on an introductory Java course at The Manchester

Metropolitan University (MMU). While other cohorts (Single Honours in

Software Engineering, Computer Science, and Information Systems) were also

studying on the same course, this particular group was chosen for two key

reasons.

Firstly, the sample at Hope had involved Combined Honours students, and the

intention was to see if the Hope results would be repeated at a different type of

institution; secondly, whereas the Single Honours cohorts contained virtually no

female students. there was a larger minority of female students on the

Combined Honours programme. The sample therefore differed in that it was

drawn from a student body that was predominantly male. This indeed was one

of the reasons for sampling the undergraduate population of a British 'new'

(post-1992) University in addition to the sample from the liberal arts college of

higher education. The 'culture' within University departments of Computer

Science - or, in this case, the Department of Computing and Mathematics - is

more distinctively masculine than in the college sector. There are no female

members of staff teaching programming. The few female students in the cohort

are deliberately grouped together, and it is therefore not unusual for classes of

32 students to contain no female students whatsoever.

A further contrasting characteristic of the Manchester cohort is that. whereas a

large number of the Hope students were mature, only two students over the age

of 25 were recruited (of whom only one was retained). All female students were

aged between 18 and 20.

All students were studying for a BSc Honours degree, and therefore their

second principal subject would be drawn from sixteen other disciplines

typically available at a new University. These subjects include Languages,

201

Sociology and Psychology as well as Chemistry, Biology, and Materials

Science. Students were enrolled in one of two computing subjects: Computing

Science, or Information Systems, with the former being generally characterised

as more technical.

Although higher admission requirements were set for students accepted onto the

Combined Honours degree [16 points at A level or equivalent, as opposed to 12

on the 'Modular' single honours degrees], Combined Honours students had

traditionally performed less well than their single honours colleagues. This

underperformance is usually more pronounced in programming courses, and

courses generally regarded as being more 'technical'.

During the course, students had encountered black and glass boxing as concepts

in the testing of programs, and abstraction only implicitly, in the form of

stepwise refinement as a design technique, and the corresponding use of

methods as an implementation technique. Students again had no awareness of

gender as an issue of debate in programming, or as a significant part of the

research.

The sample size was 50, of whom 39 were male and 11 female.

8.3.2. Further Background

The representation of women on the Combined Honours Computing

(encompassing Computing Science and Information Systems) at the University,

was only slightly above the national average. Of the seventy three applicants

who were offered places, sixteen (22%) were female, and fifty seven were male.

The number of males who were offered a place, and were retained until the end

of the academic year, was 84%, as opposed to 94% for females.

The average mark of all Combined Honours students in the introductory

programming unit was 40.7%. The average for females was 40.9%, with a

slightly lower average for males of 40.6%. This was in contrast to the overall

average (which also takes into account the students' other core unit - either

202

Systems Analysis or Computer Architecture), where male students scored an

average of 42.56%, and female students an average of 41.73%.

Interestingly, more female students were enrolled for Computing Science than

for the 'softer' lnfonnation Systems, so 66% of female students completed the

more technical Computer Architecture unit. rather than Systems Analysis. And

the average for female students on these units was higher - in defiance of

conventional notions about what areas are 'female-friendly' - for Computer

Architecture (49.6%) than it was for Systems Analysis (42.5%) 48:36.

8.3.3. The course

The teaching of programming to first years had been histOrically problematic at

MMU, with high rates of failure. Up to the academic year in which the survey

was conducted (2000-2001), the language used to teach programming was

Modula-2. Previous strategies had included the extensive use of a Computer

Based Learning package that adopted constructivist approaches to learning and

facilitated relatively independent study. Results had been extremely poor, and

some concerns were expressed that Modula-2 was not a professionally useful

language in itself. It was therefore decided to increase student contact time, to

switch language to Java, and to adopt a book that was not object-oriented,

which Simplified input and output procedures, and which declared it was aimed

at non-technical students. The course was also changed in terms of staff-student

contact time. In addition to the traditional single lecture plus practical

laboratory session. students would have a weeldy tutorial session and a further

laboratory session.

The move to Java was primarily motivated by the perception that poor student

motivation was central to poor performance, and that students would be more

strongly motivated to learn a language that had such a high profile both in the

media and in industry. The relatively early use of graphical routines, and the

potential for web-based development. were additional motivating features of the

language.

203

The new programming language presented two problems, however: firstly, it

was perceived that Java's object-orientation would make it more difficult to

learn; and secondly, implementing simple input - reading from the keyboard -

is an inordinately complex task in Java. User input cannot be avoided even in

writing one's earliest programs - a computer program is of no use if it cannot

obtain data from outside itself - and the level oftechnical detail Java requires in

order to implement basic reading from an input stream such as the keyboard

would represent a serious distraction and obstacle at the early stages of learning

to program. A broad analogy may be made with a natural language learning

system whose instructions themselves require the learner to know more

complex language than the system itself is intended to teach.

As well as deciding to teach Java in a procedural manner, it was therefore also

decided to use a text book which provided - in the words of Turkle and Papert -

prepackaged routines that would simplify input and output so that it was

possible to write interactive programs from an early stage.

The way in which these two practical educational 'problems' were handled

provides an interesting illustration of the complexity of the themes underlying

the research question. On the one hand, it was decided to use data hiding in a

practical way - by using opaque third-party routines to simplify input and

output; but on the other hand, it was decided that teaching data hiding as a

systemic, full-scale conceptual paradigm, would, contrarily, be too difficult.

This apparent paradox exemplifies the distinction between programming and

conceptual 'abstraction': the use of the prepackaged third-party routines

represents a 'concrete' application of abstraction, whereas programming in an

explicitly object-oriented way requires a full conceptual understanding of

abstraction. The perception of the course team was that students could not move

onto this level of conceptual understanding without first experiencing and

understanding concrete representation. Among a substantial section of the

student population, this was also a problem in terms of stepwise refinement as a

design technique. The use of stepwise refinement clearly represents the use of

204

abstraction. Indeed, the hiding of detail is in many ways inherent to the design

process itself. To understand stepwise refmement sufficiently to make it a

practical design technique, one tutor commented, would require a level of

reflection and conceptualisation that beginners were unlikely to be able to

accomplish without first acquiring practical experience of what it meant. Such

experience would be the starting-point in a learning cycle that would eventually

lead to the conceptual understanding necessary to design solutions to problems

rather than just implement possible solutions.

The issues surrounding Object-oriented programming in general, and Java in

particular, have been dealt with in more depth in Chapter 6.

The programming course was similar to the Hope level two course in that it was

as a beginners' course, and no previous programming experience was assumed.

The course differed in several respects: it used Java as an introductory

programming language; the students were predOminantly male; and students

were likely to have a higher level of entrance qualification and experience.

The general reason for choosing the course book, Java Elements, by Bailey and

Bailey, was that its approach emphasised the elements of programming rather

than the intricacies of Java. More specifically, it was chosen because it provided

easier input and output routines, did not explore object-oriented programming

in any detail at an early stage, and made early use of graphically oriented

examples and tasks.

The authors make use of a high-level abstraction feature of Java called a

package. The term clearly relates strongly to Turkle and Papert's concept of

'prepackaged procedures' and 'opaque containers'. A Java package is simply a

narned library of routines used for a particular purpose: in the words of Bailey

and Bailey, "a collection of related software components" (2000, p.37). Turkle

and Papert's Lisa writes her own procedures because she "resents" the

"opacity" of ''prepackaged ones from a program library". Java is fundamentally

based on packages - every class (or 'procedure') in Java is part of a package.

205

Examples are the standard Java API (Applications Programming Interface),

including the A WT (Abstract Windowing Toolkit), which provide the

progranuner with basic functionality and graphical user interface components

respectively. The first lines of most Java programs consist of a statement or

statements importing routines from one or more packages. An inexperienced

progranuner, writing only small programs, will use only third-party packages;

with more experience and time, a progranuner would also write their own

packages, to organise a large program, to systemise and reuse building-block

routines, and to customise their progranuning environment to their needs.

The early and extensive presentation in the book of graphics routines allowed

for a 'concrete' style of learning: in general, students enjoyed calling routines

that would immediately draw shapes and colours onto the screen. All of these

routines were provided as part of the Elements package - although they were

often not very different from the underlying A WT routines, setting up the

drawing window was easier. This once again exemplifies a concrete learning

environment made possible by high levels of abstraction.

8.3.4. The questionnaire

As noted above, the course made little or no explicit reference to the design

concepts of abstraction or black boxes: it was therefore neither possible nor

desirable to ask questions that referred explicitly to these concepts. The guiding

principle in formulating the questions was to provide concrete exemplification

of what it meant to use prepackaged routines. Preferences in relation to black

boxes would be elicited by asking implicit and strongly exemplified questions.

The customised learning environment (PieEater) made specific use of what

Turkle and Papert call 'prepackaged routines'. so practical examples of these

were presented to students, and their reactions elicited.

Four simple questions were constructed: the first seeks to ascertain the extent to

which students would like to look inside the black box of the package provided

by the authors of the course book:

206

1. If time allowed, would you like to inspect and take apart the

code that Bailey & Bailey wrote in implementing the element

package, so that you could find the detail of how methods such

as readLine were written?

This question was designed to test the weaker end of Turkle and Papert's thesis:

it entails a desire only to look within a prepackaged routine, an inclination to

"bother with its detail". The proviso 'if time allowed', was intended to offset

simplistic negative responses based on the extra effort that was implied.

The second question asks if the students would prefer to actively write their

own routine instead of using the one supplied in the elements package:

2. Would you prefer to write and use your own routines rather

than using either readLine or another prepackaged method?

The third question refers to use of a somewhat lower level of prepackaging -

the packages that the authors used in writing their own packages:

3. Would you prefer to use the Java AWT and 10 packages

directly yourself?

The packages included in the course book are particular to that book, and are

designed to ease the learning curve for students. The A WT and 10 packages, on

the other hand, are what programmers 'in the real world' would use. For this

reason - although it represents a lower level, and a level of greater perceived

difficulty, it might in fact appear attractive to students to use the routines from

these packages directly.

The fourth question tests the stronger end of the hypothesis, by asking whether

the student would like, not just to use the A WT and 10 routines, but actually to

take them apart to see how they work:

207

4. Would you like to take apart the Java AWT and 10 packages to find

out how the underlying code has been implemented

The scale used was again a simple three-point Likert scale, from definite

rejection (1), through a willingness to consider the notion (2), to definite

confirmation (3).

Personal data was again requested for the purposes of correlating the potential

variables of age-group, sex, previous experience and qualifications.

8.3.5. Administration of the Questionnaire

The issue of distributing copies of the questionnaire was discussed with the

three tutors responsible for teaching the Combined Honours students, and with

the Combined Honours course leader. On the basis that a small number of

students were so weak that they might not understand what was meant by some

of the questions, it was agreed that it would be useful if the tutors were to

briefly recap on what packages were, and how the students had encountered

them during their study, before they started to fill in the questionnaire.

The distribution of questionnaires took place at the beginning of the weekly

laboratory session. Within the academic year, this took place at a point

approximately three quarters of the way through: when there was no immediate

pressure to complete an assignment or revise for an examination, but at a time

when the students had studied sufficiently to understand what was being raised
•

in the questions.

8.3.6. Analysis of data

Higher scale points indicate respectively that the student would prefer to 1) see

inside a prepackaged routine; 2) write their own routine instead of a routine

prepackaged by the authors of the course book; 3) use routines from standard

Java packages for themselves 4) see inside the routines from the standard Java

packages. If Turkle's thesis concerning attitudes to black boxes were accepted,

there would be a marked difference between the response of female students

208

and that of male students: females would register high scale points more

frequently than males, and males would register low scale points more

frequently than females.

The responses were measured on a three-point ordinal scale, and a X2 test used

to examine how much the observed response frequencies differed from the

frequencies that would be expected given the null hypothesis of no difference

between women and men.

8.3.6.1. Question 1

Observed frequencies for responses to the weak 'glass box' question, asking

whether the student would like to inspect and take apart the package provided

by the course book, are indicated in table 12.

'See Elements C!3de'

Observed Data Oij

Female

table 12

The data shows a strong distribution around the middle scale point. The

expected frequencies, under the hypothesis of no difference, are shown in table

13:

Sea Element;; Cede;

Expected data Ell

Female

table 13

209

It may be noted from this that the number of female responses at the highest

scale point was zero, whereas the number of male responses was higher than

would be expected at the top point (nine, rather than seven), and at the middle

pOint. The inverse was true in terms of the lowest scale point: the number of

male responses at this scale point was lower than would be expected (three

observed, and 5.46 expected), and the number of female responses was higher

(four observed, 1.54 expected). points 1 and 3 on the scale was higher that

would be expected, but lower for the middle point 2. This tends to support -

more strongly than the Hope data - the reverse of Turkle and Papert's

hypothesis.

The calculation of the value of X2 is shown in table 14.

table 14

With two degrees of freedom from three scale-points, and a 5% significance

level, the critical value ofX2 is again 5.991. With Calc X2 1.676 < Tab X2 5.991,

the null hypothesis was accepted for the 'Elements' glass box question, and it

was therefore concluded that this difference between the responses of women

and men, although stronger than the difference elicited by the Hope study, was

still not statistically significant.

8.3.6.2. Question 2

210

Observed frequencies for responses to the question which asked students if they

would prefer to write their own routines instead of the prepackaged methods,

are shown in table 15:

2. 'Own F/cutina'

Observed Data Oij

Female

23

table 15

The major difference that may be observed between these responses and those

to question 1, lies in the much larger figure for responses at the lowest scale

point - which is as strong as that around the middle scale point. It is clear that

most students would not prefer to write their own routines. The expected

frequencies, under the hypothesis of no difference between female and male

respondents, are shown in table 16:

Expected data Eij

table 16

On this occasion, the proportion of female responses among the few at the

highest scale point, is actually higher than would be expected. And the number

of male responses at the lowest point was higher than expected, the number of

female responses lower. This does not therefore reproduce the results of

question 1, and instead tends to fit with Turkle and Papert's hypothesis. The

numbers involved (two students from each gender) are small.

211

The calculation of the value of 'i is shown below:

Female 0.222

0.285

table 17

Again, Calc X2 2.113 < Tab X2 5.991, and the null hypothesis was accepted.

There was therefore no significant difference between the responses of women

and men to the proposition that they write their own routine instead of a

prepackaged routine.

8.3.6.3. Question 3

The observed responses to the question which asked whether students would

prefer to use standard Java packages directly. are shown in table 18:

3. 7../$(? A WT'

Observed Data Oij

Female

table 18

10

As with question I, the data show a fairly strong bunching around the centre

point The null hypothesis expected frequencies are shown in table 19:

~. 'Use Awr
Expected data Ell

212

table 19

Male

Female

7.800 26.520 4. 680jt$Q

1.320!·!·!!:I·~!~!i
.·.6 50

1bis data shows - as with question 1 - a larger number of males than expected

at the top and middle points, and a smaller number of females. The number of

females at the bottom end was correspondingly higher than expected. 1bis is, as

with question I, opposed to Turkle and Papert's hypothesis.

The calculation of the value of X2 is shown in table 20:

Female 0.291 0.031

0.373 0.039

table 20

The null hypothesis is again accepted, with Calc X2 0.512 < Tab t 5.991.

There was no significant difference between the responses of women and men

to this question.

8.3.6.4. Question 4

The observed responses to the 'strong' glass box question which asked whether

respondents would like to take apart the standard Java packages, are shown in

table 21:

4. 'U,f A WT'

Observed Data Oij

Female

5 35

table 21

213

The data here again show a very strong bunching around the centre, and the

highest overall figure at the top point. This is perhaps puzzling, given that it is

probably the most challenging proposition of the four. The expected responses

for this question are given in table 22:

4. 's~~ AWT'

Expected data Ell

Female

table 22

The number of females at the high point was higher than would be expected,

and the number at the bottom point was lower. As with question 2, this tends to

fit with Turkle and Papert's hypothesis.

The calculation of the value of X2 is shown in table 23:

Female

0.015 ••.

table 23

The null hypothesis is again accepted, with Caler; 1.798 < Tab r; 5.991. There was

no significant difference between the responses of women and men to this question.

214

8.4. Interviews

Computer and depanmental cultures undoubtedly contribute to the way people

construct meaning. Interviews would serve to explore these and other

situational contexts of the target population in greater detail. and to triangulate

the data. However, as has been noted, the anonymity of the questionnaire

compromised the scope for this. In the second study, no female students

volunteered for interview.

It was therefore decided to conduct limited interviews, of several women at

different stages of their computing studies - ranging from Masters level, to the

second year of the undergraduate Combined Honours degree course at MMU.

The intention was to elicit, from informal interview situations, how they felt as

women about studying computing, and about programming.

8.4.1. Tania

Tania entered MMU's MSc conversion course at the age of 25, having already

obtained an MSc previously, in Forensic Psychology. She noted that, whereas

most students on the Computing MSc were male, there had been only two male

students out of thirty on her Psychology course. Tania explained her reasons for

undertaking a Masters course in computing in terms of her previous job as a

Psychologist in a prison. This job had been a dangerous one, involving the

potential of unprovoked abuse. One reason why computers seemed attractive

was that it avoided dealing with unpredictable people, and involved no danger:

"You are not dealing with any unpredictable people, you're just sitting in front

of a computer, and the worst that could happen is that the system could crash."

It is perhaps interesting that this reflection echoes the psychology often

negatively ascribed to male hackers.

\Vhile she was not overly concerned that there were relatively few women on

the course, Tania gave clear indications of a departmental culture that was

male-dominated and inimical to women. At the outset of the course, she had

asked if doing the Masters would prepare her for a job in programming. She

had been told that ''not many women actually go into programming because it is

so male-dominated, plus they've not really got the capability to go into it". She

215

indicated that this put her off straight away - but that it had also made her more

motivated to understand it (a phenomenon she described as 'psychological

reactance'). She felt that it was true that programming was dominated by men

and that this was to some extent self-fulfilling. A further possible reason was

"probably because it is quite boring, isn't it?". She felt that programming

involved no social contact, and that the women she knew preferred jobs that

involved contact with a lot of people

Students had problems with the diversity of programming languages on the

course, and in particular found the Java module either difficult or problematic.

Although Tania thought that this experience of difficulty was equal between

female and male students, on further elaboration the ''problems'' appeared to be

differentiated. While ''the girls in general used to fmd that it was quite

complicated", the difficulty identified with the boys was more often complaint

oriented. Some would test the tutor with questions they already knew the

answer to. She felt that all but one of the men who appeared to 'know it all' ,

genuinely did - and that the women were more likely to have genuine

difficulties with understanding the material. The difference between a "swot"

and a ''nerd'' was that nerds don't have social life.

Tania did not view the computer as a psychological machine, ''because it can't

talk back. You're controlling it at the end of the day. All it can do is just

respond to your actions, which you've got control of ... you're controlling that

computer, whereas with a person you can't". Having dealt with inmates who

"can answer you back even though you might not say anything to them", she

sees ''this PC or any computer as something that's just, I don't know, a

whiteboard or something"

Tania's initial response to the issue of prepackaged procedures was that she

"would prefer to see the overall picture", including the "source code". It

emerged, however, that she conceived of this as simply seeing any code that

was being talked about, rather than listening to it being discussed "on the

216

abstract level". When asked what seeing the code of writeLn would tell her, she

responded: "Well, the S)TItax, how you write it: write 'L' - 'n', 'brackets'''. She

did not in fact think that she wanted to see any code at a lower level, and would

prefer to draw a button in Visual Basic rather than write the code for it herself.

Tania had some experience with Multimedia AuthOring software, and

appreciated the extent to which it automated programming: ''writing the code

out myself would be a lot more difficult than already having it there and just

adding bits in".

It was notable, dwing the interview with Tania, how readily the general and

pedagogical meaning of the 'abstract' can be confused with its significance in

programming. This observation had implications in terms of the clarity of the

questions in the questionnaire. On revisiting these, it was clear that the

questions were more specific and precise, as to what was meant by 'seeing the

code'. Within the framework of the questionnaire format. there did not appear

to be much else that could be done, and the margin of error did not appear to be

any greater than would be normal with any series of questions. It may, however,

be desirable in future to construct an extended programming situation that was

intrinsic to the course, and to ask questions within that situation.

8.4.2. Maria

Maria was nearing the end of a Combined Honours degree at Uverpool Hope

University College. She found pre-packaged routines "helpful". However, she

did not in practice spend much time on planning and design. She felt that this

was because the problems set were relatively small, and that anything bigger,

covering, for instance, several screens in Visual Basic, would need planning. In

her Applications Programming module, for example, she had been set the task

of developing a temperature converter, and had gone straight onto the PC

without doing anything on paper, apart from the calculations. Much of the work

set, she indicated, was "about knowing the right commands or messages", and

placing objects on a screen. Maria perceived screen design, in Access and

217

Visual Basic, to be entangled with data content, so she did this directly on the

screen.

In Maria's experience we see the impact of teaching methods. If the problems

that students are set are small and mechanical, they see little point in thinking

about design and stepwise refinement (and, ultimately, in abstraction). The goal

is to find out how a small set of commands can be implemented so that they

work. It also appears that higher-end interface-driven tools may lend

themselves more to a hacking approach.

8.4.3. Son-Yong

Son-Yong was in the second year of her BSc Combined Honours at MMU. She

chose to do Information Systems and Psychology, as she didn't want to do

"anything technical" - and she certainly didn't want to do Computing on its

own. She perceived Information Systems as being potentially "useful" in the

employment market.

She felt that computing was male-dominated, and that this reflected existing

ideas about what people were good at: ''this thing about men being 'more

technical' , and women better at literature etcetera". Like Tania, Son-Yong

thought computing was "boring", (and also "scary"), and found the gender

balance on the course to be in contrast to the psychology part of her degree

(where males were in a small minority). The boys who were good at

programming were also boring and scary. They were more adept because they

grew up playing computer games, and did not find it boring. The people on the

course who had prior experience were male - they 'know their stuff: she

wished she could be their friend! She said that ''writing bits of code in an exam

was particularly difficult and challenging - that in effect it required prior

experience, and therefore favoured the boys.

Son-Yong indicated that, while many women found programming "quite hard",

she feh that she personally was "in the middle" - perhaps the opposite of the

'we can, I can't' phenomenon? She would quite like to be a programmer herself

- but only if she was sure she was "quite good at it". She had done some work

218

experience that involved PHP programming, where she had worked in a team.

Two out of 8 or 9 members of the team (including herself) were female; the

other was a senior member of marketing staff. Although problems were

occasionally tackled as a team, she felt that the work was 'not very sociable' .

In terms of the prepackaged procedures provided in the elements package, she

"wouldn't mind seeing how they work" - although if it was 'hard', it could

possibly confuse. She would not like to write it herself, though. That, she said,

would be "quite scary".

Son-Yong also had experience of multimedia authoring software, and when

asked to choose between a prepackaged drag and drop behaviour from the

library palette, and sCripting her own code, she expressed the wish to go with

whatever was easier.

Son-Yong did not consider the computer to be in any way a 'psychological

machine'. It was 'just a machine', and if she ever talked to it, it was as she

would to any recalcitrant object. She was interested in AI, but was disappointed

that it appeared to be taught as a technical rather than psychological subject at

the University.

8.4.4. Rupa

Rupa was completing a Masters degree in Computing at Manchester

Metropolitan University. Her studies were part-time, as she worked full-time in

a programming job. As such, she had considerable experience of using

abstraction in the form of library routines. When presented with the idea - new

to her - that there might be a difference in the attitudes of women and men to

black boxes and abstraction, she indicated that she did not feel that there was a

great difference. To the extent that there might be one, she thought that it might

be correct "to assume that there would a greater number of men who would be

interested the actual working of black boxes and abstractions, than women". hl
terms of gender and computing generally, Rupa felt that ''men in general have a

greater interest in the background working of equipment and such likes", and

219

added that" this does include how library routines are constructed and their

working".

Rupa explained that "one of the reasons that library routines have been used is

to ensure that within the different sections that make up an applications

certain functions work in exactly the same way." For most library routines she

had used, she had '1ust accepted their performance at face value", and there was

in any case no time to do so. She had only looking into them when "the libraries

did not perform in the exact manner I expected them to". Even on these

occasions, however, she had not amended the libraries, "as this would inflict

unnecessary problems onto other users' programs", but had "copied and then

amended the necessary areas of the library and then incorporated them into my

own program".

Rupa's experience reflected the reality of programming for clients in the real

world: her work was essentially defined by the need for egoless programming,

and team use of library routines. Her expectation was that it would be men

rather than women who would waste time tampering with black boxes rather

than simply using them.

8.4.5. Zaida

One of Turkle and Papert's interviewees, Robin, spoke of her experience as a

piano player who came to programming as a second year student at Harvard.

Zaida, a second year Single-honours Computing student at Manchester

Metropolitan University was also a highly trained and accomplished pianist.

Her course content included modules on advanced Java programming, and on

multimedia scripting. She talked with enthusiasm and clarity about areas of

similarity between playing the piano and programming. She saw analogies

between playing piano and the Java she was currently studying - with its

emphasis on server-client protocols, getting the client and the server to talk to

each other. Playing the piano is also a communication process. One also has to

be insistent and patient to get the best out of both a piano and a computer.

220

In both playing and programming, she said, "it was necessary to plan, to think

about it You don't just sit there and play. It's the same with programming -

you can't just sit down at the computer and write a program". She also saw both

programming and playing the piano as "a kind of language". She explained that

music has its syntax, just like a programming language - there
is a grammar of music, and it is really important. It is essential
that you understand this grammar first. Playing the piano is
creative, but you must have the syntax first. To be able to play
a piece, first you need to think a lot: a lot of logic, and maths, is
involved.

Music has its own symmetry and insistent mathematics - it is only correct if

there is, for example, strictly three beats to the bar; a crochet is only ever worth

a crotchet. One also has to work out how and why the notes are distributed, and

calculate the way to play the notes. Piano playing is also "like a program in that

you execute a series of instructions", but some of these instructions existed at

an interpretative level- an expressive overlay on top of the mathematical

musical notation. This layer is conveyed by means of Italian prose messages

(andante, adagio, allegro) rather than via notation. While the notation might be

equivalent to program code instructions, she saw no meaningful equivalent in

programming to the expressive layer.

Zaida experienced piano playing as a more exacting activity than programming:

with programming, if your style is not strong, you can do it
anyway. You can write it, and it may work. With the piano, it's
not like that You need to be really, really careful. For example,
to play Bach, you need a different way of playing - you need to
insist more with your fingers. For Mozart, you need to play
'andante'; Chopin has his own style. For a Bach fugue, there
are several voices, and you have to distinguish between them.

Piano players are taught that they 'master' the piano: the piano is not attributed

with any of its own features or agency. It is the notation that enables you to

make the piano play music. When you play Chopin's notation, people say

you're playing Chopin. The notation is the musical composition. One could still

feel so relaxed with a piano that it became one's best friend: playing the piano

is more enjoyable than programming, which was more rigid. But one could also

feel frustrated with both: she had once done a performance, and been frustrated

221

that an easy piece did not come off the way it should have. Such feelings,

however, did not endow the piano with any character or psychological

presence. Unlike Turkle's Robin, Zaida concluded that there is no relationship

in the case of either the computer or the piano.

Simultaneity is a major difficulty in piano playing: one had to follow

instructions without seeming to follow them (so that the sound is expressive

rather than mechanical), conveying both notation and interpretation at the same

time, and handling a simultaneity of voices, keys, and scores. Although there

was no relationship with either instrument, playing the piano was, unlike

programming a computer, an art. In this respect, Zaida concluded that piano

'style' is not a good analogy for programming 'style'.

Zaida also has considerable language skills, speaking Italian, English and

French fluently. She thought that she learned languages quickly because they

were spoken and communicative, whereas programming languages were about

a way of thinking.

When asked explicitly about gender issues and programming, Zaida said that

she felt that men were stronger in technical skills, but did not know why. She

speculated that it might be because no emotions were involved, and men were

not as emotional, less likely to panic. She also thought that perhaps women

generally made programming more complicated than it was.

As well as drawing out comparisons between musical notation and

programming instructions or software, Zaida represents a fascinating

counterpoint to Turkle's Robin. Where Robin communicated "with her

instrument" [my emphasis], Zaida communicated through her instrument;

where Robin felt emotional involvement with the piano, Zaida felt emotional

while playing it. Zaida spoke of communication, interpretation, and style, but

did not recognise the "language and models for close relationships with music

machines" [my emphasis] that Turkle and Papert (1992, p. 28) boldly ascribe to

the whole culture of music. It is not the machine or tool that is important. It may

222

be that the "close, sensuous, and relational" encounters with inanimate objects

that Turkle and Papert ascribe to artists and musicians, and transfer to their

model of "highly personal" feminine programming styles, represents an equally

artificial imposition of object relations theory.

B.S. Conclusion

Both of the surveys failed to show any significant difference between female

and male attitudes to prepackaged routines. In both samples, responses to the

basic 'glass box' question showed that women were actually slightly less likely

to want to see inside black boxes. The results for the other questions varied:

MMU women were slightly more likely to want to write their own routines,

while Hope women were slightly less likely; and Hope women were more

likely to want to write lower-level routines, while MMU women were less

likely. This cross-referencing suggests that there is no pattern in, and no

consistency to, these marginal differences. In the extra Java question, testing the

strongest end of the hypothesis, women were less likely to want to write their

own routine.

Educationally, the concrete learning style in this case was a means rather than

an end, and did not imply the teaching of a concrete approach to programming.

What characterised the 'concrete' pedagogical approach of the PieEater and

Elements graphical activities, was that the leamer's activity produced

immediate visual results. It is quite clear that such an approach could exist

without reference to any desire to get inside black boxes. The activities

provided by PieEater represented the starting-point in a learning cycle that

would move on to reflection and conceptualisation, and then link back to the

experimental (Kolb, 1983).

Learning style is therefore entirely distinct from programming style. Yet while

a concrete style of learning does not require a 'concrete' programming style,

any given programming style (including the concrete style) could potentially be

used within a concrete pedagogical approach. For Turkle and Papert, however,

the 'concrete' style of programming is not a manifestation of a learning style,

223

and it is emphatically not a stage of development: it is, rather, a fully-formed

way of knowing how to program, an "intellectual style" (1992, p.I1), at least as

good as the use of abstraction. The responses suggest that there is no significant

difference between women and men in their attitude toward a concrete style of

programming.

224

9. Summary and Conclusion

What has been done

The research originates from two main ideas: that women are under-represented

in computer programming; and that certain programming techniques have been

characterised as inimical to women. The idea that women would be more likely

than men to shun black boxes in programming, has been premised in the

literature on psychoanalytic and gender analyses that accentuate difference.

These analyses have been first traced back to their roots and critically examined

at that point. Their influence on gender analyses of computing - and the bearing

of gender theory in general on computing - has then been analysed. It was

concluded that essentialist strains of gender analysis value (and often preserve)

difference whether it is natural or constructed, and that the theoretical base for

change requires an alternative perspective. Computing can change, but not by

appealing to stereotypes simply because they are in place, and which are in fact

part of the problem. The under-representation of women in computing cannot

be laid at the door of abstraction in programming: indeed, abstraction can playa

part in humanising the larger computing culture.

A critique of the limitations of psychoanalytic theory therefore informs the

sustained focus on programming, as the activity and body of knowledge that is

most defInitive of the subject where women are under-represented. Such a focus

is not a deterministic acceptance of a predefined agenda - it reflects the fact that

programming represents the knowledge and skills whereby people make

computers useful and give them purpose. Insofar as computers are important,

programming is important: in the post-industrial world it is increasingly

programmers who are remaking the world. Within this part of the study, these

underlying limitations of psychoanalytic gender theory are seen to be

accentuated by an over-liberal transference of terminology between diSciplines.

Part of this analysis has been to demonstrate the meaning and nature of

relatively specialised programming terminology that is used over-generally in

the literature.

225

The characterisation of abstraction as a male preoccupation has therefore been

challenged in relation to its terms of reference; its faulty use of analogy from

other disciplines; and in relation to the essentialist tendencies that appear to

underlie such a characterisation. It has been argued that the basis of the idea is

superficial and contradictory in significant respects; and that the gendered

characterisations could just as easily be reversed. It has been precisely those

features that have been caricatured as male and remote, which enable

programmers to remove mechanical detail and understand and solve problems

holistically, in terms of real-world and user-centred applications rather than in

terms of computer operations. The same features that make for communicative

and connected styles of software development, where programmers connect,

not with the machine, but with the users of their product and the other members

of the software development team.

This analysis has had to be painstaking, and the research has therefore placed

greatest emphasis upon it. The analysis suggested that the major assumptions

within gender and programming scholarship and discourse were mistaken. It

was therefore decided to test the idea in order to establish whether this critical

analysis could be borne out by survey and interview research among

programming undergraduates. This part of the research required careful

construction of concrete means of testing attitudes to black boxes and

abstraction. Again, this was informed both by the review of the literature on

gender and programming, and by the exemplification of what these

programming concepts meant in practice. The conduct of this part of the

research was constrained by practical logistics: one needed to know the

particular programming course content and delivery in detail in order to

develop specific concrete examples of the general concepts under scrutiny.

While the choice of student bodies was a positive feature - embracing, for

example, two different types of institutions and courses - it would have been

desirable to have had a larger sample, and to have been able to interview a

range of respondents specifically about their responses. The sample was

representative of the Combined Honours first year students in the respective

institutions. A larger sample size may have increased confidence in projecting

226

the findings onto a wider population, and significance is confined to the

particular student bodies. The number of possible outcomes is also constrained

by the three-point scale, and chance influences cannot be definitively excluded

as an explanation of the reSUlts. The questions were designed to maximise

clarity of attitudes and minimise the influence of researcher, but to some extent

such limitations are intrinsic to attitudinal research.

As a feature of a teaching and learning strategy, both the Visual Basic PieEater

environment and the Java Elements graphics package, facilitated a strongly

concrete learning style, encouraging students to explore problems in a hands-on

and sometimes experimental way, and providing concrete representation of

actions. In order to produce such a concrete learning environment, very high

level routines were implemented and packaged that were simple to use: in other

words, very deliberate use was made of abstraction and black-boxing.

Crucially, there was little desire to look inside or take apart these "prepackaged

programs", and - contrary to Turkle and Papert's central thesis - no greater

desire to do so on the part of women.

A gendered characterisation of attitudes to black boxes was therefore not borne

out by the applied research. A series of specially-targeted interviews - of female

students who, unlike the survey respondents, were informed of the gender basis

of the research, and had a very good knowledge of programming - confirmed

these findings, and shed further light on gender perceptions of programming

and abstraction.

What is to be done

The nature of programming may change, and may be changing; but our

research concludes that change centres on the very modular building-blocks

which theorists such as Turkle reject as inimical to women, and that a serious

reconsideration of the received gender analysis of programming is therefore of

crucial importance.

227

This in itself should be positive in teans of gender equality in progranuning- it

is only the prevalence of the antithetical theory that would cast this finding as

negative. We have sought to establish that the propagating of a definitively

feminine progranuning style as opposite to the use of abstraction, planning, and

structure, is not only theoretically and empirically without foundation, but also

that it can be actively damaging to the position of women in computing. For

change to happen, gender has to be explicitly addressed at every level of

programming education, from marketing to graduation - and when this happens

it is vital that what is said is authentic. To base changes on gender

characteristics and stereotypes - however prevalent those stereotypes might be

- offers at best only superficial change, and at worst exacerbation of inequality.

Solutions that are based on supposedly essential differences ultimately do not

necessarily intend to change inequality.

Alternative perspectives suggest themselves to make programming attractive to

everyone, not just to women: a need to break decisively away from the machine

- and from the spectre of the hacker that so paradoxically shadows the supposed

feminine style. Distance from the computer can be reframed as a good thing,

something that is fundamentally social, and as such not inimical to either

women or men. Abstraction has the capacity to relate programming and the

programmer to the real world instead of to the machine and to 'computational

objects'; to overlay obsessive detail with the 'big picture'; and to conjoin

software construction to software use. As a concept and tool, it has the

potential to shift programming decisively from its perceived position on the

male-obsessive spectrum, and move it towards people and the real world.

In order to fulfil this potential, abstraction needs to be recognised and presented

as such - to be situated as a tool, within computing education, in meaningful

contexts. Some means of doing this - such as the use of case studies within a

holistic pedagogy - are traditionally linked to women, but in any case make

pedagogical sense in this context. The key, however, to the holistic pedagogy is

understanding that the 'whole' context does not reside inside the machine,

228

inside the machine's programmer, or within the 'relationship' between the

machine and its programmer.

A truly holistic educational case study would start at the level of useful real

world functionality. As such it would have to be represented initially at a high

level of abstraction, possibly with substantial parts of the lower levels already

implemented. It is thereby possible to avoid mathematics - something that is

generally desirable in that it liberates software development from the machine,

and from a relatively specialised discipline. TeaChing methods can start from

the concrete - concrete situations, concrete illustrations of 'abstraction', and

concrete experiences of its effects - in order to develop sound conceptual

understanding. It is possible thereby to situate programming culturally as an

artistic science or a scientific art that has to be systematic and communicative

rather than individual

The roots of inequality clearly go deeper than a single sub-discipline is capable

of reaching. Macro-social, pOlitical, and larger cultural explanations for

inequality cannot be denied: a focus on the particularity of a discipline can be

myopic if these factors are ignored. In the more immediate outer context of the

academic profession, for example, a shift away from an open-ended work

culture could be an important trigger for greater gender equality in staffing,

particularly so for a subject that requires such constant updating. Traditional

divisions of labour have informed even feminist thought, and ambivalence and

contradiction attend upon gender theory. Yet it is still possible for an important

discipline to contribute to deeper social change, rethink its own discourse, and

change itself.

229

APPENDIX A

Published article: McKenna, P. (2000). Transparent and

opaque boxes: do women and men have different

computer programming psychologies and styles?

Computers & Education 35, 37-49.

PERGAMON Computers & Education 35 (2000) 37-49

COMPUTERS a
EDUCATION

wy{w.e\sevier.com,'\ocate/compedu

Transparent and opaque boxes: do women and men have
different computer programming psychologies and styles?

Abstract

Peter McKenna

Liverpool Hope University Col/ege. Hope Park. Liverpool L16 BND. UK

Received 28 September 1999; accepted 4 February 2000

An orthodox 'hard mastery' programming style is a cornerstone of Sherry Turkle's influential
psychoanalysis of different approaches to learning and practice in computer programming. Hard
mastery consists of planning and design, documentation, structure, functional and data abstraction, and
debugging, in the development of programs. Turkle is concerned that teachers of programming are
trained to recognise hard mastery as the only real way to program, whereas it is only 'male mastery'. To
bring women into computing, teachers are told to teach or facilitate the development of soft, hacking
styles. This paper argues that this was a misconceived and impossible aspiration whose widespread
influence has led, instead, to a deepening of perceptions of programming and computing as a masculine
culture, and to the implicit and absurd identification of women as innately unsuited to the skills
required for large programming projects in real organisations. © 2000 Elsevier Science Ltd. All rights
reserved.

Keywords: Programming and programming languages; Gender studies; Teaching/learning strategies

1. Introduction

The only original attempt to psychoanalyse different styles of programming has been that of
Sherry Turkle who, along with Seymour Papert, has developed the notion of 'hard' and 'soft'
styles of computer programming. Gender values are attached to these different styles, on the
basis of analogies with key concepts from psychology and psychoanalysis, in combination with

E-mail address:pmckenna@liv.ac.uk (P. McKenna).

0360-1315/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
PH: S0360-1315(00)00017-8

38 P .• ~/CKe1/l1(l' COmplllerS & Education 35 (]O()O) 37-49

observations of children and interviews with programming students at Massachusetts Institute
of Technology (MIT).

The influence that this gendered dichotomy of hard and soft has had is reflected in its
frequent reiteration: commentary on gender and computing regularly emphasises, on the basis
of Turkle and Paperfs work, that a structured approach to programming alienates women
(Sutherland & Hoyles, 1988: Kvande & Rasmussen, 1989; Frenkel. 1990: Grundy, 1996;
Stepulevage & Plumeridge, 1998). This has inevitably given rise to explicit demands that
structured programming be dropped from the computing curriculum in order to encourage
more women to study computing (Peltu, 1993).

Turkle transfers theoretical concepts from psychoanalysis to programming (and learning) as
if such a transfer were entirely unproblematic. Just as cognitive psychology has not necessarily
transferred well into computer based learning in the form of instructional design (Laurillard,
1993, pp. 74-75), so the semiotic imposition of psychoanalytical theory rests uneasily on top of
the intricacies and subtleties of programming discourse and practice.

2. Programming psycho analysed

2.1. Hard and soft mastery

In her first publication about programming, Turkle describes two different programming
styles. The first is exemplified by 'programmer X' - a man who equates his style with 'a kind
of wizardry', and whose style is explicitly identified with the 'hacker' subculture (Turkle, 1980,
p. 20). The second is exemplified by 'programmer Y' - again, a man, but one who likes to
work on precisely defined and specified projects; he also 'enjoys documentation'.

By 1984, Turkle has identified Programmer X's hacker approach as a 'soft mastery' that is a
communicative and feminine 'mastery of the artist' (Turk Ie, 1984b, p. 49). Programmer V's
'hard mastery' conversely became 'masculine' - 'the mastery of the engineer'. Turkle
complains that teachers of programming are 'trained to recognise hard mastery as 'rear
mastery', and teach it as 'the right way to do things', whereas it is in fact only 'male mastery'.
This, it is claimed, amounts to 'discrimination in the computer culture' (Turkle & Papert, 1992,
p. 8). To bring women into this 'computer culture', she states, teachers must recognise that this
canonical orthodoxy is inimical to the psychological make-up and preferred learning styles of
women, and instead 'encourage students to develop' soft mastery (Turkle, 1984b, p. 49).

In apparent contradiction to the identification of Programmer X with a female-friendly style,
Turkle in the same year describes the hacker's world as a 'male world ... peculiarly unfriendly
to women' (Turkle, 1984a, p. 216). By 1990, Turkle and Papert reformulate soft and hard
mastery as 'concrete' and 'abstract' styles of programming respectively. They now explicitly
acknowledge the similarity between the supposedly feminine soft/concrete style and the 'culture
of programming virtuosos, the hacker culture', but valorise hacking as 'counterculturar
(Turkle & Papert, 1990, p. 141; 1992, p. 16). The masculine characteristics of the hacker
'counterculture' are therefore set aside, and it is structured programming that is labelled a
'Western male gender norm'. Hard masters treat 'computational objects' as 'abstraction', soft
masters treat them 'as dabs of paint'. It is observed at an early stage that 'girls tend to be soft

P. lv/cKC'/IIw .' ('oml'lI/as & Education 35 (20(){)) 37-49 39

masters, while the hard masters are overwhelmingly male' (Turkle, 1984b, p. 49). While both
types are 'masters', the soft-master female is characterised by sensitivity and intuitive artistry:
she will 'try this, wait for a response. try something else. let the overall shape emerge from an
interaction with the medium' (Turkle. 1984b. p. 49). She will try things out at the keyboard
instead of planning them first on paper. Indeed. she will not like any sort of documentation.
This specific sense of 'hacking' is part of a culture that, as Turkle herself illustrates in The
Second Se(f, is intensely masculine. The hacker - as Mahony and Van Toen, citing The
Second Self as support. argue (Mahony & Van Toen. 1990. p. 326) - is the epitome of the
competitive techie machismo that is indulged in mainstream computing culture. A masculine
obsession with inanimate objects appears to be simply feminised as connected and fusional
rather than disconnected and weird.

2.2. Style and realities: examples

One of Turkle's soft masters, Anne, is 'an expert at wntmg programs to produce visual
effects of appearance and disappearance' (Turkle, 1984b, p. 30). In order to make birds of
various colours disappear. she rejects the 'algebraic' method of assigning the colour of each
bird to a different variable. (It is incongruous that Turkle's examples of 'structured' solutions
use elementary rather than structured components: a structured programmer would not think
of a multitude of individual variables, but of a single data structure such as an array of UJ-f

records; and that the variables would be designated by the letters Turkle suggests rather than
by meaningful identifiers). Instead. Anne masks each bird with a sky-coloured sprite, makes
each sprite travel with its assigned bird. and makes the sprite appear to render the bird
invisible, disappear to render it visible. This. Turkle indicates, enables Anne to 'feel' and relate
to the screen objects rather than use 'distant and untouchable things that need designation by
variables'; 'she is up there among her birds'. Each sprite is 'not to be commanded as an object
apart from herself. How the mask sprites are to be rendered visible and invisible without
'designation' and 'command' is not explained - nor how it differs significantly from showing
and hiding the birds directly. This solution does not reflect reality, or treat birds as birds: birds
'disappear' and appear on the horizon, rather than fly around with shields; they are also liable
to pass or land on objects that are not sky-coloured, or to fly across skies of irregular
appearance. Anne's feeling that she is in the company of the birds may be a subjective feeling-t.
unconnected either to feminine 'connectedness' or to the fact that she makes mask sprites .,
disappear rather than bird sprites.

3. The psychological machine

3.1. The psychological machine and the reallror/d

Turkle's categorisation of the computer as 'a psychological being' (Turkle, 1984a, p. 54;
1984b, p. 50), or 'psychological machine' (Turkle 1988, p. 50) with an 'intellectual personality'
(Turkle & Papert, 1992, p. 3), produces even deeper reality problems: if the computer really is
'a psychological being', it follows that a sensitive person would not tell it what to do, and

40 P. McKenna / Computers & Education 35 (2000) 37-49

would certainly not expect it to be perfect. Just as Anne and the other girls would tolerate and
negotiate around imperfections in people, as a programmer she 'makes no demand that her
programs be perfect'. The soft master negotiates with the computer rather than the user 'about
just what should be an acceptable program (Turkle, 1984a, p. Ill). In Turkle and Papert's
model of programming psychology, only proponents of 'male mastery' are obsessed with
debugging - removing 'the small errors'. Computer programming as a profession is located in
what Turkle casually refers to as 'real organisations' (Turkle, 1996, p. 51). To avoid accident
or social and economic damage in this real world, the 'small errors' are critical: programs have
to be not just debugged, but also debuggable. This means that, for maintenance purposes,
people other than the individual programmer have to be able to understand how the program
has been written, and ideally to pinpoint a clearly discrete sub-section that contains the bug.
Furthermore, if it is to be of use, the program itself needs to translate to the users' experience
of their real world environment and tasks. In Turkle's evaluation, programming is a means of
'working through personal issues relating to control and mastery' (Turkle, 1980, p. 15). It is
the user who appears to be most significantly left out of this personal and tactile relationship
between programmer and computer. And within a programming team, the individualistic
commitmel!t is at odds with the communicative practice essential to holding large projects
together. Focusing on 'negotiation, relationship, and attachment' (Turkle & Papert, 1992, p. 9)
with machines at the expense of real people is not something that is traditionally perceived as a
feminine trait.

3.2. Real world or Disneyland?

In her later popular work, Turkle is concerned with MUDs, cybersex, and other fantasies,
rather th~l.Ii the real world of programming. It is apparent in this work that she confuses the
act of programming a computer with the usable software product. And it is consequently
programming as well as software that is confused with Disneyland, where 'the representation
exists in the absence of the real thing' (Turkle, 1996, p. 47). Post-modern theorists may well
'write of simulacra, copies of things that no longer have originals' - but however intangible
software is, it does represent something - and the fidelity of the representation of real-world
needs and environments is vitally important. Relating to computer objects, or 'lines of
computer code' (Turkle, 1996, p. 59) in the way that Turkle suggests, may be at the expense of
the -real world people and things that those objects and lines represent: real-world
environments are not like Disneyland's Main Street (Turkle, 1996, p. 47, 236).

3.3. Art, design, and the abstract

The metaphors and applications of programming suggest the possibility of artistry: we 'write'
a program in a programming 'language'; and Logo, the language that Turkle and Papert focus
on, is commonly used to draw shapes. Turkle and Papert exemplify soft mastery through
people who are poets, musicians, potters, and artists. The real artist does not normally
communicate the process of composition - nor is it usually desirable to do so: it is the final
work of art that the artist 'communicates', multivariously, ambiguously, and indirectly. They
ignore, however, the implications of transferring this pattern to software development.

;

J

P. McKenna! Compll1ers & Educalion 35 (2000) 37-49 41

Software produced in this way is unlikely to be maintainable: only the 'artist' would be able to
fix or update it.

The 'soft mastery' school of thought not only denies the need to document software design,
but the very need for a design stage at all. In general, Turkle tends to ignore or overlook the
distinction between program design and programming. Because designs are made regardless of
the language of implementation, they may be perceived as indicative of the 'abstract' style.
Grundy goes so far as to say that soft masters 'do not get involved in advance planning'
(Grundy, 1996, p. 142).

Edwards (1990, p. 105) sees computers as 'a medium for thought', and compares it as such
with language: 'In order to think with a computer, one has to learn its language'. Design,
however, also mediates between human thought and the programming languages 'understood'
by the computer. The informal language of design - sometimes referred to as 'structured
English' - is intermediate between natural language and high-level programming language,
between a user's requirements and a computer solution.

3.4. Documentation and ego less programming

In order to communicate the purpose and functioning of program elements, programmers
write not just the program code, but additional 'documentation'. This is written in natural
language, and may be separate from or embedded into the program code. It is written, not for
the computer (which skips over embedded comments). but for people. Documentation might
therefore be reasonably generalised as a communicative practice. Turkle, however, characterises
it as asocial, part of a culture of 'individualism': to the concrete-style hacker, it is 'a
burdensome and unwelcome constraint' (Turkle, 1980. p. 21). The magician of the machine
wishes to share the secrets of their wizardry only with the computer.

Egoless programming is based on the need for open, shared and understandable code within
a team-working context. It lies at the heart of the dominant 'formal' culture of programming,
and is essential to teamwork on large projects (Weinberg 1971, p. 72). Abstraction allows the
parts of a large programming project to be shared out. The sense of a development 'lifecycle'
- where the whole is larger than the individual parts - may reasonably be characterised as
more holistic than the solipsism of the programmer who sustains an intimate relationship with
the computer.

In the 'formal' culture that Turkle eschews, 'problem' programmers are ego programmers,
they are 'territorial', and resist peer review (McConnell, 1998). Her 'concrete' programming
culture, defined by 'negotiation and experimentation with the machine' and by an antipathy
toward documentation and design (Turkle & Papert. 1990), is inevitably in tension with the
'ego1ess' aspect of this culture. The account Turkle and Papert give of children (Anne and
Alex) and college students (Robin and Lisa) is of learner programmers with a narrow focus on
self-satisfaction: while this is probably inevitable with learners assigned to small problems that
do not require collaboration, Turkle and Papert are emphatic that this approach is a
completely 'different way of knowing', an equal style rather than an early evolutionary stage of
knowing. Software, however, is a people business, and fundamental problems arise if people -
and women in particular - are led by Turkle and Papert's analysis into adopting an 'ego'
approach. Software is developed by teams of people within real-life scenarios involving real

42 P. McKenna I Computers & Education 35 (2000) 37-49

people. From benefit clerks and claimants to airline pilots and passengers, they have real
needs. However unfortunate it may be, those needs are unlikely to be met by an approach that
treats programming as a private, self-satisfying relationship with the computer.

4. Psychology, context, and tactility

4.1. What context?

Turkle frequently superimposes onto programming concepts from psychology and
psychoanalysis. The concrete, hacker style is conflated with Carol Gilligan's description of a
countercultural, concretely contextualised (as opposed to abstract) style of moral reasoning.
The hacker style is thereby associated with a feminine, connected style. Also adapted is the
notion, from object relations theory, that females are more given to attachment because they
do not have to separate their identity from the mother. To Turkle, the 'images' of object
relations theory 'suggest' a relation between programming style and gender (Turkle 1984b, p.
108). As women are assumed to be good at forming relationships, they are further assumed to
want 'a personally meaningful relationship with a computational object', to instinctively need
to 'treat the computer as much like a person as they can' (Turkle & Papert, 1990, p. 145, 149).
If females are strongly linked to a concrete style of reasoning, and are less 'abstracted' from
interior space, then, it is asserted, they will be naturally predisposed to a 'concrete' rather than
an 'abstract' style of programming.

Gilligan, however, refers to concrete reasoning in terms of real-world contexts. Turkle
translates. Gilligan's sense of the 'importance of attachment in human life', into women's
preference for 'attachment and relationship with computers' (Turkle & Papert, 1990, p. 157,
150); Gilligan's need to 'stay in touch with the inner workings' of arguments, into the need to
stay in touch with the inner workings of the machine. The concreteness of the hands-on,
experimenting programming style resides therefore in the computer rather than in the real
world of the client or user. It may conversely be argued that it is actually abstraction which
allows for Gilligan's 'contextual and narrative' mode of thinking. The expressiveness of
abstraction allows reasoning within the context of the real world, and provides the 'language'
to bridge between human understanding in the real world and its representation on computer.

The computer-centric culture of programmers is often blamed for the frequent failure of
computer software: they have communicated with the technology rather than with the people
who need and will use their software. Indeed, the 'millennium bug' would not have arisen if
programmers had been more connected to the real world than to the immediate burden on
their computer's 'memory'.

4.2. Brico/age

Turkle and Papert also harness Levi-Strauss's use of the French term 'bricolage' to denote
the 'concrete science' of non-Western 'primitive societies' (Turkle & Papert, 1990, p. 135). The
hacker's penchant for 'experimentation' invokes a comparison with tactile experimentation in
the sciences: the 'soft master' with a 'concrete' style is designated a 'bricoleur'.

P. McKenna / Computers & Education 35 (2000) 37-49 43

Notwithstanding that scientific experimentation is an integral part of mainstream 'canonical'
science - as is implicitly acknowledged by references to scientific discovery and Nobel
laureates (Turkle & Papert, 1990, p. 130) - it is not in any meaningful way analogous to
programming by trying things out on the computer. There is perhaps an implicit primitivism
whereby women as well as 'primitive' societies are automatically associated with what is
regarded as 'natural'.

4.3. 'Abstract': what's in a word?

Turkle and Papert present a 'concrete' style of programming as a hands-on style that is
intimately closer to reality, lends itself to a communicative, 'soft' style, and is thereby a
'feminine' approach. The opposite of the 'concrete' is taken to be 'abstract', and is interpreted
simplistically as an antonym to concrete - as in 'an abstract idea' (Turkle & Papert, 1990, p.
131).

Within this framework, however, everything in programming might be conceived of as
'abstract', in that it is the logic rather than the physical medium of a program that constitutes
its essence. Software per se is 'abstract': it is, invisible and untouchable, available to the
intellect rather than to the senses. But it is 'abstract' in a more significant sense: as a final
product - and within its development - the computer-specific detail of how it works has
been removed (abstracted) and replaced by detail that is understandable by people. Where
Turkle and Papert associate the concrete style of reasoning with a 'closeness to objects' (Turkle
& Papert, 1990, p. 147), it may be argued that the concrete 'objects' of the machine are either
real microchips, bits, registers, buses, disks; or virtual interface 'objects'. Consequently,
abstraction can actually be viewed as the means by which the 'concrete' objects close to the
machine are used to represent the real world: it is only by abstracting low-level detail that
sofware can move closer to the human user.

Abstract does not mean, as it does in fine arts, something that has no representational
qualities. In program design, abstraction signifies the removal of complex computer-specific
detail and its replacement by human-specific actions and things. In a digital world, it is
abstraction that facilitates a recognisable representation of reality. Detail is concealed within
'abstractions' that are more 'concrete' and less complex. The sense of the abstract in
programming discourse arguably is directly antithetical to that of 'abstract' art: while in
abstract art it is figurative representational details of reality that have been removed, in
program design and development abstraction translates detail of the computer's reality into
details of the user's reality.

In breaking down a problem, abstraction also provides scope for creativity and expression.
There is seldom one orthodox 'reality': the 'ideal' representation will inevitably vary according
to the individual (Cox & Bma, 1995). Indeed, the stronger the machine's role in the solving of
a problem, the less expressive and communicative the process is likely to be for the
programmer(s).

A further confusion with abstraction is the frequent failure to distinguish between teaching
programming in an 'abstract' way, and 'abstraction' as a tool in problem solving (Turkle &
Papert, 1990; Stepulevage & Plumeridge, 1998). Discovery-based learning and reinforcement
through practice do not represent an approach to programming, concrete or otherwise, but

44 P. McKenlla i Compurers & Education 35 (2000j 37-49

rather a pedagogical approach to the teaching of programming. One of its advantages is that it
can serve to build up a genuine understanding of abstraction: abstraction can be used and
taught in practical ways. While exemplification and practice may frequently be inadequate in
programming courses. there is also often insufficient emphasis on making sense of software
development through abstraction and its practical benefits. Indeed, Hoadley et al. (1996, p.
109) advocate 'instruction that emphasises abstract understanding', and can indicate without
inconsistency that learners need 'practice and concrete examples' in order to gain an abstract
understanding of patterns and reusable templates of problem-solving.

5. Transparent and opaque boxes

In the same way as an assessment of 'abstraction' must depend on what it is that is being
abstracted, so the nature of transparency is defined by what it is that can be seen through the
transparency: in the case of the black-boxing of routines in programming, whether it is the
machine or the task that is visible. Turkle briefly glimpses this ambiguity in Life on the Screen
(Turkle, IS 96, p. 42). but the confusion is compromising. On the one hand, the soft-mastery of
her Harvard students is defined by their desire to experience programming as transparent -
hence their resentment of black boxes: Lisa, a poet, 'resents the opacity of prepackaged
programs' and wants to take them apart or write her own (Turkle & Papert, 1990, p. 128). She
is 'frustrated with black-boxing or using prepackaged programs' (Turkle & Papert, 1992. p. 7).
On the other hand, George. a hard-master physicist, in language remarkably reminiscent of
that used to describe the resentment the soft master feels for black boxes, also 'feels threatened
by opaque. objects that are not of his own devising' (Turkle, 1995, p. 39). Maury, a sociology
student, prefers the 'old-time modernist transparency' of MS-DOS and Windows over the
opaque Macintosh because 'Windows is written in C' and he can program in C (Turkle, 1996,
p. 38). Soft-master and Apple aficionado Joel, however, unlike ·George and Maury, loved 'to
create programs that were opaque' so that one had no idea how it worked and one 'could
forget that there was something mechanical beneath (Turkle, 1996, p. 40).

Robin is told by her teachers not to take apart the prepackaged programs, and not to
concern herself with 'what was going on at that low level (Turkle, 1988, p. 59; Turkle &
Papert, 1990, p. 134). In this way, teachers are said to impose the orthodoxy of black-boxing
on unwilling women. Yet in Life on the Screen, Turkle favours the 'opaque' Macintosh
interface because it 'hid the bare machine from its user' (Turkle, 1996, p. 23), and is
antithetical to 'the traditional modernist expectation that one could take a technology, open
the hood, and see inside' (Turkle, 1996, p. 35). She goes on to dismiss the 'reductive
understanding' of those who want to 'open the box' (Turkle, 1996, p. 43), and approvingly
observes that we 'have grown less likely to neutralize the computers around us by demanding,
'What makes this work?' 'What's really happening in there?' (Turkle, 1996, p. 42). Turkle
herself was uncomfortable with the old command language interface of her Apple II because it
embodies the hard master theory 'that it was possible to understand by discovering the hidden
mechanisms that made things work' (Turkle, 1996, p. 33).

Black-boxing makes structured programmers 'exultant', and they 'feel a sense of power when
they use black-boxed programs' because it is not to be changed by others (Turk Ie & Papert,

P. McKenna / Compllters & Education 35 (2000) 37-49 45

1992, p. 16). Yet Lisa herself, while she may resent programs packaged by others, and does not
appear to consider letting other people use her programs, makes her own black boxes:

she prefers to write her own. smaller. building block procedures even though she could
use prepackaged ones from a program library (Turkle and Papert, 1990, p. 133)

It is baffling that this is taken to exemplify a non-structured approach: it appears in fact to
be a clear example of a novice programmer carrying out structured programming and 'divide
and-conquer' techniques. These 'building block procedures' may not be prepackaged, but they
serve as 'black boxes' nonetheless. Within the same article, Turkle & Papert maintain that it is
the soft master who makes the 'demand for transparency' (Turkle & Papert, 1990, p. 133) and
when confronted with a prepackaged program written by someone else 'wanted to take it all
apart' (Turkle & Papert, 1990. p. 134); and then go on to indicate that it is hard masters who
demand 'transparent understanding' of programs made by others, and want to know 'how the
program works' (Turkle & Papert, 1990, p. 140).

To write 'her own, smaller, building-block procedures', Lisa would have to make use,
at some level in her programming language. of procedures that have been prepackaged by
others. Each level up the ladder represents a more 'abstract' level than the level below.
The higher level 'language' allows the programmer to use functionalities or data structures
without knowing the details of how they are implemented at a lower level. At each level,
the unnecessary detail below has been abstracted. In a very general sense, the entire
enterprise of computer language is to move towards people and away from computers via
abstraction.

In using any feature of a language above binary code, programmers are using a
'prepackaged routine', an abstraction, a 'black box'. A simple integer calculation - such as 2
+ 2 - makes use of an abstract data type that is usually built into a programming language:
we do not think about the definition of the data type and that of the addition operation. As
Sebesta points out, 'all built-in types ... are abstract data types' (Sebesta 1993, p. 375). The
Write procedure in Pascal, for example, enables Pascal programmers to write text and numbers
to a screen, printer, or disk. They do not need to know how it does this - only how to use it.
Such prepackaged routines are coded using lower-level language: a lower-level 'out' procedure
would write a given byte to a given computer port. While the items which Write deals with will
be of a humanly recognisable type - words and numbers - the code that implements it will
deal with variables of computer-understandable types such as WORD and BYTE, and will
include hexadecimal numbers, memory addresses, processor registers, and assembly-language
commands.

From the use of a meaningful variable identifier rather than a memory address, to the use of
a control tool for drawing screen objects in Visual Basic rather than the low-level plotting and
drawing of that object - or third-party VBX custom controls that may be plugged in and
used - abstraction and prepackaged black boxes are everywhere in user-friendly computer
programming. Within a team working on a large project, where nobody is able or needs to
understand everything at a low level of detail, a divide-and-conquer breakdown of the problem
is fundamental. Each sub-group or individual will produce routines that are black-boxed so
that others understand how to use it, rather than how it works inside. The future of

46 P. McKenna / Computers & Education 35 (2000) 37-49

programming may well rely on reusable components which end-users can plug together to meet
their needs.

Procedures may be 'prepackaged' as part of the language, by the software house that
developed the language compiler, the writer of a commercial library of routines, or by another
member of one's programming team. A procedure encapsulates a number of operations that
work together to achieve a single purpose. It can be called by name when needed, without the
necessity to repeat the full sequence of its constituent operations, and combined with other
procedures to perform more complex functions. In design, a procedure usually corresponds to
one of the stepwise refinement (divide-and-conquer) sub-task statements of what the program
needs to do.

In many programming languages, routines are defined and implemented separately. This
provides a means for hiding the internal workings of modules from any program (or
programmer) that uses them. The program, or programmer, therefore only know what they
need to know in order to make use of the routine. This sealproofs the server module, as a
client program cannot inadvertently change some aspect of the server module. In this way,
black-boxing dramatically reduces the possibilities and complexities of errors and side-effects,
and greatly simplifies maintenance, modification, and the isolation and correction of bugs.

6. From object-relations to object-oriented?

6.1. Abstraction or encapsulation

Turkle and Papert herald object-oriented programming (OOP) as the fulfilment and
'revaluation' of the 'concrete' approach (Turk Ie & Papert, 1992, p. 29): it is, they say, 'more
congenial to those who favor concrete approaches', and 'puts an intellectual value on a way of
thinking that is resonant with their own' (Turkle & Papert, 1992, p. 155). Turkle goes so far as
to indicate that the OOP paradigm 'associated computation with the object-relations tradition
in psychoanalytic thought' (Turkle, 1996, p. 296). Grundy too equates object-oriented
programming with a concrete (as opposed to abstract) style of programming, interpreting the
growing popularity of the object-oriented paradigm as 'a surge of interest in a concrete style of
programming' (Grundy, 1996, p. 142). Yet abstraction is fundamental to OOP: as Sebesta puts
it, 'object-oriented programming .. .is an outgrowth of the use of data abstraction' (Sebesta,
1993, p. 375). While the philosophy is different from that of functional decomposition, OOP is
nonetheless a fulfilment of the promise of the 'abstract' approach, not, as Turkle and Papert
would have it, of the 'concrete' approach. The features of OOP are clearly indebted to the
characteristics of hard mastery.

Turkle and Papert observe that 'hierarchy and abstraction are valued by the structured
programmers' planner's aesthetic', and that the formal approach 'decrees' the design of 'a set
of modular solutions' (Turkle & Papert, 1990, p. 136). On the other hand, soft mastery is
characterised by a 'non-hierarchical style' (Turkle & Papert, 1992, p. 9). Hierarchy, abstraction,
and modularity, however, define object orientation. Gorlen, Plexico and Orlow (1990, p. I)
refer to data abstraction as the 'necessary foundation' of object oriented programming.
Encapsulation in the OOP paradigm is synonymous with 'information hiding' or black-boxing:

P. McKenna! Compllfers & Education 35 (:000) 37-49 47

it provides a 'cover', in Satzinger and 0rvik's words, 'that hides the internal structure of the
object from the environment outside' (Satzinger & 0rvik, 1996, p. 40). The object-oriented
paradigm abstracts data as well as processes, and binds the processes to the data - in a way
not dissimilar to the 'hard master' who would create her or his own abstract data types
(ADTs) in separate modules with a public functional interface and a private implementation.
An 'object'. normally an abstraction of an entity in the real world, is therefore roughly
analogous to a module containing ADTs: it is the ultimate 'black box'. Its defining
characteristic is that no other object needs to be aware of its insides: its internal data structure,
and the methods for manipulating instances of it, are hidden. It is the behaviour, rather than
the internal implementation, of an object that matter. An object prevents client programs from
directly accessing its internal elements; it makes data elements and their operations

"behave analogously to the built-in or fundamental data types like integers and fioating
point numbers. We can then use them simply as black boxes which provide a transformation
between input and output. We need not understand or even be aware of their inner
work ng:' (Gorlen et al. 1990, p. 1).

What Turkle and Papert disapprovingly present as the formal, hard master's alternative to
Anne's 'dazzling' (Turkle & Papert, 1992, p. 15) bricolage with the masked birds, is therefore
in fact a basic object-oriented strategy:

From their point of view, Anne should design a computational object (e.g., her bird) with all
the required qualities built into it. She should specify, in advance, what signals will cause her
bird to change color, disappear, reappear, and fly. One could then forget about "how the
bird works"; it would be a black box Structured programmers usually do not feel
comfortable with a construct until it is thoroughly black-boxed, with both its inner workings
and all traces of the perhaps messy process of its construction hidden from view. (Turkle &
Papert, 1990, p. 139-140)

6.2. Inheritance: connected hierarchy

As with structured programming, decomposition is essential for any substantial OOP
problem, particularly where large teams of programmers are involved. The decomposition is
not traditionally top-down, but hierarchy allows and is expressed in inheritance, whereby
different levels of abstraction have structure. Satzinger interestingly borrows the example of a
(non-gendered) baby from object relations theory in order to illustrate the concept of object
hierarchy and at the same time show that hierarchy is a natural way of learning and organising
inf orma tion.

The new-born baby's model of the world initially consists of mother (or primary carer) and
other things. This gradually extends to mother-people-other things, refining to mother
people-living things-other things, to mother-big people-people-living things-things. The
characteristics and behaviours of instances of each category are inherited down the

48 P. McKenna / Computers & Education 35 (2000) 37-49

classification hierarchy: a person, for example, inherits the properties of a living thing, and
adds some extra just for itself. This process, Satzinger and 0rvik (1996, p. 11) say, ·allows the
baby to infer information about newly encountered objects' both in terms of new classes (e.g.,
small people) and instances of classes (e.g., a new aunt). This notion of a connected
'hierarchy', based as it is on set membership and linkage rather than on value ranking (as
conceptualised by Gilligan), can be seen as more analogous to Gilligan's sense of context and
association. Learning is premised on a facility to link new things to that which is already
known:

Learning something new often means associating a new concept with a previously known
concept while the new concept ·inherits' everything known about the previous concept.
(Satzinger & 0rvik, 1996, p. 42).

This in general is antithetical to the 'soft master' desire to break apart rather than reuse that
which has already been accomplished and packaged.

6.3. Messages and polymorphism

Much of the language of object-oriented programming is based on communicative metaphor.
Interactions with and between objects involve sending 'messages' back and forth (rather than
'input and output', or 'commands'). These ·object relationships' whereby objects may be
associated with each other are often defined through inheritance. The terminology of
communication theory is used to describe message-passing: a 'sender' sends a 'message' to a
'receiver'. Where a soft master such as Turkle and Papert's Alex insists on 'repetitions of
instructions' (Turkle & Papert, 1990, p. 137) to get a feel for the program, messages obviate
the need for duplication of data, and help to keep the detail packaged inside objects discrete.

Meaning is a dynamic process in object as in human communication: the same 'message'
may be interpreted in different ways by a variety of different receivers. This principle is
described in the OOP paradigm as 'polymorphism'. A corollary of inheritance-based
messaging, polymorphism allows for the same method (message) to be reused and interpreted
differently by different types of black-boxed objects. This cornerstone of authentic object
orientation - message-passing and polymorphism - therefore also falls, as Graham, (1994, p.
14) notes, 'under the general heading of abstraction'.

7. Conclusion

Turkle and Papert misquote Gilligan as speaking of the 'importance of attachment in human
life' (Turkle & Papert, 1990, p. 157): like the male hackers they model the ·bricolage' style on,
they curtail and lose sight of the larger 'life cycle' perspective (Gilligan, 1982, p. 23), and
choose a narrow attachment to the computer rather than a holistic and soCial understanding of
the real world and its human contexts. In so misconceiving the nature of computer
programming, they unwittingly seek to consign women to an amateur computer role that is
wholly inappropriate and more in keeping with the original literal French meaning of bricoleur:

P. McKenna! Computers & Education 35 (2000) 37-49 49

one who tinkers around at odd-jobs (as in the French D-I-Y chain. Monsieur Bricoleur!). It is
a damaging fallacy that structured programming, and abstraction in particular. is inimical to
women or anyone with a holistic style of learning. The aesthetic and elegance of abstraction,
its power to invest complex problems with context as well as understanding and resolution. is
something that simply cannot be rejected, and indeed should be utilised to make programming,
and computing. available to everyone.

References

Cox, R .• & Brna. P. (1995). Supporting the use of external representations in problem solving: the need for flexible
learning environments. Jourllal of Artificial Intelligence ill Education. 6(I).

Edwards. P. (1990). The Army and the microworld: computers and the politics of gender identity. Signs: Journal of
Women ill Culture alld Society. 16(1). \02-127.

Frenkel. K. (1990). Women and computing. Communicatiolls of the ACM,1990, 33(11), 34-47.
Gilligan. C. (1982). In a different voice. London: Harvard University Press.
Gorlen. K. E .• Plexico. P. S .• & Orlow. S. M. (1990). Data abstraction and object-oriented programming in C+ +.

Chichester: Wiley.
Graham. I. (1994). Object oriented met"od~. Wokingham: Addison-Wesley.
Grundy. F. (1996). Womell alld computers. Exeter: Intellect Books.
Hoadley. C. (1996). When. why and how do novice programmers reuse code? In W. D. Gray. & D. A. Boehm

Davis. Empirical Studies of Programmers: Sixth Workshop. Norwood: Ablex.
Kvande. E .• & Rasmussen, B. (1989). Men, women and data systems. European Journal of Engineering Education,

14(I).
Laurillard. D. (1993). Rethillking University teaching. London: Routledge.
Mahony. K .• & Van Toen, B. (1990). Mathematical formalism as a means of occupational closure in computing -

why 'hard' computing tends to exclude women. Gender (md Education. 2 (3).
McConnell. S. (1998). Dealing with problem programmers. IEEE Software. 15 (2).
Peltu, M. (1993). Females in tuition. Computing. 12,2 December.
Satzinger. 1.. & 0rvik. T, (1996). The object-oriell1ed approach. Cambridge: ITP.
Sebesta, R. (1993). Concepts of programming languages. Redwood City: Benjamin/Cummings.
Stepulevage, L., & Plumeridge, S. (1998). Women taking positions within computer science. Gender and Education,

10(3), 313-326.
Sutherland, R .• & Hoyles. C. (1988). Gender perspectives on logo programming in the mathematics curriculum. In

C. Hoyles, Girls and compllters. London: Institute of Education.
Turkle. S. (1980). Computer as Rorschach. Society, 17. 15-24.
Turkle. S. (l984a). The second self: computers and the human spirit. London: Granada.
Turkle. S. (1984). Women and computer programming: a different approach. Technology Review, 49-50.
Turkle. S. (1988). Computational reticence: why women fear the intimate machine. In C. Kramarae, Technology alld

1I'0men's voices: keeping in touch. New York: Pergamon.
Turkle, S., & Papert. S. (1992). Epistemological pluralism: styles and voices within the computer culture. Signs:

Journal of Womell in Culture and Society, 16(1), 128-157.
Turkle, S .• & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal of

Mathematical Behavior, 11,3-33.
Turkle. S. (1996). Life on the screen. London: Phoenix.
Weinberg. G. (1971). The psychology of computer programming. New York: Van Nostrand Reinhold.

APPENDIX 8

Published article: McKenna, P. (2001). Programmers:

concrete women and abstract men?

Journal of Computer Assisted Learning, 17(4).

Programmers: concrete women and
abstract men?

P.McKenna
Manchester Metropolitan University

Abstract Sherry Turkle and Seymour Papert have identified a hands-on
and experimental 'concrete' approach to computer programming as
feminine, and as a fully formed way of knowing how to program, rather
than as either a learning style or as a stage in development. This paper
differentiates between concrete styles of learning how to program, and the
concrete style of programming. Learning strategy is decoupled from
programming style, and the hypothesis that women are more likely than
men to prefer a concrete style of programming is tested by means of
examining responses to practical examples of concrete and abstract styles.
The responses suggest that there is no significant difference between
women and men in their attitude toward a concrete style of programming.

Keywords: Abstract; Concrete; Gender; Learning styles; Programming;
Questionnaire; Undergraduate.

Introduction

The idea that women and men program in different (but equal) ways was first
advocated by science sociologist and psychoanalyst Sherry Turkle (1984b), then
developed in collaboration with Seymour Papert. Her analysis, along with the
corresponding stylistic dichotomy between the 'soft' or 'concrete' and the 'hard' or
'abstract' style of programming, has been subsequently accepted without serious
question (Sutherland & Hoyles, 1988; K vande & Rasmussen, 1989; Frenkel, 1990;
Peltu, 1993; Grundy, 1996; Stepulevage & Plumeridge, 1998).

The ready acceptance of such a stylistic dichotomy may be due to the automatic
resonance it has in traditional cultural perceptions of women and men: where the
'hard' or 'abstract' programmer uses abstraction, decomposition, structured
programming and algorithmic reasoning, the 'soft' or 'concrete' stylist engages and
communicates with the computer (and 'computer objects') in an artistic and holistic
manner. Soft stylists, it is alleged, are naturally given to this more human style, and,
Turkle and Papert claim, are repelled by the coldness of the 'abstract' approach.

Turkle and Papert have sought to validate both the concrete programming style,
and a polarised dichotomy between it and the 'canonical' abstract style: The gender
mapping is linked to feminist epistemology, by generalised con flat ions with object
relations theory and the ideas of Carol Gilligan and Evelyn Fox Keller. Such an
exercise has been analysed elsewhere as a superficial process, fraught with internal

Accepted 19 March 2001

Correspondence: Peter McKenna, Department of Computer Science and Mathematics, Manchester
Metropolitan University, Chester Street, Manchester, M I sao Email: p.mckenna@mmu.ac.uk

386 © 2001 Blackwell Science ltd

contradictions - propagating stereotypes, linking women's capabilities once again
to their 'nature', and va/orising a hacker style that actually invokes detachment from
the real world as a corollary of attachment to the computer (McKenna 2000).

The issue is a serious one, in that if this widely accepted hypothesis were true,
equal access to programming-related education and employment would depend on
teachers and trainers accepting the equal validity of the 'concrete' approach. Turkle
& Papert (1992, p. 3) would be correct to suggest that giving abstraction a privileged
position results in the 'exclusion' of women from computing and commentators such
as Peltu (1993) would have good reason to propose that structured programming be
removed from the computing curriculum.

The research on which these claims are based was conducted in the USA at
Hennigan School, Harvard, and Massachusets Institute of Technology (MIT) in the
19805, wilh·students who were learning to program. This research was essentially
qualitative, consisting of observations and a series of interviews. The methodology is
not, however, described in detail in any of Turkle and Papert's publications (1980;
1984a; 1984b; 1988; 1990; 1992; 1996). While they cite 14 out of 20 girls favouring
the 'soft' approach, as opposed to 4 out of20 boys, it is not clear how these figures
were arrived at. In exemplifYing 'hard' and 'soft', 'abstract' and 'concrete', there are
few concrete programming examples. Those that are given are largely based on the
use of a special-purpose language, LOGO, in a school context: they tend to be
intrinsically visuo-spatial in nature, and do not reflect common real-world
programming scenarios. Student programmers are interviewed, and their views form
the practical support for the analysis. 'Robin', who is said to be 'frustrated with
black-boxing or using prepackaged programs', gives typical testimony when she is
quoted, talking about 'prepackaged programs':

'I told my teaching fellow I wanted to take it all apart and he laughed at me. He said it
was a waste of time, that you should just black box, that you shouldn't confuse
yourself with what was going on at that low level.' (1992, p. 7; 1990, p. 134)

There is no description, or even exemplary identification, of 'it' - the prepackaged
routine she wanted to dismantle.

The basis of this research was to describe 'it': to give novice programming
students practical examples of prepackaged routines, and find out who 'wanted to
take it all apart'. In this way Turkle's hypothesis could be put to the test: iftrue, one
would expect that women would be more inclined to look inside the black box and to
take it apart.

Justification of methodology

In order to test Turkle and Papert's hypothesis about gendered attitudes to black
boxes in programming, it is necessary first to clarifY what is meant by black boxes,
and then to consider how a hypothesis about attitudes to black boxes might
reasonably be tested.

The concept of black boxing in programming has a wide connotative remit: it is
used, for instance, to describe a method of testing and debugging a program; and can
also imply a top-down approach to problem solving. Turkle and Papert use the
concept in its generally underst()od sense: they repeatedly equate blackboxing with
opacity and abstraction - with detail being hidden. They explain blackboxing as
'the technique that lets you exploit opacity to plan something large without knowing
in advance how the details will be managed'. Something that is 'thoroughly black-

© 2001 Blackwell Science Ltd, Journal of Computer Assisted leaming, 17, 386-395

rraces or me perhaps messy process
construction hidden !Tom view' (/992, p. 16). The tenn 'black boxing' is directly
conflated with the use of opaque library procedures: 'black-boxing or using
prepackaged programs'. The equation of black boxes and 'prepackaged programs' is
repeatedly emphasised throughout Turkle's and publications. Lisa and Robin (who
feature as a prominent part of the argument in all of Turk Ie and Papert's papers, and
Turkle's two books) want to write their own procedures rather than 'use prepackaged
ones from a program library'. Lisa 'resents the opacity 0/ prepackaged programs'
(1990, p. 128). Again, in Turkle's Life on the Screen, Lisa is said to prefer 'to write
her own smaller subprograms even though she was encouraged to use prepackaged
ones available in a program library. She resented that she couldn't tinker with the
prepackaged routines' (1996, p. 53). What is described is a dissatisfaction with
library procedures, and a desire to 'take it all apart' and look at what's 'going on at
that low level'. It is this altitude that Turkle and Papert characterise as more likely to
be a female trait.

The use of prepackaged routines is not quite all that is meant by black boxing -
but it is the strongest exemplification of it within the terms of Turkle and Papert's
argument. The separation of different levels of abstraction does not, for instance,
have to be top-down in nature: it can commence at the top, the bottom, or somewhere
in between (e.g. Clancy & Linn, 1992). When a top-down approach is referred to, it
is used loosely as a shorthand for an 'algebraic' approach that uses opacity. So
Anne's approach is generally said to be opposed to 'the top-down approach', but as
an approach it specifically 'dramatises what was so salient/or Lisa and Robin: the
desire for transparency'. The use of variables to store sprite colours is identified as
an obstacle to transparency, and is also referred to as 'algebraic' because it assigns
the colour of each bird to a different variable. Anne's nervousness about black boxes
is elaborated as her not wanting 'to package her constructs into opaque containers'.
It is ironic - given Turkle and Papert's lauding of object-oriented programming as
the future for concrete bricoleurs - that their description of the rejected 'structured'
method in this case, is an elegant example of object-oriented programming:

'she should design a computational object (for example, her bird) with all the required
qualities built into it. She should specify, in advance, what signals will cause it to
change color, disappear, reappear, and ny. One could then forget about "how the bird
works." In engineer'sjargon, it could be treated as a black box.'

This passage indicates that black boxing is inimical to the concrete programmer not
just in terms of the use of third-party library routines, but also as a strategy for
writing and organising their own code. In 'Life on the Screen', Turkle conflates the
notion of 'structured programming' with the separation of subprograms:

'After you create each piece, you name it according to its function and close it olT, a
procedure known as black boxing. You necd not bother with its detail again.'

(1996, p. 51)

Programs, or segments of code, are 'black-boxed and made opaque': the 'black box'
is 'designed not to be touched'.

Exemplifying the use of black boxing would therefore appear to be relatively
trivial: prepackaged routines are an intrinsic part of most introductory programming
courses. Two aspects of this triviality, however, raise concerns: firstly, prepackaged
routines are unavoidable in any high-level programming language; and secondly,
bypassing such routines is undeniably more difficult. While both of these issues

@ 2001 Blackwell Science Ltd, Journal of Computer Assisted Learning, 17,386·395

point to deeper weaknesses
It is impossible to ascertain what constitutes a satisfactory level of primitives: in her
earlier work, Turkle refers to her prototype concrete 'programmer X' wanting all
elements of the program to be available to the programmer 'as primitives' (1980, p.
17). While the meaning of this cannot be ascertained in the absence of concrete
exemplification, it was felt that it would be unreasonable to focus solely on
packaging built into either the programming language or the compiler. It was
therefore decided that routines which had explicitly been prepackaged by a known
third-party, over and above this inherent 'prepackaged' prepackaging, should be
tested. The issue of difficulty may appear to be more intractable: many students have
a perhaps natural inclination to avoid difficulty! However, while there is the
possibility that this might prejudice against wanting to take prepackaged routines
apart, this should not impact on the question of gender preference. Relative difficulty
is also not something that Turkle and Papert appear to recognise 'or take into account
as a factor. The fact that students 'do not need to know' how something works is the
crux of the black-box question: it is all the more necessary to try to establish who
actually wants to know. A black box 'abstracts' the detail that the programmer does
not need to know, so that they can concentrate on what it does, rather than how it
does it. Turkle and Papert's hypothesis is that the learning and programming style of
concrete programmers (such as Robin) compels them to want to know how it does it
- to make the black box transparent, or else rewrite it themselves.

It was decided to devise concrete examples to test this inclination, and to ask
learning programmers a small number of closed questions about their attitudes
towards specific prepackaged routines, then conduct a statistical analysis of the
results. While a quantitative strategy might be seen to imply a less contextualised and
more 'abstract' approach, this was adopted precisely because of some of the
problems seen to arise from Turkle and Papert's more qualitative research: the
likelihood that discourse and explicit vocabulary could reproduce similar
misunderstandings of transferred concepts (such as what abstraction really means in
the context of programming); the prejudicial influence of the researcher's
perspective, and the expectations of self-selected volunteers; and the probability that
a self-conscious knowledge of gender as an issue would arise.

The 'concrete' style of programming is characterised by specific instantiation
rather than general abstraction; the methods adopted here are founded upon the
assumption that it is also desirable to make specific what is meant by the concepts of
'concrete' and 'abstract'. The experiential discourse of Turkle and Papert's first-year
programming students inclines towards abstract generality and conceptualisation: in
particular, it is characterised by an absence of clear exemplification. Turkle &
Papert's interpretation of this discourse is also variously influenced by:

a misunderstanding (on the part of the researchers as well as the respondents)
of abstraction in computer programming;
a simplistic transferral of gender ideas, from psychology and ethical
reasoning, to computer programming;
an uncritical acceptance of the transferral ,of styles from music and poetry to

computer programming.
The simplistic interpretation of 'abstraction' as meaning the same in programming as
it does in mathematics or philosophy, is compounded by a further and occasional
confusion of 'abstract' with formal maths: both miss the point of abstraction in

© 2001 Blackwell Science Ltd, Journal of Computer Assisted Leaming, 17,386-395

PlVs,..n'In'''1J - ,h., " ;$11 ".., "IJalheu'al'car in'plcnnclllat;on dela;1 ora prvblcIJ' that

it 'abstracts' or removes, so that if may be readily understood within Ihe human
domain. The linkages to object relations theory and to Gilligan (1982, p. 50)
resulting in a masculine 'separation between subject &: object' are equally simplistic.

The methods adopted were therefore chosen with the intention of minimising the
scope for subjective interpretation, misunderstanding, and prejudice, by making
concepts concrete and presenting I statistical analysis of~ponses.1t was hoped thaI
such an 'objective' appt'oach would minimise side-effecls, focus on Ihe specifics of
programming in regular 3rd generation systems programming languages, and use
gender as an independent variable.

Survey questions were therefore formulated to find out whether students shared
Usa and Robin's dissatisfaction with prepackaged programs from a program library,
and whether Ihey 100 wanted to 'take it all apart' or wrile lheir own. Prepackaged
programs were exemplified both in terms of library routines provided within the
larger software developmenl environment (Visual nasic), bUI also in lerms of higher
level routines thaI had been prepackaged al course level by a Iutor known to the
students.

While the sample was in many respects similar 10 Turkle's, Ihe strategy adopted,
both in formulating the questions & analysing the responses, was different. Specific
and applied questions were formulated, gauging responses on an ordinal scale, and a
x7tesl was used to compare available female & male responses

The sample

The sample group consisted of first·year programming students (17 male and 24
female), most of whom came from an arts background. In this respect it was similar
to Turkle's group of students. The programming course was also similar, in that, as a
beginners' course, it did not immediately renect real·world programming problems.
The students surveyed were Combined Honours students at a liberal arts college of
Higher Education in Liverpool. Their first year course of study consisted of
Information Technology (In and two other subjects. The IT provision assumed no
previous experience upon entry: students generally took up IT to learn more about
computers, and not to become programmers. All students had completed a
compulsory first year module on programming and problem-solving. They would
know enough to understand practical examples, but had not encountered abstraction
and black.boxing as explicit concepts. Students had no awareness either of the
debate represented by Turkle and Papert or that gender was a significant part of the
questionnaire. It was therefore possible to test the hypothesis with minimised
contamination: students would not prejudice their responses in relation to the debate.

The course

The first year course employed a simple environment that was developed in·house at
the college: PieEater provided a two-dimensional grid environment through which a
small character (the eponymous pie·eater) could be directed, eating pies on request
along its way. Students could see on-screen the immediate effects of their
instructions. In this respect it shares some of the characteristics of the LOGO
environment used by some of Turkle's subjects. It does not, of course, renect
realistic or typical programming tasks, but presents a simple environment within

© 2001 D1ackwell Science Ltd, Journal of Computer Assisted Learning, 11,386·395

Mlhich basiC principlos .nay be learnr, and irnnlcdiate results can be seen. The implicit

teaching approach would be described 85 'concrete'. " is important that teaching and
learning in a concrete way - by exemplification and practical manipulation -
should not be confused with programming in a concrete way. The Pie Eater
environment represented a strongly exploratory and concrete approach to the
teaching of programming, yet, for ease of understanding, it made extensive use of
black-boxing. requiring students 10 use prepackaged routines written in Visual Basic.
These routines were written by programmers other than the student, but the student is
not taught how to make their own black boxes. The studenl would largely u~e these
routines, with occasional direct use ofroutines native to Visual Oasic itselr.

The queslionnaire

As noted above, the cotJ~e made lillie or no explicit reference to the design concepts
of abstraction or black boxe,: it was therefore neither possible nor desirable 10 ask
questions that referred explicitly 10 these concepts. The guiding principle in
formulating the questions was to provide concrete exemplification of what it meant
to use prepackaged routines. Preferences in relation to black boxes would be elicited
by asking implicit and strongly exemplified questions. The customised learning
environment (PieEater) made specific use of what Turkle and Papert call
'prepackaged routines', so practical examples of these were presented to students,
and their reactions elicited.

Three simple questions were framed: the first asks whether the student is curious
just to know the inner workings of tutor·packaged routines typical to the custom
PieEater environment:
I. In PieEater, routines were provided to enable YOII to move or turn the pie-eater.

Have you ever wondered, or wanted to Icnow, how the move and tllrn rOlltines
were implemented?

This is the basic 'glass box' question, testing the weaker end of Turkle and Papert's
thesis: it entails a desire only to look inside a prepackaged routine, to 'bother with its
detail'. The second goes further, and asks if the students would prefer to actively
write their own routine instead:
1. WOIiId you rather have written YOllr own rOlltine to move and tllrn the pie-eater,

so that you knew exactly how things worlc?
The third moves on to Visual Basic itself-would the student wish to write their
own routine rather than use Visual Basic's prepackaged routines:
J. Visual Basic allows you to create objects on the screen - slich a.f bllttons and

windows - without having to write the code to do so yourself.
Would you prefer to write YOllr own subroutine to draw a blltton?

This question tests the 'strong' end of the thesis.
The scale used was a simple three·point Likert scale, from definite rejection (I),

through a willingness to consider the notion (2), to definite confirmation (3).
Personal data was also requested: age-group, sex, previous experience and
qualifications. The additional data ensured that the spotlight was not on gender, and
provided information concerning other potential variables.

© 2001 Blackwell Science Ltd, Journal of Computer Assisted Learning. 17,386·395

A".'ysi$ o£dal.

Higher scale points indicate, respectively, that the student would prefer to (/) see
inside a prepackaged routine; (2) write their own routine instead of a routine
prepackaged by the tutor; and (3) write their own routine instead of an opaque
routine prepackaged by Microsoft. If Turkle's thesis concerning attitudes to black
boxes were accepted, there would be a marked difference between the response of
female students and that of male students: females would register high scale points
more frequently than males, and males would register low scale points more
frequently than females.

As the responses were measured on a three-point ordinal scale, a X2 test was used
to examine how much the observed response frequencies differed from the
frequencies that would be expected given the null hypothesis of no difference
between women and men

Question J This was the basic 'glass box' question.
Table I. Observed frequencies for responses 10 Ihe 'glass box' queslion.

Observed dala - OiJ
su'e poinl 2 J lola Is

Female counl
Male counl
Tolals

2
I
J

14
10
24

8
6

.4
24
17 4.

Table 2. The expected frequencies, under the hypolhesis of no difference.

Elpecled data - EIJ
scale point 2 3 tota's
Female 1.156 14.049 8.195 24
Male 1.244 9.951 5.805 .7
TOlals J 24 14 41
It may be noted from this that the number of female responses at points 2 and 3 on
the scale was actually lower that would be expected, and higher for 1.

Table 3_ The calculation of the value ofl2

Xl

Female
Male
Tolais

0.0339
0.0418
0.0817

2

0.0002
0.0002
0.0004

3

0.0046
0.0066
0.0112

(0- E)11E

0.0381
0.0546

Sum=0.09J
With two degrees of freedom, and a 5% significance level, the critical value of l is
5.991. With Calc X2 0.093 < Tab X2 5.991, the null hypothesis was accepted for the
glass box question, and it was concluded that there was no significant difference
between the responses of women and men.

Question 2 This question asked students if they would prefer to write their own
routines instead of the prepackaged routines.
Table 4. Observed frequencies

Obsernd dala - 011
scale point 2 3 tolals
Female counl 5 12 1 24
Maleeounl J 8 6 11
Totols 8 20 13 41

© 2001 Blackwell Science Ltd. Journal of Computer Assisted learning. 17.386-395

Table S. ~'Ci;;.;;;;;;r:dr~~;;;~i;~d:;;::th~~ orno;;;YiWere~~;-"

Expecled dal. - Eij
scale point 2 J tota's

Female 4.683 11.707 7.610 24
Male 3.311 8.293 S390 17
TOlals 8 20 t3 41

Table 6. The calculalion oflhe value OfX2

Xl 2 3 (O-E)lfE

Female 0.021 0.007 0.049 0018
Male 0.030 0.010 0.069 0.110

0.OS2 0.018 0.118
Sum-0.187

Again, Calc X2 0.187 < Tab X2 5.991, and the null hypothesis was accepted. There
was no significant difference between the responses of women and men to the
proposition that they write their own routine instead ofa prepackaged routine.

Qllestion 3 This question asked whether students would wish to write their own
routine in place of Visual Basic's own prepackaged routines.

Table 7. Observed frequencies

Observed dala -Oij
s .. le point 2 1 lolal.

Female counl 19 4 1 24
Male count 13 4 0 17
Totals 32 8 I 41

Table 8. Expecled frequencies for Ihe null hypolhesis

Expeeled dala - Elj
scale point 2 1 lolals

Female 18.732 4.683 0.585 24
Male 13.268 3.317 0.415 17
TOlals 32 8 I 41

Table 9. The calculalion oflhe value of Xl

Xl 2 3 (0- E)lfE

Female 0.004 0.100 0.294 0.397
Male 0.005 0.141 0.41S 0.561

0.009 0.240 0.708
Sum = 0.958

The null hypothesis is again accepted, with Calc X2 < Tab Xl. There was no
significant difference between the responses of women and men to this question.

Further observations

It may be observed that there is a marked difference in the overall responses to
questions I and 3, respectively: while question 1 tempted a third of respondents to
peek inside a prepackaged routine, only one respondent was definitely inclined to
self-author a routine prepackaged in Visual Basic. Black boxes appear to be more
welcome in complex situations. This is hardly surprising, given that the reduction of
complexity is a major reason for the use of black boxes. It may also be noted that,
apart from the fact that this single respondent to the most unpopular proposition was

@ 2001 Blackwell Science ltd, Journal of Computer Assisled learning, 17.386-395

-. ...--,~ -."" --"-"~-""""--'
'Y"''''~'''''''''''''''-"'

kfna/e, kflloles ",ere aCI'ually /e s likely 10 respond at the higher end of the scaJe

than males - and therefore slightly more likely than males to prerer black boxes.
This difference, however, is not statistically significant.

Conclusion

The idea that women would be more likely than men to shun black boxes in
programming, resonates with several perhaps stereotyped generalities about learning:
that women prefer a holistic approach to learning; that women seek out 'connection'
and interiority while men seek out objectivity and separation; and that abstraction is
a male preoccupation. The resonance, however. is decidedly superficial. In
programming, it may be argued. it is the ability to understand and solve problems by
black boxing and abstracting detail that allows software solutions to be more than the
sum of the mechanistic parts - that enable software elements to be understood all at
once, and in terms ofreal-world and user-centred applications rather than in terms of
computer operations. And if people prefer a more 'connected' style, then surely it is
the users - and other members of the software development team - that they
would want to connect to. To connect unnecessarily to the internal workings of
blocks of code that do what they are supposed to do, can only distract the
programmer from communicating with the real people involved, and is more
suggestive of stereotyped male hacker behaviour. Indeed, Turkle and Papert make
explicit links between the alleged 'programming virtuosos' of 'the hacker culture',
and the 'concrete' style (Turk Ie & Papert, 1992).

As a feature of a teaching and learning strategy, the Pie Eater environment
facilitated a strongly concrete learning style. encouraging students to explore
problems in a hands-on and sometimes experimental way, and providing concrete
representation of actions. In order to produce such a concrete learning environment,
very high-level routines were implemented and packaged that were simple to use: in
other words, very deliberate use was made of abstraction and black-boxing.
Crucially, there was little desire to look inside or take apart these 'prepackaged
programs', and - contrary to Turkle and Papert's central thesis - no greater desire
to do so on the part of women.

Educationally, the concrete learning style in this case was a means rather than an
end, and did not imply the teaching of a concrete approach to programming. What
characterised the 'concrete' approach of the PieEater activities, was that the leamer's
coding produced immediate visual results. It is quite clear that such an approach
could exist without reference to any desire to get inside black boxes. The activities
provided by Pie Eater represented the starting-point in a learning cycle that would
move on to reflection and conceptualisation. and then link back to the experimental
(Kolb. 1983). For Turkle and Papert, however. the 'concrete' style of programming
is not a learning style, and it is emphatically not a stage of development: it is, rather,
a fully formed 'intellectual style' (1992, p. II), at least as good as the use of
abstraction. Turkle and Papert's concrete style is therefore either a hacker style, or a
learning style from the early part of the learning cycle. To present either as a fully
fledged style of programming, is problematic enough: to identity it with women runs
the risk of marginalising half of the population in a world where real programming
projects simply cannot succeed without the tools of abstraction.

@ 2001 Blackwell Science Ltd, Joumal of Computer Assisted Learning, .7,386-395

CKnowledgemenfs

Thanks are due to: Brian Farrimond, for creating and producing PieEater; Janet
Farrimond, and Mary Sephton, for much-needed help with statistics, and the students
of Liverpool Hope University College

References

Clancy, M. & Linn, M. (1992) Designing Pascal Solutions. Freeman. Oxford.
Frenkel. K. (1990) Women and Computing. Communications of the ACM, November,33, II,

34-47.
Gilligan, C. (1982). In a Different Voice. Harvard University Press, London.
Grundy, F. (1996). Women and Computers. Intellect Books, Exeter.
Kolb, D.A. (1983). Experiential Learning: Experience as the Source of Learning and

Development. Prentice Hall. New York.
K vande. E. & Rasmussen, B. (1989) Men, Women and Data Systems. EI/ropean JOl/mal of

Engineering Education, 14, I).
McKenna, P. (2000) Transparent and opaque boxes: do women and men have different

computer programming psychologies and styles? Computers &. Edl/cation, 35, 37-49.
Peltu, M. (1993) Females in tuition. Compl/ting. 12.2 December.
Stepulevage, L. & Plumeridge, S. (1998) Women Taking Positions Within Computer Science.

Gender and Edllcation, 10,3.313-326.
Sutherland. R. & Hoyles. C. (1988) Gender Perspectives on Logo Programming in the

Mathematics Curriculum. In Girls and Computers (ed. C. Hoyles) Institute of Education,
London.

Turkle, S. (1978) PsychoanalytiC Politics. Burnett, London.
Turkle, S. (1980) Computer as Rorschach. Society. 17, 15-24.
Turkle, S. (1984a) The Second Self Compl/ters and the /II/man Spirit. Granada, London.
Turkle. S. (I 984b) Women and Computer Programming: A Different Approach. Technology

Review NovemberfDecember pp. 49-50.
Turkle, S. (1988) Computational Reticence: Why Women Fear the Intimate Machine. In

Technology and Women's Voices: Keeping in Touch (cd. C. Kramarae) pp. 41-61.
Pergamon. New York.

Turklc, S. (1996) Life on the Screen. Phoenix, London.
Turkle, S. & Papert. S. (1990) Epistemological pluralism: styles and voices within the

computer culture. Signs: JOl/mal of Women in CI/llllre and Society, 16, I, 128-157.
Turkle, S. & Papert, S. (1992) Epistemological Pluralism and the Revaluation of the

Concrete. JOl/rnal of Mathematical Behavior, 11,3-33.

The Fourth International Conference on Teacher Education

Teacher Education as a Social Mission: A key to the Future
Achva College of Education, Israel

June 23-27, 2002

Public and academic interest is currently focusing on social and economic inequality, cultural
and ethnic diversity, and educational and gender differences.
The Fourth Intemational Conference on Teacher Education ia an academic as well as a
practical expression of the commitment of teacher education to be sensitive to and involved in
the central issues oflocal and intemational social reality on the one hand, and to utilise the
influence of teacher education in shaping future society on the other.

For further information sec: http://www.conf4.achva.ac.iI

© 2001 Blackwell Science Ltd, Journal of Computer Assisted Learning, 17,386-395

APPENDIX C

Pascal Questionnaire

Questionnaire
This short questionnaire is part of a project to explore different attitudes to
progranuninglprogram design. Your participation is greatly appreciated.

General infonnation

1. Please tick your age-group:

18-24 2. Please tick your sex:

25-29
30-35 I ~:le I
36-39
40-45
46-49
50+

3. What (if any) experience of pro grarnming did you have before starting the
progranuning course?

None whatsoever
some self-taught knowledge
a previous course
work experience
other (please specify)

4. Please tick if you have any of the following qualifications:

GCSE computer studies
GCSE mathematics
an RSA IT Qualification
GNVQ in IT
Access qualification

Please tum over -+

5. In PieEater, routines were provided to enable you to move or tum the pie-eater.
Have you ever wondered, or wanted to know, how the move and tum routines were
imp lernented?

1
no way

2
perhaps

3
yes, definitely

6. Would you rather have written your own routine to move and tum the pie-eater, so
that you knew exactly how things work?

1
noway

2
perhaps

3
yes, definitely

7. Visual Basic allows you to create objects on the screen - such as buttons
and windows - without having to write the code to do so yourself.

Would you prefer to write your own sub-routine to draw a button?
I I I
123
noway perhaps yes, definitely
====================================

And finally:

I am interested in contributing to developments in future programming I YNEOS
courses and in discussing my attitudes to computer programming. I WOuld. t-:-:-:~-lf---I
be willing to have an informal discussion in more depth at convenient time ---...... -~

[IF YES - my NAME is 1

APPENDIX D

Java Questionnaire

Questionnaire
This short questionnaire is part of a project to explore different attitudes to
programming. Your participation is greatly appreciated.

General infonnation

Personal data

1. Please tick your age-group:

18-24
25-29
30-35
36-39
40-45
46-49
50+

2. Please tick your sex:

I Male
Female

3. What (if any) experience of programming did you have before starting the
programming course?

None whatsoever
some self-taught knowledge
a previous course
work experience
other (please specify)

4. Please tick if you have any of the following qualifications:

GCSE computer studies
A' Level Computing
RSA IT qualification
GNVQ in Computing
A' Level Mathematics
Access qualification

Programming Questions
JAVA ELEMENTS

Bailey & Bailey's element package provides easy access to textual input and output
facilities by 'packaging up' functionality from the Java A WT and 10 for you.

If tixre allowed, would you:

a) like to inspect and take apart the code that Bailey & Bailey wrote in
implexrenting the element package, so that you could find the detail of
how methods such as readLine were written?

Circle one number

1
no

2
perhaps

3
yes

b) prefer to write and use your own routines rather than using either
readLine or another prepackaged method?

Circle one number

1
no

2
perhaps

3
yes

c) prefer to use the Java A WT and 10 packages directly yourself
Circle one number

1
no

2
perhaps

3
yes

d) like to take apart the Java A WT and 10 packages to find out how the
underlying code has been implemented

Circle one number

And finally:

1
no

2
perhaps

3
yes

I am interested in discussing my attitudes to and experience of computer
programming. I would be willing to have an informal discussion in more
depth at a convenient time
[IF YES - my NAME :-______________ ---1

REFERENCES
Andrews, GR. (1997, March). 1996 CRA Taulbee Survey. Computing
Research News, (9) 2, 5-9.

Arch, E.C., and Cummins, D.E. (1989, March). Structured and Unstructured
Exposure to Computers: Sex Differences in Attitude and Use among College
Students. Sex-Roles, 20, (516), 245-254.

Atwell-Vasey, W. (1998). Nourishing Words: Bridging Private Reading and
Public Teaching. Albany: State University of New York Press.

Bailey, D.A. & Bailey, D.W. (2000). Java Elements: Principles of
Programming in Java. London: McGraw Hill.

Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., Stankosky, A.,
Thiel, D., Van Dantzich, M., and Wax, T. (1997). Lifelike computer characters:
The Persona project at !v1icrosoft. In J.M. Bradshaw (Ed.), Software Agents (pp.
191--222). Meno Park, CA: The AAAI Press.

Barrett. M. and Phillips, A. (Eds.). (1992). Destabilizing Theory: Contemporary
Feminist Debates. Cambridge: Polity Press.

Barry, H., Bacon, M. K., & Child, I. L. (1957). "A cross-cultural survey of
some sex differences in socialization," Journal of Abnormal and Social
Psychology, 55, 327-332.

Beauvoir, S. de (1954). The Second Sex. (H.M. Parshley, Trans.).
Harmondsworth: Penguin. (Original work published 1949)

Bell, D. & Parr, M. (1998). Java for Students. London: Prentice-Hall.

Bern, S. (1993). The Lenses of Gender. London: Yale University Press.

Benjamin, J. (1995). Like Subjects, Love Objects,· essays on recognition and
sexual difference. New Haven: Yale University Press.

Bernstein, D. R. (1992). A new introduction to computer science. In C. D.
Martin, and E. Murchie-Beyma (Eds.), In Search of Gender Free Paradigmsfor
Computer Science Education (pp. 87-91). Eugene, Oregon: NECC Monograph.

Bertholf, C. F. and Scholtz, J. (1993). Program Comprehension of Literate
Programs by Novice Programmers. In C. R. Cook, J. C. Scholtz, and J. C.
Spohrer (Eds.), Empirical Studies of Programmers: Fifth Workshop. Norwood,
NJ: Ablex Publishing.

Bishop, J. (20Ot). Java Gently. Harlow: Addison Wesley.

Bleier, R. (Ed.). (1986). Feminist Approaches to Science. Oxford: Pergamon.

234

Bolter. J.D. (1991). Writing Space: The Computer. Hypertext. and the History
of Writing. Hove and London: Lawrence Erlbaum Associates.

Booth. P. (1989). An Introduction to Human-Computer Interaction. London:
LEA.

Bourque. P., Abran, A., Moore. J.W., & Tripp, L. (1999, NovemberlDecember).
The Guide to the Software Engineering Body of Knowledge. IEEE Software, 16
(6).

Brooks, F.P. (1975). The Mythical Man Month. New York: Addison-Wesley.

Brooks, F.P. (1987). No Silver Bullet: essence and accidents of software
engineering. IEEE Computer, 20(4), 10-19.

Brooks, R. (1983). Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies. 18. 543-554.

Bruckman, A. (1996. January). Finding One's Own Space in Cyberspace.
Technology Review. 48-54. Cambridge. MA: MIT.

Brunner, C., Bennett, D., Honey. M. (1998). Girl games and technological
desire. In J. Cassell, & H. Jenkins (Eds.). From Barbie to Mortal Kombat:
Gender and computer games (pp. 72-88). Cambridge. MA: MIT.

Burgess, A. (1997). Fatherhood Reclaimed. London: Vermilion.

Butler, J. (1993). Bodies that Matter. London: Routledge.

Butler. J. (1997). Excitable Speech: A Politics of the Performative. London:
Routledge.

Camp, T. (1997, October). The Incredible Shrinking Pipeline. Communications
of the ACM, 40(10), 103-110.

Carmichael, H.W., Higginson. W.c., Burnett, J.D., Moore, B.G., & Pollard, P.J.
(1986). Differential effects on male and female students. In H.W. Carmichael
(Ed.), Computers, children and classrooms (pp. 106-126). Toronto, Ontario:
Ministry of Education.

Cassell, J., & Jenkins, H. (1998). Chess For Girls? Feminism and Computer
Games. In J. Cassell and H. Jenkins (Eds.), From Barbie to Morral Kombat:
Gender and Computer Games (pp. 2-45). Harvard: MIT Press.

Chivers. G. (1987). Information Technology - Girls and Education: A Cross
Cultural Review. In KJ.Davidson and C.L.Cooper (Eds.), Women and
Information Technology. Chichester: Wiley.

235

Chodorow, N. (1971). Being and Doing: a Cross-Cultural Examination of the
Socialization of Males and Females. In V.Gornick and B.Moran (Eds.), Women
in Sexist Society. New York: Basic Books.

Chodorow, N. (1978). The Reproduction of Mothering. London: University of
California.

Chodorow, N. (1989). Feminism and Psychoanalytic Theory. London: Yale
University Press.

Cixous, H. & Sellers, S. (1994). The Helene Cixous Reader. London,
Routledge.

Clancy, M. and Linn, M.C. (1992). Designing Pascal Solutions: A Case Study
Approach. San Francisco: W.H.Freeman.

Cockburn. C. & Ormrod, S. (1993). Gender & Technology in the Making.
London: Sage.

Cockburn, C. (1985). Machinery Of Dominance: Women, Men and Technical
Know-How. London: Pluto Press.

Collis, B. (1987). Sex Differences in the Association Between Secondary
School Students' Attitudes Toward Mathematics and Toward Computers.
Journalfor Research in Mathematics Education, 18(5),394-402.

Cox, B.l. (1995). There is a Silver Bullet. In N.Heap, R. Thomas, G.Einon,
R.Mason, and H.Mackay (Eds.), Information Technology and Society: A Reader
(pp.3 77 -386). London: Sage. (Reprinted from BYTE Magazine, October 1990,
New York: McGraw-Hill).

Cox, R. & Bma, P. (1995). Supporting the use of external representations in
problem solving: the need for flexible learning environments. Journal of
Artificial Intelligence in Education, 6(1).

Culley, L. (1986). Gender Differences and Computing in Secondary Schools.
Loughborough: Loughborough University of Technology.

Curtis, B. & Walz, D. (1990). The Psychology of Programming in the Large. In
1.M. Hoc et al. (Eds.), Psychology of Programming. London: Academic Press.

D' Andrade, R (1966). Sex Differences and Cultural Institutions. In E. E.
Maccoby (Ed.), The Development of Sex Differences (pp.173-204). Stanford:
Stanford Uruversity Press.

Dain, 1. (1992). Person-Friendly Computer Science. In Teaching Computing:
Content and Methods. Proceedings of the Women into Computing 1992
National Conference.

236

DeiteI. H.M., & Deitel, PJ. (1999). Java: How to Program. New Jersey:
Prentice-Hall.

DeLoach, A. (1996, March). Gmls Exude Attitude. CMC Magazine. Retrieved
February 23, 2002, from
hnp:llwww.december.com/cmc/magI1996/mar/deloach.html.

Delphy, C. (1993). Rethinking Sex and Gender. Women's Studies International
Forum, 16, 1, 1-9.

Delphy, C. (2000, July/August). Feminism at a Standstill. New Left Review, 4,
159-162.

Denvir, T. (1986). Introduction to Discrete Mathematics for Software
Engineering. London: Macmillan.

Department for Education (1994). Statistics of Education.

DTI (1995). Making the Most - Women in Science. Engineering and
Technology: Building a Workforce for Sustained Competitiveness. Department
of Trade and Industry and Opportunity 2000, London.

Dworkin, A. (1987). Intercourse. New York: Free Press Paperbacks/Simon &
Schuster.

Eden, C. and Hulbert, W. (1995, November). Gender and IT in the Primary
Classroom: Building Confidence through Laptops. Computer Education, 81,
10-14.

Edwards, P. (1990). The Army and the Microworld: Computers and the politics
of gender identity. Signs: Journal of Women in Culture and Society, 16 (1),
102-127.

Enloe, C. (1992, January). Silicon tricks and the two dollar woman. New
Internationalist, 227.

Etzkowitz, H., Kemelgor, C., Neuschat, M. & Uzzi, B. (1990). The Final
Disadvantage: Barriers to Women in Academic Science and Engineering. In W.
Pearson Jr. and A. Fechter (Eds.), Human Resourcesfor Science. Baltimore:
Johns Hopkins Press.

Evans, M. (1983). Simone de Beauvoir: Dilemmas of a Feminist Radical. In D.
Spender (Ed.), Feminist Theorists (pp. 348-365). London: The Women's Press.

Fuestone, S. (1970). The Dialectic of Sex: The Case for Feminist Revolution.
London: The Women's Press.

Foner, L. (1993). What's an Agent, Anyway? A Sociological Case Study.
Technical report, Agents Group, Massachusetts Institute of Technology Media
Lab.

237

Francis, L. J. (1994). The Relationship between Computer Related Attitudes
and Gender Stereotyping of Computer Use. Computers in Education, 22, 4,
283-289.

Freedman, E. (2001). Learning Styles, Culture & Hemispheric Dominance.
Retrieved on February 2002, from http://www.mathpower.com/brain.htm

French, M. (1978). The Women's Room. London: Andre Deutsch.

Frenkel, K. (1990). Women and Computing. Communications of the ACM, Nov
199033 (11), 34-47.

Gallop, J. (1997). ''Women'' in Spurs and Nineties Feminism In E.K. Feder,
M.C. Rawlinson, and E. Zakin (Eds.), Derrida and Feminism. London:
Routledge.

Gelernter, D. (1998). The Aesthetics of Computing. London: Orion Books.

Gibbs, W.W. (1994, September). Software's Chronic Crisis, Scientific
American, 72-81.

Gilligan, C. (1982). Woman's Place in Man's Ufe Cycle. In L. Nicholson (Ed.)
(1997). The Second Wave. London: Routledge.

Goguen, J. (1992). The Dry and the Wet. In E. Falkenberg, C. Rolland, and E.
Nasr-EI-Dein El-sayed (Eds.). Information Systems Concepts. Amsterdam:
Elsevier.

Goreau, A. (1983). Aphra Behn: A Scandal to Modesty. In D. Spender (Ed.),
Feminist Theorists. London: The Women's Press.

Gorlen, K.E., Plexico, P.S., & Orlow, S.M. (1990). Data Abstraction and
Object-oriented Programming in C++. Chichester: John Wiley and Sons.

Gould, SJ.(1977). Ever Since Darwin. New York: W.W. Norton.

Graham, I. (1994). Object Oriented Methods. Wokingham: Addison Wesley.

Grant, J. (1992). Fundamental feminism: Contesting the core concepts of
feminist theory. London: Routledge.

Gray, W.D. & Boehm-Davis. D.A. (1996). Empirical Studies of Programmers:
Sixth Workshop. Norwood: Ablex.

Grbich, C. (1992, Spring). Societal Response to familial role change in
Australia: Marginalisation or social change? Journal of Comparative Family
Studies. 23, 1.

238

Green, E .• Owen, J .• Pain, D. (Eds.). (1993). Gendered by Design? London:
Taylor & Francis.

Green, T.R.G. (1980). Programming as a cognitive activity. In H.T. Smith and
T.R.G.Green (Eds.), Human Interaction with Computers. New York: Academic
Press.

Greer, G. (1970). The Female Eunuch. London: MacGibbon and Kee.

Griffin. S. (1992). Woman and Nature: The Roaring Inside Her. In M. Hurnm
(Ed.). Feminisms: A Reader. New York: Harvester Wheatsheaf.

Griffiths, M. (1988). Feminism, feelings and philosophy. In M. Griffiths and M.
Whitford (Eds.), Feminist Perspectives in Philosophy, (pp. 90-108).
Bloomington: Indiana University Press.

Grint. K. & Gill. R. (1995). The Gender-Technology Relation. London: Taylor
and Francis.

Grossman, R. (1985, August). Miss Micro. New Internationalist 150, 12-13.

Grundy, F. (1996). Women and Computers. Exeter: Intellect Books.

GUrer, D. (1995, January). Pioneering Women in Computer Science.
Communications of the ACM, 38, 1.

Gurton, A. (1995. January). Business Comment Personal Computer Magazine.

Hafkin. N. & Taggart, N. (2001). Gender, Information Technology. and
Developing Countries: An Analytic Study. Academy for Educational
DevelopmentlUnited States Agency for International Development Retrieved
February 23, 2002, from
http://www.aed.orgllearnlinklPublications/GendecBookJhtmV3a_gender_acces
s.htm.

Halpern, M. (1990). Binding Time - Six Studies in Programming Technology
and Milieu. Norwood, NJ: Ablex.

Hamilton, D., McDonald, B .. King, c.. Jenkins, D., & Parlett, M. (Eds.).
(1977). Beyond the numbers game: a reader in educational evaluation.
Basingstoke: Macmillan Education.

Harcourt, W. (Ed.). (1999). women@intemet. London: Zed Books.

Harding, S. & Hintikka, M.B. (Eds.) (1983). Discovering Reality. Dordrecht:
Kluwer Academic Publishers.

Harding, S. & O'Barr, J .F. (Eds) (1987). Sex and Scientific Inquiry. Chicago: U
of Chicago Press.

239

Harding, S. (1991). Whose Science? Whose Knowledge? Buckingham: OUP.
Hare-Mustin, R. T. & Marecek, M. (1988). The meaning of difference: Gender
theory, postmodernism, and psychology. American Psychologist, 43. 455-464.

Hartsock, N. (1997). The Feminist Standpoint. In L. Nicholson (Ed.), The
Second Wave. London: Routledge. Reprinted from Discovering Reality. pp.
283-310. by Harding and Hintikka, Eds., 1983. Dordrecht: Reidel.

Haughton, E. (2002. 5 March). Gender Split. The Guardian Education,
educ@guardian. pp.2-3.

Hawkins, J. (1985. August). Computers and Girls: Rethinking the Issues. Sex
Roles 13. 3-4. 165-180.

Hayes-Roth, B. and Hayes-Roth, F. (1979). A cognitive model of planning.
Cognitive Science. 3.275-310.

Hayes-Roth. B. (1998. March). Interacting with Animate Characters: Puppets,
Bartenders and Auto Salespersons. In: Proceedings of Imagina, The European
Conference on Images and the Arts, Monaco, March 1998.

Henderson. J. (1989). Pagan Saxon Cemeteries: a study of the problem of
sexing by grave goods and bones. In C.A. Roberts .• F. Lee and J. Bintliff (Eds.),
Burial archaeology: Current research. methods and developments. B.A.R.
British Series No. 211. Oxford: British Archaeological Reports.

Henwood. F. (1993). Establishing Gender Perspectives on Information
Technology: Problems. Issues and Opportunities. In E.Green, J. Owen, and
D.Pain (Eds.), Gendered by Design? (pp. 31-49). London: Taylor & Francis.

Herring, S. (1994, June). Gender differences in computer-mediated
communication: bringing familiar baggage to the New Frontier. Making the
Net*Work*: Is there a Z39.50 in gender communication? Miami. FLA:
American Library Association Annual Convention. Retrieved March 11. 1998.
from http://cpsr.org/cpsr/genderlherring.txt

Herrmann. G. (1996). Women's Exchange in the U.s. Garage Sale. Gender &
Society. 10 (6). 703-728.

Hess. R. & Miura, I.T. (1985. August). Gender Differences in Enrolment in
Computer Camps and Classes. Sex-Roles, 13. 3-4. 193-203.

Hewlett. B.S. (1991). Intimate Fathers: the nature and content of Aka Pygmy
paternal infant care. Ann Arbor: University of Michigan Press.

Hoadley. C .• Linn, M.C., Mann, L.M., and Clancy. MJ. (1996). When, why and
how do novice programmers reuse code? In W.D. Gray & D.A. Boehm-Davis
(Eds.). Empirical Studies of Programmers: Sixth Workshop. Ablex: Norwood.

240

Hoc. J.-M. et al. (1990). Psychology of Programming. London: Academic
Press.

Holderness. M. (1996, May 9). Baghdad bomb run. The Guardian OnLine.

Holmes. N. (2000, November). Some comments on the Coding of Programs.
Computer 33(11), 126-128.

Hood-Williams, J. (1996, February). Goodbye to Sex and Gender. The
Sociological Review. 44(1), 1-16.

hooks. b. (1984). Feminist Theory: from margin to center. Boston: South End
Press.

Hoyles. C. (Ed) (1988). Girls and Computers. London: University of London.

Huang, Ring. Toich. Torres. (1998. March). The Gender Gap in the Computing
field. Gender Relations in Educational Applications of Technology, 1 (1).

Huff. C., and Cooper. J. (1987). Sex Bias in Educational Software: The Effect
of Designers' Stereotypes on the Software they Design. Journal of Applied
Social Psychology. 17.6.519-532.

Hughes. M .• MacLeod, H., Potts, C., Rodgers, J. (1985, 11 October). Are
Computers only for boys? New Society.

Humrn. M. (1992). Feminisms: A Reader. New York: Harvester Wheatsheaf.

Imperato-McGinley J., Peterson R.E., Gautier T., and Sturla E. (1979).
Androgens and the evolution of male-gender identity among male
pseudohennaphrodites with 5-alpha-reductase deficiency. New England
Journal of Medicine 300,1233-1237.

Irigaray, L. (1985). Speculum of the Other Woman (G.C. Gill, Trans.). Ithaca,
NY: Cornell University Press. (Original work published 1974).

Irigaray, L. (1993). An Ethics of Sexual Difference (G.C. Gill, Trans.).Ithaca,
N.Y.: Cornell University Press. (Original work published 1984).

Irwin, M.J. & Friedman, F. Taulbee Survey, Computing Research News. March
2000.

Israelsson, A-M. (1993). Educating Rita - the real challenge: some reflections
on a female and human approach to teaching technology. In C. Payne (Ed.),
Education in the Age of Information. Manchester: Manchester University Press.

Jenkins, H. (1998). 'Complete Freedom of Movement': Video Games as
Gendered Play Spaces. In J. Cassell and H. Jenkins (Eds.). From Barbie to
Mortal Kombat: Gender and Computer Games. Cambridge: MIT Press.

241

Kahn, K. (1999). From Prolog and Zelda to ToonTalk.. In D. de Schreye (Ed.),
Proceedings of the International Conference on Logic Programming 1999.
Cambridge: MIT Press.

Keller, E. F. (1983). A feeling for the organism: The life and work of Barbara
McClintock. San Francisco: W. H. Freeman.

Keller, E. F. (1985). Reflections on gender and science. New Haven, CT: Yale
University Press.

Klein, M. (1946). Notes on Some Schizoid Mechanisms. In J. Mitchell (Ed.),
The Selected Melanie Klein. New York: The Free Press.

Knuth, D.E. (1984, May). Literate Programming. Computer Journal 27 (2), 97-
111.

Kohl, J. & Harman, M.S. (1987). Attitudes of Secondary School Students
toward Computers, Access and Usage: Do Gender and Socioeconomic Status
Make a Difference? American Sociological Association (ASA).

Kolb, D.A. (1983). Experimental Learning: Experience as the Source of
Learning and Development. New York: Prentice-Hall.

Kozen, D. and Zweben, S. (1998, March). 1996-1997 CRA Taulbee Survey:
Undergrad Enrollments Keep Booming, Grad Enrollments Holding Their Own.
Computing Research News.

Kramarae, C. (1988) (Ed.). Technology and Women's Voices: Keeping in
Touch. New York, Pergamon.

Kramer, P. Lehman, S. (1990). Mismeasuring Women: A Critique of Research
on Computer Ability and Avoidance. Signs: Journal of Women in Culture and
Society, 16 (10), 158-72.

Krechowiecka, I. (2002, 26 February). Never mind about maths. Guardian
Education.

Kristeva, J. & Oliver, K.(Ed). (1997). The Portable Kristeva. New York:
Columbia University Press.

Kvande, E. & Rasmussen, B. (1989). Men, Women and Data Systems.
European Journal of Engineering Education, 14 (1).

Lacan, J. (1966). Ecrits: A Selection. London: Routledge.

Laurel, B. (1997). Interface Agents: Metaphors with Character. In J. Bradshaw
(Ed.), Software Agents. Meno Park, CA: The AAAI Press

Laurillard, D. (1993). Rethinking University Teaching. London: Routledge.

242

Lechte, J. (1994). Fifty Key Contemporary Thinkers: From Structuralism to
Postmodernism. London: Routledge.

Levin, T. & Gordon, C. (1989). Effect of Gender and Computer Experience on
Attitudes toward Computers. Journal of Educational Computing Research, 5, 1,
69-88.

Levi-Strauss, C. (1966). The Savage Mind. London: Weidenfeld & Nicolson.

Uvi-Strauss, C. (1969). Elementary Structures of Kinship. Boston: Beacon
Press.

liao, Y. (2000). A Meta-Analysis of Gender Differences on Attitudes toward
Computers for Studies Using Loyd and Gressard's CAS. In J. Bourdeau and R.
Heller (Eds.), Proceedings of ED-MEDIA 2000 Montreal (pp.570-576).
Norfolk, VA: AACE.

linn, M.C. (1985). Gender Equity in Learning Environments. Computers and
the Social Sciences, 1 (1), 19-27.

linn, M.C., & Clancy, MJ. (1992). The Case for Cast Studies of Programming
Problems. Communications of the ACM, March 1992, Vol. 35, No.3, 121-132.

Lowe, M. & Hubbard, R. (1983). Woman's Nature: Rationalizations of
Inequality. Oxford: Pergamon.

Lundeberg, M., Fox, P., and Puncochar, J. (1994). Highly Confident But
Wrong: Gender Differences and Similarities in Confidence Judgements.
Journal of Educational Psychology. 86(1): 114-121.

Maher, F. and Tetreault, M.K.T. (1993, January). Doing Feminist Ethnography:
Lessons from Feminist Classrooms. International Journal of Qualitative
Studies in Education, 6 (1), 19-32.

Mahony, K. & Van Toen, B. (1990). Mathematical Fonnalism as a Means of
Occupational Closure in Computing - why 'hard' computing tends to exclude
women. Gender and Education, 2 (3).

Margolis, J., Fisher, A., & Miller, F. (2000, Winter). The Anatomy of
Interest:Women in Undergraduate Computer Science. Women's Studies
Quarterly Special Issue on Women in Science. 104-126.

Matloff, N. (2001). Debunking the Myth of a Desperate Software Labor
Shortage: Testimony to the U.S. House Judiciary Committee Subcommittee on
Immigration, April 21, 1998. Retrieved November 12, 2001, from
http://heather.cs.ucdavis.edulitaa.real.pdf

Mayfield, K. (2000, May). Creating more women coders. Wired News.
Retrieved May 1 2001, from
http://www.wired.com/news/culture/O. 1284,36372,00.html

243

McConnell, S. (1998). Dealing with Problem Programmers. IEEE Software, 15
(2) Marchi April.

McKenna. P. (1996). Desexing Computing: Gender, Myths, and Stereotypes. In
R O'Connor and S. Alexander (Eds.), 4th Annual Conference on the Teaching
of Computing (pp. 222-226). Dublin: Centre for Teaching Computing.

McKenna. P. (2000). Transparent and opaque boxes: do women and men have
different computer programming psychologies and styles? Computers &
Education 35. 37-49.

McKenna. P. (2001). Programmers: concrete women and abstract men? Journal
of Computer Assisted Learning. 17(4).

McKenna. P. and Waraich, A. (2000a). Agents For Education: the Problem Of
Synthetic Personality. In 1. Bourdeau and R. Heller (Eds.), Proceedings of ED
MEDIA 2000 Montreal (pp. 627-632). Norfolk, VA: AACE.

McKenna. P. and Waraich, A. (2000b). Social Agency: the Perils of
Constructing Gendered Personalities for Intelligent Agents and Avatars. BCS
Conference on Cultural Issues In HCI, University of Luton, 5 December 2000.

Meijer, I C. (1991). Which difference makes the difference? In J.J.Hermsen &
A. van Lenning (Eds), Sharing the Difference: Feminist debates in Holland.
London: Routledge.

Mendelsohn, P., Green,T., and Brna. P. (1990). Programming Languages in
Education: The Search for an Easy Start. In I.M. Hoc, T.RG.Green, D.J.
Gilmore, R. Samurcay (Eds.), Psychology of Programming. London: Academic
Press.

Microsoft Corporation (2001, August). FIX: Invalid Page Fault in Msvcrt.dll
(QI90536). Microsoft Product Support Services, Article ID: Q190536,
Retrieved 11 November 2001, from
http://support.microsoft.comldefault.aspx ?scid=kb ;EN-US;q 1905 3 6.

Miles, R. (1993). The Women's History of the World. London: Harper Collins.

Miller, L.M., Schweingruber, H. & Brandenburg, C. (2001). Middle School
Students' Technology Practices and Preferences: Re-Examining Gender
Differences. Journal of Educational Multimedia and Hypermedia, 10(2), 125-
140.

Millett, K. (1970). Sexual Politics. New York: Doubleday.

Miura. I.T. (1987). Gender and Socioeconomic Status Differences in Middle
School Computer Interest and Use. Journal-of-Early-Adolescence, 7(2),243-
253.

244

Money, J. (Ed.). (1965). Sex Research: new Developments. New York: Holt,
Rinehart & Winston.

Morahan-Martin, J. (1998, March). Women and Girls Last: Females and the
Internet In Internet Research and Information for Social Scientists '98
Proceedings. Bristol: Institute for Learning and Research Technology.

Morris, J. (1989). Women in Computing. London: Reed.

Myers, B., Hudson, S.E., and Pausch, R. (2002). Past, Present, and Future of
User Interface Software Tools. In 1M. Carroll (Ed.), Human-Computer
Interaction in the New Millennium (pp. 213-234). Oxford: ACM Press.
(Reprinted from ACM Transactions on Computer-Human Interaction, 7(1),
March 2000).

National Science Foundation (USA) (1998). Final Report, NSF Workshop on a
Research Program for the 21 st Century. Retrieved 25 May 2000, from
http://www.cs.umd.edu/projects/SofiEngltarne/nsfw98/.

Naur, P. and Randell, B. (Eds.). (1968). Software Engineering: Report on a
Conference by the NATO Science Committee. Brussels: NATO Scientific
Affairs Division.

Neilsen NetRatings (2001). NetRatings, Inc. Retrieved 3 June, 2001 from
http://www.nielsennetratings.com!.

Newton. P. (1991). Computing: An ideal occupation for women? In J. Firth
Cozens & M.A West (Eds.), Women at Work: Psychological and
Organisational Perspectives. Buckingham: Open University Press.

Nicholson, L. (Ed.). (1997). The Second Wave. London: Routledge.

Oakley, A. (1972). Sex, Gender & Society. Aldershot: Gower.

Oliver, K. (1993). Reading Kristeva: unravelling the double-bind. Indianapolis:
Indiana University Press.

Ortner, S. (1972). Is Female to Male as Nature Is to Culture? In M. Evans (Ed.),
The Woman Question. London: Fontana.

Parsons, D. (1998). Introductory Java. London: Letts.

Pearl, A, Pollack, M., Riskin, E., Thomas. B .• Wolf. E., and Wu, A (1990.
November). BeCOming a computer scientist. Communications of the ACM 33
(m.47-57.

Peltu, M. (1993. December). Females in tuition. Computing. 12 (2).

245

Pennington. N. & Grabowski, B. (1990). The Tasks of Programming. In J.-M.
Hoc, T.R.G. Green, R. Samurcay and D.J. Gilmore (Eds.), Psychology of
Programming. London: Academic Press.

Pennington, N. (1987). Comprehension Strategies in Programming. In G. M.
Olson, S. Sheppard, and E. Soloway, (Eds.), Empirical Studies of
Programmers: Second Workshop (pp. 100·113). Norwood, NJ: Ablex.

Personal Computer Magazine (1996, March). The Bulletin Board.

Petta, P. (1998, October). Emotional Software Agents: Principled Emotion
Synthesis in Situated Software Agents, Austrian Research Institute for Artificial
Intelligence (OFAO. Retrieved on Oct 23, 1999, from
www.ai.univie.ac.at/oefailagents/esa.html.

Pisanich, G. and Prevost, M. (n.d.). Representing Human Characters in
Interactive Games. Photo-Genetic Labs Silicon Studios, Inc., San Jose, CA.
Retrieved October 12, 1999, from
http://reality.sgLcomlprevoscstudio/personality.html

Plant, S. (1996). On the Matrix: Cyberfeminist Simulations. In R. Shields (Ed.),
Cultures of Internet. London: Sage.

Poh!, M. (1997). The Internet: a 'feminine' technology? In R Lander and A.
Adam (Eds.), Women in Computing. Exeter: Intellect Books.

Provenzo, E. (1991). Video Kids. London: Harvard University Press.

Pruett, K. D. (1987). The Nunuring Father: Journey Toward the complete man.
New York: Warner Books.

Questions F6ministes Editorial Collective (1977). Variations on Common
Themes. In E. Marks & I. de Courtivron (Eds.). New French Feminisms: An
Anthology (pp. 212-230). Amherst: University of Massachusetts Press.

Rebelsky, S.A. (2000). Experiments in Java: an introductory lab manual.
Harlow: Addison Wesley Longman.

Reilly, S. (1997). A Methodology for Building Believable Social Agents.
Proceedings of Agents '97. Marina del Rey, CA.

Rich, A. (1981). Compulsory Heterosexuality and Lesbian Existence. London:
Onlywomen Press.

Rodgers, C. (1998). The influence of The Second Sex on the French feminist
scene. In R Evans (Ed.). Simone de Beauvoir's The Second Sex: New
interdisciplinary essays. Manchester: Manchester University Press.

246

Rossi, A S. (1970). Sentiment and Intellect: the story of John Stuart Mill and
Harriet Taylor Mill. In AS. Rossi (Ed.), Essays on Sex Equality [by] John
Stuart Mill & Harriet Taylor Mill. Chicago: University of Chicago Press.

Satzinger, J. & 0rvik. T. (1996). The Object-Oriented Approach. Cambridge:
ITP.

Savitch, W. (2001). JAVA: An Introduction to Computer Science &
Programming. New Jersey: Prentice-Hall.

Sax, LJ. (1995). Predicting Gender and Major-Field Differences in
Mathematical Self-Concept During College. Journal of Women and Minorities
in Science and Engineering, 1 (4),291-307.

Schneiderman, B. (1998). Designing the User Interface. Harlow: Addison
Wesley.

Scott, J.W. (1988). Deconstructing Equality-versus-Difference: or, the uses of
poststructural theory for feminism. Feminist Studies, 14, pp. 13-48.

Sebesta, R (1993). Concepts of Programming Languages. Redwood City:
Benjamin/Cummings.

Seeger, P. (1979). Different therefore Equal [Vinyl Recording]. Beckenharn,
Kent: Blackthome Records.

Segal, L (1999). Why Feminism? Cambridge: Polity.

Sellers, S. (1991). Language and Sexual Difference. London: Macmillan.

Shade, LR. (1993, August). Gender Issues in Computer Networking.
Community Networking: the International Free-Net Conference, Ottawa.
Retrieved on 3 May 1999 from
http://www.cpsr.org/cpsr/genderlleslie_regan_shade.txt.

Shashaani, L. (1993). Gender-based differences in attitudes towards computers.
Computers and Education, 20(2), 169-181.

Sheehy, N.P. (1987). Nonverbal behaviour in dialogue. In RG. Reilly (Ed.),
Communication failure in dialogue and discourse. Amsterdam: Elsevier.

Siano, G., & MacLeod, H. (1986). Computers and children of primary school
age: issues and questions. British Journal of Educational Technology, 2(17),
133-144.

Siano, G. (1997). We Can, We Don't want to: Factors Influencing Women's
Participation in Computing. In R. Lander & A Adam (Eds.), Women in
Computing. Exeter: Intellect.

Skansholm, J. (2000). Javafrom the Beginning. Harlow: Pearson.

247

Sky Customer Magazine (2002, February). Our top 10 action babes. From
Buffy to Lara Croft: who tops our list?

Smith, J. & Balka, E. (1988). Chatting on Feminist Computer Networks. In C.
Kramarae (Ed.), Technology and Women's Voices: Keeping in Touch. London:
Routledge & Kegan Paul.

Smith ill, J.P., diSessa, AA, & Roschelle, J. (1993) Misconceptions
reconceived: A constructivist analysis of knowledge in transition. The Journal
of the Learning Sciences, 3(2), 115-163.

Smith, R.B. & Ungar, D. (1995, August). Programming as an Experience: The
Inspiration for Self. ECOOP '95 Conference Proceedings, Aarhus, Denmark.

Spertus, E. (1991). Why are There so Few Female Computer Scientists?
Artificial Intelligence Laboratory at MIT.

Stanton, W. (1960). The Leopard's Spots: Scientific Attitudes Toward Race in
America, 1815-59. Chicago: University of Chicago Press.

Stein, L. A (1999, September). Challenging the Computational Metaphor:
Implications for How We Think. Cybernetics and Systems 30 (6):473-507.

Stepulevage, L. & Plumeridge, S. (1998). Women Taking Positions Within
Computer Science. Gender and Education, 10 (3), 313-326.

Stoller, R.J. (1968). Sex and Gender: on the development of masculinity and
femininity. London: Hogarth Press.

Strober, M.H. & Arnold, C.L. (1987). Integrated Circuits/Segregated Labour:
Women in Computer-Related Occupations and High-Tech Industries. In
National Research Council (Ed.), Computer chips and Paper Clips: Technology
and women's Employment. Washington DC: National Academy Press.

Strok, D. (1992, August). Women in AI. IEEE Expen, Vol7, No.4.

Subrahmanyam, K, & Greenfield, P.M. (1994). Effect of video game practice
on spatial skills in girls and boys. Journal of Applied Developmental
Psychology, 15, 13-32.

Sutherland, R. & Hoyles, C. (1988). Gender Perspectives on Logo
Programming in the Mathematics Curriculum. In Girls and Computers, ed. C.
Hoyles. Institute of Education, London.

Turkle, S. & Papert, S. (1990). Epistemological Pluralism: Styles and Voices
within the Computer Culture. Signs: Journal of Women in Culture and Society,
16(1), 128-157.

248

Turkle, S. & Papert. S. (1992). Epistemological Pluralism and the Revaluation
of the Concrete. Journal of Mathematical Behavior, 11, 3-33.

Turkle, S. (1978). Psychoanalytic Politics. London: Burnett.

Turkle, S. (1980). Computer as Rorschach. Society, 17, 15-24.

Turkle, S. (1984a). The Second Self: Computers and the Human Spirit. London:
Granada.

Turkle, S. (1984b). Women and Computer Programming: A Different
Approach. Technology Review, NovemberlDecember, 49-50.

Turkle, S. (1988). Computational Reticence: Why Women Fear the Intimate
Machine. In C. Kramarae (Ed.), Technology and Women's Voices: Keeping in
Touch. New York, Pergamon.

Turkle, S. (1996). Life on the Screen. London: Phoenix.

UCAS (1996). Press Release: Applicationsfor 1996 Entry.

UCAS (1996-2000). Data Archive. Retrieved from
http://www.ucas.ac.uklfigures/archive/index.html on 21 December 2001.

UCAS (2001). Annual Datasets. Retrieved from
http://www.ucas.ac.uklfigures/fps/ads.html on 23 February 2002.

Ullman, E. (1997). Close to the Machine. San Francisco: City Lights.

Ungar, D. & Smith, R.B. (1991). SELF: The Power of Simplicity. Lisp And
Symbolic Computation: An International Journal, 4 (3).

Urbanski, M. (1983). Margaret Fuller: Feminist Write and Revolutionary. In D.
Spender (Ed.), Feminist Theorists. London: The Women's Press.

Wajcman, J. (1991). Feminism confronts Technology. Cambridge: Polity Press.

Wearing, B. (1984). The Ideology of Motherhood. Hemel Hempstead: Allen &
Unwin.

Weinberg, G. (1971). The Psychology oj Computer Programming. New York:
Van Nostrand Reinhold.

Wllder, G., Mackie, D. And Cooper, J. (1985). Gender and computers: two
surveys of computer-related attitudes. Sex-Roles, 13, 3/4.

Willmott, R. (1996, November). ReSisting sex/gender conflation: A rejoinder to
John Hood-Williams. The Sociological Review, 44(4), 728-745.

249

Wilson. S. (1977). The use of ethnographic techniques in educational research.
Review of Educational Research. 472, 245-265.

Wollstonecraft, M. (1792). A Vindication of the Rights of Woman. Boston: Peter
Edes for Thomas and Andrews.

Woolston, C. (2001, October). The Gender Gap in Science. The Chronicle of
Higher Education. Retrieved on February 23, 2002, from
http://chronicle.com/jobs/20011l0/2001102201c.htm

Yeshno, T. and Ben-Ari, M. (2001, April). Salvation for Bricoleurs. In G.
Kadoda (Ed.), Proceedings of 13th Workshop of the Psychology of
Programming Interest Group (pp. 225-235). Boumemouth: PPIG.

250

	288116_001
	288116_002
	288116_003
	288116_004
	288116_005
	288116_006
	288116_007
	288116_008
	288116_009
	288116_010
	288116_011
	288116_012
	288116_013
	288116_014
	288116_015
	288116_016
	288116_017
	288116_018
	288116_019
	288116_020
	288116_021
	288116_022
	288116_023
	288116_024
	288116_025
	288116_026
	288116_027
	288116_028
	288116_029
	288116_030
	288116_031
	288116_032
	288116_033
	288116_034
	288116_035
	288116_036
	288116_037
	288116_038
	288116_039
	288116_040
	288116_041
	288116_042
	288116_043
	288116_044
	288116_045
	288116_046
	288116_047
	288116_048
	288116_049
	288116_050
	288116_051
	288116_052
	288116_053
	288116_054
	288116_055
	288116_056
	288116_057
	288116_058
	288116_059
	288116_060
	288116_061
	288116_062
	288116_063
	288116_064
	288116_065
	288116_066
	288116_067
	288116_068
	288116_069
	288116_070
	288116_071
	288116_072
	288116_073
	288116_074
	288116_075
	288116_076
	288116_077
	288116_078
	288116_079
	288116_080
	288116_081
	288116_082
	288116_083
	288116_084
	288116_085
	288116_086
	288116_087
	288116_088
	288116_089
	288116_090
	288116_091
	288116_092
	288116_093
	288116_094
	288116_095
	288116_096
	288116_097
	288116_098
	288116_099
	288116_100
	288116_101
	288116_102
	288116_103
	288116_104
	288116_105
	288116_106
	288116_107
	288116_108
	288116_109
	288116_110
	288116_111
	288116_112
	288116_113
	288116_114
	288116_115
	288116_116
	288116_117
	288116_118
	288116_119
	288116_120
	288116_121
	288116_122
	288116_123
	288116_124
	288116_125
	288116_126
	288116_127
	288116_128
	288116_129
	288116_130
	288116_131
	288116_132
	288116_133
	288116_134
	288116_135
	288116_136
	288116_137
	288116_138
	288116_139
	288116_140
	288116_141
	288116_142
	288116_143
	288116_144
	288116_145
	288116_146
	288116_147
	288116_148
	288116_149
	288116_150
	288116_151
	288116_152
	288116_153
	288116_154
	288116_155
	288116_156
	288116_157
	288116_158
	288116_159
	288116_160
	288116_161
	288116_162
	288116_163
	288116_164
	288116_165
	288116_166
	288116_167
	288116_168
	288116_169
	288116_170
	288116_171
	288116_172
	288116_173
	288116_174
	288116_175
	288116_176
	288116_177
	288116_178
	288116_179
	288116_180
	288116_181
	288116_182
	288116_183
	288116_184
	288116_185
	288116_186
	288116_187
	288116_188
	288116_189
	288116_190
	288116_191
	288116_192
	288116_193
	288116_194
	288116_195
	288116_196
	288116_197
	288116_198
	288116_199
	288116_200
	288116_201
	288116_202
	288116_203
	288116_204
	288116_205
	288116_206
	288116_207
	288116_208
	288116_209
	288116_210
	288116_211
	288116_212
	288116_213
	288116_214
	288116_215
	288116_216
	288116_217
	288116_218
	288116_219
	288116_220
	288116_221
	288116_222
	288116_223
	288116_224
	288116_225
	288116_226
	288116_227
	288116_228
	288116_229
	288116_230
	288116_231
	288116_232
	288116_233
	288116_234
	288116_235
	288116_236
	288116_237
	288116_238
	288116_239
	288116_240
	288116_241
	288116_242
	288116_243
	288116_244
	288116_245
	288116_246
	288116_247
	288116_248
	288116_249
	288116_250
	288116_251
	288116_252
	288116_253
	288116_254
	288116_255
	288116_256
	288116_257
	288116_258
	288116_259
	288116_260
	288116_261
	288116_262
	288116_263
	288116_264
	288116_265
	288116_266
	288116_267
	288116_268
	288116_269
	288116_270
	288116_271
	288116_272
	288116_273
	288116_274
	288116_275
	288116_276
	288116_277
	288116_278
	288116_279
	288116_280
	288116_281
	288116_282
	288116_283

