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Abstract

The Nancy Grace Roman Space Telescope (Roman) is NASA’s next astrophysics flagship mission, expected to
launch in late 2026. As one of Roman’s core community science surveys, the Galactic Bulge Time Domain Survey
(GBTDS) will collect photometric and astrometric data for over 100 million stars in the Galactic bulge in order to
search for microlensing planets. To assess the potential with which Roman can detect exoplanets via transit, we
developed and conducted pixel-level simulations of transiting planets in the GBTDS. From these simulations, we
predict that Roman will find between ∼60,000 and ∼200,000 transiting planets—over an order of magnitude more
planets than are currently known. While the majority of these planets will be giants (Rp> 4R⊕) on close-in orbits
(a< 0.3 au), the yield also includes between ∼7000 and ∼12,000 small planets (Rp< 4R⊕). The yield for small
planets depends sensitively on the observing cadence and season duration, with variations on the order of ∼10%–

20% for modest changes in either parameter, but is generally insensitive to the trade between surveyed area and
cadence given constant slew/settle times. These predictions depend sensitively on the Milky Way’s metallicity
distribution function, highlighting an opportunity to significantly advance our understanding of exoplanet
demographics, in particular across stellar populations and Galactic environments.

Unified Astronomy Thesaurus concepts: Planet-hosting stars (1242); Exoplanets (498); Transits (1711)

1. Introduction

The Nancy Grace Roman Space Telescope10 (Roman) is a
wide-field infrared survey observatory planned for launch in
late 2026. Roman is designed to meet scientific objectives in
cosmology and exoplanet demographics by executing three
Core Community Surveys that will collectively account for up
to 75% of the science observing time over the 5 yr Roman
primary mission lifetime (Spergel et al. 2015; Akeson et al.
2019). The technical capabilities that will enable new
scientific advances using Roman data primarily come down
to (1) a very high spatial resolution relative to the field of
view and collecting area, (2) high observing efficiency, (3)
exquisite calibration, and (4) large data downlink volume
(>11 Tb day−1).

The Wide Field Instrument (WFI) is the primary science
payload on Roman, optimized for wide-field optical and near-
infrared (0.5–2.3 μm) imaging and slitless spectroscopy. It has
a mosaic focal plane made up of 18 Teledyne H4RG-10 sensors
(Mosby et al. 2020). Each sensor will have 4096× 4096 pixels,

of which 4088× 4088 will collect photons, each with a size of
10 μm and subtending 0 11× 0 11 on the sky, resulting in a
total effective field of view of 0.281 square degrees.

1.1. The Galactic Bulge Time Domain Survey

One reason for WFI’s small pixel size is that it enables
observations of high-stellar-density regions of the sky, such as
the Galactic bulge, without being overwhelmed by source
confusion. This will be exploited by the Galactic Bulge Time
Domain Survey (GBTDS), which has the primary aim of
enabling the detection of gravitational microlensing events
caused by exoplanets, but will enable a myriad of studies,
including the detection of transiting planets considered in this
work, by providing a versatile data set for the science
community. The design for the GBTDS will not be fully
defined until much closer to the time of launch so that such
decisions can incorporate input from the scientific community.
However, most of the parameters for the GBTDS are
constrained by the requirements of the exoplanet microlensing
goals (Penny et al. 2019).
Due to the timescale of a microlensing event from a main-

sequence star toward the bulge, (tE≈ 10–40 days; Gaudi 2012),
the season duration requirement has a minimum of 2tE≈ 60 days.
The maximum cadence of approximately 15minutes is set by the
need to resolve multiple points within planetary-mass deviations,
with typical timescales of t M M2 hr pE » Å (Penny et al. 2019).
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10 Formerly known as the Wide-Field Infrared Survey Telescope.
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Finally, the goal of detecting 100 Earth-mass planets combined
with the current best estimates for the microlensing detection rate
and sensitivity set the need to continually monitor 108 stars for
the duration of the survey (Penny et al. 2019).

Combining these requirements with the observational
constraints of the Roman observatory (e.g., expected slew
and settle times and the orientation of the solar panels with
respect to the Sun) and the goal of maximizing the number of
detected microlensing events, the survey is expected to have six
60–72 day seasons centered on the autumnal and vernal
equinoxes, with three seasons clustered at the beginning of
the 5 yr primary mission lifetime and three seasons clustered at
the end of the 5 yr primary mission lifetime.

During each season, Roman will observe approximately
seven fields (an observing area of ∼2 square degrees) at a low
Galactic latitude, with the location of the observed area chosen
as an optimum between maximizing stellar densities and
minimizing extinction (see Figure 1). Primary observations will
be taken in the wide F146 filter (0.93–2.00 μm) at an
approximately 15 minutes cadence and effective exposure time
of t 54.7 sexp = . These observations will likely be supplemen-
ted with observations in at least one additional filter at a much
lower cadence to measure colors for the purpose of stellar
characterization, although the specifics of the observing
strategy for additional filters has yet to be decided. One
proposed plan is to sample two additional filters at a 6 hr
cadence, alternating between the F087 (0.76–0.99 μm) and
F184 (1.68–2.00 μm) filters.

1.2. Transiting Planets in the GBTDS

Due to the high stellar densities, the Galactic bulge fields
have long been proposed as a fruitful field for finding
exoplanets via transit (Gaudi 2000; Bennett & Rhie 2002;
McDonald et al. 2014). The OGLE-III microlensing survey
supported this notion by finding dozens of candidate transiting
planets despite the disadvantages of ground-based observing
campaigns (Udalski et al. 2002a, 2002b). However, due to
confusion limits, the OGLE-III survey was only sensitive to
transiting planets around disk stars, and from the fraction of
systems that could be followed up it became clear that this
catalog had a high false-positive rate. As a result, only a few of
the candidate transiting planets have been reliably confirmed
(e.g., Dreizler et al. 2003; Bouchy et al. 2005). To limit
complications caused by crowding, the Sagittarius Window
Eclipsing Extrasolar Planet Search (SWEEPS; Sahu et al. 2006)
performed the first space-based transit survey of the Galactic
bulge with the Hubble Space Telescope, improving both
confusion limits and photometric precision. This 7 day
campaign monitored ∼180,000 stars, resulting in 14 transiting
planet candidates with an estimated false-positive rate of
55%, foreshadowing the scientific potential of a high-spatial-
resolution, high-cadence, photometric monitoring campaign of
the Galactic bulge. The GBTDS should fully realize this
potential.

The primary allure of transiting planet science in the GBTDS
lies in the statistical power offered by the sheer number of
expected detections. Combining early planet occurrence rates
from the Kepler mission (Borucki et al. 2010), estimates for
Roman’s photometric performance, and a Galactic population
model, Montet et al. (2017) predicted that the GBTDS should
yield between ∼70,000 and ∼150,000 transiting planets, an
order of magnitude more planets than are currently known. The

uncertainty in these predictions is driven by the strong
correlation between planet occurrence and stellar metallicity
combined with the Milky Way’s metallicity distribution
function, highlighting perhaps an equally appealing facet of
the GBTDS transiting planet science case: the breadth of
Galactic populations surveyed.
Due to the chemical evolution of the Milky Way, stars in the

local stellar neighborhood (within ∼1 kpc) are highly corre-
lated between stellar age, metallicity, and more detailed
chemical abundances, making it extremely difficult to test
planet formation theories that predict multivariate trends
between these parameters (Wilson et al. 2022). This limitation
can be overcome by surveying stellar populations outside the
local stellar neighborhood, which vary significantly in age,
metallicity, and detailed chemistry based on their Galactic
location (Haywood et al. 2013; Anders et al. 2014; Hayden
et al. 2015; Bensby et al. 2017; Zoccali et al. 2017; Weinberg
et al. 2019; Griffith et al. 2021; Queiroz et al. 2021; Eilers et al.
2022). As we will show in this work, the GBTDS will be
sensitive to transiting planets at distances of 16–20 kpc, clear
across the far side of the Galactic bulge. Thus, the Galactic
distribution of transiting planets detected in the GBTDS will
constrain correlations between planet occurrence and these
multivariate parameters, providing valuable insight into the
formation and evolution of giant planets.

1.3. Goals and Organization of This Paper

The goals of this paper are threefold. Our primary goal is to
improve on the planet yield predictions made by Montet et al.
(2017). We accomplish this by developing detailed pixel-level
simulations of the GBTDS to estimate the photometric
performance and overall efficiency with which transiting
planets will be detected. These simulations are further
improved with updated knowledge of planet occurrence rates
and the stellar populations expected in the Galactic bulge fields.
Second, we wish to quantify the consequences of survey

design trades (e.g., observing cadence versus surveyed area) on

Figure 1. The field considered in this study, with the seven proposed GBTDS
fields from Penny et al. (2019) overlaid on an H-band extinction map of the
Galactic Center. Also shown for the sake of comparison are a few well-studied
fields, the Stanek window (l = 0°. 25, b = − 2°. 15; green), the SWEEPS field
(l = 1°. 24, b = − 2°. 67; blue), and Sagittarius A* (orange). The extinction map
was calculated from the reddening map of Surot et al. (2020) using extinction
ratios from Alonso-García et al. (2017).
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the overall GBTDS transiting exoplanet science return and
identify potential limiting systematics to inform the develop-
ment of analysis software (e.g., photometric pipelines, transit
search algorithms).

Our last goal is to identify unique science opportunities that
will be enabled by the GBTDS transiting planet survey, which
cannot be achieved with existing state-of-the-art observatories.
Many of these science goals are enabled due to the large
samples offered by the GBTDS, which will facilitate statistical
studies of intrinsically rare events and planetary systems, while
other science goals are enabled by the breadth of stellar
populations surveyed.

The organization of this paper is as follows. In Section 2, we
describe the parameters of our simulations, including all
assumptions regarding the underlying stellar and exoplanet
populations, and explain our methodology for generating pixel-
level simulations and synthetic data. In Section 3, we generate
and apply synthetic data to evaluate Roman’s transit survey
sensitivity and overall photometric performance. In Section 4,
we present our estimated planet yields. Finally, we end this
work with a discussion of the science enabled by the transiting
planet sample as well asdirections for future simulations in
Section 5, and we reiterate our primary conclusions in
Sections 6 and 7.

2. Simulating the Galactic Bulge Time Domain Survey

In this section, we discuss our methodology for simulating
the GBTDS. In Section 2.1, we explain our adopted survey
parameters. Sections 2.2 and 2.3 describe assumptions about
the observed stellar and exoplanet populations, respectively,
and Section 2.4 discusses our methodology for creating
simulated data products.

2.1. Default Survey Parameters

For this work, we adopt nearly the same survey as the
notional survey design presented by Penny et al. (2019),
simulating only the F146 images at a 15 minute cadence, with a
maximum observing baseline of 72 days, six seasons, and
seven observed fields. We ignore observations from a
secondary filter, essentially making the assumption that either
such observations can be interpolated over in the transit search
pipeline or else a multiband transit search can be performed
with minimal decreases in sensitivity. These parameters are
listed in Table 1, along with the relevant WFI technical
capabilities.

2.2. Simulated Stellar Catalog

To simulate a realistic population of planet-search stars, we
apply the most recent version of the Besançon Galactic
population synthesis model (referred to hereafter as
BGM1612; Robin et al. 2003, 2012; Czekaj et al. 2014),
which we accessed via their webform.11 The BGM1612 Model
returns a simulated stellar catalog along some user-defined line
of sight, which we choose to be (l, b)= (0°.60, − 1°.64), the
location of the most central of the seven fields in the nominal
survey design from Penny et al. (2019).

To make our simulated stellar catalog more realistic, we
make several adjustments to the BGM1612 output in order to
better agree with empirical bulge star counts from Terry et al.

(2020). Those authors made use of HST WFC3/UVIS and
WFC3/IR observations of the Stanek window, (l, b)= (0°.25,
− 2°.15), originally obtained by Brown et al. (2009, 2010) as
part of the Galactic Bulge Treasury Program under GO-11664
and GO-12666 to measure stellar magnitude distributions in the
Galactic bulge for several filters, and applied relative proper
motions to remove disk contamination. Specifically, they
measured star counts in the F555W (V ), F814W (I),
F110W (J), and F160W (H) filters.12 For the analysis in this
section, we make the simplifying assumption that the HST
filters are equivalent to their corresponding filter in the
Johnson–Cousins photometric system adopted by the
BGM1612 model. Because the transformation from F555W

Table 1
Assumed Survey Parameters and Detector, Telescope, and Noise Properties

GBTDS Default Parameters

Survey Duration 4.5 yr
Seasons 6
Fields 7
Season Duration 72 days
Primary Bandpass F146
Primary Cadence 15 minutes
Primary Exposure Time 54 s

Number of Stars Observed in GBTDS

Stars per Detectora 5 × 106

Stars per Fielda 90 × 106

Total Starsa 630 × 106

Total Stars (F146 < 15) ∼0.5 × 106

Total Stars (F146 < 17) ∼1.7 × 106

Total Stars (F146 < 19) ∼8.9 × 106

Total Stars (F146 < 21) ∼59 × 106

Total Stars (F146 < 23) ∼220 × 106

Wide Field Instrument Properties

Field of View 0°. 8 × 0°. 4
Detectors 6 × 3
Pixels per Detector 4088 × 4088
Plate Scale (″ pix−1) 0.11
F146 Zero-point (mag) 27.648
Readout Time (s) 3.04
Gain (counts/e−) 1
Read Noise (rms e− read−1) 11
CDS Read Noise (rms e− read−1) 16
Dark Current (e− pix−1 s−1) <0.005
Bias (e− pix−1) 103

Saturation Limit (e− pix−1) 105

Additional Background

F146 Sky (e− pix−1 s−1)b 4.25
F146 Thermal (e− pix−1 s−1) 0.98

Notes.
a Lower limit based on our simulated stellar catalog with HVega < 26. While
the GBTDS has the sensitivity to detect stars as dim as F146 ∼ 30, the
confusion limit is likely brighter than this.
b For this work, we assume a constant of 5× minimum zodiacal light. In
reality, this quantity ranges from 2.5 to 7× the minimum zodiacal light, based
on the time of year. However, most of the stars considered are dominated by
other sources of uncertainty.

11 https://model.obs-besancon.fr

12 Note: The HST and Johnson–Cousins bandpasses are defined in the Vega
system. The Roman filters, on the other hand, are defined in the AB system.
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to V is less trivial (see, e.g., Harris 2018) and more strongly
impacted by reddening, we omit this filter from our analysis.
Our modifications are detailed below, and a comparison
between our adopted stellar catalog and their completeness-
corrected luminosity functions (LF) is shown in Figure 2. Our
primary adjustments include redefining the extinction law,
adding binary stars in the catalog, and amending the IMF of the
Galactic bulge population.

2.2.1. Extinction

Our first adjustment regards the treatment of dust. The
extinction law adopted by the BGM1612 model assumes a
universal Galactic extinction law with RV≈ 3.1, where
RV≡ AV/E(B− V ) is the ratio of total to selective extinction.
Instead, we adopt the empirical law from Cardelli et al. (1989)
with RV= 2.5, which is a more appropriate treatment for the
Galactic bulge (Nataf et al. 2013). Because the BGM1612
output generally overpredicts the line-of-sight extinction, we
reduce the median extinction in our catalog so that AI= 1.5,
which forces agreement between the location of the Red Clump
in our catalog and the LF from Terry et al. (2020) in the I, J,
and H bands. However, it is worth noting that this is discrepant
with measured values in the Stanek window, which typically
have AI≈ 1.28 (Reid et al. 2009; Nataf et al. 2013).

2.2.2. Binarity

To include the effects of stellar multiplicity in our sample, we
randomly assign a fraction of stars in our catalog to be binaries.
For simplicity, we ignore the effects of triple and higher-order
systems and only consider multiplicity for stars on the main
sequence and subgiant branch, where transiting planets are
detectable, and where the flux ratio between the primary and
secondary stars in the system is most significant. To assign binary

systems to our catalog, we follow the population statistics reported
by Duchêne & Kraus (2013), who compiled properties for stars of
differing spectral types from various volume-limited imaging and
spectroscopic surveys (e.g., Duquennoy & Mayor 1991; Fischer
& Marcy 1992; Delfosse et al. 2004; Raghavan et al. 2010;
Dieterich et al. 2012).
For stars withMå> 0.7Me, we assume a multiplicity fraction of

44%, as measured for stars with 0.7Me<Må< 1.3Me in the solar
neighborhood. For stars with Må� 0.7Me, we assume a multi-
plicity fraction of 26%, which is typical of nearby stars with
Må< 0.1Me. To assign an orbital period, we sample from a
log-normal distribution with Plog 5á ñ = and 2.3Plogs = for
Må> 0.7Me and Plog 3.8á ñ = and 1.3Plogs = for Må�
0.7Me. The distribution of binary mass ratios, q, with FGKM-
type primaries is relatively flat (dn dq q0.3~ ), at least at larger
orbital separations (Duchêne & Kraus 2013), so we adopt a
constant mass ratio of q= 0.5 for simplicity.
For our catalog, we differentiate between three types of

binary systems: resolved, unresolved, and close. A system is
considered resolved if the projected orbital separation is
>0 11, the size of a WFI pixel, and a binary is considered
close if the orbital separation is <100 au. We distinguish close
binaries from unresolved binaries because evidence suggests
that planet occurrence is only significantly suppressed in binary
systems with orbital separations 100 au (Kraus et al. 2016;
Moe & Kratter 2021).
For unresolved and close binaries, we add flux from the

secondary star by interpolating between the mean absolute
magnitudes for main-sequence stars in the catalog in bins of
0.05 Me, and then adjusting for extinction and distance. For
resolved binaries, we make no adjustments, as the presence of
the secondary star should be reflected in the luminosity
function.

Figure 2. The luminosity function (LF) for the bulge population in our simulated catalog compared to observations. The top row of figures shows the empirical
completeness-corrected luminosity function (squares) from Terry et al. (2020), the LF from the default BGM1612 model catalog (gray), the LF after correcting for
binarity and dust (purple), and our final adopted catalog LF, which corrects for binarity, dust, and the bulge IMF (teal). The bottom row of panels shows the star counts
from the default BGM1612 catalog (gray), our catalog after correcting for dust and binarity (purple), and our adopted catalog (teal) divided by the empirical luminosity
function. The error bars were calculated assuming Poisson uncertainties from the empirical LF, adjusted for catalog completeness and proper motion selection
efficiency. For the residuals, the empirical LF uncertainties were added in quadrature with the Poisson uncertainties from the generated catalog. The BGM1612 model
underpredicts NIR star counts below the main-sequence turn-off (i.e., J  18.5, H  18), even after adjusting for dust (purple), which necessitates the amended bulge
IMF in our final adopted catalog (teal). The turnover at H > 23 is likely too early and a result of the BGM1612 model excluding very low-mass dwarfs (Må < 0.15Me)
in the bulge population.
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2.2.3. Bulge Initial Mass Function

After the above extinction correction and inclusion of binary
systems, the bulge population in the simulated catalog will still
underpredict the LF below the main-sequence turn-off at J 19
and H 18, with an increasing discrepancy at dimmer
magnitudes (purple line in Figure 2). This implies the need
for a steeper IMF, as lower-mass main-sequence stars are
underrepresented. To adjust for this, we resampled the current
catalog with replacement, so that the mass distribution would
follow a newly defined IMF of the form dn dm mµ a- . We
define the power law such that α= 2.7 at Må> 0.7Me, and
α= 1.0 at 0.7Me�Må< 0.15Me. For comparison, the default
IMF used by BGM1612 adopts a power law broken at 0.7Me
as well, but uses α= 2.3 for the high-mass sample and α= 0.5
for the low-mass sample. Adopting the new IMF removes the
slope in the residuals at dimmer magnitudes in the J and H
bands. This amended IMF was only used to adjust the stars in
the bulge population.

2.2.4. Limitations and Other Discrepancies

The LFs for our adopted catalog in the I, J, and H bands are
shown by the teal line in Figure 2. Our amendments to the
original BGM1612 catalog were designed primarily to match
the LF at dimmer magnitudes in the NIR. The residuals are
slightly underpredicted in H by 3% and slightly overpredicted
in J by 5%, with typical scatter of 10% in J and 6% in H. As a
result of these priorities, the I-band LF between the two
catalogs has larger discrepancies.

For example, our simulated catalog overestimates the
empirical LF at I≈ 18 compared to the inferred uncertainties.
This apparent magnitude range is dominated by subgiants and
G dwarf binaries, and the discrepancy likely arises from our
simplistic treatment of stellar multiplicity, where we assume a
constant q= 0.5 for all binary systems. Because the flux
contrast between the primary and secondary star in a binary
system depends more strongly on q at shorter wavelengths, the
same residual feature is reduced in the NIR (see J≈ 18,
H≈ 16.5 in Figure 2) and therefore should not have a
significant impact in our simulations. However, this discre-
pancy does lead to our adopting an IMF that reduces the
inferred number of G0-2 dwarfs in the bulge, which may bias
our planet yield estimates in this parameter space. Because
binary fraction is anticorrelated with metallicity, it is also
possible that our model overestimates the binary fraction in the
bulge as a whole (Badenes et al. 2018; Moe et al. 2019; Price-
Whelan et al. 2020). This assumption is revisited in
Section 4.6.3.

The largest discrepancy is at IVega 21, where our adopted
catalog overpredicts the LF by as much as a factor of ∼3 at
I≈ 24, with a steeply increasing slope at dimmer magnitudes.
This leads to our catalog overpredicting the total number of
stars in the range I= 14–24 by 77%. This is likely caused by a
combination of effects, such as differences in the low-mass
IMF, our treatment of extinction, model isochrones for
Må< 0.7Me, and systematic differences in the adopted filters,
where at redder colors the assumption that I≈ F814W
diverges, with differences on the order of ∼0.2 mag
(Harris 2018). However, a thorough examination of these
effects is outside the scope of this paper, as our motivations
primarily require our catalog to reproduce the near-infrared LF
at H∼ 16–20, where most of the transiting planets will be

detected (Montet et al. 2017), and from H 22, where we can
accurately simulate the effects of crowding. This goal is
accomplished well, where the difference in total number of
stars integrated over this range is <0.1% between our adopted
model and measurements.
One final shortcoming of our adopted catalog is the

exclusion of very low-mass dwarfs (Må< 0.15Me) from the
bulge population. The exclusion of these stars results in an
early turnover in the bulge LF (H∼ 23). However, because we
only generate light curves down to H≈ 20, this exclusion is
unlikely to have a significant impact on our estimated transiting
planet yield, although it may lead us to underestimate
photometric uncertainties caused by crowding and the diffuse,
confusion-limited stellar background.

2.2.5. Comparison to Other Simulated Bulge Catalogs

Our methodology for creating a simulated catalog follows
the logic of Penny et al. (2019), who focused primarily on
microlensing event rates. Penny et al. (2019) adopted an earlier
version of the Besançon Galactic population synthesis model
(BGM1106; Robin et al. 2012), and then in a similar strategy
scaled the microlensing event rate to match empirical star
counts measured in the SWEEPS field (Calamida et al. 2015).
Where our catalog diverges is in the choice of empirical
luminosity function and the particular bulge field with which
we calibrated our stellar density estimates.
We used a luminosity function measured from the Stanek

field rather than the SWEEPS field, because it is closer to the
proposed microlensing survey fields. From the choice of field
alone, we should expect a 40% increase in the total number of
bulge stars (Terry et al. 2020). Comparing the number of stars
in our simulated stellar catalog to that used by Penny et al.
(2019), we have a nearly constant ∼50% increase in the
number of bright (F146< 21) stars in the full survey, which is
approximately consistent with these expectations.
In addition, because we calibrated our catalog to J- and H-

band star counts, rather than I-band, we were prompted into
adopting a steeper IMF for the bulge stars. This choice, in
combination with the different choices in extinction, may
inflate the number of lower-mass stars (<0.8Me) in our catalog
relative to the catalog from Penny et al. (2019). This is apparent
in a nearly ∼100% increase in the number of stars with
F146< 23. This increase does not directly affect our results, as
we are only considering stars with F146< 21, but the number
of stars does directly contribute to crowding, which will
generally decrease the transit survey efficiency by adding
additional photon noise, in particular for stars in dimmer
magnitude ranges. Thus, in a somewhat contradictory manner,
our increase in the number of stars, in particular at
F146≈ 21–23, may actually lead to us predicting a transit
survey efficiency that is too low.

2.3. Assumed Exoplanet Population

To simulate the exoplanet population, we follow the same
procedure as in Barclay et al. (2018), which we outline below,
but with some updates to the assumed occurrence rate
distributions. The basic process is as follows: first, we draw a
random number of planets from a Poisson distribution
consistent with measured occurrence rates (i.e., number of
planets per star). Next, each planet is assigned properties such
as radius and orbital parameters. Then, each planet is randomly
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assigned to a main-sequence or subgiant star within our stellar
catalog, defined by the luminosity class assigned in the
BGM1612 model. Even though low-luminosity red giant
branch stars are known to host a similar number of large,
close-in planets compared to their main-sequence counterparts
(Grunblatt et al. 2019; Temmink & Snellen 2022), only dwarf
and subgiant stars are considered as viable planet hosts in this
work, because modeling RGB sources would require a more
careful treatment of correlated noise from asteroseismic activity
and second-order detector effects not presented here.

To be consistent with the observed demographics in planet
orbital period (P) and radius (Rp), we adopt planet occurrence
rates across two differing grids in the P–Rp plane, one for
AFGK stars and one for M stars (Rå< 0.6Re, Teff< 3900 K),
based primarily on the occurrence rates from Hsu et al. (2019)
and Dressing & Charbonneau (2015), respectively. Table 2
gives an overview of the source of the assumed planet
occurrence rates. While Hsu et al. (2019) only report
occurrence rates for FGK stars, the number of A stars in our
simulated stellar catalog is small, so this is unlikely to impact
our overall planet yield estimates.

Because Kepler discovered very few planets with Rp> 4 R⊕
orbiting M dwarfs, we are forced to make assumptions about
the period and radius distribution of such planets. Thus, for this
population, we assume the same P–Rp distribution as was
measured by Hsu et al. (2019) for FGK stars out to
P= 256 days, but lower the overall occurrence by a factor of
3, consistent with the relative occurrence of giant planets
between M dwarfs and G dwarfs measured by Johnson et al.
(2010). This treatment is consistent with recent estimates of the
occurrence of hot Jupiters orbiting early M dwarfs from TESS
(Gan et al. 2023).

To account for long-period planets around AFGK stars
(P> 512 days), we adopt the occurrence rates from Herman
et al. (2019), who estimated occurrence rates for planets with
orbital periods, P = 2–10 yr and radii from Rp= 3.7–11.0 R⊕
from planet candidates with only one or two transits in the
Kepler data, modified to have a constant occurrence rate
density (i.e., number of planets per Plog – Rlog p bin) over the
period range of P = 512–7300 days. Because small planets are
unlikely to be detected around AFGK dwarfs at long periods,
we can safely ignore planets with Rp< 3.7R⊕ at periods longer
than 512 days without compromising our inferred detection
yields.

Unfortunately, there is not a good estimate for the radius
distribution of planets with M dwarf hosts at orbital periods of
P> 200 days. Instead, we adapt results from RV surveys for
Jupiter-sized planets (Rp> 8R⊕), and for small planets we
extrapolate from the occurrence rates used at shorter orbital
periods. More specifically, for smaller planets, (Rp< 8R⊕), we
extrapolate the occurrence rate densities at the longest-period
bin (P= 200 days for Rp< 4R⊕ and P= 256 days for
Rp= 4–8 R⊕) already adopted for each radius bin, out to
P= 7300 days, similarly to the methodology adopted by
Kunimoto et al. (2022).

For Jupiter-sized planets, Rp= 8–12 R⊕, at P> 256 days we
adapt the results from Montet et al. (2014), who used direct
imaging to rule out stellar contaminants and interpret long-term
RV trends, and inferred an occurrence rate of 0.083± 0.019
planets per star within a planet mass and semimajor axis range
of Mp = 1–13MJup, and a = 0–20 au. Subtracting the giant
planet occurrence rates adopted for P< 256 days and scaling

the occurrence rate to preserve a constant occurrence rate
density results in an inferred occurrence of 0.036 planets per
star with P = 256–7300 days and Rp = 8–12 R⊕.
These grids result in a total inferred planet occurrence rate of

λAFGK= 2.69 and λM= 4.68 planets per star. For each planet,
six random values are assigned: orbital period (P), planet radius
(Rp), epoch of first transit (t0), eccentricity, cosine of the
inclination ( icos ), and argument of periastron (Ω). To
determine P and Rp, each planet is assigned a bin based on
the relative occurrence of each bin in the two occurrence rate
grids, as described above. Once the P–Rp bin is assigned, the
period and radius are drawn from a log-uniform distribution
over the period and radius range of the bin size. For the
argument of periastron and the cosine of inclination, we draw
from a uniform distribution of −π to π, and from 0 to 1,
respectively. The eccentricities are drawn from a beta
distribution with parameters α= 1.03 and β= 13.6, consistent
with findings from Van Eylen & Albrecht (2015). The epoch of
first transit is chosen from a uniform distribution between 0
and P.
All planets within a system are assumed to be coplanar, and

we intentionally do not adjust multiple planet systems with
unphysical orbits, such as those that cross each other, to remain
consistent with empirical constraints on the overall number of
planets per star. Because of this simplistic treatment, our
methodologies will bias the inferred yield for multiplanet
systems.
We remove planets with randomly assigned semimajor axes,

a, within the stellar radius, a� Rå. This limit may prove
interesting because we consider subgiant stars while Hsu et al.
(2019) restricted their planet-search sample to main-sequence
stars, so these populations may have intrinsically different
minimum semimajor axes, due to planet engulfment. However,
changing this requirement to a� 2Rå or a� 3Rå to consider the
possibility of planet engulfment has a relatively minor impact
(3%) on the overall planet yield, due to the intrinsically low
planet occurrence measured by Hsu et al. (2019) at P< 1 day,
so we elect not to change this limit.

2.3.1. Changes in Exoplanet Population with Stellar Metallicity

Because planet occurrence is intimately correlated with
stellar metallicity, we also consider the yield under assumptions
that the occurrence weights used above scale with host star
metallicity. For this case, when computing the overall planet
detection yields, we weight the sum of detected planets by
specific planet classes based on their relative expected
occurrence defined by the host star’s metallicity. For this
purpose, we adopt the correlations measured in Wilson et al.
(2022), who parameterized the occurrence rate as a power law,
fp∝ 10β[Fe/H], and inferred β for different planet radii and
orbital period ranges (hot planets: P� 10 days, warm planets:
P = 10–100 days). The adopted values are shown in Table 3.
For hot, large radius planets (i.e., sub-Saturns and Jupiters)
where Wilson et al. (2022) did not infer a reliable dependence,
due to small number statistics, we instead adopt the equivalent
measurements from Petigura et al. (2018). In these cases, it is
worth noting that the values from Wilson et al. (2022) were
inferred from a magnitude-limited sample in the infrared,
which is deeper than that from Petigura et al. (2018) and as a
result is more likely to be representative of the sample used to
calculate occurrence rates by Hsu et al. (2019). Because these
metallicity-planet occurrence relations are only valid for
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metallicities as high as [Fe/H]≈ 0.4, we do not extrapolate the
power-law relation beyond this upper limit in metallicity.

These metallicity-based occurrence rates were calculated for
FGK host stars, but we elect to use them for M dwarf hosts as
well. Due to the difficulty in deriving metallicities for M
dwarfs, there is not an equivalent study with a parameterized
occurrence rate–metallicity dependence for a range of planet
radii and orbital period, from a similarly well-characterized
sample (i.e., with metallicities from high-resolution, high
signal-to-noise (S/N) spectra, where σ[Fe/H]<0.1 dex). How-
ever, there is some evidence that, for late-type stars, metallicity
is strongly correlated with both giant planet occurrence (Neves
et al. 2013; Montet et al. 2014) and small-planet occurrence (Lu
et al. 2020). These studies suggest that the dependence between
planet occurrence and stellar metallicity may actually be
stronger for low-mass stars than for solar-type stars. As a result,
it is possible that changes in yield due to metallicity effects may
actually be underestimated for low-mass stars in this work.

2.4. Simulated Data

For the purpose of including the effects of crowding and
pipeline uncertainties on the final transiting planet yield, we
simulate all images for one of the detector assemblies near the
edge of the Roman FOV. For this purpose, we use a custom-
created tool, the Roman IMage and TIMe-series SIMulator
(RImTimSim; Wilson 2023),13 to create simulated calibrated
images. RImTimSim aims to improve upon synthetic Roman
data generated in previous Galactic bulge simulations by
accounting for the specific readout pattern and “up-the-ramp”
sampling of the Roman sensors compared with prior works that
modeled the instrument noise as a CCD (e.g., Montet et al.
2017; Penny et al. 2019; Johnson et al. 2020). The process with
which RImTimSim generates simulated images is outlined in
the following sections. To demonstrate the typical noise,
optical, and detector properties captured by RImTimSim, a
simulated RGB color image is shown in Figure 3.

2.4.1. Expected Source Flux

RImTimSim calculates an expected flux per pixel based on the
locations and magnitude of stars in the image. Each star is
represented by a delta function that specifies its position on the
detector and expected flux amplitude. The expected source flux is
then calculated by convolving the sum of delta functions by an

appropriately normalized point-spread function (PSF) over the
detector array. Finally, other flux sources are added to the image,
such as the expected sky flux and thermal background, to create
the final expected source flux image. To include noise, the
expected source flux is scaled according to the exposure time, and
then the “measured” flux is determined by randomly drawing from
a Poisson distribution with the mean equal to the expected flux.
For this work, we assume a constant PSF and define the

centroid of a star on the detector to within a four-by-four grid
per pixel. This oversampling is adequate to accurately model
crowding from stars with subpixel separations and to prevent
systematic photometric errors in our simulations that may
otherwise correlate with the position of the source relative to
the center of a pixel. The model PSF was calculated via the
Python package webbpsf14 (Perrin et al. 2014), where we
adopted 8 mas of high-frequency pointing jitter (i.e., within a
single exposure), assumed the optical center of detector
assembly SCA07, an array at the edge of the WFI field of
view, and adopted an SED representative of an M0V star
because it is consistent with the average temperature of a star in
our simulated catalog. Because we assume a constant PSF
across the detector, the expected source flux can be computed
via a single fast Fourier transform (FFT), significantly
increasing the computational efficiency of our simulated image
generation pipeline. Thus, our methodology makes an implicit
assumption that the photometric performance, and by extension
the transiting planet yield, depends only weakly on PSF
variations due to variables such as position on the focal plane
and source SED. Because we do not consider the response of
the pixels themselves, we are also making an implicit
assumption that intrapixel sensitivity variations are negligible.

Table 3
The Power-law Dependence of Planet Occurrence Rate on Metallicity Adopted

for This Study

Rp/R⊕ βhot βwarm

<1.9 0.72 −0.62
1.9–4.0 2.34 0.47
4.0–8.0 5.5a 2.1
>8.0 3.4a 0.86

Note.
a From Petigura et al. (2018).

Table 2
Literature Sources for Adopted Planet Occurrence Rates across the P–Rp Grid

Spectral Type Period (days) Radius (R⊕) References

AFGK 0.5–512 0.5–16 Hsu et al. (2019)
512–7300 3.7–11 Herman et al. (2019)

M 0.5–200 0.5–4 Dressing & Charbonneau (2015)
200–7300 0.5–4 Dressing & Charbonneau (2015)a

0.5–256 4–16 Hsu et al. (2019), Johnson et al. (2010)b

256–7300 4–8 Hsu et al. (2019), Johnson et al. (2010)a,b

256–7300 8–12 Montet et al. (2014)

Notes.
a Extrapolated for each radius bin from the longest-period bin.
b Radius distribution adopted from Hsu et al. (2019), with the overall occurrence scaled to match the occurrence rate for M dwarf hosts relative to G dwarfs measured
by Johnson et al. (2010).

13 https://github.com/robertfwilson/rimtimsim 14 https://github.com/spacetelescope/webbpsf
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2.4.2. Pixel-level Injections

Each star in our simulated catalog has a defined magnitude in
the Johnson–Cousins RIJHK photometric system. We first
convert the RIJHK magnitudes to F146, assuming the relation

J H
K

F146
2

2.5, 1AB AB
AB⎛

⎝
⎞
⎠

= + + ( )

where the JHK magnitudes are first converted to the AB
system.15 We use these magnitudes to define the baseline flux
for the delta functions outlined in the previous section.

To inject the transiting planet signals into the simulated
images at the pixel-level, we update the baseline flux for each
star with a transiting planet, at each time, t, with a transit model
light curve calculated via the Python package batman
(Kreidberg 2015). This model is computed with the following
parameter basis: orbital period (P), planet–star radius ratio
(Rp/Rå), scaled semimajor axis (a/Rå), epoch of first transit
(t0), inclination (i), eccentricity (e), and longitude of periastron
(Ω). The light curves adopt a quadratic limb-darkening law
with the H-band coefficients from Claret & Bloemen (2011),
with each star adopting the nearest point on a grid of Teff, glog ,
and [M/H]. In this way, we modify the existing stellar catalog
at each cadence to accommodate time-dependent flux varia-
tions due to the transit signal. Because we do not add any other
source of variation, the light curves derived from this work
should contain purely white noise, with the exception of
transiting planet signals from the source itself or from a nearby
star polluting the aperture.

2.4.3. Detector Readout

Because WFI sensors can be read nondestructively (e.g.,
without a reset), the readout strategy used by Roman will be to
sample “up the ramp.” This method records the signal of
each pixel multiple times during an exposure (Fowler &
Gatley 1990). The whole sensor is read nondestructively every
3.04 s; this read is called a frame. The number of frames in an
integration (which ends with a reset) can be set to different
values depending on the science objectives.
RImTimSim offers two choices to simulate the WFI readout

scheme: “ccd” and “ramp.” The “ccd” mode treats the
exposures as a CCD would, where pixels collect photons for
a determined exposure time before being destructively read out.
To correctly simulate the noise for bright stars that would
saturate in the nominal exposure time, RImTimSim increases
the saturation limit by a factor of t texp read, but compensates by
increasing the photon noise for pixels whose expected source
flux is above the nominal saturation limit. This results in an
effective noise floor set by a Poisson distribution with a mean
and variance corresponding to the saturation limit.
For this study, we employ the “ramp” mode, which simulates

the process of several nondestructive reads (i.e., “sampling up
the ramp” or SUTR; Fowler & Gatley 1990; Fixsen et al. 2000)
at the cost of an increased computational load. This allows for
readout strategies that may reduce the effective read noise, as
opposed to the “ccd” mode, which assumes a fixed read noise
equivalent to the measured correlated double-sampling (CDS)
read noise.
The “ramp” mode in RImTimSim allows the user to specify

the number of read frames (i.e., a single nondestructive read)
per resultant frame, where a resultant frame is an average of
several consecutive read frames (often referred to as a “group
frame”). The precise readout strategy for the GBTDS has yet to
be decided, but it is expected that there will be six resultant

Figure 3. Simulated false-color image of the adopted GBTDS field created by RImTimSim. (A) A 512 × 512 pixel RGB image, which corresponds to ∼0.09% of the
full WFI field of view. The pixel scale is demonstrated by the white bar in the top right corner. The combined image consists of a 215 s exposure in the F184 bandpass,
a 46.8 s exposure in the F146 bandpass, and a 180 s exposure in the F087 bandpass for the red, green, and blue channels, respectively. The red box is a 5″ × 5″ cutout
with more detail shown in subfigures (B)–(E). (B)–(E) A zoomed-in version of the red box in (A), showing each individual RGB component, as well as the combined
image. The individual bandpass images (B), (C), and (D) are on a logarithmic scale, while the RGB images (A) and (E) are scaled to highlight the diffraction spikes
using a modified version of the algorithm from Lupton et al. (2004).

15 For reference, we adopt JAB − J = 0.91, HAB − H = 1.39, and KAB − K =
1.85.
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frames, combined from 18 total nondestructive reads, corresp-
onding to an effective exposure time of 51.7 s between the first
and last read frames. Based on these restrictions, we adopt a
candidate readout pattern for the GBTDS from Casertano
(2022), which consists of a sequence of six resultant frames
containing one, two, three, four, four, and four read frames (i.e.,
the first resultant frame contains only read frame 1, the second
resultant frame is the average of read frames 2 and 3, the third
resultant frame is the average of read frames 4, 5, and 6, etc.).16

From the six resultant frames, we infer the slope of the
accumulated flux in each pixel using a linear least-squares
fitting routine with the weighting scheme from Casertano
(2022). The final generated image thus consists of the fitted
slope in each pixel, reported in units of electrons per second.

The primary benefit of sampling up the ramp is to reduce the
read noise in a given exposure, so it is unlikely to provide a
significant reduction in the photometric uncertainty for most of
the planet search stars considered in this survey, as they will be
largely limited by photon noise or crowding from nearby
sources. However, this readout strategy still offers several
advantages. Most important for our purposes, the sampling rate
allows one to recover the signal for stars that would saturate in
exposures longer than the readout time of the detector but
shorter than the total integration time (hereafter referred to as
“semisaturated”), in a way that is consistent with the actual
survey resulting in a more accurate photometric treatment of
bright stars. For instance, the flux measured by a pixel that
saturates in 7 s can be inferred from the flux measured in the
first (3.04 s) and second (6.08 s) frames, even though all
following frames will contain no useful information. Combin-
ing this with our strategy for creating resultant frames, the flux
of the same pixel will be inferred from only the first resultant
frame (which consists of one read frame; the equivalent of a
3.04 s exposure), because the second resultant frame (created
from the average of the second and third read frames) and all
following resultant frames will be saturated.

Unlike CCDs, the WFI H4RG-10 arrays do not bleed or
bloom around saturated pixels, and therefore accurate photo-
metry can still be recovered for sources on or near such pixels
(Gould et al. 2015; Mosby et al. 2020). To first order, the
charge accumulated past the saturation limit on a pixel is lost
(i.e., not registered in the readout electronics or by neighboring
pixels), though in practice some charge will reappear in later
exposures through second-order effects such as persistence, and
pixels with a lot of accumulated charge will interact more
strongly with neighboring pixels (see also Section 5.5.4).

2.4.4. Photometric Uncertainty per Pixel

The photometric uncertainty (σphot) for each pixel can be
estimated based on the model from Rauscher et al. (2007):
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where f is the total flux in electrons per second from the source,
thermal background, sky background, and dark current on the

pixel, σread is the read noise, not to be confused with the CDS
read noise, n is the number of resultant frames, m is the number
of data frames per resultant frame, tf is the time between frames
(in this work, tread), and tg is the time integrated within a group
(in this work, we assume 2tread). Figure 4 shows the
photometric precision for a 5× 5 pixel square aperture for an
isolated star at varying magnitude, compared to this model.
This formula is derived assuming a constant number of read

frames per resultant frame. Although our readout pattern does
not fit this criteria, and a more appropriate treatment would be
one that considers a nonuniform sampling scheme (Case-
rtano 2022), we find that this treatment accurately predicts the
noise to within ∼5% of our simulations when adopting n= 2
and m= 9, so we elect to continue with this approximation. It is
only when semisaturation effects cause additional scatter (as is
expected) that the model begins to diverge significantly.
To estimate the effects of semisaturation, we add σphot in

quadrature with the photon noise of a source at the saturation
limit. In principle, WFI can perform precision photometry
better than this limit if careful attention is paid to modeling the
wings of the PSF (Gould et al. 2015), but given the small
number of saturated sources in our simulated data, ignoring
such sources will have only a minimal impact on our results.
In the context of this study, the main differences in the “ccd”

and “ramp” modes occur for semisaturated sources where the
“ccd” mode will underestimate the photon noise as being equal
to the saturation limit. In reality, the photon noise never quite
reaches the saturation limit, due to the finite readout time. This
is demonstrated in the sawtooth-like pattern for stars with
F146< 17 in Figure 4.

2.4.5. Light-curve Generation

We apply a simple aperture photometry pipeline to generate
light curves from the simulated images. For each star, we create
a light curve using circular apertures with radii from 1 to 4
pixels (0 11–0 44) in steps of 0.5 pixels. Pixels that are only
partially contained within an aperture are weighted by the
fraction of the pixel expected within a circular radius. The
expected contribution from the thermal and sky background
(5.23 e− s−1 pix−1 in the F146 bandpass) is subtracted from the
image before applying the aperture photometry routine. The
uncertainty for each photometric point is estimated by adding
in quadrature the variance of each pixel estimated from
Equation (2), where f is replaced with the total accumulated
flux so as not to underestimate the uncertainty from
semisaturated pixels.
The centers of the apertures are placed to match up exactly

with the position of stars on the detector. This is not necessarily
realistic, as positions for stars will have some uncertainty that
will reflect on the aperture placement and degrade the
photometric precision. However, the aperture photometry
methods used in this work are an approximation to the PSF
photometry methods that will likely be applied for the GBTDS
data. As a result, even with the uncertainty neglected via the
exact placement of the photometric aperture, the actual
photometric noise may be overestimated compared to reality,
due to the limited choice of apertures, as opposed to PSF
methods, which will much more effectively compensate for
crowding by applying lower weights to noisier pixels.

16 The candidate readout pattern from Casertano (2022) actually contains 19
read frames, where the last resultant frame contains 5 read frames instead of 4,
but we elected to adopt the readout pattern specified in the Roman Design
Reference Mission of 18 total read frames.
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3. Detecting Transiting Exoplanets

In this section, we describe our methodology for simulating
the transiting exoplanet search in the GBTDS. Our high-level
strategy is to define a set of analytic formulae to model the WFI
photometric performance, and then by extension the overall
GBTDS transit survey efficiency. We validate the analytic
formulae by generating synthetic full-frame images with
injected transiting planet signals, generating light curves for
each simulated transiting planet from the pixel-level data, and
finally by applying a simulated transit detection pipeline for
each generated transit light curve. The results from these pixel-
level injections are then used to infer parameters in our analytic
models and characterize the expected completeness of the
GBTDS transiting planet survey.

This section is organized as follows: Section 3.1 describes
our analytic model for estimating the efficiency of the GBTDS
transit survey. Sections 3.2 and 3.3 respectively describe what
constitutes a detection and our methodology for simulating a
transit detection pipeline. In Section 3.4, we develop our
photometric noise model, with particular attention given to
crowding. Section 3.5 describes the synthetic data we generate
to validate and fit our analytic model. Finally, this section ends
with the results from applying our detection pipeline on the
simulated full-frame images and a discussion of the overall
transit detection sensitivity expected from the GBTDS in
Sections 3.6 and 3.7, respectively.

3.1. Analytic Formulae for Estimating Survey Completeness

We can characterize the likelihood of an arbitrary transiting
planet being detected (pdet) as a function of just one parameter,
the transit S/N, which itself depends on the properties of the
planet, stellar host, and the quality of the GBTDS light curve.
To first order, this value can be approximated as a step
function, where p 0det= below some S/N threshold and p 1det=
above some threshold. Due to the variance in detection
efficiency caused by effects such as crowding, as well as
measurement uncertainty in the detection pipeline, we instead
define the expected S/N (S Nexp) of an arbitrary transiting
planet. This value should be interpreted as the S/N of a
transiting planet in the GBTDS under several simplifying
assumptions, such as circular and edge-on orbits, box-shaped
transits, and the average photometric noise for a given apparent
magnitude. We calculate this value through the following
expression:
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where ntran is the number of transits in the data, R Rp
2 2

 is the
transit depth, Δt/tdur is the observing cadence divided by the
transit duration, and σdpp is the expected differential photo-
metric precision for a single exposure. σdpp is a complicated
function of instrumental effects and apparent magnitude, and it
is described in more detail in later sections.
The purpose of our detection model then is to marginalize

over the distributions in these secondary parameters (e.g.,
crowding, measurement variance, eccentricity, and impact
parameter) to give a probability, pdet, that a transit signal with
a given S Nexp is detected. We model this probability as a
generalized logistic function of the form

p x C e , 4x x
det

0a g= + b g- - -( ) ( ) ( )( )

where x S Nexp= and C, x0, α, β, and γ are free parameters.
This function asymptotically approaches 0 at arbitrarily low
S Nexp and 1 (or some other arbitrary upper limit between 0 and
1) at high S Nexp.

3.2. Detection Criteria

Typically, transit surveys have two main criteria for
considering a detection: the transiting event must meet some
S/N threshold, and the planet must transit at least two (or
more) times to unambiguously determine the orbital period.
For the Kepler survey, the threshold for detection was set to

7.1σ, and each planet candidate had to transit a minimum of
three times. The choice of detection threshold set by the Kepler
mission was made with the expectation of only one false alarm
over the course of the survey. Given the expectation for the
Kepler mission to observe ∼105 stars and perform the
equivalent of 1.7× 107 independent statistical tests per star,
treating each test as an independent process thus required a
threshold with a false-alarm probability of 1 in 1.7× 1012,
which corresponds to a threshold of 7.1σ (Jenkins et al. 2002).
This estimate was made in the absence of red noise and
instrumental systematics, so the effective threshold is actually
higher than this.
Because the threshold adopted by the Kepler team is likely

not appropriate for the GBTDS, we elect to determine a new

Figure 4. RImTimSim generates images that yield photometry with realistic
uncertainties. The circles show the measured RMS scatter from white-noise
light curves generated from simulated images of isolated point sources,
assuming a constant aperture. The total expected noise, estimated from
Equation (2), is shown by the black line, and the dashed lines show the
contributions from individual noise components. The gray shaded region shows
the range of noise floors expected for stars with one or more nearly saturated
pixels in their aperture. This floor varies based on the location of the point
source relative to the center and edges of a pixel. The structure in the RMS
scatter at F146  18 is due to semisaturation effects, which are exacerbated by
the relatively small aperture used to make this figure.
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threshold following a similar line of logic. Roman should
observe ∼108 stars (∼6 ×107 stars with F146< 21 are
considered in this work) with the photometric precision
necessary for detecting transiting planets. However, the number
of effective statistical tests performed throughout the campaign
is less clear, given our constraints of P< 72 days and the large
time gaps between seasons. For Kepler, this number was
estimated by simulating transit searches for >106 white-noise
light curves, but adopting a similar Monte Carlo approach for
the GBTDS would require simulating a transit search over
>109 light curves, which would be computationally expensive.
Instead, we adopt the same number as the Kepler mission,
which should be a reasonable upper bound given that Roman
will search over a shorter range of periods and will have fewer
total cadences (∼41,000 for Roman versus ∼73,000 for
Kepler). Therefore, we adopt a false-alarm probability of 1 in
1.7× 1015, which corresponds to a detection threshold of 8.0σ.

Thus, for a transiting planet to be considered a detection, the
planet must have �7 transits through all six seasons of the
survey and be recovered with a significance greater than 8.0σ.
In the spirit of optimism, we also consider the case in which a
planet has �1 transit per season (i.e., �6 total), as a significant
fraction of planets may still be detectable with even a single
transit across all seasons, although the period of such a system,
even with one transit per season, may be ambiguous. Thus,
throughout this work, we report planet yields and detection
efficiencies based on both of these criteria. If not explicitly
stated, planet yields over large regions of parameter space are
taken to be an approximate average assuming both criteria,
often rounded to one or two significant figures for simplicity.

The criteria we adopt are made under the assumption of
Gaussian noise, which may not be a realistic expectation. This
is particularly true for Roman, which is expected to have
dithered observations that are likely to produce light curves
with correlated noise due to intrapixel and interpixel sensitivity
variations in addition to correlated noise from astrophysical
sources such as starspot modulations.

3.3. Simulated Detection Pipeline

To simulate a detection pipeline, we apply a simple matched
filter. This approach has a few advantages for our application.
First, the detection efficiency of a matched filter can be
characterized by a single parameter, the transit S/N (see
Section 3.1), which simplifies our assessment of the GBTDS
transit search completeness. Second, the formulation of the
matched filter provides a simple interpretation for the
detectability of a transit signal, without the need for calculating
a computationally intensive periodogram, as may be required
for, e.g., the box least-squares algorithm (Kovács et al. 2002),
where the detection statistic is defined as a function of period.

The matched filter is formulated such that, under the null
hypothesis (i.e., no transit signal is present), the detection
statistic returns a value with a mean of zero and a variance of
one. In the case where a signal is present, the detection statistic
returns a value also with a variance of one but with a mean
proportional to the transit S/N. Thus, if the detection statistic is
sufficiently larger than that expected under the null hypothesis
(in this work, 8.0σ), we can reject the null hypothesis and
consider the signal to be present.

The matched filter can be described mathematically by
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where Zi is the detection statistic at each cadence, i, also referred to
as the single-event statistic (SES), xi is the flux time series, R is
the autocorrelation matrix of the noise, and si is the signal template.
Because the photometric noise in our simulations is very nearly
Gaussian and stationary, there is no need for a time-varying
estimate of the noise nor is there a need to estimate the noise power
spectrum. This is not strictly true, because every bright star in our
simulations contains a transit signal, so crowding from nearby
bright stars will add a small amount of correlated noise into the
light curve, but because the duty cycle of a transiting planet is
relatively small, this should be a reasonable approximation. Under
these assumptions, the autocorrelation matrix becomes proportional
to the identity matrix, R= σ2I, where σ2 is the variance of the flux
time series. Because the variance is a constant, we can approximate
it using the median absolute deviation (MAD) of the flux,
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and calculating the SES simplifies to a simple cross-correlation,
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where ∗ is the convolution operator, s−i is the time-reversed
transit template, and the denominator is a constant over all i.
This gives the likelihood that a transit exists at a given cadence,
i. To test for transits at a given epoch, t0, and period, P, we fold
this statistic in the following way:
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where j represents all the cadences specified by a given t0 and
P, nj is the number of cadences in j, and N and D are defined as
in the previous equation. From here on, we refer to Z t P,0{ } as the
multiple-event statistic (MES). It is worth noting that this
formulation of a matched filter requires a uniform cadence,
which may not be the case for the GBTDS, as pointing errors
could result in variance on the acquisition time. However, if
this variance is smaller than the larger of either the exposure
time or the timescale needed to properly sample the transit, it
should be a reasonable approximation.
To apply this matched filter as a simulated detection pipeline,

the transit template is calculated using the same parameters (i.e., P,
Rp/Rå, a/Rå, i, e, and Ω) to match the shape of the model light
curve that was injected, and the MES is calculated for each epoch
at the injected period. One important consequence of the GBTDS
survey strategy is that the exposure time (∼54 s) is significantly
shorter than the observing cadence of 15minutes, and the transit
shape itself is therefore undersampled in the data. This effect
results in a template mismatch at nearly every cadence, resulting in
a slight degradation of the transit detection sensitivity, typically on
the order of ∼5%, but the degradation can be more sinister for
short-duration transits such as those caused by planets orbiting M
dwarfs at short periods or for transits with longer ingress and
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egress durations, such as those with a high impact parameter. To
compensate for this effect, we calculate a total of 15 templates,
each of which has an epoch slightly offset from the center by
t0+ δt0, where δt0 ranges from 0 to 14minutes in steps of one
minute. We experimented with shorter steps but found no
additional increase in the recovered MES. Using each of these
slightly offset templates to calculate a “supersampled” SES with a
cadence of one minute, we then calculate the MES and consider all
values within one transit duration of the injected signal. If the
largest such value has MES> 8.0, we consider the transit signal
detected.

The choice to adopt a transit template with the same parameters
as the injected signal is made out of convenience and is akin to
assuming that the grid of transit templates used in the detection
pipeline is sufficiently populated that template mismatch is
negligible. In a real transit search with no a priori knowledge of
the transit shape or period, some degree of template mismatch is
inevitable, meaning we may potentially overestimate our detection
sensitivity. As an example, for a signal with MES= 8.0 and a
transit duration of 3 hr, typical of a P= 10 days planet orbiting a
Sunlike star, template mismatch caused by a template with a
duration of 2.75 hr (i.e., too short by one cadence) will result in an
average S/N decrease of 0.08σ. Although this is well below the
expected variance in MES, the magnitude of this bias will depend
on the methodology for constructing the template grid and may
disproportionately impact certain areas of parameter space. Given
that transits in the GBTDS will be undersampled, the strategy for
constructing the transit template grid may be nontrivial, and the
optimal choice of templates may vary substantially from star to star
depending on the expected range of transit durations. Simply
adopting a finer template grid is not necessarily a valid solution,
because more finely sampled grids will have higher false-alarm
rates. Thus, we leave the exercise of optimizing the template grid
for a later work, and we continue with the assumption that this
potential bias is negligible.

3.4. Average Differential Photometric Precision

To properly predict the differential photometric uncertainty
for any arbitrary star, we build upon the pixel-level
uncertainties described in Equation (2). In particular, we need
to differentiate between the error on the flux measured by a
pixel and the overall photometric error for a point source. To
accomplish this, we consider three additional parameters to
predict the differential photometric error in our light curves: the
flux attributable to the star of interest ( få), the flux attributable
to neighboring stars ( fN), and the number of pixels used to
perform the aperture photometry, npix. Using these three
parameters, the differential photometric precision per cadence
can be expressed as
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where C0, C1, and C2 are calculated assuming n= 2 and m= 9,
and σread, tg, and tf are defined in Equation (2). The terms ftot
and få are expressed as

f f f n f , 12Ntot pix bkg= + + ( )

f F 10 , 13m zp
aper

0.4 F146= - -
 ( )( )

where Faper is the fraction of the flux from the target star
contained within the adopted aperture, mF146 is the apparent
magnitude of the target star, and zp= 27.648 is the AB
magnitude at which WFI is expected to measure a flux of one
electron per second in the F146 bandpass.
The terms in these last two equations depend on the adopted

aperture radius, (raper). This value can vary significantly by star
based on random fluctuations in the density of nearby
(especially bright) sources. To determine these properties, we
run a series of simulations to understand the optimal aperture
radius chosen for each star, as described below, and the
resulting effects of crowding.

3.4.1. Aperture Crowding

Because of the stellar density in the Galactic bulge, there is
significant photon noise from nearby stars diminishing the
photometric quality of the transit search data. To judge the
impact of crowding in the recovery of transits, we measured the
crowding distribution empirically by generating a set of
synthetic images with RImTimSim.
We constructed a set of time-series images equivalent to one

full season of the GBTDS (72 days, 6913 cadences) with the
same stellar density but only a fraction of the full detector size,
to reduce the computational overhead. We injected a signal
from a transiting planet into every star with F146� 21. The
period and radius of each injected planet was randomly chosen
to be between Rp = 12–16 R⊕ and P = 1–20 days, which is
easily detectable for most of the stars in our catalog, with the
exception of giants and distant subgiants such as those on the
far side of the Galactic bulge. The transit signals were injected
via the process described in Section 2.4.2 and assuming
circular orbits, Sunlike limb-darkening coefficients, i= 90°,
and a random transit epoch, t0.
From these simulated images, we applied our simple aperture

photometry routine to generate light curves for a randomly
selected sample of ∼38,000 stars. Because we injected the
original signal, we know the transit depth a priori, so any
dilution of the transit depth should be due to crowding from
additional flux in the aperture. Thus, by fitting the light curve
with an additional term to account for transit dilution, we can
empirically measure the crowding for each star as a function of
aperture radius.
We define the flux contamination, Γc, as the fraction of total

flux within the aperture that derives from neighboring stars,
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This term is often recast in the form of the dilution factor, D,
which is the factor by which the apparent transit depth from a
crowded source is decreased,
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Each light curve with an injected signal can thus be modeled as

s t s t1 , 16c c¢ = - G ´ + G( ) ( ) ( ) ( )

where s(t) is the injected transit signal and s t¢( ) is the signal
after adjusting for dilution. We measure Γc for each star for
each circular aperture with radii from 1 to 4 pixels as described
in Section 2.4.5, by fitting each light curve for s t¢( ) with a
linear least-squares routine. After fitting Γc for each source in
each aperture, we can visualize the distribution of crowding
using a Gaussian kernel density estimator. The distributions of
Γc for each aperture and magnitude range are shown in
Figure 5.

The question still remains as to which aperture is optimized
for each star. There is a careful trade-off in choosing the
aperture size, as larger apertures will improve the signal of the
source but will also add additional photon noise from
neighboring stars and background flux (i.e., sky and thermal
background). The optimal aperture is a trade-off between these
two extremes and depends strongly on the number and
brightness of nearby stars. Because the crowding for each star
is dependent on the selected aperture, the amount of
contaminating flux should correspond to the aperture that
optimizes the transit S/N. Thus, for each light curve, in
addition to measuring the amount of contaminating flux, we
also apply our simulated detection pipeline to measure the MES
of the injected signal for each aperture, and we adopt the flux
contamination for that star as the contamination in the aperture
that maximized the recovered MES (see Figure 6). This
procedure is akin to simulating a photometry pipeline that
assumes the optimized aperture, from the selected set of
apertures, is always found. The considerations discussed here
are also similar to those employed by optimal-weighting
photometry, where a PSF model is used to define an aperture
that optimizes the photometric S/N. Thus, our methodology
provides a logical precursor, and at least for bright stars, a
reasonable approximation to the more advanced PSF-based
methods that will be used to analyze the GBTDS data.

For some of the brightest stars in our sample (F146 17),
the optimal aperture is larger than the adopted circular aperture
with a radius of 0 44, so the crowding is underestimated,
although the overall noise will be higher. Due to semisaturation
effects, the photon noise limit is capped for pixels in the center
of the PSF, meaning that the relative increase in S/N from
pixels outside the core of the PSF is higher in bright stars,
which combined with our upper aperture radius limit, caps the
light-curve noise for bright stars as equal to that experienced by
a F146≈ 17 mag star.

Using larger apertures would lead to a somewhat paradoxical
effect in which crowding would actually increase for the
brightest stars in the sample, as the S/N gained by including
pixels at larger aperture radii will include more contamination
from other stars. This effect is one limitation of using aperture
photometry to analyze the GBTDS data, as a more sophisti-
cated PSF photometry pipeline would more appropriately de-
emphasize pixels with contaminating sources.

Even at these larger apertures, the noise caused from
crowding will grow very quickly, so this limitation in our
light-curve-generating pipeline should be a fairly modest
concession, and we do not expect the light-curve noise to
decrease significantly more with larger apertures for the stars
considered here. In addition, sources with apparent magnitudes
F146 17 will be prone to other effects not considered in this

work, such as classical and count rate dependent nonlinearities,
the brighter–fatter effect, and persistence (Mosby et al. 2020),
which we are not considering at present, so it is not clear to
what degree including larger apertures would improve the S/N
as expected from this discussion. However, because stars with
F146< 17 represent only a small fraction of the stars
considered in this paper, we leave this more detailed
instrumental characterization for a future work.

3.4.2. Cumulative Aperture Flux

As well as defining the crowding for each star in the sample,
the optimal aperture also sets the cumulative flux and photon
noise collected from the source. Because we are considering
aperture photometry for this study, not all of the flux from a star
is collected for the light curve. As a function of apparent
magnitude, we adopt the average aperture radius used to
optimize the transit S/N for the light curves generated in the
previous section and use that value to estimate Faper. Figure 7
shows Faper as a function of aperture radius.
Brighter stars on average allow for larger apertures because

the background noise, primarily from neighboring sources, is
much lower in comparison to the signal gained with larger
apertures. This relationship is even more significant for
semisaturated sources with the WFI detectors, because not all
of the photons at the center of a stars PSF will be collected. In
this case, larger apertures actually improve S/Ns more than is
expected from simple crowding estimates because the center-
most pixels in the star’s PSF are gathering only a fraction of the
available photons. However, predicting this relationship is
complicated because the exact fraction of photons collected on
semisaturated pixels depends on the position of the star in
relation to the center or edges of the brightest pixel, as well as
the adopted prescription for which read frames are averaged
into resultant frames. To simplify this relationship, in our noise
model we assume a constant Faper for stars brighter than
F146= 17 of ∼83%, and we instead adopt a systematic limit
on the differential photometric precision of ∼1.3 ppt, which
corresponds to the photon noise limit of an isolated star in
which the brightest pixel is just below the saturation limit and
∼14% of the total light is lost because the brightest pixel is
saturated after the first read. Accounting for semisaturation in
pixels neighboring the brightest pixel would reveal an even
larger discrepancy. This ratio is more severe for stars on the
corner of a pixel compared to that of a star on the center of a
pixel, though the saturation limit itself is brighter in the case of
the former. Thus, the relationship shown in Figure 7 is true
only for stars not near saturation, though it still provides a
relatively good approximation for stars with F146 17. At
brighter apparent magnitudes, our noise model underpredicts
the photon noise in our simulations, but the model is likely
closer to reality.

3.5. Synthetic Full-frame Data Production

To measure the transit detection efficiency of the GBTDS,
we simulated a series of full-frame images with RImTimSim
in which every dwarf and subgiant star with F146< 21 on the
detector included an injected transit, following the procedure
described in Section 2.4. The transit signals were chosen to
have a random orbital period drawn from a log-uniform
distribution between 1 and 72 days. Inclinations (i) were
chosen such that the injected transit signals would have a
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uniform distribution in impact parameter from 0 to 1, and the
rest of the orbital parameters (i.e., e, Ω, and t0) were assigned
based on the population statistics and procedure outlined in
Section 2.3. The radius ratio for each signal was chosen such
that the transit signals would be drawn from a uniform
distribution in S Nexp ranging from 3 to 25. This formulation
was chosen to more efficiently characterize our matched-filter
detection pipeline. At arbitrarily low and high S Nexp, the
detection efficiency should plateau at 0% and at some
maximum value just below 1, respectively. Measuring the
detectability of injected transit signals outside these bounds

does not provide significant leverage in characterizing the
GBTDS transit survey sensitivity. In other words, our transit
injection/recovery experiment is optimized by clustering our
injected transits around the transition region where the
likelihood of recovering a signal with MES≈ 8.0σ is high.
Each instance of RImTimSim created a 4088× 4088 pixel

simulated image, at a file size of 256 MB. On a 2.4 GHz CPU,
each image required an average time of ∼24 minutes to
generate. The full simulation required 6913 images—which, if
computed in serial, would have required ∼115 days to create.
As such, we used the Discover supercomputer at the NASA

Figure 6. A light curve of a transiting planet, in a particularly crowded region, generated from multiple apertures in our synthetic images. Each panel is labeled with
the aperture radius, measured MES, and crowding (Γc). The black line shows the injected signal, and the teal line shows the diluted transit signal after fitting for Γc.
The white circles show the relative flux averaged in bins of 15 minutes, the observing cadence.

Figure 5. The distribution functions for the fraction of flux contributed by neighboring stars within circular apertures of varying radii, for different magnitude ranges.
Each panel shows a specific magnitude range, and each color denotes a different aperture radius. The distribution marked by the solid black line shows the crowding in
the aperture that optimized the signal-to-noise ratio of the injected signal, measured via the multiple-event statistic (MES), and this is the crowding distribution that we
adopt to build our noise model. The vertical solid and dashed lines show the median and mean crowding, respectively, in the optimized aperture.
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Center for Climate Simulation (NCCS)17 in order to substan-
tially reduce the time required to generate the images. We used
nineteen 40-core skylake nodes, running six simultaneous
instances of RImTimSim with different input parameters on
each core, iterating until the 6913 images were finished.
Employing this method, we were able to complete the entire
image-production effort in ∼1 day, after which we started light-
curve generation.

For the computational effort involved in light-curve genera-
tion, we again returned to the NCCS Discover supercomputer.
Our simulation required 445,071 light curves. We parallelized
the light-curve construction similar to the image generation.
However, due to reduced memory requirements in comparison
to the image generation, we were able to scale up the effort
significantly, running groups of 40 instances per node, with up
to 1600 instances running simultaneously, depending on
resource availability.

In all, the simulated images contained a total of 451,185 stars
with injected signals. Of these, we ignored stars within 10
pixels of the edges of the 4088× 4088 detector array, primarily
because we did not simulate an astronomical scene beyond the
4096× 4096 numerical array required by the FFT, so stars near
the edges of the detector assembly had unrealistically reduced
noise from crowding and nearby stars. This left 445,071
sources from which we attempted to generate light curves and
simulate the planet detection process using the method outlined
in Section 3.3. Of these, 13,745 sources (3.0%) contained at
least one fully saturated pixel on at least one image within the
largest circular aperture (radius of 4 pixels or 0 44). We
consider events from these sources as nondetections. This left a
total of 431,325 valid light curves from which to perform
injection and recovery tests. Two examples of these light
curves are shown in Figure 8.

There appear to be a few limitations in the methodologies
applied to create light curves in this section. For instance, we

generate light curves based on the catalog of injected sources,
rather than creating a source catalog from the synthetic images
and then using that catalog to extract light curves. This
simplification may ignore uncertainties caused by imprecise
source coordinates (as discussed in Section 2.4.5) or the
likelihood that some sources will be missed (i.e., not identified
for photometric extraction) or merged (i.e., two or more sources
are recovered as a single source) in the catalog. However, we
show in the following section that these biases appear as a
natural consequence of our methodologies for simulating the
transiting planet search and should therefore be implicitly
included in our final planet yield estimates.

3.6. Transit Injection and Recovery Results

For each source, we applied our detection pipeline to the
light curve generated from each aperture and saved the largest
recovered MES. In addition to the recovered MES, we also
recorded the MAD of the flux time series and fit for the
crowding (i.e., Γc) following the same methodology as in
Section 3.4.1. The resulting photometric precision (σdpp) for
294,149 light curves whose injected transit signal has
S N 10exp > , where crowding could reliably be estimated, is
shown in Figure 9 alongside expectations from our instru-
mental noise model and empirically determined crowding
distributions.
As seen from Figure 9, the noise measured from our

simulations matches the expectations from our instrument
model well, with a few caveats. The first caveat being that the
average noise for bright sources (F146 17) is generally
underpredicted by our model, which is likely caused by our
limited choice of apertures and the semisaturation effects
described in Section 3.4.2. One other apparent discrepancy is
the distribution of noise, which appears much more broadly
than in the model and insinuates that some sources have
photometric precision better than the photon limit. This is
caused by increased scatter due to measurement error, because
we use the measured crowding as a metric for determining σdpp.
The outliers are caused by events that have a low recovered
MES, usually due to being near a much brighter star, and thus
an unreliable crowding estimate, compared to the crowding
measured from purely high-S/N events in Section 3.4.1,
resulting in the sources appearing to have significantly worse or
significantly better photometric precision than reality in this
figure. Neglecting such sources in this figure would bias us
against stars with large crowding and force us to underestimate
the photometric noise.
There are several expected deviations between the distribu-

tion of recovered MES and the injected S Nexp. By far the
largest source of variation is crowding. As seen from Figure 5,
the crowding for a source at a given magnitude typically varies
by a factor of 2–4. Our S Nexp value does not take this variation
into account and instead only considers the average crowding
as a function of magnitude. There are smaller effects as well.
For instance, our estimate of the noise is not exact, and it
should be considered with measurement error, such that the
typical variance of the MES may be greater than or less than 1,
as opposed to the formulation in Section 3.3. The net result of
these effects is to “smear” the distribution of recovered MES,
and this typically results in a lower average MES compared
to S Nexp.
For each of the 431,325 light curves, we averaged the

detection rate in bins of S Nexp ranging from 3 to 25 with width

Figure 7. The fraction of total flux from the WFI pixel-response function
(PRF) captured as a function of aperture radius. The circles are the aperture
radii considered in this work and the dashed vertical lines denote the pixel
scale.

17 https://www.nccs.nasa.gov/systems/discover
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of 0.2, and we measured the fraction of each bin in which
MES> 8.0. We then fit these results for C, x0, α, β, and γ in
Equation (4), to determine pdet. The results of these fits are
shown in Figure 10.

In agreement with our initial assessment that crowding is the
dominant factor shaping pdet, we find that the shape of our
logistic function varies substantially with differing magnitude
ranges, as shown in the bottom panel of Figure 10. The
difference in pdet is as large as ∼18% for constant S Nexp
between the bright and dim samples. We also find that, for
brighter stars, p 50%det» for S N 8.0exp = , as is expected as
crowding decreases. We also compared changes in pdet as a
function of other parameters such as spectral type, period, and
number of transits, but found that these parameters have a
negligible impact in our simulations.

As mentioned in the previous section, these injection and
recovery tests naturally reproduce biases caused by incomple-
teness that should be present in the actual transit survey, even
though it is not explicitly modeled by our light-curve extraction
and transit search framework where we generate light curves
and apply our simulated detection pipeline over every star in
the injected source catalog. This is apparent even for the
brightest stars in our simulation, where p 95%det= at arbitrarily
high S Nexp, while for the average source, p 90.1%det= at
arbitrarily high S Nexp. This cannot be fully explained by the
exclusion of saturated sources, which account for only 3.0% of
the source catalog. The remaining 6.9% of sources that are not
recovered even at large S Nexp represent the demographic that
is rarely considered by planet-search surveys: stars that are not
explicitly searched for planets. In other words, the asymptote
for pdet at high S Nexp reflects the relative completeness of the
catalog of planet-search stars. As expected, this number is

magnitude dependent and will depend on the density of bright
stars in the field. In support of this idea, the asymptote at high
S Nexp for stars with F146= 20.5–21.0 (p 88.7%det= ) is
consistent with the completeness measured from deep HST
imaging of the Stanek window for stars with I≈ 21–22 (e.g.,
see Figure 2 of Terry et al. 2020). Although the difference in
bandpass used precludes a direct comparison, this broad
consistency over a similar apparent magnitude range with a
telescope of similar aperture and spatial resolution gives some
credibility to the idea that our methodology accurately accounts
for biases introduced by source catalog completeness.
In light of this effect, it is important to clarify the meaning of

pdet in this work, as there is a subtlety that diverges from typical
planet searches. In the context of most transit search surveys,
pdet is a measure of the completeness of the adopted transit
search pipeline over the observed sample of planet-search stars.
In our work, however, pdet is more accurately defined as a
measure of the transit-search completeness over every star
within the GBTDS observing footprint, rather than every star
within the GBTDS source catalog. While this is a subtle
difference, it does have a few implications that may affect the
interpretation of our results. For example, our yield estimates
make no claim about whether a transiting planet can be
accurately characterized, or even whether its host can be
properly identified. This is likely to have implications for the
false-negative and false-positive rates in the GBTDS transit
survey (see also Section 5.3).

3.7. Overall Survey Sensitivity

The injection and recovery results give the probability that a
given transit signal is detected. To understand the full survey

Figure 8. Example light curves for two simulated sources with transits injected at the pixel level. In each row of figures, the left panel shows the light curve (gray
points), along with the injected signal before (black line) and after (blue line) adjusting for crowding. The right panels show a ∼2″ × 2″ cutout of the region
surrounding the star of interest. Nearby stars brighter than F146 = 24 are denoted by a white “x,” with their sizes indicative of their brightness. The figure label gives
relevant information on the simulated system, including its recovered significance (MES) and crowding (Γc).
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efficiency, we must also consider the probability that a given
planet has an inclination such that a transit occurs from our line
of sight (ptra) as well as the probability that the planet transits at
least the minimum number of times to be detected, also known
as the window function (pwin). In our yield simulations, these
probabilities are computed directly for each source; however, it
is worth calculating these values for the survey as a whole in
order to understand the overall transit detection efficiency. We
define the survey efficiency, η, as the total likelihood that a
planet is detected in the GBTDS, expressed mathematically as

p p ptra win deth = ´ ´ . We show this efficiency for a Sunlike
star at the bright and dim limits of our sample in Figure 11.

For this figure, we calculated the average survey efficiency
for a Sunlike star with a few simplifying assumptions. It should
be noted that this is different from our yield calculations in the
next section where we simulate an actual exoplanet population
before determining which planets are detected. Here, pdet is
calculated for each point in the a, Rp plane using the results of
the injection tests in the previous section, and the model for
S Nexp. Because we are considering an average planet, rather
than ntran directly, we estimate ntran by dividing the product of
the observing baseline and duty cycle by the orbital period.

ptra is calculated assuming a circular orbit and under the
simplifying assumption that Rp= Rå, so that ptra≈ Rå/a. This

assumption may be reasonable even for larger planet-to-star
radius ratios. While we do not consider vetting efficiency in
this work, in the actual survey events that are ambiguous,
planet candidates are more likely to be rejected due to the large
number of stars being searched, thus lowering the detection
efficiency for transits with a large impact parameter. This
assumption is also present in our methodology for determining
whether a planet transits its host star (see Section 2.3).
For orbital periods guaranteed to produce �7 transits (i.e.,

P< 36 days), pwin= 1, and for orbital periods guaranteed to
have fewer than two transits (i.e., P> 5 yr), pwin= Tobs/P,
where Tobs= 6× 72 days= 432 days is the total observing
time of the survey. For periods between 36 days and 5 yr, pwin
is calculated numerically using 105 values for t0 evenly spaced
from 0� t0< P to determine the probability of at least one
transit occurring. For the requirement that ntran� 7, we
calculate pwin numerically for P = 36–72 days and set
pwin= 0 for P> 72 days. Features from this window function
are apparent for orbital separations of ∼0.3–3 au (see
Figure 11), where specific periods are more likely to have
multiple transits, due to aliasing effects.

Figure 9. The combined, expected differential photometric precision over a
period of one hour. Top: The expected noise distribution given the crowding at
each apparent magnitude. The dashed lines show the average noise
contributions from crowding (pink), photon noise (orange), and semisaturation
(teal), while the blue line gives the average total noise as a function of apparent
magnitude. Bottom: The measured differential photometric precision for each
injected source with S N 10exp > . The blue dashed line is the same as in the
top panel, and the noise model for an isolated star from Penny et al. (2019) is
included as a comparison (orange).

Figure 10. The fraction of injected transit signals that were detected (pdet) as a
function of expected signal-to-noise ratio (S Nexp). Top: The fraction of transits
detected as pdet calculated from the full sample of generated light curves. The
dashed gray line shows an error function with σ = 1 centered on S N 8.0exp = ,
which is the expectation from the formulation of our simulated matched-filter
detection pipeline. The teal circles show the measured pdet in S Nexp bins of
width 0.2, and the teal line shows our fit to those points. Bottom: Our logistic
fits to the injection sample split into different magnitude ranges. Due primarily
to crowding, pdet is more efficient for brighter stars, except for the brightest
stars in the sample, where our noise model underestimates the impact of
semisaturation effects, causing S Nexp to be overestimated.
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These figures show that, for bright stars, Neptune-sized
planets (Rp≈ 4R⊕) should be detectable at nearly any orbital
period with �7 transits. On the faint end of the sample, this
efficiency is significantly decreased, although Jupiter-sized
planets should be easily detectable at nearly any orbital period,
even for the dimmest stars in the sample. This detection
efficiency lends credibility to the idea that a transit survey can
be effective deeper than F146= 21, and thus the yield
presented in this work is a conservative limit. This is especially
apparent considering that dimmer magnitudes will add more K
and M dwarfs to the planet-search sample, as these have more
favorable detection efficiencies due to their smaller radii.

In the case that transiting planets can still be detected
efficiently with only one or fewer transits per season (<7 total),
the detection efficiency remains high out to several au. Transit
surveys suffer from a reduced ptra at these orbital separations.
This is still the case for Roman, but the large number of planet-
search stars dictates that a significant number of planets at these
orbital separations should still be detected, even below survey
efficiencies of η∼ 10−5. However, this is optimistic because
the detection efficiency in transit surveys drops significantly for
systems with a small number of transits, an effect that we are
not considering here (Hsu et al. 2019; Christiansen et al. 2020).
This is especially true in the case that data contain correlated
systematics that are not yet understood for the GBTDS and
therefore are not present in our simulations.

4. Transiting Exoplanet Yields

Combining the results of the detection efficiency model from
the previous section with the Galactic model and assumed

exoplanet population from Sections 2.2 and 2.3, we are able to
predict the number and types of planets that Roman will find,
due to the transit technique. For this calculation, we simulate a
stellar and exoplanet population for each detector assembly (18
total), drawing a random number of stars from a Poisson
distribution and assuming the average stellar density, assign
planets to those stars, and then apply our detection sensitivity
model to determine which planets were detected. We do this for
one field, and then multiply this yield by the number of fields
(seven for our default parameters).
This Poisson process results in uncertainties on the total

yield of ∼5%, which is not significant compared to
uncertainties in the actual planet occurrence, especially with
respect to metallicity, so we generally ignore it when
discussing the overall planet yield. However, when considering
the planet yield for smaller subsamples of parameter space,
such as in Sections 4.3 and 4.5, the uncertainty is determined
by randomly sampling from the simulated transiting planet
population. We then reapply the detection criteria computed in
Section 3.6 to randomly determine which systems are detected
as a function of S Nexp. We assume an overall uncertainty of
10% on the total number of transiting planets, before
considering detectability, in the GBTDS. This uncertainty
should be consistent with uncertainties from the Poisson
process discussed above and typical scatter in the H-band
luminosity function residuals from Section 5.1. This process is
repeated many times, and we report the median as our yield and
the inner 68% as our uncertainty. Thus, these uncertainties
incorporate random, Poisson fluctuations of the stellar source
density and random fluctuations on the transit detection

Figure 11. The overall transit survey efficiency, η, defined as the product of the probability a planet transits across our line of sight (ptra), the probability that the
telescope observes the minimum number of required transits (pwin), and the probability that the transit signal is detected (pdet); p p ptra win deth = ´ ´ . Top left: The
survey efficiency for a bright Sunlike star requiring a minimum of seven transits. Top right: The survey efficiency for a dim Sunlike star requiring a minimum of seven
transits. Bottom left: The survey efficiency for a bright Sunlike star requiring a minimum of one transit. Bottom right: The survey efficiency for a dim Sunlike star
requiring a minimum of one transit.
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sensitivity, but they do not consider uncertainties in the relative
occurrence rates for different planet types themselves.

The planet yield broken down by host spectral type and
planet radius is shown in Figure 12. This yield is further
discussed in Sections 4.1–4.4 for the default survey parameters
considered in this work. Because the survey design has yet to
be decided, Section 4.5 considers variations on the nominal
survey design and their effect on the overall planet yield.

4.1. Exoplanet Yield for Default Simulation Parameters

The overall planet yield for our default simulation
parameters and assumptions on the exoplanet and stellar
populations is presented in the top row of Figure 12. Overall,

we should expect that between 52,000 and 64,000 transiting
planets will be discovered, depending on the requirements for
ntran. Of these planets, about 90% of the planets will be Jupiters
(Rp> 8R⊕) or sub-Saturns (Rp= 4–8 R⊕).
Even under these conservative assumptions, the transiting

planet yield is expected to be higher than under any other
previous transit survey. Assuming the default simulation
parameters, the GBTDS should find 30,000 Jupiter-sized
planets (Rp> 8R⊕) and 15,000 sub-Saturns, of which the vast
majority will have GK-type hosts. These planets and stellar
hosts represent the vast majority of the planet yield.
One surprising result is the relative paucity of F-type planet

hosts. While the IMF assumed by the BGM1612 model results
in a larger number of lower-mass stars, the primary driving

Figure 12. The total transiting planet yields for the Galactic Bulge Time Domain Survey for differing combinations of spectral type and planet size. For each
combination, we report two values for the yield. The bottom number (green/blue, orange/pink bar) is the yield under the conservative requirement of more than one
transit per season (ntran � 7), while the top number (gray bar) is the yield considering all planets with at least one transit in the full survey. Top left: The number of
detected transiting planets with stellar hosts brighter than F146 = 19.5 mag. Top right: The transiting planet yields for all stars brighter than F146 = 21 mag. Bottom:
The same as the top row, but assuming the relation between planet occurrence and stellar metallicity described in Section 2.3.1.
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factor in this discrepancy derives from an under abundance of
high-mass stars in the Galactic bulge and older regions of the
thin disk at small Galactic radii. Because the bulge population
is modeled in the BGM1612 model as a single burst of star
formation 10 Gyr ago, stars with Må 1.1Me have evolved off
of the main sequence and mostly occupy the horizontal branch.
As a result, the number of F-type stars can serve as a tracer of
the disk population. This is further discussed in Section 5.1.

The yield of small planets derives primarily from very short
orbital periods in the case of G dwarfs, where few planets with
Rp< 4R⊕ are found at P 16 days. The total yield for small
planets is higher for GK dwarfs, but only because in the
brightness range considered in this work there are significantly
more G dwarfs (∼24× 106) and K dwarfs (∼31× 106)
observed than M dwarfs (∼1× 106). For super-Earth–sized
planets (Rp< 2R⊕), nearly 90% of the yield should derive from
M dwarf hosts, as planet–star radius ratios are not favorable for
detection for any other stellar type besides perhaps bright K
dwarfs. This is discussed further in Section 4.3.

These estimates for the total planet yield should be
conservative for a few different reasons, the most important
of which is the stellar sample considered. We only consider
stars brighter than F146= 21 mag, which is approximately
where crowding becomes the dominant source of uncertainty in
our simulated aperture photometry pipeline. However, even
with these limits the average photometric precision is
σdpp< 1% integrated over an hour (see Figure 9), which is
adequate to discover additional planets, and PSF photometry
should improve these limits further by minimizing noise
contributions from neighboring stars. For this reason, it is likely
that a transit survey should still be successful at least as dim as
F146≈ 22, which would nearly double the number of
monitored stars (see also Section 5.5.1).

The predictions made here may also be conservative due to
our default assumption of a constant planet occurrence. The
yield becomes even more striking when considering correla-
tions between metallicity and planet occurrence, as discussed in
the following section.

4.2. Change in Yield with Stellar Metallicity

Because the occurrence of both giant and small planets, in
particular at short periods, is correlated with stellar metallicity
(Fischer & Valenti 2005; Johnson et al. 2010; Mulders et al.
2016; Petigura et al. 2018; Wilson et al. 2022), one would
expect planet occurrence to also vary with Galactic position.
Therefore, the assumptions made by adopting occurrence rates
from Kepler may not be strictly valid under the sample of stars
considered in this work, which vary substantially in metallicity.
To take these correlations into account, we apply weights to
each of the detected planets based on the change in occurrence
rate implied by its host star metallicity, as described in
Section 2.3. This result is shown in the bottom panels of
Figure 12. Under these scenarios, the assumed yield increases
by just over a factor of ∼3. The stellar metallicity distributions
of the planet hosts are shown in Figure 13 under both
assumptions for the underlying planet occurrence.

Unsurprisingly, the change in yield is largest for short-period
(P< 10 days) sub-Saturns, the planet archetype with the
strongest correlation between planet occurrence and metallicity,
which increase from ∼17,000 to ∼103,000 under these new
assumptions. These particular planets drive the increase in total
yield. However, because relatively few giant planets

(in particular, sub-Saturns) were discovered by Kepler, the
precise strength of the correlation between their occurrence and
stellar metallicity has large uncertainties. In an attempt to
understand the dependence on the planet yield under different
plausible scenarios for the correlation between metallicity and
occurrence, we consider alternative formulations of this relation.
If it is appropriate to extrapolate the power-law dependence

of planet occurrence ( fp) on metallicity ( fp∝ 10β[M/H])
indefinitely beyond [Fe/H] = 0.4, then one would expect a
total planet yield of nearly ∼400,000, dominated by ∼300,000
sub-Saturns. However, extrapolating a power law is unphysical
in these circumstances, especially based on the small number of
detections from Kepler. At some point, it is more likely that
planet occurrence will saturate. It is also not clear that a power
law is a reliable parameterization of the dependence of planet
occurrence on metallicity, even though it seems a reasonable
approximation over the limited range in [Fe/H] probed by
Kepler. Assuming instead that the hot sub-Saturn occurrence
scales as the hot Jupiter occurrence, β= 3.5, which is
consistent within the 1σ uncertainties from Petigura et al.
(2018), the overall planet yield would be ∼135,000, with
∼40,000 sub-Saturn planets. In all, depending on the exact
relationship between the occurrence of short-period sub-
Saturns and stellar metallicity, the yield can reasonably be
expected to range between ∼135,000 and ∼200,000 total
planets for stars with F146< 21.
Perhaps surprisingly, the expected yield for small planets

increases by ∼70% from nearly ∼7000 to ∼12,000 once
metallicity correlations are considered, which is almost as large
as the relative increase for Jupiters (∼110%), despite the
significantly smaller correlation between occurrence and host
metallicity. This apparent discrepancy highlights the structure

Figure 13. The stellar host metallicity distribution functions of the GBTDS
transiting planet sample for differing planet radius ranges. Each panel shows
the distribution assuming a constant occurrence rate (gray), the distribution
when scaling the planet occurrence as a function of metallicity (colored), and
the distribution of field stars with F146 < 21 mag (dashed line). Metallicity
differences in the default occurrence distributions with respect to field stars
reflect the Galactic metallicity distribution function convolved with the transit
detection efficiency for each particular planet size.
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of the metallicity distribution in the Milky Way. Smaller
planets are significantly more detectable around smaller and
brighter stars as compared to Jupiters, which are detectable
around nearly every star considered in this work, which in turn
skews the effective average distance of stars amenable to small-
planet detection more significantly than the stars amenable to
detecting large planets. Because the increasing (in the direction
of the Galactic center) metallicity gradient in the midplane of
the Milky Way applies only to the thin-disk stellar population,
the older, more metal-poor populations start to dominate the
sample at distances 6 kpc. Thus, the average star amenable to
detecting small planets has a higher metallicity than the average
star amenable to detecting large planets, according to our
adopted Galactic population model (see Figure 13).

4.3. Expected Yields for M Dwarfs

According to the Galactic model adopted for this work, the
GBTDS should monitor ∼106 M dwarfs with F146< 21, which,
while much smaller than the number of GK stars, is much larger
than the number of M dwarfs monitored by previous transit
surveys. An added benefit is that the M dwarf planet hosts have
typical distances ranging from 1.1 to 3.0 kpc, which, depending
on the impact of crowding, may be sufficient to derive parallaxes
for most of the M dwarf sample in the GBTDS and infer a stellar
radius given Roman’s expected astrometric performance (10 μas
by the end of the GBTDS for HAB= 21.6;WFIRST Astrometry
Working Group et al. 2019). As a result, this sample has the
potential for several breakthroughs in planet demographics
specific to M dwarf hosts.

For instance, under our assumptions, the expected yield for
Jupiters and sub-Saturns orbiting M dwarfs is relatively small, at
329 31

51
-
+ , or 230 27

21
-
+ if only considering systems with ntran� 7.

However this total number is still an order of magnitude larger than
the number of systems currently known, and it should therefore
provide a unique opportunity to measure the occurrence of such
systems to high fidelity. This estimate also neglects metallicity
effects, which as mentioned in Section 2.3.1 may be even more
strongly correlated with planet occurrence for M dwarfs than for
their FGK counterparts. Assuming the same correlation with
metallicity, the yield may be as high as ∼2600 giant planets with
M dwarf hosts. Also, at our dim magnitude limit of F146= 21, the
detectability of a giant planet transiting an M dwarf is high, and so
this is a conservative estimate, as the number of M dwarfs
increases dramatically when the magnitude limit changes from
F146= 21 to F146= 22.

Another opportunity comes from the fact that the season
duration for the GBTDS is sufficiently long to encompass the
habitable zone for M dwarfs. To estimate our yield for
habitable-zone planets, we adopt the parametric relations from
Kopparapu et al. (2013), who calculated the inner and outer
edges of the habitable zone under varying assumptions for the
planetary atmosphere. Assuming the default occurrence rate,
and defining a conservative habitable zone (inner edge: max
greenhouse, outer edge: moist greenhouse), the GBTDS should
yield 38 6

7
-
+ habitable-zone planets with Rp< 2R⊕. Kopparapu

et al. (2013) also defined an optimistic habitable zone, with the
inner edge set by the instellation flux received by Venus
1 billion years ago (“recent Venus”), based on the inference
that Venus has not had liquid water on its surface for at least
the past 1 billion years and the outer edge set by the flux
received by Mars 3.8 billion years ago (“early Mars”) based on
the inference that Mars had liquid water on its surface

3.8 billion years ago. Adopting this definition, the GBTDS
should yield 114 14

17
-
+ optimistic habitable-zone planets with

Rp< 2R⊕. This yield is several times higher than the expected
yield from the first seven years of the TESS mission (Ricker
et al. 2014), which is expected to find 9± 3 and 18± 5 small
planets within the conservative and optimistic habitable zones,
respectively, within the same definitions adopted here (Kuni-
moto et al. 2022). Changing the radius limit to Rp< 1.5R⊕
reduces the expected yield to12 3

4
-
+ and 34 7

6
-
+ small planets in the

conservative and optimistic habitable zones, respectively.

4.4. Exoplanets with One or Fewer Transits per Season

Because the number of stars searched for planets is so large,
there should be a significant number of planet detections out to
a few astronomical units. Under the optimistic assumption that
the detection efficiency does not deteriorate for transiting
planets with only one or two events, the yield for planets with
one or fewer transit per season could be as high as ∼12,000. Of
these planets, as many as ∼1800 could be detected with only
one transit across the entire survey, and they would have orbital
separations ranging from the minimum separation of ∼0.3 au to
as large as ∼7 au. This area of parameter space overlaps in
sensitivity with the microlensing survey, which is most
sensitive to detecting planets with orbital separations of
∼3 au (Penny et al. 2019), offering the opportunity for an
indirect comparison of the population of giant planets in the
GBTDS detected via transit against those detected via
microlensing. We note that these yields assume that planets
with a single, or only a few, transits can be recovered with the
same significance as those with ntran� 7. However, studies
with long-period transiting planets in Kepler have found that
the efficiency of detecting such planets plateaus at ∼50%
(Herman et al. 2019), so the yields presented in this discussion
should be considered optimistic, though the general principles
should still apply even with a smaller sample size. We discuss
this opportunity more in Section 5.2.
Due to the observing pattern of the GBTDS, planets with

orbital periods as large as 4.5 yr may have at least two transits.
For planets with P< 4.5 yr that have <1 transit per season but
�2 over the full survey, nondetections in different seasons may
be sufficient to rule out shorter-period aliases to the degree that
the most likely period has negligible uncertainty, as would be
the case for a transiting planet with more than one transit in a
single season. However, deciphering the orbital period for most
planet candidates with P> 72 days will require careful
modeling of the transit shape to extract the transit duration
and impact parameter, which may be easier than for optical
surveys at constant transit S/N, because Roman is observing in
the near-infrared where limb-darkening effects are less severe.
In this high-S/N case, the likely limiting source of error will be
the mean stellar density combined with unknowns in
eccentricity (Yee & Gaudi 2008). Thus, careful modeling of
the transit shape should still place reasonable constraints on the
orbital period and semimajor axis that should be useful for
demographics studies, even if the uncertainties are large for any
one system.

4.5. Change in Relative Yield Based on Survey Variations

The actual design of the GBTDS has yet to be decided, so it
is important to test the change in transiting planet yields that
come with design variations. Changes in this design generally
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raise or lower the yield through one of, or the combination of,
the number of stars searched for planets, the photometric S/N
over the duration of a transit, and the number of transits
observed. The change in yield with respect to changes in the
season duration and sector duration (i.e., cadence) of the survey
are shown in Figure 14.

Generally speaking, the yield of large planets is set by the
number of stars searched, as the survey efficiency is not limited
by pdet. However, the yield for small planets at lower average
S/N is constrained by pdet, so that improvement to the transit
S/N results in higher survey efficiencies. To estimate the
change in yield for specific planets as a function of survey
parameters, we simulate a single set of transiting planets for
one field of the GBTDS, calculate S Nexp under each survey
design, and apply our detection model to estimate the yield
under each set of parameters. This process is repeated 1000
times, and we report the average and standard deviation on the
yield relative to the default design.

4.5.1. Sector Duration

The sector duration is the time it takes for the Roman space
craft to observe one sector, defined as the full ∼2 square

degrees surveyed by the GBTDS (i.e., all fields). Thus, the
sector duration is equal to the observing cadence. It is limited
by the sum of total exposure time per sector and the total time
to slew and settle between fields. Thus, the sector duration can
be reduced by decreasing the slew and settle overhead, or by
observing fewer fields. Changes in sector duration lead to
changes in the transit S/N by increasing the sampling rate and
thereby obtaining more in-transit data.
The sector duration primarily impacts the yield for small

planets. This impact is readily apparent, as even a one-minute
reduction in sector duration leads to yield increases of
9.1%± 0.3% and 9.6%± 0.1% per field for sub-Neptunes
and super-Earths, respectively. Conversely, an increase in
cadence of one minute results in a respective reductions of
8.1%± 0.3% and 8.2%± 0.1% in the super-Earth and sub-
Neptune yields. Thus, to maximize the yield for small planets,
the cadence should be minimized wherever possible, even if the
number of fields and surveyed area is compromised. More
practically, this can be accomplished by minimizing the
distance between consecutive fields. The yields for giant
planets, on the other hand, are insensitive to changes in sector
duration, varying by less than 1% from a sector duration of
10–25 minutes, at least within the magnitude range considered.

4.5.2. Season Duration

The duration of the GBTDS observing season is constrained
by two factors. On the short end, it is set by the requirement to
observe microlensing events with timescales up to 60 days, and
on the long end it is set by the visibility window of the bulge
fields, which can be observed for a maximum of 72 days. The
net difference in yield from reducing the season duration to
60 days is a reduction in the number of observed transits, along
with a reduction in pwin. The latter change is minor, but the
former change has a noticeable effect on the yields of small
planets. The change in yields with season duration is
approximately linear, dropping by 1.7% per day (−21.3%±
1.6% at 60 days) and 1.8% per day (−20.6%± 3.1% at
60 days) below maximum season duration in the cases of sub-
Neptunes and super-Earths, respectively. The change in yield is
negligible for giant planets, decreasing by a maximum of only
1.2%± 0.1% if the season duration is reduced from 72 days to
60 days.

4.5.3. Cadence and Exposure Times of Secondary Filters

The requirements for the GBTDS specify additional
observations at a regular cadence in a secondary filter,
complementary to the wide F146 filter, for the purpose of
stellar characterization. The cadence, exposure, and even the
filter itself for such observations is undecided. Montet et al.
(2017) and Penny et al. (2019) both assumed additional
observations would be taken in the F087 filter
(λ= 0.76–0.98 μm) at a cadence of 12 hr, but Montet et al.
(2017) assumed a constant exposure time of 52 s between the
two filters while Penny et al. (2019) assumed an increased
exposure time of 286 s for the F087 images.
If the secondary filter observations cannot be used to

supplement the transit search, then the resulting loss in transit
S/N may have a small effect on the detectability of a putative
transit signal. In this work, we make no assumptions about the
cadence or observations of secondary filters, neglecting such
observations altogether. This may not be unreasonable, as

Figure 14. The relative change in yield per field as a function of planet size for
changes in survey parameters. Each color represents planets of a different size.
Jupiters are shown in orange, sub-Saturns in pink, sub-Neptunes in teal, and
super-Earths in blue. Top: The relative change in yield with sector duration,
which is equal to the observing cadence. Bottom: The relative change in yield
as a function of season duration.
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single, short-exposure observations taken at a cadence of 12 hr
may be on short enough timescales that one can interpolate
between the secondary observations without loss of sensitivity.
Alternatively, one may be able to incorporate the secondary
observations into the detection algorithm itself.

Simulating the loss of transit S/N caused by omitting an
observation every 6 hr leads to a reduction of ∼3%–5% in the
yield of small planets, having only a minor overall effect. In
fact, increasing the cadence of such observations is likely to
improve the transit survey by identifying astrophysical false-
positive transit detections (Montet et al. 2017).

4.5.4. Variations from the Roman Design Reference Mission

The Roman Design Reference Mission (DRM) specifies
variations of the GBTDS parameters that would accomplish the
primary science goals of the survey and could be realized by
the actual mission, making reasonable (perhaps conservative)
assumptions about the performance of the observatory with
respect to qualities such as slew/settle times and momentum
unloading. The DRM specifies four different strategies for the
GBTDS, assuming changes primarily in the slew and settle
times of the observatory, as well as the number of fields
observed. The DRM thus provides a reasonable framework
with which to gauge the compromise between sector duration
and the number of fields observed. To understand these effects,
we simulated the change in yield expected for each strategy
reported in the DRM. The results of these simulations, as well
as the different parameters of the survey strategies, are listed in
Table 4. In these simulations we make the assumption, as in our
previous simulations, that one is able to either incorporate the
photometry from secondary filters or interpolate over skipped
cadences so that the reduction in transit S/N is negligible. In
reality, assuming those points are not available would result in
a ∼5% drop in the yields for small planets, those most affected
by average S/N changes. This decrease may be larger if filter
changes lead to increased overhead.

As may be expected from previous simulations, the relative
yield is not significantly affected overall, and the increase in
yield is primarily driven by the increase in yield of Jupiters and
sub-Saturns specifically. As indicated by our planet yield
simulations across a range of sector durations, the spacecraft

slew and settle times are the primary drivers affecting the yield
of small planets. Comparing the relative yields for reference
designs with a constant number of reaction wheels (i.e., slew
and settle speeds), the trade-off between sector duration and
number of fields observed is minimal for small planets. For
large planets, on the other hand, a reduced cadence has a
minimal effect and the primary driver of the exoplanet yield is
the number of fields searched.
This picture only holds up for the magnitude limits imposed

by this work, where we do not consider stars dimmer than
F146= 21 mag. In this limit, the Jupiter yields are not limited
by transit S/N, so it stands to reason that the yields would
improve were we to consider a dimmer magnitude limit. With
this in mind, it becomes clear that the changes in yield between
higher-cadence observations and additional observed stars have
two distinct sources. In the former, we are able to probe stars
that are dimmer and more distant, and thus reach a larger range
of Galactic populations. With the latter, the survey design
would improve the statistics for the closer, nearby sample of
stars. Simulating planet transits across dimmer stars would be
necessary to understand to what extent higher-cadence
observations would allow one to probe planet demographics
within differing Galactic populations.

4.6. Impact in Yield Estimates due to Simplifying Assumptions

In this work, we make a number of simplifying assumptions
in estimating the number of detectable transiting planets in the
GBTDS. In this section, we attempt to quantify the impact of
some of these assumptions in order to understand the
systematic uncertainty in our yield predictions.

4.6.1. Correlated Instrumental Noise

In developing our transit detection and photometric noise
model, we only explicitly model two types of noise in our
simulations: photon noise from the source, neighboring stars,
and background flux, and Gaussian noise from each non-
destructive read (see Section 2.4). However, the actual GBTDS
light curves will have some amount of correlated noise, which
we define here as any noise source which prevents the transit
S/N from increasing as quickly as nS N pexp

1 2µ in the light
curve, where np≈ ntran× (tdur/Δt) is the number of

Table 4
GBTDS Variations Considered in the Roman Design Reference Mission

DRM1 DRM2 DRM3 DRM4 This Work

Number of Reaction Wheels 6 6 5 5 L
Fields per Sector 8 7 8 7 7
Surveyed Area (deg2) 2.247 1.966 2.247 1.966 1.966
Stars with F146 < 21 (×106) ∼67 ∼59 ∼67 ∼59 ∼59
Sector Duration (min) 15.4 13.7 16.6 14.8 15.0
Cadences per Seasona (F146) 6458 7293 5954 6710 6913
Cadences per Seasona (F087/F184) 288 288 288 288 0

Change in Exoplanet Yield Relative to Default (%)

Super-Earths (Rp � 2R⊕) +10.7 +11.9 +1.4 +1.6 L
Sub-Neptunes (2R⊕ < Rp � 4R⊕) +10.4 +12.5 +0.1 +1.7 L
Sub-Saturns (4R⊕ < Rp � 8R⊕) +12.8 +4.5 +8.5 +0.7 L
Jupiters (Rp > 8R⊕) +14.3 +0.1 +14.2 +0.0 L
Total +13.3 +3.2 +10.5 +0.5 L

Note.
a These estimates ignore data gaps from momentum unloading and station keeping common across all survey strategies, and they assume a 72 day season duration.
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photometric data points collected in transit. Sources of such
noise may be astrophysical or instrumental. Causes for the
latter may be imperfections in the hardware (e.g., detector
nonlinearities, intra- and interpixel sensitivity variations, and
pointing uncertainties) or the photometry and transit search
pipeline (e.g., poor detrending or removal of ensemble noise).
Such limitations are difficult to predict at this stage, due to
ongoing development of the Roman analysis software and
detector characterization.

We can place a conservative limit on the impact of correlated
detector noise by imposing a strict transit depth limit for all
planet detections. The choice of limit is somewhat arbitrary, but
a reasonable upper bound may be the impact of detector
nonlinearities. Mosby et al. (2020) characterized these limits
for a group of candidate WFI arrays, finding that, for the
median pixel, the maximum deviation of a single read frame
from an arbitrary nonlinear correction was 1.5 ppt. It is unclear
the degree to which this effect should be correlated with nearby
pixels, so we take a conservative approach and assume that this
limit applies per light curve and represents the smallest
amplitude at which a noisy signal can be recovered. Imposing
this limit as our criterion for a minimum detectable transit depth
across all sources results in a yield decrease of 30% for small
planets, but the impact is much smaller for sub-Saturns and
nearly imperceptible for Jupiters (see Table 5). For complete-
ness, we also consider minimum detectable transit depths
ranging from 1.0 to 0.1 ppt.

Considering that nondeterministic nonlinear detector
responses are typically most important for sources near the
saturation or semisaturation limit (F146 18), these changes in
yield are extremely pessimistic. Applying these limits to only
bright sources, the inferred decrease in yield becomes <10%
for R R 1.5p min

2 =( ) ppt for all planet sizes except super-
Earths, where the decrease in yield is instead 16%. Even this
estimate is pessimistic, as it makes an implicit assumption that
the photometry of such sources is derived from a small number
of brightly illuminated pixels, which is not the case for bright
sources, as discussed in Section 3.4.2, where most of the signal
will actually derive from the sum of many less-illuminated
pixels away from the PSF core, which should be more robust to
detector nonlinearities because the ramp-fitted flux in these
pixels will derive from more reads. Even in the worst
(unrealistic) case scenario, the total transiting planet yield
should decrease by only 7%. This is due, in part, to the nature
of transiting planets susceptible to discovery in the GBTDS,
which have large transit depths.

Overall, correlated instrumental noise is unlikely to have a
major impact on these results, except in the case of small
planets (Rp< 4R⊕), in which the detection yields may decrease

by ∼10%–20% if instrumental systematics are not controlled to
better than 0.5–1.0 ppt. Thus, for the purpose of detecting small
planets, we advocate for a goal of controlling systematics from
correlated instrumental noise on bright sources to a limit of
0.5 ppt over transit duration timescales (12 hr). This robust
response in the overall planet yields to correlated systematics
can likely be attributed to our conservative saturation floor of
∼1.3 ppt per exposure. If the actual single-exposure noise floor
for the GBTDS is significantly lower than our model,
instrumental systematics will be more limiting for bright
sources and will disproportionately impact other science cases
such as the detection of secondary eclipses and phase curves
(see Section 5.3.2).
All of these calculations assume the default planet

occurrence rate. Performing the same calculations using the
[M/H]-scaled planet occurrence rate instead results in
negligible differences at constant planet radius, but overall it
is even less sensitive to these limits, due to the increased yield
of giant planets.

4.6.2. Correlated Astrophysical Noise

Astrophysical sources may also introduce correlated noise to
the GBTDS light curves with timescales similar to the transit
duration (1–2 days). For the purpose of this discussion, we
define correlated noise in the same way as in the previous
section, but restrict our discussion in which the source of such
noise is astrophysical rather than instrumental in nature. Such
sources of noise could include background variable stars with
large amplitudes (e.g., close binaries with large ellipsoidal
variations, δ Scuti stars, and accreting systems) as well as
lower-amplitude noise from the target star itself (e.g., rotational
modulations, flares, and asteroseismic activity). Correlated
astrophysical noise can lead to a decreased catalog reliability
and higher rate of false alarms (i.e., where statistical
fluctuations or coherent nontransiting signals such as stellar
variability are mistakenly identified as a transit-like signal, as
opposed to false positives, where a transit-like signal derives
from a source other than a transiting planet), either because the
true light-curve noise may be underestimated or because the
shape of the nontransiting signal may confuse the transit
detection algorithm. However, in this section we neglect the
impact of correlated noise on reliability and focus solely on
completeness, i.e., what is the fraction of transiting planets in
our simulated planet catalog that correlated noise would
otherwise prevent us from detecting?
For two primary reasons, correlated astrophysical noise is

unlikely to have a large impact on these overall results. First,
for most GBTDS stars, Roman’s differential photometric
precision is not sensitive to the low-amplitude (∼0.1–1 ppt)
modulations that typically plague transit surveys, so photon
noise will dominate over the most common sources of stellar
variability such as rotational modulations and asteroseismic
activity. Second, the fraction of intrinsically large-amplitude
variable stars is small, in particular on timescales relevant to
transit detection, so the fraction of planet search stars that either
employ such variability or are polluted by such variability from
nearby stars is likely below the Poisson uncertainty from our
methodology for generating the simulated planet catalog.
Predicting the fraction of sources that employ large-

amplitude astrophysical correlated noise would require a more
sophisticated Galactic population model than what we have
adopted, but we can justify the first point by comparing the

Table 5
The Relative Decrease in the Planet Yield under the Assumption that

Correlated Instrumental Noise Places a Constraint on the Minimum Detectable
Transit Depth

Minimum Transit Depth (ppt)

Rp (R⊕) 1.5 1.0 0.5 0.3 0.1

� 2 36% 23% 8.2% 4.3% <1%
2–4 31% 16% 2.8% <1% <1%
4–8 12% 5.7% 1.1% <1% <1%
>8 1.3% <1% <1% <1% <1%
All 7.0% 3.6% <1% <1% <1%
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impact of correlated noise in Kepler. In Kepler, the majority of
light curves with large correlated noise can be attributed to
either asteroseismic oscillations or rotational modulations. As a
result, the impact of correlated noise in Kepler should serve as
a reasonable upper bound for the expected impact of correlated
noise in the GBTDS, because Kepler’s lower photon noise limit
and optical bandpass exacerbate the impact of stellar variability
on transit detectability. The Kepler population is also younger
than the expected GBTDS population, so stars in the GBTDS
planet-search sample should have less stellar activity—and
therefore most brightness modulations will have lower
amplitudes and lower frequencies.

Comparing the completeness of the Kepler detection pipeline
on light curves where the noise increases at longer timescales
from 7.5 to 15 hr against light curves where the noise decreases
on those same timescales, it was shown that Kepler’s transit
detection efficiency decreased by 15%–20% for light curves
with strong correlated noise, which represent <20% of all
observed Kepler sources (Burke & Catanzarite 2017;
Christiansen et al. 2020). This implies a degradation in transit
sensitivity of ∼3%–5% over the full survey. Although the
GBTDS light curves may have a larger fraction of correlated
noise caused by the variability of background sources, this
should still be a conservative limit because a large fraction of
the Kepler light curves with correlated noise (not necessarily
from astrophysical sources) can be attributed to asteroseismic
oscillations in red giants, which are not considered in this work
and for which the amplitude of such variations is, in most cases
and in the magnitude range considered here, well below
Roman’s photon noise limit anyway. Thus, assuming a
detection pipeline with a Kepler-like response to correlated
noise, the impact of intrinsic stellar variability, which makes up
the majority of correlated astrophysical noise, on the overall
planet yield should be <3%, which is below the Poisson
uncertainties from our process for generating a simulated planet
catalog.

4.6.3. Change in Binarity with Galactic Environment

In this work, we assume that there are no planets in binary
systems and that the binary fraction is constant. However,
because the binary fraction is anticorrelated with both stellar
metallicity (Badenes et al. 2018; Moe et al. 2019; Price-Whelan
et al. 2020) and α abundance (Mazzola et al. 2020), binarity
will also vary based on Galactic environment. Thus, one might
expect a higher fraction of single stars in metal-rich environ-
ments such as the inner disk, which would inflate the transiting
planet yields.

To estimate the impact that variable binarity and multiplicity
may have on our predicted transiting planet yield, we adopt the
results from Moe et al. (2019), who found that the close
(P 103 days) binary fraction ( fbin) of solar-like stars can be
represented as a piecewise linear function of the form

f Z
Z Z
Z Z

0.065 1 0.4, if 1
0.20 1 0.4, if 1

, 17bin
⎧
⎨⎩

=
- + + < -
- + + -

( ) ( )
( ) ( )

where Z= [Fe/H] over the range −3< [Fe/H]<+ 0.5. Using
this relation, we can estimate the relative increase in single stars
as a function of [M/H] in our simulated catalog,
Δfbin(Z)= fbin(Z)− 〈fbin〉, where 〈fbin〉= 21.5% is the average
close binary fraction implied by integrating this relation over
the metallicity distribution of dwarfs and subgiants with

F146< 21 in our simulated stellar catalog. We note that, based
on our definition of close binary (a< 100 au) and adopted
period distribution from Section 2.2.2, our catalog has a close
binary fraction of 27.4%. Using the above estimate, we
calculate a weighting function for each planet host in our
simulated planet catalog of the form

w Z
f f Z

f
, 18bin

single bin

single

=
- D

( )
( )

( )

where fsingle is the fraction of single stars (56% for
Må� 0.7Me, 74% for Må< 0.7Me; see Section 2.2.2).
Applying this framework assuming the default planet

occurrence, we estimate minor relative increases of 2% and
1% in the yields of super-Earths and sub-Neptunes, respec-
tively. There is no discernible change (<0.1%) in the relative
yield for giant planets caused by a metallicity-dependent binary
fraction. Under the [M/H]-scaled planet occurrence rates, we
find that the relative yield increases by 5% for super-Earths and
between 9% and 10% for sub-Neptunes, sub-Saturns, and
Jupiters. Thus, a variable close binary fraction will be a
significant confounding variable for the detailed demographics
studies the GBTDS transiting planet sample should enable, in
particular when controlling for Galactic environment. How-
ever, the effect should be significantly smaller than the change
in the underlying planet occurrence rate itself, although both
effects will be correlated.

4.7. Comparison to Other GBTDS Transiting Planet Yield
Estimates

Montet et al. (2017) estimated the transiting planet yield of
the GBTDS to be between ∼70,000 and ∼150,000, depending
on the strength of the correlation between planet occurrence
and stellar metallicity. While these are similar to our overall
results, the breakdown of planet size and host spectral type
varies significantly between our catalogs. For example, we
predict fewer planets with F-type hosts (∼4000–6000 com-
pared to 13,000–25,000), more planets with K-type hosts
(∼17,000–76,000 compared to 3000–52,000), and an order of
magnitude more small planets overall (∼7000 in this work
compared to ∼800).
The source for each of these differences is unclear, but it is

likely a combination of several factors, including differences in
the assumed planet population, simulated stellar sample, and
noise model. Montet et al. (2017) generally predict a higher
occurrence of giant planets, while we predict more small
planets. In the case of GK dwarfs, the difference in small-planet
yield may partly derive from differences in the assumed
underlying planet occurrence rates. Montet et al. (2017)
adopted occurrence rates for FGK dwarfs from Howard et al.
(2012), who underestimated the occurrence of sub-Neptunes
compared to Hsu et al. (2019), possibly due to a combination of
systematic biases in the inferred stellar radii (Berger et al.
2018) and/or early uncertainties in the completeness of
Kepler’s transit detection pipeline. These differences, com-
bined with the lower number of GK dwarfs assumed by their
Galactic population model (∼17× 106 compared to ∼55× 106

in this work), may explain the drastically different small-planet
yields between these two comparisons.
Another particularly interesting discrepancy between the two

catalogs is the lack of F dwarf planet hosts in our yield
estimates compared to Montet et al. (2017). This can be mostly
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explained by the relative number of F stars in our simulated
stellar population, which is 2× smaller (∼1.6× 106 in this
work compared to ∼3.3× 106) and consists of a large fraction
of approximately solar-mass, metal-poor subdwarfs.

Recently, Tamburo et al. (2023) estimated the GBTDS yield
specifically for small planets (Rp� 4R⊕) orbiting cool and
ultra-cool dwarfs ranging in spectral types from M3–T9.
Those authors created a simulated stellar catalog by extrapolat-
ing from volume-limited surveys of cool dwarfs in the local
stellar neighborhood, and they estimated that Roman should
observe 75,500 7000

11,800
-
+ sources within this spectral range. Then

applying this new catalog with the methodology from Montet
et al. (2017), they predicted that the GBTDS should yield
1347 124

208
-
+ such transiting planets. In our results, considering

spectral types from M3V to M9V, the latest spectral type
considered in the BGM1612 model, we predict that the
GBTDS should monitor ∼74,000 M3–M9 sources with
F146< 21, which will yield 610 66

58
-
+ small planets (595 64

63
-
+ if

only considering ntran� 7). Tamburo et al. (2023) also predict
that Roman should find 37 7

8
-
+ potentially rocky (Rp< 1.48 R⊕)

planets in the conservative habitable zone, which is 3× our
estimate of12 3

4
-
+ planets in the conservative habitable zone with

Rp< 1.5R⊕. Although the BGM1612 model does not consider
sources with spectral types later than M9, the planet yield for
these spectral types is =1% of the total and does not impact
this comparison.

This discrepancy in cool dwarf planet yields primarily
derives from the different treatment of noise and simulated
detection pipelines by our work and that of Tamburo et al.
(2023). Our estimates are more conservative because we
include crowding in our noise model and require a significance
of 8.0σ for a detection, while those authors assume isolated
sources and adopt a significance threshold of 7.1σ. Thus, the
small-planet yield for cool dwarfs from those authors may be
optimistic, but it is not necessarily discrepant with the
predictions presented in this work.

5. Discussion

The overwhelming transit yield from the GBTDS presents a
number of opportunities to further exoplanet demographics,
some of which we have already discussed in previous sections.
In this section, we explore two of the most unique cases: the
breadth of Galactic populations probed by the expected planet
hosts (Section 5.1), and the science to be extracted from jointly
analyzing the transiting and microlensing GBTDS planet
catalogs (Section 5.2). Finally, we end with discussions on
controlling for false-positive detections (Section 5.3), the
prospects for follow-up observations (Section 5.4), and
opportunities to improve future simulations (Section 5.5).

5.1. Exoplanet Demographics across the Milky Way

As mentioned in the introduction, there are several reasons
why the exoplanet population should vary across the Galaxy.
Perhaps the most compelling is the correlation between planet
occurrence and stellar metallicity (Santos et al. 2004; Fischer &
Valenti 2005; Sousa et al. 2008; Ghezzi et al. 2010, 2021;
Johnson et al. 2010; Wang & Fischer 2015; Mulders et al.
2016; Petigura et al. 2018; Wilson et al. 2018, 2022). For giant
planets, this signature is typically interpreted as support for the
core accretion model of planet formation, in which enhanced
stellar metallicity is assumed to correlate with higher solid

surface densities in the protoplanetary disk, which facilitates
the rapid growth of planetary cores up to a threshold mass of
∼10 M⊕, allowing the accretion of a gaseous envelope
(Pollack et al. 1996; Ida & Lin 2004; Mordasini et al. 2012;
Chabrier et al. 2014). There is a theoretical basis for the idea
that core accretion can be more effectively facilitated by the
enhancement of specific α elements (elements with an even
atomic number primarily generated in core-collapse super-
novae; e.g., C, O, Mg, and Si), rather than bulk metallicity. For
example, silicates may be needed to seed planetary cores (Natta
et al. 2007), and CNO ices constitute a significant fraction of
the mass in planetesimals beyond the water ice line
(Pontoppidan et al. 2014), where core accretion is most
efficient (see, e.g., Dawson & Johnson 2018 and references
therein).
Taking this idea to its extreme conclusion would imply that

the correlation between giant planet occurrence and bulk stellar
metallicity is actually a correlation with α abundance, and bulk
metallicity is simply a confounding variable that happens to
correlate with α abundances in the local stellar neighborhood,
making it difficult to disentangle this multivariate trend.
However, it should be possible to isolate correlations between
planet occurrence and these two parameters by searching for
planets in multiple Galactic populations, with differing star
formation histories and therefore differing metallicity, α, and
age distributions. While ground-based transit surveys are
currently being performed to test this hypothesis (Penny &
Mishaps Collaboration 2020), the GBTDS will accomplish this
on a larger scale by effectively searching for exoplanets across
all major Galactic populations.
The particular methodology for isolating these correlations is

not obvious, given that reliable metallicities, and α abundances
in particular, will be difficult to obtain for the sources in the
GBTDS. Because of this, the transiting planet yield from the
GBTDS may best be interpreted in the context of Galactic
populations, perhaps as a hierarchical model built upon a
Galactic population synthesis model. Forward-modeling planet
catalogs have proven successful in analyzing the Kepler planet
catalog (e.g., Mulders et al. 2018, 2019; He et al. 2019), and we
propose that adopting a similar approach, with key parameters
in the planet demographics that vary as a function of stellar
metallicity, alpha abundance, and stellar age, layered over a
reliable Galactic model offers the best opportunity to disen-
tangle correlations with these parameters.
This approach has several advantages. One advantage is in

stellar characterization. Due to the deep near-infrared imaging
that the GBTDS will yield, Malmquist bias is severely reduced,
allowing one to place reasonable priors on the stellar properties
of a source with only its apparent magnitude (see Figure 15).
For example, there are virtually no giants with F146> 20, i.e.,
the GBTDS will be nearly complete for giant stars in the Milky
Way along this line of sight, so any such sources are almost
guaranteed to be dwarfs, with the exception of very small
numbers of halo stars beyond the far side of the disk, which in
this instance are negligible. One particularly difficult source of
degeneracies will be distinguishing between subgiants and G
dwarfs. This was apparent in the Kepler survey, where the
fraction of subgiants in their source catalog was originally
underestimated due to Malmquist bias (Gaidos & Mann 2013;
Berger et al. 2018). However, as shown in Figure 15, subgiants
and G dwarfs occupy different, albeit overlapping, ranges of
apparent magnitude, and therefore such degeneracies can be
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minimized with a prior from a reliable Galactic population
synthesis model.

This same principle can be used to estimate likely
distributions in [Fe/H], [α/Fe] and age from the sample of
planet-search stars and to identify key metrics to distinguish
exoplanet demographics models. The BGM1612 Galactic
model is mostly described by three Galactic populations with
differing chemical signatures: the thin disk (α-poor, Fe-rich),
the thick disk (α-rich, Fe-poor), and the bar (α-rich, both Fe-
rich and Fe-poor). The BGM1612 model does not adopt a
classical bulge model, instead modeling the bulge regions as a
combination of the thick disk and a bar component. For the
purposes of this discussion, when referring to the bulge, we are
referring to the bar population and excluding the thick disk
component at very small Galactocentric radii.

Thick disk stars begin to dominate the stellar population at
distances 500 pc above and below the Galactic midplane, and
they become more prominent closer to the Galactic center.
Within the context of the GBTDS, the thin disk generally
dominates the stellar population at d 5 kpc, the bulge
dominates at distances of ∼5–11 kpc, and at d 11 kpc, the
thin and thick disks contribute similarly to the stellar
populations. Due to these variations, the planet yield as a
function of distance should be a powerful tool for distinguish-
ing between exoplanet demographics models. This idea is
highlighted in Figure 16. The top row of these figures shows
the planet yield from this work as a function of distance under
the assumption that the planet occurrence is constant with

respect to metallicity (i.e., default simulation parameters) and
therefore not impacted by Galactic population, while the
bottom row shows the yield after accounting for metallicity
effects as described in Section 2.3.1.
While our simplistic Galactic population model (i.e., single

pointing, constant source density, and constant extinction)
prevents us from making quantitative predictions, there are a
few trends worth discussing. First, the yields of sub-Saturns
and Jupiters have a strong dependence on the average stellar
metallicity. This is most apparent in the slope of the planet
yield with distance out to ∼6 kpc. Because the average
metallicity increases more than the average alpha abundances,
this slope should be more prominent in the case that planet
occurrence more strongly depends on metallicity than alpha
abundance. However, because the bulge population is alpha-
rich, the yield should be higher from d∼ 6–10 kpc in the case
that α abundances are more strongly correlated with planet
occurrence. Thus, comparing the distribution of planet
detections at these distance ranges may highlight the relative
role of α abundances and bulk metallicity.
Another strong result is the relative occurrence of planets in the

thin and thick disks as a function of Galactic population, as shown
in the rightmost panels of Figure 16. At d 12 kpc, the planet
yield is dominated by the thin disk when planet occurrence is
considered as a function of metallicity, but it is nearly equal when
ignoring such effects. Because stars at these distances are outside
the Galactic midplane (|ZGal|≈ 340–450 pc), the thick disk
becomes a significant fraction of the stellar population, and thus
measuring the relative planet occurrence for stars with
d≈ 0–4 kpc and d≈ 12–16 kpc, which are at the same Galactic
radii, should reflect the relative planet occurrence in the thin and
thick disk populations. These inferences may be further evaluated
by comparing proper motion dispersion between the field stars
and planet hosts as a function of distance. In this vein, performing
a transit search over stars in fields at varying Galactic latitude
should lead to fields with differing combinations of thin and thick
disk stars, and predictable, model-dependent changes in the planet
yield as a function of distance.
One last parameter of note is the age distribution for each

subpopulation in our adopted Galactic population model. The
mean age of thin-disk stars increases toward the Galactic
center, while the thick disk and bulge have a more narrow,
well-mixed distribution of ages, because they are modeled as a
single burst of star formation ∼10–12 Gyr ago. This has a few
interesting implications. Because the main-sequence turn-off in
the bulge occurs at Må≈ 1.1Me, the dominant source of F-type
stars at small Galactic radii (d∼ 6–10 kpc) will be low-
metallicity subdwarfs ([M/H]− 0.5). Thus, the planet yield
for F-type stars should vary extremely sensitively on the
inferred planet occurrence as a function of metallicity. This is
reflected in the middle panel of Figure 16, in which the planet
yield for F stars is roughly constant at distances of
d≈ 5–11 kpc, despite the increasing stellar densities in the
Galactic bulge.

5.2. The Transit Survey as a Complement to the Microlensing
Survey

For many reasons, the transiting planet survey discussed in
this work will complement and enhance the microlensing
planet survey. Figure 17 shows the combined transit and
microlensing sensitivity to detecting planets as a function of
semimajor axis and planet mass. The transit sensitivity was

Figure 15. The F146 distribution of stars in the GBTDS, by stellar type. In
both figures, the vertical dashed lines show the magnitude range considered in
this study. Top: The number of monitored stars below a given magnitude.
Bottom: The stellar density, in units of stars per unit solid angle per magnitude.
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Figure 16. The transiting planet yield as a function of distance. The top row is the transit yield assuming the default planet occurrence, and the bottom row is the yield
after taking metallicity correlations into account. Left panels: The planet yield labeled by planet size. Middle panels: The planet yield labeled by spectral type. Right
panels: The planet yield labeled by Galactic stellar population.

Figure 17. The combined planet detection sensitivity via transit and microlensing in the Roman Galactic Bulge Time Domain Survey. The contours show the sum of
the transit survey efficiency multiplied by the number of stars searched and the microlensing survey efficiency from Penny et al. (2019). The green/blue points show
our sample of detected planets for one field of the GBTDS. The green points denote conservative requirements of >1 transit per season (�7 total), and the blue points
denote liberal detection requirements of �1 transit per season (<7 total), including single-transiting systems. Both transiting planet yields assume our default
simulation parameters and adopt the mass–radius relationship from Chen & Kipping (2017) to convert from planet radius to planet mass. The orange points show the
simulated catalog of detected microlensing planets from Penny et al. (2019). The solar system planets are also included at their respective masses and semimajor axes
for reference. The planets with fewer than seven transits should overlap significantly with the microlensing sample in this parameter space.
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calculated by averaging over a representative sample of the
stars considered in this work using the methodology in
Section 3.7, and planet masses were inferred from planet radii
using the mass–radius relation from Chen & Kipping (2017).

In particular for giant planets, the transiting and microlensing
planet yields should overlap significantly in parameter space
from a∼ 0.3–3 au, and Mp 30M⊕, which offers a few
interesting opportunities. However, as mentioned in
Section 4.4, our yield estimates for planets within this
parameter space are optimistic, and they are likely to be
reduced anywhere from ∼20% to ∼70% due to difficulties in
detecting planets with few transits. Even at these reduced
detection rates, the sample of planets with only one or two
transits should still be large enough for demographics studies.
Because transit surveys will infer precisely the planet radius,
while microlensing surveys will infer the planet mass, the joint
distribution of long-period planets from the microlensing and
transiting samples may be used to infer mass–radius distribu-
tions. Because, in the case of single transits, the semimajor axis
can be inferred by the transit duration and inference on stellar
density, while the projected separation is measured for
microlensing planets, a combined analysis of the population
of single-transiting planets with the microlensing population
can constrain the eccentricity distribution of cool Jupiter
analogs, potentially revealing information on their migration
histories.

Another interesting consideration is the relative frequency of
detected multiplanet systems between the microlensing and
transiting planet searches. Because the detectability of multi-
planet systems via transit is subject to the dispersion in mutual
inclination, unlike in microlensing, the joint analysis of both
samples should constrain the multiplanet frequency and
distribution of mutual inclinations within such systems, at
least for planets within the joint survey sensitivity. With these
population-level distributions on mutual inclination and
eccentricity, the importance of planet–planet Kozai scattering
can be statistically probed as a formation and migration
pathway in such systems (Dawson & Johnson 2018, and
references therein).

Comparisons of the long-period transiting planet sample
with long-term studies of RV-detected planets (e.g., Rosenthal
et al. 2021) could yield valuable results as well. For instance,
one interesting result from RV planet-search surveys is a
sudden increase and drop in the occurrence of giant planets at
∼1–3 au (Fernandes et al. 2019; Fulton et al. 2021). It is
currently debated whether this sudden increase is due to a more
efficient growth of planetary cores (Schoonenberg &
Ormel 2017) or to the increased efficiency in which cores
grow their gaseous envelopes. The transiting planet sample
could include as many as ∼2000 planets within this semimajor
axis range, allowing for a systematic comparison in planet
occurrence between both samples—and when analyzed jointly
with the microlensing sample, population-level demographics
on the mean planet density and eccentricity distributions. Such
constraints may prove insightful in inferring bulk composi-
tions, and by extension, formation pathways. We note that it is
extremely unlikely for a single planet (and possibly multiple
planets within the same system) to be detected via both transit
and microlensing, so the comparisons discussed above will be
limited to a statistical population analysis, the effectiveness of
which will depend sensitively on the accuracy and precision

with which the completeness and reliability of each respective
exoplanet catalog can be assessed.
In addition to providing a complementary set of population

parameters for microlensing giant planets on ∼0.3–3 au orbits,
the transiting planet sample may act as a key variable in
interpreting the small-planet sample of microlensing planets
against transit surveys in the local neighborhood, such as
Kepler. Because the Kepler sample was sensitive to small
planets just interior to ∼1 au, and the microlensing survey will
be sensitive to small planets just exterior to ∼1 au, they provide
a natural complement to each other. However, there is a
significant confounding variable in the differing Galactic
environments and stellar masses probed by these two surveys.
Thus, the ∼1000s of small planets detected in the GBTDS via
transit should provide an essential keystone in placing the
homogeneous Kepler sample into a greater Galactic context,
anchoring the interpolation needed to combine the Kepler
transit and Roman microlensing planets into a single, joint
analysis framework for testing planet formation theories.

5.3. Prospects for False-positive Rejection and Planet
Validation

For any transit survey, a primary concern is removing
astrophysical false positives caused by, e.g., eclipsing binaries
(EBs). In this work, we did not consider false positives
contaminating the transiting planet catalog, but this should be a
concern for the GBTDS transit survey, in particular because
giant planets are the most difficult transiting planet candidates
to validate without additional data (e.g., radial velocities),
because the light-curve shape of transiting Jupiter-sized planets
is often consistent with the light-curve shape of eclipsing
brown dwarfs and low-mass M dwarfs. For this reason, a planet
candidate vetting framework for the GBTDS transit search
needs to be more robust than previous attempts, and producing
a transiting planet catalog with high reliability from the
GBTDS will require a monumental effort. This need becomes
even more imperative at the dimmer magnitudes needed to
probe the transiting planet population beyond the Galactic
bulge, as proposed in Section 5.1.
The majority of false positives will be due to EBs in some

form. The most common tests to identify EBs include
comparing the transit depth in odd and even transits to identify
events that are actually EBs at half of the reported period,
measuring the significance of secondary events at the folded
period to identify secondary eclipses, and measuring the PSF
centroid, either directly or via difference imaging, in and out of
transit to identify signals that are off target. Variations of each
of the above tests are staples in any transiting planet search
(e.g., Coughlin et al. 2016; Thompson et al. 2018; Twicken
et al. 2018; Kostov et al. 2019; Zink et al. 2020; Guerrero et al.
2021) and should be again for the GBTDS. However, due to
the differences in observational capabilities between Roman
and the Kepler and TESS observatories, there are unique
variations of these tests that will provide additional benefit in
discriminating false-positive scenarios from transiting planets.
Many of these scenarios were simulated by Montet et al.

(2017) to provide a proof of concept, though some tests may
only be applicable for bright sources with high transit S/N.
However, providing a full assessment of the ability for each test
to identify EBs or validate planets in the GBTDS data would
require more detailed simulations of the false-positive popula-
tion, which is outside the scope of this paper. Thus, rather than
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assessing the effectiveness of each test, we limit this section to
a brief discussion of some unique considerations needed to
improve the reliability of the GBTDS transiting planet
candidate catalog, and we leave detailed simulations for
later work.

5.3.1. Direct Validation

For a few specific scenarios, it should be possible to directly
validate a transiting planet candidate. Montet et al. (2017) give
a few examples, such as the detection of a secondary eclipse
(discussed in more detail below), the detection of transit-timing
variations, or systems with multiple transiting planets. Because
multiplanet systems are difficult to mimic via multiple EBs, the
vast majority of such systems can be reliably confirmed as
planetary in nature, provided the transit source is consistent
with the apparent source (Morton et al. 2016). For additional
reliability, some of these systems should have detectable
transit-timing variations. The GBTDS should be sensitive to
timing variations for planets as small as Rp≈ 3R⊕ and
Mp≈ 10M⊕ for the brightest Sunlike stars in the GBTDS
(Montet et al. 2017). Although timing variations measured in
these cases will likely not be sensitive enough to infer masses,
the combination of timing amplitude and period should be
adequate to confirm the planetary nature of an object.
Unfortunately, this is likely only possible for a small subsample
of planets in the GBTDS, as Jupiter-sized planets are known to
have less detectable transit-timing variations.

5.3.2. Secondary Eclipses and Emergent Planetary Flux

The detection of a secondary eclipse typically is a near-
definitive identification of a false positive in optical transit
surveys, but because Roman will primarily observe from 0.93
to 2.00 μm, it will be sensitive to planetary emission for
∼1000s of hot Jupiters in the GBTDS sample (Montet et al.
2017).

In the case that a secondary eclipse is detected, jointly
modeling the depth of the primary and secondary eclipse
should place strict constraints on the combination of temper-
ature and radius of the occulting body, which should identify
self-luminous objects with surface temperatures that are
inconsistent with substellar mass objects. In other words,
because secondary eclipse depth is so strongly correlated with
surface temperature, it should be extremely difficult for a
stellar-mass object to imitate the secondary eclipse of a
planetary-mass object. This is not necessarily true for some
ultra-hot Jupiters, which can have surface temperatures
approaching and exceeding those of M dwarfs (e.g., Kelt-9b:
Gaudi et al. 2017; TOI-2109b: Wong et al. 2021), but such
systems should be identifiable by their high instellation flux.
For most cases, the only other plausible scenario would be in a
hierarchical multiple system, in which the original transit signal
is extremely diluted. Such systems may be identified by
multicolor observations, as discussed in the following section.

Another effect that could help validate hot planetary
candidates is the phase variations of the out-of-transit light
curve. Eclipsing binaries show variations on or at half the
orbital period, due to effects such as ellipsoidal variations and
Doppler beaming. These effects can be described to first-order
by the BEaming, Ellipsoidal, and Reflection/heating (BEER)
model (Faigler & Mazeh 2011). At large companion masses,
the dominant terms in this model, i.e., ellipsoidal variations and

Doppler beaming, are in phase with the primary and secondary
eclipses of the transiting/eclipsing companion. However, this
may not be the case for hot Jupiters, in which the dominant
variation in the GBTDS will likely derive from thermal
emission from a hot spot on the dayside of the planet, except in
the case that a hot Jupiter has a high albedo. Due to
atmospheric circulation, the brightest point of the phase curve
is often out of phase with the timing of the secondary eclipse
(Showman et al. 2009), an effect that cannot be imitated by
ellipsoidal variations, allowing for additional discrimination in
identifying false positives from eclipsing stellar-mass compa-
nions, provided that Roman has the long-term photometric
stability to obtain such a measurement.

5.3.3. Transit Depth Chromaticity

The GBTDS will take observations in a second, and possibly
third, bandpass for the purpose of characterizing stars in the
GBTDS. Depending on the frequency and specific bandpasses
chosen, these observations can provide supplementary information
useful for validating planet candidates by measuring wavelength-
dependent eclipse depth variations caused by the differing portions
of the stellar SEDs sampled in each bandpass.
Montet et al. (2017) simulated GBTDS observations of a hot

Jupiter with P= 3 days and Rp/Rå= 0.1 around a 15th-
magnitude Sunlike star, assuming secondary observations in
the F087 (0.76–0.99 μm) bandpass at a cadence of 12 hr. In this
scenario, variations as large as ∼11% can be identified at a
significance of 3σ. While this is adequate for identifying many
stellar sources, it is likely not sufficient for the majority of the
catalog, which will be significantly dimmer. In the case of
discriminating between low-mass stars and planets with similar
radii, secondary eclipse detections will likely be more
significant. However, increasing this cadence would improve
the limits on identifying chromatic variations, and the choice of
a third, redder wavelength, such as the F184 (1.68–2.00 μm) or
the F213 (1.95–2.30 μm) bandpass, may provide additional
discriminating power.
Interpreting this measurement will also depend on the degree

to which the chromatic, confusion-limited background is
characterized, as discussed in Section 5.5.1, and the degree to
which blended sources can be identified. In the latter, real
planets in hierarchical systems may be misidentified as stellar-
mass companions in an unblended system. Thus, extra care will
be needed in interpreting chromatic variations of this nature.

5.3.4. Astrometry in/out of Transit

Background EBs (BEBs) may masquerade as planet
candidates, due to their diluted eclipse depth. Identifying
BEBs typically requires measuring the centroid, either directly
or via difference imaging, in and out of transit to identify transit
signals that are inconsistent with the position of the apparent
source. Applications of these methods for identifying BEBs in
Kepler and TESS are typically sensitive to subpixel offsets.
However, driven by science requirements from the other core
community surveys, Roman will have much better spatial
resolution and PSF stability than any previous transit surveys,
with a PSF characterized to many orders of magnitude. As a
result, the GBTDS should yield single-exposure astrometry to a
systematics limit of ∼1/100 pixel (Gaudi et al. 2019). For
high-S/N transits, performing astrometry on the difference
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images should identify the source of transit with a precision up
to this systematics limit.

Even in the worst-case scenario, i.e., in which a background
EB and apparent source of transit are in perfect alignment,
relative proper motions between the background EB and
apparent source should allow for many systems to be separable
by the end of the survey. If it can be assumed that the
distributions of relative proper motions between the back-
ground EB and apparent transit source are the same as those for
source-lens pairs in the simulated microlensing sample from
Penny et al. (2019), then the majority of pairs should have
relative proper motions ranging from 5 to 15 mas yr−1,
sufficient to separate the two sources by ∼20%–60% of a
pixel over the course of the 4.5 yr baseline, which should be
detectable for high-S/N transit candidates.

Thus, despite the crowded bulge fields, the imaging quality
of the WFI combined with the relative proper motions of stars
in the GBTDS fields should enable effective identification of
false positives from unassociated background EBs, at least for
high-S/N transiting planet candidates.

5.3.5. Probabilistic Validation

Finally, the most likely assessment of reliability for the
majority of the candidates in the sample will come from some
form of probabilistic validation, where the light curve is
modeled assuming a number of astrophysical false-positive
scenarios, the relative probability of each scenario is computed,
and if the probability that the data derive from a false positive is
below some threshold, the candidate is considered validated
(e.g., Morton et al. 2016; Giacalone et al. 2021).

Typically, this strategy is most effective at high S/N and for
small planets. In the case where there is some ambiguity, the
interpretation of the results depends strongly on the priors
assumed for properties such as the likelihood of a transiting
planet, the density of background sources, and the occurrence
of EBs. Thus, using systems validated in this way for
demographics studies can lead to a degree of circular logic
that can bias any inferred trends. In the case that the false-
positive rate is relatively high for the GBTDS, any inferred
demographics trends either will be limited to bright stars that
can be adequately confirmed, or they will be subject to the
priors assumed for the likelihood of false-positive scenarios.

It is likely that a large fraction of the planet candidates in the
GBTDS will be ambiguous. To compensate for this, a probabilistic
validation framework for the GBTDS planet search should
incorporate simulated false positives at the catalog level, as
advocated in Section 5.1; applying constraints for the close binary
fraction combined with estimates for the vetting sensitivity, the
false-positive yield can be jointly modeled with the planet yield.
This strategy has proven effective in inferring occurrence rates in
Kepler (e.g., Fressin et al. 2013), and conceptually similar
strategies applied to modeling false alarms have proven critical
to inferring the occurrence of Earth-like planets (Bryson et al.
2020). It is in this hierarchical approach that the GBTDS sample
can be most efficiently exploited for demographics studies. Thus,
even if any one planet candidate is not reliable, a population-level
analysis should still prove powerful.

5.4. Prospects for Spectroscopic Follow-up

Spectroscopic follow-up of the GBTDS transiting planet
sample could prove invaluable to understanding the [Fe/H] and

[α/Fe] distributions of the Galactic bulge sample. To survey all
of the G dwarf planet hosts in the bulge and near side of the
Galactic disk, a program would need the capability to observe
∼24,000–49,000 sources, depending on correlations between
metallicity and planet occurrence, with magnitude limits of
I 20 mag (R 21 mag). Near-infrared wavelengths would
help compensate for extinction and increase S/N, but they
would be more susceptible to confusion limits. However, in
this case, one would only need to be sensitive to J 19
(H 18.5). One strategy could be to follow up sources at
moderate spectral resolution (R∼ 5000) and S/Ns (∼30),
where one can derive stellar atmospheric parameters—includ-
ing [Fe/H]—at a reasonable significance, and measure radial
velocities to a precision of ∼1 km s−1, sufficient to rule out
stellar-mass companions.
While such a survey would be resource intensive, the next

generation of 10+ meter multiplexed spectroscopic observa-
tories (e.g., McConnachie et al. 2016; Pasquini et al. 2018) will
not be constrained by this faint magnitude limit and sample
size. If the sources were isolated, then these observatories
would be able to conduct this survey in ∼10–100 hr of
observation. However, the biggest limitation will be source
confusion in the low-latitude Galactic bulge fields. As a result,
fiber-fed multiobject spectroscopic surveys to follow up the
GBTDS transiting planet hosts will likely need a way to
compensate for image degradation from atmospheric turbu-
lence (i.e., “seeing”) to reliably observe sources dimmer than
J≈ 18 (see Figure 18).
Observing dimmer sources should be possible with a fiber

entrance aperture of 0 5, if the PSF FWHM can be controlled
to ∼0 3. This could be accomplished with MOSAIC (Kelz
et al. 2015), a multiobject spectrograph planned for the
European Extremely Large Telescope (Gilmozzi & Spyromi-
lio 2008), which can sufficiently achieve the desired spatial
resolution with a ground-layer adaptive optics system over a 40
arcmin2 field of view. Given the average density of transiting
planet candidates considered (∼150–300 per 40 arcmin2) and
the number of fibers available (200), each object can be
observed once in ∼200 pointings. This may be accomplished at
high spectral resolution (R∼ 18,000), due to the large telescope
aperture. Alternatively, a carefully selected subsample of planet
candidates with multiple visits to measure their RV variability
may be sufficient to characterize the false-positive rate in the
GBTDS planet catalog, improving the demographics analysis.

5.5. Caveats and Implementations to Improve Future
Simulations

Here, we discuss a few areas where these simulations can be
further improved and additional effects that can be added to
make these simulations more realistic.

5.5.1. Crowding and PSF/PRF Photometry

The noise model developed in Section 3.4 is specific to the
aperture photometry pipeline that we implemented, but with
PSF photometry the effects of contaminating flux are likely to
be reduced. For this reason, we omitted stars dimmer than
F146= 21 mag, approximately when crowding becomes the
dominant source of photometric noise. However, such stars
should still be bright enough to effectively detect planets. Thus,
implementing a PSF photometry routine into these simulations
is likely to improve the inferred transit survey efficiency for
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dim stars, which is particularly important for detecting distant
(d 10 kpc) planets on the far side of the Galactic bulge, as
discussed in Section 5.1.

Because we adopted an aperture photometry pipeline and
made no attempt at characterizing the planet candidates
themselves, we neglected difficulties such as accurately
inferring a transit depth. The approach to modeling the transit
depth will be an important concern for the actual survey, and
improper treatment of crowding may lead to underestimating
the transit depth by a factor of ∼2–4 for the dimmest stars
considered here (see Figure 5). These uncertainties may be
mitigated by observations in bluer filters (e.g., F087), which
will have a smaller diffraction limit and lower sky background,
and should therefore aid in deblending the F146 images.
However, such methods will likely have to account for some
kind of diffuse, chromatic stellar background from dim and/or
unresolved stars below the confusion limit that are unlikely to
be fully modeled out. This diffuse background could be
estimated in conjunction with a Galactic synthesis model,
reducing some of these uncertainties. Further constraints on the
density of dim sources below the confusion limit may also be
inferred from the empirical microlensing event rate.

By the end of the survey, there will be 40,000 cadences
from which to measure relative positions, parallaxes, and
proper motions to build a reasonable background star model.
Therefore, the photometry should be significantly improved as
the survey continues, and background stars will become more
precisely modeled as uncertainties in proper motions and
positions are reduced in later seasons of the survey, allowing
for tighter priors on the source position and reducing
degeneracies between position and flux in the PSF modeling.

5.5.2. Galactic Population Synthesis Model

In this work, we adopted a simple Galactic model, with
many of the limitations described in Section 2.2. We assumed
in this work that each field has the same stellar populations,
neglecting the spatial dependence on source density, as well as
reddening and extinction that are variable on subarcminute
scales (e.g., Gonzalez et al. 2012; Surot et al. 2020). As a
result, there should be some variation in the planet yield, as
well as photometric uncertainty caused by crowding for each
field. The metallicity and α-abundance distribution functions in
the Galactic bulge also change on ∼degree spatial scales
(Zoccali et al. 2017), so different fields are likely to have
different underlying planet occurrences. By incorporating such
a model, we could test more detailed theories of the
dependence of Galactic environment on the transiting planet
yield, because different fields would presumably have differing
fractions of thin disk versus thick disk versus bulge stars.
Another improvement to a Galactic population synthesis

model would be a detailed treatment of binarity and multistar
systems. In this work, we injected binary systems into our
Galactic model but made no attempt to determine the yield of
planets in such systems, though planet candidates in hierarch-
ical systems should be fairly common. The statistics we use to
inject binary systems in our sample are also limited to studies
of the local stellar neighborhood, which is an imperfect
treatment of multistar systems in the GBTDS, and the
prevalence of such systems likely leads to uncertainties in
our yield estimates of a few percent, in particular when
adopting the metallicity-scaled planet occurrence (see
Section 4.6.3).

5.5.3. Intrinsic Stellar Variability

In this work, we neglected stellar variability in our yield
estimates and noise model. Although this is unlikely to have a
significant impact on our overall results, as discussed in
Section 4.6.2, this is likely an important consideration for
bright sources, such as low-luminosity giants and nearby G
dwarfs. For evolved stars, solar-like oscillations may introduce
higher-frequency noise on timescales comparable to the transit
duration, but the amplitude of these signals is likely below the
white-noise threshold for the majority of giants in the sample
with radii small enough to detect transiting planets (Gould et al.
2015). On the other hand, because charge does not bleed in the
WFI H4RG-10 arrays, like in a CCD (Mosby et al. 2020),
extremely precise photometry can be derived from saturated
sources. In this case, there may be an opportunity to detect
transiting planets among some of the brightest giant stars in the
sample where asteroseismic oscillations may introduce noise
with amplitudes large enough to impact the detectability of
transits even without a confident detection of the solar-like
oscillations themselves. Modeling evolved stars in this way
requires a more detailed treatment than is presented in this
work, as we ignore saturated sources and most second-order
detector effects that would become important for accurately
modeling the brightest sources in the GBTDS, as discussed in
Section 3.4.2.

5.5.4. Detector Systematics

There are additional detector effects and observing details
that are not included in our analysis. Because high-level data
products from the Roman mission will be calibrated based on

Figure 18. The seeing-limited flux distribution of sources in the GBTDS. Each
row is centered on a source of different magnitude, and each column represents
a different seeing limit. The pink circles represent fiber entrance apertures of
diameters 0 5 (dashed) and 1 0 (solid). In good seeing conditions (∼0 5),
ground-based observations are limited to sources with J  18. Sources with
J < 20 can be followed up with a 0 5 diameter fiber, if the PSF can be
controlled to FWHM ≈ 0 3.
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continuous measurements to remove the worst of the effects
below, we believe these systematics will have only a minor
effect on our results (see Section 4.6.1). However, these effects
may be important to include in specific situations, or for other
scientific motivations, such as modeling pixel-level data for
sources brighter than F146≈ 18. Below, we discuss effects
likely to affect this photometric performance, in particular for
bright stars.

Persistence. Near-IR arrays are susceptible to the incomple-
tely understood effect of persistence. Persistence acts as a
memory effect, where trapped charge from previous exposures
is slowly released into subsequent exposures. Despite the
attention to reducing these effects in the WFI arrays,
persistence can remain a significant problem for longer
exposures and for fainter sources (Mosby et al. 2020). Given
the shorter exposures of the GBTDS, persistence should only
be significant for a small fraction of stars whose positions are
correlated with bright stars in a previous field (i.e., a similar
number to the ∼3% of stars near saturated pixels should be
affected by persistence). Even in this case, the median
magnitude of the persistence signal has been measured to be
∼0.02% of the full well depth 150 s after a bright exposure,
which is unlikely to impact these detected planet yields, as
shown in Section 4.6.1. For timescales of ∼50–70 s, the typical
slew/settle time between exposures of adjacent fields in the
GBTDS, this signal is ∼1–3 e− s−1 (Mosby et al. 2020), which
for the dimmest stars in this study translates to ∼0.2%–0.6% of
the source flux, which is similar in magnitude to shot noise
from the thermal and sky background but below that from
crowding. Thus, if uncorrected, persistence may affect ∼3% of
the dimmest stars in this sample, but it is unlikely to
significantly impact our overall results. However, due to the
goals of the other core community surveys, in particular for
flux measurements of supernovae as dim as ∼26 mag in the
High Latitude Survey, modeling persistence at the data
calibration level is a focal point for the Roman science team
(Spergel et al. 2015).

Nonlinearities. Nonlinearities arise from a number of
sources, including count rate dependent nonlinearities (i.e.,
reciprocity failure) and classical nonlinearities. While the latter
is typically understood to be deterministic, the former is likely
correlated with less stable effects such as persistence and burn-
in. Mosby et al. (2020) measured the linearity performance of
candidate WFI H4RG-10 detectors and found that a typical
pixel has a maximum deviation from an arbitrary linear
correction of 0.15%, implying that at worst the error from
nonlinearities should be on par with the semisaturation limit
considered in this work. However, these estimates are likely to
be improved due to the calibration requirements of the other
core community surveys, would primarily impact the brightest
stars in this study, and even in the worst-case scenario should
only have a major impact on the detectability of small planets,
as discussed in Section 4.6.1.

Other detector systematic effects. The work presented here
considered simulations on which the per-pixel noise comes
from photon-counting plus an uncorrelated read-noise comp-
onent derived from up-the-ramp sampling (see Equation (2)). In
reality, spatially correlated noise (e.g., 1/f noise, alternating
column noise, and intra- and interpixel sensitivity variations) in
H4RG detectors will also impact the achievable photometric
precision by the Roman mission (see, e.g., Rauscher 2015, and
references therein). While studying the effects of such

components is outside the scope of this work, techniques to
mitigate those at the data calibration level will be valuable to
study in detail in the near future. As advocated in Section 4.6.1,
limiting these effects to below <0.5 ppt on timescales of
12 hr should be adequate to not impact the GBTDS transiting
planet yield, although the relative magnitude of this uncertainty
will depend on the noise floor for saturated and semisaturated
sources, which we conservatively predict to be ∼1.3 ppt.

6. Summary and Implications

NASA’s next flagship mission, the Nancy Grace Roman
Space Telescope, will conduct a high-cadence survey of the
Galactic bulge with the primary objective of discovering
∼1000s of exoplanets on wide orbits (∼1–10 au) via micro-
lensing. However, given the GBTDS observing mode, these
data will also facilitate the detection of transiting exoplanets.
To fully assess this potential and the scientific opportunities

afforded by transiting planets in the GBTDS, we developed the
Roman IMage and TIMe-series SIMulator (RImTimSim) to
perform detailed pixel-level simulations of the GBTDS. Using
synthetic full-frame images from this simulation framework,
we generated >430,000 light curves with transit signals
injected at the pixel level, applied a simulated transit detection
pipeline, characterized the expected photometric performance
of the GBTDS light curves, and directly inferred the transit
detection efficiency over all stars in the GBTDS observing
footprint with F146< 21.
Combining the results from these detailed transit search

simulations with planet occurrence rates from Kepler and a
simulated stellar population adjusted to match the empirical
NIR luminosity function of the Galactic bulge, we predict that
the GBTDS should observe 59× 106 bright stars, which should
yield the discovery of between ∼60,000 and ∼200,000
transiting planets.
In this section, we present the major results and implications

of this work, including the scientific opportunities afforded by
the GBTDS transiting planet survey (Section 6.1), implications
for mission design (Section 6.2), and finally the expected
quality of the GBTDS light curves and implications of the
GBTDS observing strategy (Section 6.3).

6.1. Predicted Yields and Implications for Exoplanet
Demographics

The allure of the GBTDS transiting planet science case
primarily derives from two sources. First, the stellar densities of
the Galactic bulge—which, combined with Roman’s field of
view, offer the largest homogeneously analyzed collection of
planet-search stars to date. The result will be an extensive
planet sample that will yield statistically significant results,
even for intrinsically rare objects and events. The following
predictions and opportunities are direct results of the large
number of stars searched in the GBTDS.

1. Of the ∼60,000–200,000 total transiting exoplanet
detections, 90%–95% (∼54,000–180,000) will be giants
(Rp> 4R⊕), potentially increasing the number of known
giant planets by as much as two orders of magnitude.

2. The large number of surveyed M dwarfs should yield the
detection of 329 31

51
-
+ giant planets with such host stars,

which is over an order of magnitude more such planets
than are currently known. Assuming that the occurrence
of giant planets around M dwarfs scales with metallicity
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similarly to giant planets around FGK hosts, this yield
would instead be ∼2600, over two orders of magnitude
more than are currently known. Given the deep transit
depths in such systems and the self-imposed limit of
F146< 21 in this study, this yield estimate is likely
conservative.

3. The GBTDS transiting planet yield will primarily consist
of planets on close-in orbits (a 0.3 au). However, the
large number of surveyed stars should combat the low
transit probability for stars at large orbital separations,
facilitating the discovery of an additional ∼12,000
planets at larger orbital separations (a 0.3 au), includ-
ing ∼1800 single-transiting planets with orbital separa-
tions as large as a∼ 7 au.

4. The GBTDS transit sensitivity for planets with
Mp 30M⊕ and a∼ 0.3–3 au should overlap signifi-
cantly with the microlensing survey (see Figure 17). If the
completeness and reliability of both surveys can be
adequately characterized, then such studies could con-
strain the eccentricity distributions, planet density
distributions, mutual inclinations, and multiplanet fre-
quency at large orbital separations for giant planets at the
population level. Such inferences will provide funda-
mental tests of core accretion and constrain the most
prominent migration pathways for close-in giant planets
(see Section 5.2).

The second allure of the GBTDS transit survey is the depth
of the observations, which yield high detection efficiencies for
transiting planets orbiting stars with F146= 21 mag, of which
many are at large distances. Although we only simulated the
planet population down to this limit, transit searches over
dimmer stars should still be effective, with the primary
limitations being crowding and source catalog completeness.
This depth translates to a planet population over an extensive
range of Galactic environments and stellar host parameters,
allowing for demographics analyses not possible in the stellar
neighborhood. The following results are direct consequences of
either the breadth of Galactic environments surveyed or the
high detection efficiencies for dim stars.

1. The overall transiting planet yield has a strong depend-
ence on the Milky Way’s metallicity distribution
function. Adjusting for the correlation between stellar
metallicity and planet occurrence, the total transiting
planet yield could realistically range from 135,000 to
200,000. Even for small planets, adjusting for the Milky
Way’s metallicity distribution function results in a
significant increased yield of ∼7000 to ∼12,000, high-
lighting an opportunity to constrain the role of bulk
metallicity and stellar composition as a whole on the
demographics of both small and giant planets (see
Section 4.2).

2. The GBTDS data will be sensitive to transiting planets at
distances of 16–20 kpc for giants (Rp> 4R⊕), distances
of ∼8–10 kpc for sub-Neptunes (Rp= 2–4 R⊕), and
distances of ∼3–4 kpc for super-Earths (Rp< 2R⊕).
These distances will enable the detection of >1000s of
planets across each of the Galactic thin disk, thick disk,
and bulge (see Figure 16).

3. A typical M dwarf planet will have a distance of
∼1–3 kpc, nearly an order of magnitude further than

most M dwarf planet candidates in current state-of-the-art
transit surveys.

4. The GBTDS will be sensitive to small habitable-zone
planets, in particular those with low-mass host stars
(Må 0.3Me). More specifically, the GBTDS should
yield 39 6

7
-
+ super-Earths in the conservative habitable

zone and 114 14
17

-
+ super-Earths in the optimistic habitable

zone (see Section 4.3).
5. Finally, the breadth of Galactic populations surveyed

should be sufficient to disentangle the relationships
between stellar age, bulk metallicity, and α abundances
on giant planet occurrence, which are degenerate in the
local stellar neighborhood due to Galactic chemical
evolution. To accomplish this task, we advocate for a
forward-modeling approach with an exoplanet demo-
graphics model layered over a Galactic population model.
Such a model would marginalize over [Fe/H] and [α/Fe]
distributions in the Milky Way and allow the inference of
key observables such as the planet yield as a function of
distance, Galactic radius, height above the midplane, and
proper motion distributions (see Section 5.1).

6.2. Implications for Mission Design

To quantify survey design trades on the expected transiting
exoplanet yield, we applied an analytic transit detection model,
developed through detailed simulations, to our simulated
exoplanet population while varying survey parameters such
as the observing cadence, number of fields surveyed, and the
season duration. We present these findings below.

1. The overall yield for Jupiters (Rp> 8R⊕) with bright
(F146< 21) host stars is insensitive to all survey
parameters except surveyed area (i.e., number of fields),
implying that the yield of giant planets is not limited by
S/N and that transit searches for giant planets will be
effective even for significantly dimmer stars (see
Section 4.5).

2. For small planets (Rp< 4R⊕), a larger surveyed area
yields more nearby small planets, while higher-cadence
observations yield more distant small planets. These
effects nearly cancel for constant slew/settle times,
making the overall yield for small planets (Rp< 4R⊕)
insensitive to the trade between surveyed area and
observing cadence (see Section 4.5.4).

3. The small-planet (Rp< 4R⊕) yield depends sensitively on
season duration, changing approximately linearly by
nearly 2% per day, for a total decrease of 21% from a
maximum season duration of 72 days to the minimum of
60 days (see Section 4.5.2).

4. Overall, these planet yield estimates are robust to the
expected sources of correlated noise, with the exception
of super-Earths (Rp< 2R⊕). To prevent significant losses
in the yield of super-Earths, instrumental noise (e.g.,
intrapixel variations and detector nonlinearities) should
be controlled to <0.5 ppt, with a stretch goal of <0.3 ppt
(see Section 4.6.1).

6.3. Expected GBTDS Performance and Implications for
Analysis Strategies

Our transit detection sensitivity model was developed
through detailed, pixel-level simulations of transiting planets
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in the GBTDS. These simulations incorporated a realistic
stellar population to accurately model crowding as well as
an authentic treatment of the Roman WFI detectors, including a
readout scheme and ramp-fitting algorithm to properly model
photometric uncertainties from bright and semisaturated
sources. Below are some implications from these simulations.

1. Crowding will dominate the photometric error budget for
stars with F146 21 (see Figure 4), and due to
semisaturation effects, crowding will be counterintui-
tively prominent for bright stars as well (see
Section 3.4.1). This motivates the use of PSF photometry
in the GBTDS, and the need to properly model the stellar
background to avoid biases in the inferred planet radii
caused by dilution (see Section 5.5.1).

2. For stars with F146< 18, semisaturation effects will
dominate the error budget. As a result, studies focused on
such stars will need to characterize second-order detector
effects, such as classical and count rate dependent
nonlinearities, which will need to be controlled to
reach single-exposure photon-limit uncertainties of
σdpp 1 ppt.

3. The GBTDS observing cadence is significantly longer
than the exposure time. As a result, high-frequency
signals will be undersampled but not lost. In the context
of transiting exoplanet searches, this could result in
template mismatches that reduce detectability, in part-
icular for short-duration transits (see Section 3.3).

7. Conclusions

The goals of this work were to (1) estimate the yield of
transiting exoplanets in the GBTDS, (2) characterize the
expected performance of the GBTDS and quantify survey
design trades on the overall transiting exoplanet science
return, and (3) identify unique science opportunities in the
GBTDS that cannot be conducted with current state-of-the-art
observatories.

To accomplish these goals, we generated a synthetic stellar
catalog of the GBTDS observing footprint, adjusted to match
the empirical NIR luminosity function of the Galactic bulge
population. We combined this synthetic stellar catalog with
planet occurrence rates from Kepler to simulate a transiting
exoplanet population in the GBTDS observing fields. Finally,
we combined these simulated exoplanet and stellar populations
with an analytic model of the expected GBTDS transit
detection sensitivity, which was validated against detailed
simulations of a GBTDS transit search simulated at the pixel
level, to estimate the overall yield of transiting exoplanets.

Our results indicate that the GBTDS should yield at least
∼60,000 and as many as ∼200,000 transiting exoplanets,
consisting of 90%–95% giant planets (Rp> 4R⊕) on primarily
close-in (a 0.3 au) orbits. In addition to discovering nearly an
order of magnitude more transiting exoplanets than the
combined output of every other transit survey to date, the
GBTDS should find planets around stars with distances as far
as ∼16–20 kpc, probing significant fractions of nearly every
major Galactic population in the Milky Way.

We quantified survey design trades on the transiting
exoplanet yield by simulating variations on the default survey
design. We found that the yield for small planets is insensitive
to the number of fields searched but improves noticeably
with longer seasons and higher-cadence observations, which

improve the overall transit detection sensitivity. The yield for
giant planets, on the other hand, is insensitive to cadence and
season length but increases directly with the number of fields
searched, implying that giant planets should still be efficiently
detected for stars dimmer than F146= 21 mag.
Finally, we identified several scientific opportunities for the

GBTDS transiting exoplanet sample, which are driven by either
the large number of stars searched, the breadth of Galactic
environments surveyed, or a combination of both. Among these
goals is quantifying the change in planet yield as a function of
distance, which will provide unprecedented information
regarding the effects of Galactic environment with varying
age, metallicity, and α abundance distributions on planet
demographics, a feat not possible with present-day transit
surveys that are primarily limited to bright stars in the local
stellar neighborhood.
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