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Abstract

Interfacial magnetic skyrmions are topological spin textures that have been pro-

posed for use as information carriers in spintronic devices. Hence, it is vital that

their creation, annihilation, and motion can be accurately controlled [1]. Still, their

thermal stability and interactions are not fully understood. Currently, athermal

methods such as the geodesic nudged elastic band method (GNEBM) are used to

quantify the skyrmion creation and annihilation energy barriers, including only the

skyrmion’s internal energy. Furthermore, GNEBM is a low-temperature formal-

ism that samples only saddle points along the energy landscape without providing

any information about the transition from a skyrmionic to a ferromagnetic (FM)

state and vice versa. Similarly, the skyrmion lifetimes are often estimated using

energy barrier calculations and an arbitrary attempt frequency [2, 3].

In contrast with GNEBM calculations, this thesis successfully demonstrated a

novel use of metadynamics combined with atomic-scale magnetic simulations per-

formed to reconstruct the free energy landscape (FEL) of macroscopic skyrmion

observables. The reconstructed FELs are then used to quantify the skyrmions cre-

ation and annihilation energy barriers as a function of temperature, including both

the effects of the internal energy and entropy, which is a major factor in skyrmion

stability [4]. The reconstructed FEL shows every possible transition path from

a skyrmionic to a ferromagnetic path. Additionally, it is demonstrated that the

skyrmions’ attempt frequency in finite temperature can be estimated with metady-

namics and not assumed. Nonetheless, with the use of metadynamics, the effects

of magnetisation reversal in thin films with DMI are explored, revealing the gen-

eration of a chiral domain that expands to reverse the magnetisation. Finally, the

procedures to explore the effect of lattice defects and exploration of all possible to-

pological spin textures in any thin film heterostructure in finite temperatures with

metadynamics are reported. Ultimately, the results of this thesis demonstrate new

procedures which can be used to design and realise future skyrmionic devices by

identifying possible spin textures and assessing their thermal stability and lifetimes

accurately while fully accounting for temperature effects.
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1.1 Motivation

1.1 Motivation

The rapid scientific and technological advances following the birth of quantum mechanics in

the 1920s are largely affected by the constant increase in computational power and information

storage capacities; since they allow the computation of more complex mathematical models and

analysis of large datasets. As technological applications, scientific measurements and societies’

growth rely on the constant increase of fast computations and large data storage capacities,

many current technological limitations arise, which magnetic spin textures such as magnetic

skyrmions show the potential to resolve, as discussed later in this section.

More importantly, conventional computational devices are energy inefficient, which is lim-

iting considering the increasing threat of climate change. In 2018, data storage facilities con-

sumed approximately 205 Terawatt hours (TWh) of energy, which is 25% more than in 2010.

This accounts for the 1% of the global energy consumption [7]. Similarly, as an example,

for this project, High-Performance Computer (HPC) clusters with Intel Xeon Gold 6138 were

used, with an energy consumption of 125 Watts (for 20 CPU cores) [8]. In February 2023

alone, this project used 190 CPU cores running for 14 days consuming 39.9 kWh (excluding

the energy required to cool down the CPUs, data storage and all the peripherals). Using the

conversion factor of 0.23314 kg CO2 per kWh as shown in the UK’s energy Department 2022

report [9], only in February, the computations required for this project produced 9.3 kilograms

of CO2. As a comparison, a train journey from Leeds to London produces 11.98kg of CO2

[9]. Much attention is devoted to producing Green energy to cover the increasing energy de-

mands for computations and data storage [10]. However, it is crucial that more energy-efficient

technologies are developed rather than producing more energy to cover the energy required for

current computational devices.

To further introduce the main limitations of conventional computational devices and why

they are becoming more energy inefficient, it is important to consider their main operational

features. Modern computer architectures rely on microchip designs, where transistors perform

computations. Transistors are made of doped semiconducting metal oxide materials to form a

source and a drain separated by a gate. Thus devices utilising transistors are often referred to
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as Conventional Metal Oxide Semiconducting (CMOS) devices. Transistors have two states,

one with current flowing from the source to the drain and one which is not, translated to 0 and

1, respectively. When current is applied to the gate, the fermi surface of the device changes

and current flows from the source to the drain; thus, a transistor can be considered a small

capacitor whose charge and discharge speed dictate the computation speed. Traditionally the

computational speeds are improved by reducing the physical dimensions of the transistors to

increase their density within a microchip while reducing the transistors switching times by

decreasing the capacitance of the gate.

In the 1960s, Gordon E. Moore predicted that the number of transistors in microchips would

double every two years. This proposition indicated that the computational devices would ex-

ponentially increase their computational speeds. This postulate is called Moore’s Law and has

proven accurate from the 1960s to 2013 but has broken down since [11, 12]. This is due to the

limitations of the continual miniaturisation of transistors and CMOS devices. As the physical

dimensions are reduced, the distance between the source and the drain becomes smaller. This

increases the leakage current from the source to the drain when current is not applied to the

gate due to quantum tunnelling of electrons, which can lead to overheating and decreasing the

devices reliability [13]. Other major limitations include short-channel effects, increased power

consumptions and manufacturing yield issues [14]. At the same time, the manufacturing costs

increase due to the multiple technical difficulties that arise due to the higher resolution require-

ments of optical lithography. More importantly, there are physical material limits due to the

reduction of the size of the transistor. These limits arise from the semiconducting materials

currently used in transistors (i.e. will stop having semiconducting properties) [15, 16]. Cur-

rently, 3nm chips are used commercially, and any further reduction in the transistor’s physical

dimensions becomes physically limiting. Modern computational needs like AI, image recog-

nition, navigation and scientific calculations require higher computational speeds. Addition-

ally, increasing demand for applications requiring beyond Von-Neumann technologies, such

as neuromorphic, reservoir and probabilistic computing, require computational hardware with

collocated processing and data storage, stochasticity and massive cross-parallel computation

[17]. Thus, new emerging technologies and materials are required to overcome Moore’s Law
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to continue increasing the computational power and provide the hardware requirements to meet

the demands of future technological applications.

At the same time, there is an exponential increase in demand for fast, stable and non-

volatile data storage devices. Many businesses, services and sophisticated scientific algorithms

require large data size storages. For example, the first image of the M87 supermassive black

hole required collecting and analysing 4 petabytes of data [18]. Additionally, it is expected that

by 2025, 20 zeta bytes per user/customer will be required [19]. Lately, many advances have

been achieved in the data storage industry by improving the Heat Assisted Magnetic Recording

(HAMR) hard drives, making the hard drives more reliable [20]. However, new technologies

must continue meeting the increasing data storage capacities and computation speed demands.

1.1.1 Spintronic Devices

One avenue that promises to help overcome Moore’s Law with next-generation technologies is

the field of spintronics. Spintronics takes advantage of the spin and charge of electrons and/or

holes in a material [21]. Spintronics can replace conventional CMOS technologies and intro-

duce new devices to overcome the limitations of Moore’s Law and the increasing demand for

data storage by replacing conventional CMOS technologies or their hardware components. One

of the main characteristics of spintronic devices is the control of spin polarisation at interfaces

in magnetic materials and the propagation of information with spin transfer torques (STT). An-

other spintronic device design utilises the manipulation of nanoscale magnetic spin textures,

which can be used as non-volatile information carriers. These spin textures are spin patterns

in nanoscale magnetic materials formed due to the interplay of magnetic interactions, which

are engineered by altering the magnetic anisotropies in low dimensions. Multiple disrupt-

ive spintronic components and principles have been established in conventional computational

devices, which have increased their energy efficiency, storage capacities and computational

speeds. Some of the most widely used include the Giant Magneto Resistance (GMR) sensors

used to detect changes in the magnetic fields and convert them into electrical signals enabling

the operation of hard drives. Tunnelling Magneto-Resistance (TMR) is used in Magnetic Ran-

dom Access Memory (MRAM) based on quantum tunnelling [21]. It provides high-speed data
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storage with low power consumption and the Spin-Transfer Torque (STT) MRAM, an advanced

version of MRAM. [21].

These spintronic technologies have replaced parts of current CMOS technologies used for

computations and data storage. This has decreased their energy consumption and improved

their reliability and operational speeds. Still, they cannot continue meeting the rising demand

for energy-efficient computational speeds and non-volatile data storage capacities. One of the

most promising spintronic technologies to overcome all these issues is the design of devices

utilising magnetic spin textures to design logic gates, non-volatile storage devices, and beyond

von Neumann computational devices that do not rely on traditional computational architectures

with transistors [22, 23]. Such concepts were experimentally demonstrated in works such as

Allwood et al. in 2005, who used ferromagnetic nanowires with propagating magnetic domain

walls (DW) to perform computational logic operations, such as AND, OR, and NOT gates [24].

DWs are the boundaries between two regions with different magnetisation directions formed

to reduce the energy of ferromagnetic materials. These DWs can be isolated in nanowires

and move within a nanowire with speeds up to ≈ 600m/s with low applied currents or ex-

ternal stimuli [25]. Isolated DWs are non-volatile and can be used as information carriers.

In 2008 Parkin et al. proposed the design of racetrack memories, which include suspended

nanowires with DWs that can be propagated with low currents and stopped at specific regions

for read/write operations [26]. The DW sizes can be many orders smaller than the conventional

magnetic domains used in conventional hard drives, which can create ultra-dense memories.

Computational devices utilising spin textures also offer the benefit of performing computations

and storing data at the same physical device location. This is a crucial advantage over con-

ventional CMOS devices and modern computers since the buses that slow down conventional

computations are minimised. Additionally, DWs are non-volatile and less prone to data losses

due to high energy particles or temperature fluctuation changing the state of the devices. How-

ever, as it was found, the propagation and pinning of DWs are stochastic in nature, limiting the

usage, design and realisation of any deterministic computational devices utilising magnetic do-

main walls [27]. At the same time, the DW velocity is linearly increasing only for low-applied

field strengths. There is a critical field strength in which the DW velocity shows retrograde mo-
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tion if exceeded, called Walker breakdown, which further limits the usage of DWs [27, 28]. On

the contrary, DWs are successfully being used in other applications, such as sensors and show

potential to be used in many architectures of probabilistic and reservoir computing [23, 29].

A more recent development involves spin textures with the potential to be used in the

next generation of spintronic devices, which are the magnetic skyrmions, first experimentally

observed in 2009 [30]. Compared to DWs, skyrmions show particle-like characteristics that are

easier to control, making them easier to manipulate within a device and can have sizes below

10 nm [31]. In short, magnetic skyrmions are topological defects within magnetic textures.

They can exist in non-centrosymmetric bulk magnetic crystals with large SOC, such us MnSi

and FeCoSi [32] or at the interfaces between layers of heavy metals and ferromagnetic layers

in thin films with broken inversion symmetries where large DMI interactions are induced such

as Ir/Co/Pt [33] and Pt/Co/Ta [34], multilayers. Their particle-like dynamics and properties

make them ideal candidates for future spintronic information carriers. An important aspect of

magnetic skyrmions is their thermal stability and lifetimes. Skyrmions often are metastable

spin textures, which can be annihilated in high temperatures. In order to be used in devices,

it is important to be thermally stable at elevated temperatures, which is one of this project’s

motivations. The thermal stability of skyrmions is primarily based on their unique topological

nature, which has sparked an increased research interest in skyrmions. Thus, rapid advances

in the field of skyrmionics are seen, with many groups recently demonstrating skyrmionic

operating brain-inspired neuromorphic devices for pattern recognition applications [35].

1.1.2 Brief Skyrmion Literature Review

In 1962 skyrmions were hypothesised as topological solitons in non-linear field theory by the

nuclear physicist Tony Skyrme [36]. Later in 1989, Bogdanov and Yablonski proposed that

chiral skyrmions could exist in magnetic materials [37]. Five years later, Bogdanov and Hub-

bert theoretically demonstrated that thermodynamically stable chiral skyrmions could be stabil-

ised in materials where the antisymmetric exchange DMI interaction is present [38]. However,

the rapid advances in the field of skyrmionics started in 2009 when S.Muhlaber et al. sug-

gested that the a-phase in the MnSi phase diagram is a closed-packed hexagonal lattice of
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skyrmions [30]. MnSi is a non-centrosymmetric B20 crystal whose crystal structure induces

DMI. This suggestion was based on their small-angle neutron scattering measurements, which

can not resolve the internal magnetic spin structure; thus, they could not identify the skyrmion

spin texture, but model calculations suggested that the hexagonal Bragg peaks observed in

their neutron scattering experiments should be stable skyrmions. Later in the same year, A.

Neubauer et al. supported the argument that the a-phase in MnSi is a skyrmion lattice with

their Hall effect measurements that identify the skyrmionic spin texture [39]. At the begin-

ning of 2010, skyrmion lattices were observed in semiconducting materials Fe1−xCoxSi using

similar small angle neutron measurements [40]. Later in 2010, for the first time, isolated in-

terfacial skyrmions were observed in real space measurements with TEM in thin films at 40K,

stabilised by strong magnetic fields [41]. Compared with the bulk MnSi, where the crystal

structure induces DMI, an interface between a ferromagnetic layer and a heavy metal layer

induces DMI due to the strong spin-orbit coupling at the interface. In the following two-year

period, skyrmions were found in many different multilayered thin films under applied magnetic

fields at temperatures up to 40K. The small temperature range and the presence of a magnetic

field required to stabilise skyrmion lattices were limiting the study and the technological ap-

plications of skyrmions. In 2012, it was found that the temperature range of the FeGe host

system where skyrmions can nucleate can be tuned by altering the thin film thickness [42]. The

following year, it was demonstrated that by alloying the composition of Mn1−xFexSi, the tem-

perature range and skyrmions size could be optimised, which pathed a new way to skyrmions

research. At the same time, a study showed that by adding a layer of Pd in Fe/Ir(111) thin film

heterostructure, a stronger DMI can be achieved due to strong spin-orbit coupling [43].

However, it was not until 2016 that room-temperature skyrmions were stabilised without

an external magnetic field [44]. This sparked a lot of research regarding the creation, mo-

tion, thermal stability, interaction with defects and host systems for specific applications. Ad-

ditionally, skyrmions were observed in many different material classes such us insulating

Cu2OSeO5, frustrated magnets, Heusler alloys, and much more fully discussed in a recent

review [45]. Theoretical and computational studies supported all these experimental findings,

which naturally led to the proposal of skyrmionic devices [1]. First, a racetrack memory with
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skyrmions was proposed [43, 46]. Logic gates similar to the ones with DWs and logic gates

incorporating both skyrmions and DWs [47, 48].MRAMs and MTJs have been proposed to use

skyrmions to control the device resistivity by manipulating the number of skyrmions [49]. Sim-

ilarly, many brain-inspired neuromorphic devices utilising skyrmions and probabilistic com-

puters were proposed [22].

Recently many groups experimentally demonstrated successful operations with low-energy

neuromorphic skyrmionic devices for pattern and image recognition where an input signal gen-

erates skyrmions that change the synaptic weights between layers in neuromorphic architec-

tures by taking advantage of the non-linear skyrmion phenomena such as nucleation, propaga-

tion and annihilation [22, 35, 50]. In 2022, 94.7% accuracy in hand-written recognition was

achieved using a neuromorphic skyrmionic device [50]. Furthermore, many skyrmionic devices

rely on the interaction of skyrmions with other spin textures, which are hard to study their sta-

bilities experimentally. Still, no unified analytic theory predicts the skyrmion dynamics, sta-

bilities and interactions with defects or other spin textures. On the contrary, specific analytic

equations can be used to describe specific skyrmion phenomena, such as the Thiéle equations,

which have been extensively used to study skyrmion motion under external stimuli which are

also experimentally verified [51]. Hence numerical models are used to guide and support ex-

periments, propose new skyrmionic device architectures and test their stability. However, often

these models do not fully account for temperature effects and the thermal stability of skyrmi-

onic devices is not fully understood or proven. Many numerical formalisms use an algorithm

named Geodesic Nugded Elastic Band Method (GENBM) that was first used to calculate the

skyrmion metastable energy in 2015 [52]. This algorithm is used in many studies to estimate

the skyrmion lifetimes [2, 3, 53, 54]. However, as Desplat et al. showed in 2018, the skyrmion

stability also depends upon the change in configurational entropy and the metastable skyrmion

energy [4].

A better understanding of the thermal stability and the temperature effects of the coexist-

ence with other spin textures is required for the design and realisation of future skyrmionic

devices [1, 22, 55].
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1.1.3 Project Motivations and Achievement

This project’s primary motivation was to develop a technique that can be used to explore the

thermal stability of interfacial magnetic skyrmions in any magnetic thin film heterostructure.

Moreover, we are interested in quantifying how the creation and annihilation energies scale

with temperature and how they are affected by lattice defects or interaction with other spin

textures. As a result of the original motivation, the major project’s accomplishment was the

development of a computational method that can be applied to a system in order to assess

topological spin textures’ thermal stability and their coexistence with an emphasis on magnetic

skyrmions while mapping the transition paths between creation and annihilation of these spin

textures. Additionally, our estimates of these energy barriers are in finite temperature, including

the contribution of the entropic barriers. Compared to the GNEBM, here, metadynamics is used

to reconstruct the free energy landscape (FEL) instead of sampling only the saddle points of

energy landscapes, which only include the contributions from skyrmions’ internal energy.

1.2 Thesis Overview

To introduce the main computational methods and results of this project, the theoretical back-

ground of magnetism required for the following discussions is introduced in this chapter’s

subsections. In chapter 2, the background theory of the techniques used is introduced and

discussed. The main results of this thesis are presented in chapters 3, 4, 5, 6. As the results

demonstrate, the development of a procedure to study the thermal stability of skyrmions is

developed, which can now be used for a plethora of other investigations, which are the nat-

ural continuations of the research conducted in this project. Hence in chapter 7, the next steps

are extensively discussed while demonstrating most of the calculations and procedures which

should be used to achieve them. Finally, the main conclusions of this thesis are summarised in

chapter 8
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1.3 Magnetic Materials

The first historically recorded observation of magnetism without attributing it to mythological

gods was by Thales of Miletus, an ancient Greek philosopher, in 600 BC. He observed the

effect of ferromagnetism in Fe3O4 stones, widely known as lodestones, in the ancient Greek

city of Magnesia, from which the modern name magnetism is derived [56, 57]. Similarly, in

1086 AD, the Chinese astronomer Shen Kua reported using magnetic materials as a compass

for navigation [58]. Later many European scientists experimented with the observed magnetic

properties in magnetic materials, which led to the development of Columbus’ compass. How-

ever, it was not until 1600, when William Gilbert argued that the Earth itself is a magnet based

on his scientific experiments, that the rapid advances in magnetism started [56, 58]. Eventually,

with the birth of quantum mechanics in the 1920s, we connected the origin of magnetism to

the electron’s spin orbitals and motion, which sparked a lot of technological and theoretical

advances with regard to magnetism, especially in condensed matter physics.

1.3.1 Origin of Atomic Dipole Moments

All elements are made of negatively charged electrons orbiting the positively charged nuc-

leus. In quantum physics, each electron is described by a wave function, Ψ, that satisfies the

Schrödinger equation. Electrons are most likely to be found anywhere within regions of high

probability called orbitals surrounding the atomic nucleus. The orbitals’ orientation, size and

shape depend on the three quantum numbers that arise from the Schrodinger equation. In the

hydrogen model, the energy of electrons depends on their distance from the nucleus, which is

quantised and labelled by the integer principal quantum number n, often referred to as energy

levels. Electrons with the same n form a shell. Within a shell, orbitals are divided into sub-

shells with the same angular momentum quantum number l (s,p,d,f), which dictates the orbital

shape. Finally, the number and orientation of orbitals within a subshell depend on the magnetic

quantum number ml.

The orbital angular momentum L of electrons around the nucleus gives rise to the orbital
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magnetic dipole moment given by [59, 60]

µL = −gLµB
L

ℏ
(1.1)

where gL is the dimensionless proportionality g-factor constant which relates µL to the angular

momentum quantum numbers.µB = eℏ
2mec = 9.27 × 10−24J/T is the Bohr magneton where

me is the electron’s mass and ℏ is the reduced Planck’s constant. However, considering only

µL, the magnitudes of bulk atomic magnetic dipole moments measured experimentally could

not be explained, especially for 3d elements such as Fe and Co.

Finally, as it was shown, electrons have an additional intrinsic property called spin, de-

scribed by electron spin quantum number ms which take values ms = +1
2 often referred to

as ”spin-up” or ms = −1
2 often referred to as ”spin-down”, which is independent of the other

three quantum numbers and is given by the following expression [61, 62].

µs = −gsµB
S

ℏ
≈ 2 eℏ

2mec

(
ℏ
2

)
ℏ

= µB (1.2)

where gs ≈ 2 is the g-factor of the S spin angular momentum of electrons. In 1921 Alfred

Lande derived the so-called Lande factor, which is a g factor gJ incorporating the contributions

from gs and gL which is used to calculate the total magnetic dipole moment of an electron by

considering both the spin and orbital angular momenta J with the following expression

µJ = −gJµB
J
ℏ

(1.3)

where J arises from the spin-orbit interaction. In 1926 Pauli showed that no two electrons

within an orbital could have the same four quantum numbers. The n, l, ml quantum num-

bers define the shell shape and the orbital orientation of which electrons occupy. Thus each

orbital can only hold up to two electrons with opposite spins. This principle is referred to as

the Pauli exclusion principle. Consequently, the magnetic moments of paired electrons within

an orbital are cancelled out. Additionally, the atom’s electron configurations follow the Auf-

bau principle, which states that orbitals with lower energies are filled first, as well as the three

empirical Hund’s rules, which minimise the electrostatic (coulomb) energy and the spin-orbit

interaction energy incorporated in J of the atom [60, 61]. Hund’s rules imply that electrons
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Figure 1.1: Illustration of the Stoner model of ferromagnetism, showing the density of states

(DoS) bands split from which the spontaneous magnetisation is observed.

must first single-occupy all orbitals in a given subshell before double-filling them. However, the

electrostatic field generated by the delocalised conduction electrons in metallic or semimetal-

lic materials and the crystal fields reduces the orbital angular dipole moment, called orbital

quenching [60]. Hence, the electron spins are the main contribution to the magnetic dipole

moments measured experimentally in common magnetic materials such as 3d transition metals

and ions, which can give rise to magnetic properties.

Magnetic ions are atoms or molecules with unpaired electrons in their outermost shell.

Materials with filled orbitals are called diamagnetic and do not show any net magnetisation.

Materials with partially filled orbitals often have thermally disordered magnetic ion orienta-

tions. These materials are referred to as paramagnetic and do not have long-range magnetic

ion ordering [63]. In contrast, ferromagnetic materials lower their internal energy by adopting

long-range magnetic ion ordering, which results in spontaneous magnetisation without any ex-

ternally applied fields. This is due to the strong electrostatic electron-electron interactions and

a large n↑, n↓ density of states near the Fermi level[60, 63]. In 1930 Edmund Stoner, by using

a model where the conduction electrons in metallic and semimetallic materials are treated as an

electron gas, showed that materials with a high density of states of electrons with n↑, n↓ near

the Fermi Surface result in a spontaneous splitting of the n ↑ and n ↓ bands as shown in figure

1.1, which is called Stoner criterion [60].

One can assume that the magnetic moment of an electron equals one µB following equation
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Figure 1.2: Phase transition from the ferromagnetic magnetic ordering to the paramagnetic. TC

denotes the Currie Temperature, and the arrows represent the spin moment vectors of individual

magnetic ions.

1.2. Thus the spontaneous net magnetisation observed in materials which satisfy the Stoner

criterion can be approximated as

M = µB (n↑ − n↓) . (1.4)

Additionally, the magnetic ion alignment in ferromagnetic materials is subjected to thermal

perturbations. As the temperature increases, the net magnetisation scales with TkB, opposing

the energy responsible for the long-range alignment (exchange energy, introduced in section

1.4). Eventually, a critical temperature is reached where the thermal energy exceeds the ex-

change energy. The ferromagnetic material has thermally disordered magnetic moments. Fig-

ure 1.2 shows the corresponding phase transition. This critical temperature where the ferro-

magnetic to paramagnetic phase transition occurs is called Curie Temperature, TC.

1.4 Magnetic Interactions

In magnetic materials that satisfy the Stoner criterion, the final magnetic configuration is de-

termined by the minimisation of the energy terms given by a Hamiltonian. Depending on the
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magnetic system of interest, different terms are included in the Hamiltonian to include all the

effects of all the relevant interactions. In many magnetic thin films and the materials used in

this project, five magnetic interaction energies are included, as shown below

E = Eex + EMAE + Ez + Em + ED (1.5)

where Eex, EMAE, Ez, Em, ED are the exchange, magnetocrystalline anisotropy, Zeeman,

magnetostatic and DMI energies with units of energy. These interactions are introduced in the

following section. From this point onward, spin is defined as a magnetic ion’s total magnetic

dipole moment direction noted as S, which is normalised with respect to µS .

1.4.1 Exchange Energy

Singlet, 𝐸!

En
er

gy

Triplet, 𝐸"

∆𝐸 = 	𝐸#$

Figure 1.3: Energy difference

between the singlet and triplet states

Phenomenologically the exchange energy Eex is min-

imised between two interacting spins aligned either

parallel or antiparallel, depending on the sign of the ex-

change integral J . The exchange integral is a material-

specific parameter. Eex is a quantum interaction with

no classical analogue. J is usually estimated using first

principle electronic structure calculations or experi-

mentally measured with techniques such as inelastic

neutron scattering or resonant inelastic x-ray scattering

(RIXS). For J > 0, the ferromagnetic alignment min-

imises energy between two spins giving rise to long-

range magnetic order. For a ferromagnet, the exchange

energy has the largest energy contribution compared to the other magnetic interactions. Its

strength opposes the thermal perturbations; hence the stronger the Eex, the higher the TC. The

interplay between the Coulomb interaction of an electron with its surroundings (other electrons

and the atom nucleus) and the Pauli exclusion principle give rise to Eex

From quantum mechanics, it is known that there are four time-independent solutions for

two interacting electron wavefunctions. Three solutions have spatial joint wavefunctions res-
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ulting in a total spin S = 1. This is called triplet state,χS, which favours an antiparallel spin

alignment (↑↓). Similarly, one state with anti-symmetric wavefunction where S = 0 called

singlet state χs, with a parallel spin alignment (↑↑) [60]. The singlet and triplet states have

different electrostatic interactions due to the spin orientations as illustrated in figure 1.3, and

the exchange energy is the energy difference between these states. A more formal description

of the Pauli exclusion principle than the one discussed in section 1.3.1 states that the overall

wavefunction, Ψ with respect to exchange between electrons, must be antisymmetric [62]. The

joint wavefunction between two electrons in separate atomic ions Ψ = |r⟩|ψ⟩ includes the

wavefunction’s spatial and spin state parts. Following the Pauli exclusion principle

|r⟩ symmetric ∼ |ψ⟩ antisymmetric

|r⟩ antisymmetric ∼ |ψ⟩ symmetric

 |Ψ⟩ = |r⟩|ψ⟩ antisymmetric (1.6)

The sign of J depends on the energy cost of the total wavefunction of the overlapping

electron wavefunctions being in the singlet or triplet state. This can be further explained by

considering two interacting electrons with states ψa(r1) and ψb(r2) with spatial coordinates r1

and r2. The interacting electrons are in a singlet or triplet state depending on the energy cost

of each state ES, ET [60]. Thus the joint wavefunction for two electrons in the singlet Ψs and

triplet states ΨT by considering the Pauli exclusion principle are the following [60]

Ψs = 1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χs (1.7)

and

ΨT = 1√
2

[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)]χT (1.8)

and the energy difference between Ψs and ΨT is given by

ES − ET = 2
∫
ψ∗

a(r1)ψ∗
b (r2)Hψa(r2)ψb(r1)dr1dr2 (1.9)

where H is the Hamiltonian of the system and by using the parameterisations for the singlet

state of S1 · S2 = −3
4 and S1 · S2 = 1

4 for the triplet state equation 1.9 can be written as an

effective hamiltonian [60, 62]

H = 1
4 (ES + 3ET) − (ES − ET) S1 · S2 (1.10)
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1.4 Magnetic Interactions

By substituting equation 1.9 into the second term of equation 1.10 the exchange integral is

defined as J often reffered as exchange costant

J = ES − ET
2 =

∫
ψ∗

a(r1)ψ∗
b (r2)Hψa(r2)ψb(r1)dr1dr2 (1.11)

Hence equation 1.10 is reduced too

H = 1
4 (ES + 3ET) − 2JS1 · S2 (1.12)

Equation 1.12 is made of a constant and a spin-dependent part. The first term does not

depend on the degrees of freedom of the system, in this case, spins. Thus, it does not affect

equations of motion, and one can define an equivalent reduced to 1.12 as

Hex = −2JS1 · S2 (1.13)

Then for J < 0, it is shown that ES < ET which means it is energetically more favour-

able for spins to be in a singlet state (i.e. aligned) which results in ferromagnetic spin order.

However, the example above includes only two interacting electrons. In this project, atom-

istic modelling is used, which includes hundreds of thousands of interacting, local spins. The

exchange energy is then calculated using the Heisenberg exchange, defined as

Hex = −1
2
∑
⟨i,j⟩

= JijSi · Sj (1.14)

where ⟨ij⟩ denotes the nearest neighbouring atoms, and the 1
2 is used to avoid double count-

ing lattice points. In this thesis, only the nearest neighbours are considered in the Heisenberg

exchange; since the thin films studied have direct exchange, which is often a short-range inter-

action, thus, negligible for the second nearest neighbouring atoms.

The type of exchange between two electrons whose wavefunctions overlap introduced here

is often referred to as the direct exchange where J is uniform between neighbouring spins.

However, in many cases, an indirect exchange is observed between electrons whose wavefunc-

tions do not overlap, mediated through non-magnetic ions. Some common indirect exchange

interactions are the superexchange in ionic solids such as MnO, the RKKY in specific metals

and the double exchange in oxides [60, 61]. When the investigated materials possess any of
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1.4 Magnetic Interactions

these types of exchange interactions, the next nearest neighbour interactions are considered to

account for these interactions in the Heisenberg model.

1.4.2 Dyzaloshinskii Moriya Interaction (DMI)

DMI is an antisymmetric exchange interaction. It is induced when the centre between two

spins i, j has broken inversion symmetry due to mediating heavy metal atom, often found in

non-centrosymmetric systems. This induces a DMI vector, Dij in which Si and Sj are forced

against the exchange order to be in right angles in a plane perpendicular to Dij which strength

is tuned by the Spin-Orbit (SO) coupling between the FM and heavy metal atom. This is

illustrated in figure 1.4 where Dij originates from the spin-orbit coupled Si and Sj mediated by

heavy metal atom. The Hamiltonian used for systems that exhibit DMI is

HDMI = −1
2
∑
⟨i,j⟩

Dij · (Si × Sj) (1.15)

where ⟨i, j⟩ denotes the nearest neighbours. DMI can be induced in non-centrosymmetric bulk

𝑫!"
𝑺! 𝑺"

HM

Figure 1.4: Illustration of the SOC of Si and Si shown as blue spheres with the heavy metal

(HV) shown as a red sphere, located between Si and Si which breaks the inversion symmetry;

resulting in the DMI vector Dij direction.

materials such as MnSi. Additionally, DMI is induced in thin films with a ferromagnetic and

a heavy metal layer with broken inversion symmetry at the interface. These two scenarios are

illustrated in figure 1.5

DMI cants the spins Si and Sj against the exchange energy; thus often referred to as a chiral

interaction since it favours chiral spin alignment.
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𝑺! 𝑺"

𝑫!"

FM

HM
𝑫!"
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a. b.Thin Film Bulk 

Figure 1.5: DMI vector Dij directions induced (green arrow) a. at the interface of a thin film

and b. in a bulk system. The blue and red spheres represent the ferromagnetic and heavy metal

atoms, respectively. The black arrows on the ferromagnetic atoms show the spin directions at

lattice sites i, j, Si and Sj . Illustration after [1]

.

1.4.3 Magnetocrystalline Anisotropy

Magnetocrystaline anisotropy refers to energetically preferred magnetisation and demagnet-

isation along specific crystalographic directions called ”easy axes” coupled with the system’s

symmetry. The magnetocrystalline anisotropy energy MAE, EMAE, is induced from spin-orbit

coupling (SOC) between the atomic nuclei and magnetic moments which follow the unit cell

symmetry in crystalline materials. Thus rare-earth materials show larger magnetocrystaline an-

isotropies due to the larger crystal fields arising from their heavier nuclei (i.e. stronger SOC).

Hexagonal closed packed (HCP) and tetragonal crystal structures often have a uniaxial

symmetry. Thus EMAE can be described by an angle θ between the easy axis, which in the

HCP cases is along the ⟨0001⟩ for HCP magnetic materials such as Cobalt with the following

expression [60, 63]

EMAE = K0 +K1 sin2 θ +K2 sin4 θ + ... (1.16)

where K0 and K1 are the magnetocrystaline anisotropy constants in units of Joules. Similarly,

face centre cubic (FCC), and body centre cubic (BCC) magnetic materials such as Fe - BCC

and Ni - FCC have an easy axis along the ⟨001⟩ and ⟨111⟩ respectively. However, to describe
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1.4 Magnetic Interactions

M along the cubic crystallographic directions, the directional cosines α1, α2, α2 are used as

[60, 63]

EMAE = K0 +K1
(
α2

1α
2
2 + α2

2α
2
3 + α2

1

)
+K2

(
α2

1α
2
2α

2
3

)
+ ... (1.17)

Like the easy axis, the intermediate and hard axes require a larger field to magnetise along.

This section introduced the single-ion contribution to magnetocrystalline anisotropy, which is

the most dominant in the lattices explored in this thesis. However, in non-cubic lattices and

when the exchange interaction is not isotropic, one has to consider the two ion anisotropies by

including additional terms in the Hamiltonian to account for anisotropic exchange and dipole-

dipole interactions of the magnetic moments.

1.4.4 Zeeman Energy

In the presence of an external magnetic field B with units of A/m, the spins within a material

experience a torque described by the Zeeman term

Ez = −µ0M · B (1.18)

1.4.5 Magnetostatic Energy and Shape Anisotropy

The magnetic dipolar interaction is a long-range interaction between two magnetic dipoles.

This interaction creates effective positive and negative charged poles within materials with

long-range spin ordering, creating a magnetostatic field as shown in figure 1.6 a. The magneto-

static field is reduced by forming magnetic domains as illustrated in figure 1.6 b. and c. where

a closed-flux domain structure is shown.

The magnetostatic energy is given by

Em = −µ0

∫
V

Hd · MdV (1.19)

where Hd is a demagnetisation field that opposes the magnetisation M to minimise the stray

field, which is reduced by the creation of domains and minimised the most for a closed flux

domain. Then it follows that Em is minimised when M lies along the long axis of the element.

The internal demagnetisation field due to effective poles created M is estimated by

Hd = NdM (1.20)
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1.5 Magnetic Thin Films

a. b. c.

Figure 1.6: Illustration of the magnetostatic field reduction due to magnetic domain formation.

a. shows a single domain structure magnet, b. a two domain magnet and c. a magnet with flux

closure domain structure

where in the simplest case of a uniformly magnetised sample

Nd =


Nx 0 0

0 Ny 0

0 0 Nz

 (1.21)

Nd is called the demagnetisation factor, which trace equals 1 [60]. Thus different shapes of

magnetic elements have different shape anisotropy where preferred de-magnetisation directions

minimise the internal energy.

1.5 Magnetic Thin Films

In this thesis, skyrmions at interfaces in thin films are studied; thus, this section introduces

the main features and differences between thin films compared to bulk materials. With the

advances in chemical vapour deposition in the 1970s, thin film magnetism emerged [64]. Mag-

netic thin films are multilayered structures composed of atomically thin up to approximately

100 nanometers of layer thicknesses grown with techniques such as molecular beam epitaxy

and pulsed laser deposition, showing incredible precision in depositing atoms on a substrate.
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1.5 Magnetic Thin Films

The low dimensionality of the layers and the interfaces between layers can alter the magnetic

properties observed in bulk magnetic materials. In low-dimensional materials, the coordination

number of atoms on the surface is lower than in bulk. This increases the population of magnetic

spin DOS near the fermi surface, which promotes non-ferromagnetic materials to satisfy the

Stoner criterion [60, 62]. More important for this project is the anisotropy change and broken

inversion symmetry at the interfaces. Due to the symmetry change at the surface of the thin

film (or interface), the anisotropy constant is replaced with an effective anisotropy constant K,

which includes the effects of the low dimensionality as

K = 2Ks
t

+Kvol − µ0M2 (1.22)

where Ks is the surface anisotropy constant and t is the thickness of the layer, Kvol is the

volume anisotropy and the third term µ0M2 is the shape anisotropy. And the magnetic aniso-

tropy in a thin film is estimated as [60]

Ean = K sin2 θ (1.23)

The coordination number reduction and symmetry at the surface of the layer induce surface an-

isotropy. The surface anisotropy is reduced by spins aligned out-of-plane, opposing the shape

anisotropy where the spins are aligned within the plane to reduce the magnetostatic field. As

shown in 1.22, the effect of the surface anisotropy increases with decreasing layer thickness.

There is a Perpendicular Magnetic Anisotropy (PMA) for thin enough layers. The volume an-

isotropy incorporates the effects of lattice stresses and strains, which can change the anisotropy.

It is important to note that the dipolar interactions in thin film simulations are often included as

an effective shape anisotropy in atomistic modelling; since its effect is small. However, com-

puting the dipolar interactions of hundreds of thousands of spins is computationally expensive.

Additionally, PMA can be induced or enhanced by placing a layer of heavy metal atoms above

the ferromagnetic layer. In this case, the large spin-orbit coupling enhances the PMA. Thin

films can also be grown in different crystalographic metastable phases, stabilised by the lattice

strains. For example, Fe has a BCC crystal structure at room temperature in bulk. However,

Fe is often grown in thin films with an FCC(111) crystal structure to enhance certain interac-

tions, such as the DMI. More importantly, the interface between layers of different elements or
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Figure 1.7: An example of a uniform interfacial DMI induced at the interface between a Fe and

Pt thin-film

compounds in thin films has broken inversion symmetry. Thus, interfacial DMI can be induced

by growing thin film stacks with a ferromagnetic and heavy metal layer. This is illustrated in

figure 1.7

1.6 Magnetic Domain Walls

Magnetic Domains form to reduce the magnetostatic energy of a magnetic system, as shown in

figure 1.6. The magnetic domain wall (DW) is a transition region between magnetic domains.

The abrupt change of the adjacent spin directions between two neighbouring domains costs a lot

of exchange energy [63]. Thus domain walls are formed to minimise this excess energy. Within

a DW, the spin direction shifts in or out of the plane depending on the system’s geometry. Bloch

domains are favoured in bulk systems where the magnetisation rotates normal to the DW plane.

In thin-film systems, Néel type DWs are energetically more favourable where the magnetisation

rotates within the domain wall plane. The profiles of the two types of DWs are illustrated in

figure 1.8.

In nanowires, it is possible to have isolated Néel DWs. When an external field is applied,

the magnetic domain expands by moving the DW to minimise the Zeeman energy. Many

spintronic devices currently use DWs in nanowires since they can be generated, moved and
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b.

a.  Bloch type DW

Néel type DW

Figure 1.8: a. Bloch and b. Néel type domain wall profiles

are easy to detect since their magnetisation point in a different direction with respect to the

nanowire’s magnetisation. There are a lot of spintronic beyond von Neumann proposed device

architectures with the use of DWs and storage devices such as racetrack memories. However,

for computational needs, the manipulation of DW motion must be deterministic and easy to stop

in specific regions within a device for operations like reading and writing. As demonstrated,

DW motion is stochastic and thus cannot be used for deterministic computations or storage

devices [27]. However, other concepts where circular nanowires are referred to as nanorings

with DWs fabricated next to each other are proposed to be used as future image recognition

or probabilistic computing applications by utilising the coupling of the DWs in neighbouring

nanorings [29, 65].

1.7 Magnetic Skyrmions

Magnetic skyrmions are non-collinear swirling magnetic spin textures illustrated in figure 1.9.

Their integer topological charge value, Q, characterises them, corresponding to the M rota-

tion covering the whole unit sphere, often referred to as winding or skyrmion number. In 2D

systems Q is defined as:

Q = 1
4π

∫ ∫
M ·

(
∂M
∂x

× ∂M
∂y

)
dxdy (1.24)

The skyrmion spin texture results in an integer Q = ±1, which differs from a ferromagnet,

Q = 0. Hence skyrmions are often said to be topologically protected, which is often colloqui-
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+1
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SZ

Figure 1.9: Néel skyrmion spin texture profile.

b.

a.

x

Bloch type skyrmion

Néel type skyrmion

Figure 1.10: a. Bloch and b. Néel type skyrmion profiles

ally interpreted as magnetic skyrmion stability. Practically, skyrmions are stabilised through

their topology but; in real systems, skyrmions can be destroyed through perturbations since

the assumption of continuous field breaks from many factors, such as lattice finite sizes and

defects. Thus magnetic skyrmions are stabilised due to their distinct topology instead of hav-

ing topological protection. Skyrmions can exist in non-centrosymmetric magnetic bulk and

thin-film systems with broken inversion symmetry with a strong DMI interaction. Two mainly

used and studied types of skyrmion configuration profiles are illustrated in figure 1.10, which

depends on the direction of Dij vector. As illustrated in Bloch and Néel type skyrmions, the

magnetisation rotates 360 degrees perpendiculars and in-plane along the skyrmion diameter,

respectively. When DMI is present in bulk systems, the DMI energy is minimised when the
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1.7 Magnetic Skyrmions

magnetic moments mediated by the HM are aligned perpendicular to the plane normal to Dij

and Bloch-type skyrmions are shown to be stabilised as a groundstate skyrmion lattice. In

contrast, isolated Néel-type skyrmions can be formed in thin films as metastable spin excita-

tions. Skyrmions can also be stabilised in other systems without DMI, such as helimagnets

and frustrated spin textures. The magnetic skyrmion diameters depends in the interplay of

the Eex, Ean and EDMI. A strong DMI favours big skyrmion radii, whereas, with increasing

anisotropy, skyrmions shrink. However, in thin-film, the DMI and PMA are stronger; thus,

sub 10nm skyrmions have been stabilised without the need for an applied external field [66].

The exchange, anisotropy and DMI strengths scale with temperature and depend on the co-

ordination number of the system. Thus due to thermal perturbations, skyrmions size changes

due to the exchange, anisotropy and DMI energy variations. Similarly, lattice defects such as

non-magnetic impurities and vacancies locally change the value of exchange, anisotropy and

DMI [55, 67]. Additionally, skyrmions have internal dynamic modes referred to as breathing

modes which are coupled oscillations under the influence of an external magnetic field with

specific oscillation frequencies depending on the strength of the field [68]. Figure 1.11 shows

the analytically calculated DMI vector directions for a FE(FCC(111)Pt multilayer. A Python

script is developed for this calculation with a thin film lattice as an input parameter. The script

identifies the lattice points of the FM and HM atoms at the interface within the lattice. Then the

script loops through every single FM lattice point, identifies its nearest FM and HM neighbours

and constructs the plane (red plane) in which the Dij is calculated from. This script is intended

to be used for visualisation and the explicit calculation of the Dij in lattices with non-magnetic

defects where the symmetry of the lattice is broken. The total DMI experienced for a selected

magnetic ion (green) is the sum over all the neighbouring sets of triplets, including the 2 mag-

netic ions coupled with the Pt atom at the interface. This example demonstrates the big effect

of non-magnetic lattice defects.

Similarly, ED, Eex and EMAE locally change for magnetic impurities. The change of these

energies for the magnetic impurities is studied using DFT calculations which do not include any

temperature effects [69]. Likewise, for non-magnetic lattice defects, the methods used often

do not fully account for thermal effects [2, 4, 54, 55]. This was one of the main drives of this
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x
y

z

Figure 1.11: 3D PtFe(111) induced interfase DMI. The plane between the 2 Fe magnetic ions

coupled with the Pt atom is the red area in 3D for the magnetic ion selected (green colour). The

arrows represent the direction of the DMI vector Dij .

project, where a method that will allow the study of the effect of these defects was developed,

which opens a new avenue that has not been explored yet.

Interfacial magnetic skyrmions have attracted much interest due to their particle-like beha-

viour and small sizes. Much research has focused on understanding their motion, suppressing

the so-called skyrmion Hall effect, and understanding the effect of lattice defects in creating

and annihilating skyrmions [1]. Unfortunately, experimentally observing skyrmions has proven

to be a hard task. Still, no general analytic model for skyrmion dynamics exists, including the

effects of temperatures and/or lattice defects. However, for any future proposed spintronic

device, it is crucial to quantify the skyrmion creation and annihilation energies to examine the

stability and reliability of any proposed device. Many proposed skyrmionic device architectures

include the interaction of skyrmions with other spin textures such us skyrmioniums (skyrmions

with an outer domain with opposite polarity relative to its core), magnetic bubbles and systems

with the coexistence of skyrmions with other spin textures. The method demonstrated in this

project also has the ability to examine the coexistence of skyrmions with any other spin texture

in any skyrmion host systems while fully accounting for temperature effects. In the following

section, an introduction to the multiscale modelling of magnetism is introduced prior to the dis-
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1.8 Multiscale Magnetic Modelling

cussion of the techniques used to examine and quantify the skyrmion energies and interactions

described while highlighting the limitations and benefits of each method.

1.8 Multiscale Magnetic Modelling

Multiscale magnetic material modelling refers to the techniques and formalisms used to simu-

late different interactions and behaviour of magnetic systems occurring at different lengthscales

and timescales. Moving from the smallest timescales to the largest, different parameters are

calculated. These are then used as input parameters in larger-scale simulations, allowing large

magnetic systems and devices to be simulated [70, 71]. This is due to the computational lim-

itations of the current CPUs and GPUs, which require simplifying the calculations and use of

approximations in order to simulate larger systems at a device level for longer timescales in a

single simulation. Figure 1.12 summarises the main simulation formalisms with their approx-

imated simulation scales.

In the first principle (often referred to as ab initio) calculations, it is assumed that the wave-

function of a system can be decomposed into single electron wavefunctions where the eigen-

states of the non-relativistic time independent Shrödingers equation are aimed to be identified.

One of the aims of the ab initio calculations relevant to this discussion is to study the electronic

structure of materials and identify their ground state. However, the density functional theory

approaches are most often employed since the ab initio calculations are becoming more com-

plex with systems with more electrons (many body systems). DFT describes the electron wave

functions in terms of local electronic charge densities and potentials used to identify a system’s

ground state. There are vastly different formulations of DFT used to solve different problems,

and a thorough review is given at [72]. In magnetism, DFT is used to calculate magnetic ma-

terial constants such as magnetic moment, exchange integrals, and anisotropy constants which

depend on the electronic structure of the materials [70, 71]. The first principle calculation (in-

cluding DFT) is a zero temperature formalism, and the complexity of the calculations increases

the computational cost of these; thus, only a few hundred atoms can be simulated.

The material-specific constants calculated from the electronic mapping in DFT are then
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Figure 1.12: Multiscale magnetic material modelling techniques times and scales

used as input parameters in atomistic simulations, where the interaction of local magnetic mo-

ments is simulated. The strength of the interactions between the constants is calculated using

the first principle (DFT) simulations, which are used in a Hamiltonian describing the energy

of each lattice point. Any thin film and crystal structure can be simulated using the predefined

lattice. Up to a few hundred of thousand atoms, allowing the calculation of the magnetisation

dynamics up to a few nanoseconds and calculating thermodynamic equilibrium properties of

a given system, such as the magnetisation at a temperature T , M(T ), D(T ), J(T ), by therm-

alising the lattice using sampling techniques such as the Metropolis Monte Carlo algorithm.

This length scale fully accounts for temperature effects due to the large population of interact-

ing spins S allowing statistical calculations in the canonical ensemble. Atomistic formalism

often uses a classical thermostat with the Boltzmann statistics. However, semiclassical ap-

proaches have recently arisen using a semi-classical quantum thermostat with Bose-Einstein

statistics [73]. With the quantum thermostat, there are less thermal artefacts often introduced

by the classical approaches. In this project, atomistic simulations are combined with an en-

hanced sampling technique called metadynamics. This is introduced in the next section and

detailed and discussed in section 2.

28



1.8 Multiscale Magnetic Modelling

Micromagnetics often use the thermodynamic averages estimated by atomistic simulations

to simulate the magnetisation dynamics and hysteresis processes of larger magnetic systems

and devices up to a few micrometres. This well-established formalism is the most widely used

to support and explain the origin of experimental results and design new spintronic devices.

Micromagnetics is a finite difference formalism where the system is discretised into cells smal-

ler than the exchange length, where the magnetisation is assumed to be uniformly aligned, thus

having an effective constant magnetisation vector whose size is calculated from atomistic sim-

ulations for a given temperature [74, 75]. Micromagnetics is the most widely used formalism

due to the introduction of well-established GUI software such us MuMax3 [76], OOMMF [77]

and fidimag [78], which have shown incredible success validating experimental measurements.

However, there is a lot of debate about the validity of many studies using these softwares, for

simulations in temperatures close to the Curie temperature of the system. This is due to the

main limitation of micromagnetics, which is the treatment of finite temperature effects. Mi-

cromagnetics discretise the system into cells that have constant magnetisation, thus, can not

account for thermal effects and the coupling between spins resulting in the magnon-magnon

interactions (waves within the spin precession). Hence, micromagnetic simulations often are

inaccurate for temperatures where magnon-magnon interactions dictate the magnetisation dy-

namics. However, stochastic noise can be introduced to the micromagnetic simulations at low

temperatures, interpreted as thermal noise [79]. This is of crucial importance for spin texture

stability studies, where temperature effects have the ability to annihilate the spin structures. Ad-

ditionally, skyrmion stability phase diagrams indicate the anisotropy and DMI strength fraction

ranges that skyrmion may be stable. However, for finite temperatures, these stability windows

might be inaccurate. Thus, often it is argued that micromagnetic simulations are misleading

for these kinds of stability studies [80].

29



1.9 Skyrmion Metastable Energies and Thermal Stability Calculations

1.9 Skyrmion Metastable Energies and Thermal Stability Calcu-

lations

The thermal stability of skyrmions is crucial for the realisation of interfacial skyrmionic devices

since it will dictate the reliability of these devices. It has been demonstrated, both experimental

and theoretically, that the skyrmion stability depends on the skyrmion’s internal energy ∆E and

the change of the configurational entropy between a skyrmionic and a ferromagnetic state ∆S

[4, 81, 82]. ∆E and ∆S create an energy barrier stabilising skyrmions against thermal fluc-

tuations. However, thermal fluctuations can still result in annihilation affecting the operation

of a device. Additionally, lattice defects and the finite size of the devices alter their metastable

energy [2, 3, 55]. Even more important is to identify the lifetime of skyrmions to assess if a

system can be used as non-volatile information storage. Multiple computational studies have

demonstrated that skyrmions have three main ways of annihilation in confined geometries, such

as nanowires [2, 3]. First, they can be annihilated as singularities, where a single spin within

the skyrmion texture is reversed, resulting in skyrmion shrinkage or progressively annihilat-

ing around the singularity. Secondly, they can be annihilated by collapsing, where they shrink

and slowly revert their spins around the skyrmion’s outer circumference. Lastly, it is repor-

ted that the minimum energy path for skyrmion annihilation is from the system’s boundaries

[2, 3]. Hence the metastable skyrmion energy barrier must be quantified at finite temperatures,

including the contributions of ∆E and ∆S.

However, all the computational methods use low or no-temperature techniques to calculate

the skyrmion metastable energy with atomistic or micromagnetic simulations [2, 4, 54]. Addi-

tionally, the methods used to calculate the skyrmion creation and annihilation energy barriers

only include the contribution of ∆E. Moreover, the skyrmion lifetimes are calculated using

these estimations of the energy barriers and debatable assumptions using a Néel Arrhenius type

equation,

τ = τ0 exp
(−∆E
kbT

)
(1.25)

where T is the Temperature in Kelvin, τ0 is the attempt frequency and ∆E is the skyrmion

metastable energy. In reported studies, ∆E is estimated from low or no temperature tech-
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niques, and the τ0 is assumed to be in the GHz range [2, 3, 22, 54, 55]. Likewise, the estim-

ated skyrmion lifetimes are based on equation 1.25 using the energy barrier for 0K with the

arbitrarily chosen τ0, which can be used as a rough approximation. However, it has been ex-

perimentally demonstrated that the order of magnitude of τ0 changes up to 30 orders in finite

temperatures [82]. More importantly, these studies report only the minimum energy paths. As

a recent theoretical study which includes citations of experimental results which also validate

their theoretical findings, equation 1.25 assumes infinite time scales, where the most probable

diffusion or a transition occurs through the minimum energy path [83]. For finite timescales,

higher energy paths can be more probable [83]. This highlights the importance of identifying

all possible transition paths.

In this thesis, we mainly demonstrate a computational technique to calculate the skyrmion

metastable energy in finite temperatures, including the contributions from both the ∆E and

∆S while revealing and quantifying all the possible transition paths from the skyrmionic to

the ferromagnetic state and vice versa. The method presented in this thesis can be applied

to any lattice, with or without defects, and we also propose an accurate calculation of τ0 in

section 6. This method can be used for future studies for the design, material selection or

realisation of skyrmionic devices. As is later discussed, this novel way can also be used for

many other investigations regarding extracting metastable energies and identifying all possible

spin textures and their transitions between different metastable states.

1.9.1 Skyrmion Energy Landscape Calculations

Currently, atomistic or micromagnetic simulations combined with the Geodesic Nugded Elastic

Band Methods (GNEBM) are used to reconstruct FELs and extract only the minimum skyrmion

metastable energy, a zero-temperature technique [52]. As this project demonstrates later in sec-

tion 4, there are more paths to create and destroy a skyrmion, which are often the more realistic

experimental paths, even if larger energies are required. As stated before, higher energy paths

become more probable in finite timescales [83]. Additionally, micromagnetic studies can not

accurately represent the skyrmion annihilation paths as a singularity. This is because micro-

magnetic cells correspond to a large physical number of individual spins with an effective total
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magnetisation in each cell.

The GNEBM was first used to calculate the skyrmion metastable energy in 2015 [52].

GNEBM finds the minimum energy path between initial and final spin-textures in magnetic

systems. In GNEBM, the initial and final states are manually input as a set of spins which

are referred to as images Y0 and YN each having its own energy E(i), separated by bands

of images as illustrated in figure 1.13. The algorithm works by finding the minimum energy

path between Y0 and YN. The resulting energy landscape axis is the energy between different

images Ei versus their distance y from the initial image as phase transition with unknown

order parameters (i.e. arbitrary units). Thus the resulting energy landscape from GNEBM has

abstract dimensions, which don’t contain any information for the physical transition between

the two states. This method samples only the saddle points of the energy landscape, not the

whole energy landscape. Hence can not identify other metastable states, and often the final

shape of the energy landscape is inferred instead of being calculated[2].

Image Bands, 		"! , $ ∈ {1, ( − 1}

Distance from ""	(a. u)

Initial Image ""
Skyrmionic 
Spin Texture

Ferromagnetic SpinTexture

Final Image "#

Figure 1.13: GNEBM illustration. The yellow boxes represent the initial and final spin texture

images that must be predefined. These images are separated by the image bands represented

by the grey boxes. The algorithm identifies the minimum energy to transition between the

initial and final images through the image bands. Hence the reaction coordinate is the distance

between the images, which is simplistically illustrated as the blue line
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1.9.2 Skyrmion Free Energy Landscape with Metadynamics

The Free-Energy Landscapes (FEL) of specific skyrmion degrees of freedom must be recon-

structed in finite temperatures to calculate the skyrmion metastable energies. The FEL are

maps showing the free energy differences associated with the degrees of freedom used to re-

construct them. The FEL is then used to calculate the associated energy barriers between points

of interest, including the contributions of ∆E and ∆S.

In contrast with the previous studies [2, 3, 22, 54, 55], this project combines atomistic sim-

ulations with an enhanced sampling technique called metadynamics which is a detailed discus-

sion in section 2. Atomistic modelling is a sampling technique that can sample a local region

along the FEL for a given finite temperature, discussed in section 2.2.2. Metadynamics was

introduced in 2002 by Alessandro Laio and Michele Parrinello [84]; an enhanced sampling

technique used to explore rare events. Metadynamics push the system over energy barriers

along the FEL; sampling the whole FEL associated with the degrees of freedom selected; this

thesis demonstrates that with this novel procedure developed, the FEL is reconstructed for

specific skyrmion degrees of freedom. It is found that compound axes of the out-of-plane mag-

netisation and the topological charge describe the physical transition from the skyrmionic to

ferromagnetic states. The reconstructed FEL allows the calculation of the skyrmion metastable

energies and shows all the possible spin-textures that can be stabilised or coexist in any sys-

tem. Additionally, this method allows us to investigate how the FEL changes as a function of

temperature. Finally, with this method, it is demonstrated that we can recreate a thermalised

skyrmionic lattice for a given temperature, which can allow the calculation of τ0.

Metadynamics is a well-established technique used in many branches of science, such as

chemistry and materials science [85, 86]. Traditionally it has been used to investigate how

molecules bind to surfaces, but here it is used to explore the metastable energy of spins textures.

This method is rarely used in condensed matter magnetism. However, recently it has been

used to explore the temperature dependence of the magnetocrystalline anisotropy and spin-

reorientation transitions of thin films and the creation of vortices [87, 88]. However, this study

is the first that uses it in topological spin structures in condensed matter. Compared with the

GNEBM, the initial and final spin configurations are not required. This gives the advantage
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of using the method we show to investigate if any topological spin texture will be present in

any system and open a new avenue for future studies. As it is demonstrated in section 4.3,

metadynamics pushes the systems to explore all the possible spin textures possible within the

configurational space defined by the CVs used, which, if a spin texture is metastable it will have

a minimum region on the reconstructed FEL. Furthermore, the axes of the reconstructed FEL

are not abstract, showing the full transition path between possible states. This method accounts

for thermal effects and is able to study the stability of skyrmion, helping to investigate how the

stability of any device can be improved, either by a material selection process or geometries

where our method will show how the FEL is affected. On the downside, the calculations of the

CVs can be very computationally expensive, making the metadynamics simulations limiting.
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2.1 Atomistic Modelling

In this research project, magnetic atomistic simulations solved with the metropolis Monte Carlo

algorithm are adapted to metadynamics to reconstruct the free-energy landscapes (FEL) of

skyrmion host systems to study their thermal stability.

This chapter introduces and discusses the main principles of the Monte Carlo techniques,

Metropolis Monte Carlo algorithm and metadynamics. Due to this project’s nature, these meth-

ods’ backgrounds are introduced here, and in later chapters, the development of new novel

approaches and their validation is discussed. These methods developed allowed the success-

ful outcome of this project and provided a new approach for thermal stability studies of spin

textures.

2.1 Atomistic Modelling

As discussed in section 1.8, atomistic modelling is a formalism that naturally includes finite

temperature effects in contrast with micromagnetics which is, in principle, an athermal form-

alism. This is because micromagnetics is a continuum formalism whose length scale can not

account for thermal fluctuations of individual magnetic moments due to the discretisation of the

system simulated. On the other hand, atomistic modelling considers a lattice consisting of in-

dividual localised classical magnetic moments at each lattice point. Thus allowing calculations

of the canonical ensemble. Here, atomistic modelling is used to calculate the macroscopic ther-

modynamics of a magnetic system by solving the microscopic degrees of freedom. Prior to the

simulation, the location of the magnetic moments within the lattice is pre-defined. Thus allow-

ing the simulation of multilayer or single-layer thin film structures of specific crystallographic

orientations and interfaces with or without lattice defects.

The total energy of the lattice is given by a Hamiltonian which includes all magnetic in-

teractions present in the magnetic system of interest based on the physical basis of the system

studied. This is because different systems and heterostructures have different interactions and

couplings between atoms; thus, one needs to consider the physical basis of these interactions

and include all the relevant terms in the Hamiltonian in the systems studied. This project con-

siders mainly skyrmion host thin films with broken inversion symmetry at the interfaces. The
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Hamiltonian, which considers the physical basis of these systems, is the following

H = −1
2
∑
⟨i,j⟩

JijSi · Sj −
∑

i
µsB · Si −Ku

∑
i

(ê · Si)2 − 1
2
∑
⟨i,j⟩

Dij · (Si × Sj) (2.1)

where ⟨i, j⟩ denotes the nearest neighbouring lattice points i, j. Jij and Ku are the scalar quant-

ities describing the exchange and uniaxial anisotropy respectively in units of energy, Si and Sj

are spin vectors at sites i, j.Ku often is used as an effective anisotropy, including all the aniso-

tropy contributions as shown in equation 1.22. ê a unit vector along the uniaxial easy axis and

Dij is the DMI vector direction which depends on the relative positions of i, j with a mediated

non-magnetic heavy metal atom as shown in figure 1.4. µs is the atomic magnetic moment

with units of JT−1 and B is the external applied field with units of Tesla.

The first term in equation 2.1 is the isotropic Heisenberg exchange which considers the

nearest neighbouring spins and has the highest energy contribution. The factor of 1
2 accounts

for the double counting in the summation, and in the literature, they are often written with

different conventions. The sign of J dictates the symmetry of neighbouring spins with positive

J resulting in ferromagnetic alignment and a negative J in antiferromagnetic alignment. For

the positive and negative J , the energy is minimised by the spins being aligned in parallel and

antiparallel, respectively. The exchange interaction is not isotropic in many systems since it can

have different strengths in different crystallographic directions. The second term is the Zeeman

term, where B is the external magnetic field in units of Tesla. The Zeeman terms account for

the interaction of a magnetic spin with the external field, and its energy is minimised when Si

is aligned with B. The third term accounts for the uniaxial magneto-crystalline anisotropy of

the system, which is often referred to as single ion anisotropy since the local site symmetry

determines its energetics, and it can be described only from a single atom in the Hamiltonian.

The energy of this term is minimised when Si is aligned with the unit vector ê and depends on

the sign of Ku.

The fourth term accounts for the DMI, which is present in non-centrosymmetric systems

such as bulk crystals or the interfaces between a magnetic and a heavy metal atom. In the

second case, the coupling between a mediating heavy metal atom between two magnetic atoms

results in larger DMI values due to the large spin-orbit coupling. Additionally, in atomistic
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modelling, the spin-orbit coupling of heavy-metal atoms above or below the magnetic atoms

layers is included in the DMI term. In terms of a tensor the DMI is given from an exchange

tensor

Jij =


0 −Dz

ij Dy
ij

Dz
ij 0 −Dx

ij

−Dy
ij Dx

ij 0

 (2.2)

This exchange tensor is mathematically skew-symmetric. Thus, often the DMI is referred to

as an antisymmetric exchange. Phenomenologically, DMI favours neighbouring spins aligned

at right angles. In contrast, the exchange favours collinear spin alignment for +J . Thus in a

ferromagnet, the DMI results in spins being canted.

Due to the energetic interplay between all the Hamiltonian terms, the resulting spin textures

within the lattice result from the competing interactions of the Hamiltonian terms for a given

temperature.
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2.2 Monte Carlo Simulations

In the context of atomistic modelling in magnetism, Monte Carlo techniques are used to estim-

ate mean thermodynamic values, understand thermal effects and equilibrate the initial lattice

configurations at finite temperatures. Here I introduce the general concepts of Monte Carlo

techniques before discussing how they are used in statistical physics and which algorithms are

employed for the atomistic simulations in this project.

Monte Carlo techniques are used to estimate expectation values, Ep [f(x)] of a function

f(x) where x is a vector of random variables using a probability density function p(x) as

shown bellow for a single dimensional case∫
p(x)f(x)dx = Ep [f(x)] (2.3)

Monte Carlo techniques are mainly employed in cases where the physical parameter space

is multi-dimensional [89–91]. This is because solving analytically high multidimensional in-

tegrals is tedious, if not impossible. For example, in statistical physics, we integrate kinetic

equations, which are equal to the degrees of freedom of the system studied. Hence for systems

with many degrees of freedom, it is impractical to calculate them analytically. For example,

in atomistic modelling, a single Si has two degrees of freedom, the azimuthal and polar angles

when polar coordinates are used. Hence in a 100×100×100 lattice, there are 2 million degrees

of freedom; hence Monte Carlo algorithms are used.

Monte Carlo techniques work by utilising the pseudorandom number generators in com-

puters to generate a subset of sampling values xl, creating a subset of the {x} drawn from the

p(x), from which the Ep [f(x)] is estimated as arithmetic average. In simple sampling Monte

Carlo techniques, the average formula used is [90, 92]

Ep [f(x)] ≈ 1
N

N∑
l=1

f(xl) xl ∼ p(x) (2.4)

where N is the number of sampling points, xl are the randomly extracted sampling points from

the p(x). Additionally, it has been demonstrated that the summation in equation (2.4) has its

own normal distribution function; thus, using the central limit theorem, one can estimate the
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mean and variance of the Ep [f(x)] [89, 93, 94]. However, using an arbitrary p(x) to extract

the xl, we may sample regions from the phase space which are less relevant to f(x) (less

”important”). By sampling these regions more frequently, the variance is increased, reducing

the accuracy of Ep [f(x)]. This is illustrated in figure 2.1 a., where there is a small overlap

between f(x) and p(x); thus, having more dense sampling points in less relevant regions,

represented by the black lines along the x axis.

The more ”important” sampling region is the area under the f(x), which is sampled more

often in regions where the p(x) overlaps with f(x). This ”important” area can be sampled

more frequently by using another probability distribution function, q(x), to draw the sampling

points, which offsets the sampling towards regions of higher relevance to f(x). This procedure

is called importance sampling and can reduce the variance of Ep [f(x)] and is demonstrated in

figure 2.1 b. Additionally, as discussed in 2.2.1, we use importance sampling Monte Carlo to

sample regions relevant to a given temperature along the phase space without apriori knowledge

of their location.

xx

𝑓(𝐱)𝑝(𝐱) 𝑞(𝐱)

𝑝 𝐱
𝑞 𝐱

𝑓(𝐱)

f(x
)

a. b.

f(x
)

Figure 2.1: Importance sampling procedure. a, Shows the small overlap between the f(x)

and p(x), resulting in high variance of the estimated value of f(x) in simple sampling Monte

Carlo. b, illustrates how another function q(x) can be used in importance sampling Monte

Carlo which reduces the variance of the estimated value of f(x). Along the x-axis, the drawn

sampling values xl from p(x) and q(x) are shown in a. and b. respectively.
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To incorporate the importantance sampling, we need to select the probability distribution

density to be q(x) > 0 wherever p(x)f(x) ̸= 0 along the subset of drawn sampling points {x}.

Importance sampling is realised in Monte Carlo techniques by modifying equations (2.3) and

(2.4) to [93, 94]

Ep [f(x)] = Eq

[
p(x)
q(x)f(x)

]
=
∫
q(x)

[
p(x)
q(x)f(x)

]
dx ≈ 1

N

N∑
l=1

f(xl)
p(xl)
q(xl)

xl ∼ q(x)

(2.5)

where points xl are drawn from the q(x) in contrast with equation 2.4 where xl are drawn

from p(x).Then the average estimate of the expectation value Ep [f(x)] = Eq

[
p(x)
q(x)f(x)

]
where

Eq is the expectation value with the q(x) which can also be estimated as an average as shown

in equation 2.5.

Ultimately, the proper choice of q(x) will reduce the variance [89, 93, 94]. Unfortunately,

identifying the correct choice of q(x) is not trivial. Moreover, both the simple and the im-

portance sampling Monte Carlo techniques are valid under the assumption that the algorithm

used is ergodic, meaning that all points within the phase space will be sampled for an infinite

number of generated drawn points [93, 94].

2.2.1 Estimating Thermal Averages with Monte Carlo

In statistical physics, thermal averages of an observable A(x) in the canonical ensemble are

estimated as [90]

⟨A(x)⟩T = 1
Z

∫
dx⃗exp [−βH(x⃗)]A(x⃗) (2.6)

Where ⟨...⟩ denotes the expectation value of A(x), which can be any macroscopic observable,

H(x) is a Hamiltonian which describes the energy of any configuration of x⃗ = {x} and β =

1/kBT is the Boltzmann’s factor where kB = 1.3806503 × 10−23 J/K is the Boltzmann’s

constant and T is the temperature in Kelvins, and Z is the partition function defined as [89, 90]

Z =
∫

dx⃗exp [−βH(x⃗)] (2.7)
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In equations 2.6 and 2.7, the normalised Boltzmann factor is the probability density func-

tion p(x), which can be written as [90]

p (x) = 1
Zexp [−H(x⃗)β] (2.8)

p(x) incorporates the temperature by statistically weighting the configurations of the given

phase space relative to the system’s thermal equilibrium, often referred to as Boltzmann sampling.

However, integrating all the possible configurations, as shown in 2.6, in a system with high di-

mensional phase space is analytically a tedious and computationally demanding task, which is

mostly not possible to solve analytically. Hence the thermodynamic averages are estimated us-

ing the Monte Carlo techniques, which can calculate ensemble mean values by approximating

equation 2.6 by summations. Adapting equation 2.6 to equation 2.5 we can approximate A(x)

as [90]

⟨A(x⃗)⟩T =

N∑
l=1

exp [−H(x⃗)β)]A(x⃗)/q(x⃗)

N∑
l=1

exp [−H(x⃗)β)] /q(x⃗)
(2.9)

However, we need to sample the phase space region relevant to a given temperature. Hence,

the importance sampling procedure needs to be realised, where q(x⃗) needs to be selected to

allow sampling of the ”important” regions for a given temperature. In 1953 Metropolis et al.

showed that by not drawing independent xl but selecting xl using a Markov Process with the

appropriate transition probability W(xl → xl+1), q(x⃗) will lead an equilibrium distribution

[95]

qeq(xl) = 1
Zexp (−H(xl)β) (2.10)

Here a Markov Process or Markov Chain is the process where the selection of xl+1 is not

random. Rather, it only depends on the current configuration’s transition probability, W, xl.

The equilibrium distribution (2.10) thus can sample the phase space relevant to the temper-

ature. Additionally using (2.10), the observable A(x) (2.9) is reduced to an arithmetic average

A(x) = 1
N

N∑
l=1

A(xl) (2.11)
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More importantly, they demonstrated that the only condition required to realise importance

sampling, which results in the equilibrium distribution (2.10), is to impose the principle of

detailed balance (2.12), which states that the transition probability between two consecutive

configurations must be symmetric [60, 89]

qeq(xl)W(xl → xl+1) = qeq(xl + 1)W(xl+1 → xl) (2.12)

Additionally, equation 2.12 implies that the W ratio only depends on the energy difference

W(xl → xl+1)
W(xl+1 → xl)

= exp (−∆Hβ) (2.13)

where ∆H = H(xl) − H(xl+1) is the energy difference

There are multiple proven transition probabilities, W, used, which satisfy (2.12), which are

used for different purposes and models. Here we use the following transition probability [90]

W(xl → xl+1) =


1
τs

exp(−∆Hβ), if ∆H > 0,

1
τs
, otherwise.

(2.14)

Where τs is an arbitrary factor that can be interpreted as ”Monte Carlo Time” or ”Monte

Carlo Step”, as it will be shown in section 2.2.2. Equation 2.14 shows that a transition move

will be accepted if the energy of the new configuration xl+1 is lower than the current xl. For a

magnetic system, this energy is given by the Hamiltonian with units of Joules. If ∆H < 0, the

acceptance probability will be proportional to exp(−∆H/kBT). This transition probability is

referred to as the Metropolis function, which is formally written as [89–91]

W (xl+1|xl) = min
[
1, exp

(−∆H

kBT

)]
(2.15)

The metropolis function is the basis of the Metropolis Monte Algorithm, which is intro-

duced in section 2.2.2 and will be later used to show how metadynamics is adapted to this

algorithm.

2.2.2 Metropolis Monte Carlo Algorithm

The previous subsection discussed the main principles of Monte Carlo and how they are used

to sample regions of a phase space relevant to a given temperature. The atomistic modelling
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algorithms incorporating the principles of importance sampling are used to equilibrate pre-

defined lattices, which allows the calculation of thermodynamic equilibrium properties such as

magnetisation and heat capacity for a finite temperature. The lattice is often initialised with a

configuration that is not thermalised. By using the importance sampling Monte Carlo, the ex-

cess energy is removed from the lattice with small increments by proposing random individual

trial spin directions Strial which are then accepted or rejected using the acceptance probability

which results in the Boltzmann distribution; which is often called the dynamic interpretation of

Monte Carlo. As discussed, this is achieved by using any transition probability W, which sat-

isfies the principle of detailed balance shown in equation 2.13. Doing so estimates the average

observables of interest after incrementing a few Monte Carlo steps (MCS). A MCS is defined

as the consecutive trial spins proposed equal to the number of lattice points.

The Metropolis Monte Carlo (MMC) algorithm is an importance sampling Monte Carlo

technique that uses the Metropolis function W introduced in equation 2.15 to satisfy the prin-

ciple of detailed balance. The algorithm proposes a random trial microstate configuration

which is then accepted or rejected based on thermodynamic considerations that minimise the

system’s energy for the given temperature. In magnetism, the microstates are the spin vector

directions S. In other words, MMC proposes random states on a system which are accepted or

rejected based on the acceptance criteria set by equation 2.15, which will force the system to

be in regions of high probabilities for the given temperature along the space of the microstates.

Thus sampling only the regions relevant to the given temperature. This allows the evaluation

of any thermodynamic equilibrium properties of a magnetic system at finite temperatures.

In practice, the MMC is implemented with the following procedure, as also shown in figure

2.2: First, a predefined lattice space is initiated. Each lattice point represents a local magnetic

dipole moment as vector S, which can have any direction on the unit sphere. Then:

1. A random classical spin at point i from the lattice, Si, is selected with energy, E1, calcu-

lated from the Hamiltonian of the system.

2. A random magnetic moment direction is proposed for the spin in site i, Strial, with energy

E2
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3. If the energy difference between E1 and E2, ∆E ≤ 0 or exp [−∆E/ kBT ] > χ where χ

is a random number inside the interval [0, 1] then, Strial is accepted

4. otherwise, Si is kept

5. Steps 1-3 are repeated n-times where n = lattice points (Monte Carlo Step)

6. After sufficient Monte Carlo Steps (MCS), the lattice is thermalised, and the simulation

is stopped. The number of MCS required to thermalise the lattice depends on the size

of the lattice. Once the lattice is thermalised, the value of the estimated thermodynamic

averages fluctuates around a value; which size of fluctuations depends on the lattice size

and temperature.

At the end of the simulation, the data acquired are analysed. The thermodynamic averages

of interest, such as the magnetisation, heat capacity and susceptibility, can then be calculated

from the final thermalised spin-lattice.

Select Trial Spin Configuration 𝑺!"#$%

Calculate the Energy Difference ∆𝐸 of 
the spin configurations 𝑺!"#$%, 𝑺#&'(')*

Accept/Reject 𝑺!"#$%

1x Monte Carlo Step = Trial Moves 
equal the number of lattice points

Metropolis Monte Carlo Flowchart

Figure 2.2: Metropolis Monte Carlo flowchart on a predefined atomic lattice where each lattice

point is a local magnetic dipole moment S.
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2.3 Metadynamics

As explained, the Metropolis Monte Carlo algorithm is an importance sampling technique that

samples only a region of space relevant to the simulation’s temperature. This project aims

to reconstruct free energy landscapes (FEL) associated with single or multiple differentiable

functions of the spin degrees of freedom, referred to as collective variables (CVs) or atomic

coordinates and degrees of freedom. This is achieved by pushing these degrees of freedom out

of their thermodynamic equilibrium to explore their whole landscape, thus sampling the free

energy landscape associated with them. Examples of differentiable functions of the atomic co-

ordinates in magnetism are the magnetisation and helicity of the spins. By selecting appropriate

CVs that describe the transitions of interest, the skyrmion metastable energy can be estimated

and studied at finite temperatures, which is a crucial parameter of the stability of the skyrmi-

ons; thus, an understanding of the thermal effects on skyrmion stability which is crucial for our

understanding of skyrmions and the design of future skyrmionic devices as it was discussed in

section 1.9. Multiple techniques are currently being explored to estimate the skyrmion meta-

stable energies in atomistic and micromagnetism formalisms [2, 3, 54]. Namely, the geodesic

nudged elastic band method (GNEBM) and variations of it can be applied in micromagnetic

and atomistic simulation. However, GNEBM, either on micromagnetic or atomistic formalism,

can not account for thermal effects, use abstract coordinates and cannot combine different CVs,

as discussed in the introduction.

This project has successfully used metadynamics with the MMC algorithm to extract the

skyrmion metastable energy in finite temperatures. In short, metadynamics is an enhanced

sampling technique that accelerates the exploration of the atomic coordinates selected. How-

ever, metadynamics is not widely used in magnetism, and before this project, it had never been

used to study topological spin textures in magnetism. Nevertheless, metadynamics has recently

been reported in magnetism to study the nucleation of vortices in micromagnetism and the tem-

perature dependence of the magnetocrystaline anisotropy and spin reorientations in thin films

within the atomistic modelling formalism [87, 88]. A major difference with this project is that

these metadynamic studies used trivial CVs since the shape and energy barrier energies of their
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associated FELs were expected and were non-topological, which, as is discussed in the results

section, hides a lot of difficulties that needed to be overcome.

There are a plethora of ways in which metadynamics accelerate the exploration of the

CVs selected, each having benefits and drawbacks for studying specific systems. However,

the basic ideas of metadynamics remain the same; creating a potential landscape that fills the

energy minima of any functions of the atomic coordinates, which is used to bias them out of

their thermodynamic equilibrium to explore their landscape. In this project, we used plain and

tempered metadynamics. Hence these metadynamic variations will be discussed in this chapter.

One of the difficulties of metadynamics is the calculation of the CVs. Since many CVs are used

in this project, the method of calculating each of them will be introduced when they are used

in the following chapters.

2.3.1 Metadynamics Collective Variables

In metadynamics terminology, the differentiable functions

Ya = (y1(x), ..., ya(x)) (2.16)

of the set of microscopic coordinates {x} which describe the system of interest are referred to

as Collective Variables (CVs) where a is the number of the selected CVs. If more than a single

CV is used, the explored energy landscape space will be multidimensional. The CVs can be

seen as generalised coordinates where their space is defined by the configurational space y(x)

and the value of a CV as y. In a magnetic system, the set of microscopic coordinates describing

the system are

x = {S1,S2, ...,Sn} (2.17)

where Sn are the localised magnetic moments.

Metadynamics is used to reconstruct the free-energy landscapes associated with the set of

CVs selected. This allows us to explore and quantify the transition pathways and energy bar-

riers between states revealed by sampling the CVs configurational space. However, the choice

of the CV needs to be carefully considered since the accuracy and reliability of metadynamics
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depend on the choice of the CV. Much previous work has been conducted to identify suitable

CVs for specific applications. In 2008, Laio and Gervasio summarised three properties that

constitute a set of suitable CVs. These are the following properties that CV need to satisfy

[96]:

1. Clearly distinguish the initial, final and all intermediate states

2. Describes the events relevant to the process of interest

3. Their number should be small

The first property ensures that the CVs selected are continuous variables. This ensures

that all the transition features between the initial and the final states can be sampled smoothly

without hiding any information.
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Figure 2.3: Free Energy Landscapes reconstructed by metadynamics for a transition from state

B to A, whose process is described by two CVs. The minimum energy path is shown in a. by

the white dotted lines, and the yellow circle indicates the value of the CVs. In b., the system

has the same FEL as in a. and is reconstructed using a single CV, illustrating the overfilled

potential shown as the grey area.
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The second property is important to be satisfied to avoid overfilling the potential landscape

from which the FEL is reconstructed as discussed in section 2.3.2, metadynamics builds a po-

tential landscape to fill the CVs energy minima and push each CV out of its thermodynamic

equilibrium, which is then used to reconstruct the associated free energy landscape. The trans-

ition between states occurs when each minimum is filled. If one or more CVs required to

describe the transition process between states are not included, the resulting potential will be

overfilled; the potential build will include the energy of the minimum of the neglected CV.

Hence estimating the FEL inaccurately. Figure 2.3 illustrates this, where A and B are two

minima. Metadynamics is used to estimate the energy required to transition from state B to A.

The yellow circle indicates the value of the CVs y at a given time during the metadynamics

simulation. Figure 2.3 a. shows that two CVs describe the transition process from B to A.

Using only a single CV results in overfilled potential shown as the grey area in figure 2.3 b,

which then results in inaccurate reconstruction of the FEL shown by the blue line.

On the other hand, the number of CVs describing a process should be as small as possible

to understand the relevant pathways. As more CVs are used to describe a transition process,

higher dimensional FELs are reconstructed, which are hard to analyse. Additionally, the higher

the dimensional space of the CVs, the more computationally expensive the metadynamics sim-

ulations become since the phase space becomes one order larger with every additional CV

added.

2.3.2 Metadynamics Integration to Metropolis Monte Carlo

In metadynamics, a history-dependant bias potential, Vbias, is build during the simulation to

bias the CVs to escape their local minima to explore their whole configurational spaces. Vbias

is build by depositing and accumulating Gaussians centred around the CV values calculated

from the system’s configuration during the simulation [96]. Other functions, such as triangular

functions, can be used to fill the local minima [97]. However, Gaussians fill the minima more

uniformly, minimising the possibility of creating large local minima between two consecutive

depositions.

Following the metropolis algorithm described in section 2.2.2, metadynamics can be im-
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2.3 Metadynamics

plemented by altering the acceptance probability of every Monte Carlo trial move by including

the bias potential difference, ∆Vbias, into the acceptance criteria [86, 96, 98]. During the meta-

dynamics simulation, Vbias is stored and updated in a histogram spanning along the CVs con-

figurational space N(y(x), t), where t is the time of the simulation or MCS and y(x) is the CV

value resulted from the system’s configuration from {x}. For a trial move Strial, the system’s

configuration from which the value of the CV is calculated will be different from the system

configuration with Si, resulting in different CV values. This, in turn, points to different values

of potential stored in N(y(x), t). In this thesis, the value of the potential at an arbitrary point

V(CVs) is found using linear or bilinear interpolation, depending on the number of CVs used.

This is because, technically, in the code developed N(y(x), t) is a discretised n-dimensional

array with equal-sized bins; thus, linear or bilinear interpolation is used to find the potential

values along the N(y(x), t). Thus ∆Vbias for Strial and Si is calculated from N(y(x), t) build

during the simulation. To summarise, the acceptance probability for the trial spin direction,

Strial in metadynamics depends on both ∆E and ∆Vbias of Strial and Si

P (xinitial → xtrial, t) ≡ min[1, exp(−β(∆E + ∆Vbias))] (2.18)

Hence Vbias introduces an energy penalty to discourage the system from sampling the same

regions along the configurational space of the CVs selected. Similarly, Vbias also bias the

system to adapt a set of configurations {x} which result in CVs values where the potential in

N(y(x), t) is lower. Effectively this pushes the system out of the thermodynamics equilibrium

from the MMC algorithm, which allows the sampling of the CVs configurational space. The

flowchart of the implementation of metadynamics in the MMC algorithm is also illustrated in

figure 2.4.
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Select Trial Spin Configuration 𝑺!"#$%

Calculate the Energy Difference ∆𝐸 of 
the spin configurations 𝑺!"#$%, 𝑺#&#!#$%

Accept/Reject 𝑺!"#$%

1x Monte Carlo Step = Trial Moves 
equal the number of lattice points

Calculate the values of the CVs for 
𝑺!"#$%, 𝑺#&#!#$% and  ∆𝑉'()*

Re-Calculate the CV values and update 
the potential at 𝑁(𝑦 𝑥 , t)

Metropolis Monte Carlo Part Metadynamics Part

Figure 2.4: Flowchart with the implementation of the metadynamics in the MMC algorithm.

For every trial move, the difference of the bias is included in the acceptance/rejecting criteria

of the Strial, and the potential is updated in each trial move step.

2.3.3 Direct / Plain Metadynamics

In direct or plain metadynamics, the FEL of the set of CVs used is estimated by depositing

Gaussian in N(y(x), t) during the simulation according to [84, 96]

Vbias(y(x), t) = w
∑

t′=τ,2τ,...
t′<t

exp
(

−
Ncv∑
a=1

(sa(x, t) − s(x, t′))2

2σ2
a

)
(2.19)

where w, σ and τ are the Gaussian height, width in units of energy and the time interval at

which Gaussians are deposited, which are pre-defined and centred at the CVs values at a time,

t. The summation from a through the number of the CVs selected Ncv.

As introduced in section 2.3.2, the potential introduced will result in the progressive explor-

ation of the CVs configurational space, y(x) [85]. This is because the potential introduced to

previously visited states along the y(x) will make it thermodynamically un-favoured to revisit

the same state. In metadynamics, the shape of the FEL F (y) is not required to be known be-

fore the simulation. Usually, the systems of interest in this project have unknown FELs. Also,

which spin textures can be stable in a system is often unknown, and metadynamics can find all

the possible textures. Hence, here it is emphasised that this is one of the primary motivations
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2.3 Metadynamics

that metadynamics was used instead of widely used techniques such as the GNEBM, where the

initial and final configurations and the FEL need to be known before the simulation.

At the start of the MMC metadynamics simulation, the system is in thermodynamic equi-

librium for a given temperature, which minimises its internal energy as described in section

2.2.1. Effectively this is due to an energy minimum within F (y) in which the physical system

is trapped. The Vbias(y(x), t) progressively fills the energy minimum in which the CVs are loc-

alised at t = 0. Once the first energy minimum is filled, the CVs will move in different regions

along its space, with lower potential. If there are more energy basins along the FEL, F (y),

the CV will move in every energy basin until the potential build fill all of them. During this

process, the F (y) is modified to F ′(y), which is the energy landscape felt by the system due to

the potential build. Thus, the FEL experienced by the physical system is F ′(y). Eventually, the

potential built by equation 2.19 and stored in N(y(x), t) will flatten the F ′(y). When the FEL

is flattened, the CVs will freely fluctuate along their configurational spaces. This means that

in the long time limit, the FEL is roughly the negative of the potential built plus an arbitrary

constant, C, previously shown [84–86, 98, 99]

V (y(x), t → ∞) = −F (y) + C (2.20)

However, when more complex CVs are used, the underlinedF (y) and the associated energy

barriers can not be estimated before the simulation. This creates a major issue with direct

metadynamics; the Gaussians will be deposited along the configurational space of the CV with

a constant w and σ overfilling the potential landscape. When the energy deposited constantly

increases unlimited, it can force the physical system into low probability state configuration

or regions along its space. In the example shown in figure 3.1, if the Vbias energy exceeds

exchange energy in all points along the configurational space of the CV, the system will behave

as a paramagnet, which is a highly improbable state. It is a very low probability state since the

system’s temperature in the example is not higher than the Curie temperature. Additionally, the

estimated FEL will fluctuate by a factor proportional to w since Gaussians with constant w are

deposited throughout the simulations.
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2.3 Metadynamics

2.3.4 Well-Tempered Metadynamics

By solely employing plain metadynamics, there is a concern that the bias potential energy will

exceed the metastable energy of the topological spin textures, thus destroying them before the

CVs configurational space is sampled in studies where we want the skyrmion to move around

the sample. Additionally, with plain metadynamics, the error increases by a factor of ω after

the FEL is filled, which is usually hard to identify. An argument for the first concern described

is that the rate of the energy deposited, which is defined as

ε = Vbias
τ

(2.21)

with units of energy per MCS (time), can be used to ensure that the spin texture will move

to regions with lower potential before it is destroyed. However, plain metadynamics can be

used to identify the magnitude of the energy barriers along the F (y) associated with the CVs;

but eventually will exceed this energy barrier resulting in the limitations described here and in

section 2.3.3. Therefore, we employ the well-tempered metadynamics algorithm proposed by

Barducci, Alessandro et al. in 2008, which scales the initial Gaussian height w0 during meta-

dynamics for regions previously visited along the configurational space of the CVs according

to [100]

w = w0 · exp
(
N (y (x) , t)

∆T · kB

)
(2.22)

wherew is the Gaussian deposited during the simulation, and ∆T is called the bias temperature,

with the temperature dimensions, which is used to control the rate of the Gaussian height

scaling. Substituting equation 2.22 to 2.19, Vbias becomes [99, 100]

Vbias(y(x), t) = w0 · exp
(
N(y(x), t)

∆TkB

) ∑
t′=τ,2τ,...

t′<t

exp
(

−
Ncv∑
α=1

(ya(x, t) − y(x, t′))2

2σ2
a

)
(2.23)

Thus in well-tempered metadynamics, the Gaussians deposited along the histogramN(s(x), t)

will scale down by 1
N(s(x),t) and not like 1

t as in many other enhanced sampling techniques.

This is important because it scales the potential only for previously visited sites along the
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2.3 Metadynamics

configurational space of the CVs, allowing to fill any potential basins into which the CV move.

Well-tempered metadynamics can be seen as sampling the CVs at higher temperatures T+∆T .

Hence in the long time limit, the free energy is recovered by considering ∆T

F (y) = −∆T + T

∆T · V (y(x), t) (2.24)

In the long time limit Vbias(y) built converges to −∆T
T +∆T F (s). Additionally, the fluctuation

in the estimate of the F (y) is progressively damped since the Gaussian height is reduced.

Eventually, F ′(y) converges to F (y) because w height becomes negligible [85, 100].

The choice of ∆T is crucial since the larger the bias temperature, the faster the potential

basins are filled. The simulation becomes computationally more efficient; fewer MCS are

required to fill all the energy minima in F (y). However, the slower the fluctuations of the

estimated F (y) are damped. Furthermore, ∆T can introduce maximum energy deposited along

the configurational space of the CVs, ensuring that the system will not be biased to go into any

unphysical configuration. In practice, plain metadynamics can approximate the energy barriers’

magnitudes, thus selecting the ∆T accordingly. A better comprehension of the effect of ∆T is

achieved by examining two extreme values of ∆T [85, 99]:

• For ∆T → ∞: Direct metadynamics is recovered since the exponential in equation 2.22

will be close to 1. Hence the Gaussians deposited will have constant height.

• Similarly for ∆T → 0, simple MMC metropolis is recovered. This is because every time

a Gaussian will be deposited in N(y(x), t), the scaling will minimise the Gaussian into

0; thus, effectively, there will be no external bias to push the CVs out of equilibrium and

F (s) = T · kB ln(s(x)).
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CHAPTER 3

Metadynamics Analysis of Magnetic Anisotropy
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Metadynamics can be more apparent by considering a simple case study relevant to a spin-

lattice, as shown in figure 3.1. The physical system considered is a ferromagnetic system

with out-of-plane magnetisation mz , described with a Hamiltonian, including the Heisenberg

exchange and magnetocrystaline anisotropy terms. Using metadynamics, the scaling of the

effective anisotropy with temperature can be estimated using mz as the CV. This is because the

energy barrier for the magnetic spin crossing is set by Kani for a given temperature. The CVs

configurational space, y(x), is in the range of [−1, 1].
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Figure 3.1: Metadynamics procedure considering a ferromagnetic thin film a.System at the

equilibrium at −mz(T ) with the underlying FEL F (y) (black line). b, Gaussian deposited

which modify the underlying FEL F (y) → F ′(y) shown as the dashed grey line. c. The first

energy basin filled results in the CV moving to the second energy minimum region. d. the CV

fluctuates freely once all the energy minima are filled by the potential build, which in the long

time limit represents the FEL as shown in the equation.

In figure 3.1a, the underlying FEL F (y) that metadynamics is aimed to reconstruct is illus-
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trated with the solid black line. For a given temperature, the magnetic system is at thermody-

namic equilibrium magnetisation at ±mz(T ), and the CV (mz) will fluctuate within the energy

well due to the finite temperature. In the long-time limit, there is a small finite probability that

an event will occur where the magnetisation will switch due to temperature fluctuations. The

Néel Arrhenius equation gives the mean transition time τN of that event with the following

expression

τN = f0 exp
(∆E
kBT

)
(3.1)

where f0 is the attempt frequency and ∆E is the energy barrier in units of energy. However,

the mean transition time can be thousands of years. These events are called rare events; the

probability of sampling them is negligible. However, metadynamics accelerates the exploration

of these events by biasing the CV. As shown in figure 3.1 b, metadynamics deposits a Gaussian

centred at the CV value using equation 2.19. This modifies F (y) to F ′(y), which makes it more

favourable for the CV to explore other regions along y where the potential is lower. Eventually,

the potential build will fill the first energy minima, and the CV will move into the second energy

minimum, 3.1 c. Once all the energy basins are filled, the CV will fluctuate freely along its

configurational space since the F ′(y) is flattened. From figure 3.1 d, it can be seen that, indeed,

in the long time limit, the potential build is the inverse of the underlying FEL. However, when

more complex CVs are used, the underlined F (y) and the associated energy barriers can not

be estimated before the simulation.

As described here and in the methodology section, metadynamics biases the CVs to explore

the whole configurational space, which biases the physical system to explore its space. Thus,

metadynamics will try to sample the boundaries of the physical space at m(z) = ±1. For low

temperatures where mz(T ) is close to the boundaries of the configurational space, systematic

errors are introduced. These systematic errors at the boundaries affect the accuracy of the

estimated energy barriers and shape of the reconstructed FEL. These systematic errors are

avoided using the mirrored boundary conditions discussed in 3.2. Furthermore, the study of

the magnetic anisotropy scaling with temperature is also used as a model validation for the

code developed against conceptual algorithm errors and bugs by validating the Callen-Callen

theory, which shows how the magnetocrystaline anisotropy energy scales with temperature.
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3.1 Plain/Direct Metadynamics Test

Here, metadynamics was applied on a bulk ferromagnetic system with the CV set as the out-

of-plane magnetisation, mz . Thus the anisotropy scaling with temperature can be estimated to

validate the Callen-Callen theory.

In this chapter, the plain, tempered metadynamics and mirrored boundaries applied will be

discussed before presenting the final results of the anisotropy scaling.

3.1 Plain/Direct Metadynamics Test

A simple cubic 20×20×20 ferromagnetic bulk system at a finite temperature of T = 20K was

considered for testing the plain metadynamics code developed, and the ability of metadynamics

to reconstruct the expected FEL as illustrated on figure 3.1. This system’s thermodynamic

equilibrium normalised magnetisation ismz(T) = 0.70. The CV selected was the out-of-plane

magnetisation mz with a physical space m(z) ∈ [−1, 1]. As described, we know that the

expected free energy landscape will have two minima at ±mz(T); thus, by monitoring the mz

evolution during the metadynamics simulation, the algorithm developed is tested. It is expected

the metadynamics will fill the two minima, and once all minima are filled, the CV will freely

fluctuate along its configurational space. The test results are presented in figure 3.2.

The simulation was initiated with uniform magnetic spins along the positive z-direction,

figure 3.2 A.i. At A.ii, the system reached its thermodynamic equilibrium mz(T) = 0.70 for

the given temperature.

Region A is thus the first energy basin that CV is located. When the potential built is

comparable with the energy basin, the CV diffuses into the second energy minimum region

at y(x) = −mz(T). However, once the potential build fills the second energy minimum at

−mz(T), the CV fluctuates in y(x) freely, as shown in figure 3.2 C.

In region B, the CV fluctuations are more significant compared to region A. Region A

seems to be more smooth since we initiate the simulation with uniform magnetic spin config-

urations without relaxing our system. Hence, until the magnetisation reaches the mz(T), the

Gaussians deposited at the first 300 Monte Carlo steps have filled a part of the energy min-

imum at +mz(T). Thus, when the CV reaches the bottom of the energy well, the potential
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Figure 3.2: Collective Variable evolution along its configurational space y(x). Region A.i

shows the initial state of the simulation. A.ii, the system is relaxed in its thermodynamic

equilibrium. The CV reaches region B when the potential built at region A exceeds the energy

barrier set by the magnetocrystalline anisotropy, which results in the magnetic spin switch.

Region C shows the CV fluctuating freely along y(x).

added centred around the CV fills only the other half. It is worth noting that in the later sec-

tions, the lattice is first thermalised, and metadynamics is afterwards applied, which increases

the accuracy of the estimated free energy landscape.

A range of Gaussian amplitudes were considered, which affect the speed and accuracy of

the final FEL. For this test, we only test the evolution of the CV. This is because, as expec-

ted, plain metadynamics will overfill the potential landscape once all minima are filled since

it will continue depositing Gaussians until the simulation is stopped. This is shown in figure

3.3, where the shape of the resulting FEL is asymmetric and the energy barrier is two orders

larger due to overfilled potential landscape. However, it is also essential to test the plain meta-

dynamics since it is the base of our code and is later used to select the appropriate tempered

metadynamics parameters. Thus, a relatively large Gaussian amplitude of w = 1 × 10−24 J

compared to the magnetocrystalline anisotropy of the system Ku = 5 × 10−23 J with a depos-
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Figure 3.3: Plain metadynamics reconstructed FEL for a range of temperatures. Due to the

overfilled potential, the depth of the energy minima are significantly different, the shape of the

FEL is unsymmetric, and the expected energy barrier order is off by two orders.

ition stride of ω = 2MCS. These values selected since the evolution of the CV were tested

regardless of the accuracy of the resulting FEL but purely considering the simulation speed.

To conclude, the study of the CV evolution ensured that the implementation of direct meta-

dynamics was error-free since the simulation could explore and sample all the physical regions

of the CV space as expected, and the final shape of the FEL was as expected.
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3.2 Mirrored Boundary Conditions

Metadynamics biases the CVs to explore their configurational space y(x). Systematic er-

rors are introduced near the boundaries for temperatures where the thermodynamic equilib-

rium magnetisation difference from the boundary values is smaller than the Gaussian width,

|mz(T)| ⪆ 1 − σ. For higher temperatures where the |mz(T)| is lower, it is unprobable for the

system to reach areas close to the boundaries since it has to work against the entropy introduced

by the temperature. The systematic errors are due to the finite size of the Gaussians, which can

result in the CV getting trapped near the boundaries. Thus metadynamics can not converge

to the F (s) since the system is oversampled in regions near the boundaries, which affects the

accuracy of metadynamics. This limitation was overcome by employing mirrored boundaries

similar to the publication of Crespo et al. in 2010 [101]. Effectively the mirrored boundaries

build a repulsive potential in the boundaries allowing the CV to explore the physical space

y(x) without getting trapped in the boundaries, which can be considered unphysical in regions

where |mz| > |mz(T)| for finite temperatures.

The mirrored boundaries are implemented as an extended discrete landscape in mz, cover-

ing the range of -2.0 to 2.0 as illustrated in figure 3.4. Only the range -1.0 to 1.0 is physically

meaningful. When a Gaussian is deposited centred around the value of the CV within the

physical space, a second Gaussian is mirrored across the boundary with a centre of 2L0 − y for

negative CV values and 2L1 −y where L0 and L1 are the maximum and minimum region of the

CV configurational space. This avoids the potential and the spin system getting stuck near the

edges. This is because there is a potential build at |mz(T)| from the overlapped Gaussians near

the boundary, as shown by the solid blue lines in figure 3.4. This flattens out the free energy

landscape in these regions and prevents the CV values and spin system from getting trapped in

that region. If no mirrored boundaries are applied, the potential build near the edges will be

overfilled, as shown by the dashed red lines within the physical space region in figure 3.4.

In figure 3.4, the effect of the mirrored boundaries is shown, which helps to flatten the

region where |mz| > |mz(T)| by sampling the region with the overlapping Gaussians used

build the potential.

61



3.3 Well-Tempered Metadynamics Test

Physical Space

mz(T) mz(T)0 -1 -2+1+2

Collective Variable (mz)

Mirrored 
Boundary

Mirrored 
Boundary

Fr
ee

 E
ne

rg
y 

(J
)

Potential build (J)

without 
mirrored 

boundaries

Figure 3.4: Illustration of the effect of the mirror boundaries. The black plot represents the

FEL, and the blue line is the potential built near the boundary. The expected FEL near the

boundary without the mirrored boundaries is shown as red dashed lines within the physical

space denoted with the black dashed lines.

3.3 Well-Tempered Metadynamics Test

Having validated the plain metadynamics algorithm, the Gaussian amplitude tempering was

tested. A simple cubic 20x20x20 thin film was considered for testing the well-tempered meta-

dynamics functions. The initial Gaussian height set w0 = 1 × 10−25 J which is two orders

smaller than the Ku = 1 × 10−23 J. The small initial Gaussian height ensures that the poten-

tial landscape will not get overfilled. Additionally, a smaller initial w0 ensures that the initial

fluctuations of the estimated energy barrier will fluctuate less around the energy barrier value.

However, a small initial Gaussian amplitude significantly increases the time required to fill the

energy minima.

Figure 3.5 shows the Gaussian scaling. Regions A and B show that the CV fluctuations

inside the minima are approximate ≈ 0.3w0 − 0.5w0, which is a result of the width of the

well; thus, the Gaussian width is selected as an order smaller than this fluctuation σ = 0.03.

A range of bias temperatures, ∆T, were used as shown on 3.1. The values of the ∆T were

in the order of one larger of the minimum regions and similar to the exchange of the system

since the potential needs to exceed to exchange to flip the spins. Additionally, it is shown
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Figure 3.5: Gaussian amplitude evolution during the tempered metadynamics simulation. The

initial Gaussian height was set w0 = 1 × 1024 J. Regions A and B show the regions where the

CV was fluctuating inside the two energy minima. C represents the points in the simulation

where the CV was freely fluctuating in the configurational space, y(x).

that a ∆T with similar energy of the exchange of the system will minimise the stationary

fluctuations of the estimated F (y) with fewer Monte Carlo steps. Finally, mirrored boundaries

are applied to eliminate the boundary errors described in section 3.2. Having selected the

tempered metadynamics parameters, we test the Gaussian amplitude scaling as shown in figure

3.5.

The scaling trend of w0 can be seen along the dense area in figure 3.5b. This is because the

scaling of w0 occurs individually at every point along the histogram. The predefined histogram

has 2000 points since the CV y(x) ∈ [−1, 1], and the step size of the predefined histogram

N(y(x), t) is set as 0.001.

Regions A, B and C of 3.5 represent the same regions as in figure 3.2. Figure 3.5 a. shows

the first million MCS, which illustrates an important fact. The CV has a finite probability of

crossing the energy barrier due to the onset fluctuations of the magnetisation due to the finite

temperature effects before the energy minimum is fully filled with potential. This phenomenon

is clearly shown in figure 3.5 A.i, where the first energy basin is partially filled before the
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CV crosses the energy barrier, B.i. Thus the Gaussian height is recovered to the initial height

w0. After the second energy basin is partially filled, the CV transitions back to the first one,

A.ii, before it crosses again to the second, B.ii. Once the V (Y (x)) has filled both energy

minima partially filled, the CV crosses multiple times and samples the region between the two

minima and fully fills both minima. Eventually, w is reduced along the histogram, and its

effect becomes negligible, which ensures the potential landscape V (Y (x)) is not overfilled. If

the metadynamic parameters have been selected correctly, the energy barrier estimation will

converge to the solution with small onset fluctuations. It is also important the energy barrier is

crossed many times to sample the FEL more accurately.

Following the Gaussian scaling tests, the convergence of the energy barrier with magnetic

anisotropy constant Ku was examined. Figure 3.6 shows the results the same 20 × 20 × 20

simple cubic ferromagnetic thin film with Ku = 1.4×10−23J, Jij = 2.2×10−21J at 10K, with

various bias temperatures ∆T. As shown in 3.6, three ∆T temperatures were examined and

compared to the exchange energy of the system for the reasons explained. Following equation

2.24, we expect to converge to a reduced Ku based on the simulation temperature and the ∆T

value used; since in well-tempered metadynamics, the system is sampled at a higher effective

temperature due to the introduction of the bias temperature. The bias temperatures and their

expected convergence points calculated are presented in table 3.1.
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Numerical Details for ∆T

∆T (K) Calculated Convergence Point (J)

100 < Eex/kB 1.26 × 10−23

164 = Eex/kB 1.31 × 10−23

350 >> Eex/kB 1.35 × 10−23

Ku = 1.4 × 10−23J , Eex = 3.55 × 10−21J , T = 10K

1 Kelvin × kB ≊ 1.38 × 10−23 J

Table 3.1: Tempered metadynamics simulation parameters used to study the convergence of

the calculated energy barriers with magnetic anisotropy, Ku for a range of bias temperatures

∆T (plotted in figure 3.6). The calculated convergence points are the scaled Ku using the bias

factor for each ∆T as explained in section 2.3.4.

As seen in figure 3.6, the functions developed can accurately estimate the energy barriers

associated with the selected CV. In addition, the effect of the ∆T upon the speed and accuracy

of the simulation can be seen. For a ∆T < Eex, the estimation of the energy barrier converges

to the scaled Ku value shown as the red dashed line on figure 3.6 with the most minor onset

fluctuation at approximately 8×109 MC steps. By tunning the ∆T, the metadynamics solution

will converge to the scaledKu value. For higher values of ∆T, the energy barrier will converge

faster but with larger fluctuations which will eventually be minimised. Similarly, for smaller

values of ∆T metadynamics will converge to the scaled Ku slower (i.e. more MC steps), but

the fluctuations will be lower since the Gaussian are scaled down faster.

In comparison, for ∆T = 164K and ∆T = 350K, the energy barrier converges to the

scaled value of Ku approximately in 30 × 106 and 50 × 106 less MC steps with progressively

more significant onset fluctuations. This is because as ∆T increases, the rate at which the

Gaussian height is scaled down decreases.

An essential remark of ∆T in well-tempered metadynamics is that it can be used to predict

the maximum potential energy deposited. This control of the maximum potential deposited is

crucial for this project and any future continuation; it will allow sampling landscapes, including

skyrmions, without exceeding the energy required to annihilate a skyrmion.
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3.3 Well-Tempered Metadynamics Test

To conclude, the results presented in the figures 3.6 and 3.5 ensure that the code developed

is accurate without any errors.
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Figure 3.6: Energy barrier convergence with the expected values of Ku shown as dashed lines.

As seen in figure 3.6, the functions developed can give accurate estimations of the energy

barriers associated with the selected CV; if the metadynamics parameters are chosen wisely. In

addition, the effect of the ∆T upon the speed and accuracy of the simulation can be seen. We

get the highest accuracy with a high computational cost for a ∆T < Eex. In figure 3.6 (red

line), the estimated energy barrier converges at 8×107 MC steps with the highest accuracy (i.e.

less fluctuation around the convergence point (dashed red line). In comparison, for ∆T = Eex

and ∆T >> Eex, the energy barrier reaches the convergence points 30 × 106 and 50 × 106

less MC steps with progressively larger fluctuations. This is because as we increase ∆T, we

decrease the rate at which we scale down the Gaussian height.
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3.4 Magnetic Anisotropy Scalling

3.4 Magnetic Anisotropy Scalling

The final code validation and study of the anisotropy scaling was conducted by comparing the

tempered metadynamics results of the anisotropy scaling against the Callen-Callen theory using

the out-of-plane magnetisation as the CV. In 1965, Callen-Callen analytically showed that the

single-ion anisotropy energy exhibits a power scaling proportional to temperature according to

[102]

K ∝ M(T)3 (3.2)

whereK is the magneto-crystalline anisotropy energy, andM(T) is the thermodynamical equi-

librium normalised magnetisation for a given temperature. This temperature dependence of

anisotropy has been successful and demonstrated experimentally multiple times. However, the

Callen-Callen theory excludes any magnon-magnon interactions. For high temperatures rel-

ative to the Curie temperature of the system, the exponent differs from 3.2 to account for the

magnon-magnon interactions. Hence, in the final test, only the low-temperature limit, where

mz(T) ≈ 0.80, is considered to examine the power scaling law of K as shown in 3.2.

As explained, the associated energy barrier of the FEL is reconstructed using mz as the

CV is the magnetocrystaline anisotropy. Thus, the Callen-Callen theory is tested against the

energy barriers extracted from the FELs of a ferromagnet in a range of temperatures with meta-

dynamics, ensuring that the developed metadynamics code is accurate. Interestingly in 2019,

a similar study published at the same time this analysis had been started used metadynamics

to metadynamics to study the temperature dependence and spin re-orientation of the magnetic

thin film, using msaturation/mz as a CV [87].

In this test, the FELs of a 20 × 20 × 20 simple cubic lattice in a temperature range of 10K

up to 180K were reconstructed using the magnetic and metadynamic parameters shown in table

3.2.

For every temperature, 15 independent simulations were conducted. Their average recon-

structed FELs are shown in figure 3.7. The two minima on each FEL on the plot show the

thermodynamic equilibrium magnetisation,±mz(T), which decreases with increasing the tem-
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3.4 Magnetic Anisotropy Scalling

Tempered Metadynamics Parameters

winitial 0.5 × 10−24 J

σ 0.001

∆T 200K

Ku = 1.4 × 10−23J , Eex = 3.55 × 10−21J

Table 3.2: Tempered metadynamics and magnetic simulation parameters used for the magnetic

anisotropy scaling study

perature as expected. Similarly, the maximum point between the two minima decreases as we

expect the MAE to decrease, as the power law states. The ”crosses” on the two minima and

the maximum point are automatically placed from our analysis code in Python, which is used

to extract the MAE from these FELs. This code was developed to find the minima at each

individual FEL and the maximum point between the minima identified. The energy barriers

are then calculated by subtracting the minima values from the maximum value point.
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Figure 3.7: Reconstructed Free Energy Landscapes as a function of increasing temperature
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Figure 3.8: Temperature against magnetisation simulations data; red data points, plotted against

the extracted thermodynamic equilibrium magnetisations from the FELs reconstructed with

tempered metadynamics shown as black data points with their associated errors.

Additionally, plain Monte Carlo simulations were conducted to extract the thermodynamic

equilibrium magnetisation mz up to 550K to test if it matches with the mz from the minima

point in figure 3.7 and further validate metadynamics. Finally, the minimum magnetisation

points are plotted against mz(T) data from the plain Monte Carlo simulations in figure 3.8.

In figure 3.8, the extracted metadynamics data fit the mz(T) data, further validating our

code’s accuracy. The error in the data points is calculated as the standard error from the 15

independent metadynamics simulations. Additionally, from figure 3.8, the Curie temperature

of our system is found to be at 376K.

Finally, the MAE extracted from the FEL landscapes are plotted in figure 3.9. Every point

on the plot averages 15 simulations for every temperature, with the standard error of the MAE

calculated as the standard error between the 15 simulations. The fitting of the results is presen-

ted as the solid red line, and the theoretical prediction of the Callen-Callen theory as the dashed

yellow line. There is a perfect agreement between the Callen-Callen theory and our well-
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Figure 3.9: Magneto-Crystalline Anisotropy Temperature scaling. The dashed orange is a plot

of the Callen-Callen anisotropy scaling, and the black scatter points are extracted from the

FELs with the standard error from the 15 independent simulations. The fitting parameter of the

extracted points shows a perfect match between the Callen-Callen theory and the results from

metadynamics

tempered simulations.

In figure 3.9, it is also observed that the standard error decreases with increasing temperat-

ures. This is because the CV crosses the energy barrier more times in higher temperatures due

to the larger thermal fluctuations; thus, the better the sampling of the energy barrier. There-

fore, in principle, the longer the metadynamics simulation, the smaller the error will be since

the better the sampling of the energy barrier. Furthermore, since the reconstructed FELs have

a mirror symmetry at mz = 0, the simulations could have been conducted faster by setting

the CV physical space y(x) ∈ [0,−1] or [0,+1] since we are using the mirror boundaries.

Additionally, the CV of mz/ms used in the recent publication samples the maximum point of

the FELs shown in 3.7 better than the CV used in this study. However, this study aimed to

validate our code developed and test the metadynamics parameters’ effect on the accuracy of
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3.4 Magnetic Anisotropy Scalling

metadynamics. Thus the mz was selected for our study and validation.

In this project, metadynamics is used with more than one CV. Having validated the meta-

dynamics code using a single CV and studied the magnetic scaling using metadynamics, the

code using multiple CVs is tested. To do so, the FEL, as in the tempered metadynamics test,

was reconstructed using the mz and the perpendicular to mz , m[001] as CVs. The reconstructed

free energy landscape is presented in figure 3.10.
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Figure 3.10: 2D and 3D reconstructed FEL using tempered metadynamics with two CVs used.

In figure 3.10, the thermodynamic equilibrium at the given temperature is at mz(10K) =

±0.98. The minimum energy path is along the ⟨m⟩ where ⟨m⟩ = (m2
z + m2

⊥)0.5 = 1. The

area below the minimum energy path where |m| < ⟨m⟩ has a high energy cost as the system

must work against the exchange energy to be in that area. The region above the minimum

path |m| > ⟨m⟩ work to align the spins against the entropy of the system introduced by the

finite temperature. Thus the anisotropy energy of the system can be calculated by considering

the maximum and minimum values along the minimum path, which effectively describes the
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Figure 3.11: Reconstructed FEL using the tempered metadynamics with the out-of-plane mz

and the magnetisation perpendicular to mz as CVs as a function of increasing temperature.

anisotropy energy barrier. Finally, the FEL change as a function of temperature is presented

in figure 3.11. As expected, the mz(T) keeps decreasing with increasing temperature. For

mz(T > Tc) ≈ 0 since the system has become paramagnetic as shown in figure 3.11
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CHAPTER 4

Skyrmion Metastable Energy Paths
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4.1 Topological Charge Calculations

Skyrmions are defined by their integer topological charge, Q. The metastable skyrmion en-

ergies and all the transition energy paths are sampled and calculated with metadynamics by

selecting CVs that fully describe the phase transition between a skyrmionic state to a ferro-

magnetic state and distinguish between different states with the same Q and vice versa. During

these transitions, there is a change in Q and the out-of-plane magnetisation mz . If only Q is

used as a CV, the resulting energy barrier estimation will have large margins of errors since the

transition is not fully described due to the hidden degrees of freedom; resulting in overfilled

2D FEL minima, as described in section 2.3.1 and schematically illustrated in figure 2.3 since

they will include the sampling of the hidden degree of freedom. This is because for a certain

value of Q there are many skyrmion states due to the broad range of energies corresponding to

different sizes of skyrmion and the possible chiral features in the lattice, which are not distin-

guished using only Q as a CV. Hence Q and mz must be used as CVs to distinguish between

different states with the same topological charge values resulting in 3D reconstructed FEL.

Additionally, in principle, the configurational space ofQ spans between [−∞,∞]; thus, re-

stricting the configurational space with hard boundaries will break the ergodicity of the simula-

tion as well as introduce large systematic errors near boundaries of the set topological charge’s

configurational space.

In this chapter, a description of the possible ansatzes to calculate Q in a spin-lattice are in-

troduced to explain the selection of the calculation ansatz ofQ used as a CV. Then the boundar-

ies constructed to ensure that the ergodicity of the system is not hindered while sampling only

a part of the topological charge configurational space of interest are introduced. Finally, the

results, using the methods described, are presented.

4.1 Topological Charge Calculations

Often, the topological charge is estimated by coarse grain sampling, which is unable to re-

solve small topological features which are of interest on a lattice. But estimating topological

charge on a discrete and finite system is by no means a trivial problem. One way to estimate

topological charge has been proposed in 1981 by Berg, where a quasilocal definition of topo-
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4.1 Topological Charge Calculations

logical charge on a finite lattice with periodic boundary condition, which results in an integer

value of topological charge, has been proposed [103]. Similarly, in the continuum limit, coarse

grain sampling for the topological charge yields an integer value, but on a finite lattice, without

periodic boundary conditions, estimators of topological charge can have non-integer values.

In this subsection, the two most commonly used ansatzes in condensed matter magnetism

and their use as CVs are discussed.

4.1.1 Geometrical Definition of Topological Charge

The geometrical definition of topological charge is based on computing the spherical angles,

qijk spanned by triplets i, j, k of neighbouring spins S, per lattice point. Then the topological

charge can be estimated using the following expression [104]

Q = 1
4π

∑
⟨ijk⟩

qijk (4.1)

where the spherical angles qijk of each triplet are calculated as

tan
(
qijk

2

)
= Si · (Sj × Sk)

1 + Si · Sj + Si · Sk + Sj · Sk
(4.2)

where S are the directions of each spin. Equation 4.1 counts the number of times the spin dir-

ections cover a unit sphere. In practice, this algorithm takes two triangles per lattice site, where

every triangle is defined by three neighbouring spins, covering the whole lattice area. However,

it is necessary to avoid double counting areas when summing up all the triangle contributions

[104]. The main benefit of this algorithm is that it considers individual lattice points, resulting

in integer values of Q, does not include computationally expensive differentiations and is easy

to compute numerically on a finite lattice of any geometry with or without periodic boundary

conditions.

This algorithm was first used for magnetic skyrmions in a lattice by J. von Kim in 2020

within the micromagnetics framework [104]. As demonstrated, this calculation offers a more

reliable and accurate way of calculating the topological charge in finite temperatures, which

is used to monitor Q. However, here Q is used as a CV which drives the dynamics of the

lattice. Thus when this algorithm is used as a CV, two limiting cases are encountered, which
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4.1 Topological Charge Calculations

were reported in the original paper in 1981 by B.Berg and occurred when the nominator or

denominator in equation 4.2 are [103]

Si · (Sj × Sk) = 0 , 1 + Si · Sj + Si · Sk + Sj · Sk ≤ 0 (4.3)

For these exceptional spin configurations, the calculated spherical angle qijk lies along the

complex plane [103]. When these limiting cases occur in the metadynamics simulation, single

spins change the topological charge value and appear ”frozen”, as shown in a snapshot of a

simulation of a nanowire at 40K where the CV was set as the geometrical definition of the

topological charge in figure 4.1

mz

X

Y

Figure 4.1: Snapshot during a metadynamics simulation of a nanowire with the topological

charge geometrical definition set as a CV, demonstrating the limiting cases of the algorithm

when used as a CV

Additionally, this algorithm results in integer values of topological charge. Thus it can not

be used as a CV since it can not describe the slow modes of the transition from the skyrmionic

state to the ferromagnetic and vice versa. However, the algorithm is still of high importance

for this and any continuation of this project, as it will be discussed in section 6.

4.1.2 Finite Difference Topological Charge Calculation

In the continuum limit, the topological charge is defined as

Q = 1
4π

∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dxdy (4.4)
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4.2 Restoring Boundary Conditions

Using finite difference approaches to estimate the derivatives and considering the hexagonal

lattice, equation 4.4 can be approximated as with the following expression [105]

Q = 1
4π
∑

i

[(S (ri + u1 − u2) + S (ri + u2) − S (ri − u1 + u2) − S (ri − u2)
2

)

×
(S (ri − u1 + u2) + S (ri + u2) − S (ri + u1 − u2) − S (ri − u2)

2
√

3

)] (4.5)

where u1 = x̂ and u2 = 1
2 x̂ +

√
3

2 ŷ are the hexagonal lattice vectors within the cartesian plane

as shown in the supplementary information of S. Rohart et al. in 2016 [105]. Compared with

the geometrical definition of the topological charge, this calculation is a coarse grain estima-

tion, thus being sensitive to thermal fluctuations. Because of that, the topological charge values

calculated using 4.5 are continuous, which can be used to sample the slow modes of the trans-

ition from a ferromagnetic state to a skyrmionic state and vice versa. It is often reported that the

skyrmion creation process is not continuous. However, as discussed in section 4.3, the metady-

namic simulations demonstrate the non-continuous process during the skyrmion creation is the

generation of a Bloch point which is a single abrupt event. Then the skyrmion is stabilised by

generating the skyrmionic spin profile around the Bloch point. Thus the continuous calculation

values of topological charge are required to fully describe the transition from a ferromagnetic

to a skyrmionic state. In contrast, using the geometric definition of the topological charge, we

only get Bloch points but not a stable skyrmion configuration similar to what is shown in 4.1.

The drawbacks of the finite difference calculation of Q are that it is computationally ex-

pensive and since it is sensitive to thermal fluctuations, errors arise in the calculation of the

topological charge for temperatures near the TC, as reported and discussed in section 6 [105].

However, this is the only topological charge calculation that can be used as a CV in a spin-

lattice to sample the transition from a ferromagnetic to a skyrmionic state.

4.2 Restoring Boundary Conditions

The configurational space of mz is within the range of [−1,+1]. The mirror boundaries intro-

duced in section 3.2 are used to reduce the systematic errors in low temperatures when the sat-
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4.2 Restoring Boundary Conditions

uration magnetisation is near the boundaries. In principle, the configurational space of the to-

pological charge, Q is within [−∞,+∞]. However, only the region within y(Q) = [−2.5, 2.5]

is of any interest since a finite lattice is wished to be sampled, which metadynamics will explore

by creating up to two skyrmions. This is because metadynamics is restricted by the compu-

tational power available, and the smaller the lattice, the faster the metadynamics simulations.

Thus if the Q range is expanded and more than two skyrmions are introduced, larger lattices

must be used to avoid the interaction between skyrmions which will affect the reconstructed

FEL. Thus boundary conditions must be applied to ensure that only the region of interest is

sampled.

If no boundary conditions are used, the system will explore increasingly large space without

converging, and two more major limitations arise from the predefined potential histogram

N(y(Q), t). First, in principle y(Q) = [−∞,+∞], however, N (y(Q), t) has a finite size

divided in equally spaced bins where the value of the Q during the metadynamics simulations

is interpolated to find the centre which the Gaussian will be deposited and stored. Hence, anyQ

value larger or lower than the limits of the potential histogram will be interpolated at the edges

of N(y(Q), t) during the simulation resulting in large margin of errors. Additionally, once the

system creates a spin texture that results in a |Q| > 2.5, the bias potential built near the bound-

aries of N(y(Q), t) will repulse the system from adapting any configuration within the range

of interest within the y(Q) = [−2.5, 2.5] (i.e. potential will be continuously accumulated at

the boundaries of N(y(Q), t)).

Similarly, if hard boundaries are used by setting a constant large potential at the edges of

the y(Q) to restrict the system from adapting spin configuration, which results in Q beyond

the range of interest, two main limitations will occur. First, the systematic error at the bound-

aries will be large since the region around the boundaries will be oversampled. Secondly, the

ergodicity of the system will be hindered, making the metropolis monte carlo algorithm invalid.

To resolve these issues, we use restoring boundaries developed to sample only the region of

interest without breaking the system’s ergodicity, which procedure is illustrated in the schem-

atic in figure 4.2. These boundaries work similarly to a harmonic spring potential, allowing

the system to explore regions outside a defined region but pushing the system back towards
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4.2 Restoring Boundary Conditions

the region of interest. The restoring boundaries were inspired by the recent study where meta-

dynamics applied in a Quantum Chromodynamic System (QSD) to overcome the so-called

topological freezing observed in high energy physics, where a similar boundary condition was

used [97].

Here the restoring boundaries use the Vbias built within the N(y(Q), t) to alter the metro-

polis monte carlo simulation transition probability in order to bias the system into exploring

the region of interest. When the system creates a spin configuration resulting in the CV value

beyond the range of y(Q), a constant restoring potential Vres(Q), which strength depends on

the distance between the upper and lower thresholds Qth from the CV value of calculated is

used. Here the upper and lower Qth define the range of the y(Q) sampled. The Vres(Q) is

given by the following expression

Vres (Q) =


Vres (Q) = k ∗

(
y (Q) −Qthr

)2
+N

(
Qthr, t

)
, if |Q| ≥ |Qthr,

Vres (Q) = 0, otherwise.
(4.6)

where k is a dimensional constant, y (Q) is the calculated CV value larger than the threshold set

Qthr and N
(
Qthr, t

)
is the accumulated bias potential on the histogram at the upper or lower

Qthr during the MC step t. While the system configuration results in y(Q) larger than the |qthr|

no Gaussian are accumulated in the N(y, t), and the metropolis transition probability is biased

with the Vres instead of the Vbias. These boundaries allow the system to explore all possible

configurations, ensuring that the ergodicity is not broken. However, the restoring potential push

the system back into the configurational space of interest, which is sampled.
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Figure 4.2: Restoring boundary conditions schematic

4.3 Metastable Skyrmion Free Energy Landscapes

For this investigation a 65 × 65 × 1 hexagonal single-layer lattice with periodic boundary con-

ditions applied along the x and y axis with the magnetic parameters shown in table 4.1 The

Magnetic Parameters

Exchange Energy J = 13.00 meV

Anisotropy Ku = 0.09 meV

DMI D = 0.811 meV

Table 4.1: Magnetic parameters used for the results in sections 4.3 and 5. As it is demonstrated

in a paper that uses GNEBM, these parameters can host metastable skyrmions; thus selected

for the following studies [2].

FELs were reconstructed using well-tempered metadynamics with the simulation parameters

presented in table 4.2 for temperatures of 16K to 54K. For each temperature, 10 independent

simulations were run. As shown in table 4.2, 190 million MC steps were run. This ensured that

the whole FEL for each simulation was sampled. To ensure the FEL is fully sampled for each

temperature, the relative Gaussian amplitude tempering is plotted as shown in figure 4.3 c. d.
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4.3 Metastable Skyrmion Free Energy Landscapes

for 26K and 48K, respectively. It can be seen that the relative Gaussian tempering within the

whole FELs is below 0.1 ∗w, showing that all potential wells are filled. For magnetisation val-

ues larger than thermodynamic equilibrium magnetisation mz > |mz (T ) | the system needs

to exceed the entropic energy, which is a highly unprobable configuration, which is evident

in figure 4.3. The errors in the average landscape for each temperature are calculated as the

standard errors for each point and are shown in figure 4.3 a. and b. for temperatures 26K and

48K, respectively. This error could be further reduced by running the simulations for more

MCS, reducing the amplitude of the initial Gaussian amplitude and decreasing the bias temper-

ature ∆T . However, these improvements would significantly increase the computational time

required for the simulations; each independent simulation required fourteen days (336 hours)

of computations to finish on the ARC4 platform, part of the High-Performance Computing

facilities at the University of Leeds, UK.

Metadynamics Parameters

MC Steps 190 × 106 MCS

Gaussian Deposition stride τg = 1

Gaussian Amplitude ω = 0.1meV

Gaussian Width (Q) σQ = 0.1

Gaussian Width (mz) σmz = 0.05

Bias Temperature ∆T = 2500K

Table 4.2: Well-tempered metadynamics simulation parameters for the metastable skyrmion

energy simulations.

Figure 4.4 presents an average 3D FEL. The colour map shows the free energy difference

∆F . The deep blue areas along the FEL in figure 4.4 show the region where the metastable

spin excitations can be stabilised. All the other coloured shaded areas show the less prob-

able spin configurations, which are not metastable. Near the top and bottom areas along the

y − axis, the dark red region shows the high entropy cost required to push the mz in values

greater than the saturation magnetisation |mz(T )| for a given temperature as it is also shown

in section 3. For Q = 0, there are three potential wells corresponding to the trivial FM states
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Figure 4.3: a. and b. show the standard error calculated from the independent metadynamics

simulations where, as c. and d. show the average Gaussian amplitude tempering, demonstrating

that metadynamics has explored the whole FEL. The plots at e. and f. show the average FELs

at 26K and 48K, respectively.
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at the thermodynamics equilibrium magnetisation for each temperature, mz(T ) and a chiral

domain intermediate state. Interestingly, the magnetisation reversal does not show coherent

rotation. Instead, a Chiral Domain (CD) is formed, which expands to revert the out-of-plane

magnetisation. As is shown in section 5.1, this is expected due to the DMI present, which

lowers the energy of the out-of-plane magnetisation reversal by forming the metastable CD, as

shown in figures 5.6 and 5.7. For Q < 0 and mz > 0, up to two skyrmions are formed with

negative polarity at the point Sk1− and Sk2−. A diagonal mirror plane symmetry is observed

as expected due to themz reversal, where skyrmions with positive polarity are formed at points

Sk1+ and Sk2+. The surface along the y-axis between ±0.25 ≤ mz ≤ ±0.7 at points Q = ±1

and Q = ±2 is shallow. This shows that the skyrmions in this lattice are soft, meaning that

small energies are required to expand or contract the skyrmion radii.

Additionally, antiskyrmions form when metadynamics pushes the system to explore the

regions of the FEL for the same sign of mz and Q. These antiskyrmions are not stable since

at ASk1± and ASk2± points, there are no minima observed. However, the formation of the

antiskyrmions highlights that metadynamics can be used to explore all possible spin configur-

ations, which no other study has demonstrated before for magnetic skyrmions and topological

spin structures.

Two energy paths are observed as shown in figure 4.5, identified using the MEPSAnd

python interface [5]. MEPSAnd is a minimum energy path analysis path code that offers a

Python interface [5], which is used here to automate the exploration of the energy paths in the

reconstructed FEL and identification of the energy minima points used to calculate the energy

barriers present. MEPSAnd calculates the minimum energy path by finding the nearest energy

minimum neighbouring points along the FEL between two energy minima regions.

The first energy path is shown in figure 4.5 a. and b. where first a Bloch point is created,

which results inQ = ±1 for themz = ±mz(T ). Once the Bloch point is created, a skyrmion is

created around this point resulting in the reduction of the ±mz(T ) due to the opposite polarity

of the skyrmion with respect to the FM±. This energy path is the only energy path sampled in

the studies using the GNEBM [2, 3, 54] and in the early experimental observation of skyrmions

in low temperatures, this skyrmion creation has possibly occurred. The second energy path is
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Figure 4.4: a. Reconstructed average of 10 independent simulations FEL indicating the loca-

tion of the energy minima along the FEL where metastable spin textures are stabilised and b.

shows their spin configuration. The abbreviations FM, Sk, ASk, and CD correspond to Ferro-

magnetic, Skyrmion, AntiSkyrmion and Chiral Domain. The ± under script states the polarity

of the Sk and ASk and the sign of mz for the FM states. Similarly, the numbering on the Sk±

and ASk± shows the number of spin textures.
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observed for temperatures higher than 36K, approximately 0.25 ∗ TC . At higher temperatures,

the thermal fluctuations increase resulting in chiral spin formation in the opposite mz direction

with respect to the FM state, as also shown in section 5.1. The second path in figure 4.5 c.

and d. shows that these clustered spins can form a skyrmion. It can be argued that this trans-

ition path occurs experimentally, where skyrmions are created with a local laser pulse [106],

which monumentally increases the temperature locally, which can result in these chiral fea-

tures, which can then stabilise a skyrmion, as shown in our simulations or where field cycling

protocols generate maze domains from which skyrmions are formed [107]. Similarly, skyrmi-

ons are experimentally created using the magnetisation reversal process, in which skyrmions

are created during the reversal. Another feature observed in figure 4.5 it can be seen that the

deep blue regions area at the metastable states gets larger with increasing temperatures. This is

due to the onset of thermal fluctuations and thermally activated skyrmion modes. Additionally,

to the paths described, there are more symmetrically equivalent paths along the FELs. How-

ever, these paths are highly unprobable, and the thermal fluctuations in higher temperatures

result in large margins of errors which limits their accurate identification and quantification of

the energy barriers associated with these paths.

Figure 4.6 show the 3D projections of the first energy paths for temperatures up to 36K.

For temperatures up to 26K, the skyrmion creation has an additional energy barrier to exceed

before a skyrmion is stabilised. This is shown in figure 4.6 a. where the red scatter points

show the 3D projection of the transition from the FM± to Sk1±. Physically, the transition

occurs by creating a Bloch point at Q = ±1 and |mz(T )| point. Following the creation of the

Bloch point, the additional energy barrier ≈ 50meV need to be exceeded in order to continue

in the stabilisation of the skyrmion. However, this small energy barrier becomes negligible

for temperatures higher than 26K due to the increasing thermal fluctuations. Similarly, the 3D

projections of the second energy paths observed in temperatures larger than 36K are presented

in figure 4.7, where the 3D projections of the transitions from a single into two skyrmions are

not plotted for clarity. Comparing figure 4.7 a. with b. it can be seen that the skyrmionic state

becomes more stable than the ferromagnetic. This can be explained by the entropic barrier,

which increases for a temperature range, which has been shown both experimentally [82], and

85



4.3 Metastable Skyrmion Free Energy Landscapes

−2 −1 0 1 2
Topological Charge, �

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

M
ag

ne
ti 

at
io
n,
 �

�

FM�

FM	


�

���	 ���	

����
����

16K

−1250 −1000 −750 −500 −250 0
�� (meV)

−2 −1 0 1 2
Topological Cha ge, �

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

M
ag

ne
tis

at
io

n,
 �

�

FM�

FM	


�

���	 ���	

����
����

36K

−1250 −1000 −750 −500 −250 0
�� (meV)

−2 −1 0 1 2
Topological Cha ge, �

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

M
ag

ne
tis

at
io

n,
 �

�

FM�

FM	


�

���	 ���	

����
����

38K

−1250 −1000 −750 −500 −250 0
�� (meV)

−2 −1 0 1 2
Topological Charge, �

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

M
ag

ne
ti 

at
io
n,
 �

�

FM�

FM	


�

���	 ���	

����
����

54K

−1250 −1000 −750 −500 −250 0
�� (meV)

a. b.

c. d.

Figure 4.5: Reconstructed FELs using tempered metadynamics. Each FEL is an average of

10 independent simulations. Plots a. and b. show the first energy path observed, where a

Bloch point initiates the skyrmion creation. Similarly, c. and d. show temperatures larger than

36K where the second energy path is observed. The energy paths were identified using the

MEPSAnd python interface [5]
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Figure 4.6: Diagrams showing the FEl at a. 16K and b. at 28K and the 3D projections of the

magnetisation reversal energy path with the blue scatter points, the FM± to Sk1± transition

path with the red scatter points and the Sk1± to Sk2± with the green scatter points.
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Figure 4.7: Diagrams showing the FEl at a. 38K and b. at 52K and the 3D projections of the

magnetisation reversal energy path with the blue scatter points, the FM± to Sk1± transition

path with the red scatter points.

theoretically [4], that is the main contributor to the skyrmion stability. Figure 4.8 shows the

free energy difference of the points along the minimum energy paths for the transition from

FM± to Sk1± and Sk2± clearly shown that as the temperature increases the skyrmionic spin

configurations become more stable relative to the FM±. Another, in figure 4.7, it can be seen

that the energy minima along the x − axis are uneven between the points at Q = ±1 with

Q = ±2. This is due to the finite lattice, which makes two skyrmions energetically more

costly in this lattice size and reflects the possibility that the skyrmions interact due to the lattice

confinement.

From the reconstructed FELs, the creation and annihilation energies are calculated as the

difference between the maximum and minimum points along their transition paths. The results

are presented in figure 4.9 where a. and c. show the energies required to create single and two

skyrmions within the lattice. Similarly, the energies required to annihilate the skyrmions are
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shown in figure 4.9 b. and d. for single and two skyrmions, respectively. Each point in the

plots in figure 4.9 is the average of the energy barriers calculated for the spin configurations

with opposite polarity (i.e. Sk1+ and Sk1−) and the errors are standard errors. The standard

errors are not calculated from the averaged FEL at each temperature. Rather, the energy barriers

of the 10 individual FELs for each temperature are extracted, and the standard errors of those

barriers are calculated. This ensures that the errors will not be overestimated. For both the

Sk2± and Sk1±, the creation energy is reduced with increasing temperature. This is expected

since the results discussed later in chapter 5 show that the thermal fluctuations leading to the

chiral features in the opposite polarity relative to the ferromagnetic polarity can get stabilised

into a skyrmion, thus with more thermal fluctuations, less additional energy is required to

create skyrmions. On the contrary, for a single skyrmion, the annihilation energy increases with

increasing temperatures up to 36K, where the first energy path is more energetically favourable.

For temperatures higher than 38K, the annihilation energy slowly decreases but is still larger

than the lowest temperature (16K). Similarly, as shown in figure 4.9 d. for two skyrmions,

the annihilation energy increases up to 30K and then is reduced with increasing temperature.

However, the annihilation energy for two skyrmions is half compared to a single skyrmion,

which can be due to the small lattice size.

Figure 4.10 shows the crossover between the two different nucleation and annihilation paths

at temperatures below 38K and highlights the extra energy that is required to nucleate or an-

nihilate a single skyrmion with the second energy minimum path for each case observed in

diagrams 4.5 4.6 and 4.7. As shown in figure 4.10 a., shows that for temperatures below 36K,

the creation energy via domain nucleation paths requires more energy than the Bloch point path.

Similarly, for temperatures below 36K, as shown in figure 4.10 b., the skyrmion annihilation

requires more energy to get annihilated via a domain.
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Figure 4.8: Plots of the free energy difference along the topological charge coordinate from

the FM state to the Sk±1 and Sk±2. The red data points represent the maximum free energy

difference ∆F points between the FM state and Sk±1.

The trend of the skyrmion annihilation energy with increasing temperature is shown in

figure 4.9 b. and d. further validates the studies [3, 82] that showed that the difference in

configurational entropy help to stabilise skyrmions. If the internal skyrmion energy was the

only parameter responsible for the skyrmion stability, the energetics of the lattice with and

without a skyrmion as a function of temperature should show an order parameter transition.
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Figure 4.9: Plots of the calculated energy barriers from the FELs reconstructed with meta-

dynamics as a function of temperature. Plots a. and b. present the creation and annihilation

energy barriers for the single skyrmion formation and annihilation. Plots c. and d. show the

energy barriers for the formation and annihilation of the two skyrmions.

Figure 4.11 a. and b. show the DMI and anisotropy energy as a function of temperature for

a lattice with a skyrmion (orange scatter data points) and a lattice with a uniformly initialised

ferromagnetic spin alignment. The lattice used for the results shown in figure 4.11 is the same

65 × 65 × 1 used for this section, with the same magnetic parameters. For these results, the

MMC simulation (without metadynamics) was used to thermalise the lattices for 500.000 MC

steps. In the lattice with the skyrmionic spin texture, the skyrmion was initialised using the

skyrmion profile as explained later in section 6.1. However, in figure 4.11 a. and b. at 82K,

it can be seen that the skyrmion got annihilated prior to the lattice thermalisation; highlighting

the importance of generating a thermalised lattice with a skyrmion to ensure that the skyrmion

will not get annihilated prior to the lattice thermalisation which is further discussed in chapter

6.
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Figure 4.10: Skyrmion a. creation and b. annihilation energies via domain and a Bloch point

path with the standard error calculated from the 10 independent simulations.
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Figure 4.11: Comparison of the a. DMI energy and b. effective anisotropy energy against

the temperature for the 65 × 65 × 1 lattice initialised with a skyrmionic spin texture and a

uniform ferromagnetic colinear spin alignment shown as the orange and blue scatter points,

respectively.

As shown in figure 4.11 b., the anisotropy energy is reduced with increasing temperature in

both lattices due to the increasing thermal fluctuations resulting in individual spin orientations

away from the easy axis. The difference in the anisotropy energy between the two lattices is

due to the presence of the skyrmion. The DMI energy is lower for the lattice with a skyrmion

(orange data points) than the lattice with the ferromagnetic alignment due to the collinear spin

alignment (blue data points). As the temperature increases, the DMI energy for the skyrmionic

lattice increases due to spins within the skyrmion subjected to thermal fluctuations, which de-

form the skyrmion increasing the DMI energy of the lattice. On the contrary, for the ferromag-

netic lattice where all spins are aligned collinearly, the DMI energy is reduced with increasing

temperature due to the formation of the chiral spin features, which is later reported in chapter

5 where the study of the magnetisation reversal with metadynamics showed the formation of

these chiral spin features. Despite the analysis of the energetics trends in figure 4.11; it is

clearly shown that the skyrmion internal energy is not the detrimental factor in the skyrmion

stability which is another evidence of the validity of the studies [4, 82] which demonstrated

that the skyrmion stability is due to the internal and the entropic barrier.
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CHAPTER 5

Magnetisation Reversal with DMI

94



In section 4, metadynamics revealed that the magnetisation reversal in a system with DMI

occurs by the mediation of a metastable chiral domain state from which the magnetisation

reversal occurs by the expansion of this chiral domain. To further investigate this finding, the

system as in section 4 is tested with and without DMI. These simulations were conducted on

a 65 × 65 × 1 hexagonal lattice with periodic boundary conditions applied along the x and y

directions, and the magnetic parameters are presented in table 4.1.

First, the Currie temperature with and without DMI is investigated using the Metropolis

Monte Carlo algorithm to estimate the thermodynamics equilibrium magnetisation for a range

of temperatures from 5 − 295K. The results are plotted in figure 5.1 for both systems and the

magnetic susceptibility is calculated with the following expression

χ = ∂⟨M⟩
∂T

= 1
kBT

[
⟨M2⟩ − ⟨M⟩2

]
(5.1)

where ⟨M⟩ denotes the average magnetisation for a given temperature. Each simulation was

initiated with uniform spin alignment along themz = +1 direction, and the system was therm-

alised for 90×104 MC steps. Without the DMI interaction in the system Tc ≈ 156K. Interest-

ingly with the DMI, the Currie temperature is reduced to Tc ≈ 136K with a phase transition

occurring before it reaches the Tc, as indicated from the χ plot, which has two peaks in figure

5.2 a.; the first indicated with blue dashed lines and the second (Tc) with the black dashed line

in figure 5.2 a. This is explained by investigating at the spin vector plots in figure 5.2 where

a-c are the spin vectors for the lattice without DMI, and d-g is the lattice with DMI for se-

lected temperatures bellow and above Tc. Thus, the reduction of the TC could be due to the

DMI, which tends to stabilise non-parallel arrangement of spins; resulting in a lower distance

to revert the spins.

For the lattice without the DMI, as is expected, it can be seen that approximately 0.90 · Tc

in figure 5.2 a., there are few spins crossed in the negative mz direction reducing the overall

magnetisation without the spins having any correlation. Similarly, as the temperature increases,

there is more randomness in the spin directions, and for T > Tc, the system has become

paramagnetic. On the other hand, for the lattice with the DMI at temperatures higher than

0.60 ∗ Tc the spins that cross in the negative mz direction cluster together and form a small

local region where chirality is observed as shown in 5.2 d. As more spins are crossing to the

95



Temperature (K) Temperature (K)

N
or

m
al

ise
d 
𝑚
!

N
or

m
al

ise
d 
𝑚
!

𝜒 𝜒

a. b.With DMI Without DMI

Figure 5.1: Plots showing the susceptibility and magnetisation against temperature for the

lattice a. with DMI and b. without DMI. The black dashed line indicates the Tc. In a., the blue

dashed line indicates a phase transition that the system before reaching the Tc

negative mz direction, this effect is becoming more evident as in 5.2 e. Even for temperatures

up to 0.95 ∗ Tc, the spins form local chiral domains as it is shown in 5.2 f. It is only for

temperatures higher than 1.075 ∗ Tc that the system becomes paramagnetic, as is shown in 5.2

g. This suggests that the system has to overcome two energy minima to go to a paramagnetic

phase similar to the magnetisation reversal seen in section 4 and also evident from figure 5.1 a.

However, the Tc of the system is at ≈ 136K. The local chiral domains and spin directions that

are seen for temperatures higher than the Tc are instant, unstable and only create noise near the

Tc as seen in figure 5.1.
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a. 140K (T < TC) b. 150K  (T ~ TC) c. 170K (T > TC)
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Figure 5.2: Spin vector plots for a range of temperatures from the lattice simulations without

DMI a-c and with DMI d-g.
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5.1 Metadynamics Analysis of the Magnetisation Reversal

Next, well-tempered metadynamics is applied in both systems with and without DMI with the

CV set as the mz with mirrored boundaries applied to compare their magnetisation reversal

transitions and to quantify the associated energy barriers in each case. For all the simulations,

the magnetic parameters shown in table 4.1 are used. The metadynamics and simulation para-

meters are shown in table 5.1

Metadynamics Parameters

MC Steps 110 × 106

Gaussian Deposition stride τg = 5

Gaussian Amplitude ω = 0.01meV

Gaussian Width σ = 0.05

Bias Temperature ∆T = 1000K

Table 5.1: Well-tempered metadynamics simulation parameters for the magnetisation reversal

simulations with and without DMI using the out-of-plane magnetisation as a CV with the

mirrored boundaries.

5.1.1 Lattice without DMI

Starting with the lattice without DMI, the same FEL as seen in section 3 is observed with two

energy minima at the thermodynamic magnetisation for the temperature of the simulation. For

every temperature, 10 individual simulations are run. Figure 5.3 shows the set of the individual

simulations for the 50K and 100K simulations, and the standard errors of these simulations

are shown in figure 5.4. As can be seen, the reconstructed FEL of each simulation converges

almost perfectly with the others. It is worth noting that for intermediate temperatures, the

standard error from the 10 individual simulations is reduced due to the more frequent crossing

of the energy barrier. Finally, the calculated energy barriers are plotted in figure 5.5, with the

energy barrier reducing with increasing temperatures. Additionally, it can be clearly seen that

for lower temperatures, the errors are higher due to the less frequent crossing of the energy
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Figure 5.3: Set of the 10 independent well-tempered simulations for a. 50K and b. 100K

showing the convergence of the FELs.
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Figure 5.4: Standard error calculation shown as the red area along the FEL. The blue and green

crosses show the maximum and minimum energy points used to calculate the associated energy

barriers.

Figure 5.5: Plot of the calculated energy barriers (meV) scaling with increasing temperature

(K) from 20K to 100K with their associated error for the lattice without DMI.
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5.1 Metadynamics Analysis of the Magnetisation Reversal

5.1.2 Lattice with DMI

Next well-tempered metadynamics simulations were conducted in the same system with DMI

strength of 0.811meV with the same simulation parameters as shown in tables 5.1. Figure 5.6

show the independent simulations for temperatures of a. 50K, b. 60K, c. 80K and d.90K.

Compared to the lattice without DMI, these FELs have two energy minima that the system

needs to overcome to reverse the magnetisation. These energy barriers are named first and

second energy barriers, as shown in figures 5.6 and 5.7. As reported in chapter 4, this is due

to the formation of a chiral domain because of the DMI present. As the temperature increases,

systematic errors are introduced along the FELs, as shown in figure 5.6 b-d. This is due to the

chiral texture formations observed in the plain monte carlo simulations as shown in the vector

plot figure 5.2 and the susceptibility plot 5.1 a. where the noise prior to the Tc is due to the

DMI present thus as it can be seen on figure 5.7 the standard error along the FEL increase due

to these random chiral texture formations.
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Figure 5.6: Set of the 10 independent well-tempered simulations in the lattice with DMI for a.

50K, b. 60K, c. 80K, and d.90K showing the convergence of the FELs.

The energy barriers height (meV) for both minima are plotted in figure 5.8, for the first

energy minima is calculated as the average between the two minima at ±mz (T) shown as blue

data points in figure 5.8. The second energy minimum is a metastable state between the two

groundstates (first energy minima). The height of the second energy barrier is plotted with the

orange data points. For both energy minima, the errors progressively increase for temperatures

higher than 30K, as explained.

Comparing the energy barriers for the simulations with and without DMI, it can be seen

that the energy barrier to reverse the magnetisation is higher for the system without the DMI.

The comparison between the two sets of simulations is plotted in figure 5.9. The plotted energy

barrier height for the simulations with DMI includes the energies from both energy barriers.

In low temperatures (20K), the energy barrier to reverse the magnetisation for the system with
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Figure 5.7: Standard error calculation shown as the red area along the FEL for the well-

tempered simulation simulations with DMI. The blue and green crosses show the minima

energy points, and the red crosses show the maxima point between the energy minima used

to calculate the associated energy barriers.
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5.1 Metadynamics Analysis of the Magnetisation Reversal

Figure 5.8: First (blue) and second (orange) energy barrier heights (meV) as a function of

increasing temperature (K)

or without DMI is similar. This is because, for low temperatures, the thermal fluctuations are

smaller, and all spins are in the +mz directions. As the temperature is increased, the thermal

fluctuations start to spontaneously reverse some of the spins in the −mz direction. Thus as

shown in this section, for the system with DMI, the spins crossed due to thermal fluctuations

cluster together. This reduces the energy required to reverse the magnetisation since it reduces

the energy required to overcome the second energy barrier. As the temperature increased, the

difference between the two systems became stronger, as expected.

Moreover, there is another important conclusion that this study suggests about the beha-

viour of thin films. More specifically, in thin films, as the dimensions are reduced, the demag-

netisation field becomes weaker. In turn, this induces single magnetic domain thin films. Thus

it is often believed that the magnetisation reversal occurs with a coherent rotation. As this study

has shown, this is true in thin films without DMI. However, in single-domain thin film hetero-

structures with strong DMI, the magnetisation reversal occurs by the creation and expansion of

a chiral domain which is energetically more favourable, especially for higher temperatures, as
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5.1 Metadynamics Analysis of the Magnetisation Reversal

the findings of this study suggest.

Figure 5.9: Comparison between the energy barriers height scaling with temperature for the

simulations with and without DMI with their associated standard errors. For the system with

DMI, first, the combined energy barriers are plotted. However, since, the energy to revert the

magnetisation will always occur when the dominant energy barrier energy exceeds the most

dominant (first) energy barrier is plotted too.
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CHAPTER 6

Towards Skyrmion Lifetime Calculations
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Currently, most computational skyrmion stabilities studies [2, 3, 54] are using the GNEBM

to identify the skyrmion metastable energy and use an arbitrary attempt frequency to estimate

the skyrmion lifetime using the Néel type Arrhenius equation. However, the GNEBM energy

barrier, ∆E includes only the internal energy contributions, and the attempt frequency, τ0

has been shown experimentally that it changes over 30 orders at finite temperatures [82]. In

contrast, in chapter 4, the energy barriers extracted using metadynamics, ∆F include both the

internal energy and entropic contributions, shown to be a major factor on skyrmions stability

[4].

Using metadynamics, it is possible accurately estimate the attempt frequency, τ0 in fi-

nite temperatures. With metadynamics, the skyrmion metastable energy at a high temperature

which results in an estimated lifetime of a few hundred nanoseconds can be identified (using the

arbitrary τ0 = 1GHz). This will allow to simulate a lattice with a skyrmion at that temperature

and identify the lifetime of the skyrmion before its annihilated. Since the expected lifetime

will be within the timescale range where the atomistic framework can simulate by evolving the

system using the Landau-Lifshitz-Gilbert (LLG) equation [108]. Thus the attempt frequency

can be calculated as,

τ0 = τexp
(∆F
kBT

)
(6.1)

In practice, this requires stopping the atomistic simulations immediately when the skyrmion

is annihilated and having a thermalised lattice with a skyrmion. However, the conventional

ways that a skyrmion is inserted in a spin-lattice require a relaxation process, where often

the skyrmion is annihilated before getting stable at high temperatures. Similarly, during the

simulation,Q need to be monitored to stop the simulation once the skyrmion is annihilated. But

both topological charge definitions have limitations which can lead to the simulation stopping

before the skyrmion is annihilated or continuing running due to the inaccurate calculation ofQ.

These two problems can be resolved by using metadynamics and combining both definitions

of topological charge.

In this chapter, first, the conventional ways to stabilise a skyrmion in a lattice are intro-

duced. Then the procedure to generate a thermalised lattice with metadynamics and by com-
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6.1 Stabilising a Skyrmion in a Lattice

bining the two definitions of topological charge is presented.

6.1 Stabilising a Skyrmion in a Lattice

As discussed in chapter 2, a pre-defined lattice is used to initiate a simulation, which is then

thermalised, resulting in the final spin configuration as a consequence of the interacting terms

in the Hamiltonian. Throughout this thesis, the Hamiltonian terms selected are the Heisenberg

exchange, magnetocrystaline anisotropy, DMI and Zeeman terms with units of Joules, as shown

in equation 2.1. To stabilise a skyrmionic spin texture is important to select the appropriate

strength for Jij, Ku, and Dij. The interplay between these energy term strengths dictates the

stability and size of the resulting interfacial skyrmion. Increasing the Dij results in larger

skyrmion radii, which, if it’s too strong, will result in chiral domain walls as opposed to Ku

which act to shrink the skyrmion radii, which eventually results in the skyrmion annihilation.

In literature, sub-ten nanometer skyrmions are stabilised using the following ratios

Dij
Jij

= 0.36, Ku
J ij = 0.4. (6.2)

The predefined lattices incorporated are a simple cubic lattice and a hexagonal lattice (i.e.

FCC(111) interface), which are common interfacial crystal structures of the thin films that

experimentally reported the observation of skyrmions. These crystal lattices are shown in figure

6.1. For both crystal lattices used, the unit vector in the magnetocrystaline anisotropy term,

ê = (0, 0, 1) is set with an out-of-plane easy axis since the systems simulated are thin films.

Square Lattice FCC (111) 

Figure 6.1: Illustration of a square and a hexagonal lattice
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6.1 Stabilising a Skyrmion in a Lattice

To include a skyrmion within a lattice, the simulation is initialised with one of the following

two conventional ways. First, with a uniform ferromagnetic state along the positive or negative

mz with a radius of spins in the opposite mz as shown in figure 6.2 a. Secondly, using an

expression for a static skyrmion profile according to

tan
(Θ0 (r)

2

)
= rs

r
⇒ Θ0 (r) = 2 arctan

(
rsk
r

)
+ 2π (6.3)

where Θ0 (r) is the skyrmion profile in polar coordinates r

a.

b.

Figure 6.2: Predefined atomic lattices of an fcc(111) Fe/Pt multilayer nanowire with uniform

ferromagnetic spins with radii of spins a. uniformly arranged in the negative mz and b. with a

skyrmion profile calculate by equation 6.3

By relaxing the spin configurations shown in figure 6.2, a stable skyrmion in finite temper-

ature is stabilised if the magnetic term strengths are selected correctly. The difference between

the two initialisation techniques is that the skyrmion profile requires less MCS to stabilise the

skyrmion. However, the ground state of any thin film with out-of-plane is a ferromagnetic

state, not a skyrmionic one. Hence, there is always a finite probability for the skyrmion to

annihilate as more MCS are performed. Additionally, in higher temperatures relative to the

system’s Curie temperature, the skyrmion can get annihilated during the thermalisation of the

lattice before it gets stabilised. This is due to thermal noise, which can cause the spins close
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6.2 Thermalised Skyrmion Lattice with Metadynamics

to the external skyrmion circumference to flip to the opposite side, which can shrink and anni-

hilate the skyrmion or expand the skyrmion get annihilated in the boundaries of the lattice in a

finite lattice. This can be a major limitation when testing magnetic energy term parameters or

incorporating dynamical simulations.

6.2 Thermalised Skyrmion Lattice with Metadynamics

As introduced in 6.1, for temperatures near the TC, skyrmions can be annihilated before the lat-

tice is fully thermalised after a few hundred MC steps. This can happen both when a skyrmion

is initialised by reverting the spins within a radius, or when a full skyrmion profile is intro-

duced into the ferromagnetic texture. This is also seen in figure 4.11, where the skyrmion at

84K got annihilated before the lattice was thermalised. It is possible that before the lattice is

thermalised, the effect of the ∆S contributing to the skyrmion stability is not strong, increasing

the probability of the skyrmion getting annihilated during the thermalisation process. Thus for

any thermal stability studies with any spin texture, it is crucial that a thermalised lattice with

the spin texture of interest is used as the initial spin configuration. Thus here, a procedure with

metadynamics is reported, which can be used to generate a thermalised lattice for the continu-

ation of this project or any other study which requires a thermalised lattice with a spin texture

at temperatures near the TC.

In section 4.1.2, two procedures that can be used to calculate the topological charge were

introduced. By using both of these procedures to monitor the lattice Q during the simulation,

the simulation can be terminated when metadynamics generates a skyrmion at finite temper-

atures. At the same time, this can be used as a monitor to stop the simulation as soon as the

skyrmion is annihilated to find the lifetime of a skyrmion using atomistic simulations evolved

with the LLG. Hence, by outputting the spin configurations when metadynamics has generated

a skyrmion, a thermalised lattice with a skyrmion can be generated.

The geometrical definition of the topological charge calculates only integer values of Q.

However, single spins can result in a topological of ±1 even if a skyrmion is not generated in the

lattice. On the other hand, the finite difference calculation of the topological charge considers
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6.2 Thermalised Skyrmion Lattice with Metadynamics

the whole lattice spin configurations; thus, in high temperatures, the thermal fluctuations offset

the calculation ofQ. Thus by monitoring the metadynamics simulation with both definitions of

topological charge, the simulation can be terminated when both calculations result in Q = ±1.

To demonstrate this, plain metadynamics is used in the same lattice, with the same magnetic

parameters as in the previous subsection 4.3. However, a large Gaussian amplitude, w = 5

meV, is used since the aim is to use metadynamics to generate a skyrmion at finite temperatures,

not reconstructing the FEL. As in subsection 4.3, the finite difference topological charge and

mz are used as CVs. For the mz CV, the mirror boundaries are used. Similarly, for the Q CV,

the restoring boundaries are used to limit the exploration of topological charge configurational

space fromQ = −1.4 toQ = 1.4. Figure 6.3 a. shows the topological charge estimations using

both procedures during the metadynamics simulation to generate a single skyrmion at 40K.

Figure 6.3 a.i shows a single spin which results in the geometrical definition calculation ofQ =

+1 even if a skyrmion is not generated within the lattice. However, figure 6.3 a.ii demonstrates

that when both definitions of topological charge calculations are Q = ±1 a skyrmion has been

generated, which at that point, the simulation can be terminated. Similarly, figure 6.3 b. shows

the effect of the thermal fluctuations in the calculation ofQ using the finite difference definition.

Figure 6.3 b.i shows that it is probable that the thermal fluctuations can monumentally form a

spin configuration which results in Q ≈ ±1. However, when both definitions of Q result is

Q = ±1, a skyrmion is again generated within the lattice. Additionally, even if restoring

boundaries are used to limit the number of skyrmions in only one, figure 6.3 shows that the

geometrical definition often suggests that there are two skyrmions in the lattice; since it only

returns integer values of topological charge.

Figure 6.4 shows a range of temperatures in which the metadynamics simulation was mon-

itored using both the definitions of Q. It clearly shows that with increasing temperature, the

fluctuation of the calculation of Q using the finite difference definition increases and becomes

limiting for temperatures near the TC . This is also the main reason that in section 4.3, the range

used to reconstruct the FEL was limited to 54K. Furthermore, figure 6.4 also demonstrates the

fact that metadynamics explores the whole configurational space faster for elevated temperat-

ures. This is due to the larger thermal fluctuations, which increase the probability of the CV
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Figure 6.3: Calculations of the topological charge using the geometrical definition and finite

difference paradigms for a. 20K and b. 100K. The vector plots a.i and a.ii show the limitation

of the geometrical definition calculation. Similary b.i and b.ii demonstrate the limitation of the

finite difference topological charge calculations with increasing temperatures

escaping a partially filled energy minimum region.
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Figure 6.4: Geometrical definition and finite difference calculations of the topological charge

for a range of temperatures demonstrating the limitation of both topological charge calcula-

tions.
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6.3 Conclusions

As discussed in this chapter, the skyrmion lifetime can be estimated using a more accurate

attempt frequency τ0 (without an assumed value) and the more accurate metastable skyrmion

energy, including the contributions of both the ∆E and ∆S using metadynamics. As extens-

ively described in this chapter τ0 can be calculated at elevated temperatures with the following

steps:

1. Estimating the temperature where the skyrmion lifetime is within the time range where

atomistic simulations can simulate the system. This can be achieved by using meta-

dynamics to calculate the ∆F as demonstrated in chapter 4 and using the Néel type

Arrhenius with the assumed τ0 = 1GHz.

2. For the temperature identified, creating a thermalised skyrmion lattice using metadynam-

ics as shown in section 6.2.

3. The skyrmion lifetime can be calculated; using the lattice with the thermalised skyrmion

and evolving the system using the LLG equation while monitoring the system with both

topological charge definitions.

4. Calculating the attempt τ0 using the Néel type Arrhenius equation 6.1

By identifying the τ0 for a range of temperatures, a more accurate estimation or more justified

selection of τ0 can be used for lower temperatures where the skyrmion lifetimes are larger than

the atomistic formalism time range limits.

To conclude, the skyrmion lifetime calculations and the calculation of the attempt fre-

quency can be achieved by combining the topological charge definitions; by using metady-

namics, the simulation can be stopped as soon as a skyrmion is created from metadynamics in

the lattice. Then this lattice can be used as a starting lattice for any thermal study of skyrmions

at high temperatures, ensuring that the thermalised lattice includes a stable skyrmion. Sim-

ilarly, the combination of the topological charge definitions can be used to stop an atomistic

simulation evolved with the LLG as soon as the skyrmion is annihilated at finite temperatures.
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6.3 Conclusions

Here, the interest is to calculate the skyrmion lifetime. However, this procedure can be applied

to more studies within or outside of the scope of this thesis, highlighting that metadynamics is

powerful for atomistic and micromagnetic simulations, which possibilities have not yet been

explored.
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Further Work
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7.1 Effects of Lattice Defects

The natural continuation of this project is to include lattice defects. Then by selecting the

appropriate CVs, the effect of a single or a set of defects can be studied. This can be achieved

using the skyrmion core centre as a CV to move the skyrmion around the lattice. Possible

energy minima in the reconstructed FEL will indicate that the skyrmion is pinned at that point

and maxima that are deflected. If the Q and mz with the skyrmion core centre are used as

CVs, then the creational and annihilation skyrmion energies can be identified and studied as a

function of temperature.

If non-magnetic defects such as impurities and vacancies are wished to be studied, then the

DMI vectors within the lattice will not be uniform since the symmetry of the lattice will be

broken. Thus a generalised and efficient procedure to calculate the DMI vectors at each lattice

point must first be developed. If magnetic impurities are studied, then the DMI vectors need to

be recalculated throughout the lattice with the addition that the magnetic impurities will affect

exchange and anisotropy energies. The changes in anisotropy and exchange can be identified

using first principle ab-initio calculations or from experimental data. Another difficulty will

be to ensure that the skyrmion is not annihilated during the metadynamics simulation. This is

because as metadynamics build the potential used to bias the skyrmion core centre, it is possible

that it will exceed the skyrmion metastable energy, thus annihilating the skyrmion.

However, these studies will be crucial for the design and realisation of future skyrmionic

devices. With a better understanding of the lattice defects, it is possible to engineer devices

where specific defects are used to pin, deflect, lower or increase the energy required to create a

skyrmion. Currently, there are many reports on the effects of defects in skyrmion motion and

dynamics [3, 45, 55]. However, as is demonstrated, the metadynamics procedures developed in

this thesis are currently the only method that fully accounts for temperature effects and includes

both the contributions of the skyrmion internal and entropic energies in the estimations of the

energy barriers studied as well as sampling all possible transitions between states. Thus in

subsections 7.1.2, 7.1.3 and 7.1.4, the calculation of the skyrmion core centre and its use as a

CV is demonstrated while reporting ways to ensure that the skyrmion will not get annihilated
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during future simulations with defects, are introduced and discussed.

7.1.1 Skyrmion Core Center

The CVs that must be used to describe the skyrmion core centre fully are theX and Y cartesian

coordinates. This also offers the benefit of moving the skyrmion only horizontally and vertic-

ally by using only one of these CVs. As previous studies reported that skyrmions’ annihilation

is preferable at the top or bottom edges in nanowires [2, 3], by using the y coordinate with the

mz and Q as CVs, these studies can be verified and show all possible annihilation paths and

how these scale with temperature.

Thus, the configurational space for the set of CVs describing the skyrmion core centre is

the physical space of the lattice simulated along the X and Y cartesian coordinates. As shown

later, these CVs push the skyrmion to explore and sample the whole lattice. In plain MC, if the

proposed Strial is within the skyrmion radius or near the circumference, the highest probabil-

ity is Strial will not get accepted if the angle between Si and Strial is large, for temperatures

were the thermal fluctuations are too small compared to the skyrmion metastable energy bar-

rier. However, metadynamics will build a potential that will eventually be more energetically

favourable to accept spins that change the skyrmion core centre. Hence the skyrmion will start

exploring the whole lattice in regions with smaller Vbias.

In a system without any lattice defects, the underlined FEL is expected to be flat or not show

any large energy basins. Additionally, the ability to use these CVs is crucial for the continuation

of this project. Additionally, as discussed later, we show that tempered metadynamics can be

used to ensure that the skyrmion will not get annihilated due to metadynamics.

7.1.2 Calculation of the Skyrmion-Core Center

In a system without any lattice defects, the underlined FEL is expected to be flat or not show

any large minima. Additionally, as discussed later, we show that tempered metadynamics can

be used to ensure that the skyrmion will not get annihilated due to metadynamics.

To use the skyrmion core centre as a CV, a computationally efficient and accurate method

of calculating the skyrmion core centre must be used. Within a skyrmion, the spins are in
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7.1 Effects of Lattice Defects

the opposite direction with respect to the rest of the lattice. Hence, the conventional weighted

centre of mass can be used to calculate the skyrmion centre of mass coordinates C by setting

the weight of each spin according to its magnetisation direction along the z-direction where

if mz ≥ −0.05 the weight is set as 0 to ensure that only spins within or near the skyrmion

contribute to the calculation of the skyrmion centre of mass according to

C = 1
n∑

i=1
(Sz,i)

n∑
i=1

(Sziri) (7.1)

where n is the number of spins below the threshold set and ri are the cartesian coordinates of

Si. However, this method is inaccurate for lattices with periodic boundary conditions since the

spins within a skyrmion can be across the other side of the lattice, which offsets the calcula-

tion of the skyrmion core centre, when equation 7.1 is used. This is demonstrated in figure

7.1 b. where a skyrmion centre of mass is calculated incorrectly while the skyrmion is at the

corner boundaries. Additionally, suppose the calculation of the skyrmion core centre is offset

X

Y

X

Y

mz

a. b.

Figure 7.1: Skyrmion centre of mass calculation indicated with the green dot at a. away from

the boundaries and b. at the corner boundaries of an fcc(111) lattice with periodic boundary

conditions applied along the x and y directions

during the metadynamics simulation. In that case, the Gaussians may be deposited around the

skyrmion, which can effectively restrict the skyrmion from exploring the lattice. This is illus-

trated as a one-dimensional example in figure 7.2. In 7.2 a., the Gaussians are deposited centred

at the correct value of the skyrmion core centre. Hence eventually, the potential accumulated
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7.1 Effects of Lattice Defects

will move the skyrmion away from the regions with high potential. On the other hand, in n 7.2

b., the offset skyrmion core calculation accumulates the bias potential around the skyrmion,

restricting it from moving around the physical lattice.

Offest Skyrmion Centre Calculatation 
Correct Skyrmion Centre Calculatation 

𝑽 𝒃
𝒊𝒂
𝒔

𝑽 𝒃
𝒊𝒂
𝒔

Skyrmion Center along 
X- Coordinate

Skyrmion Center along 
X- Coordinate

a. b.

Figure 7.2: a. Illustrates the Vbias built centred around the correct skyrmion core centre along

the x-coordinate, which will push the skyrmion to move within the x-direction. In contrast, in

b., the offset skyrmion centre calculations denoted with the red point create a potential around

the skyrmion, which effectively traps the skyrmion.

To overcome the limitations described, the algorithm reported by L.Bai and D.Breen in

2008 was employed [6]. This algorithm calculates the centre of mass for a set of points by

forming two perpendicular tubes along the x and y, cartesian coordinates Ti and Tj and cal-

culates their 3D centre of mass X̄. Then, by projecting the tubes’ 3D centre of mass into the

surface of the tubes and ”unfolding” the tubes, the 2D coordinates of the centre of mass,
(
ī, j̄
)

,

are calculated.

Here, the point masses are the S at the lattice points with cartesian coordinates (i, j). This

algorithm can be adapted to calculate the skyrmion centre of mass by only including spins S

whose mz component is lower than a threshold in Ti and Tj . Ensuring that S is orientated in

the opposite direction of the ferromagnetic direction; S is within the spin radius). In higher

temperatures, spins may cross this threshold due to thermal noise, but their effect is negligible.

The tube Ti connecting the point i with imax of the lattice is formed by transforming the

S by remapping the cartesian coordinates (i, j) from 2D into 3D where each considered lattice
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7.1 Effects of Lattice Defects

point k coordinates is transformed to Xk ≡ (x, y, z) according to

x = imax
2π cos(θi) , y = j , z = imax

2π sin(θi), where θi = i

imax
2π (7.2)

Similarly, the tube Tj connects the point j with jmax is formed with the following transforma-

tion

x = i , y = jmax
2π cos(θj) , z = jmax

2π sin(θj), where θj = j

jmax
2π (7.3)

Following the remapping of the 2D space into the tubes Ti and Tj , the 3D centre of mass of

each tube is calculated as

X̄ = 1
n

n∑
k

Xk (7.4)

where n is the number of points within the tube. The projection of the centre of mass of each

tube Ti and Tj gives the coordinates of the 2D centre of mass coordinates ī and j̄, respectively.

Thus the ī coordinate of the centre of mass is calculated from the Ti, 3D centre of mass,

X̄i = (x̄, ȳ, z̄) calculated from equation 7.4 and projected with the following expression

ī = imax
2π · arctan 2 (−z̄,−x̄) + π (7.5)

where arctan 2 (−z̄,−x̄) is the inverse tangent function in the interval (−π, π] used to map the

point at (−z̄,−x̄) in the Cartesian plane.Then the j̄ coordinate is given from the 3D centre of

mass of tube Tj

j̄ = jmax
2π · arctan 2 (−z̄,−ȳi) + π (7.6)

Equations 7.5 and 7.6, give the skyrmion core centre coordinates
(
ī, j̄
)

which can also be

used as single CVs by using only ī or j̄. However, the computation of the arctan 2 function

and space remapping of the lattice points is computationally expensive and can limit the use

of the algorithm as a CV. However, by using the caching system introduced in section ??, the

space remapping of the lattice points in the tubes Ti and Tj is only required in the initialisation

of the simulation. Then every time a Strial with the mz component is lower than the threshold

set, the tube is updated, and the centre of mass is recalculated. This procedure is illustrated

in a 1-dimensional example figure 7.3, wherein a. it shows a skyrmion profile with the center

pointing at mz = −1. The skyrmion profile is split across the boundaries. Then the 1D line
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7.1 Effects of Lattice Defects

is folded into a circle, with the points transformed from 1D to 2D. The circle formed is shown

in figure 7.3 b, where only the spins within the skyrmionic profile are included, and the 2D

centre of mass calculated is shown as the red cross within the circle. Then in figure 7.3 c, the

calculated 2D centre of mass is projected on the surface of the circle shown as the green point.

The projected 2D centre of mass provides the 1D centre of mass of the 1D environment as

shown in figure 7.3 d.

a.

d.

c.b.

mz < 0 mz > 0

Figure 7.3: Schematic illustration of the centre of mass calculation in 2D as shown by L.Bai

and D. Green [6] adapted to calculate the skyrmion core centre where the blue and red arrows

represent spins pointing in the negative and positive z-direction respectively. Part a. shows

the skyrmion profile across the periodic boundary conditions. b. and c. show the algorithm

procedure where the red sign indicates the centre of mass of the circle, which is then projected

into the surface of the indicated with the green point.

7.1.3 Lattice with Periodic Boundary Conditions

The skyrmion core coordinates along the x and y coordinates are selected as CVs to move the

skyrmion along a uniform lattice without any periodic boundaries. The results reported here
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7.1 Effects of Lattice Defects

were conducted at 40K. An fcc(111) multilayer with lattice dimensions of 64 × 64 × 5 with

a skyrmion with radius rsk = 10 atomic lattices was initiated as a skyrmion profile. Periodic

boundary conditions were used along the x and y axes. The metadynamics parameters used are

reported in the table 7.1

Metadynamics Parameters

MC Steps 6 × 106

Gaussian Deposition stride τg = 100

Gaussian Amplitude w = 0.5 × 10−28meV

Gaussian Width σ = 5

Bias Temperature ∆T = 480K

Table 7.1: Metadynamics simulation parameters for the plain metadynamics simulations in a

hexagonal 64 × 64 × 5 hexagonal lattice with periodic boundary conditions applied along the

x and y coordinates.

The low ∆T ensures that the Vbias will not exceed the skyrmion’s metastable energy, thus

ensuring that the skyrmion won’t exceed its metastable energy. Moreover, a fast τg can create

small local minima, which can locally trap the skyrmion, which slows down the sampling of the

whole physical lattice. This rarely occurs, but with a higher deposition stride, the probability

of this occurring is reduced. Moreover, the skyrmion movement within the physical lattice is

affected by τg. With a slow Gaussian deposition, the skyrmion moves away from the Gaussian

deposited before the next Gaussian is deposited, exploring a larger area quicker. In contrast, a

fast τg creates a retrograde skyrmion motion along the x and y axes within the lattice. Figure

7.4, clearly shows the effect of the τg described, where the dashed lines indicate the physical

space, which is due to the hexagonal geometry of the lattice.

However, the whole physical lattice will eventually be sampled if the skyrmion is not an-

nihilated. This can be ensured by maintaining a low energy deposition rate by, which can be

controlled by reducing the Gaussian amplitude τg or using a lower bias temperature ∆T.

123



7.1 Effects of Lattice Defects

Cartesian co-ordinate 
X

C
ar

te
si

an
 c

o-
or

di
na

te
 Y

a. b.

τg= 5

END

START

Cartesian co-ordinate 
X

C
ar

te
si

an
 c

o-
or

di
na

te
 Y

τg= 50

START

END

Figure 7.4: Comparing two different τg for 6 million MCS and simulation parameters as in

table 7.1

Figure 7.5 shows the exploration of the skyrmion core centre after 20 × 106 MCS. It is

clearly shown that in the long time limit, the CVs configurationally space is sampled, evident

from the location of the skyrmion core centre within the physical lattice. Similarly, in figure

7.6, the skyrmion core location in the initialisation and end of the simulation is shown in the

vector plots a. and d. respectively. Hence figure 7.6 demonstrated that metadynamics had not

destroyed the skyrmion structure during the simulation. Additionally, by comparing the tracked

skyrmion core centre from figure 7.5 with 7.6, the accuracy of the CV calculation across the

boundaries is ensured.

To conclude, using the algorithm described by L.Bai in 2009 the skyrmion core centre

is successfully used as a CV which results in the skyrmion exploring the physical lattice with

periodic boundary conditions along the x and y dimensions. The reconstructed FEL is expected

to be flat here, and as shown in figure 7.7, the reconstructed FEL has only shallow features due

to the short duration of 6×106
MCS. There is no energy minima or maxima present. However,

if defects are introduced, the FEL will not be flat, and the features of the FEL can quantify if

certain defects pin or deflect skyrmions.
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Figure 7.5: Tracking the skyrmion core centre during the metadynamics simulation with the

skyrmion core centre set as CV in a lattice with periodic boundary conditions applied along the

x and y cartesian coordinates

7.1.4 Confined Lattice

Having examined the centre of skyrmion as a CV in an infinite superlattice of the hexagonal

multilayer with periodic boundary conditions applied on x and y axis, a confined lattice without

any periodic boundary conditions was considered with the same parameters as reported in table

7.1. It is crucial that the continuation of this project by including lattice defects is simulated in

a fully or partially confined lattice. This is because this will allow the simulations of nanowires,

and the effects of lattice confined upon the skyrmion stability can be studied. More importantly,

in a confined lattice, it is ensured that the skyrmion will move around the defects and not get

stuck at the boundaries of the lattice.

However, metadynamics will build a potential in order to move the skyrmion core centre

along the physical lattice; to sample the CV’s configurational space. Eventually, the potential

built will exceed the energy that stabilises the skyrmion in order to move the skyrmion core

centre at the boundaries of the lattice, which will result in the skyrmion getting annihilated.

This is shown in figure 7.8, a vector plot with snapshots during the metadynamics simu-

lation at 40K. In figure 7.8 a. and b. metadynamics moves the skyrmion core centre near the

boundaries. Eventually, the potential built will result in the spins around the outer circum-
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a. b.

c. d.
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Figure 7.6: Vector plots of four different points during the simulation.

ference of the skyrmion structure being at the boundary of the physical lattice as shown in

figure 7.8 c. At that point, the spins within the skyrmion do not map the whole unit sphere,

eliminating any skyrmion stability. Hence the skyrmion is annihilated at the boundary, and the

ferromagnetic ground state of the system is recovered as shown on snapshots d-f in figure 7.8.

Thus it is important to quantify the skyrmion metastable energy at a finite temperature

for a finite lattice prior to the simulation as this thesis demonstrated in section 4. Once the

metastable energy is known, a large repulsive potential can be applied around the physical

lattice boundaries as illustrated in figure 7.9. By doing so, the reconstructed FEL of finite size

with defects can be reconstructed without annihilating the skyrmion at the system’s boundaries.

Additionally, the potential built next to the introduced repulsive potential will be able to be used

to examine if the skyrmion would have been annihilated at the system’s boundaries. Another

possibility is to use the tempering to introduce a maximum potential deposited throughout the

lattice. However, this will depend on the size of the skyrmion metastable energy at a given

temperature. This is because it is possible for certain systems that the metastable energy is

lower than the energy required to move the skyrmion near the lattice defects.
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Figure 7.7: Reconstructed FEL with metadynamics using the skyrmion core centre as a CV in

a hexagonal lattice. As can be seen, the reconstructed FEL has only shallow features, with no

distinct potential basins or peaks where the skyrmion is pinned or deflected. However, as it can

be seen, in the top left and bottom right corners, more MC steps are required for metadynamics

to sample the whole lattice fully.

Figure 7.8: Confined lattice simulation progress snapshots a-e.
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Figure 7.9: Illustration of the large repulsive potential which can be used to reconstruct the free

energy landscape of a finite size lattice with defects without annihilating the skyrmion at the

boundaries

7.2 Future Directions and Next Steps

In chapter 6, it was demonstrated that the skyrmion lifetime and the attempt frequency can be

calculated using metadynamics. The next step of this research project is to apply the method

introduced in chapter 6 in specific material heterostructures. Similarly, in the previous sections

of this chapter, it was extensively discussed how metadynamics can be used to study the effect

of lattice defects which is important for the design and realisation of future skyrmionic devices,

which is also a continuation of this project.

In this thesis, the primary investigation with metadynamics was conducted on magnetic

skyrmions. However, using different CVs, metadynamics can be used to explore the thermal

stability of other spin textures. Recently a lot of research is focused on exploring the stability

and dynamics of skyrmioniums [109], which are skyrmions with higher helicity that are shown

to be valuable for the future neuromorphic skyrmionic devices [110]. The stability of skyrmi-

oniums can be studied by reconstructing the FEL similar to the ones shown in section 4 with

adding an extra CV to describe their helicity. This also offers the possibility of identifying more

metastable spin textures a specific thin film or heterostructure can have, offering more states

a device can take advantage of to design future computational devices. Similarly, fractional

skyrmion tubes [111] where skyrmions are coupled along the z direction, which metadynam-

ics can offer valuable insight. More specifically, recently, many computational techniques
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have tried to study the binding energy of these fractional skyrmion tubes [112]. However, as

the GNEBM, these are, in principle, athermal methods and include only the internal energy

contributions of the associated energy barriers. In contrast with metadynamics, the fractional

skyrmion tube energy can be estimated in finite temperatures, which also will include both

the effects of entropy and internal energy in the estimations. Metadynamics can also be used

to create 3D skyrmion or any topological spin texture stability phase diagrams with the DMI

and Anisotropy as the x and y axis, which then every point in the diagram will be extracted

from the FEL similar to chapter 4. This can then be also studied as a function of temperatures

to investigate the skyrmion stability further. To conclude, metadynamics in condensed mat-

ter magnetism is not restricted only to skyrmions. It can be used to explore the stability of a

plethora of topological spin textures, as shown in this thesis.

One of the drawbacks of metadynamics is the computationally expensive calculations of

the CVs, which limit the use of metadynamics to larger lattices or more complex systems. In

this project, the Metropolis MC algorithm was used with serial calculations, which in prin-

ciple, is slow.However, one possible direction this research can take will be to parallelise the

simulations’ calculations to reduce computational time significantly. This can be achieved by

parallelising the metropolis MC simulations or using the LLG, which can be parallelised using

GPUs instead of CPUs as achieved in Mumax3 [76]. The MC simulations can be parallelised

using the random walker algorithm, which can use parallel simulations to explore different

sections of the configurational space. By doing so, the potential will be build simultaneously

across the whole configurational space. However, this creates a technical difficulty; the file

used to store the potential during the simulation will need to be accessed and updated from the

simultaneous simulations, which can result in corrupt files (when trying to access a file before

it is closed). Similarly, the LLG equation includes the Gilbert damping parameter and the bias

factor, which are material-specific and dictate the magnetisation dynamics. During a metady-

namics simulation using the LLG, the bias potential build can bias these parameters; to push

the system away from its equilibrium state and explore the landscape defined by the CVs. If

this occurs, then the simulation will be invalid since the dynamics of the simulation will not be

the ones of the system studied, resulting in a different FEL structure. Hence, it must be ensured
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7.2 Future Directions and Next Steps

that metadynamics will not change those parameters in LLG. Once the metadynamics simula-

tions are parallelised, then quantum thermostats, as recently used [73] to make the atomistic

semiquantum, can be used. By doing so, the temperature artefacts introduced from the classical

thermostat will be reduced, which will allow the use of metadynamics in temperatures closer

to the TC.
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CHAPTER 8

Conclusions
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This thesis has successfully demonstrated that metadynamics can be used to reconstruct the

FEL of topological spin textures such as skyrmions in condensed matter physics to study the

skyrmions thermal stability and further used for a plethora of stability studies in finite temperat-

ures as it is shown or proposed. This is crucial since most studies [2, 3, 54] have been using the

GNEBM to quantify skyrmions energy barriers, including only the internal skyrmion energy,

∆E since GNEBM is a low or zero temperature formalism. Instead, we used metadynamics to

reconstruct the FEL with metadynamics combined with atomistic simulations, in finite temper-

atures. Hence the energy barriers extracted from the FEL include both the ∆E and the change

in configurational entropy ∆S, which, as has been demonstrated, is an important parameter of

the skyrmions stabilisation [4]. Thus the skyrmion lifetimes can be estimated as

f = τ0 · exp
(∆F
kBT

)
= τ0 · exp

(−∆E
kBT

)
· exp

(−∆S
kB

)
(8.1)

where ∆F is energy barrier including the contributions from both ∆E and ∆S. The attempt

frequency, τ0, is assumed to be in the GHz range. However, it has been demonstrated that

τ0 changes more than 30 orders [82]. Thus in section 7, a novel method to extract the τ0 in

finite temperatures is proposed where metadynamics using the procedure introduced in section

6. Additionally, in section 7.1.2 it is shown and discussed how skyrmions can be moved within

the lattice in order to sample a lattice with defects and how the skyrmion motion is affected

by the Gaussian amplitude and deposition stride. Next, in section 5 by using metadynamics

the magnetisation in a lattice with and without DMI was studied. This study revealed that

during the magnetisation reversal in the lattice with DMI, the magnetisation rotation is not

coherent; it creates a second metastable chiral domain which then expands. As described

this gave an insight into the magnetisation reversal in single-domain thin films which is often

said that the magnetisation reversal occurs with a coherent rotation; while this is true in simple

ferromagnetic thin films. Interestingly this was also validated in section 4. For all these studies,

the CVs calculations are discussed and the appropriate boundary conditions used or developed

in this thesis are discussed.

In conclusion, this thesis has successfully demonstrated that the skyrmion metastable en-

ergy can be sampled with metadynamics and the studies in this thesis highlight the importance

of using metadynamics to study the stability of spin textures. The primary aim of this thesis

132



achieved was to demonstrate a finite temperature method that the skyrmion stabilities can be

studied, to help the realisation of the next skyrmionic devices. However, the results here can

be applied to other spin textures, and metadynamics can be further used in condensed matter

magnetism to identify spin textures in heterostructures and further thermal stability studies.

However, the ultimate goal achieved was to demonstrate a procedure that can be used to design

and realise the next skyrmionic or any spin texture spintronic devices to overcome Moore’s

postulation and continue increasing the computational power of computations or specific ap-

plications requiring neuromorphic beyond Von-Neumann architectures.
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of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimag-

nets. Phys. Rev. B, 82:052403, 8 2010. doi: 10.1103/physrevb.82.052403. URL

https://dx.doi.org/10.1103/physrevb.82.052403.

139

https://www.science.org/doi/abs/10.1126/sciadv.abq5652
https://www.science.org/doi/abs/10.1126/sciadv.abq5652
https://www.sciencedirect.com/science/article/pii/0029558262907757
https://www.sciencedirect.com/science/article/pii/0304885394900469
https://dx.doi.org/10.1103/physrevlett.102.186602
https://dx.doi.org/10.1103/physrevlett.102.186602
https://dx.doi.org/10.1103/physrevb.81.041203
https://dx.doi.org/10.1103/physrevb.82.052403


BIBLIOGRAPHY

[42] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in EpitaxialFeGe(111)Thin

Films. Phys. Rev. Lett., 108:267201, 6 2012. doi: 10.1103/physrevlett.108.267201.

URL https://dx.doi.org/10.1103/physrevlett.108.267201.

[43] Albert Fert, Vincent Cros, and João Sampaio. Skyrmions on the track. Nat. Nanotech-

nol., 8:152–156, 3 2013. doi: 10.1038/nnano.2013.29. URL https://dx.doi.org/10.1038/

nnano.2013.29.

[44] Seonghoon Woo, Kai Litzius, Benjamin Krüger, Mi-Young Im, Lucas Caretta, Kornel
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