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Abstract

This work proposes a novel configuration of the Transport Layer Security protocol (TLS),

suitable for low energy Internet of Things (IoT), applications. The motivation behind

the redesign of TLS is energy consumption minimisation and sustainable farming, as

exemplified by an application domain of aquaponic smart farms. The work therefore considers

decentralisation of a formerly centralised security model, with a focus on reducing energy

consumption for battery powered devices. The research presents a four-part investigation

into the security solution, composed of a risk assessment, energy analysis of authentication

and data exchange functions, and finally the design and verification of a novel consensus

authorisation mechanism. The first investigation considered traditional risk-driven threat

assessment, but to include energy reduction, working towards device longevity within a

content-oriented framework. Since the aquaponics environments include limited but specific

data exchanges, a content-oriented approach produced valuable insights into security and

privacy requirements that would later be tested by implementing a variety of mechanisms

available on the ESP32.

The second and third investigations featured the energy analysis of authentication

and data exchange functions respectively, where the results of the risk assessment were

implemented to compare the re-configurations of TLS mechanisms and domain content.

Results concluded that selective confidentiality and persistent secure sessions between paired

devices enabled considerable improvements for energy consumptions, and were a good

reflection of the possibilities suggested by the risk assessment.

The fourth and final investigation proposed a granular authorisation design to increase

the safety of access control that would otherwise be binary in TLS. The motivation was

for damage mitigation from inside attacks or network faults. The approach involved an

automated, hierarchy-based, decentralised network topology to reduce data duplication whilst

still providing robustness beyond the vulnerability of central governance. Formal verification

using model-checking indicated a safe design model, using four automated back-ends.

The research concludes that lower energy IoT solutions for the smart farm application

domain are possible.
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Chapter 1

Introduction

1.1 Context and motivation

The context of this work is the control and monitoring of sustainable aquaponic agriculture

systems. These systems use Internet of Things (IoT) microcontrollers to gather data, push

it to the cloud and then receive and act upon control instructions.

Aquaponics produces food using 90% less water than traditional farming, and contributes

towards carbon-neutral food production. An aquaponics system can include certain levels of

automation to reduce labour and waste whilst ensuring a consistent farming environment for

native and non-indigenous crops. Systems are also environmentally-friendly, implementing

a symbiotic relationship between plants and fish to allow the elimination of fertiliser

in favour of fish effluent. Aquaponics systems can also employ remote operation and

utilise green energy such as solar, wind, or piezoelectric harvesting to power the requisite

microcontrollers supporting sensor-actuator devices for light, heat, pH levels and water

monitoring. Finally, through the use of low-energy communications protocols such as

Bluetooth Low Energy (BLE), Message Queuing Telemetry Transport (MQTT), Zigbee, or

meshing such as ESP-NOW, aquaponics smart-farming can benefit from operations without

the internet - allowing independent and low-power off-grid crop production.

1.2 Problem statement

As a potentially widespread sustainable food production technology, aquaponics ([7; 8; 9;

10; 11]) are vulnerable to cybersecurity threats due to their reliance on microcontrollers,

sensors and actuators, and many other networked components. External threats are

arguably the most pertinent to the landscape, as with the globally accessible internet

- users intending to exploit vulnerabilities for unauthorised access to cause damage and

downtime. Such vulnerabilities include tampering and theft of data, malware to compromise

system functionality or data integrity, hardware failures particularly with lacking default

protection, and issues relating to data privacy and protection. Specifically with regards

to a microcontroller-oriented network, the challenge is to implement protection against

1
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Figure 1.1: The Symbiosis of Aquaponics, image source [1]
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such threats whilst maintaining efficient operational requirements with the relatively limited

resources presented.

Whereas the general consensus refers to ‘adequate security’ as the appropriate measures

to protect a system from unauthorised access, modification, or destruction, in the context of

an energy-conscious security solution, this would include energy reservation. Consequently,

we must ensure ’adequate’ security - a trade-off between what the network requires to

ensure operational continuity whilst ensuring a non-superfluous attitude, and which must be

addressed as part of system design. When developing Internet of Things (IoT) applications,

the resources of systems components must be taken into account. Devices in IoT systems

are often highly constrained in terms of computer power, memory and available power. This

affects what primary functionality can be hosted but also what security mechanisms can be

deployed.

Microcontrollers are often designed to run for long periods of time on batteries or

green energy - and security implementations must take account of the small amount of

power and computational resources that they deploy. The de facto standard for secure

networked communication, Transport Layer Security (TLS), has developed in parallel with

traditional machines and their Operating Systems (OS): desktops, laptops, and more recently

smart-phones - using Windows, Mac, Linux or Android, and all the complex architecture

that those high powered technological developments have demanded. The more complex the

computer architecture, the greater the deluge of data stored in cyberspace, and the threat

landscape available, the higher the resource requirements of TLS.

IoT devices typically resemble machines of the 80s or 90s - Random Access Memory

(RAM), flash memory, and processor abilities are all in short supply, and deliberately so

in order to align with the minimal expectations of an embedded sensor-actuator system.

These are not general-purpose devices but minimal systems optimised to their particular

application. Detection of heat, light, chemicals, sound, presence, or whatever else from the

sensors is only required to trigger actuator adjustment in order to condition environmental

parameters using a series of short and simple messages. The question therefore arises as to

why such rigorous security should be applied to these minimal devices, often operating on

communications protocols away from the global threat landscape of the internet, and the

answer to that is, because in its various forms, TLS is omnipresent to the point where its

functions and compatibility have monopolised security application.

However, for this research, the following disadvantages associated with TLS should be

considered:

1. High latency: TLS in itself does not necessarily introduce high latency, but the

additional steps required for establishing secure connections and processing encrypted

data can introduce some latency, especially in resource-constrained environments like

IoT networks.

2. Network complexity: Implementing TLS can increase the complexity of network

communications, as it requires additional protocol handshakes and data exchanges to
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establish the secure channel. This added complexity may not be suitable for IoT devices,

which often rely on lightweight communication protocols for seamless operation.

3. Implementation cost: Implementing TLS on IoT devices can be resource-intensive,

as it demands additional processing power and memory. IoT devices are generally

designed with low-power consumption and limited resources as part of their intended

use, creating a challenge when integrating TLS without compromising the devices’

efficiency and effectiveness.

4. Man-In-The-Middle (MITM) attacks: While TLS provides secure communication,

it may still be vulnerable to certain types of attacks, such as MITM whereby an

attacker intercepts and/or tampers with the communications between client and server

- undermining the security provided by TLS.

However, TLS is widespread. TLS is available for almost every protocol - uTLS ,

BLE-TLS, MQTTS, even LoRaWAN. It is mature, strong, reliable, and has shown success

in adaption to the chaotic and heterogeneous environment that is the IoT. Initially, TLS was

designed to renew connections very frequently to safely communicate with multiple devices

in a short period of time whilst communicating personal and sensitive data. Such frequent

resets may not be necessary where relationships remain the same for long periods of time

- and in the application domain of smart farming it may not handle personal or sensitive

information.

Further towards the disadvantages pertaining to TLS is the concept of centralisation.

The chaotic, ad-hoc, and heterogeneous nature of IoT networked devices renders any such

IoT-oriented application domain an antithesis of centralised infrastructure. TLS is built on

an architecture of certificates and their management. Traditional TLS relies on Certificate

Authorities (CAs) to issue and manage digital certificates, creating a centralised trust model

which can pose challenges in IoT environments, where devices are often widely dispersed and

operate under diverse network conditions. Further details regarding the nature of CAs and

the infrastructure belonging to TLS is discussed in section 2.6.

CAs can create bottlenecks and single points of failure, which may not be suitable for

IoT systems that require more resilient and decentralised trust models. In this context,

a distributed or decentralised architecture could be a more appropriate solution for IoT

environments, as it can provide a more flexible and scalable trust model that is better suited

to the unique requirements of IoT devices.

To reinvent TLS in its entirety would be impractical and would limit connectivity of any

device not implementing that novel design, and so ideally, the use of existing TLS functions in

a more flexible and lightweight manner would resolve the issues surrounding centralisation and

energy consumption. The research challenge here involves challenging the stipulations of what

TLS considers adequate security, and generating a new definition of that principle towards

application-appropriate protection. Protection may include security or privacy functions -

privacy functions can provide equally as effective protection and have demonstrated success
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in the long-standing Payment Card Industry Data Security Standard (PCI-DSS) regulations,

and more recently, the General Data Protection Regulation (GDPR) directive.

The challenge of this research is to investigate, propose, and assess an alternative solution

to TLS whilst retaining the mechanisms regarded as strong, reliable and ubiquitous. This

research proposes a reconfiguration of existing TLS mechanisms towards a domain-specific

solution, aimed at vastly reducing the energy consumption that can make TLS problematic

in IoT use.

1.3 Research hypothesis

The research hypothesis investigated in this thesis is an energy-efficient IoT security solution

can be created by combining a reduced variant of TLS with a low-overhead consensus-based

access control.

The contribution of this thesis is to affirm this hypothesis by answering the four research

questions given below. Firstly, a threshold protection framework was modelled to reduce

superfluous security provisions. This energy reduction framework then formed the basis for

developing and testing lightweight solutions for the three TLS mechanisms: authentication,

data exchange, and an authorisation mechanism. In each case questions are framed within

the chosen application domain of aquaponics smart farming, and subsequently point out more

general implications for other IoT devices and networks.

The application of smart farming exemplifies a static environment in which relationships

are mutually exclusive, persistent and alive for long periods of time - or however long the

systems are supporting crop growth. Therefore, any IoT-oriented environment could benefit

from this application, as long as it matches such criteria.

1.4 Research questions

1: How can security and energy metrics assess domain requirements?

This first question follows on from Chapter 3, Requirements Analysis, towards developing

a content-driven framework for reducing energy consumption in Chapter 4. Risk-driven

frameworks are used widely in the domains of security and privacy, and so referring to the

impact assessment methods of well-known threat methodologies is adapted to ascertaining

threshold protection. The outcome presents a framework by which security implementation

is reduced as much as safely possible in order to make energy savings.

2: How much could energy consumption be reduced in device authentication?

This question is explored as the first half of Chapter 5, Energy-Conscious Authentication and

Messaging, following on from the framework developed in Chapter 3. Authentication as a TLS

mechanism is broken down into functions, processes and assets, and redesigned as a relatively
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lightweight alternative, removing the certificates required for systems using a web browser,

and disregarding central governance (e.g. by a Certificate Authority (CA)) - whilst still

assuring trust and authenticity of data. Results affirm that processing authentication on each

microcontroller and generating additional keys considerably reduces energy consumption.

3: How much could energy consumption be reduced in payload security?

This question is explored as the second half of Chapter 5, which addresses mitigating the

energy consumption of data exchange during secured sessions between devices. Message

security in TLS is accomplished by a limited choice of complex and highly secure ciphersuites

- ciphersuites available to the IoT domain but which would benefit the environment through

reconfiguration of attributes depending on data protection requirements. By following

the energy reduction framework provided in Chapter 3, the session security functions are

separated and reduced to a ‘threshold’ protection level. Results indicate enormous energy

savings whilst being application-appropriate and safe.

4: Can a lightweight, self-healing consensus mechanism be ascertained as safe?

This question is explored as Chapter 6, Energy-Conscious Consensus Mechanism, and

proposes the design of a consensus mechanism similar to those used in blockchain technology,

but of a novel, hierarchical and ephemeral form, with a limited data chain. This consensus

mechanism is developed as an alternative to access control mechanisms which use lists, roles

or rules, of user profiles. This is a decentralised model to challenge the vulnerabilities and

scalability issues pertaining to centralisation, limited by small numbers of aquaponics devices,

grouped using the example of allocation by BLE range.

It is offered as a granular alternative to the binary ‘in or out’ approach of TLS, using most

of the cryptography attributes already implemented for authentication and session security.

The design is model-checked under formal verification, and ascertained as safe.

1.5 Contributions to the field

The work has achieved (and published) the following results:

1. Energy-conscious risk-driven assessment considers each type of data exchange on its

own merit, protection levels for benign and transparent data have been adjusted for

energy reduction and without jeopardising the safety levels of the environment.

2. Through reconfiguration of the standard TLS ciphersuite to better suit IoT-oriented

smart farm data exchange, it was discovered that the energy consumption attributed



CHAPTER 1. INTRODUCTION 7

to authentication and subsequent data exchange was effectively reduced to around 4%

of the energy demand compared to conventional TLS practice.

3. The configuration of separate ciphersuite attributes demonstrated that domain-specific

configuration of TLS could enable an energy saving of up to 81% in data transmission

when compared to typical TLS practice.

4. A decentralised access control system with ephemeral data records was demonstrated

as safe for the application domain, providing a scalable and limited model to mitigate

use of resources.

1.6 Thesis Layout

The balance of this thesis is structured to guide the reader through the concepts and relevant

literature pertaining to the study, requirements of the domain, and the design and testing of

TLS-alternative solutions as follows:

Literature Review

The literature review covers the terms, definitions, existing solutions, and challenges pertinent

to the research, to detect gaps in current solutions and opportunities for novel and beneficial

developments.

The literature review begins with introducing the IoT landscape, smart-farming in general,

and aquaponics specifically. Next the threat landscape is discussed, with reference to threats

attending traditional architecture, constrained devices, and the power versus processing

trade-off. Following this discussion, we consider risk-driven modelling practices by which

to assess the risks to the domain application, and specifically the particular microcontroller

employed.

Business modelling is also included, to widen the scope of considerations beyond but

including standard security concerns, including a discussion on the differences between privacy

and security to illuminate the possibilities of substituting traditional, heavy security functions

with lighter, alternative privacy functions. There is overlap between the two definitions,

particularly where confidentiality is concerned, and the recognised uses of such in financial

data exchanges provides initial evidence of the safety of the substitution.

With knowledge of the threat landscape, we then proceed to consider existing solutions

for securing constrained devices in similar environments, and a range of network topologies.

This is where the problem of securing diverse network topologies arises, and in response

we present examples of processing over a single node (centralisation), processing distributed

across multiple nodes (decentralisation), and lastly peer-to-peer computation across equal

interconnected nodes of evenly shared ownership and processing resources.

We are now in a position to investigate the security functions, common and contrasting,

between our three distinct types of network topology, and under the fundamental security

principles Confidentiality, Integrity and Availability (CIA). The CIA triad underlies all
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security practice, and includes a series of functions used from thousands of years ago to

modern developments. This section presents the options available to the new solution design,

with emphasis on power and processing requirements.

Finally, an analysis of TLS is presented as a benchmark for the security processes and

energy consumption that the study aims to improve on. The previous sections of the literature

review are included in this discussion to highlight how unsuitable the standard is for the

aquaponics application, common functions available for use, and opportunities of flexibility,

ultimately leading to improvement.

Aims and Objectives

This section undertakes an analysis of the security requirements to support the smart farming

application domain. It uses a study of business processes and risk-driven security metrics to

derive an energy reduction framework, factoring power and processing requirements in the

same manner as threats. This can be undertaken by reducing, substituting, and removing

security functions normally stipulated in TLS, and outputting metrics to correlate low to

critical energy use based on implementation.

The requirements analysis draws from the literature review to propose research challenges

and research questions. Firstly, research challenges are deduced by considering the

problematic elements of TLS infrastructure when applied to IoT. Secondly, research questions

are induced to resolve the research challenges to propose a four-part solution.

The resulting steps outline the experiment framework for answering the research questions

over the following three chapters.

Methodology

This section draws from the aims and objectives to illustrate practical ways in which to derive

measurable results from experiments one to four.

The first step of the methodology involves reducing, substituting, and removing the

conventional security functions in the TLS infrastructure. Next, the study proposes to

evaluate and quantify the resulting security measures’ impact. It is critical to ensure that,

while reducing the energy use, the security of the smart farming application domain is not

compromised. For this, a carefully designed risk evaluation will be employed, which will be

detailed in the next chapter.

Subsequently, the deductions of functions and proposals of the risk assessment will be used

for experiments two and three - the idea is to measure the corresponding energy use based on

the implemented changes and its subsequent impact on power and processing requirements.

Finally, the methodology for designing and model-checking a suitable authorisation

mechanism are presented as an add-on for TLS as opposed to part of the re-configuration.
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Energy-Driven Risk Assessment

This section covers research question one. Following the guidance illustrated in the literature

review regarding privacy functions, we can then ascertain where appropriate function

substitution could occur, and how to rank energy consumptions of each security and privacy

function to produce metrics. Metrics are proposed at this stage to reflect a relative

difference between attributes - strength of confidentiality (encryption), integrity (hashing),

and availability (authentication). At this stage, the assessment seeks to demonstrate how

trade-offs can be made between strength and energy consumptions for implementation later

on. This is the reconfiguration of TLS ciphersuite parts that will ideally increase the lifespan

of the application domain in terms of battery life - perhaps enabling green energy through

things such as solar or wind.

The assessment begins by considering how to mitigate energy consumption by exercising

impact scoring and Soft Systems Modelling (SSM). Utilising discovery techniques such as

SSM, we can better understand the attributes available to quantify an assessment, including

but in addition to, typical security factors.

Risk assessments operate on severity, and the aim of invoking a novel risk-driven

framework is to challenge elements of the typical TLS strategy for the domain under

implementation, so that the proposed solution exhibits a considerably reduced use of energy.

This constitutes a Data Protection Impact Assessment (DPIA), which occurs in the design

phase. Security and privacy by design, as opposed to retrospective problem solving, enable a

benchmark by which power analysis study later on can confirm or deny consumption savings

reflected in the DPIA metrics. The functionality reduction process, and the results they

obtain, will subsequently be challenged in Section 4, and it is argued will constitute an

accurate reflection of the post-DPIA energy consumption differences.

Having considered the scope of the domain, security requirements, and the configurations

proposed for the solution, we can now proceed with testing under power analysis.

Energy-Conscious Authentication and data exchange

This section includes research questions two and three, and describes the process of design

and testing for energy-conscious device authentication and message protection. The research

detailed in the literature review covers the standard TLS configurations for each mechanism,

and our DPIA provided a framework for adjusting this configuration for energy reduction.

This chapter describes the process by which the DPIA results were proven correct.

Device authentication is considered first, beginning with the challenges of authentication

in general and how the design contributes. This includes optional session privacy to remove

the need for superfluous encryption, decentralised processing to alleviate infrastructure

requirements, persistent sessions to take advantage of the stable and long-term relationships

between devices, and, finally, low energy consumption as a result of the collective

contributions. It is low energy consumption that the study aims for, but previous

contributions highlight a number of additional benefits. TLS authentication is then described,
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along with its problematic aspects, and the literature review is referred to, describing how the

expectations of constrained devices, centralised governance and domain application render

TLS inappropriate.

Existing solutions for energy-conscious authentication are then introduced as self-signed

certificates and certificate-less security are considered towards developing a novel solution.

Authentication functions available to the domain microcontroller are presented and proposed,

and presented as an implementation proposal for power analysis.

Message payload security is now considered, similarly presenting topic challenges and

contributions. As with authentication, privacy driven by content and domain requirement

indicates potential for considerably lower energy consumption than TLS offers. The problem

statement for messaging describes ciphersuites and how unnecessary the strength and

encryption within them can often be, but also how the stringency of TLS offers little flexibility

to ciphersuites.

Existing solutions to TLS alternatives are limited, but feature energy harvesting for

increasing power resources, mitigating message attributes and edge processing, as opposed

to using a server or hub. In response, our solution proposes a distributed infrastructure,

additional keys to allow for selective encryption, and ciphersuites based on the requirement

of delivery in order to assess threshold strength.

Power analysis as a testing methodology is presented through Ohm’s law, and the

techniques to measure time and power are illustrated for obtaining accurate energy

consumptions. Experimental test results are then presented and discussed, demonstrating a

positive outcome of the DPIA in Chapter 3, in which both novel designs consume significantly

less energy than regular TLS employment.

Energy-Conscious Consensus Mechanism

This section presents research question four, as the design and safety check of a consensus

mechanism - a decentralised and ephemeral authentication mechanism based on a limited

data chain. This is for granular access control, a more selective approach than TLS based

on hierarchy and roles, with the purpose of domain assurance regarding system integrity

and device entry approved by the existing group. We introduce this chapter with reference

to device capabilities in context of typical authorisation applications; centralised lists of

correlating rules and roles amongst databases, and how this contradicts the dispersed, chaotic

and heterogeneous nature of IoT. Our contribution is the proposal of a distributed resolution

by a process to distinguish between genuine and false network devices.

TLS access control is binary and operates on an approach of ‘either there is access to the

network, or there is not’. Typical use of TLS would not present this as a problem, because

the relationships between client and server are deliberately brief, and manifold. However, the

nature of a smart farm application could benefit from long-term and persistent relationships,

wherein insider or persistent threats may be more of a concern. As such, additional protection

is considered in a decentralised, scalable manner, using the consensus of neighbouring devices.

With knowledge of what the domain would benefit from, the design provides a low-energy
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approach by recycling the functions existing already from device authentication and message

security, and limiting these attributes into clusters of systems within a predefined range.

Limiting the number of systems governed by a distributed mechanism ensures the chain is

short, overlap is limited, and repetition of attributes between clusters is high enough to assure

integrity and backup domain-wide. A shallow hierarchy with ephemeral roles is proposed, so

that replacement devices do not extend the chain to prevent scalability issues. The mechanism

intends to be agnostic, and the functions employed in the example are representative of any

security application in which the same can be recycled from authentication and messaging.

Finally, we propose that a consensus mechanism is the most appropriate because from periodic

integrity checking, a number of existing devices can grant access, forming autonomous

self-healing.

With emphasis on low-energy already covered, the model is then checked for safety and

secrecy. Formal verification is used for model-checking, and demonstrates safety by secrecy.

Conclusion and Further Work

The research is concluded by referring back to the contributions provided by experiments

one to four, and how they create an energy-conscious alternative to TLS as a whole. The

limitations of the study are discussed, and future research topics are proposed beyond the

scope for this research.

1.7 Prior publication

• Low-Energy Authentication with Selective Privacy for Heterogeneous IoT Devices in

Smart-Farms [12].

• Selective Privacy in IoT Smart-Farms for Battery-Powered Device Longevity [13].

• Towards Lightweight Authorisation of IoT-Oriented Smart-Farms using a Self-Healing

Consensus Mechanism [14].

• Threat Modelling with the GDPR towards a Security and Privacy Metrics Framework

for IoT Smart-Farm Application [15].



Chapter 2

Literature Review

The literature review covers the background problems and related work pertaining to the

proposed security solution, and begins with an introduction to the application domain,

the IoT landscape, smart farming as an IoT application, aquaponics specifically, and the

microcontroller we will be studying. We then move onto the threat landscape, security

vulnerabilities in general, the trade-off between power and processing in IoT applications,

and the significance of risk-driven threat modelling. Following on from the threat landscape

is an exploration into design modelling for the proposal - from a business perspective, the

differences between privacy and security, and the applications for each in implementation, and

finally how metrics can be objectively scored as part of risk assessment. The next section

presents existing security solutions to centralised, decentralised, and distributed security

- invoking concepts for the proposal. The next section considers security mechanisms as

the fundamentals of security practice and implementations for confidentiality, integrity and

availability on the microcontroller. Finally, we discuss the de facto standard of internet

security (TLS), including the mechanisms and differences between the first and second version

of the same protocol.

2.1 Application domain

This section firstly presents the IoT landscape as a concept, the nature of constrained and

heterogeneous devices, and general characteristics in application. Secondly, smart farming

as an industrial application of IoT is discussed, summarising the benefits compared with

traditional farming and discussing the networking topologies of existing smart agriculture.

Aquaponics is then presented as the specific application for this research, with attributes

of the domain that will affect the design of our security framework. Finally, the featured

microcontroller is presented, since it is necessary to understand the nature of hardware and

firmware before efficient, resource-centric security practices can be fulfilled.

12
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2.1.1 The IoT landscape

Whilst the web was developed to share information generated by people, the IoT operates on

data created by things [16], and to facilitate interactions with and between those things. The

IoT is pervasive by nature [17], enabling device-to-device and human-to-device interaction.

Devices will be sensors and actuators, usually hosted by microcontrollers and (gateway or

hub) microcomputers.

Despite implementation in large-scale applications, technical specifications or references

for architecture are far from being standardised [18]. IoT devices use the internet as

fundamental infrastructure, but also may connect autonomously with each other [19]. This

diverse networking nature of communication means IoT connections become unpredictable,

spontaneous and difficult to anticipate [20]. A network nature that is chaotic and amongst

myriad heterogeneous devices, perhaps dispersed over many miles by various protocols,

presents quite a topological challenge - at times devices cannot be catalogued and controlled

in a traditional sense.

Threat reduction and reassurance of safety is paramount to the future of IoT applications,

which are increasingly supporting the monitoring and control of daily environments [21]. With

concerns escalating over security, privacy and trust [22], industrial IoT employment amongst

sectors such as healthcare, military and agriculture, is of concern - as security is neither

straightforward nor standardised. Heterogeneous connected devices can appear fragile and

vulnerable, and the IoT landscape is a relatively immature approach to data management

and security. On the other hand there are benefits to this simple nature. Microcontrollers are

different from other modern technologies such as smartphones or laptops, but very comparable

to the standards of the 80s and 90s in terms of RAM and flash memory. They are not designed

to undertake the processes of desktop machines, and the physical size and native protocols

reflect that in an obvious way.

Constrained devices are often devoid of an Operating System (OS), at least in the sense

of time sharing, process management and the like), accessible mass storage, user accounts,

a browser and so on, and this absence of functionality removes numerous vulnerabilities.

To offer further protection against global threats, microcontrollers operate on a range

of protocols, such as Bluetooth Low Energy (BLE), Long Range Wireless Area Network

(LoRaWAN), Message Queuing Telemetry Transport (MQTT), Radio Frequency (RF), as

common examples. Since IoT systems are highly constrained in power, processing and

storage, good practice suggests that the aforementioned protocols be used in preference to the

much more power-demanding internet. By removing the internet as the core communication

within an IoT environment, the threat landscape is considerably reduced.

Smart farming is now discussed as the domain of industrial application for the research.

A range of smart farming technologies and practices are presented, and we consider network

topologies and security strategies appropriate to accommodate the nature of semi-automatic

crop production.
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2.1.2 Smart farming

Envisioned as a clean alternative to resource-hungry traditional agriculture, smart agriculture

has been highlighted as playing an important role in efficient food production [23]. With the

population at eight billion now, and expected to increase to nearly ten billion by 2050 [24],

food supplies have become a major concern [25]. Smart agriculture promotes the concept

of semi-automated systems for monitoring and controlling farm environments - maximising

farm productivity whilst reducing input resources wherever possible.

Green energy plays a key role in smart agriculture. In addition to microcontrollers

and microcomputers as lightweight alternatives to desktop machines, IoT networked

sensor-actuators can operate for years on battery operation or indefinitely on green energies.

Notable progress has been contributed in the use of wind turbines for agriculture [26],

solar [27], and piezoelectric utilising movement to charge super-capacitors. These all

find application in self-powered IoT [28]. Furthermore, amplification of the seasonally

and geographically restricted energy generation of solar power has undergone substantial

development using fluorescent reflectors [29]. In summary, the reduction of carbon dioxide

emissions by green efforts has recently been so significant, that indoor vertical farming has

been able to reduce ventilation energy consumption by 58% on top of the carbon-neutral

input for the plant production itself [30], demonstrating a step towards carbon-negativity.

The social benefits of smart agriculture have demonstrated local food production and

lower gas emissions towards reduction of pollution, in addition to jobs creation [31]. Crops

with specific characteristics may be particularly beneficial for some people. For example,

low-potassium kale can benefit those suffering from renal dysfunction [32]. Tightly-controlled

nutrient solutions can facilitate the development of such crops. There are also active

campaigns to support the reduction in red meat consumption in favour of plant-based food

and proteins, to reduce the land mass and other resources required for livestock farming [33].

Smart farming innovations have witnessed developments in Machine Learning (ML) [34],

animal behaviour and analysis for dairy farming [35], Precision Agriculture (PA) in soil-less

greenhouse recirculation of saline water [36], vertical hydroponics [37], and aquaponics.

Now we turn to aquaponics, the smart farm application of this study. We present the

context and motivation for energy reduction in the security of this semi-automated crop

production environment.

2.1.3 Aquaponics

Aquaponics is considered as one of the most notable smart farming solutions for

environmentally-efficient food production, using green energy towards self-sustainability, a

soil-less environment, and nutrient-rich water circulation [27]. Systems have been modelled

using IoT microcontrollers, and lightweight protocols aligned with the nature of this type

of networking [38], with many examples of Artificial Intelligence (AI), [39] ML [40], and

wireless sensing [41]. In general, there is a large coverage of the aquaponics domain in terms

of evidential benefit, operation, and viability towards efforts for carbon reduction. There is
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very little coverage, however, on appropriate security applications.

Aquaponics presents a symbiotic relationship between plants and fish, where fertiliser

and other synthetic nutrients are substituted by fish effluent in a continuous pump cycle

around fish tanks and soil-less crop growth beds [42]. Aquaponics is similar to hydroponics

but with the inclusion of fish, and the exclusion of artificial growth hormones towards an

environmentally beneficial alternative [43]. In addition to symbiosis, setups can incorporate

aspect-specific lighting, humidity and heating, for non-indigenous crops, regardless of season

or geography. With influences of green power such as solar or wind, and appropriate

expectations of the system for power and processing of the IoT components, aquaponics could

exemplify a carbon-neutral, or even carbon-negative model for the future of food production.

Figure 2.1: Typical Aquaponics System, image source [2]

The relevance of this study is for promoting a more viable use of aquaponics for smart

farming, by establishing appropriate security. We understand that aquaponics is at the

forefront of semi-automated food production, but we also believe that security is neither

widely covered, nor optimised for this domain - yet it is imperative to the protection and

continuity of any IoT network. Without security, failure and downtime cannot be assured

against, yet implementation of inappropriate security can pose a great threat to longevity

of battery and green-powered devices by draining resources. Typical security application is

generic and restricted by configuration, rendering it heavy, and demanding of power, time,

and processing - three things that IoT in general cannot supply. Should the aquaponics

farm be moved off-grid to demonstrate further independence, use of the internet would

also be disregarded, and along with it, the most common, mature applications of security.

Implementers of network security therefore face a dilemma. They can either alleviate the farm

of security, rendering it vulnerable to attack and downtime, or they can implement a series
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of unoptimised, generic security solutions for each protocol, jeopardising the performance of

constrained devices.

In order to provide a comprehensive understanding of the broader context within which

this study is situated, it is important to present a commonly used network topology in the

field of IoT, which also forms the basis of this project - edge processing with a hub for

cloud delivery. Despite this being a structural component of our project, it is included here

in the literature review as it is a commonly accepted and widely used topology within the

IoT domain. As a typical model for IoT networks, it is a solid foundation upon which the

discussions and analyses of is study are built.

Figure 2.2: Networking the Systems, image sources [3; 4]

In summary, to optimise the lifespan of constrained devices, freedom of farm placement,

and ultimately reliability and continuity of the farm, security is currently a paradox, both

essential and detrimental. With these restrictions in mind, Espressif’s ESP32 Huzzah!

Feather board was selected to model the challenge and resolution of a prospective security

solution. We now introduce the ESP32, and discuss its benefits, limitations, and how it will

help address the challenge of an appropriate security solution.

2.1.4 ESP32

The ESP32 is a dual-core, low-power microcontroller with integrated WiFi, Bluetooth,

and Bluetooth Low Energy (BLE). It also hosts radio transmission, several peripheral

interfaces, and most importantly, four hardware modules dedicated to cryptographic

hardware acceleration, making the ESP32 a natural candidate for exemplifying the ideal

security solution in an IoT environment.

Below is a function block diagram for the ESP2:
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Figure 2.3: ESP32 Block Diagram, image source [5]

ESP32 specifications are detailed by Espressif [5], but the following are relevant for this

research:

• Xtensa LX6 microprocessor: low-power, 32-bit, with C/C++ compiler, encouraging

work at this low-level for most applications.

• Static Random Access Memory (SRAM): 520KB, very limited flash memory for data.

• Cryptography block: Dedicated hardware acceleration of four security-centric functions:

– RSA: Asymmetric key generation, encryption and decryption.

– AES: Symmetric key generation, encryption and decryption.

– SHA: One-way hash function generation.

– RNG: Generation of large, random numbers.

• Security features: For preventing remote access to the board:

• Secure boot: Unique key generation on startup to prevent untrusted firmware.

• Flash encryption: Encryption of the memory using the boot key.

We can see from the block diagram that a security solution should employ a small

amount of instruction to reduce its occupation in the limited flash memory, built in C or

C++, and founded on the four functions hosted on the cryptography block, since these are

hardware-accelerated.
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In this application, the ESP32 is hosted by Espressif’s Huzzah! Feather board [44], a

microcontroller supporting a variety of lightweight communications protocols; BLE, MQTT,

ESP-MESH, RF, and TCP/IP for the internet. The board is also written to using a micro

USB cable, and a 3.3V power input. The ESP32 has been used frequently in research

of smart farming applications, including poultry [45], crop monitoring [46], and irrigation

[47]. With a good success rate in farm operations and dedicated security functions, the

ESP32 was considered a sensible choice to demonstrate a security model utilising distributed,

edge-processed cryptography to reduce security infrastructure and energy consumption.

2.2 Not every cloud has a silver lining

With reference to the idiom ”every cloud has a silver lining”, or that every sad or unpleasant

situation has a positive side to it - the case is not necessarily so with regards to cloud

computing, and herein explores the attack landscape pertaining to that and IoT.

The last section described the hardware chosen for the domain, the ESP32, and the

assets of the hardware - cryptography functions RSA, AES, SHA, and RNG, with storage

and processing limitations briefly highlighted. This chapter explores the vulnerabilities of

the IoT threat landscape in general, and the power versus processing trade-off, which in the

IoT domain is a problem - enough reason to exclude security in order to preserve the lifespan

of battery-powered devices.

By proposing a security solution oriented on low energy consumption, we intend to

increase viability for inclusion of security at the design stage of smart farms. Where higher

computer processing for stronger keys requires greater power and longer computation time,

security must be reduced as much as safely possible, and so a risk-based approach is necessary

to ascertain a level of security that is adequate, but not superfluous to, ’threshold’ or adequate

smart farm protection. This section explores the fine balance between necessary security

measures, and reduction of computation within security mechanisms.

2.2.1 Security threats

IoT networks by nature are chaotic, constrained, and heterogeneous. Such characteristics

indicate the strengths of such networks which are quite the opposite of desktops, laptops

and modern smartphones, which can accommodate expansive processors, storage, and run

on mains power, or at least are expected to have regular access to mains power. However,

the natural limitations of IoT microcontrollers offer natural protection, because they have a

relatively simple interface, and as a result, are much less accessible. Microcontrollers lack

the vulnerability landscape of a desktop computer in a similar way that a calculator does

compared against a smartphone - the less accessibility available, the more robust the device

is.

While the ESP32 can optionally run a real-time Operating System (OS), like FreeRTOS,

it’s important to note that this is not a conventional OS, and certainly does not contain a

web browser. Yet, despite this difference, security remains a critical concern.
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It is widely recognised that any device connected to the internet can potentially be

a target of various security threats. Even though traditional threats [48], such as SQL

injection [49], CSRF, and XSS [50], are primarily associated with systems that have an

OS and a web browser - the IoT devices powered by ESP32 are not immune to security

vulnerabilities. The attack surface may be different, but it’s equally crucial to implement

security measures to protect these devices. In this sense, the type of OS available to the

ESP32 refers to a call for attention towards potential vulnerabilities and the necessity of

additional hardening to enhance the security posture of devices within the IoT application

framework - such as vulnerabilities particular to IoT devices, for example, default passwords

and usernames. Perhaps such reliance on any user’s knowledge of poor default security is

a little optimistic, and there is basic need for good device authentication and data transfer.

There is no requirement for browser TLS when dedicated hardware acceleration and library

calls provide the same cryptography functions pertaining to Confidentiality, Integrity and

Availability (CIA) of data. These are, on the ESP32 crypto block, provided by encryption

or confidentiality as AES, hashing or integrity as SHA, and authentication or availability as

RSA - and a Random Number Generator (RNG), to assure of unpredictable computation

behind the aforementioned functions. These functions provide processing straight from the

ESP32 hardware - enabling the same configuration as browser TLS, in addition to many other

options for configuration as well.

The Serial Peripheral Interface Flash File System (SPIFFS) [51], and Mongoose OS [52],

for example, pose unreasonable expectations on the underlying architecture. Attempting

to transform machines comparable with those of the 1990’s towards modern expectations

imposes a heavy toll on the storage and energy resources of such constrained devices.

In 2021 the top ten threats of IoT security according to the Open Web Application

Security Project [53] were as follows:

1. Weak, guessable, or hard-coded passwords: including default passwords, regular

words vulnerable to attacks that run through the contents of a dictionary, or with

too few characters. Weak passwords are liable to brute-force attacks and render

encryption useless. Devices need configuring individually [54], preferably disregarding

the predictable default passwords and replacing them with random strings including

special characters.

2. Insecure network services: unnecessary or insecure network services running on the

device such as remote access, media sharing or unprotected visibility. Services should

be run on the basis of necessity, to not challenge the CIA triad, or allow unauthorised

remote control. Service manipulation of IoT smart city data has been exploited by

malicious nodes utilising services [55], through open ports [56], and the Mirai attack

could be engineered from a traditional DDoS to a service-oriented attack [57].

3. Insecure Ecosystem Interfaces: are not on the IoT devices but connected as

separate entities within the greater environment, the network, the data processing
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unit, lacking access control, and weak or no encryption. Often insecure web interfaces

introduce traditional threats such as SQLi or CSRF and XSS . Segregation of network

layers between IoT and IoT support could prevent a lot of the browser access, where

global internet access could be read-only by authorisation system, for example. The

general census once again advises that layers in the IoT ecosystem should be protected

by CIA mechanisms, authentication and authorisation [58].

4. Lack of Secure Update Mechanism: is a lack of available backups, and the

secure delivery of firmware updates and validation [59]. Routine backups for business

continuity could partly resolve this, as well as encrypted updates, which again is a

case of fulfilling the CIA triad at either point of transit. Without encryption, updates

may reveal credentials (e.g. passwords broadcast in the clear over wifi) and network

instructions (e.g. code specific to a smart farm sensor’s operation). Without integrity,

the material can be tampered with in transit, and without availability, there is no proof

of where it came from, such as a malicious node.

5. Use of Insecure or Outdated Components : outdated components and libraries

can provide the easiest routes to exploitation. The fewer libraries and components, the

better in this respect, and a good example of a ‘by necessity’ approach. OS platforms

and lots of third-party software can create a vulnerable network. Shellshock was an

example in which the outdated version of SSL allowed the DDoS botnet [60], and the

superseding Linux-based DDoS IoT botnet, Bashlite [61].

6. Insufficient Privacy Protection: the 2018 stipulation of the General Data

Protection Regulation (GDPR) [62], accelerated the use of privacy functions to

anonymise, pseudonymize, and tokenize data. The personal information of living

subjects left unprotected in storage or in transit around IoT environments was becoming

increasingly concerning, particularly with health data, and so functions were introduced

that were lighter than encryption. The Payment Card Industry Data Security Standard

(PCI-DSS) [63], has employed tokenization for years - GDPR regulations use the same

standards.

7. Insecure Data Transfer and Storage: this issue is about lacking access control

(authorisation), for sensitive data anywhere in the IoT ecosystem, and lacking

encryption at rest, in transit, or during processing. With data in transit, TLS can be

implemented for most protocols, but there is an absence of widely accepted protection

for data at rest and countermeasures that would enhance security and privacy at the

design phase [64]. A ubiquitous IoT security application for data at rest would be

complex and perhaps jeopardise the lifespan of devices in the same way as regular TLS,

as a high-strength, energy-hungry solution. This is where risk-driven threat modelling

helps ascertain the sensitive data and which areas of the environment need the most

protection - towards reducing energy consumption with a ‘by necessity’ protection

approach.
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8. Lack of Device Management: this is the lack of default security deployed in

production, including asset and update management, monitoring and threat response.

Manufacturers do not supply software for these processes, but there is a large open

source community supporting the hobbyist and industrial IoT security domain. The

ESP32 has an Over The Air (OTA), update tool, with several versions available in the

Arduino IDE [65]. It is also possible to manually backup the firmware, or set these

actions to timer - the ESP32 has had excellent impact in healthcare with such reliable

features [66]. An advantage to the open source style of IoT programming is that even

though proprietary solutions do exist, we do not have to enter into a contract with a

manufacturer that would cost money and risk privacy.

9. Insecure Default Settings: many IoT devices are deployed with default passwords

that are vulnerable to dictionary attacks, if there are security settings at all. The ESP32

however has a few security functions; secure boot, EPROM, flash encryption, and the

dedicated, hardware-accelerated cryptography functions as mentioned in section 2.1,

Application Domain. Default settings aside, this should not deter us from resetting

credentials which may be weak, duplicated on many devices, or stored on a database

somewhere.

10. Lack of Physical Hardening: is the weakness in physical systems for their contents

to be gained by proximity, magnetic fields, USB ports, and so forth. Malicious

nodes can be attached to devices for immediate access, or persistently for remote

control at a later date. Although the ESP32 has been subject to physical injection

attacks [67], or the Fatal Fury attack [68], the secure bootloader key generated on

startup is unique to each device, so each victim device must be physically accessed

via its own System-on-Chip (SoC). Physical attacks can be protected against by

additional authentication and integrity onto the device, as demonstrated with 1-wire

Electrical Erasable Programmable Read-Only Memory (EEPROM) against side channel

attempts [69]. This method uses one of the functions hosted on the ESP32, SHA

hash function for one-way integrity checking, and authentication function Hash-keyed

Message Authentication Code (HMAC), available in the firmware library to support

the hardware function. The functions are explored later on, in section 2.5, The CIA.

Other countermeasures include Electro-Magnetic (EM) proof coatings, casing shields,

and fault detection methods to report clock distortion.

2.2.2 Power versus processing

The topic of power versus processing as a trade-off renders security implementation quite a

contradiction to the nature of IoT. Energy is the major strand here, but the style of traditional

security is also a paradox to the heterogeneous and spontaneous nature that is the IoT. TLS

is a good example of this problem:

1. TLS is centralised: server-based central networks limit the range of the environment,
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or require multiple servers. IoT is very dispersed and often the sensors are placed in

awkward places, like tall building facades.

2. High-spec ciphersuites: TLS is very strong, and IoT networks do not favour high

computation. The key strengths are hundreds of thousands of years strong - unnecessary

for purpose.

3. Rigid in its requirements: mechanisms and functions are present all of the time

without option for configuration adjustment. Functions are stipulated when they are

not necessary.

4. Channel-based not payload-based: protection is provided by protocol, not content.

This means that a separate TLS configuration will require setting up for TCP/IP, BLE,

MQTT, LoRaWAN and so forth. This means multiple libraries and duplication of

instructions on the device.

5. Uses certificates: X.509 certificates hold a lot of data that IoT devices do not need

because they largely do not use browsers. Certificates also require a lot of storage

for their chains containing roots, branches and leaves - becoming a storage and server

burden.

6. Session timeouts: The secure sessions reset almost immediately after data

transmission, even if the relationship between two devices is persistent. This means

that for every single message from one device to another, the session undertakes setup,

transmission and closure, perhaps every five minutes. This is a hugely unnecessary

waste of processing, power and time.

7. Complex architecture: The setup requires an underlying governance architecture

known as Public Key Infrastructure (PKI), which is both centralised and requires

separate processes for key and certificate management such as revocation and escrow.

If a single entity within this structure fails, so does the entire certificate system.

Despite these incompatibilities, TLS is widely accepted, mature, regulated, strong, and

most importantly, ubiquitous - which means the functions underpinning TLS (SHA, AES,

RSA), are the same ones available on constrained devices, such as the ESP32. A suitable

solution could use the same functions in a mechanism suitable for IoT, whilst addressing the

seven problem areas outlined above. An in-depth analysis of TLS is discussed in section 2.6,

Transport Layer Security (TLS). Meanwhile, we consider how to safely reduce the uage of

security functions by assessing the threat landscape.

2.2.3 Risk-driven threat modelling

As part of a trade-off between risk mitigation and energy consumption, the purpose of

risk-driven threat modelling is to scope the risk landscape, and address only what is necessary

in order to reduce the security provisions down to a threshold safety level. As with reference to
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OWASP Top Ten IoT Threats item ‘6. Insufficient Privacy Protection’ above, and following

the notion of PCI-DSS in general, substitution of security functions with privacy functions

have been exercised for a long time in the realm of internet safety. Taking the example of

established practice, the risk-driven threat assessment seeks to incorporate privacy functions

as a lightweight alternative to encryption wherever possible. We begin with considering

existing risk-driven methodologies, what they consider vulnerable, and how to quantify risk.

There are several risk-driven methodologies for security at the systems design phase:

• STRIDE is the most mature [70], and provides threat-specific variants to arrange

property violations identifiable in Data Flow Diagrams (DFDs), of the system design.

An immediate problem with STRIDE in the smart farm domain is the presumption of

specific vulnerabilities according to the top ten, which in a heterogeneous environment,

may not be applicable.

• PASTA [71], describes a seven-stage model of activities to combine business objectives

and technical requirements. It is attacker-centric, considers governance, architecture

and operations, and may reflect the concerns of the domain better than STRIDE.

• LINDDUN [72], largely concerns privacy, with a systematic approach influenced by

DFD-illustrated entities, data stores, processes and data flows. With reference to the

aforementioned overlap between privacy and security, LINDDUN will be a valuable

approach.

• CVSS [73], provides a numerical score of a vulnerability based on its characteristics.

The CVSS consists of three metrics groups (base, temporal and environmental), and is

often used in conjunction with other threat-modelling methods. CVSS is not useful for

the smart farm security application design, but could be as part of a penetration test

following implementation towards remediation. It will not be used in this research as

we should focus on design phase security and privacy.

• Persona non Grata (PnG) [74], considers the motivations and skills of human attackers

by characterising attackers as archetypes for system misuse towards specific goals. Use

case scenarios are generally helpful in system design, and so this will be a beneficial

security application of such scenarios.

• TRIKE [75], was created as a security audit framework from a defensive perspective,

understanding actors, assets, intended actions and rules based on a DFD, and then

dividing each one into one of two categories - elevation of privilege or denial of service.

Since this framework assumes that users are very active in the system, it is irrelevant -

the aquaponics system aims for as few active users as possible towards semi automation.

As part of a larger design, STRIDE suggests the use of DFDs, but this is irrelevant

to a TLS re-model using a limited set of security functions. PASTA supports the use

of business objectives and technical requirements, which will be useful to investigate, and
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LINDDUN demonstrates the significance of privacy in addition to security. The CVSS

scoring system, although a useful reference, is a retrospective record of successful exploits,

rather than preventative methods. PnG, similarly to PASTA, emphasises the motivations

of human attackers and introduces social engineering as a profiling tool. The significance

of human emotions means that attacks are driven by the content an attacker is pursuing,

and this would suggest a risk assessment should be content-oriented. TRIKE again seeks

to incorporate the varying actors and actions they must take against the system in pursuit

of goals. In summary, the human aspect to security engineering is featured in the most

popular risk-driven methodologies, as is privacy and metrics scoring. These properties will

be considered in the next section.

2.3 Design modelling

The previous section discussed threats pertinent to IoT, the power and processing tradeoff,

and risk-driven methodologies to assess risk severity towards implementing appropriate

security solutions. The discussions were focused on security specifically, generally resolved by

applying the CIA principles fundamental to cryptography. However, a universal application

of the CIA would not resolve the challenges of employing TLS for IoT ecosystems, nor would

they reduce energy consumption enough to make such a prospective solution a justifiable

alternative to TLS. As a result, a suitable security solution should consider a wider scope,

by reflecting on threats and influences including, but not limited to, security.

Scoping from a business perspective is critical to the performance of an energy-centric

security solution. Where security refers to levels of hardiness of the system, it does not

examine environmental impacts which may affect energy reduction, or at least not beyond

the CIA principles. Designing a security solution towards a green aim, and viable alternative

to TLS is both a business and security proposition.

We begin with an introduction of Soft Systems Methodology (SSM), and the available

methods to ascertain the security objectives required for a design using techniques for scoping

the project and from surrounding influences. We then consider the differences between

privacy and security functions, and the impacts of each, on the solution design. Finally, we

consider how to score protection and energy consumptions using objective metrics systems

for a quantifiable assessment process addressing both risk and energy cost.

2.3.1 SSM from a business perspective

Soft Systems Methodology (SSM), [76], was developed to analyse problems where there may

be divergent views about the definition of a problem. These are considered ‘soft’ problems,

and focus on the wheres, whens hows and whys. SSM is a long-standing approach to systems

modelling and has been included as a research consideration for IoT [77], multiple criteria

decision making [78], analysis of information security in banking [79], cyber security defence

[80], decentralised security design [81], analysis of security breaches [82], enterprise planning
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for security [83], and to exploit web application vulnerabilities, including the infamous

Heartbleed [84].

1. The development of the SSM technique

SSM has evolved from four previous practices into one inclusive technique. These were:

(a) Blocks and Arrows: focus is implementing change rather than introducing or

improving a system, through a sequence of stages which iterated to previous stages:

i. Analysis

ii. Root definition of relevant systems

iii. Conceptualisation

iv. Comparison and definition of changes

v. Selection of change to implement

vi. Design of change and implementation

vii. Appraisal

(b) Seven Stages: A cluster of seven activities in a circular process:

i. Enter situation considered problematic

ii. Express the problem situation

iii. Formulate root definitions of relevant systems and in root definitions

iv. Build conceptual models of the systems named in the root definitions

v. Compare models with real-world situations

vi. Define changes both possible and feasible

vii. Take action to improve the problem situation

(c) Two Streams: A recognition of the role of history in human affairs. This method

includes logic by activity modelling, and culture and politics to enable judgements

to be made between conflicting interests by people concerned, enabling actions to

be taken.

(d) Four Main Activities: Iconic rather than descriptive approach, invoking the

cultural stream of analysis by four activities:

i. Finding out a problem situation including cultural and political influence

ii. Formulating some relevant and purposeful activity models

iii. Debating the situation using the models, by firstly positive prospective

changes both desirable and feasible, and secondly the compromises between

conflicting interests to enable actionable changes.

iv. Taking action to bring improvement.

2. CATWOE

The latest development of the SSM approach is a technique which provides a framework

for defining and analysing business stakeholder perspectives towards a change of current
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situation. Customer, Actor, Transformation, Worldview, Owner and Environment

(CATWOE). Each part of the mnemonic is described below:

• Customers: Who are the beneficiaries of the business process, and how does the

issue affect them?

• Actors: Who are the people involved in the situation who will undertake the

work?

• Transformation: What is the transformation of better inputs to outputs that

this analysis is based on?

• Worldview: What is the big picture, and what are the wider impacts of

stakeholder beliefs?

• Owner: Who owns the situation under analysis, and what role, positive or

negative, do they play?

• Environmental: What are the constraints, rules and policies that will impact

solution success?

3. BATWOVE

Beneficiaries, Actors, Worldview, Owners, Victims and Environmental (BATWOVE),

is the extension of CATWOE to include victims; in which every intervention or

transformation can be of benefit or detriment to ideas and people.

4. SWOT and TOWS

Strengths, Weaknesses, Opportunities and Threats (SWOT), is a classic business

strategy tool and TOWS is a variant of the same acronym to extend SWOT from

an internal environment to an external one (Javaid, 2021). The aim of this model

is to draw domain-specific attributes such as communication ranges and architectural

details, which will impact the attributes of the metrics framework later on.

SWOT and TOWS prompts the following attributes:

• SO: Strengths to maximise opportunities, or “maxi-maxi”.

• ST: Strengths to minimise threats, or “maxi-mini”.

• WO: Minimise weaknesses by taking advantage of opportunities, or “mini-maxi”.

• WT: Minimise weaknesses to avoid threats, or “mini-mini”.

2.3.2 Privacy and security

The opportunity to reduce energy consumption of security functions is bolstered by the

possibility of some privacy functions being interchangeable.

Whereas security definitions CIA relate to encryption, attestation of non-tampering, and

proof of origin respectively, privacy definitions refer to the rights of a living subject. Article

5 of the GDPR defines seven core principles for lawful handling of personal information:
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1. Lawfulness, fairness and transparency: To identify valid grounds for collecting

and using personal data - ‘necessary processing’ or a ‘lawful basis’.

2. Purpose limitation: To be clear about what the processing purposes are, from the

beginning.

3. Data minimisation: To ensure personal data is adequate, relevant and limited to

only what is necessary.

4. Accuracy: That personal data is correct and not misleading.

5. Storage limitation: To retain personal data only as long as it is required, justified

by purpose.

6. Integrity and confidentiality (security): Appropriate security measures must be

in place to protect data.

7. Accountability: To take responsibility for what is done with the personal data.

With regards to reducing energy consumption, particular attention will be paid to

these principles in due course when justifying substitution of varying security functionality

with privacy application. Such privacy functions have mature proof of concept under the

aforementioned financial regulation PCI-DSS, using tokenisation. Alternatively, there are

the privacy functions of anonymity and pseudonymisation [85]. Anonymisation means the

inability to identify a living person amongst a data set - a data set of a group’s health,

for example, where many subjects will belong to a group of age or gender, but none

shall stand out as an individual. Anonymisation is often used in statistics for geography,

health, demographics, and risk factors like insurance. Pseudonymisation, compared to

anonymisation, does not alleviate data of all identifiable information - but reduces the link

of a dataset with the original identity of an individual.

Pseudonymisation and anonymisation as privacy functions overlap with security, as they

could mean an encryption scheme, or a nickname with meaning to operatives but not

outsiders. They could also mean a reference code, an artificial identifier indexed against the

real data in a central server. Tokenisation is also similar to encryption, but often operates

on a simple substitution to disguise data such as credit card numbers. Tokenisation can

therefore be ‘unlocked’ without a key, particularly with well known credit card tokenisation

algorithms used as part of the Cardholder Data Environment (CDE) [86], of PCI DSS [87]

- but it requires a series of substitution numbers to do so, which will be anonymised in the

background.

The approval of PCI DSS for use of cryptographic alternatives such as pseudonymisation

for sensitive data, indicates that avoidance of heavily mathematical functions is entirely safe,

practical, and even encouraged under the governing bodies of financial regulation. This work

investigates where it is safe to substitute security functions for privacy functions.

However, privacy functions should operate within the overall safety of traditional CIA

security functions. As PCI-DSS is a mature example of how tokenisation has provided a
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secure substitution of security techniques, a useful comparison between the two approaches

demonstrates several advantages a decentralised TLS model would offer over token-based

authentication systems. Whilst token-based authentication systems are simpler to use than

TLS which utilises complex underlying PKI, TLS offers numerous advantages. With reference

to [88], such advantages are::

1. End-to-end encryption: Communications can be encrypted from client to server to

ensure no interception or tampering. With token-based authentication, communication

is typically, but not always, encrypted only between the client and authentication

server, as opposed to the server holding the requested data. The authentication is

responsible for providing resources based on a user’s credentials - thus leaving a potential

opportunity for data leak in part of the communication chain.

2. No single point of failure: It is possible to distribute certificates across multiple

servers for client verification, so that if one server is compromised, the system as a

whole retains security. In token-based authentication systems, the authentication server

renders itself as a potential single-point of failure.

3. Trust model: Similarly to certificate distribution, the trust model of a decentralised

TLS is the difference between a single and multiple servers. Where trust is distributed

amongst many places in TLS, the authentication server is a single point of potential

failure in token-based authentication systems.

Taking the advantages of a security model to act as an overall perimeter to promote

privacy functions within it, the next part considers the role of GDPR within security

functions.

2.3.3 GDPR and the CIA

Privacy by Design (PbD) has been proposed using a Quantitative Threat Modelling

Methodology (QTMM) (Luna et al., 2012), by risk assessment based on privacy-related

attacks. The difference between privacy-oriented assessment is that other forms of threat

modelling are largely agnostic of involved data subjects (Sion et al., 2019). The GDPR sets

99 articles and 173 recitals towards protecting the privacy of personal and sensitive data for

subjects - and processes to attain that protection, with and without security functions.

Although the aquaponics system is largely devoid of personal and sensitive data belong to

human subjects (we shall assume the fish don’t mind their data being studied publicly), then

the usefulness of the GDPR pertains to assessing a ‘data-oriented’ or ‘content-based’ attack

risk, and ideally will result in substitution of security functionality with the less mathematical

privacy functionality. Following the GDPR principle of ‘necessary processing of data and

nothing more than absolutely necessary’, the challenge is to reduce protected content, and

processing wherever possible.

GDPR privacy functions can be realised in several ways:
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• Data masking: (Larrucea et al., 2021) refers to disclosure of data with modified values.

This could be character shuffling, tokenization, encryption, or character substitution -

one of the oldest forms of cryptography. Substitution is where a value is exchanged for

another value, to make identification or reverse engineering difficult. This character set

will be the same throughout the policy, but may turn into a centralised process.

• Pseudonymisation: (Kangwa et al., 2021) is data de-identification that substitutes

private identifiers with false identifiers or pseudonyms. “John Smith” could be changed

to “Mark McConnell”, but this would require some form of centralised database.

• Generalisation or minimisation: (Goldsteen et al., 2021) is the removal of data

to prevent identification, such as a house number of an address, so accuracy of data

remains whilst not being too specific.

• Perturbation: (Broen et al., 2021)is the use of round-numbering and adding random

noise to modify a dataset. The set of values must be proportionate to noise to avoid

disturbance, making this method quite complex.

• Synthetic data: (Slokom and Larson, 2021) is algorithmically-generated information

with no relation to the real case. These datasets represent patterns from real data by

invoking standard deviation, linear regression, medians and other statistical methods.

It is of no use to our comparatively simple model. Permutation (Barati et al., 2021):

data swapping or shuffling rearranges dataset attributes so that they do not fit original

information, often by switching columns in databases.

2.3.4 Scoring metrics

Metrics are used to quantify security applications - to attach a value so that attributes are in

someway comparable and quantifiable. They do not have to be an accurate representation at

this stage, just relative to each other in order to propose energy consumptions relatively.

A Data Protection Impact Assessment (DPIA), or risk-rating methodology can produce

objective results using likelihood and impact factors for calculating risk severity, and a single

numerical score ranging from low at one to critical at four.

The Open Web Application Security Project (OWASP), provides a risk rating template

[89], to objectively evaluate risk severity by multiplying likelihood of attacks from threat

agents and vulnerabilities, by impact on technical systems and business continuity. Factor

scores are ranked 1-9, based on a ‘worst case scenario’, and are fulfilled by the following

criteria:

1. Estimating likelihood: Threat agent factors

(a) Skill level: How technically skilled the threat agents are.

(b) Motive: How motivated the group is likely to be, based on the value of the reward.

(c) Opportunity: Resources and opportunities required.
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(d) Size: The origin and position of threat agents of the system.

2. Estimating likelihood: Vulnerability factors

(a) Ease of discovery: How easy it was to discover the vulnerability.

(b) Ease of exploit: How easy it is to perform the exploit.

(c) Awareness: The knowledge of the exploit the threat agents are assumed to have.

(d) Intrusion detection: How likely it is that the exploit will be detected.

3. Estimating impact: Technical factors

(a) Loss of confidentiality: How much data could be disclosed and how sensitive it is.

(b) Loss of integrity: How much the data could become corrupted.

(c) Loss of availability: How much of the service could be lost, and the vitality of that

service.

(d) Loss of accountability: The traceability of the threats to their origin.

4. Estimating impact: Business factors

(a) Financial damage: Resulting financial loss from an exploit.

(b) Reputation damage: The extent of reputation damage to the business.

(c) Non-compliance: How much exposure non compliance would introduce.

(d) Privacy violation: The amount of resulting personal and sensitive information

disclosure.

Scores resulting in low risk severity are not a concern, and medium scores are generally

considered tolerable with monitoring, but high and critical results require immediate

attention. To gain similar results for IoT security and energy, a novel template can be

composed with additional likelihood and impact factors derived from the results of the SSM

testing; CATWOE, BATWOVE, SWOT and TOWS.

2.4 Existing solutions

The sections up to now have discussed the characteristics of domain, likely threats, and how

to address those threats with risk-driven modelling techniques. Now we shall look at existing

solutions, what others have done to address those same IoT security and privacy threats in

smart farm applications.

This section is structured in three parts, where security solutions can be grouped into

three topologies: centralised, decentralised, and distributed. Many security functions overlap

between the topologies, and so this section serves as an introduction to application of the

functions, before exploring their mechanics in depth in the next section.
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2.4.1 Centralised security

Centralisation pertains to governance and processing using a central authority, usually for

encryption key escrow, device identifiers, intrusion detection, and review and approval of

new network devices. Organisations have typically used centralised services to provide X.509

certificates for banking and shopping gateways, and this has been a safe approach for a

number of years - appropriate for servers that operate from a single or small number of

locations. Centralised infrastructures are, however, energy inefficient, usually rely on internet

connectivity, must be active and online in order to be used, and are rendered vulnerable by

a single point of failure [90].

TLS employs X.509 certificates to bind keys with identities. The management of these

certificates in undertaken by a Public Key Infrastructure (PKI), typically consisting of

five parts; Certificate Authority (CA), to store and issue X.509 certificates, Registration

Authority (RA), to verify entity identity, a central directory to securely store and index keys,

a management system for access and distribution, and a certificate policy to state procedures

and rules. This is a cumbersome and delicate series of operations criticised for codependency

and vulnerabilities due to the centralised data stores [91]. PKI is also storage-intensive,

populating lists for both current and revoked data, causing a scalability issue for IoT. The

CA of every website is hosted on its server, available to view as current and sufficient by

site visitors. Revoked certificates have displayed as current in some browsers, and have

been identified as a security flaw [92] - further disproving the value of the X.509 system.

Key escrow for certificates also undermines privacy [93], and has been described as placing

“Keys under doormats” [94]. Official bodies are granted access to TLS communications

for law enforcement using PKI facilities [95], with escrow hosted on servers and retaining

key ownership. Although it is possible to operate TLS without certificates [96], there is

no alternative fulfilment for verifying the identity of the server by which you, as the client,

are contacting - and therefore without employing TLS there is no assurance of security. In

summary, even with the heavy implementation and energy consumptions of encryption for

privacy, there are still privacy issues present. In the case of IoT applications where the

majority of data readings are benign, such a false perception of privacy only serves to drain

battery life - in return for a questionable infrastructure.

Other centralised security solutions include Software Defined Networks (SDN), gateways

[97], Certificate-Less Public Key Cryptography (CL-PKE), [98], and Certificate-Less

Signature schemes (CLS), using Key Generation Centres (KGC) [99]. Multi-party protocols

have been implemented using TLS’s Diffie-Hellman Key Exchange (DHKE), [100], and

broadcasting using Public Key Cryptography (PKC), has been successful with public keys

[101]. However, key escrow remains an issue with centralised security, where binding identity

and public keys still remains the burden of a single server.
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2.4.2 Decentralised security

Decentralised security is a hybrid between centralised and distributed, where responsibility

and workload is distributed to several nodes, rather than just relying on one server. In

a distributed network, every node is responsible and has a workload, and the material is

duplicated. Decentralised systems have limited duplication, and specific allocations, but are

much more robust than centralisation.

The trust issues of decentralisation away from a central node is a key topic in the

development of such a topology [102], where removal of trust is represented by removing

the root certificate functions of a central server. Since the aim of decentralisation is to

remove the key escrow burden, self-signed certificates have been developed, where a device

can prove its own authenticity without a governing CA.

There are two ways by which to authenticate the client and server devices in the TLS

connection using X.509 certificates. The first and most traditional way is to send the device’s

Public-key and a Certificate Signing Request (CSR), to a trusted CA [103], and the second is

for the client, to act as a CA by generating a root certificate itself and signing it using a Digital

Signature Algorithm (DSA) and without the other content of the certificate identifying the

organisation. Servers without some form of genuine authorisation, such as from VeriSign

are considered untrustworthy, since any machine can self-authenticate, and self-signed

certificates are not to be trusted with data such as credit card details. Unfortunately, neither

CA-authorised nor self-signed certificates have been effective on browsers, as many certificates

continue to operate out of date [104].

However, in absence of a browser and data private to an individual, as is the case with

many IoT applications - particularly environmental or agricultural, mutual authentication of

client and server may not be such as issue compared with traditional security handshakes.

IoT applications are far different from financial transactions in client-server relationships,

and as long as the environment is assured that the correct client-server data exchange

remains that way, the requirement of browser-type interrogation supporting a certificate

chain is unnecessary. In practical terms, we are not entering financial or personal data, and

authenticity can be established for hardware using network keys of even a series of LED blinks

representing a sequence similar to Morse code. We know that we are communicating with

the correct device - that device can then be ‘locked in’ to a relationship using authentication,

and issued the instructions set necessary to operate an aquaponics environment. Away from

traditional use of X.509 certificates, such as online shopping and banking, using self-signed

certificates, and the DSA on its own, removes many problems of centralised TLS and PKI

security.

Other solutions to decentralised security and trust include game theory [105],

interrogating nodes based on self-interest to render inappropriate authorisation impossible.

This method is computationally complex, and not well suited to battery powered devices.

Artificial Intelligence (AI), [106], and Machine Learning (ML), [107] have also begun security

applications. AI and ML are complex and often need datasets and algorithm ‘training’

to accomplish effective practice, whereas the aquaponics domain will ideally have a very
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objective approach to which devices can be trusted and which cannot, with immediate effect.

Decentralised Identifiers (DID), have also demonstrated trust [108], using unique hardware

numbers used as tamper-proof authenticity. DIDs refer us back to the secure boot and flash

memory encoding of the ESP32, where the EEPROM could provide such a secure facility.

Other types of device identifiers have been used when deploying LoRaWAN, where re-keying

could be performed without hard-wiring, using smartphone communication [109].

2.4.3 Distributed security

Distributed computing refers to a topology in which components of a software system are

shared amongst a number of computers, or nodes. In a distributed model, multiple nodes

can act as client or server, or change between roles to fulfil security functions such as

authentication and authorisation. With scalability, this is a problem, as all transactions

are processed by multiple parties, verified, and added as a data block onto an infinitely

accumulating chain, known as a blockchain. In itself, this style of data storage is the opposite

of what our domain needs, but the security mechanisms used within Distributed Ledger

Technologies (DLTs), [110], such as the blockchain of Bitcoin [111], and the Directed Acyclic

Graph DAG of IOTA [112], are very informative.

Whereas security key exchanges occur between two parties [113], or multiple parties

[114; 115], a consensus mechanism is used within a DLT as automated review and approval

of transactions. Consensus mechanisms are fault-tolerant processes used to achieve necessary

agreement from a group for a single data transaction. The consent of multiple nodes then

gives the permission for that transaction to reside as part of a data block on the chain.

Although typically resource-hungry, the study of various distributed consensus mechanisms

can be applied to platforms lighter than blockchain. Notably, IOTA utilises the graph

DAG platform and with a limited number of consensus members, the graph concept could

present a lightweight and granular alternative to traditional centralised approaches. Below

are examples of popular mechanisms:

• Proof of Work (PoW), [116] requires members of the network to solve mathematical

puzzles to prevent anybody from occupying the system. This is known as mining, and

widely used in cryptocurrencies to prevent attacks such as 51% [117] - but PoW is

energy-intensive.

• Proof of Stake (PoS), [118], select transaction validators based on proportion of

ownership on the chain compared with other members, and although it does not use

extreme amounts of energy like PoW, it is criticised for ‘blockchain oligarchy’, or

majority ownership, and as such is vulnerable to the 51% attack.

• Proof of Elapsed Time (PoET), [119], is where users wait a random period of time

and the first to finish waiting attains leadership of the new block. PoET uses trusted

code with trusted, known users on a permissioned, or non-anonymous, network.
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• Practical Byzantine Fault Tolerance (PBFT), [120], is based on the Byzantine

Fault Tolerance algorithm in the late 1990’s; a scenario in which Generals gather around

an enemy city and must communicate without interception. They gather around the

city and send one message a time through a messenger, relying on cooperation and

coordination, ignoring unauthorised influence.

• Proof of Importance (PoI), [121], introduced a rating system to combat the

‘oligarchy’ issue of PoS in which the rich become richer. The rating system requires

a minimum vested stake, a minimum transferred rate, a recent transaction bound by

time limit, and valid transaction partners identified as separate users. The algorithm

does not require complex computation, but rather a series of experience proofs to read

through quickly.

• Proof of Capacity (PoC), [122], is where the mining node’s hard drive space is

used to determine the mining rights on the network. Considered an improvement on

PoW, it takes 40% of the time to produce a block by dedicating storage and processing

before mining begins, and removes the mining conflict of the same puzzles by allowing

different ‘plot’ routes for working through puzzles - so there is both hard drive plotting,

and block mining.

• Proof of Authority (PoA), [123], uses identity as a stake for reputation-based

consensus, which means validators are not staking currency, but their reputation

instead. PoA blockchains are therefore secured by random validating nodes as

trustworthy entities. In supply chains and hierarchies, PoA is considered an effective

and reasonable solution.

• Proof of Signature (PoSign), [124], is a new consensus mechanism which utilises

a network of known, authorised nodes, registered and active under digital signatures.

It is used for signature-verified transactions to include securitisation in addition to

privatisation. Each node must sign off a transaction before the associated block can be

appended to the chain, and if repeated, failed, attempts are detected, the node will be

blacklisted.

• Proof of Location (PoL), [125], enables a device’s physical location coordinates to

be broadcast to the blockchain without relying on that particular device. Radio, GPS

and BLE-enabled devices can assess the physical location of nearby devices.

With knowledge of where authentication and authorisation are positioned by topology, we

are now at an appropriate place to explore the technicalities of both through the fundamentals

of cryptography, the CIA triad.
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2.5 The CIA

The previous section considered the application of different applications of security in the

context of network topologies. This exploration has informed us that a decentralised topology

would be beneficial for both robustness and minimising the duplication of data. Each topology

has been exemplified using security functions belonging to PKC, AI, ML, CL-PKC and CLS.

Ideally, we will make use of the four functions provided in hardware acceleration on the

ESP32, in the application of a decentralised aquaponics security framework.

Confidentiality, Integrity, and Availability (CIA), are the three fundamental concepts

necessary to negotiate a channel for secure data exchange [126]. This section explores

each third of the triad, with explanation of the functions relevant, including those hosted

natively on the ESP32, and those additionally available within the library for function calls,

MBEDTLS.

2.5.1 Confidentiality

Cryptography, or cryptology, is from the ancient Greek ‘kryptos’, meaning ‘secret’, and

‘graphein’, meaning ‘to write’. Confidentiality underpins the nature of secret writing,

requiring a key to unlock each message. Following the setup of a secure channel between

two devices, or authentication, a message can be locked from one side, and unlocked from

the other. This process keeps the message in confidence and exclusive to those two parties

sharing the same key, known as symmetric encryption. Asymmetric encryption is the locking

of a message with one key of a non-identical pair, and unlocking it with the counterpart

key. Symmetric encryption is most commonly used in data exchanges between two parties,

whereas asymmetric encryption is used as part of device authentication - discussed as part

of Availability.

On the ESP32, symmetric encryption is provided by the Advanced Encryption Standard

(AES), supported by one of the four hardware-accelerated functions, and available to call

in several strengths using the MBEDTLS library. There are many forms of symmetric

encryption algorithm, otherwise known as ciphers, with AES being the most widely used.

Other ciphers include Data Encryption Standard (DES), Rivest Cipher 4, 5, and 6 (RC6),

and Blowfish. Specifically for lightweight applications such as IoT, encryption ciphers include

SIMON, PRIDE, and PRINCE.

Ciphers come in two forms - stream and block. Stream ciphers encrypt data by bits or

bytes, using a shared key to generate a stream of bits (known as the keystream) which are

then typically XOR-ed with the stream of plaintext bits to convert it to ciphertext. Block

ciphers break data down into blocks of fixed sizes, before converting the block into cipher

text. AES is a block cipher, encrypting data at a block size of 128 bits, or an array of 16 bytes.

Knowledge of the block size is important for security hardening of certain cipher operation

modes.

A cipher’s operation mode is a variation of the implementation of the cipher’s algorithm.

AES is the most commonly used block cipher, and since the ESP32 supports it in hardware,
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these are good reasons to use it in this work. Some modes use an Initialization Vector (IV),

otherwise known as a Starting Variable (SV), to enhance the randomness of encrypted data,

or ciphertext. Often this will be the same length of an encryption block - 16 bytes in AES,

and randomly reset for each secure session.

Below are explanations of the current modes available to AES in the MBEDTLS library:

1. CTR Counter (CTR) mode [127], turns a block cipher into a stream cipher, generating

the next key-streamed block by encrypting successive values of an incremental ‘+1’

integer counter. Counter mode used to be crticised for this predictability, but has

now been widely agreed as safe, and that any issues with security are associated

with the underlying cipher (AES), rather than the mode. CTR and CBC modes are

recommended by Niels Ferguson [128], and Bruce Schneier [129].

2. CBC Cipher Block Chaining (CBC), [130], is a mode in which each block of plaintext

is XORed with the previous ciphertext block, and then encrypted. The XOR (eXlusive

OR), function denoted ⊕, is a Boolean logic operator [131], commonly used in

cryptography by comparing two input bits and generating a single output bit. If the

input bits are the same, the output is zero. Otherwise, the output can be one or zero,

depending on the comparison. This mode requires a fresh and random IV in the first

block to ensure ciphertext uniqueness.

3. GCM Galois Counter Mode (GCM), [132], is an all-in-one variation of AES,

known as Authenticated Encryption with Associated Data (AEAD), and represents a

complex mathematical approach based on Galois field multiplication, allowing a higher

throughput of data than algorithms such as CBC.

In GCM, blocks are sequentially numbered, the block number is then combined with

an Initialization Vector (IV), encrypted using a block cipher (in our case, AES), the

result of which subsequently XORed with plaintext, and this produces the ciphertext.

Ciphertext blocks then proceed through a finite field arithmetic process, the result

producing a data tag, used as an authenticity and integrity reference. GCM is a form

of counter mode, in practice a stream cipher, employing AES for the encryption part. A

unique IV is required for each stream so that blocks are encrypted to avoid repetition.

4. CFB8 and CFB128 Cipher Feedback Mode (CFB), [133], uses the whole output of

the AES block cipher, and generates a stream cipher. CFB has similarities with CBC

encryption, in that it uses a chaining mechanism involving the cipertexts. In CFB the

XOR-ing with plaintext occurs after the block encryption. In CBC it occurs before the

block encryption. So, in full-block CFB mode a ciphertext block is encrypted and the

result is XOR-ed with the next plaintext block to produce the next ciphertext block.

(In a sense it also operates similarly to a stream cipher). It is also possible to have less

than full block feedback. NIST (REF SP800-38A), defines CFB with a bit-width integer

parameter, otherwise known as the ‘s’ value. Each plaintext segment and ciphertext

segment consist of ‘s’ bits, referenced into the name of the mode.
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2.5.2 Integrity

Integrity refers to the non-tampering of a data exchange, where the message can be compared

to the receipt of its original, included in the same data exchange. A recipient can compare

the receipt to the same value when creating a new receipt - if the values are identical, the

message has not been tampered with. This receipt is a one-way function known as a hash,

and although not strictly a security function (there is no key), it is irreversible and therefore

undoubtedly true. The same input will always produce the same output, and we can use the

analogy of a gnome in a box with a book and some dice:

A gnome works as a hash compiler. This gnome dwells in a large box, with an input

window and an output window, some dice to create a string to act as the message receipt,

and a book to record all the receipts. For every message he receives through the input

window, he writes the message in his book, rolls the dice, and records the dice values next

to the original message. He then hands the message and the dice value as a receipt, through

the output window. For each message the gnome receives, he first looks in his book to make

sure he has not generated a receipt for it before - and if he has, he outputs the same receipt.

The receipts are always the same length because they act as a compression function rather

than ciphertext, which is why they cannot be unlocked using a key.

Therefore using the MD2 compression function [134], for any length value will produce

the same length string, but in an equally nonsensical fashion:

Hello:

b27af65e6a4096536dd1252e308c2427

I’ve got a brand new combine harvester and I’ll give you the key:

0756e7e76c37759810e2422bbd17ccfc

The caveat to using an integrity function is timing. A receipt must be sent prior to its

counterpart message, or with it - sending it after the message allows opportunity for any

tampering to create a new receipt and send that following the intercepted message. The

following hash functions are available in the MBEDTLS library:

1. MD The Message Digest (MD) [135], algorithm family is considered cryptographically

broken now, as it suffers from collisions - or when two messages share the same hash

value. Malicious users can take advantage of collisions, by accessing, imitating and

altering data values. Although hash algorithms have been designed to be collision

resistant, they can occasionally map two different inputs by the same output, known

as the pigeonhole principle [136]. To avoid this, the longer and more complex the hash

algorithm and output string, the less likely a collision is to occur - but the safer the

hash, the higher the computation and thus energy consumption. MD operates on a

128-bit hash value, and where a byte represents a string character, MD2 produces a

16-character output, MD4 and MD5 produce 32 characters, and MD6 is available in 128,
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256, and 512-bit hash values, providing character outputs of 32, 64 and 128 respectively.

2. SHA The Secure Hashing Algorithm (SHA) [137], is considered the current

safest compression function, and is also available on the ESP32 as a dedicated

hardware-accelerator in the crypto block. The SHA algorithms are divided by three

families, outlined below:

• SHA-1: Often referred to as SHA-0, produces a 160-bit, 20-byte hash value.

Typically rendered as hexadecimal pairs, the output is 40 characters long. SHA-1

has been deprecated since 2005.

• SHA-2: Provides a set of six functions; SHA-224, SHA-256, SHA-384, SHA-512,

SHA-512/224, and SHA-512/256. The structuring of each function is almost

identical, with varying shift amounts, with SHA-224 and SHA-384 acting as

truncated versions of SHA-256 and SHA-512 respectively, computed with different

initial values. SHA-512/224 and SHA-512/256 are both truncated versions of

SHA-512, also with different initial values generated by a method detailed in the

Federal Information Processing Standards (FIPS), [138]. The SHA-2 family is still

current.

• SHA-3: Emerged in 2005, and are structured completely differently to both

SHA-1 and SHA-2 families. This subset covers the broader cryptographic primitive

family Keccak [139], and include AEAD ciphers Keyak [140], and Ketje [141].

The authors of Keccak have proposed additional uses for the function including a

stream cipher, authenticated encryption, and tree hashing for faster performance

- but have not yet been standardised by the National Institute of Standards and

Technology (NIST). Keccak is based on sponge construction, a function based

on random permutation for greater flexibility and collision-resistance. Although

designed to replace SHA-2 in current applications when the time arrives, the NIST

does not have any plans on deprecating the SHA-2 family.

2.5.3 Availability

Availability refers to consistent and reliable access to data for authorised parties. For

simplicity, we can divide availability into two parts: authentication and authorisation.

1. Authentication The process of authentication is the proving that something is true

and valid. A person can authenticate themselves using something they know, such as

a password, something they do, such as a pattern, or something they have, an identity

card [142]. Multi-Factor Authentication (MFA), is when more than one of these is

required, modernly used in banking by inputting credentials into a web browser and

receiving a One-Time Pad (OTP), ephemeral verification code by SMS, for example.

In the context of the smart farming domain, authentication is the mutual agreement of

trust between two devices. This is the ‘handshake’ of TLS (discussed in detail in the

next section), and commonly uses the asymmetric encryption function RSA.
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Rivest, Shamir and Adleman, developed an algorithm (RSA) featuring the generation

of a public and private key pair, an example of what we now refer to as Public Key

Cryptography (PKC). A public key is generated using two very large prime numbers and

an auxiliary value. The prime numbers are kept secret, as is the private counterpart to

the public key. The public key, as its name suggests, is designed to be freely advertised,

and given to anyone who wishes to decrypt a message encrypted with the private key.

Equally, a private key can be used to decrypt a message encrypted by a public key. The

computational basis for RSA (modular exponentiation) is hugely expensive. RSA keys

are very long (several thousand bits) and should therefore be generated and used on

constrained devices sparingly. 1024 bit-strength is estimated to take around 15 million

modern computers running for a year to crack - but the recommendation is now to use

a 2048 bit-strength or higher.

Essentially, when two devices authenticate, a public key is offered from one device to the

other with the request of a session password. The password is then encrypted using the

public key and returned to the original device for decryption using the corresponding

private key. All subsequent messages can then be decoded with this shared, short,

symmetric AES key, aforementioned as part of confidentiality.

2. Authorisation Access control and authentication are two main challenges in security

and privacy requiring an immediate solution in the heterogeneous environment of IoT

[143], proposed a capability-based authorisation model in which a token provides trust

and a session key is produced to authenticate using Elliptic Curve Cryptography (ECC).

Tokenisation has been introduced as ephemeral data for cryptocurrency transactions

alongside various key exchange systems such as Diffie Hellman, RSA and the lighter

ECC. Whereas tokens are not strictly cryptographic functions and are typically referred

to as advanced pseudonymisation as a privacy function [144], they do limit the spread

of data beyond a “need to know” basis, a fundamental concept of the GDPR [145].

Most mature AC systems are based on roles or rules, and utilise Access Control Lists

(ACL), and are not dissimilar from the traditional Relational Database Management

System (RDBMS) [146], mapping usernames to privilege levels throughout known sets

of data. ACLs present a few problems to the IoT network. Firstly they are central,

and have to be kept somewhere that can be accessed by every node or microcontroller,

then there’s the requirement to know all the data available, and somehow map it to

people or devices that will read, write, or execute it - even during the 1990’s before the

big data we process now, this was becoming an issue. Relational data management is

difficult with IoT since it restricts autonomy, and becomes increasingly complex as new

developments are integrated. Finally there’s the duplication of data - for example if

this list covers all possible relationships (for which some M:N relationships will require

additional tables for normalisation) [147], this is a big expectation for limited storage

space. We consider other, mature AC systems:

(a) DACS: Distributed Access Control System, [148], is rule-based, and operates
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on the identity of users credentials within the organisation. This type of account

setup would apply to every microcontroller in a network, taking time and resources

to create large uniqueness for what should be an automated, preferably self-healing,

relatively generic node.

(b) DAC: Discretionary Access Control, [149], is also rule-based, and assigns

access rights based on rules specified by users, utilising ACLs and capability tables

- rows with subjects, and columns with objects.

(c) MAC: Mandatory Access Control, [150], is considered the most strict of

authorisation systems, and uses hierarchy to apply granular levels of access within

a varying number of tiers, or ‘security labels’ often under the classifications of

low, medium or high. The MAC system also permits access on a ‘need to know

basis’, reminiscent of the GDPR’s ‘necessary processing’, and thus pertinent to the

topic of privacy. MAC decides which labels are attached to the documents within

a system depending on the context in which it was created. For example, in a

military setting, a user may occasionally need access to data above their clearance

level in a state of emergency. A standard multi-level security MAC system would

not allow this, and so the issue is inflexibility.

(d) RBAC: Role-Based Access Control, [151], operates on roles, rather than

individual user accounts, using the ‘least privilege’ possible for the operative to

fulfil the job, similar to MAC but not as strict.

(e) PBAC / ABAC: Policy, or Attribute-Based Access Control, [152], is

whereby access rights are granted using policies to combine resource, user, object

or environment attributes. This is a Boolean-centric model using ‘if’ and ‘then’

statements about who the request is made by, the action they request and for what

resource. This model does not use pre-defined roles or lists.

Other applications include capability certificates provided by policy engines, Elliptic

Curve Cryptography (ECC), and based authorisation certificates [153], but utilising

certificates requires some form of authority by which to negotiate terms such as

signatures, origin, roots and leaves - a problem similar to ACLs and centralisation.

Similarly, keys have been used to update access and permit certain users - but a

centralised system must also be employed to generate and monitor fair usage [154].

[155] presented a hierarchical authorisation system in which users of similar privilege

levels are placed in the same group. This type of trust-organised placement perhaps

makes more sense in IoT, where greater trust correlates to older, probably original

devices.

With reference to the previous section regarding decentralised and distributed

security topologies, DLTs have demonstrated robust and accessible networking for

cryptocurrencies [156], data storage [157], asset tokenisation [158], and e-commerce

[159]. Although DLTs are generally constructed in graph and blockchain form, they



CHAPTER 2. LITERATURE REVIEW 41

all accumulate data to be operational - and this inevitably requires more storage and

energy to operate.

Decentralised architectures introduce a hybrid design, in which there is no single point

of failure, but a defined group of devices either shares the same data, or relies on its own

central device. A decentralised infrastructure can be spread over a long range using

any number of technologies with communicating central nodes being elected by voting

systems using reputation, such as with P2P ranking such as for file sharing online [160].

CIA implementation can be composed of any combination of the above functions using

the MBEDTLS library. Although the three CIA attributes need not be present all the

time, integrity and availability are always necessary to prevent tampering or identity

masquerade. In summary, it is the confidentiality, or encryption cipher, that can be

safely removed from the set of three attributes. This flexibility is not available in

TLS, and should be exercised with caution. The risk-driven DPIA proposal is intended

to ascertain appropriate use of confidentiality so that it can be selectively removed to

reduce energy use as part of a TLS overhaul. In the final section, we consider Transport

Layer Security (TLS) - the components and mechanisms which have made the de facto

standard so successful, whilst simultaneously inappropriate to IoT applications.

2.6 Transport Layer Security (TLS)

The previous section examined the functions supporting the fundamentals of security - CIA,

authentication and authorisation. There was also a brief summary of how those functions

contribute towards a set up of a secure channel using PKC - the handshake, or session setup,

and data exchange. In this section, we present the TLS 1.2 and 1.3 handshakes using the

X.509 structure, and the various issues surrounding the use of certificates. Below is a visual

comparison between TLS 1.2 and 1.3:

2.6.1 TLS 1.2

A handshake is a negotiation between two parties; the client who initialises the connection

through a web browser, and the server. TLS 1.2 supports interrogation of the server using

the X.509 structure - the client is not interrogated for authenticity. To form a secure channel

between any client and a genuine server, it is the server who needs to prove they are a genuine

bank, shop etc. X.509 certificates demonstrate an excellent use case for supplying proof of

server authenticity to any visitor. The handshake follows three steps; negotiates a ciphersuite,

authenticates, creates a session.

1. Negotiates a ciphersuite Web browsers are the most common clients, and the TLS

requirements can vary between popular browsers such as Google Chrome and Firefox.

On the server side, there are variations between Operating Systems (OS), such as Linux

Apache and Windows Server. This first negotiation step is to agree on the most suitable

capabilities of both client and server - the mutually supported cryptographic functions.
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Figure 2.4: TLS 1.2 and 1.3 Handshakes, image source [6]
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The methods agreed on are known as a cipher suite. A cipher suite contains the

encryption, decryption, hashing and digital signature algorithms used to fulfil CIA for

data exchange later. Once the cipher suite is agreed, the server will send its certificate

to the client - the X.509 proof of ownership.

2. Authenticates Upon receipt of the X.509 certificate, the client checks the digital

signature of the certificate to ascertain that the claimed origin of the certificate matches

its truthful origin. This step is essential, and a mismatch between claimed origin and

truthful origin will result in the client destroying the connection and starting again. All

TLS certificates are issued by a CA. Many organisations have their own CA, or they

will buy certificates from trusted authorities such as VeriSign. The digital signature

proves the origin of the certificate, linking the certificate to its CA. The certificate

is also associated with a private and public key pair owned by the server, where the

private key is used to unlock messages encrypted by the public key.

Although the public key is designed to be exposed to infinite clients, the digital signature

is used to provide proof of origin - to prove that a message came from where it claims

to have. This origin is attested by use of the sign and verify functions. The server will

only be able to decrypt and use the data encrypted by its corresponding public key if it

possesses the correct private key - so any attack spoofing the server will be to no avail.

This is where TLS employs asymmetric encryption, traditionally RSA.

3. Session setup The last part of the TLS handshake requires creating the secure session,

in which a shared key is used to encrypt and decrypt messages on both the client and

server side. The client, now in possession of the server certificate, will generate an AES

key (16 characters using AES-128, or 32 using AES-256), encrypts it using the public

key on the certificate, and returns it to the server along with a combined integrity

and authentication code (SHA-HMAC). The server will then decrypt the message,

containing the AES key, and check it against the SHA-HMAC. This is the next step of

interrogating the server - if the server can unlock the key, the session is set up securely.

The server then responds with a confirmation that a secure channel is set up, and all

subsequent data exchanges will be encrypted using the symmetric key, until the session

is closed.

4. Ten-step negotiation The full handshake follows ten steps:

(a) Client to server: ClientHello: “ClientHello” is the client greeting the server,

with intentions to negotiate a secure HTTPS connection. The client lists their

cryptographic capabilities so that the server can then offer a matching cipher

suite from their capabilities. This hello message also includes a large, randomly

generated random number known as the ‘client random’. The significance of

random numbers in TLS negotiation is discussed after the negotiation steps.

(b) Server to client: ServerHello: The server responds to the client with

its own polite “ServerHello” greeting, announcing the mutual cipher suite
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selected from the list previously provided by the client. The server returns

a randomly generated large prime number, known as the ‘server random’. If

the server returns connection parameters (a ciphersuite), that the client cannot

accept, the connection terminates, and the secure channel fails before messages

can be exchanged. A ciphersuite must include an encryption function for

confidentiality, such as the AES Cipher with a bit strength (AES-128), and a

mode (CBC), a hash function for integrity such as SHA, also with a bit strength

(SHA-256), and now an availability function - Hash-Keyed Message Authentication

Code (MAC), for proving origin. This ciphersuite will read something like

“AES-128 CBC HMAC SHA-256”.

(c) Server to client: Server certificate: The server will now send its TLS

certificate chain, including both root and intermediate certificates to the client.

Definitions of these two certificates are covered after the TLS negotiation process.

To provide server authentication, the TLS certificate is digitally signed by its

organisation’s CA, allowing the client to verify genuine origin. Whilst checking the

certificate chain upto the CA, the client can detect other problems with certificate

data such as a certificate which has expired, or an incorrect Domain Name Server

(DNS). The client will also ensure that the server possesses the certificate’s private

key - of which the correlation with the public key is tested in step 6, key exchange.

(d) Server to client: Server key exchange: This step is relevant only for

authenticating two parties. In the instance of DHKE, where the server provides

a contribution to the secret key, and requires authentication from the client. For

this example using RSA, we can ignore this step.

(e) Server to client: ServerHello done: The “ServerHelloDone” message politely

informs the client they are finished negotiating parameters, are happy to proceed

with setting up a secure channel, and awaits a response to agree to their side of

the negotiation.

(f) Client to server: Client key exchange: The client now provides their

contribution to the session key by testing the parameters provided earlier by

the server, for its authenticity. The client will now generate a random string,

now required to be of a 256-bit length, or 32 bytes, known as the Pre-Master

Secret (PMS). This is not the actual key used for the session, but the master

key, usually an AES key, from which each future session key will be derived,

using a Key Derivation Function (KDF). Deriving each AES session key from a

PMS ensures Perfect Forwarding Secrecy (PFS), and is discussed following the

negotiation process.

(g) Client to server: Client changes cipher specification: This message informs

the server that the client has generated a session key from the PMS using a

KDF, and will now use encrypted communication. The client is changing the

cipher specification from the context of key exchange to message encryption and

decryption, or from RSA (asymmetric), to AES (symmetric).
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(h) Client to server: Client finished: The client sends a message to the

server to indicate they are done negotiating on the client side, and that their

contributions for the handshake are complete. This “Finished” message is the

first of the encrypted relays, using the shared session key, and will include the first

Hash-Keyed Message Authentication Code (HMAC). A MAC is proof of message

authentication to show the message has come from the correct server, and a hash is

proof of integrity, or that the message has not been tampered with during transit.

(i) Server to client: Server changes cipher specification: This message is a

confirmation that the server will now use encrypted communication. The server

decrypts the PMS sent from the client, using the last RSA action, and computes

the session key to match the same session key as the client. The server sends

“ChangeCipherSpec” back to the client to confirm this change.

(j) Server to client: Server finished: The server sends its final message

“Finished”, using the session key computed from the decrypted PMS, and uses

that session key for the first encrypted relay from the server to the client. At this

point, both parties share the same session key, and have exchanged data. The

secure session is now set up.

2.6.2 TLS 1.3

TLS 1.3 mitigated many TLS 1.2 vulnerabilities, predominantly by reducing the number

of ciphersuites from 37, and support for over 300 legacy ciphersuites, to five. Naturally

this eliminated many of the security holes from such a large range of ciphersuites, including

outdated and broken options, but it also removed a lot of choice - choices which if implemented

correctly, would have perhaps suited an IoT application better than the five left to choose

from. TLS 1.3 ciphersuites are all very strong, but then again, TLS 1.2 was just as rigid in

the enforcement of all CIA functions.

Within the TLS 1.3 handshake, it became possible for negotiation to take place using

‘guesswork’. The client could ascertain at a probability of 1:5 which suite the server would

use, reducing the handshake process from 10 steps and two rounds, to three steps over a single

(or sometimes zero) round. The new Zero Round-Trip Resumption (0-RTT), (Tange et al.

2020), approach was regarded to have ‘a whiff of future regret’ - allowing the resumption

of previous connections using pre-established cryptographic agreements leaves potential for

replay attacks (Fischlin and Günther 2017). Apart from session resumption, TLS 1.3 follows

a simpler procedure than TLS 1.2:

1. Client to server: ClientHello: Client sends supported cipher suites, client guesses

key agreement protocol, client shares key.

As with TLS 1.2, the negotiation begins with ClientHello, a request to instigate a secure

channel. TLS 1.3 had reduced the number of supported ciphersuites significantly, from

37 to five. This means that the client can guess the key exchange protocol, and send
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its contribution to the key share, assuming the Diffie-Hellman Key Exchange (DHKE),

or similar mutual KE protocol, over the public channel at the same time.

2. Server to client: ServerHello: Server sends key agreement protocol, server shares

key, server finished.

The server will respond with ServerHello, the same as step two in TLS 1.2, and with

a certificate to demonstrate server authenticity. Assuming that the client guessed the

cipher suite correctly, both client and server will share the Authenticated Encryption

with Associated Data (AEAD) protocol. This will most likely be the GCM cipher. If

both parties agree on the cipher suite, the server will now send its contribution of the

shared key as the server share of the DHKE, or other mutual KE protocol. The server

computes the shared session key and will then declare it has finished the server-side of

the negotiation.

3. Client to server: client checks certificate: Client generates keys, client finished.

The client has all the required information to authenticate the X.509 TLS certificate

and use the two shared key contributions to compute the session key at the client-side.

This computation should match the server-side. On completion, the client declares it

has finished the negotiation with a ClientFinished message. The secure channel is now

set up and message relays can be safely undertaken.

2.6.3 Certificate Issues

In addition to the rigidity of TLS, there are several issues when implementing the X.509

infrastructure into IoT applications:

• No browser: Without a browser, the signature element of the certificate can be verified

to check data authenticity without the bulk of certificate data.

• Self-signed certificates: Contain private and public keys within the same entity and

cannot be revoked, making it difficult to detect security compromises.

• Certificate tree: Long, storage intensive, and unjustified without a browser.

• Centralisation: Vulnerabilities of singular authorities, particularly without internet

connectivity for remote maintenance.

• Numerous protocols: Each protocol may need its own TLS library.

• Session timeouts: The nature of persistent relationships for the smart farm domain

operates very differently to the short-term sessions of typical TLS applications.

Although TLS 1.3 sought to reduce the authentication process by incorporating 0-RTT,

storage requirements of part keys and certificates still contradict the underlying nature of

constrained devices. These part keys are in addition to the certificates of underlying X.509



CHAPTER 2. LITERATURE REVIEW 47

infrastructure, and as such, are arguably more of a burden than the requirements of TLS 1.2.

TLS 1.3 also uses fewer ciphersuites than 1.2, but these are more demanding and less flexible,

and so are also headed in the wrong direction when considering energy consumptions.

Ideally, the new design will eliminate the centralised PKI, X.509 certificates, not introduce

the part key notion of the 0-RTT, and reduce the security of the domain to reflect a largely

non-sensitive series of data exchanges in which transparency of water temperatures is not

an issue. Since the aquaponics systems require persistent relationships with a single entity

of a data hub for monitoring and control, rapid succession of authentication is no longer

a requirement, and will thus naturally aid in reducing the demands of building new secure

relationships with multiple entities.

This now brings us to a close of the mechanics of TLS, and the literature review. We

are now in a good position to present a requirements analysis for the four parts of a suitable

security solution.



Chapter 3

Aims and Objectives

The previous chapter examined existing solutions, problems and gaps pertinent to developing

a security solution for the IoT aquaponics domain. This chapter considers the research

challenges and research questions used to structure the empirical chapters of the research,

towards confirming the hypothesis:

• An energy-efficient IoT security solution can be created by combining a reduced variant

of TLS with a low-overhead consensus-based access control.

Within the scope of aquaponics, the featured IoT framework plays a pivotal role

in facilitating real-time monitoring, control, and efficient communication among devices.

It employs a range of technologies tailored to the aquaponics context, such as specific

sensor-actuators for water quality monitoring, pH levels, and so forth.

The primary objective of our IoT framework is to extend the lifespan of IoT devices in

this aquaponics setting. The focus of our research centres on the reconfiguration of Transport

Layer Security (TLS) with a view to reducing energy consumption. This approach is based

on the understanding that constrained IoT devices are often limited by their battery life, and

reducing their energy consumption can significantly extend their operational lifespan.

By re-configuring TLS within our IoT framework, we aim to enhance the energy

efficiency of these constrained devices, consequently improving the overall sustainability and

cost-effectiveness of the IoT framework for aquaponics. The amalgamation of these optimised

technologies and techniques provides a more effective, efficient, and secure IoT framework,

specifically designed to serve the needs of the aquaponics domain.

Therefore, the primary focus of this work is the reconfiguration of Transport Layer

Security (TLS). However, this reconfiguration is not an end in itself, but a means to

an end. The ultimate objective is the implementation and optimisation of a secure IoT

framework, specifically tailored for the aquaponics application domain. In this context, TLS

reconfiguration is a key element, as it allows for the enhanced security and functionality

required in a potentially vulnerable and complex IoT environment. Therefore, while a

significant part of this work involves the technical details of TLS reconfiguration, this is

48
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all done with the aim of creating a more effective, efficient, and secure IoT framework for

aquaponics.

We begin with considering the research challenges, elements of the TLS infrastructure

which cause problems in an IoT setting, and what possible alternatives there could be to those

mechanisms relying on the centralised infrastructure. We then propose research questions

with aims and objectives to structure the research into four investigations; a risk-driven

energy assessment, authentication, data exchange, and authorisation.

3.1 The Challenge of TLS Infrastructure

This section references section 2.6 of the literature review, ‘Transport Layer Security (TLS)’.

We first address the challenges presented with applying TLS to IoT, providing alternative

possibilities that the ESP32 and MBEDTLS library support. We shall then present the three

mechanisms of TLS, and categorise the solution aims into each. Finally, we present the

research questions, their aims, and how objective results can be quantified. In the context

of the aquaponics IoT domain, six challenges of TLS infrastructure have been deduced: no

browser, self-signed certificates, the certificate tree, centralisation, additional libraries, and

session timeouts.

3.1.1 No browser

Certificates cannot be practically read or challenged without browser view. IoT devices

often do not utilise a browser to communicate with each other. A browser may be used

after data collection at a hub, accessible by a mains-powered and very capable machine,

beyond the remit of the device network, so certificates do not demonstrate authenticity to

any interrogator through the intended browser medium.

3.1.2 Self-signed certificates

Do not offer any ‘real’ authentication. Self-signed certificates can be generated on devices

rather than buying in certificates from a third party, but they offer no more authentication

than a digital signature alone - the rest of the content is not visible to any user without the

browser and accessible file system of a traditional client machine such as a desktop.

3.1.3 Certificate tree

Long, storage intensive, and unjustified without a browser. Root, intermediate and leaf

certificates are parts of a long chain, requiring storage and a full system to govern. This is

not practical on limited storage with multiple relationships over possibly hundreds of devices.
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3.1.4 Centralisation

Typical TLS security with underpinning PKI architecture can be difficult to manage on a

hugely dispersed and constrained network - particularly if WiFi is absent and the network is

based on lighter protocols such as BLE or meshing. As the network scales, the limited storage

and processing of constrained devices will become unrealistic without extended storage, which

contradicts the purpose of a constrained network.

3.1.5 Multiple libraries

Each protocol may need its own TLS library. TLS traditionally operates on the internet,

but most (if not all) protocols have a library for their own version. If each protocol requires

its own certificate, uTLS, MQTTS, BLE-TLS and so forth, devices could quickly run out

of space depending on how many protocols are in operation. However, when the built-in

hardware acceleration is called on from the native MBEDTLS library, this processing can be

undertaken before departure, requiring no security library for any protocol.

3.1.6 Session timeouts

TLS sessions reset client-server authentication very frequently. TLS sessions are very short,

whilst the ciphersuites are very strong. Devices will quickly run out of battery if negotiations

are invoked and closed for every data exchanged.

3.2 Re-configuring TLS Mechanisms

There are three mechanisms employed by TLS: authentication, data exchange, and

authorisation. Ordering is in such a way to primarily establish a secure channel between

two entities without the risk of an external entity discovering the means by which to set up

the channel, using a large, resource-heavy process and keys. Following the initial setup, the

smaller and less resource-hungry session key can be generated for each data exchange within

that session. Finally, as a result of having a secure session, TLS presents a binary ‘in-or-out’

access control system.

Each mechanism is a topic of study towards a full solution, and will address the challenges

that IoT faces when incorporating TLS, by considering a variety of alternatives available

to the ESP32 and MBEDTLS library. Below we correlate the challenges and propose the

alternative solutions:

3.2.1 Authentication

Forming exclusive trust between two devices. Authentication is where the X.509 certificates

are required for client interrogation of a server before enough trust is built to provide sensitive

financial or personal data. Since there is no sensitive or personal data in aquaponics systems

relating to a living subject other than the fish (we’ll assume the fish don’t mind their data
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being shared), then there is no need for an X.509. Losing the X.509 rids the network of

centralisation, the certificate tree, and the cumbersome X.509 tree.

However, there is still a requirement to know that the devices communicating have not

been, and will not be, spoofed or intercepted at any time during communication. The ESP32

provides on-board asymmetric RSA for this purpose, where the public and private key pairs

can be generated and delivered using exactly the same format as client-server integration.

The difference is that they will not use an intermediary as a trust verifier. To authenticate

origin of each device during this, a digital signature can be used to sign origin, and verify by

the recipient as a counterpart of the public key. The digital signature is the same as included

on a certificate, but without the superfluous content, or infrastructure.

3.2.2 Data exchange

Securing data exchange between two devices. Data exchange first needs securing, by passing

an AES key from one device to another, initially encrypted using RSA, and subsequently

all data to be encrypted by AES. Or at least that’s the TLS way of data exchange.

Depending on the nature of the content, most data exchanges in the aquaponics network from

sensor-actuator to hub or cloud, will not require confidentiality. Environmental readings and

control are the main purpose of the IoT involvement in a smart farm, and those readings are

perfectly benign when read by the public - as long as they are not tampered with or spoofed.

To this end, enabling transparency of data exchange content wherever practical bolsters

robustness, because it lowers interest. However, all exchanges must contain a SHA-HMAC

to ensure proof of origin (against spoofing), and integrity attestation (against tampering).

Given this ‘two out of three’ CIA approach to data exchange, we hope to reduce energy

consumption by at least 30% by default. To achieve this, the regular session setup must

include a SHA-HMAC key as well as the regular AES, kept just as private.

The ‘edge processing’ made available by the ESP32’s cryptography provisions allow

flexibility away from burdening a centrally governing single server. Exemplified by payload

security, all data can be encrypted, attested and verified at source and destination, regardless

of protocol used. Since a channel is not being employed, numerous libraries to cater for each

protocol channel need not be employed either.

Finally, the constant session timeout can be resolved. By resetting authentication

every day, or every week rather than every data exchange, energy consumption can be

reduced significantly. It is reasonable to assume that RSA and AES processing is far more

energy intensive than SHA-HMAC alone for most of the time, but this investigation will be

undertaken in depth later on.

3.2.3 Authorisation

Segregation of data for authorised access. By default, TLS will either allow access (via a

shared, asymmetric or device password to access such), or it will not. It is very binary, and

this does not protect against credential theft or human folly to the same end. However,
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other authorisation schemes do exist, ranging from one extreme to another by the medium

of either centralisation (ACLs), or decentralisation (duplicated data on each node). Neither

of which are suitable, yet, with reference to chapter 2.4 ‘Existing solutions’, there have been

many instances of consensus mechanism success to come degree - save the scalability issue.

Blockchain applications in IoT are cumulative, regardless of consensus mechanism style. Aside

from blockchain, consensus by PoW as an example is resource-hungry as puzzles must get

harder, and whilst PoS offers some kind of hierarchy-based mechanism, it is threatened by

oligarchy and of course, the 51% attack. In addition, segregated rights protecting entities from

being written to within the network have not yet been explored in the consensus mechanism

domain - a backup mechanism that could prove invaluable in times of disaster and recovery.

In summary, a distributed or decentralised mechanism with the benefits of tiered safety

pertaining to centralised systems could be a lightweight and scalable solution with backup

and restoration as safeguarding.

This mechanism concerns the induction of a hybrid scheme, where a consensus mechanism

could support IoT authorisation in a limited, ephemeral, and decentralised manner. AC in

this sense would be an alternative to the TLS provision in the way that there will be three,

four or even five levels of access, as opposed to the current two.

Research question one to four are now presented following the order of re-configuring TLS

mechanisms, preceded by a risk assessment to inform the research of a testing methodology

and expectations of results specific to the IoT domain application.

3.3 Energy-driven risk assessment

What are the security and privacy requirements of the aquaponics smart-farm when traded-off

against energy consumption savings?

3.3.1 Risk assessment aim

The overall aim is to produce a method of identifying which components of a IoT-oriented

security solution consume the most energy, and how to reduce those consumptions as

much as possible without jeopardising the safety of the network. The experimental results

from subsequent research questions should validate the DPIA by demonstrating a positive

difference between TLS and the novel solution. Like with all risk assessments, this is a

challenge of weighing up advantages and disadvantages, but with the aspect of energy being

so poignant, we should reduce protection wherever reasonably possible rather than bolster it -

this will address a resource-sensitive issue as a modification to typical risk-driven assessments

found in the security domain.

To illustrate, in the context of our aquaponics application domain, the all-in-one typical

TLS cipher suite is applied in such a way that prioritises energy efficiency over confidentiality

in some cases. This approach will be informed by an energy-driven risk assessment,

recognising that the high energy demand of data encryption could potentially deplete the



CHAPTER 3. AIMS AND OBJECTIVES 53

battery life of IoT devices more quickly, undermining the overall operational efficiency and

sustainability of the system.

In this scenario, while confidentiality remains a component of the CIA triad in the

application framework, it is not given the same level of priority as the integrity and availability

aspects. This is because, in the aquaponics setting, the nature of data typically collected and

transmitted by the IoT devices, such as water temperature or pH levels, doesn’t require

high-level confidentiality as it doesn’t involve personally identifiable or sensitive information.

Thus, energy savings obtained by reducing the emphasis on confidentiality outweighed

potential risks.

However, this doesn’t imply that confidentiality is disregarded entirely in the application

framework. Rather, its level of importance is calibrated according to the specific needs and

constraints of our application domain, as explored in detail in chapters 4 and 5.

3.3.2 Risk assessment objectives

The objectives below outline the process towards invoking a Data Protection Impact

Assessment (DPIA), driven by energy consumptions and security adequacy, based on the

data exchanged in regular IoT-networked aquaponic systems use.

1. Scope the domain: Referring to section 2.3.1, ‘SSM from a Business Perspective’,

apply the principles from the business domain to interpret attack motives, protection

requirements, and the robustness and vulnerabilities of the aquaponics environment

are likely to be. Typical of high-level business use casing, this is a conceptual and

interpretive.

2. Key findings: From the broad, high-level scope, irrelevant threats can now be

eliminated and replaced by domain-specific attributes specific to the application

domain. The objective here is to list those elements to the benefit or detriment of

an IoT-networked smart farm.

3. Data mapping: This is content discovery necessary to ascertain the data exchanges

necessary for setup and operation. The solution is exemplary of optimisation by a

domain-driven approach - by provision of the networked components, ie the ESP32

in the context of libraries, functions and protocols, and required data exchanges.

Invitation of privacy principles in general will serve as an asset to this phase.

4. Reduction and substitution: To propose lighter and simpler functions to standard

security ciphersuites used in TLS to optimise energy savings. Alternatives pertaining

to the domain of privacy are widely available within the field of cryptography - the

cryptography material native to the ESP32 correlates with standard security suites.

5. Domain-Specific criteria: To identify, with influence from the literature review

and related work, those criteria suitable for an energy-driven risk assessment based



CHAPTER 3. AIMS AND OBJECTIVES 54

on assessing environment content specific to the aquaponics application domain, and

assign quantifiable metrics to them.

6. DPIA comparison: The final outcome of the DPIA stage is to present the differences

in TLS configuration. Whereas typical TLS configuration includes a full and standard

ciphersuite necessary for temporary and multiple connections for accessing personal and

sensitive information, a re-configured ciphersuite pertaining to the requirements of a

persistent IoT connection will differ. The comparison between these two scenarios

may demonstrate differences in energy consumption significant enough to justify

considerably extended device battery life.

3.4 Energy reduction in authentication and data exchange

How much could energy consumption be reduced during authentication, and subsequent data

exchange?

3.4.1 Authentication and data exchange aim

The aim is to determine the lightest method of authentication and subsequent data exchange

available to the application domain. This will be the discovery and response to the challenges

presented by TLS authentication specifically towards the application domain.

3.4.2 Authentication and data exchange objectives

Objectives pertaining to research question two and three feature the same power analysis

testing methodology, producing measured results in energy for secure setup of channel session

between two devices.

1. TLS challenges: Explore the problem backgrounds and challenges of key exchange

and session invocation mechanisms within the de facto standard, TLS.

2. Related work: Discuss lightweight authentication and data exchange methods

within the IoT domain, particularly those decentralised and privacy-oriented solutions,

operating on decentralised or distributed topologies.

3. Design attributes: Respond to the challenges presented by TLS by proposing a

series of authentication design attributes towards a novel and domain-specific security

solution.

4. Experimental results and discussion: Prove or disprove the effectiveness of the

new configurations by comparing the results of the experiments against regular TLS

implementation and in the context of the earlier DPIA predictions.

5. Contributions: Summarise the novelties of the research as contributions towards the

field, with details of design limitations and notions of future work available for further

research.
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3.5 Lightweight consensus mechanism for authorisation

Can a lightweight, self-healing consensus mechanism, be ascertained as safe?

3.5.1 Authorisation mechanism aim

This question cannot use TLS as a benchmark for comparison, because the nature of the

existing authorisation system is a default, binary provision that does exist, but cannot be

increased by role or rule. It either allows access, or it does not. With all other authorisation

systems, there is a degree of granularity - role-centric or rule-centric.

Therefore, this is a completely inductive investigation of a novel authorisation system

based on a series of requirements specifically for the aquaponics network. Although the

theme of energy consumption is the driving force of the project, we test the model for safety,

in the knowledge that the design principles towards energy efficiency will already be satisfied.

3.5.2 Authorisation mechanism objectives

This is a study into applying a granular access control model for additional business continuity

and downtime detection by safeguarding and presence-checking devices respectively. It is an

inductive design, modelled as an addition to the default TLS approach of ’in or out the

network’, as opposed to a replacement.

1. Authorisation mechanism challenges: Explore the problem backgrounds and

challenges of authorisation in constrained devices, traditional applications, and

heterogeneity.

2. Related work: Discuss the existing solutions for authorisation with regards to privacy

and security, various network topologies, and popular consensus mechanisms.

3. Design and model-checking: Propose the design model of the new authorisation

system, and present the results of formal verification for proving or disproving the

safety of the model.

4. Contributions: Summarise the contributions of the authorisation proposal with

application in the aquaponics smart farm domain plus any other potential use.



Chapter 4

Testing Methodology

The previous chapter proposed the research challenges to address, the three TLS mechanism

alternatives in which to incorporate solutions, and the aims and objectives as the means by

which to achieve these solutions. This chapter presents the methodology elements for each

research question, in preparation for the results chapters.

4.1 Research question one

• What are the security and privacy requirements of the aquaponics smart-farm when

traded-off against energy consumption savings?

Responding to question one firstly requires consideration of a risk rating methodology,

metrics scoring, estimating likelihood and estimating impact. Secondly, for the DPIA to

be domain-application specific, the functions available to the ESP32 edge device must

be included as attributes within an energy-driven Data Protection Impact Assessment

(DPIA), influenced by the original risk rating methodology. Functions available to the

ESP32 are accessible via the mbedtls library native to the microcontroller, and call

upon the hardware-accelerated cryptography block. Results are presented in Chapter 5,

’Energy-Driven Risk Assessment’.

4.1.1 Risk rating methodology

The methodology for testing the first research question is the metrics behind a typical risk

rating assessment template used in industry, and exemplified by the Open Web Security

Project (OWASP) [89]. Identifying risk and correlating the severity of that risk is the first

step of being able to resolve it, and being able to resolve it appropriately given resources

and priorities. By ascertaining severity by a scoring system, a Data Protection Impact

Assessment (DPIA) can be produced to highlight where protective resources are proposed to

be implemented - offering a great control of resource allocation.

Impact factors interpreted by the OWASP risk rating methodology are grouped into two

categories: estimating likelihood by threat agent and vulnerability factors, and estimating

56
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impact by technical and business impact factors. Based on the scoring system of the OWASP

factors, attributes more relevant to the application domain can be invoked to produce a

bespoke, energy-driven DPIA variation - towards satisfying the aim of the research question.

4.1.2 Metrics scoring

The OWASP risk rating methodology calculates risk by multiplying likelihood by impact. As

each attribute is scored by the user from a scale of least likely to critically likely on a scale

of 0-9, the results are combined and divided by the total number of attributes to provide an

overall score, correlating to overall risk severity of low, medium, high and critical. The value

of such a methodology is that during the design phase, these projected attributes are subject

to unlimited changes until optimum design is attained prior to implementation. In the case of

an energy-driven DPIA proposed as the novel outcome and contribution of research question

one, such a methodology will provide the designer with adequate security and the lowest

consumption of energy to extend the life of battery or solar-powered microcontrollers. By

ascertaining the data exchanges required of the system, the DPIA will exemplify how each

piece of content can be numerically quantified in terms of energy consumption. This outcome

may be adjusted unlimited times until a ’low’ risk severity is produced by values of combined

attributes specific to the application domain. Such a DPIA could then be used in conjunction

with the design of any energy-conscious IoT driven application domain based on the specific

data exchanges of that project for optimisation prior to implementation.

The OWASP risk rating factors relevant for interpretation into an energy-driven DPIA

are presented below:

4.1.3 Estimating likelihood

Likelihood refers to how likely a system will get exploited based on threat agents and

vulnerability.

1. Threat agent factors: ‘Threat agent’ is a reference to malicious attempts of an

attacker, rather than system failure or user accident. Threat agents will exist for

all systems, and so this set of factors is an important set for incorporating into the

energy-driven DPIA. The aim for these factors is to estimate the likelihood of successful

attack, based on the worst-case scenario. Ratings have a scale of 1-9 where 1 represents

lowest impact and 9 the highest:

(a) Skill level: How technically skilled the threat agents are:

i. 1: No technical skills.

ii. 3: Some technical skills.

iii. 5: Advanced computer user.

iv. 6: Network and programming skills.

v. 9: Security penetration skills.
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(b) Motive: How motivated the group is likely to be, on desirability of reward:

i. 1: Low or no reward.

ii. 4: Possible reward.

iii. 9: High reward.

(c) Opportunity: Resources and opportunities required to find and exploit the

vulnerability:

i. 0: Full access or unrealistic resources required.

ii. 4: Special access or some resources.

iii. 7: Some access.

iv. 9: No access or resources required.

(d) Privilege: The privilege level of the threat agent group against the system:

i. 1: Developers.

ii. 2: System administrators.

iii. 5: Partners.

iv. 6: Authenticated users.

v. 9: Anonymous internet users.

2. Vulnerability factors: This set of factors is related to the vulnerability involved,

with an aim to estimate the likelihood of this vulnerability becoming discovered and

subsequently exploited. There is very little vulnerability in the data at rest or in

storage since the domain will not hold financial, personal or sensitive information

belonging to living subjects (fish do not count as they are apparently unperturbed by

the publicity of their data), and so the vulnerability landscape is atypically insensitive.

The energy-driven DPIA will not employ vulnerability factors as they are beyond scope

- and so they have been omitted.

4.1.4 Estimating impact

Impact refers to the either technical, or system impact, or business impact.

1. Technical impact factors: Technical factors correlate well with the fundamental

Confidentiality, Integrity and Availability (CIA) triad, and offer an excellent basis to

propose the differences in key strengths and sessions, etc. The energy-driven DPIA will

segregate the strengths of these CIA attributes into a suitably tiered metrics system as

part of the energy and security trade-off:

(a) Loss of confidentiality: How much data could be disclosed and how sensitive it

is:

i. 2: Minimal, non-sensitive data disclosed.

ii. 4: Minimal, critical, or extensive non-sensitive data disclosed.
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iii. 6: Extensive, critical data disclosed.

iv. 9: All data disclosed.

(b) Loss of integrity: How much data could become corrupted and how damaged it

would be:

i. 1: Minimal, slightly corrupt data.

ii. 3: Minimal but seriously corrupted data.

iii. 5: Extensive but slightly corrupted data.

iv. 7: Extensive and seriously corrupted data.

v. 9: All data is totally corrupted.

(c) Loss of availability: How much of the service could be lost, and the vitality of

that service:

i. 1: Minimal secondary services interrupted.

ii. 5: Minimal primary services, or extensive secondary services interrupted.

iii. 7: Extensive primary services interrupted.

iv. 9: All services lost.

(d) Loss of accountability: The traceability of the threat to their origin:

i. 1: Fully traceable.

ii. 7: Possibly traceable.

iii. 9: Completely anonymous.

2. Business impact factors: Business impact factors consider the consequences of

financial, reputation, non-compliance and privacy damage, often recorded as part of

a company’s audit of ISO 27001 Information Security Management System (ISMS).

For the energy-driven DPIA, this material is useful for interpreting into intentional

exposure of data and graded privacy of particular data exchanges:

(a) Financial damage: Resulting financial loss from an exploit:

i. 1: Less than the cost to fix the vulnerability.

ii. 3: Minor impact on annual profit.

iii. 7: Significant impact on annual profit.

iv. 9: Bankruptcy.

(b) Reputation damage: The extent to which reputation damage would cause the

business:

i. 1: Minimal damage.

ii. 4: Loss of major accounts.

iii. 5: Loss of goodwill.

iv. 9: Brand damage.

(c) Non-compliance: How much exposure non-compliance would introduce:
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i. 2: Minor violation.

ii. 5: Clear violation.

iii. 7: High profile violation.

(d) Privacy violation: The amount of resulting personal and sensitive information

disclosure:

i. 3: One individual.

ii. 5: Hundreds of people.

iii. 7: Thousands of people.

iv. 9: Millions of people.

The risk rating methodology attributes have illustrated the formula behind risk from

likelihood and impact. Chapter 5 will proceed with this approach to invoke attributes suitable

for the domain application, specifically under the influences of energy consumption, IoT

protocols and function substitution within the realm of privacy.

4.1.5 TLS functions through the mbedtls library

This section presents the TLS security functions available to the ESP32 by calling the

native mbedtls library. These functions access the hardware-accelerated cryptography block

functions RSA, AES, SHA, and RNG introduced in Section 2.1, ’Application domain’.

Functions used for device authentication (research question two), and subsequent data

exchange (research question three), are required for incorporation into the DPIA for energy

consumption assessment (research question one).

As the comparison is between typical TLS and re-configured TLS for energy optimisation,

the functions used for all experiments have to feature the same attributes. The experiments

will be set out to demonstrate the difference in application of the same functions, strengths,

ciphersuites and mechanisms.

1. Authentication Functions and Attributes

Authentication functions include key generation, signing and verification, and key

exchange methods, whilst authentication attributes include the key lengths and

strengths, detailed below:

(a) Key Generation

Authentication keys are required for both client and server. These can be two

very different asymmetric keys, or they can be a symmetric shared key built from

a contribution of data from both client and server. Either way, authentication

keys are very different to session keys for encrypting and decrypting readings.

The session key is invoked following authentication. The authentication key types

available for this study through mbedtls are:
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i. Rivest, Shamir and Adleman (RSA): Creators of an asymmetric key pair

used in PKC, where the device’s publicly-available key is used to encrypt a

message, and upon receipt, the private key is used to decrypt the message.

RSA has been used as a long-term standard due to its strength, but is

notoriously heavy and the key bit-sizes are very large. The ESP32 hosts

dedicated hardware for RSA acceleration. Energy testing of RSA key pair

generation will demonstrate the energy consumptions of the following key-bit

strengths, with 1024 considered insecure, and deprecated.

A. 2048: 2048-bit key strength.

B. 3072: 3072-bit key strength.

C. 4096: 4096-bit key strength.

D. 7680: 7680-bit key strength.

E. 15360: 15,360-bit key strength.

ii. Elliptic Curve Cryptography (ECC): Is a another approach to

asymmetric encryption, based on the algebraic structure of elliptic curves

over finite fields - allowing the key sizes to be around a third of RSA sizes, but

with equal security. There are 13 curves available to the mbedtls library on

the ESP32, but SECP192R1 and SEC192K1 are the approximate strength

equivalents of RSA-1024, considered unsafe and have been deprecated.

Energy testing of the ECC key pair generation will demonstrate the energy

consumptions of the following 11 curves:

A. SECP224R1: 2048-bit key strength.

B. SECP256R1: 3072-bit key strength.

C. SECP384R1: 4096-bit key strength.

D. SECP521R1: 7680-bit key strength.

E. SECP224K1: 15,360-bit key strength.

F. SECP256K1: 15,360-bit key strength.

G. BP256R1: 15,360-bit key strength.

H. BP384R1: 15,360-bit key strength.

I. BP512R1: 15,360-bit key strength.

J. CURVE448: 15,360-bit key strength.

K. CURVE25519: 15,360-bit key strength.

(b) Signing and Verification

The Digital Signature Algorithm (DSA), was described earlier as the only

valuable component of the traditional X.509 certificate. Using this signature,

both server and client devices can authenticate their own key pair immediately

after generation. This means that instead of using a certificate and associated

infrastructure to prove the origin of a public-key, it can be undertaken in

conjunction with generation using one of two methods:
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i. RSA sign and verify: The message is signed with an RSA computation

using the sender’s private-key, and is verified by the recipient by using the

RSA computation using the sender’s public-key.

ii. ECC sign and verify: The message is signed with an ECC computation

using the sender’s private-key, and is verified by the recipient by using the

ECC computation with the sender’s public-key. Energy testing of sign and

verify functions for energy consumptions can be recorded at the key generation

stage, since the key sizes and curves will influence time and power. Therefore,

key generation, sign and verify functions will be tested together.

(c) Key Exchange Methods

The key exchange method sets up a secure channel in a hostile environment

using either an asymmetrical method, where one device does the majority of the

processing, or mutual authentication, where contributions are equal between client

and server device. Key exchange can be undertaken using:

i. RSA-PKC: RSA-Public Key Cryptography is an asymmetric method in

which the session key (typically a 128-bit AES key for IoT), is encrypted using

the RSA private-key, and decrypted on the recipient side using the sender’s

public-key. The sender would have to generate the RSA key pair first, and

sign the message (AES key), in addition to encrypting it, to demonstrate

authenticity as a unique and genuine sender. Fortunately, the authentication

of the client is already satisfied with it generating and sending the session key

to the server, and only the server needs to prove its identity. Energy testing

will consist of RSA encryption and decryption firstly for an AES128-bit key,

and secondly for keys AES128, IV (also 128-bit), and HMAC (256-bit), to

represent the additional work for the design. It also includes one signature

and verification to represent interrogation of the server, using the lightest RSA

key pair.

ii. DHM: Diffie-Hellman-Merkle is the mutual authentication key exchange for

both client and server to contribute equal work under the key generation of

RSA 2048 and above. Energy testing of DHM requires the RSA key list as

with key pair generation, sign and verify. As with RSA-PKC, this shall be

performed firstly with generating an AES128, and secondly with the AES128,

IV, and HMAC to represent the new design.

iii. EC-PKC: Elliptic Curve Public Key Cryptography would have been the

lightweight equivalent to RSA-PKC by encrypting and decrypting the AES

session key using the elliptic curves. Unfortunately, elliptic curve encryption

and decryption is not part of the standard TLS ciphersuite [161], and so it

has not been ported to mbedtls for use on the ESP32. This cannot be tested.

iv. ECDHE: Elliptic Curve Diffie-Hellman Ephemeral, is a key exchange method

in which both client and server create a secure channel by contributing equal

work. Each party generates and keeps their own secret whilst exchanging a
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factor of that number to derive the same shared secret key. This is mutual

authentication, and requires signing and verification for both parties. Energy

testing is undertaken by recording the group of 11 suitable curves under the

ECDHE protocol, with a sign and verify function to represent each party,

based on the lightest curve drawn from the previous result. As previously,

this shall be performed firstly with generating an AES128, and secondly with

the AES128, IV, and HMAC to represent the new design.

(d) Data Exchange Functions and Attributes

Data exchange functions and attributes include those mechanisms corresponding

to the CIA triad - where ciphers enable confidentiality, hash functions provide

integrity, and Message Authentication Codes (MAC), prove authenticity of origin.

Strengths and CIA separations are described below:

i. Ciphersuites for Confidentiality

Details of AES operation is in section 2.5.1, ’Confidentiality’. AES is available

to the mbedtls in three recommended strengths, and five modes in which to

operate. AES is both widely adapted in practice, and available on its own

hardware-dedicated acceleration crypto block on the ESP32 itself, so it is a

natural choice for the domain. AES operating in its various strengths and

modes will be tested for the confidentiality aspect of the experiments. AES

must use one of three recommended strengths:

A. 128: 128-bit key strength.

B. 192: 192-bit key strength.

C. 256: 256-bit key strength.

AES must operate in one of five modes:

A. CTR: CounTeR mode, a stream cipher.

B. CBC: Cipher Block Chaining mode, a block cipher requiring an IV

(Initialisation Vector).

C. CFB8: Cipher Feed Back mode with 8-bit integer parameter.

D. CFB128: Cipher Feed Back mode with 128-bit integer parameter.

E. GCM: Galois Counter Mode, including in-built integrity and message

authentication.

ii. Hash Functions for Integrity

The hash function is a one-way mathematical process ciphered in a similar

sense to encryption, but irreversible. The literature review details the value

of hash functions for integrity under the analogy of a gnome in a box with a

book and some dice. The ESP32 provides the Message Digest (MD), family

but these have been deprecated as too high risk for hash collisions [162]. The

Secure Hash Algorithm (SHA) family of functions is widely accepted, designed

by the National Security Agency (NSA), and also employs its own dedicated

crypto acceleration block, similar to AES. Integrity functions, ie, types of
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SHA, are necessary to ensure non-tampering, and must be included. The

SHA-2 family functions considered safe and available to the mbedtls library

are as follows:

A. SHA224: Truncated version of SHA256, using different initial values.

B. SHA256: Computed with eight 32-bit words.

C. SHA384: Truncated version of SHA512, using different initial values.

D. SHA512: Computed with eight 64-bit words.

iii. MAC for Authenticity

A Message Authentication Code (MAC), sometimes known as a tag, is a short

piece of information used to confirm the authenticity of the message from the

claimed origin. Since this MAC can also act as an integrity check, ie, to

attest non-tampering, it is commonly used in conjunction with the SHA as a

HMAC (Hash-keyed Message Authentication Code) and hash, or HMAC-SHA.

Application of the MAC and SHA in conjunction provide a sound integrity and

authentication checking process, which can also incorporate an additional key

during the device authentication, or key exchange process. By implementing

an additional key, the integrity and message authentication can run as a single

process completely separately to the confidentiality process - with high security

of their own. The HMAC-SHA functions are considered necessary in every

data exchange, and will be analysed as a pair, in order to find the safest

but most energy-conserving configuration. The HMAC-SHA is available to

the ESP32 through mbedtls in all the aforementioned SHA functions, as the

HMAC can be a SHA auxiliary.

The function calls presented above will also be brought forward to be tested using power

analysis for responding to research questions two and three.

4.2 Research questions two and three

• How much could energy consumption be reduced during device authentication?

• How much could energy consumption be reduced during subsequent data exchange?

Responding to questions two and three require all the available TLS functions belonging

to the mbedtls library to undertake energy sampling. Questions two and three have

been grouped together in methodology and empirical chapters since they will both employ

energy sampling under Ohm’s law, in the contexts of authentication and data exchange,

to compare the energy consumptions of typical TLS and re-configuration. Firstly, energy

sampling under Ohm’s law within the ESP development environment is introduced, followed

by authentication using entropy and key exchange variables. The ciphersuites are then

introduced as segregated CIA attributes, as a measurable variations for data exchange - again
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by typical TLS and re-configured TLS for the application domain. Finally the experiments

are outlined for the process of measuring each function and corresponding variables.

4.2.1 Energy sampling under Ohm’s law within ESP-IDF

Whereas in typical TLS application authentication is generally mutual, the edge devices will

be responsible for the majority of the processing as part of the robust network design in order

to prevent bottlenecks - and so energy analysis will take place on the ESP32 edge devices

only. As a result, keys are invoked on the ESP32 and passed over to the server, or hub, to

add to a ’keyring’ in an asymmetric approach.

The ESP IoT Development Framework (ESP-IDF) [163], employed the Arduino library as

a component. This allowed high control of the ESP board through the IDF’s ‘menu-config’,

in order to switch off the WatchDog Timer (WDT) [164]. Menuconfig → Component Config

→ Common ESP related → Disable Interrupt WatchDog, Disable Initialise Task Watchdog

Timer on Startup. This was important to ensure that the board did not enter ‘boot loop’, or

interruption, during testing in high repetition cycles - preventing the board from completing

each task. The micros() function from the Arduino library returned the timing of any part

of the sketch. Micros() was therefore used to time each function; key generation, signing,

verification, the CIA functions. Time can be printed to the ESP32 serial port, displayed

within the development environment and connected by a USB data cable.

An example of the micros() timing function is demonstrated below:

unsigned long time; void setup() {

Serial.begin(115200);

}

void loop() {

Serial.print("Time:");

time = micros(); //prints time since program started

Serial.println(time); // wait a second so as not to send massive amounts of data

delay(1000);

}

Power can be sampled using an oscilloscope [165], to accurate levels appropriate for

protocols such as BLE [166], and has demonstrated previous results in a similar domain

of vertical farming [167]. Voltage, measured by microvolts, µV, multiplied by current,

represented by I, and measured by Ohms, Ω, gives power - represented by milliwatts, mW.

A 5V power bank was used to ensure consistency, in conjunction with the same resistor. By

multiplying power by time, measured by microseconds, µS, we can ascertain energy in Joules,

J.
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4.2.2 Measuring Entropy and Key Exchange Protocols

When undertaking key generation, the ESP32 will employ the Random Number Generator

(RNG), hosted as part of its dedicated hardware-accelerated cryptography block. This

generator is called by ‘ctr drbg’ in the mbedtls library - a deterministic random number

generator function. To gain a fair sample and eliminate anomalies, ten readings for each

protocol will be recorded, from which an average time will be deduced as an example of

‘normal’ consumption time, whilst disregarding the first reading due to boot load. The

results sets for testing authentication protocols are presented in section 6.4.

An example of measuring a sample of entropy using the micros() function in the context

of ECDHE key exchange is demonstrated below in pseudocode:

1. Begin contexts

2. Seed ECDHE RNG

3. Set up client context for key pair

4. Generate ECDSA Signature

5. Compute ECDSA message signature hash

6. Set up server context for key pair

7. Server reads client key and computes secret, signs Server ECDSA

8. Client reads server key and computes secret, signs Client ECDSA

9. Check if both computations are equal, verifies Server signature,

verifies Client signature

10. Free all contexts

Pseudocode for functions tested under power analysis is attached as Appendix A.

4.2.3 Measuring CIA Configurations in Data Exchange

No entropy generation is required for the CIA. The functions are also much less

computationally-demanding than authentication functions, thus allowing a larger number

of loop iterations. These experiments are outlined below and the results are also presented

in section 6.4.

4.2.4 Comparing typical TLS with re-configured TLS by Authentication

and Data Exchange

Below the experiments for authentication and subsequent data exchange are presented for

results and comparison in Chapter 6. Hopefully, results will demonstrate how the DPIA

outlined substantial areas in which energy consumption severity ratings could be reduced

from typical TLS implementation to the proposals of re-configuration. Ideally these will be

severity categories - ie, from critical down to high or medium, or from high or medium to

low.
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Reference to single and multiple keys below are in reference to segregating ciphersuites

into three individual CIA components, thus enabling selective use. Whereas typical TLS will

use a single key as part of an all-in-one ciphersuite, the re-configuration exemplifies the use

of three keys, maximising selectivity of the CIA attributes. All-in-one modes are explained

in section 2.5, The CIA.

Below the set of energy analysis attributes are presented, where full code is attached as

Appendix A:

1. Key pair generation, sign and verify:

(a) RSA: 5 key strengths.

(b) ECDSA: 11 curves.

2. Key exchange:

(a) RSA-PKC: Single key (typical TLS), and multiple keys (re-configured TLS).

(b) ECDHE: Single key (typical TLS), and multiple keys (re-configured TLS).

3. Integrity and message authentication functions:

(a) HMAC: 4 variables in 64 bytes payload.

(b) HMAC: 4 variables in 512 bytes payload.

4. Full CIA by AEAD and collective components:

(a) AES128: 5 modes in 64 bytes payload.

(b) AES128: 5 modes in 512 bytes payload.

5. Data exchange:

(a) From server to client: Fully protected GCM and collective components, typical

TLS.

(b) From client to server: Selective components and excluding privacy, the

re-configuration.

6. Energy Consumption Comparison Over 24-hours in Authentication and

Data Exchange:

(a) Readings: 16 character readings comparing typical TLS and the re-configuration.

(b) Instructions: 256 character instructions comparing typical TLS and the

re-configuration.



CHAPTER 4. TESTING METHODOLOGY 68

4.3 Research Question Four

• Can a lightweight, self-healing consensus mechanism, be proven to be safe?

Responding to question four requires formal verification for the safety of a tiered

authorisation model. Unlike research questions one two and three, answering question four

does not include any type of comparison exercise between typical and re-configured TLS. This

is because TLS has a binary approach towards access control or authorisation - as soon as the

secure channel is set up, a participant either has access or they do not and there is no tiering

between in or out. As the proposed re-configuration of TLS is domain application driven,

relationships between edge devices (the ESP32 microcontroller), and the hub (Raspberry Pi

or similar microcomputer), are persistent - greater emphasis is placed on business continuity

and the possibility of insider attacks than typical TLS. As a result, a tiered model with a

series of contingencies will be modelled, with varying privilege levels to prevent complete

downtime.

Firstly the design is modelled around the domain requirements, then it is run through

formal verification.

4.3.1 Designing the authorisation model

Following the findings from research questions one to three, a design will be deduced to reuse

existing cryptographic functions. This is important to not duplicate data that will already

exist after security setup, and also to not add unnecessary additional cryptographic functions

that perform the same tasks. The results for these findings are presented in section 7.3.

4.3.2 Notating the model

The model design will be formally specified in terms of messages exchanged between

cryptographic operations performed between parties and their roles. Appropriate high-level

notation is explained below, as the Cryptographic Key (CK) model and adversary, flow charts,

and employing Alice and Bob. Once modelled, appropriate analysis can be performed using

automated tools.

1. CK, Dolev-Yao, and the Adversary

The attack model, or threat model, defines the capabilities of potential adversaries.

In the case of the Cryptographic Key (CK), or the Dolev-Yao model, the adversary

is assumed to have complete control over the network with abilities of interception,

modification and message injection. Therefore, the Dolev-Yao also assumes the perfect

state of cryptographic primitives - without the correct key, such an adversary cannot

decrypt or encrypt messages or form a signature. This CK model is fundamental in

the realm of formal verification for cryptographic protocols, and is used to examine the

robustness of a mechanism under ‘worst-case’ scenarios, using manipulation of honest

parties and injecting data exchanges.
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Specifically for a granular authorisation mechanism, it is crucial to ensure that an

adversary cannot escalate privileges or access protected resources without permission.

Formalising the protocol for analysis under the Dolev-Yao model can gain confidence in

the longevity of protocol security, and provide properties such as freshness and integrity.

2. Flow charts

Cryptographic protocols often involve complex interactions between parties which can

be difficult to understand without simplistic, high-level illustration. The design will first

be illustrated by flow charts representing how devices are authorised into the network

using the symbols deduced from the cryptographic protocols in the results of chapters

5 and 6. Following the flow charts for each segment of the consensus mechanism life

cycle, Alice and Bob notation can outline the formal notation.

3. Alice-Bob notation

Alice and Bob notation, or message sequence charts, represent a high-level yet intuitive

method for representing cryptographic protocols, predominantly using the names of

sender and recipient Alice and Bob respectively. There are many other characters

including Charlie, Eve, Heidi and so forth but the majority of scenarios utilise the

primary couple A and B, with arrows indicating the direction of communications or

actions taken between them. Where Alice sends Bob an encrypted message, this would

read:

A → B : {M}K

Where A is Alice, B is Bob, the parenthesis indicate encryption of the M for Message

under the K for Key.

4.3.3 Formally verifying the model

The next stage of the process is to convert the Alice-Bob notation into language required for

two verification tools presented below - AVISPA + SPAN, and ProVerif, where full code is

attached as Appendix B:

1. AVISPA + SPAN

The Automated Validation of Internet Security Protocols and Applications (AVISPA)

platform was used in conjunction with the Security Protocol ANimator (SPAN) tool

for formal verification of the algorithms described in the activity diagrams. The aim

was to ensure secrecy in certain attributes, whilst using as few security functions as

possible in exchange for identifiers or privacy functions.
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The Dolev-Yao threat model was used to test the secrecy and freshness of values

sent between devices, guarding against eavesdroppers and intruders seeking to gain

knowledge over a deliberately insecure channel. The protocol was written in High

Level Security Programming Language (HLSPL), and loaded into the SPAN interface

within AVISPA. SPAN provides four backends for verification:

(a) OFMC: [168], On-the-Fly Model Checking performs protocol falsification and

bounded session verification. OFMC is demand-driven and uses a number of

symbolic, constraint-based techniques such as the lazy intruder, and constraint

differentiation, for typed and untyped protocol models.

(b) CL-ATSE: [169], Constraint-Logic-based ATtack SEarcher takes a protocol input

using the AVISPA compiler language Intermediate Format (IF), and models all

reachable states to determine whether an attack is possible under the Dolev-Yao

intruder model.

(c) SATMC: [170], SAT-based Model-Checker considers typed protocol models,

providing falsification and bounded session verification using a SAT solver. This

is a satisfiability solver which takes a Boolean input, and outputs results based

on whether the variables can confirm it is true. SATMC are not ideally used for

trees.

(d) TA4SP: [171], Tree-Automata-based Protocol Analyser performs unbounded

verification by approximating intruder knowledge using tree languages as opposed

to strings, based on tree automata [172]. Secrecy properties in the model can

be revealed as flawed by under-approximation, or safe throughout any number of

sessions by over-approximation.

SPAN also provides three types of animation to simulate the protocol itself, the

methods of an intruder, and a successful attack. If the proposed authorisation model

is determined as safe by all, if not most the verification backends, then an attack

simulation will not be possible.

Exemplified below is the conversion of Alice-Bob notation to CAS+, which AVISPA +

SPAN then converts to HLPSL:

(a) A → B : Ka

(b) B → A : {{SSID, Kas, Kb}Kb-1}Ka

(c) A → B : {{Na}Kb}Ka-1

(d) B → A : {{Na}Ka}Kb-1
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protocol DA;

identifiers

A, B : user;

KPa KPb : public_key;

SSID, Kas, Na : number;

messages

1. A -> B : KPa

2. B -> A : {{A, B, SSID, Kas, KPb}KPb’}KPa

3. A -> B : {{A, B, Na}KPb}KPa’

4. B -> A : {{Na}KPa}KPb’

knowledge

A : A,B,KPa,KPb;

B : A,B,KPa,KPb;

session_instances

[A:alice,B:bob,KPa:kpa,KPb:kpb];

goal

secrecy_of Kas [A,B];

secrecy_of Na [A,B];

Alice-Bob notation and CAS+ is attached as Appendix B.

The safety results of the four formal models are presented in section 7.3.

2. ProVerif

ProVerif is a formal verification tool which employs the applied pi calculus process to

model and analyse security protocols. A ProVerif model of a protocol is written in

the tool’s input language, typed pi calculus, divided into three parts of declarations,

process macros, and a main process.

In terms of its back-end verification process, ProVerif represents protocols by Horn

clauses and applies resolution to these clauses to deduce information, automatic for a

large class of protocols.

The process comprises of:

(a) Input reading and parsing: ProVerif reads an input file which contains the

protocol description, queries to be answered, and the definition of functions and

predicates. This file is parsed and converted into an internal format that can be

processed further.
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(b) Generation of Horn clauses: The protocol’s behaviour is represented as a set

of Horn clauses. These Horn clauses describe all possible actions of the protocol’s

principals and the attacker.

(c) Resolution: Horn clauses are processed using a resolution method. This is an

inference method which can deduce new information from the given set of Horn

clauses.

(d) Query evaluation: The queries specified in the input file are evaluated. These

queries could ask if a certain property holds for all executions of the protocol, such

as secret confidentiality or whether a specific authentication property is satisfied.

(e) Reporting: The results of the query evaluations. If a property is found to be

true, it means that the property holds for the protocol under the assumptions of

the Dolev-Yao model. If the property is found to be false, this means that an

attack was found and a sequence of actions has led to a violation of the property.

Presented below is an example of translating Alice-Bob notation to ProVerif inputs:

(a) A → B : Ka

(* Declarations *)

free c:channel.

free skA:bitstring.

fun pk(bitstring):bitstring.

(* Protocol *)

let agentA(skA:bitstring) =

let pkA = pk(skA) in

out(c, pkA).

let agentB() =

in(c, pkA:bitstring);

0.

(* Process *)

process

( !agentA(skA) | !agentB() )

ProVerif inputs for the balance of the formal models is attached as Appendix B. The

safety results of the four formal models are presented in section 7.3.



Chapter 5

Energy-Driven Risk Assessment

The previous chapter proposed a series of aims and objectives to follow for four experiments,

the collective answers of which will confirm or deny the hypothesis. This chapter considers

the answer for research question one:

• What are the security and privacy requirements of the aquaponics smart-farm?

This chapter is ordered by the eight objectives outlined in Chapter 3, ’Aims and

Objectives’: scoping, key findings, data mapping, function impact and severity, reduction

and substitution, objective scoring, assessment and comparison.

For each objective, reference is made back to the literature review. With an energy-centric

focus, this is an exercise to ascertain threshold protection in order to reduce time, power,

processing and storage consumptions as much as safely possible. The resulting Data

Protection Impact Assessment (DPIA), aims for a hybrid between protection, both security

and privacy, and energy-conscious application.

This metrics framework is designed to predict the consumptions of energy based on data

exchange protection levels, and is useful at both the design phase of a security solution to

dynamically trade-off attributes prior to implementation for optimum performance. In this

research, it is this DPIA which acts as the solution’s security reconfiguration of TLS - the

ciphersuite components optimised in order to reduce energy consumption as much as possible

whilst maintaining adequate protection. The DPIA scoring system is finally applied to TLS as

it exists, and against the new solution as a prediction of how much energy can be relatively

saved. If the scoring system demonstrates clear differences, the test results in subsequent

empirical chapters will reflect valuable difference as predicted in the DPIA results.

5.1 Scoping the Domain

This section refers to the first section of literature review part 3, ‘SSM from a Business

Perspective’. We consider three modelling methods, BATWOVE, TOWS, and inductive

elements from the most common risk-driven methodologies used in security design.

73
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5.1.1 CATWOVE (CATWOE plus BATWOVE)

This is a top-level approach for scoping - an application from the principles of business

studies not dissimilar to the Business Model Canvas (BMC), [173], which has been used for

‘building blocks’ for IoT business cases [174], and enterprise ecosystems, architecture and

services [175]. CATWOE is often used in conjunction with the Unified Modeling Language

(UML), [176; 177; 178], including design applications of cloud services [179], and information

systems for farming [180; 181]. Whereas BMC justifies stakeholder and financial viability

of IoT modelling in a business context, CATWOE as a top-level methodology, and UML as

a process-defining methodology, produces the basis of functionality. Therefore a CATWOE

and BATWOVE approach for redesigning the TLS process would be suitable, and UML for

modelling for the authorisation system also seems sensible. For simplicity, CATWOE and

BATWOVE have been combined to produce an encompassing ‘CATWOVE’. Below is the

CATWOVE analysis:

1. Customers: Who are the beneficiaries of the business process, how and why

would they be affected by the security design?

Beneficiaries include consumers and their green interests, investors, farmers and food

retailers. End consumers of farmed crops purchased from supermarkets will have an

interest in purchase prices and sourcing. As consumers increasingly become aware of

green farming and factors such as water use, fertilisers, fuel and other environmental

impacts of traditional farming, the preferences are moving further towards responsible

and local practices. The influencing aspects of organic and responsibly-sourced crops are

closely related trust in the provider for nutritional benefits and environmental kindness

[182]. This is a strong business case for aquaponics practice to serve the trust and

willingness of the end-consumer - where systems can benefit from green energies and

symbiosis without backup electricity or fertilisers, reducing the overheads of a security

solution is pertinent to optimise consumer interests.

Carrying this example through to investors, many businesses have recognised the

development of environmental concerns, and ‘green marketing’ has accelerated to

attract the financial interest and sales of this emerging market [183]. Advertising

promotes local, organic and sustainable farming with few fertilisers and as little waste

wherever possible, and is increasingly pushing plant-based diets. In addition, as part of

the data storage behind agricultural supply chain records [184], particularly concerning

traceability [185], Distributed Ledger Technologies (DLT), are starting to emerge with

greener consensus mechanisms [186]. Where Proof-of-Work (PoW), has been the mining

choice for Bitcoin’s success both for investors and ownership [187], greener alternatives

for the same PoW are emerging [188], in addition to more energy-efficient models such

as hybrid Proof-of-Stake (PoS) [189].

Trust from green practice and accountability is also of great benefit to local producers

and supermarket supply. By engaging in green practice as an emerging strategy

and away from traditional agricultural resources, farmers can produce more crops
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per acre and require less input materials [190; 191; 192]. Aquaponics also provides

a controllable and predictable environment to optimise crop yields and does not suffer

from unpredictable weather or fire risk.

In summary, the consumer desire for more efficient plant farming is increasing, and

optimising the energy consumptions, such as with a greener security solution, benefits

the whole supply chain financially. Lowering energy consumptions of the security

required for smart farming contributes towards the feasibility of the model - and much

more so if it were to rely on green energy. If a farm could balance solar and wind energy

by minimising energy consumptions, this would be very advantageous.

2. Actors: Who are the people involved in the situation who will undertake

the work?

Those involved in the implementation of the aquaponics environment, and those

impacted by the success of the security solution includes the person setting up the

system and farm workers harvesting the crops. This could be the same person(s), as in

traditional farming, and what the impact of an energy-efficient security solution could

be on them. For farm business owners and operatives, the financial benefits are the

same as the business processes for their customers: consistent environments, higher

yield, non-indigenous crops, semi-automation, predictable harvest dates, less waste and

fewer resources such as fuel, plant and land.

3. Transformation: What processes of inputs becoming outputs does the

security fulfil?

The aquaponics network is data-centric. A series of ESP32s report environmental data

to a central hub which is used for monitoring, issuing device updates, and configuring

actuators remotely. This hub may well be the only part of the network that connects to

the internet, whether hard-wired or by mobile data to upload content to a cloud-hosted

database.

This networking arrangement should be centralised, as the one-to-one nature of the

BLE range of nominally 100 metres promotes the clustering of systems by range. If

the farm is large and dispersed, central hubs such as the Raspberry Pi microcomputer

can operate as ‘key rings’ for the secure collection of data beyond the range of a single,

centralised hub or WiFi connection. Given the nature of clustering in this respect, the

range of a large farm built of hundreds of systems will never run out of range given the

lack of restrictions offered by BLE.

Regardless of the network topology, security should be set up to be completely

decentralised, in order to rid the network of X.509s, multiple TLS libraries, and the

other research challenges discussed in the previous chapter. Therefore, each device must

undertake the security processing for its own aquaponics system and send readings to

the Pi over a protocol suitable for an IoT network such as LoRaWAN or BLE. Using

this approach, security undertakings are governed by many devices surrounding a hub,
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or edge processing, and not the hub itself. This approach for outsourcing security to

edge-processing both alleviates issues related to scaling, and central vulnerability.

The challenge in outsourcing security to edge devices is to mitigate the protection of

all edge devices wherever safely possible - so that the battery life of each ESP32 is

not put at risk by unnecessary protection whilst processing at the network edge. The

challenge in creating an authorisation system is to ascertain the trustworthiness of

a device belonging to a network, with assurance of group validation from previously

authorised devices.

4. Worldview: What is the big picture, and what are the wider impacts of

stakeholder beliefs?

Although this research has a focus on security, it could inform a business case for

aquaponics, based wherever possible, on reliability and consistently high crop yields. A

good security solution will promote long battery life and business continuity, whereas a

poor security solution will challenge the strengths of a constrained network, and bring

about issues with scalability with downtime and latency. The solution, although in

this research bespoke for an aquaponics network, exemplifies a design for universal

application in the IoT domain, and all constrained, battery-powered devices.

The ’big picture’, therefore, is to present a measurable application of energy

and risk in the application domain for benchmarking optimum practice. Ideally,

energy consumptions proposed by the model should bolster the viability of the full

aquaponics system, ie, to reduce consumptions as much as possible whilst maintaining

confidentiality, integrity and availability od data. In addition, preventing unauthorised

device access to the network given a strict granular access control system should

bring confidence to stakeholders for continuity throughout malicious attack and device

failures.

5. Owner: Who owns the process or situation being investigated, and what

role will they play in the transformation, positive or negative?

The Internet Engineering Task Force (IETF), operating under the auspices of

the Internet Society (ISOC), are those responsible for developing and promoting

internet standards including those related to TLS. Additionally, the roles of the

National Institute of Standards and Technology (NIST), and the Federal Information

Processing Standards (FIPS), whilst neither directly govern TLS, provide guidelines

and recommendations for cryptographic standards, which are often used in conjunction

with TLS to assure secure communications.

Fortunately, the cryptography block of the ESP32 allows the stipulations of typical TLS

regulations to be bypassed when implemented for edge processing whilst protecting

payloads. As a result, the main concern of the implementation should not be how

secure encryption is, but how long the device can live whilst operating an optimised

TLS configuration. If this is considerably longer than typical TLS implementation, then
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there is a viable business proposition, and the farm owner, or investor, should utilise it

over standard TLS. If the difference in device battery lifespan is negligible, then there

would be no viable business case nor use to any network owner.

6. Victims: What or who could suffer detriment as a result of intervention or

transformation?

In contrast to the benefits of a novel solution to the Owners, a poorly designed, or

inappropriate transformation of TLS into a lighter form could also be to their detriment.

This is where the content-driven risk assessment justifies how appropriate the solution

must be in terms of security and energy use, to prevent downtime as a result of

attack (poor security), or drained devices (no energy). Ultimately this downtime

leads to poor crop yield, unwell fish, financial issues, reputation damage and loss of

customer assurance in the domain as a model. If the Victim becomes the customer,

the aquaponics model as a driver towards green and sustainable farming fails at a

conceptual level - and invites back the issues associated with more traditional farming

as a carbon-positive footprint.

7. Environment: What are the constraints, rules and policies that will impact

solution success?

There are notable criticisms towards TLS and PKI [193], which encourages the

development and approval of edge processing on a payload basis - particularly where

energy is such a pertinent consideration, and processing power is so scarce. The aim of

our project is to adjust the configuration of TLS to more appropriately support an IoT

network - taking advantage of the fact that IoT standards are generally not enforced

[194]. Working on the basis of lacking standardisation, where Grace Hopper’s famous

idiom “forgiveness is easier acquired than permission”, we can circumvent most of the

environmental constraints by proof of concept.

To conclude the CATWOVE study, an IoT-centric, energy-conscious security solution

is very much a purposeful activity for the viability of an aquaponics domain and green

farming. A model developed to justify the carbon-neutral, and perhaps the carbon-negative,

movement is pertinent at this time for the IoT in general, and sustainable farming specifically

to exemplify such a model as part of this research. We will now proceed to investigate the

areas in which vulnerabilities may occur in theory, before an objective study into metrics.

5.1.2 SWOT and TOWS Analysis

Strengths, Weaknesses, Opportunities and Threats (SWOT), is a classic business strategy tool

and TOWS is a variant of the same acronym to extend SWOT from an internal environment

to an external one [195]. The aim of this model is to draw domain-specific attributes such

as communication ranges and architectural details, which will impact the attributes of the

metrics framework later on.

The SWOT analysis presents the following attributes:
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1. Strengths: The things that the domain performs well at, unique resources, and what

others view as advantageous.

Internal strengths include the lack of a browser, reducing the threat landscape,

independence from the internet due to alternative protocols, and hardware-accelerated

cryptography functions promoting dispersed processing away from a single central unit.

External strengths include a range of communications available from the outside world,

including but not limited to the internet, and a general awareness of the significance of

green farming in general.

2. Weaknesses: The things that could be improved on, the areas in which resources are

fewer than rival domains, and the areas perceived as vulnerable.

Internally to the network, battery life, particularly when compared against data

exchange frequency, is the main issue. When compared against the demands made

by the TLS standard, this is a considerable network weakness. Externally, a lack of

consistent and reliable solar and wind resources do not promote a self-sustaining battery

life based on purely green energy.

3. Opportunities: Opportunities available to the application, trends which could be

taken advantage of, and opportunities from which strengths could arise.

Internally, the selective and appropriate use of cryptography, data exchange, privacy

functions and protocols provide a broad range of configurations. Externally,

technologies such as solar, wind, and piezoelectric generation can be used in conjunction

with each other simultaneously.

4. Threats: Things that could harm the domain, undertakings of rival projects, and

threats which expose weaknesses of the domain.

Internally, sabotage by authorised users with ulterior motives present a concern that

cannot be resolved using the authorisation system under any TLS configuration. The

network may also suffer downtime from mechanical or energy failure. Externally,

malicious attempts and downtime by attacks aimed towards the various communications

protocols are concerns.

The TOWS analysis brings these attributes together to form strategies outlined in Table

5.1.

The outcomes of which are proposed below:

1. SO, Maxi-Maxi: Protocols used by the IoT such as BLE, MQTT and LoRaWAN,

are lightweight. As a result, a combination of reducing computation by selective

cryptography, utilising green energy generators, could sustain the network without

mains electricity. In conjunction with the carbon dioxide absorbed by crop production,

this could become a carbon-negative environment.
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Table 5.1: TOWS Matrix

- External Opportunities(O) External Threats(T)

Internal
Strengths(S)

SO “Maxi-Maxi Strategy”
Strategies which use strengths to
maximise opportunities.

ST “Maxi-Mini Strategy”
Strategies which use strengths to
minimise threats.

Internal
Weaknesses(W)

WO “Mini-Maxi Strategy”
Strategies which minimise
weaknesses by taking advantage
of opportunities.

WT “Mini-Mini Strategy”
Strategies which minimise
weaknesses and avoid threats.

2. ST, Maxi-Mini: The use of short-range communications protocols reduces the threat

landscape to that limited range. Use of the internet opens the network to threats of a

global scale, whereas the use of BLE for example, restricts the threat to anyone outside

of a 100m range at most.

3. WO, Mini-Maxi: With the exclusive one-to-one device relationships supported

by BLE, the threat landscape becomes even smaller. Each device owns its own

public-private key pair and long-term relationships promote the notion of infrequent

authentication, as relationships are static until the system fails. As a result, the

relationships stay persistent and use little power in re-authenticating.

4. WT, Mini-Mini: This is about defensive strategies to minimise loss rather than

promote success. The notion of ‘adequate’ or ‘threshold’ security is emphasised here

to maintain a good balance between power and computation, where security is lowered

as much as safely possible, whilst battery life benefits as much as possible by incurring

the least feasible computation.

From here we can present a series of key findings, to later on interpret into design

specifications.

5.2 Key Findings

From the literature review, requirements analysis, and SSM study, we have deduced:

1. BLE is a reasonably short range (100m), protocol and reduces the attack

vector to local scale.

Since BLE operates within a very short range, connections are not globally accessible

as they are with mains infrastructure such as the internet.

2. There is no need for a browser, nor an OS on the ESP32.

Where the microcontrollers will undertake the majority of the processing on-board

using native hardware acceleration, ie, processing at the edge of the network, data can

be delivered free of an operating system and browser following initial key agreement.
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3. X.509 certificates can be substituted by signing and verification functions.

The key component to certificates in the signature, and correlating verification by which

to establish authentication. Without the bulk of the certificate, authenticity can still

be verified whilst also removing the large and centralised PKI underneath.

4. Payload-based encryption allows for TLS configuration and processing at

source.

Processing at the network ‘edge’ promotes the use of hardware acceleration native to the

ESP32 - offloading most of the responsibility from the cluster hub such as a Raspberry

Pi. This means energy consumption is dispersed amongst the majority of devices within

the network rather than relying on a hub, whilst utilising all the mechanisms belonging

to TLS in a manner more suitable to IoT - such as selective confidentiality.

5. A content-driven DPIA will help alleviate unnecessary encryption.

The reconfiguration of typical TLS strengths and inclusions can be challenged under the

analysis of a design-phase DPIA. During this analysis, a proposed energy-saving version

of normal TLS will demonstrate a more suitable version for IoT, based on specific data

exchanges of the aquaponics domain.

6. One-to-one relationships using symmetric encryption can use shorter keys

than asymmetric.

Following initial key setup, the ESP32 edge devices can maintain long and persistent

relationships lasting months or years over the BLE protocol. During these relationships,

the smaller shared symmetric key can be used to protect data - as opposed to resetting

the key agreement for every few data exchanges as with standard TLS use.

7. All processing can take place on edge devices to further reduce and

complicate attack target.

A further advantage to edge processing is the distribution of keys amongst the majority

of network devices. Should a cluster hub experience downtime, edge-processing from the

ESP32s are proposed to establish a new, secure connection with the reset or replacement

hub. This means that during times of downtime the edge devices will continue to operate

with the instructional code already available, and to pause data reports to the hub until

remedied. This further reduces the attack vector from one or a few cluster hubs to many

edge devices.

8. A tiered authorisation system is important to eliminate internal threats.

A granular access control system offers levels of protection beyond the binary ‘in-or-out’

method used in TLS. By segregating responsibilities and read-write rules between

devices based on their histories of trust, a hierarchical approach can protect against

insider attacks and downtime by utilising inaccessible backup devices.
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5.3 Data Mapping

Here we identify the data that must be the main content of the design, given the mechanisms

that can be kept and those which can be eliminated, and the actual data exchanges that the

mechanisms are designed to protect.

By order of most sensitive to least sensitive, below is all the environment content:

1. Private Keys: Private keys of the Public-Private key pair of device authentication

should be a long-standing, impenetrable set for delivering data with guaranteed

confidentiality. This is part of key exchange for device authentication and operates

under either RSA or ECC.

2. AES Keys: These keys are not as long-standing as private keys and are used to fulfil

confidentiality as part of symmetric encryption of data exchanges such as readings and

instructions between devices. AES keys are considerably shorter than public or private

keys, require more frequent reset, and should remain secret. The key is kept on both

devices belonging to a one-to-one relationship, and so there are two copies of every AES

key which are both replaced on session refresh.

3. HMAC-SHA Keys: These keys ensure integrity and authentication of each message.

Generally when a TLS session is negotiated, the ciphersuite automatically includes a

SHA attribute for a one-way hash function as a receipt of non-tampering of the message,

and a HMAC for authenticity check of origin. This key performs the same operations,

but separately, as it can therefore operate independently of an AES key. By separating

the functions, security is configurable at a lower level. As with AES, this key is placed

on both devices within a one-to-one relationship and must also be refreshed with new

sessions.

4. Initialisation Vector (IV): This key is for hardening session ciphers. It is used in

a particular AES mode and promotes an element of randomness in encryption so that

ciphertext outputs will always be different, even when the input is the same. The IV

is a starting variable, typically random or pseudorandom, but at least unpredictable or

unique for each session.

5. Instruction Code: This is a chunk of content to be hosted by each ESP32 controlling

an aquaponics system, specific to the requirements of crop type for controlling lights,

pH level, humidity, flood and drain timing and so forth. It will be a reasonably sized

chunk of code and will likely vary between systems.

6. Readings: Environmental readings, such as water temperature, air humidity, light

levels and so forth do not need confidentiality, because they are feeding back single

or multiple digits assuring the data control centre that it is within a predetermined

error margin. Readings themselves do very little other than inform us of a consistent

environment in which fish will thrive and crops will yield to their full potential - but to



CHAPTER 5. ENERGY-DRIVEN RISK ASSESSMENT 82

prevent the actuators from disrupting the environment, the readings must be true. This

means that they do not need confidentiality, but do require an integrity and authenticity

function - assuring the system that readings are correct, not tampered with, and from

the expected origin. Readings therefore require SHA and HMAC functions.

7. MAC Address: This is an identifier unique to each device but available to any public

BLE GATT [196] scanner, and which can easily be spoofed. The MAC address is useful

to scan a device for functionality and location, but for delivering messages, should be

used in conjunction with other cryptographic attributes such as asymmetric public and

private keys, or symmetric data exchanges to ensure authenticity. The MAC address

is a requirement in BLE data exchange in the same way that IP addresses enable

TCP/IP, and so it must be included. For quick scans and network checks, they can be

a convenient alternative to cryptography key identifiers.

8. IP Address: Similarly to the MAC address, IP addresses can be scanned and spoofed

easily, but are useful in the same way for the TCP/IP stack as with the BLE/GATT

stack - to ascertain device presence quickly. Following network scanning, devices can

be communicated with using much more private means, such as the private keys. If the

network is completely free of the internet, an IP address will not be required.

9. Public Keys: Are the counterparts of the public-private RSA and ECC key pairs,

designed to be given out in order to encrypt messages meant only for the decryption

of the recipient device. However, public keys should be accompanied with authenticity

functions such as digital signatures, to make sure the sender device is part of the

network, rather than a malicious node masquerading as one.

10. Digital Signatures: In conjunction with signing and verification functions, the Digital

Signature Algorithm (DSA), ascertains authenticity during the key exchange phase

between devices. It is included in the X.509 certificate as the proof of certificate source,

and can therefore be used independently of certificates for data accountability and

authentication.

With reference to Chapter 4, ’Research Methodology’, the scoring system from the

OWASP risk rating methodology [89], was used as a basis by which to deduce a series of

domain-appropriate factors. Whereas the OWASP system gauged on a scale of 0-9, this was

adapted into a 1-4 criteria from low, medium, high and critical impact respectively.

With regards to supplier trust and transparency as outlined in the CATWOE and TOWS

study, business impacts are very important. Even though financial data and so forth is not

at risk, the well being of the fish and perceived quality of the operation would be considered

as important to the green movement and the welfare-conscientious as animal rights are to

those promoting free range, healthy livestock. However, the significance of business impact

factors will always output as maximum damage, at the highest score, and bias the differences

between DPIA results.
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5.4 Reduction and Substitution

This is a further addition to confidentiality, where encryption functions can be substituted

by privacy functions. The idea is to investigate whether privacy is a lightweight alternative

to encryption, and if so, introduce privacy functions to reduce power consumption whilst

retaining confidentiality.

Although the aquaponics system is largely devoid of personal and sensitive data belong

to human subjects (we shall assume the fish don’t mind), then the usefulness of the GDPR

pertains to assessing a ‘data-oriented’ or ‘content-based’ attack risk, where, in circumstances

of zero risk, then there may also be zero privacy. Following the GDPR principle of ‘necessary

processing of data and nothing more than absolutely necessary’, the challenge is to reduce

protection of content, and subsequent processing, wherever possible.

GDPR privacy functions can be realised in several ways:

• Data masking: [197], Refers to disclosure of data with modified values. This could

be character shuffling, tokenisation, encryption, or character substitution - one of the

oldest forms of cryptography. Substitution is where a value is exchanged for another

value, to make identification or reverse engineering difficult. This character set will be

the same throughout the policy, but may turn into a centralised process.

• Pseudonymisation: [198], is data de-identification that substitutes private identifiers

with false identifiers or pseudonyms. “John Smith” could be changed to “Mark

McConnell”, but this would require some form of centralised database.

• Generalisation or minimisation: [199], The removal of data to prevent

identification, such as a house number of an address, so accuracy of data remains

whilst not being too specific.

• Perturbation: [200], The use of round-numbering and adding random noise to modify

a dataset. The set of values must be proportionate to noise to avoid disturbance, making

this method quite complex.

• Synthetic data: [201], uses algorithm-generated information with no relation to the

real case. These datasets represent patterns from real data by invoking standard

deviation, linear regression, medians and other statistical methods. It is of no use

to our comparatively simple model.

• Permutation: [202], refers to data swapping or shuffling rearranges dataset attributes

so that they do not fit original information, often by switching columns in databases.

These privacy functions will provide a scale of alternative functions as part of the

confidentiality element of the CIA triad, and demonstrate the greatest energy savings in

the design solution.
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5.5 Domain-Specific Criteria

With influence from the OWASP risk rating methodology presented in section 4.1, the

criteria specific for the aquaponics application domain are discussed below. Whereas OWASP

operates a scale of 0-9, the new sets will use 1-4, attributing low, medium, high and critical

risk severity levels respectively. This removes any ambiguity when allocating scores from an

input perspective, to return consistent results. There are three sets of domain-specific criteria

supporting a total of nine variables for assessment: security application, energy consumption,

and privacy substitution. When applied to the ten environment content items listed earlier

in section 5.3, the DPIA will produce risk severity of each one.

5.5.1 Security application factors

This set considers what kind of basic protection the data attributes require compared with

what they are worth as a reward from an exploit. It is a good way of comparing typical

TLS and internet applications against IoT by applying TLS-standards to deduce a result and

compare it against the IoT environment, to determine which properties could be lightened

or removed given the flexibility.

1. Protection: How much protection is required for the content?

This attribute describes protection requirements within data exchanges such as

instructional code and fish tank readings - the environment data content listed in section

5.3. Wherever possible, security functionality will be substituted by privacy functions

as with the tokenisation mechanisms pertaining to PCI-DSS, exemplifying lightweight

alternatives to cryptography computation.

From an IoT perspective, fish tank readings are insensitive and need not be fully

protected, because it makes no difference if threat agents can see them or not. However,

readings must be assured of integrity for non-tampering, and authenticity as proof of

origin. Digital signatures can be delivered in plaintext with zero protection, as they

represent proof of origin. In these examples, the two most common data transmissions

require no encryption - a huge energy saving to the IoT system, and a benefit to

re-configuration that is not available when employing typical TLS.

(a) 1: Plaintext, no CIA or GDPR required.

(b) 2: Integrity and availability required.

(c) 3: Integrity, availability and some privacy required.

(d) 4: Integrity, availability, and guaranteed confidentiality required.

2. Value: How much value is placed on success of an exploit?

This attribute represents the value of the exploit reward, compared with the level

of security it should have to protect it. Low value material need not employ
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heavyweight protection, and ideally all data that can be transparent should be, to

reduce computational costs.

(a) 1: No value at all.

(b) 2: Value in conjunction with other data exploits.

(c) 3: Reputation and business disruption.

(d) 4: Full downtime, financial reward, personal kudos.

3. Range: What is the communications range of the protocol?

This is unique to the application domain in terms of IoT protocol communications

range, deduced from the SSM earlier. Since most of the communications will take place

within a small and restricted environment, the threat landscape is not representative

of global applications, and this further reduces the need for heavy security.

(a) 1: 1:1 relationships in a small range ¡100m.

(b) 2: 1:1 relationships in a large range ¡10km.

(c) 3: M:N relationships in a medium to large range ¡1000 nodes.

(d) 4: M:N relationships in a global range and unlimited nodes.

5.5.2 Energy consumption factors

This set considers the frequencies of content processing, security strength and sensitivity of

environment content. As a rule of thumb, the more ephemeral the data, the less heavy the

protection need be - but TLS contradicts this by applying top security for all transactions.

1. Frequency: How frequently is data processed?

Frequencies of data processing is rated 1-4, from lowest energy consumption to highest

respectively.

(a) 1: Weeks and months.

(b) 2: Days and weeks.

(c) 3: Hours and days.

(d) 4: Seconds and hours.

2. Security strength: What security strength will be applied, according to typical or

re-configured TLS?

This variable describes the symmetric, asymmetric, and Elliptic Curve Cryptography

(ECC), security tiers by currently acceptable strengths.

(a) 1: None.
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(b) 2: AES-128, RSA-3072, ECC-256, less strong and less costly.

(c) 3: AES-192, RSA-7680, ECC-384, quite strong and less costly.

(d) 4: AES-256, RSA-15,360, ECC-521, very strong but very costly.

3. Sensitivity: What is the intended exposure to the public?

This attribute describes the sensitivity of data against business impact, and should be

assessed on the assumption that data has been attained for malicious intent.

(a) 1: Designed to be public.

(b) 2: Not designed to be public, but of no consequence.

(c) 3: Designed to be private, and could be critical with other data.

(d) 4: Designed to be secret, and will be critical.

5.5.3 Privacy substitution factors

This set is intended to provide potential differences in energy consumption by re-configuring

typical TLS security functions to privacy functions wherever practically possible, without

jeopardising the safety of the domain. Low outcomes demonstrate little difference in energy

use, but attention should be paid to medium, high and critical results, where a large amount

of energy can be saved.

1. Encryption: How much strength reduction is possible?

This attribute represents energy savings based on reducing encryption key strengths. At

the time of writing, an AES-112 key is safe for 15 years, and AES-128 for considerably

longer [203]. In this instance AES-112 has been included as a factor for reduction, but

following good practice for longevity, AES-128 will be used for testing as the smaller

key throughout this research.

(a) 1: Reduce to bit-strength AES-112, RSA-2048, ECC-224.

(b) 2: Reduce to bit-strength AES-128, RSA-3072, ECC-256.

(c) 3: Reduce to bit-strength AES-192, RSA-7680, ECC-384.

(d) 4: None.

2. Privacy: How can computation be reduced by strength of privacy function?

With reference to section 5.4, presented below are the privacy functions used as lighter

alternatives to security functions as demonstrated in the tokenisation of PCI-DSS.

(a) 1: Data anonymised by removing attributes.

(b) 2: Plain text without privacy.

(c) 3: Data masking, substitution, or permutation.
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(d) 4: Pseudonymisation or tokenisation.

3. Computation time: How much computation could be reduced by changing frequency

of processing environment content?

This represents changes in data frequency, where attributes such as device

authentication can be extended given the permanent nature of device relationships.

This is a different scoring system to protection of data, where rather than short-lived

data being safer and cheaper, the reduction is placed on using it for longer periods of

time in order to process it less.

(a) 1: Weeks and months.

(b) 2: Days and weeks.

(c) 3: Hours and days.

(d) 4: Seconds and hours.

5.6 DPIA Comparison

Ideally scores of low will be shown throughout the re-configuration outcomes. Medium

outcomes are acceptable, high requires attention and critical equates to running the system

towards downtime given poor energy management.

Table 5.2 shows energy consumption using typical TLS:

Table 5.2: Typical TLS results.

Data Attribute Ref Security
Application

Energy
Consumption

Privacy
Substitution

Private keys 1 4 4 4

AES keys 2 4 4 4

HMAC-SHA keys 3 4 4 4

IV 4 3.33 3.50 3.50

Instruction code 5 3.33 3.50 3.50

Readings 6 3 3.25 3.25

MAC address 7 3 2.5 2.5

IP address 8 3 2.5 2.5

Digital signatures 9 4 3.25 3.25

Public keys 10 4 3.25 3.25

Average Score - 3.567 3.375 3.375

Severity - Critical High High
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5.6.1 Security application

With typical TLS, security application is what it is, and there is no flexibility - the data

is either sent using TLS and is under full protection, or no security is applied at all. As a

result, every result is under full protection. The values vary, as some data ranges from public

to secret, and the range of technologies can change such as MAC used for BLE. Range does

not make a difference when using TLS, because the assumption is a global scale network of

unlimited nodes. All scores return as high or critical.

5.6.2 Energy consumption

Critical scoring has been saved by the nature of the data, and not the actions of TLS. Readings

and MAC addresses owning public status lower the score of energy consumption, but it is

still a high score, and that means a short lifespan for battery or green-powered networks.

5.6.3 Privacy substitution

The keys could all be reduced to recomputing every few months to reflect the strength of AES.

Reducing the cipher to 112-bit would be beneficial; despite the preemptive warnings from

TLS that 112-bit will soon be inadequate, it is still safe for several years, the threat landscape

is so small without a browser or global access, and atypical communications protocols such

as BLE. In summary, TLS is very high in security and energy consumption, but also very

high in mitigation options given the ability to re-configure attributes.

Table 5.3 shows energy consumption using the re-configured attributes for the aquaponics

domain application:

Table 5.3: Re-configured TLS results.

Data Attribute Ref Security
Application

Energy
Consumption

Privacy
Substitution

Private keys 1 3 2.75 2.75

AES keys 2 3 2.75 2.75

HMAC-SHA keys 3 2.33 2.25 2.25

IV 4 2.33 2.25 2.25

Instruction code 5 2 2 2

Readings 6 1.33 1.25 1.25

MAC address 7 1 1 1

IP address 8 1 1 1

Digital signatures 9 1 1 1

Public keys 10 1 1 1

Average Score - 1.8 1.725 1.725

Severity - Critical High High
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5.6.4 Security application

The beauty of energy consumption, security and privacy by design is that the consumption

can be assessed before implementation. Here security application is the highest consumption

of energy because the keys require full CIA, and without it there would be full downtime.

However, the nature of other data has changed from full protection to optional privacy

(instruction code), and no confidentiality or privacy (readings). The range of device

communications has also changed from a presumption of global threat to a small network

less than 100m between pairs of devices.

5.6.5 Energy consumption

Severity scores requiring encryption are higher than others because encryption is

computationally expensive. The score is still an overall low, and leaves little room for

improvement.

5.6.6 Privacy substitution

The keys could all be substituted with forms of pseudonymisation or tokenisation, and with an

extended lifespan given the strength of AES. Reduction was not available for any attribute

since re-configuration indicated a value and sensitivity assessment pointing to the many

attributes not requiring full protection. This consistency is a good indication that security

and privacy by threat-base modelling offers benefits to the IoT environment.

In summary, the scores were low throughout, and there was little energy reduction ability

given the benefits offered by the framework earlier on, whereas TLS returned critical and

high, the IoT network returned low.



Chapter 6

Energy-Conscious Authentication

and Exchange

Discussions and results for research questions two and three are presented together here

because they both require an analysis of the energy consumptions of functions belonging

to two separate mechanisms, working together to fulfil the authenticity of two devices

and establish safe communications between them. Both mechanisms must be studied in a

measurable objective way, and within the limitations of the mbedtls library calls to address:

• How much could energy consumption be reduced during device authentication?

• How much could energy consumption be reduced during subsequent data exchange?

The aim of question two is to determine the lightest method of authentication available

to the ESP32, using the mbedtls library, without the support of X.509 certificates. The aim

of question three is to determine the most suitable method of data exchange available to the

application domain. The difference with this question is the intricate nature of incorporating

payload volume and selective functions according to the DPIA results for each type of data.

This is where the DPIA will also be tested for accuracy - how the predicted consumption

differences realise themselves in practice, between TLS and the novel solution.

The mbedtls library provides a C/C++ library based on the function available to TLS.

Fortunately, where TLS has strictly enforced the use of strengths and techniques deemed

safe, mbedtls allows many legacy functions such as shorter key strengths. This provides a

dimension of freedom unavailable when following regular TLS stipulations.

This chapter presents discussions surrounding challenges pertaining to typical TLS in IoT

application, including expectations of the domain, centralisation in regards to certificates,

and application-appropriate security. Related work is then presented in the contexts of

similar solutions including self-signed certificates, and certificate-less security. From these

discussions, attributes can be deduced to outline to goals of the re-configuration design.

Finally, following the testing methodology outlined in section 4.2, results are presented and

discussed to compare typical TLS against re-configuration.

90
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6.1 TLS Challenges

The successes of smart-farming rely heavily on IoT infrastructure. For sensors and actuators

to operate for a long period of time correctly and continuously, downtime and interruptions

have to be as close as possible to zero, and this is where security takes the stage. Security

infrastructure can be draining on energy resources and leave networks vulnerable to a single

point of failure, but security in general ensures reliable communications between pairs of

devices.

The issues pertaining to security are that of a ‘balancing act’ [204], where integration

is unattractive for two main reasons. Firstly, the value of security is not perceived until

loss [205], and so if the domain is considered to be of little value to attackers in general, or

beyond the chances of being targeted because they are considered ‘low impact’, then security

can be seen as adding costs without benefits. Secondly, the predefined ciphersuites available

to replicate the de facto security standard TLS, are tremendously draining on constrained

devices. For this reason security is considered a challenge [206], as TLS needs infrastructure,

energy and processing - three things that contradict the nature of constrained IoT devices

and networks.

TLS is strong and universally accessible to both constrained and traditional devices and

their protocols - but the energy consumption and centralisation are problems. Established

TLS security practice has revolved around firstly utilising a negotiation process known as a

‘handshake’, authentication to create a client and server relationship, and secondly, invoking

a secure session by which to exchange data secured by a symmetric key.

Here we consider how to address the issues surrounding TLS and PKI [207]. Such issues

include reducing the high energy consumption of TLS client and server authentication for

subsequent data exchange, and removing the central vulnerabilities of this model, whilst

providing security for any communications protocol the network will use. We consider the

problem background as three parts; expectations, centralisation, and application-appropriate

security.

6.1.1 Expectations

The biggest problem of securing constrained devices is the unrealistic expectations of what

a microcontroller should be able to process, compared with a perception of adequate

security. Now, since TLS traditionally secures machines supplied with constant power,

high-bandwidth telecoms and excellent processing capabilities, it has developed in parallel

with those provisions. However, it is more appropriate to compare microcontroller capabilities

with machines typical of the 90’s, and their applications to suit. Constrained devices are

equipped with the protocols and power supplies to support the operations of a smart-farm

environment - the ESP32 provides suitably small packet sizes and BLE to communicate them.

Therefore security considerations should not limit choices between a power and processing

trade-off, but how TLS can be adapted to function effectively within an environment reflecting

‘obsolete technologies’ [208].
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6.1.2 Centralisation

TLS employs X.509 certificates to bind keys with identities. The management of these

certificates in undertaken by a Public Key Infrastructure (PKI), typically consisting of

five parts: Certificate Authority (CA), to store and issue X.509 certificates; Registration

Authority (RA), to verify entity identity; a central directory to securely store and index

keys; a management system for access and distribution; and a certificate policy to state

procedures and rules. This is a cumbersome and delicate series of operations criticised

for codependency and vulnerabilities due to the centralised data stores [91]. PKI is also

storage-intensive, populating lists for both current and revoked data, causing a scalability

issue for IoT. Certificates are available to view by visitors within the browser, however,

revoked certificates have been displayed as current in some browsers, and have been identified

as a security flaw [92] - further disproving the value of the X.509 system. Key escrow for

certificates also undermines privacy [93], and has been described as placing “keys under

doormats” [94]. Official bodies are granted access to TLS communications for law enforcement

using PKI facilities [95], with escrow hosted on servers and retaining key ownership. Although

it is possible to operate TLS without certificates [96], there is no alternative fulfilment for

verifying the identity of the server by which you, as the client, are contacting - and therefore

without employing TLS there is no assurance of security.

In summary, even with the heavy implementation and energy consumptions of encryption

for privacy, there are still privacy issues present. In the case of IoT applications where the

majority of data readings are benign, unnecessary protection need not be applied, and greater

savings can be made.

6.1.3 Application-Appropriate Security

Applying TLS to any protocol comes with the same caveats as traditional internet regulations.

Although DTLS [209], MQTTS [210], BLE-TLS [211], and µTLS [212], are lightweight IoT

applications, the restrictive and impractical stipulations are still the same. In addition to

the X.509 infrastructure, this includes expensive privacy enforcement, and a library for

each protocol. Confidentiality, integrity and message payload authentication are enforced

by the secure channel TLS creates between the client and server. In many ways, this is

positive. Confidentiality guards against eavesdropping, integrity ensures non-tampering, and

authentication proves the message is from the intended origin - but privacy is not always

necessary. Using TLS for any protocol has this same issue. Following authentication, TLS

uses a shared symmetric key to encrypt and decrypt data transferred between the two devices.

This key is used by a cipher, most commonly the Advanced Encryption Standard (AES),

enforcing unnecessary protection over insensitive data.

In addition, even the smallest recommended AES key strength, 128-bits, cannot currently

be broken in less than around a million years. A final thought towards the threat landscape of

the application is use of protocols for communications between the edge devices and the server

or central gateway [213] - beyond the 100 metre range of BLE, it is inaccessible. Compared
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against the global accessibility of traditional internet communications, the risk likelihood is

very low. For a decentralised or even distributed heterogeneous network of IoT devices, a

scheme providing a 1:M, or M:N relationship between devices and their respective keys [214],

would have been ideal. However, the mbedtls library native to the ESP32 does not currently

provide such freedom, and so we must proceed this study with cryptographic primitives based

on a 1:1 client-server relationship.

6.2 Related Work

Self-signed certificates and certificate-less security are considered as related work, where they

enable the elimination of a central PKI.

6.2.1 Self-Signed Certificates

There are two ways by which to authenticate the client and server devices in the TLS

connection using X.509 certificates. The first and most traditional way is to send the device’s

Public-key and a Certificate Signing Request (CSR), to a trusted CA, and the second is for

the client (ESP32), to act as a CA by generating a root certificate itself and signing it using

a Digital Signature Algorithm (DSA); providing verifiable ownership and thus, authenticity.

Self-signed certificates have not typically been effective on browsers, since they come with a

warning sign that the certificate cannot be trusted due to potential interception between client

and server. However, the IoT application will not use a browser for aquaponics readings, and

all edge devices will have a trusting relationship with the server since they are part of the

same smart-farm. This is very different from interrogating an unknown web server possibly

on the other side of the world. Using self-signed certificates, and the DSA, removes many

problems of centralised TLS and PKI security.

6.2.2 Certificate-Less Security

On the note of using self-signed certificates, certificate-less key escrow schemes [215], have

demonstrated good operation in IoT using the DSA included in the certificate, but with a

partial private key to perform the signature. This model is positive towards an alternative

solution for TLS, since the devices are capable of creating key pairs and signatures locally, thus

enabling the edge devices to accept responsibility for all secure data exchanges. Outsourcing

cryptographic processing to edge devices contributes towards scalability, robustness, and

decentralisation, with the additional benefit of energy efficiency - the ESP32 hosts dedicated

hardware acceleration for four cryptography functions.

Blockchain has demonstrated success in numerous decentralised security applications

including cryptocurrencies [216; 217], and IoT [218; 219]. Blockchain is a type of Distributed

Ledger Technology (DLT), comparable with a simple bookkeeping ledger where the weighting

of profit and expenses is agreed between two parties, and the verification then becomes a block

of data added to an ever increasing chain [220]. Applications have been scalable and robust
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alternatives to the centralised PKI, used in industrial processes [221], farming marketplaces

[222] and harvesting [223]. There are two obvious problems with blockchain. Firstly the

use of dedicated nodes to hold the smart contracts or consensus mechanism [224], and the

full chain [225] - and secondly the continuous mining of the chain for verified transactions,

as this quickly exhausts battery life [226; 227], creates complexity, and subsequent security

issues [228]. The chain could be stored on the single Pi server, but that creates a similar type

of vulnerability to PKI unless there were backup chains beyond the network, or additional

nodes.

6.3 Design Attributes

Design attributes are goals which will ideally transform into novel contributions. The aim of

this section of research is to reconfigure the use of TLS for a more domain-suitable security

application:

1. Privacy: Protecting private data whilst allowing selectivity of privacy for insensitive

data.

2. Certificate infrastructure: Removing X.509 certificates and their structure, without

detriment to security.

3. Session timeout: Extending persistent secure channels between entities to reduce

energy use.

4. Individual protocol security: Removing protocol-specific security infrastructure.

5. Energy consumption: Reducing time and power used in authentication and data

exchange.

6. Edge processing: By distributing the processing, the network will be scalable and

robust.

7. IoT-appropriate ciphersuites: Selective configuration of CIA attributes for energy

benefits.

8. Additional keys: Additional session keys for separate use of integrity and authenticity.

6.4 Experimental Results and Discussion

This section will prove or disprove the effectiveness of the new configurations by comparing

the results of the experiments against regular TLS implementation.
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6.4.1 Authentication Results: Key Pair Generation, Sign and Verify

Repetitions of 100 loops per task were performed to eradicate errors of single units, but

produce results within a reasonable time - loops of 1000 proved too high an expectation

of the ESP32, particularly in RSA - causing the ‘guru meditation’ [229], or stack overflow

error (despite disabling the WDT), so all experiments undertook 100 loops to give a fair test.

As with entropy assessments, the curves requiring more entropy (bigger key strengths), and

iterations of small loops of 10, took considerable time.

Table 6.1: 1a) RSA key pair generation, sign and verify

RSA Key Bit-Strength 2048 3072 4096 7680 15,360

Joules 1.390 4.664 11.532 113.350 Error

Millijoules (mJ) 1390 4664 11,532 113,350 Error

Table 6.2: 1b) ECDSA key pair generation, sign and verify

ECDSA curve SECP224R1 SECP256R1 SECP384R1

Joules 0.160 0.231 0.316

Millijoules (mJ) 160 231 316

ECDSA curve SECP521R1 SECP224K1 SECP256K1

Joules 0.526 0.246 0.285

Millijoules (mJ) 526 246 285

ECDSA curve BP256R1 BP384R1 BP512R1

Joules 2.557 4.811 9.769

Millijoules (mJ) 2557 4811 9769

ECDSA curve Curve448 Curve25519 -

Joules Error 0.057 -

Millijoules (mJ) Error 57 -

RSA demonstrated a phenomenal difference compared with ECDSA - the lightest RSA

energy consumption was around 24 times that of elliptic curve mutual authentication,

despite the dedicated RSA hardware. It was therefore pointless to continue testing RSA

in conjunction with asymmetric key exchange. Curve 448 demonstrated no entropy at all,

repeated the same key many times, and so was considered an error in the library.

6.4.2 Authentication Results: Key Exchange

For one key (typical TLS), and three keys (re-configured TLS).

PKC employing RSA consumed around five times more energy than the elliptic curve

mutual authentication model (Table 6.4).
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Table 6.3: 2a) RSA-PKC key exchange

RSA-PKC RSA in 2048-bit strength PKC
with ECDSA for AES 128-bit
key

RSA in 2048-bit strength PKC
with ECDSA for three keys

Joules 1.450 1.622

Millijoules (mJ) 1450 1622

Table 6.4: 2b) ECDHE key exchange

ECDHE ECDHE in Curve 25519 with
ECDSA for AES 128-bit key

ECDHE in Curve 25519 for
three keys

Joules 0.283 0.284

Millijoules (mJ) 283 284

6.4.3 Data Exchange Results: Integrity and Message Authentication

Functions

CIA functions were run in iterations of 10,000 loops.

Table 6.5: 3a) HMAC 64 bytes payload, and 3b) HMAC 512 bytes payload

HMAC-SHA224 64 bytes plaintext 512 bytes plaintext

Joules 0.023 0.063

Millijoules (mJ) 23 63

HMAC-SHA256 64 bytes plaintext 512 bytes plaintext

Joules 0.014 0.025

Millijoules (mJ) 14 25

HMAC-SHA384 64 bytes plaintext 512 bytes plaintext

Joules 0.016 0.026

Millijoules (mJ) 16 26

HMAC-SHA512 64 bytes plaintext 512 bytes plaintext

Joules 0.016 0.026

Millijoules (mJ) 16 26

6.4.4 Data Exchange Results: Full CIA by AEAD and Collective

Components

With reference to Table 6.6.

6.4.5 Data Exchange Comparison

From server to client, Table 6.7. From client to server, Table 6.8.
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Table 6.6: 4a) AES128 64 bytes payload, and 4b) AES128 512 bytes payload

AES128-GCM 64 bytes plaintext 512 bytes plaintext

Joules 0.0281 1.352

Millijoules (mJ) 28 135

AES128-CBC-HMAC-SHA256 64 bytes plaintext 512 bytes plaintext

Joules 0.019 0.043

Millijoules (mJ) 19 43

AES128-CTR-HMAC-SHA256 64 bytes plaintext 512 bytes plaintext

Joules 0.019 0.055

Millijoules (mJ) 19 55

AES128-CFB8-HMAC-SHA256 64 bytes plaintext 64 bytes plaintext

Joules 0.047 1.212

Millijoules (mJ) 47 121

AES128-CFB128-HMAC-SHA256 64 bytes plaintext 64 bytes plaintext

Joules 0.019 0.055

Millijoules (mJ) 19 55

Table 6.7: 5a) From server to client

Reading length in
character bytes

AES128 in GCM mode
(mJ)

AES128 in full CCM (mJ)

16 0.022 0.022

64 0.038 0.022

128 0.058 0.023

256 0.099 0.023
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Selective components, excluding privacy, typical of the re-configuration.

GCM mode, encouraged in TLS, used energy at an increased rate when compared to

CCM (Table 6.8). At smaller data exchanges, GCM was in fact much lighter - but short

exchanges represent readings to the aquaponics systems (as opposed to instructional code,

and therefore full protection was not required anyway - so the saving was irrelevant.

Table 6.8: 5b) From client to server

Reading length in character bytes AES128 in CCM without privacy (mJ)

16 0.019

64 0.021

128 0.021

256 0.023

6.4.6 Energy Consumption Comparison Over 24-hours in Authentication

and Data Exchange

Table 6.9: 6a) Readings (of 16 Characters) and 6b) Instructions (of 512 characters),
Comparing typical TLS and the re-configuration (Total Energy Consumptions over a 24-hour
period in Millijoules mJ)

Payload
characters

ECDHE in
Curve 25519
with ECDSA
for AES 128-bit
key with
readings sent
in GCM

ECDHE in
Curve 25519
with ECDSA
for AES 128-bit
key with
readings sent
in CCM

ECDHE in
Curve 25519
for three keys
and readings
including
privacy, Pi
to ESP32

ECDHE in
Curve 25519
for three keys
and readings
excluding
privacy, ESP32
to Pi

16 7075.56 7075.488 284.488 284.473

512 7077.463 7075.448 284.448 284.42

GCM and CCM employed by TLS show such a drastic difference because of the full

authentication process undertaken on every reading compared with selective AEAD (Table

6.8). If one reading is sent every hour, and each reading requires device authentication before

it can exchange data, the process is going to show the energy consumption of authentication

24 times. With the re-configuration, the authentication process is undertaken every 24 hours.

Between full protection and removing privacy within the re-configuration, there is a difference

of 0.015 millijoules. This does not sound much - it is around 5.475 millijoules a year. However,

comparing the GCM of TLS over a year, at 2,582,579 millijoules, against not using privacy

on the basis of this re-configuration, at 103,832 millijoules a year, this shows a decrease of

annual usage by around 96% (Table 6.7 and Table 6.8).
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A similar situation applies to instruction set sizes, at 256 bytes. Over a year, following

this example, typical TLS using GCM mode shows an energy consumption of 2,583,274

millijoules, and the re-configuration gives a consumption of 103,813. In this scenario, the

re-configuration also illustrates a saving of 96%. If authentication was undertaken every

week or month compared to TLS authenticating every hour, this would increase to 100’s,

and 1,000’s of percent in energy consumption saving - potentially changing the feasibility of

security as part of a very constrained project.

6.5 Contributions

The security objectives have been transformed into the following contributions:

6.5.1 Privacy

Protecting private data whilst allowing selectivity of privacy for insensitive data. Where TLS

employs PKI, key escrow allows the unauthorised browsing of data exchanges by authorities

who wish to view it, such as the government. This may not be preferable as the ‘snoopers

charter’ created quite a disturbance [230]. In contrast, benign data such as temperature

and pH levels which need not be protected are under confidentiality enforcement as part

of the TLS ciphersuite model. To rectify this unsuitability for the aquaponics setup, the

re-configuration contained no key escrow, and proposed the separation of security attributes

at the authentication stage to permit subsequent selectivity. As a result, insensitive data will

not use unnecessary battery power, and unauthorised observers will be disallowed as part of

the decentralised model made possible by edge device processing.

6.5.2 Certificates

Removing X.509 certificates and their structure, without detriment to security. Removing

certificates from the infrastructure enables authentication to operate without a centralised

architecture. This is both more robust than having a single point of failure, and more

scalable. As with certificate-less schemes, signing and verification can be used for proving

origin without the full certificate. Asymmetric ECC cryptography was used for sign and

verify functions, utilising ECDSA as an effective replacement for a full X.509.

6.5.3 Session Time-Out

Extending persistent secure channels between entities to reduce energy use. Since 2015,

NIST has recommended an RSA key size of 2048-bit size, or the ECC equivalent of 224-bit

[231]. At the time of writing, an RSA key of this size, or the equivalent ECC key, would

take an estimated 300 trillion years to break by a classical computer, and in around eight

hours using a quantum computer. Quantum computers are not expected for a few years,

and even when commonplace, re-authenticating every eight hours rather than every few

minutes would be advantageous to the smart-farm re-configuration. In addition, utilising a
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protocol that did not allow world-wide access such as the internet would further reduce the

threat landscape. The results concluded that by using the ECC Curve 25519 rather than

its RSA 3072 equivalent, that key generation, sign and verify functions alone can show the

ECC as a 98.7% saving. Applied to authentication once every 24 hours rather than once a

reading, these energy savings demonstrate a 96% difference when compared against modern

TLS recommendations. Particularly with the persistent client and server relationships of the

smart farm, resetting device authentication over periods of days, weeks or even months has

proven to show 100s or 1,000s of percent.

6.5.4 Individual Protocol Security

Remove protocol-specific security infrastructure. The ESP32 has demonstrated its abilities to

process cryptographic primitives and protocols very effectively on-board, and so security can

be distributed to the edge devices within the smart-farm application. Apart from the benefits

of a decentralised model, it also negates the need to employ TLS ciphersuites - and therefore

the rules of ciphersuites can be ignored. BLE, LoRaWAN, MQTT, and any number of other

protocols can be secured by payload, and also selectively. The re-configuration encourages

selective privacy by separating AEAD functions available to the mbedtls library, enabling

further energy consumption reductions on any protocol, without a library for each.

6.5.5 Energy Consumption

Reducing time and power used in authentication and data exchange. By testing all the

adequately secure ECC and RSA key sizes, the results have shown that Curve 25519 in

application of ECDHE, is the lightest available authentication process available to the ESP32.

In addition, providing three session keys during authentication instead of the traditional AES

key alone can provide enormous energy savings, which can be critical for smart-farm lifespan

when relying on constrained devices.

6.5.6 Edge Processing

By distributing the processing, the network will be scalable and robust. Distributed

processing from a central governance, or the hub, to the ESP32 enables a scalability for

a larger network without latency or ‘build up’ on system operations. By placing the

responsibility of security onto each respective device joining the network, the recipient hub

device need only keep a ‘keyring’ of short and symmetric keys required for its own cluster.

In addition, each cluster is limited by the range of its protocol, probably BLE - limiting the

number of symmetric keys required.

6.5.7 IoT-Appropriate Ciphersuites

Selective configuration of CIA attributes for energy benefits. By removing the enforcement

and complexity of the AEAD TLS requirement, particularly in GCM mode, the data
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exchanges can be relieved of unnecessary protection levels and lower the use of energy

enormously. Judging by the figurative projections of the energy assessments, smart systems

battery lifespan could be increased by months or years.

6.5.8 Additional Keys

Additional session keys for separate use of integrity and authenticity. In order to harden

the CIA attributes, additional keys for IV and HMAC provided a tougher CBC mode in

addition to selective privacy enabled by removing encryption, most regularly in readings.

The figurative differences by payload length justified the issuing of additional keys at session

invocation following the handshake, for a security system with more granular and efficient

security than TLS.



Chapter 7

Energy-Conscious Consensus

Mechanism

Research question four considers the design of a granular authorisation mechanism for the

application on a decentralised network topology. It is to be in addition to the TLS function,

which provides a default and binary ’in-or-out’ approach to network access, based on the

possession of a network key. The aim of such a solution is to avoid centralised governance,

and as such, traditional access control methods utilising roles or rules are inappropriate.

Therefore, the solution to research question four presents a consensus mechanism based on

hierarchy and ephemeral roles for each cluster of devices, with a limited data chain repeated

on each node in the cluster. The design is model-checked under formal verification and

ascertained as safe.

• Can a lightweight, self-healing consensus mechanism, be proven to be safe?

The aim of this question is to consider how a lightweight authorisation mechanism,

based on a distributed or decentralised network may provide a scalable and robust solution.

The solution proposed features a novel consensus mechanism for access control in networks

populated by constrained devices. The research explores existing mechanisms in the

distributed technology blockchain, whilst limiting the scalability issues associated within

distributed and duplicated data in Distributed Ledger Technologies (DLT) - particularly

challenging for constrained devices such as the ESP32.

Security is a fundamental requirement to assert business continuity [232], and generally

the interpretation of security refers to authentication between devices, and the subsequent

secure channel for messaging following authentication. However, default authorisation

generally allows any device onto a network given the correct password. This approach

is relatively black-listing; participants are generally welcome if they have basic entry

requirements.

Basic network entry requirements, such as a password, can be provided by any node or

living subject with such knowledge, and this opens up the threat landscape enormously, such

102
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as to malicious bots [233]. Malicious bots permit the large-scale interference of decision

making by targeted algorithms or network seizure. Perhaps a tiered method of device

authorisation would be where participants are generally unwelcome onto the network if they

have basic entry requirements, and required to undertake further interrogation. This is more

comparable to white-listing than it is black-listing.

DLT, [234], such as blockchain, present valuable methods of decentralised data exchanges

between multiple nodes [235], based on consensus between groups of nodes rather than

individual subjects or devices. When consensus is reached, data will be accepted as part

of a block and placed on the chain, accumulating as recorded transactions. Although

accumulating data is not ideal for resource-constrained applications, the consensus mechanism

is helpful for granular and autonomous authorisation; nodes run by policy can therefore govern

and self-heal a network beginning with, but not limited to, network passwords.

We therefore propose a hierarchy-based authorisation model in which a consensus

mechanism allows a predefined, limited number of devices, based on rank and network

privilege, and unlimited devices without such privileges. Data chains are to be ephemeral

and limited, based on clustering of those within range of lightweight protocols such as BLE

[236], towards a decentralised model, as opposed to a distributed model. This hybrid security

mechanism also aims to be agnostic, protecting heterogeneous messages and devices described

as challenging [237], in a range of applications.

We proceed with the challenges surrounding the application domain with regards to

authorisation systems, followed by a summary of the research aims. We then consider related

works to influence a suitable authorisation solution, and how this solution would address the

research aims and domain challenges. Finally we produce formal testing results using an

automated tool set.

7.1 Authorisation Mechanism Challenges

The heterogeneous nature of IoT networks presents three concepts difficult to cater for:

constrained power and processing in devices; traditional applications; and the challenges of

heterogeneity.

7.1.1 IoT Constraint in Scalable Authorisation

When IoT devices are to be networked, the challenge is, as with authentication and data

exchange, with power, processing, and storage [238]. Traditionally, when a network is built,

there is a central server surrounded by nodes which rely on that server for decisions pertaining

to data access - who can access and change the states of what data, when, and why. Such

a system is referred to as Access Control (AC), a series of roles and rules, depicting read,

write and execute privileges amongst data objects [239]. This central server is generally

responsible for storing a lot of functional data that the nodes relay to it, and an IoT network

is only different in the sense that it is designed to be autonomous, whereas typical computer

networks have users at the end of them. There are further ideologies that can alter the way



CHAPTER 7. ENERGY-CONSCIOUS CONSENSUS MECHANISM 104

of things with IoT [240], setting it apart from a traditional network. Firstly, they can be

independent of the internet because of low-powered protocols such as BLE, LoRaWAN, and

MQTT [241]. This provides for off-grid placements of devices, beyond the range of regular

WiFi reception - BLE has a range of around 100 metres, and much more than that when

meshed. Meshing and autonomy promotes scalability, but discourages the use of a single

server due to range, data growth, and a central point of vulnerability. Some topologies

operate in clusters of devices with a central node of their own, working in small numbers

of in-range devices to take advantage of the low-energy protocols and data distribution.

There is also the more recent development of DLT, such as blockchains [242], hashgraphs

[243], and Directed Acyclic Graphs (DAG) [244], which verify and store transaction data

based on consensus mechanisms and smart-contracts. DLT are very robust because they are

distributed, but the data duplication creates scalability issues and this would rapidly become

the downfall of devices with such limited storage facilities as microcontrollers.

7.1.2 Traditional Applications

Most mature AC systems are based on roles or rules, and utilise Access Control Lists

(ACL), and are not dissimilar from Relational Database Management System (RDBMS) [146],

mapping usernames to privilege levels throughout known sets of data. ACLs present a few

problems to the IoT network. Firstly they are central, and have to be kept somewhere that can

be accessed by every node or microcontroller, then there’s the requirement to know all the data

available, and somehow map it to people or devices that will read, write, or execute it - even

during the 1990’s before the big data we process now, this was becoming an issue. Relational

data management is difficult with IoT since it restricts autonomy, and becomes increasingly

complex as new developments are integrated. Finally there’s the duplication of data - for

example if this list covers all possible relationships (for which some M:N relationships will

require additional tables for normalisation) [147], this is a big expectation for limited storage

space. We consider other, mature AC systems:

• DACS: [148], Distributed Access Control System, are rule-based, and operate on the

identity of user credentials within the organisation. This type of account setup would

apply to every microcontroller in a network, taking time and resources for what should

be an automated, preferably self-healing, relatively generic node.

• DAC: [245], Discretionary Access Control, is also rule-based, and assigns access rights

based on rules specified by users, utilising ACLs and capability tables - rows with

subjects, and columns with objects.

• MAC: [150], Mandatory Access Control, is considered the most strict of authorisation

systems, and uses hierarchy to apply granular levels of access within a varying number of

tiers, or ‘security labels’ in tiers such as classified, secret or top secret. The MAC system

also permits access on a ‘need to know basis’, reminiscent of the GDPR’s ‘necessary

processing’, and thus pertinent to the topic of privacy. MAC maps user accounts and
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credentials to security levels and departments using ACLs, and is notoriously inflexible

regardless of conditions or emergency.

• RBAC: [246], Role-Based Access Control, operates on roles, rather than individual

user accounts, using the ‘least privilege’ possible for the operative to fulfil the job,

similar to MAC but not as strict.

• PBAC / ABAC: [247], Policy, or Attribute-Based Access Control, is whereby access

rights are granted using policies to combine resource, user, object or environment

attributes. This is a Boolean-centric model using ‘if’ and ‘then’ statements about

who the request is made by, the action they request and for what resource. This model

does not use pre-defined roles or lists.

Other applications include capability certificates provided by policy engines and

ECC-based authorisation certificates [153], but utilising certificates requires some form of

authority by which to negotiate terms such as signatures, origin, roots and leaves - a problem

similar to ACLs and centralisation. Similarly, keys have been used to update access and

permit certain users - but a centralised system must also be employed to generate and monitor

fair usage [154]. [155] presented a hierarchical authorisation system in which users of similar

privilege levels are placed in the same group. This type of trust-organised placement perhaps

makes more sense in IoT, where greater trust correlates to older, probably original devices.

7.1.3 Challenges of Heterogeneity

The essence of IoT heterogeneity pertains to the differences between communications and

capabilities of components belonging to the same network - a big challenge in the IoT

domain is resolving relationships between devices, and adjusting our expectations [248].

End users’ expectations of handheld and desktop devices, service provision and volume of

content delivery have increased as the capacity of such have developed in parallel - but IoT

development contradicts that model. IoT presents constrained power, processing and storage,

and so opposes ‘big data’. In many ways this is positive - moving away from a data deluge,

away from servers, hardware storage and energy consumption are very environmentally

beneficial, and may work towards changing our expectations of technology improvements

towards a ‘greener IoT [249].

With communications protocols such as Bluetooth Low Energy (BLE), Long-Range

Wireless Area Network (LoRaWAN), Message Queuing Telemetry Transport (MQTT),

Zigbee and numerous other examples, IoT protocols are designed to match the capabilities of

the boards to which they are native. This is very helpful, since microcontrollers supporting

BLE, LoRaWAN etc, are designed with those small packet sizes in mind - sensor readings and

actuation code to change the environment around us in any application - domestic, industrial,

agricultural and so forth. The caveat comes in when implementing security [250; 251].

TLS, has been the de facto standard for decades, but despite its widespread application,

little has been covered in the dimension of authorisation. TLS is strong, and promotes
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public-key cryptography over applications in banking, e-commerce, ATMs, chip-and-pin

in a series of exclusive 1:1 relationships. Perhaps this is why such little emphasis has

been placed on AC. At first glance, the principles underpinning TLS practice would be

most suitable for an AC system, considering the persistent 1:1 relationships between edge

devices supporting aquaponics systems and the data hub - because those same functions,

in some way, will support the message and authentication, without additional AC keys,

identifiers and other cryptography implementation. However, adjustments must be made for a

successful transformation over the state of TLS in a form required for potentially autonomous

white-listing of new aquaponics systems. The demands of a larger setup with ideally little

human interaction is large, and so although in essence we wish to retain the 1:1 mechanism

of TLS in concept, the application must be quite different to the rigidity of traditional AC.

7.2 Related Work

This section considers literature that will influence the design. Considerations include privacy

and security in the context of authorisation, appropriate applications based on topology, and

the most popular consensus mechanisms.

7.2.1 Privacy and Security in the Context of Authorisation

Access control and authentication are two main challenges in security and privacy

requiring an immediate solution in the heterogeneous environment of IoT [143], proposed

a capability-based authorisation model in which a token provides trust and a session key is

produced to authenticate using Elliptic Curve Cryptography (ECC).

Tokenisation has been introduced as ephemeral data for cryptocurrency transactions

alongside various key exchange systems such as Diffie Hellman, RSA and the lighter ECC.

Whereas tokens are not strictly cryptographic functions and are typically referred to as

advanced pseudonymisation as a privacy function [144], they do limit the spread of data

beyond a “need to know” basis, a fundamental concept of the GDPR [145]. Wherever possible

in a constrained network, minimising the processing requirements of securitisation is beneficial

- for power, time and subsequent carbon consumptions. As a result, privacy functions are

preferable if they so address the minimal necessary processing data for a given task - and this

leads naturally to hash functions [252], tokens [253], ephemeral chains [254], and minimising

the use of multiple identifiers, such as using keys as identifiers. However, a network must

still be secure, and this is where the use of keys is required at some point - either asymmetric

or symmetric key exchange is used to encrypt data to a standard of security that cannot be

guaranteed by privacy functions [255].

7.2.2 Network topology-appropriate authorisation

Centralisation pertains to governance and processing using a central authority, usually for

encryption key escrow, device identifiers, intrusion detection, and review and approval of
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new network devices. Organisations have typically used centralised services to provide X.509

certificates for banking and shopping gateways, and this has been a safe approach for a

number of years - appropriate for servers that operate from a single or small number of

locations. Centralised infrastructures are however, energy inefficient, usually rely on internet

connectivity, must be active and online in order to be used, and are rendered vulnerable by

a single point of failure [90].

DLTs, have demonstrated robust and accessible networking for cryptocurrencies [156],

data storage [157], asset tokenisation [158], and e-commerce [159]. Although DLTs are

generally constructed in graph and blockchain form, they all accumulate data to be

operational - and this inevitably requires more storage and energy to operate. Decentralised

architectures introduce a hybrid design, in which there is no single point of failure, but a

defined group of devices either shares the same data, or relies on its own central device. A

decentralised infrastructure can be spread over a long range using any number of technologies

with communicating central nodes being elected by voting systems using reputation, such

as with P2P ranking such as for file sharing online [160]. A decentralised topology with

limited device numbers in groups of nodes, and replicated, ephemeral chains operating on a

lightweight consensus mechanism would provide a suitable hybrid topology for a constrained

IoT network such as the aquaponics smart-farm.

7.2.3 Consensus Mechanisms

Consensus mechanisms are fault-tolerant processes used to achieve necessary agreement from

a group for a single data transaction. The consent of multiple nodes then gives the permission

for that transaction to reside as part of a data block on the chain. Below are examples of

popular mechanisms:

• Proof of Work (PoW): [256], requires members of the network to solve mathematical

puzzles to prevent anybody from occupying the system, is known as mining, and widely

used in cryptocurrencies to prevent attacks such as 51% - but PoW is energy-intensive.

• Proof of Stake (PoS): [257], selects transaction validators based on proportion of

ownership on the chain compared to other members, and although does not use extreme

amounts of energy like PoW, it is criticised for ‘blockchain oligarchy’, and as such is

vulnerable to the 51% attack.

• Proof of Elapsed Time (PoET): [119], where users wait a random period of time

and the first to finish waiting attains leadership of the new block. PoET uses trusted

code with trusted, known users on a permissioned, or non-anonymous, network.

• Practical Byzantine Fault Tolerance (PBFT): [258], is based on the Byzantine

Fault Tolerance algorithm in the late 1990’s; a scenario in which General’s gather around

an enemy city and must communicate without interception. They gather around the

city and send one message a time through a messenger, relying on cooperation and

coordination, ignoring unauthorised influence.
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• Proof of Importance (PoI): [259], introduced a rating system to combat the

‘oligarchy’ issue of PoS in which the rich become richer. The rating system requires

a minimum vested stake, a minimum transferred rate, a recent transaction bound by

time limit, and valid transaction partners identified as separate users. The algorithm

does not require complex computation, but rather a series of experience proofs to read

through quickly.

• Proof of Capacity (PoC): [260], uses the mining node’s hard-drive space to determine

the mining rights on the network. Considered an improvement on PoW, it takes 40% of

the time to produce a block by dedicating storage and processing before mining begins,

and removes the mining conflict of the same puzzles by allowing different ‘plot’ routes

for working through puzzles - so there is both hard drive plotting, and block mining.

• Proof of Authority (PoA): [261], uses identity as a stake for reputation-based

consensus, which means validators are not staking currency, but their reputation

instead. PoA blockchains are therefore secured by random validating nodes as

trustworthy entities. In supply chains and hierarchies, PoA is considered an effective

and reasonable solution.

• Proof of Location (PoL): [262], enables a device’s physical location coordinates to

be broadcast to the blockchain without relying on that particular device. Radio, GPS

and BLE-enabled devices can assess the physical location of nearby devices, but must

be encrypted for reliability.

Influences of ‘necessary processing’, privacy, decentralisation and minimal energy

consumptions through lightweight consensus mechanisms influenced a design that could be

later model-checked for secrecy.

7.3 Design and Model-Checking

With considerations of the problem and related work, the design proposes decentralisation,

low consumption security functions, privacy principles, autonomous policy-oriented

authorisation, and group consensus. This section presents the design model:

7.3.1 Decentralised

Decentralisation in preference to centralisation or full distribution. Ideally, the topology

should avoid duplication of the same data between all nodes, but allow duplication between

associated nodes. Decentralisation introduces robustness unavailable in centralisation, as

there is no central point of vulnerability, without the scalability issues of full distribution.

A decentralised topology of clustered devices is proposed, where clusters are arranged by

the BLE range of up to 50m (100m is the maximum range), and each cluster contains a series

of devices divided by rank and privilege:
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Table 7.1: Device Hierarchy

Rank Privileges Devices in
Cluster

Security

1 Field Marshal Read Write 1 Does not advertise MAC or
public key

2 General Read Write Execute 2 Does not advertise MAC,
advertises public key

3 Private Read-only Unlimited Actively advertises MAC and
public key

This is a simple but granular design, beneficial for cloud and data governance [263], and

requires three devices to operate properly; an active General, a passive FM for backup, and a

Private to join the network who will then become an authorised member and next in line for

promotion if a ranked device fails in the future. In a range of systems, the higher privileged

devices are few enough to be realistic, but robust enough to form a group consensus beyond

the powers of unranked, new, unproven devices. Generals may execute changes in privilege

levels to unranked devices which will then become Privates, and eventually a General or FM

if either experience downtime. The idea of a hierarchy is not to allow widespread privilege,

but minimise the privileges wherever possible so that the number of higher-privileged devices

remain intact, and the purpose of authorised devices in business continuity. Should the

system suffer a majority loss, assuming that at least a General or FM survives within BLE

network range, the whole authorisation system can self-heal.

Now, privilege levels are purposefully kept simple:

1. Field Marshals: the highest and most protected part of the rank. They can only be

accessed by a General or other FM, and do not have the power to grant authority. This

is to protect them from manipulation, since they are the highest in the chain. There is

only one FM in every cluster, but they can transcend clusters as backup for each other.

2. Generals: neither the top of the hierarchy, nor vulnerable to every potentially harmful

device. The ability to execute means they can grant the ’Private’ rank identity to new

cluster members, and so they require all permissions. There must be two Generals or

more in each cluster as they cannot transcend clusters and may have several Privates

to rank simultaneously. The term General is commonly used in cryptography literature

such as in the aforementioned ‘PBFT’, and is an active role.

3. Privates: the newest members of the cluster, in unlimited quantity and with read-only

privilege. They can be exposed to a threat landscape without risking the integrity of

the network structure. They can hold position as any aquaponics system and have

potential for promotion if either FM or a General suffers downtime.



CHAPTER 7. ENERGY-CONSCIOUS CONSENSUS MECHANISM 110

7.3.2 Low Consumptions

Since there are many ways of implementing security between nodes, such as keys and

certificates, this aim requires a consideration into the lightest application of security functions

available on the ESP32. The objective here is for the least infrastructure possible and fewest

messages between nodes for safe network access.

As the system continues in its daily life cycle, it will utilise the four functions hosted on

the ESP32 for authentication and message security. Although the authorisation system will

also use a selection of these functions, it will be a separate process than those required on a

daily basis. Authorisation is expected to be infrequent compared with the other processes,

and ideally without conflict of other security keys and sensor-actuator tasks.

The following functions are both native to the dedicated hardware of the ESP32, and

mostly used in other areas of the security design, which means they require little additional

energy:

• MAC: Media Access Card is the 12-digit BLE address given to identify each ESP32,

or each aquaponics system, in the aquaponics farm. The MAC address can be changed

to a meaningful label describing geographical location or crop type.

• Public key: used in asymmetric cryptography is order to encrypt a message intended

only for that recipient, so that no other devices can decrypt it.

• Private key: used as part of asymmetric cryptography for proving origin of the

message by providing a digital signature. This is important because for ascertaining

the source of a message and ensuring that it has not come from an intruder.

• Nonce: a value used oNly-Once, and important for ‘freshness’ between the node being

interrogated, and the node verifying the authenticity of the newcomer.

• Blacklist: the bank of declined public keys identifying attempted intrusions. This list

should be cluster-specific, ephemeral, and hosted by a General.

• Shadows: shares in a symmetric key between two or more ranked members. This is

to protect against granting authority without group consent.

• XOR: representing ‘exclusive or’, or the logical operation that is true only if its

arguments differ, so that one is true and the other is false. Used to create shadows

of shared secrets. Timestamps: allow the authorisation model to determine the most

appropriate replacement for lost entities by the length of time the others have served

the system for.

7.3.3 Private

Where the GDPR expresses the notion of ‘necessary processing’, the network should refuse

any request for data access beyond the minimum required for processing. Anonymisation,
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pseudonymisation and tokenisation are explored as lightweight alternatives to the heavier

and more complex security encryption ciphers for enforcing consent management and access

control [264].

Anonymisation is the process of removing personal identifiers that may lead to the

identification of an individual. Now, there are no named individuals in the authorisation

system, or the aquaponics smart-farm. However, it could be seen as wise, wherever possible, to

disguise the identity of higher-ranking devices able to grant authority as they will undoubtedly

attract attention. For this reason, in a cluster of several devices, the MAC addresses do

not broadcast BLE information to join the network - they do not actively operate GATT

server-client advertising. The ranked devices also pose as any other regular system, and they

cannot be communicated with by an unauthorised device. Pseudonymisation is to replace

any information which could be used to identify an individual, with a pseudonym. Again,

although there are no individuals in the application, pseudonymisation is a useful way of

quickly locating devices by their existing security and communications attributes. By using

the MAC address as a location and crop reference that will only make sense to the farm

operators, it provides an easy way of managing systems without creating additional data.

Tokenisation is an advanced form of pseudonymisation, whereby a meaningful piece of data

such as an account number is changed into a seemingly random number which has no value

if breached. Tokens are useful to safely send over public channels, disguising their true value.

In the authorisation design, tokens are used in the form of nonces for freshness to verify

authenticity on a single-use basis.

7.3.4 Autonomous

Self-healing and automated management in the authorisation tiers are the objective for

an IoT consensus mechanism capable of operating remotely. Policy or attribute-oriented

authorisation systems have demonstrated good functionality using ‘if’ and ‘or’ logic. Policies

can form the fundamentals of security models; write, execute permissions, replacing old

data with new, and providing workflow. There are mature and well-known security models

used in both military and civilian applications which focus on data confidentiality and

integrity. These models are mature and operate on effective simple rule sets making

them a suitable influence on IoT-oriented and constrained environments. Notably, these

models are Take-Grant [265], depicting transference of rights, Biba [266], for preservation of

data integrity, and Multi-Level Security (MLS) [267], providing classification. Take-Grant

represents a directed graph, in which vertices are either subjects or objects, and the edges

between them depict the rights towards the destination. There are two possible rights which

occur in every instance, take and grant, forming four rules; subject takes rights of an object,

subject grants own rights to another object, subject creates a new object, or subject removes

rights it has over an object. This model is utilised when promoting devices in the event

of a lost, existing one. The Biba integrity model is characterised by the phrase “read up,

write down”, and defines the rule that a subject of a given integrity level must not read data

at a lower integrity level, nor write to a higher one. This model influences the protection
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of higher-ranked devices against lower-ranked. MLS demonstrates processing data between

classifications of devices. Applied to the design ‘ranks’, and there is a hierarchy to prevent

users from obtaining access to data for which they lack authorisation. Now, self-protection

can be difficult to automate, and there are no strict guidelines on how to do this - so the design

has formed a three-tier proposal by which sets of ‘clustered’ devices have limited authority.

When one of those authoritarian devices falls, it is replaced by the most mature unranked

device. This concept aims to maintain a limited set of backup whilst employing, but not

trusting, any other - when group consensus has been obtained, of course.

7.3.5 Consensus

Group consent has been exercised in the field of cryptocurrency with enormous success.

The same processes for validation influence the design proposal, but preferably without the

cumulative data chains that accompany them. Attaining group consensus is far preferable

to multi-party authentication, since secret sharing using eXclusive-or (XOR) [268], functions

between a few devices uses considerably less energy consumption than escrow, particularly

the X.509 infrastructure, Zero Knowledge Succinct Non-Interactive Argument of Knowledge

(ZK-SNARKS) [269], or centralised trusted third parties such as Key Generation Centres

(KGC) [270].

Where data validation is concerned, mining should be discouraged. In many

cryptocurrency applications, mining exemplifies equality and robustness using the Proof of

Work (PoW) mechanism. However, a domain in which clusters are contained within finite

bounds of authority and geographic range, ownership is not such a concern, and Proof of

Stake (PoS), can provide a more suitable template. The great disadvantage associated with

PoS is ‘blockchain oligarchy’. Many other consensus mechanisms exist of course; Proof of

Elapsed Time (PoET), Practical Byzantine Fault Tolerance (PBFT), Proof of Importance

(PoI), Proof of Capacity (PoC), Proof of Authority (PoA), Proof of Experience (PoE), as

common examples. The objective of this exercise is to simplify and automate authorisation

towards the lowest consumptions in time, power and energy available to this specific IoT

application. This is possible by reducing processes, maths, and avoiding complex procedures

such as learning algorithms or reputations systems.

7.3.6 Authorisation life cycle (Figure 7.1)

Below is an overview of the authorisation algorithm. It describes any device joining the

network, from zero members to unlimited. From here, the integrity of the cluster will be

attested by the number of ranked devices being checked. If there are not enough ranked

devices at each of the three hierarchy tiers, the algorithm will automatically add them by

promotion to a rank as devices accumulate to the network. When the ranks are full, they

will remain in this state until clusters begin to realise beyond range, or when a device fails.
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Figure 7.1: Authorisation Life Cycle.

Table 7.2: Function Symbols

Ref Symbol Meaning

1 N Identifier of device N, annotates direction of message

2 Kn Public key of Device n, providing decryption for only device n

3 K−1
n Private key of device n, providing signature proving origin from device n

4 Nn Nonce from device n, showing freshness of value

5 SSID Service Set ID, the cluster network name

6 Kas Shared network key

6 Sn Secret shadow of device n, their part of the whole rank hash

7 ⊕ XOR function, eXclusive OR to create secret shadows

8 RH Rank Hash, the full combined rank secret from the collective shadows
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7.3.7 Function Symbols

1. Identifier of the device which a message is destined for, towards, or containing identifier

material for challenge-response of authenticity. This identifier could be a public key, a

signature or MAC address. It is not really important in practice what this data is, but

serves useful in the activity diagrams as to ascertain workflow.

2. Public key or the public key of the public and private key pair belonging to device n,

is the key designed to be in the public domain. All devices have a public key, but some

devices can be used to communicate with freely, and others have restrictions. This

is to prevent ranked devices from reading, writing, or executing commands provided

by untrusted guests on the network. This key is also used as an identifier, legible to

machines more than humans.

3. Private key of the public and private key pair belonging to device n, is the key used

for proving authenticity of messages sent from one device to another. Within the

activity diagrams, this key denotes a Digital Signature Algorithm (DSA), an algorithm

representing part of a device’s private key that proves a message has come from the

device it claims to have come from. This is an integrity-oriented piece of data to prevent

imposters from communicating with authorised members.

4. Nonce or a oNly-once, value sent from one device to another as part of a

challenge-response scenario. Now, when dealing with authentication or unique

messages, a nonce represents freshness; a random piece of data transferred within a

limited period of time that cannot be stored and replicated to falsely impersonate

during time to come. The nonce can be used once within a challenge-response scenario

to ascertain data freshness in addition to something less fresh, like a network shared

key.

5. SSID is the network identifier that operates alongside the shared network key. It

identifiers the cluster of aquaponics systems which new network members will need t

join within the BLE range.

6. Shared network key is the secret symmetric key used for new members to gain initial

access to the network before they can become Privates or promotion to General or FM.

7. Sn is the shadow of device n, or the part secret it holds as a member of a rank. The

secret shadows together form a Rank Hash (RH), a bitstring representing the complete

symmetric key to all the devices in a cluster of the same hierarchy position and cluster

when each shadow is XOR’d against the Random String (RS).

8. ⊕ eXclusive OR, or XOR function, used to create ciphertext from the Boolean logic of

1 or 0 input to create a different output in the same manner as a truth table.

9. RH or Rank Hash, is the shared symmetric key between all devices of a rank, accessible

only by a Field Marshal or upon cluster attestation when a single device temporarily
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acts as a central authority by which to request and compare the shadows of all others in

that cluster rank. In doing so the rank will either have a matching RH and be complete,

or it will not match, and a new device will reset the rank’s hash and shadows.

The three algorithms pertaining to the authorisation system are designed to provide

granularity on top of the TLS secure channel - to prevent against inside attacks, DDoS, and

to alert us of system downtime by an absent device or faulty cluster. The network topology

is decentralised, and operates as a series of clustered devices allocated by BLE range. Some

devices overlapping in range will be able to cross-communicate between clusters for backup

across the network.

With reference to the three-tier hierarchy:

1. Field Marshall (FM): Communicates with FM from any cluster and Generals from

his own.

2. General: Communicates with all parties from his cluster only.

3. Private: Communicates with any General belonging to his own cluster only.

7.3.8 Device authorisation

Device authorisation describes a process in which the newest device to join a cluster correlates

to lowest rank, or the least trustworthy.

1. Goals:

(a) Entity authentication: A believes B recently replied to a specific challenge.

(b) Secure key establishment: A has a key which A believes is suitable for

communication with B.

(c) Key confirmation: A has received evidence confirming that B knows K.

(d) Message authentication: A has received evidence that B has acted with timely

freshness.

(e) Secrecy: Freshness has been ascertained as secret.

2. Principles:

(a) Device A acts as General.

(b) Algorithms exemplify various ranks, where A stands for ‘AgentA’.

(c) The purpose of this exercise is not to replace TLS but to add granularity to it.

(d) The shared key is a network key and not the exclusive property of A and B.

(e) Since the shared key has multiple users, a N-once is employed for unique

authentication.
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3. Assumptions:

(a) The network key is unique to each cluster of aquaponics systems.

(b) Each device in a cluster represents a single aquaponics system.

(c) Network key is shared with devices intending to join a cluster, as with any normal

network.

(d) The network SSID and key are used in conjunction with a nonce to authenticate.

(e) The cluster key acts as a network key for the group of devices belonging to, or

expected to belong to, a cluster of aquaponics systems. These systems are bounded

by the range of a protocol suitable for the IoT application domain, probably BLE,

with a range of up to 100m.

4. Workflow and syntactics:

(a) Acting as General, A advertises for new cluster members periodically as per usual

BLE GATT stack, whilst broadcasting their public key.

A → B : Ka

(b) B responds to the GATT with the SSID and network key, B’s public key, signed

by B, and encrypted by A’s public key.

B → A : {{SSID, Kas, Kb}Kb-1}Ka

(c) The General, A, checks that the SSID and network key match the correct cluster

key in their possession and responds to B with a N-once as an OTP, encrypted

using B’s public key, and signed by A. If this OTP is not entered within a strict

time limit, B will be blacklisted by their public key for a period of time against

DDoS.

A → B : {{Na}Kb}Ka-1

(d) B receives the OTP and enters it into the tokenisation function to join the network

as a Private. This Private is now in a position to receive instructions from a

General.

B → A : {{Na}Ka}Kb-1

5. AVISPA + SPAN results for the goals of secrecy of SSID, and shared key

Kas



CHAPTER 7. ENERGY-CONSCIOUS CONSENSUS MECHANISM 117

(a) OFMC: summarised as safe under a bounded number of sessions.

(b) CL-ATSE: summarised as safe under bounded number of sessions and typed

model.

(c) SATMC: summary inconclusive.

(d) TA4SP: summarised as safe under typed model, over approximation and

unbounded number of sessions, no attack trace found.

6. AVISPA + SPAN results for the goals of secrecy and freshness of N-once

Na

(a) OFMC: summarised as safe under a bounded number of sessions.

(b) CL-ATSE: summarised as safe under bounded number of sessions and typed

model.

(c) SATMC: summary inconclusive.

(d) TA4SP: summarised as safe under typed model, over approximation and

unbounded number of sessions, no attack trace found.

7. ProVerif verification summary results for two scenarios:

(a) Query not attacker SSID is true, Query not attacker Kas is true: In

the first scenario, this confirms that the attacker cannot gain knowledge of either

SSID nor the shared symmetric key.

(b) Query not attacker Na is true: In the second scenario, this confirms that the

attacker cannot gain knowledge of the N-once Na bitstring.

7.3.9 Cluster integrity attestation

Cluster integrity attestation describes a process in which a General periodically checks a

cluster for all present and functioning devices. This is to prevent downtime of each aquaponics

system, represented by the completeness of all clustered devices. This is performed every time

a device joins the cluster, as the cluster will require a reset of known devices to include the

newest Private.

1. Goals:

(a) Entity authentication: A believes B .. N recently replied to a specific challenge.

(b) Key confirmation: A has received evidence confirming that B .. N knows

Shadows Sb .. Sn.

(c) Message authentication: A has received evidence that B .. N has acted with

timely freshness.
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(d) Secrecy: Freshness has been ascertained as secret, for each new Shadow and full

Rank Hash.

2. Principles:

(a) Device A is acting as General, and is an Authorised device.

(b) Devices B .. N stands for any device already authorised as FM, Generals, and

Privates.

(c) Devices B .. N will all have Shadows apart from the device which has just become

Authorised.

(d) Devices B .. N will all have Shadows if this attestation is a routine check only.

(e) The purpose of this exercise is to detect downtime or incompleteness.

(f) The Shadows add together to act as a Rank Hash demonstrating the known devices

of a cluster.

3. Assumptions:

(a) The Rank Hash is unique to each cluster.

(b) Each device in a cluster represents a single aquaponics system.

(c) The General has an existing RH of all Shadows to verify devices against previous

attestation.

4. Workflow and syntactics:

(a) Acting as General, A requests the Shadows of each device by broadcasting his

public key, SSID and network key, encrypted and signed, to all known devices

belonging to that cluster. Since the messages are broadcasted to each device in

the cluster, each message is encrypted by the public key of its respective recipient.

The number of messages broadcasted will therefore be the same as the number of

authorised devices, as the General will hold a ‘keyring’ of all cluster members.

A → B .. N : {{SSID, Ka, Kas}Kb .. n}Ka-1

(b) Devices B .. N respond to the challenge with their Shadows and public keys,

encrypted by the General’s public key and signed by their individual signature.

B .. N → A : {{Shb .. n, Kb .. n}Ka}Kb . . n-1

(c) The General checks all Shadows and public keys against the ones on his keyring,

and verifies that the sum of the Shadows matches the Rank Hash he holds by

XOr’ing the Shadows.
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A : SHa XOR SHb .. n = RH

(d) If this attestation is a routine check and all devices are correct and functioning, the

General stores the new Shadows on his keyring and the full Rank Hash. However,

if this attestation follows on from a new device joining the cluster or there’s a

missing device, we proceed to hierarchy promotion.

5. Results for the goals of secrecy of shadows Sb...Sn

(a) OFMC: summarised as safe under a bounded number of sessions.

(b) CL-ATSE: summarised as safe under bounded number of sessions and typed

model.

(c) SATMC: summarised as safe under strongly typed model, bounded number of

sessions, and bounded message depth. No attack traces were found.

(d) TA4SP: summarised as safe under typed model, over approximation and

unbounded number of sessions, no attack trace found.

6. ProVerif verification summary results for three scenarios:

(a) Query not attacker SSID is true, Query not attacker Kas is true: This

confirms that the attacker cannot gain knowledge of either SSID nor the shared

symmetric key.

(b) Query not attacker Shb is true: In the second scenario, this confirms that the

attacker cannot gain knowledge of the shadow secret Shb.

(c) Query not attacker Sha and Shb is true: In the third scenario, this confirms

that the attacker cannot gain knowledge of example multi-party shadow secrets

Sha nor Shb.

7.3.10 Hierarchy promotion

Hierarchy promotion describes a process in which the cluster recovers from a missing or

dysfunctional device by restoring the cluster to its intended hierarchical state, or to a new

state to include a recently authorised device. Where the hierarchy must include at least

one FM and two Generals, if either of these devices is found to be missing during cluster

attestation, the oldest Private in the group will be promoted to the next position, and the

Shadows and Rank Hash will be recalculated. If the cluster has a new member, the hierarchy

remains but Shadows and Rank Hash are recalculated to reflect the additional device and

added to the General’s keyring.

1. Goals:

(a) Entity authentication: A believes B .. N recently replied to a specific challenge.
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(b) Key confirmation: A has received evidence confirming that B .. N knows

Shadows Sb .. Sn.

(c) Message authentication: A has received evidence that B .. N has acted with

timely freshness.

(d) Secrecy: Freshness has been ascertained as secret, for each new Shadow and full

Rank Hash.

2. Principles:

(a) Device A is acting as General, and is an Authorised device.

(b) Devices B .. N stands for any device already authorised as FM, Generals, and

Privates.

(c) Devices B .. N will all have Shadows apart from the device which has just become

Authorised.

(d) Devices B .. N will all have Shadows if this attestation is a routine check only.

(e) The purpose of this exercise is to detect downtime or incompleteness.

(f) The Shadows add together to act as a Rank Hash demonstrating the known devices

of a cluster.

3. Assumptions:

(a) The Rank Hash is unique to each cluster.

(b) Each device in a cluster represents a single aquaponics system.

(c) The General has an existing RH of all Shadows to verify devices against previous

attestation.

(d) New devices that have recently been authorised as part of the cluster will require

a Shadow.

(e) Adding a new device or resetting the hierarchy will trigger new Shadows and Rank

Hash.

4. Workflow and syntactics:

(a) The first, second and third part of this process is the same as cluster attestation

and do not need to be included. To reiterate:

Acting as General, A requests the Shadows of each device by broadcasting his

public key, SSID and network key, encrypted and signed, to all known devices

belonging to that cluster. Since the messages are broadcast to each device in the

cluster, each message is encrypted by the public key of its respective recipient.

The number of messages broadcast will therefore be the same as the number of

authorised devices, as the General will hold a ‘keyring’ of all cluster members.
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A → B .. N : {{SSID, Ka, Kas}}Kb .. n}}Ka-1

(b) Authorised devices B .. N respond to the challenge with their Shadows and

public keys, encrypted by the General’s public key and signed by their individual

signature.

B .. N → A : {{Shb .. n, Kb .. n}}Ka}Kb .. n-1

(c) The General checks all Shadows and public keys against the ones on his keyring,

and verifies that the sum of the Shadows matches the Rank Hash he holds by

XOr’ing the Shadows.

A : SHa XOR SHb .. n = RH

(d) Assuming there is a difference between the Rank Hash and the sum of the Shadows

he has received, the General calculates new Shadows based on the number of

devices in the cluster according to the number of responses he has just had, plus

his own.

This is done by generating random bit strings for each device plus his own, XOR’d

against an additional bit string, noted below as a n-once.

A : Na XOR Nb .. n XOR Nx = RH

(e) The General now sends a copy of the Rank Hash to the Field Marshall, who

holds it for backup and this is the reason why he does not communicate with any

other participants other than FMs from other clusters. The FM will also hold

Rank Hashes from other clusters for additional backup. This message includes

the General’s public key to demonstrate authenticity, is encrypted with the FMs

public key, and signed by the General.

A → FM : {{RH, Ka}Kfm}Ka-1

(f) Lastly, The General broadcasts Shadows to each respective device. For this, the

Shadows will be sent as individual messages, including the General’s public key,

and encrypted by the public key of each individual device, signed by the General.
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A → B .. N : {Ka, SHb .. n, Kb .. n}Ka-1

5. Results for the goals of secrecy of RH

(a) OFMC: summarised as safe under a bounded number of sessions.

(b) CL-ATSE: summarised as safe under bounded number of sessions and typed

model.

(c) SATMC: summarised as safe under strongly typed model, bounded number of

sessions, bounded message depth.

(d) TA4SP: summarised as safe under typed model, over approximation and

unbounded number of sessions, no attack trace found.

6. Results for the goals of secrecy of Sb...Sn

(a) OFMC: summarised as safe under a bounded number of sessions.

(b) CL-ATSE: summarised as safe under bounded number of sessions and typed

model.

(c) SATMC: summarised as inconclusive.

(d) TA4SP: summarised as safe under typed model, over approximation and

unbounded number of sessions, no attack trace found.

7. ProVerif verification summary results for the last three scenarios, where

items a-c are reiterations of cluster integrity attestation:

(a) Query not attacker N is true, Query not attacker Nb is true, Query not

attacker Nx is true: In the first scenario, this confirms that the attacker cannot

gain knowledge of any example XOR function as would be broadcast as shadow

secrets.

(b) Query not attacker RH is true: In the second scenario, this confirms that the

attacker cannot gain knowledge of the full Rank Hash or sum of shadows secret

parts, RH.

(c) Query not attacker Shb is true, Query not attacker Shc is true: In the

third scenario, this confirms that the attacker cannot gain knowledge of example

multi-party shadow secrets Shb nor Shc, representing numerous broadcasting to

Shn.

7.4 Contributions

Through formal verification, the authorisation model has been proven as safe, through a

majority of three out of four model checking methods, and in some instances, four out of
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four. The sat-prover was sometimes inconclusive, probably due to the efficiencies of the

messaging between nodes - but these efficiencies were positive towards a lightweight effort.

This section concludes the benefits of the authorisation model:

7.4.1 Low Consumptions

By reducing the number of messages between nodes to as few as possible, the freshness of

the nonces and secrecy of the priority data is assured. This has been proven using the four

backend model checkers in the AVISPA -SPAN framework. In addition, the less processing

that the ESP32 has to do for ascertaining authenticity for each new or refreshed network

member, the less energy the network will use, and the longer the battery life of devices will

last.

7.4.2 Self-Healing

The design includes a periodic cluster integrity attestation function to assure the network

that the hierarchy devices are still live and responsive. The primary function of the hierarchy

is to separate levels of data access away from access to the public, or authorised devices

allowed to participate on the network that may not be as trustworthy as they should. In

comparison to TLS which is either permitted access or not, this tiered system separates rights

into the four levels between public, unranked, high-ranked, and secret backup. In addition to

preventing malicious attempts, this system is designed to form automated business continuity

in the event of network loss.

7.4.3 Limited Chain

The restricted nature of the privileged devices within each cluster means that only the

correlating set of identifiers, secret shadows and keys are maintained in a type of chain.

The repetition of this data is limited to only a few devices, and although there will be an

overlap of the higher rank, Field Marshal, between clusters due to the longer range, it is

predictable, finite, and ephemeral by nature - when a previous device is lost, the new data

set will replace their part in the chain. An ephemeral application enables the robustness of

data replication and dispersion in the same enabling way as the famous blockchain, without

the unmanageable scalability issues of storage.

7.4.4 Agnostic Application

The security properties expected of any desktop, mobile or hardware application require

the same as TLS - a public and private key pair, hash functions, Boolean logic (XOR),

exponentiation operators, hash, and symmetric cryptography. These functions are native to

the ESP32 hardware acceleration, and since security is becoming an increasingly important

facet to any application, a multi-purpose approach to functions between applications lessens
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the burden of processing and storage. Cryptographic functions have therefore been used for

identification and other attributes to reduce data volume.

7.4.5 Consensus

Consent is becoming more important for IoT applications because of privacy, and security

can enable the principles of the GDPR by supporting privacy through consent. Although the

aquaponics smart-farm does not utilise the private and sensitive information of living subjects,

it exemplifies the utility of a tiered authorisation system. The separation of privilege levels,

pseudonymisation of device identifiers, and anonymity of ‘rankings’ demonstrates the overlap

between security and privacy using majority consensus and protection of authorisation.

7.4.6 Further Work

This part of the research demonstrated an automated application of self-healing and

ephemeral data sets, replicated in a limited way between closely associated devices.

Applications of such a managed authorisation system could extend into domains such as

healthcare, domestic and industrial. Such an energy and storage-conscious design could

greatly benefit challenges faced in energy production, environmental conservation and

healthcare, in which monitoring over long periods of time could take advantage of smaller

data chains and device restoration.



Chapter 8

Conclusion and Further Work

We now conclude with a summary of contributions to confirm the hypothesis:

An energy-efficient IoT security solution can be created by combining a

reduced variant of TLS with low-overhead consensus-based access control.

The answer to this hypothesis is yes - it is possible to create an energy-efficient

variant of TLS by careful deconstruction and re-combination of its various elements, and

consensus-based authorisation is a viable alternative to heavier options.

8.1 Research Contributions

Our research comprised three empirical investigations that each affirmed elements of the

hypothesis, the divisions between which were dictated by the particular testing methodology

appropriate to each case. The three empirical chapters above correlate to three contributions

of novelty for the benefit of the IoT domain in general and the smart-farm domain in

particular. We began by modelling a risk framework, followed by implementation and power

analysis of the results of re-configuring TLS within that framework, measured against existing

TLS configurations. Finally, we proposed a granular authorisation system to fulfil the access

control niche that TLS provided for us.

8.1.1 A Risk-Driven Energy Assessment

Research Question 1: What are the security and privacy requirements of the aquaponics

smart-farm?

We performed a DPIA (Data Protection Impact Assessment), which invoked the following

properties, together comprising a novel metrics framework for IoT-oriented energy-conscious

systems:
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• Security application: an analysis of the range of IoT protocols and targeting of

security provision using this data allowed for a reduction of energy requirements in

both key and data exchange.

• Energy consumption: scoring risk severity by session length and data exchange

requirements provided a platform to reduce unnecessary overheads.

• Privacy substitution: many of the confidentiality functions previously in use were

viably substituted for privacy functions, allowing protection without the overheads of

encryption.

8.1.2 Energy-Conscious Authentication and Data Exchange

Research Questions 2 and 3: How far can energy consumption be reduced during device

authentication and subsequent data exchange?

The handshake and secure session elements of TLS were reconfigured in a manner more

closely modelled on the specific characteristics of the IoT, in order to achieve a method of

secure authentication and payload-protection that reduces overheads by around 96%:

• Privacy: Following the proposal of the DPIA removed the need for unnecessary

confidentiality.

• Certificates: Removing reliance on X.509 and its infrastructure, the model became

more decentralised and robust.

• Session timeout: Promoting long-term relationships between devices enabled fewer

handshakes.

• Payload protection: Protection at source removed burden and vulnerability from the

central hub.

• Energy reduction: By ascertaining the lightest functions, suitable keys and

ciphersuites applied.

• Edge processing: Using hardware acceleration on edge devices boosted productivity.

• IoT-appropriate ciphersuites: Selective configuration of CIA to target low cost

primitives.

• Additional keys: Separating out confidentiality by producing an extra key allowed

flexibility.
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8.1.3 Energy-Conscious Consensus Mechanism

Research Question 4: Can a lightweight, self-healing consensus mechanism be shown to

be safe?

The binary approach to TLS can be improved by granularity, autonomy and group

consensus in clusters of self-healing systems on a decentralised network. The authorisation

system, which we subjected to formal verification, contributes a model in which smart farms

could connect without human monitoring:

• Low consumption: Existing cryptographic functions were recycled to reduce

processing.

• Self-healing: Periodic cluster attestation enabled fault detection and automatic fix.

• Limited chain: Cluster hierarchies allowed limited ranked devices to ensure consensus

was not vulnerable to typical attacks by majority, unlimited vote of new additions.

• Agnostic application: Applications using similar security functions can adopt the

same processes.

• Consensus: Autonomous but limited group consensus removes the vulnerability of

human interference.

8.2 Research Limitations and Further Work

Despite the positive outcome of the research, there were clear limitations. Predominantly,

the empirical evidence and projected benefits of the investigations were based on a prototype,

in environments which represent production as much as practically possible - but still this is

not actually a production implementation. In the ‘wild’, other caveats may apply which will

not obvious in an academic context.

At the time of writing, the study presents a series of key lengths and other CIA

computations considered safe under the NIST and FIPS guidelines. These may eventually

become redundant, as quantum computers and developments in TLS 1.3+ become the new

de facto standard. This is a reflection on key strength and algorithms underpinning the

key exchange processes and data exchange. Of course, the study is inherently limited

to the technology of its era, particularly where libraries and hardware platforms such as

mbedtls provide limited options. Scalability of an IoT domain is also difficult to fathom

when operating on theoretic projections - but tools to simulate the realities do exist.

Lastly, our work has been specific to a particular microcontroller architecture, and should

be repeated for each different target architecture. In addition, the energy-conscious focus

of this study could be expanded to include alternative energy generation by location and

natural power sources - apparently, the sun, wind and rain as ‘green’ technologies have a lot

to offer.
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Appendix A

Timer Sketch Pseudocode

Where J energy in Joules = T (time in seconds) x P (Power in Watts), outlined below is the

sketch code for each mbedtls function timed in microseconds.

A.1 Key pair generation, sign and verify

RSA key strengths represent the current options for asymmetric key generation and

authentication of, whilst Elliptic Curve Digital Signature Algorithm (ECDSA), offer shorter

versions of the same RSA bit-strength range:

A.1.1 RSA: 5 key strengths

1. 2048

2. 3072

3. 4096

4. 7680

5. 15,360

A.1.2 ECDSA: 11 curves

1. SECP224R1

2. SECP256R1

3. SECP384R1

4. SECP521R1

5. SECP224K1

6. SECP256K1
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7. BP256R1

8. BP384R1

9. BP512R1

10. Curve448

11. Curve25519

1. Define key strength or curve

2. Create and initialise necessary context for either RSA or ECDSA

3. Start timer

4. Begin entropy and seed from random number generator

5. Generate the keypair

6. Complete and check private key

7. Define data to be signed

8. Sign data

9. End timer

10. Print time

11. Print signature

12. Free contexts

A.2 Key exchange

RSA Public Key Cryptography (PKC) is asymmetric encryption, whilst Elliptic Curve

Diffie-Hellman Ephemeral (ECDHE), is mutual key exchange:

A.2.1 RSA-PKC: Single key (typical TLS), and multiple keys

(re-configured TLS)

1. 2048-bit strength PKC with ECDSA for AES 128-bit key

2. 2048-bit strength PKC with ECDSA for three CIA keys separately

A.2.2 ECDHE: Single key (typical TLS), and multiple keys (re-configured

TLS)

1. ECDHE in Curve25519 with ECDSA for AES 128-bit key

2. ECDHE in Curve25519 for three CIA keys separately

1. Define key strength or curve

2. Create and initialise necessary context for either RSA or ECDHE

3. Start timer
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4. Begin entropy and seed from random number generator

5. Generate the keypair

6. Complete and check private key

7. Compute message hash

8. Create signature and verify

9. Sign message, verify

10. Encrypt message in RSA or ECDHE

11. Decrypt message in RSA or ECDHE

12. End timer

13. Print time

14. Print signature

15. Print message

16. Free contexts

A.3 Integrity and message authentication functions

SHA and HMAC functions working together, and producing an authentication key:

A.3.1 HMAC: 4 variables in 64 bytes payload

1. HMAC-SHA224

2. HMAC-SHA256

3. HMAC-SHA384

4. HMAC-SHA512

A.3.2 HMAC: 4 variables in 512 bytes payload

1. HMAC-SHA224

2. HMAC-SHA256

3. HMAC-SHA384

4. HMAC-SHA512

1. Define HMAC SHA bit-strength

2. Initialise message digest context

3. Start timer

4. Begin HMAC operation by specifying key

5. Perform message digest operation by applying key to plaintext message

6. Collect resulting HMAC

7. End timer
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8. Print time

9. Print HMAC

10. Free contexts

A.4 Full CIA by AEAD and collective components:

Full AEAD operations by confidentiality, integrity and availability functions together:

A.4.1 AES128: 5 modes in 64 bytes payload

1. AES128-GCM

2. AES128-CBC-HMAC-SHA256

3. AES128-CTR-HMAC-SHA256

4. AES128-CFB8-HMAC-SHA256

5. AES128-CFB128-HMAC-SHA256

A.4.2 AES128: 5 modes in 512 bytes payload

1. AES128-GCM

2. AES128-CBC-HMAC-SHA256

3. AES128-CTR-HMAC-SHA256

4. AES128-CFB8-HMAC-SHA256

5. AES128-CFB128-HMAC-SHA256

1. Define AES encryption strength, HMAC key, mode variables

(In this example of CBC, an IV (Initialisation Vector)

2. Initialise encryption and message digest context

3. Start timer

4. Begin AEAD operation by specifying HMAC key and AES key

5. Perform full operation by applying keys to plaintext message

6. Collect resulting HMAC and ciphertext

7. End timer

8. Print time

9. Print HMAC and ciphertext

10. Free contexts
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A.5 Data exchange

A.5.1 From server to client: Fully protected GCM and collective

components, typical TLS

The following operations are repeats of previous pseudocode:

1. AES128 in GCM mode: AEAD pseudocode with mode of GCM.

2. AES128 in full CCM: AEAD pseudocode same as example CBC.

A.5.2 From client to server: Selective components and excluding privacy,

the re-configuration

The following operation is a repeat of previous pseudocode:

1. AES128 in CCM without confidentiality: The same as HMAC-SHA256 without

encryption. In this example, the AES encryption key is created, in addition to the

HMAC key and the IV, but the data is not actually encrypted. The key is kept for

future sessions where encryption is required, such as with instructional code of shared

key refresh, typically from the server to the client, as opposed to from the client to the

server.

A.6 Energy Consumption Comparison Over 24-hours in

Authentication and Data Exchange

A.6.1 Readings: 16 character readings comparing typical TLS and the

re-configuration

A combination of authentication and data exchange operations in small data strings:

1. ECDHE in Curve25519 with ECDSA for AES128-bit key with readings sent in GCM

2. ECDHE in Curve25519 with ECDSA for AES128-bit key with readings sent in CCM

3. ECDHE in Curve25519 for three keys and readings including confidentiality, Pi to

ESP32

4. ECDHE in Curve25519 for three keys and readings excluding confidentiality, ESP32 to

Pi

A.6.2 Instructions: 256 character instructions comparing typical TLS and

the re-configuration

A combination of authentication and data exchange operations in longer data strings:
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1. ECDHE in Curve25519 with ECDSA for AES128-bit key with readings sent in GCM

2. ECDHE in Curve25519 with ECDSA for AES128-bit key with readings sent in CCM

3. ECDHE in Curve25519 for three keys and readings including confidentiality, Pi to

ESP32

4. ECDHE in Curve25519 for three keys and readings excluding confidentiality, ESP32 to

Pi



Appendix B

Formal Verification Code

B.1 Device authorisation

B.1.1 Alice-Bob notation

1. A → B : Ka

2. B → A : {{SSID, Kas, Kb}Kb-1}Ka

3. A → B : {{Na}Kb}Ka-1

4. B → A : {{Na}Ka}Kb-1

B.1.2 CAS+

Four device authorisation data exchanges:

protocol DA;

identifiers

A, B : user;

KPa KPb : public_key;

SSID, Kas, Na : number;

messages

1. A -> B : KPa

2. B -> A : {{A, B, SSID, Kas, KPb}KPb’}KPa

3. A -> B : {{A, B, Na}KPb}KPa’

4. B -> A : {{Na}KPa}KPb’
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knowledge

A : A,B,KPa,KPb;

B : A,B,KPa,KPb;

session_instances

[A:alice,B:bob,KPa:kpa,KPb:kpb];

goal

secrecy_of Kas [A,B];

secrecy_of Na [A,B];

B.1.3 ProVerif input

1. (* Declarations *)

free c:channel.

free skA:bitstring.

fun pk(bitstring):bitstring.

(* Protocol *)

let agentA(skA:bitstring) =

let pkA = pk(skA) in

out(c, pkA).

let agentB() =

in(c, pkA:bitstring);

0.

(* Process *)

process

( !agentA(skA) | !agentB() )

2. (* Declarations *)

free c:channel.

free Ka:bitstring.

free Kb:bitstring.

free SSID:bitstring.

free Ks:bitstring [private].

query attacker(Ks).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.
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fun sign(bitstring, bitstring):bitstring.

fun checksign(bitstring, bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentB(Ka:bitstring, Ks:bitstring, Kb:bitstring) =

let msg = (SSID, Ks, Kb) in

let signed_msg = sign(msg, sk(Kb)) in

out(c, aenc(signed_msg, Ka)).

let agentA(Ka:bitstring, Kb:bitstring) =

in(c, enc_msg:bitstring);

let signed_msg = adec(enc_msg, Ka) in

let msg = checksign(signed_msg, Kb) in

let (SSID_rec:bitstring, Ks_rec:bitstring, Kb_rec:bitstring) = msg in

0.

(* Process *)

process

( !agentB(Ka, Ks, Kb) | !agentA(Ka, Kb) )

3. (* Declarations *)

free c:channel.

free Ka:bitstring.

free Kb:bitstring.

free Na:bitstring [private].

query attacker(Na).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentA(Ka:bitstring, Kb:bitstring, Na:bitstring) =

let msg = aenc(Na, Kb) in

out(c, aenc(msg, sk(Ka))).
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let agentB(Ka:bitstring, Kb:bitstring) =

in(c, enc_msg:bitstring);

let msg = adec(enc_msg, pk(Ka)) in

let Na_rec = adec(msg, sk(Kb)) in

0.

(* Process *)

process

( !agentA(Ka, Kb, Na) | !agentB(Ka, Kb) )

4. (* Declarations *)

free c:channel.

free Ka:bitstring.

free Kb:bitstring.

free Na:bitstring [private].

query attacker(Na).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentB(Ka:bitstring, Kb:bitstring, Na:bitstring) =

let msg = aenc(Na, Ka) in

out(c, aenc(msg, sk(Kb))).

let agentA(Ka:bitstring, Kb:bitstring) =

in(c, enc_msg:bitstring);

let msg = adec(enc_msg, pk(Kb)) in

let Na_rec = adec(msg, sk(Ka)) in

0.

(* Process *)

process

( !agentB(Ka, Kb, Na) | !agentA(Ka, Kb) )
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B.2 Cluster integrity attestation

B.2.1 Alice-Bob notation

1. A → B .. N : {{SSID, Ka, Kas}Kb .. n}Ka-1

2. B .. N → A : {{Shb .. n, Kb .. n}Ka}Kb . . n-1

3. A : SHa XOR SHb .. n = RH

B.2.2 CAS+

Three attestation data exchanges:

protocol CIA;

identifiers

A, B, N : user;

KPa, KPb, KPn : public_key;

SSID, Kas, Ka, Shb, Shn, SHa, RH : number;

messages

1. A -> B, N : {{A, SSID, Ka, Kas}KPn}KPa’

2. B, N -> A : {{B, N, Shb, Shn, KPb, KPn}KPa}KPb’, KPn’

3. A : calculate_xor(SHa, Shb, Shn)

knowledge

A : A, B, N, KPa, KPb, KPn;

B : A, B, N, KPa, KPb, KPn;

N : A, B, N, KPa, KPb, KPn;

session_instances

[A:alice,B:bob,N:nonce,KPa:kpa,KPb:kpb,KPn:kpn];

goal

secrecy_of Kas [A,B,N];

secrecy_of SHa, Shb, Shn [A,B,N];

B.2.3 ProVerif input

1. (* Declarations *)

free c:channel.
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free Ka:bitstring.

free Kb:bitstring.

free Kc:bitstring.

free SSID:bitstring.

free Ks:bitstring [private].

query attacker(Ks).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentA(Ka:bitstring, Kb:bitstring, Kc:bitstring, SSID:bitstring,

Ks:bitstring) =

let msg = aenc((SSID, Ka, Ks), Kb) in

let msg2 = aenc((SSID, Ka, Ks), Kc) in

out(c, aenc((msg, msg2), sk(Ka))).

let agentB(Ka:bitstring, Kb:bitstring) =

in(c, enc_msg:bitstring);

let (msg1:bitstring, msg2:bitstring) =

adec(enc_msg, pk(Ka)) in

let (SSID_rec:bitstring, Ka_rec:bitstring, Ks_rec:bitstring) =

adec(msg1, sk(Kb)) in

0.

let agentC(Ka:bitstring, Kc:bitstring) =

in(c, enc_msg:bitstring);

let (msg1:bitstring, msg2:bitstring) =

adec(enc_msg, pk(Ka)) in

let (SSID_rec:bitstring, Ka_rec:bitstring, Ks_rec:bitstring) =

adec(msg2, sk(Kc)) in

0.

(* Process *)

process

( !agentA(Ka, Kb, Kc, SSID, Ks) | !agentB(Ka, Kb) | !agentC(Ka, Kc) )

2. (* Declarations *)
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free c:channel.

free Ka:bitstring.

free Shb:bitstring [private].

free Kb:bitstring.

query attacker(Shb).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentB_to_N(Ka:bitstring, Kb:bitstring, Shb:bitstring) =

let msg1 = aenc(Shb, Kb) in

let msg2 = aenc(msg1, sk(Kb)) in

out(c, msg2).

let agentA(Ka:bitstring, Kb:bitstring) =

in(c, enc_msg:bitstring);

let msg1 = adec(enc_msg, pk(Ka)) in

let Shb_rec = adec(msg1, Kb) in

0.

(* Process *)

process

( !agentB_to_N(Ka, Kb, Shb) | !agentA(Ka, Kb) )

3. (* Declarations *)

free c:channel.

free SHa:bitstring [private].

free SHb:bitstring [private].

query attacker(SHa).

query attacker(SHb).

fun xor(bitstring, bitstring):bitstring.

(* Protocol *)

let xor_operation(SHa:bitstring, SHb:bitstring) =

let RH = xor(SHa, SHb) in

out(c, RH).
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(* Process *)

process

( !xor_operation(SHa, SHb) )

B.3 Hierarchy promotion

B.3.1 Alice-Bob notation

1. A : Na XOR Nb .. n XOR Nx = RH

2. A → FM : {{RH, Ka}Kfm}Ka-1

3. A → B .. N : {Ka, SHb .. n, Kb .. n}Ka-1

B.3.2 CAS+

Three hierarchy promotion data exchanges, following the three steps in step 2, cluster integrity

attestation:

protocol HP;

identifiers

A, B, N, FM : user;

Ka, Kb, Kn, Kfm : public_key;

Na, Nb, Nx, RH : number;

SHb, SHn : number;

messages

1. A : calculate_xor(Na, Nb, Nx)

2. A -> FM : {{A, RH, Ka}Kfm}Ka-1

3. A -> B, N : {A, Ka, SHb, SHn, Kb, Kn}Ka-1

knowledge

A : A, B, N, FM, Ka, Kb, Kn, Kfm, Na, Nb, Nx, RH, SHb, SHn;

FM : A, Ka, Kfm;

B : A, Ka, Kb, SHb;

N : A, Ka, Kn, SHn;

session_instances
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[A:alice,B:bob,N:nonce,FM:fieldmarshall,Ka:ka,Kb:kb,Kn:kn,Kfm:kfm,

Na:na,Nb:nb,Nx:nx,RH:rh,SHb:shb,SHn:shn];

goal

secrecy_of RH [A,B,N,FM];

secrecy_of Ka [A,B,N,FM];

B.3.3 ProVerif input

1. (* Declarations *)

free c:channel.

free N:bitstring [private].

free Nb:bitstring [private].

free Nx:bitstring [private].

free RH:bitstring [private].

query attacker(N).

query attacker(Nb).

query attacker(Nx).

fun xor(bitstring, bitstring):bitstring.

(* Protocol *)

let xor_operation(N:bitstring, Nb:bitstring, Nx:bitstring) =

let RH = xor(xor(N, Nb), Nx) in

out(c, RH).

(* Process *)

process

( !xor_operation(N, Nb, Nx) )

2. (* Declarations *)

free c:channel.

free Ka:bitstring.

free Kfm:bitstring.

free RH:bitstring [private].

query attacker(RH).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.
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fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentA(Ka:bitstring, Kfm:bitstring, RH:bitstring) =

let inner_msg = aenc((RH, Ka), Kfm) in

out(c, aenc(inner_msg, sk(Ka))).

(* Process *)

process

( !agentA(Ka, Kfm, RH) )

3. (* Declarations *)

free c:channel.

free Ka:bitstring.

free Shb:bitstring [private].

free Shc:bitstring [private].

free Kb:bitstring.

free Kc:bitstring.

query attacker(Shb).

query attacker(Shc).

fun pk(bitstring):bitstring.

fun sk(bitstring):bitstring.

fun aenc(bitstring, bitstring):bitstring.

fun adec(bitstring, bitstring):bitstring.

(* Protocol *)

let agentA(Ka:bitstring, Kb:bitstring, Kc:bitstring, Shb:bitstring,

Shc:bitstring) =

let msg1 = aenc(Ka, sk(Ka)) in

let msg2 = aenc(Shb, sk(Ka)) in

let msg3 = aenc(Shc, sk(Ka)) in

out(c, (msg1, msg2, msg3)).

let agentB(Ka:bitstring, Kb:bitstring) =

in(c, (enc_msg1:bitstring, enc_msg2:bitstring, enc_msg3:bitstring));

let Ka_rec = adec(enc_msg1, pk(Ka)) in

let Shb_rec = adec(enc_msg2, pk(Ka)) in

0.
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let agentC(Ka:bitstring, Kc:bitstring) =

in(c, (enc_msg1:bitstring, enc_msg2:bitstring, enc_msg3:bitstring));

let Ka_rec = adec(enc_msg1, pk(Ka)) in

let Shc_rec = adec(enc_msg3, pk(Ka)) in

0.

(* Process *)

process

( !agentA(Ka, Kb, Kc, Shb, Shc) | !agentB(Ka, Kb) | !agentC(Ka, Kc) )
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