
Approximate Model-Based Shielding
for Safe Reinforcement Learning

Alexander W. Goodalla;* and Francesco Belardinellia

aImperial College London

Abstract. Reinforcement learning (RL) has shown great potential
for solving complex tasks in a variety of domains. However, applying
RL to safety-critical systems in the real-world is not easy as many
algorithms are sample-inefficient and maximising the standard RL
objective comes with no guarantees on worst-case performance. In
this paper we propose approximate model-based shielding (AMBS),
a principled look-ahead shielding algorithm for verifying the perfor-
mance of learned RL policies w.r.t. a set of given safety constraints.
Our algorithm differs from other shielding approaches in that it does
not require prior knowledge of the safety-relevant dynamics of the
system. We provide a strong theoretical justification for AMBS and
demonstrate superior performance to other safety-aware approaches
on a set of Atari games with state-dependent safety-labels.

1 Introduction
Due to the inefficiencies of deep reinforcement learning (RL) and
lack of guarantees, safe RL [5] has emerged as an increasingly active
area of research. Ensuring the safety of RL agents is crucial for their
widespread adoption in safety-critical applications where the cost of
failure is high. From formal verification, Shielding [3] has been de-
veloped as an approach for safe RL, that comes with strong safety
guarantees on the agents performance. However, classical shield-
ing approaches make quite restrictive assumptions which limit their
capabilities in real-world and high-dimensional tasks. To this end,
we propose approximate model-based shielding (AMBS) to address
these limitations and obtain a more general and widely applicable
algorithm.

The constrained Markov decision process (CMDP) [4] is a pop-
ular way of framing the safe RL paradigm. In addition to maximis-
ing reward, the agent must satisfy a set of safety-constraints encoded
as a cost function that penalises unsafe actions or states. In effect,
this formulation constrains the set of feasible policies, which results
in a tricky non-smooth optimisation problem. In high-dimensional
settings, several model-free methods have been proposed based on
trust-region methods [1, 45, 30] or Lagrangian relaxations of the con-
strained optimisation problem [37, 11]. Many of these methods rely
on the assumption of convergence to obtain any guarantees.

Furthermore, model-based approaches to safe RL have gained in-
creasing traction, in part due to recent significant developments in
model-based RL (MBRL) [18, 21, 22] and the superior sample com-
plexity of model-based approaches [19, 27]. In addition to learning a
reward maximising policy, MBRL learns an approximate dynamics
model of the system. Approximating the dynamics using Gaussian

∗ Corresponding Author. Email: a.goodall22@imperial.ac.uk

process (GP) regression [42] or ensembles of neural networks are
both principled ways to quantify uncertainty, and develop risk- and
safety-aware policy optimisation algorithms [41, 32, 6] and model
predictive control (MPC) schemes [31].

Shielding for RL was introduced in [3] as a correct by construction
reactive system that forces hard constraints on the learned policy, pre-
venting it from entering unsafe states determined by a given temporal
logic formula. Classical approaches to shielding [3] require a priori
access to a safety-relevant abstraction of the environment, where the
dynamics are known or at least conservatively estimated. This can be
quite a restrictive assumption in many real-world scenarios, where
such an abstraction is not known or too complex to represent. How-
ever, these strong assumptions do come with the benefit of strong
guarantees (i.e., correctness and minimal-interference).

In this paper we operate in a less restrictive domain and only as-
sume that there exists some expert labelling of the states; we claim
that this is a more realistic paradigm which has been studied in previ-
ous work [24, 16]. As a result, our approach is more broadly applica-
ble to a variety of environments, including high-dimensional environ-
ments which have been rarely studied in the shielding literature [34].
We do unfortunately loose the strict formal guarantees obtained by
classical shielding, although we develop tight probabilistic bounds
and a strong theoretical basis for our method.

Our approach, AMBS, is inspired by latent shielding [24] an ap-
proximate shielding algorithm that verifies policies in the latent space
of a world model [19, 21, 22] and is closely related to previous work
on approximate shielding of Atari agents [16]. The core idea of our
approach is that we remove the requirement for a suitable safety-
relevant abstraction of the environment by learning an approximate
dynamics model of the environment. With the learned dynamics
model we can simulate possible future trajectories under the learned
policy and estimate the probability of committing a safety-violation
in the near future. In contrast to previous approaches, we provide a
stronger theoretical justification for utilising world models as a suit-
able dynamics model. And while we leverage DreamerV3 [22] as
our stand-in dynamics model, we propose a more general purpose
and model-agnostic framework for approximate shielding.

Contributions. Our main contributions are as follows: (1) we
formalise the general AMBS framework which captures previous
work on latent shielding [24] and shielding Atari agents [16]. (2)
We formalise notions such as bounded safety [15] in Probabilistic
Computation-tree Logic (PCTL), a principled specification language
for reasoning about the temporal properties of discrete stochastic sys-
tems. (3) We provide PAC-style probabilistic bounds on the probabil-

ar
X

iv
:2

30
8.

00
70

7v
1

 [
cs

.L
G

]
 2

7
Ju

l 2
02

3

ity of accurately estimating a constraint violation with both the ‘true’
dynamics model and a learned approximation. (4) We more rigor-
ously develop the theory from [16] and theoretically justify the use
of world models as the stand-in dynamics model. (5) We provide a
much richer set of results on a small set of Atari games with state-
dependent safety-labels and we demonstrate that AMBS significantly
reduces the cumulative safety-violations during training compared
to other safety-aware approaches. And in some cases AMBS also
vastly improves the learned policy w.r.t. episode return. All techni-
cal proofs are provided in full in the Appendix, along with extended
results (learning curves) and implementation details, including hy-
perparameters and access to code. These materials are also provided
online at https://github.com/sacktock/AMBS.

2 Preliminaries

In this section we introduce the relevant background material and no-
tation required to understand our approach and the main theoretical
results of the paper. We start by formalising the problem setup and
the specification language used to define bounded safety. We then
introduce prior look-ahead shielding approaches and world models.

2.1 Problem Setup

In our experiments we evaluate our approach on Atari games pro-
vided by the Arcade Learning Environment (ALE) [8]. Atari games
are partially observable, as the agent is only given raw pixel data and
does not have access to the underlying memory buffer of the emula-
tor. This means one observation can map to many underlying states
by a probability distribution. Therefore, we model the problem as a
partially observable markov decision process (POMDP) [35].

To capture state-dependent safety-labels, we extend the POMDP
tuple with a set of atomic propositions and a labelling function; a
common formulation used in [7]. Formally, we define a POMDP as
a 10-tuple M = (S,A, p, ιinit, R, γ,Ω,O,AP,L), where, S is a
finite set of states, A is a finite set of actions, p : S×A×S → [0, 1]
is the transition function, where p(s′ | s, a) is the probability of
transitioning to state s′ by taking action a in state s, ιinit : S →
[0, 1] is the initial state distribution, where ιinit(s) is the probability
of starting in state s, R : S × A → R is the reward function, where
R(s, a) is the immediate reward received for taking action a in state
s, γ ∈ (0, 1] is the discount factor, Ω is a finite set of observations,
O : S × Ω → [0, 1] is the observation function, where O(o | s) is
the probability of observing o in state s, AP is a finite set of atomic
propositions (or atoms), L : S → 2AP is the labeling function,
where L(s) is the set of atoms that hold in state s.

We note here that MDPs are a special case of POMDPs without
partial observability. For example, we can suppose that in MDPs,
Ω = S and the observation function O : S × Ω → [0, 1] collapses
to the identity relation.

In addition, we are given a propositional safety-formula Ψ that
encodes the safety-constraints of the environment. For example, a
simple Ψ might look like,

Ψ = ¬collision ∧ (red-light ⇒ stop)

which says “don’t have a collision and stop when there is a red light”,
for AP = {collision, red-light, stop}.

At each timestep t, the agent receives an observation ot, reward
rt and a set L(st) of labels. The agent can then determine that st

satisfies the safety-formula Ψ by applying the following relation,

s |= a iff a ∈ L(s)
s |= ¬Ψ iff s ̸|= Ψ

s |= Ψ1 ∧ Ψ2 iff s |= Ψ1 and s |= Ψ2

where a ∈ AP is an atomic proposition, negation (¬) and con-
junction (∧) are the familiar logical operators from propositional
logic. The goal is to find a policy π that maximises reward, that is
π∗ = argmaxπ E[

∑∞
t=0 γ

tR(st, π(st))], while minimising the cu-
mulative number of violations of the safety-formula Ψ during train-
ing and deployment.

2.2 Probabilistic Computation-tree Logic

Probabilistic Computation Tree Logic (PCTL) is a branching-time
temporal logic based on CTL that allows for probabilistic quantifi-
cation along path formula [7]. PCTL is a convenient way of stating
soft reachability and safety properties of discrete stochastic systems
which makes it a commonly used specification language for proba-
bilistic model checkers. A well-formed PCTL formula can be con-
structed with the following grammar,

Φ ::= | a | ¬Φ | Φ ∧ Φ | PJ(ϕ)

ϕ ::=XΦ | ΦUΦ | ΦU≤nΦ

where J ⊂ [0, 1], J ̸= ∅ is a non-empty subset of the unit inter-
val, and next X , until U , and bounded until U≤n are the temporal
operators from CTL [7]. We make the distinction here between state
formula Φ and path formula ϕ which are interpreted over states and
paths respectively.

For state formula Φ, we write s |= Φ to indicate that the state
s ∈ S satisfies the state formula Φ, where the satisfaction relation
is defined in a similar way as before (Section 2.1), but also includes
probabilistic quantification, see [7] for details. On the other hand,
path formula ϕ are interpreted over sequences of states or traces. In
the following section we provide the satisfaction relation for path for-
mula ϕ for the fragment of PCTL that we use. We also note that the
common temporal operators eventually ♢ and always □, and their
bounded counterparts ♢≤n and □≤n can be derived from the gram-
mar above in a straightforward way, see [7] for details.

2.3 Bounded Safety

Now we are equipped to formalise the notion of bounded safety intro-
duced in [15]. Consider a fixed (stochastic) policy π : O×A → [0, 1]
and a POMDP M = (S,A, p, ιinit, R, γ,Ω,O,AP,L). Together π
and M define a transition system T : S × S → [0, 1] on the set of
states S, where

∑
s′∈S T (s′ | s) = 1. A finite trace of the transi-

tion system T with length n (n transitions) is a sequence of states
s0 → s1 → . . . → sn denoted by τ , where each state transition
is induced by the transition probabilities of T . Let τ [i] denote the ith

state of τ . A trace τ is said to satisfy bounded safety if all of its states
satisfy the given propositional safety-formula Ψ , that is,

τ |= □≤nΨ iff ∀i 0 ≤ i ≤ n, τ [i] |= Ψ

for some bounded look-ahead parameter n. In words, the path for-
mula ϕ = □≤nΨ says “always satisfy Ψ in the next n steps”. Now
in PCTL we say that a given state s ∈ S satisfies ∆-bounded safety
or formally s |= P≥1−∆(□≤nΨ) iff,

µs({τ | τ [0] = s,∀i 0 ≤ i ≤ n, τ [i] |= Ψ}) ∈ [1 −∆, 1] (1)

https://github.com/sacktock/AMBS

where µs is a well-defined probability measure (induced by the tran-
sition system T) on the set of traces starting from s and with finite
length n, see [7] for additional details on the semantics of PCTL.

Throughout the rest of the paper we will denote µs|=ϕ as short-
hand for the measure µs({τ | τ [0] = s, ∀i 0 ≤ i ≤ n, τ [i] |= Ψ}),
where ϕ = □≤nΨ is the path formula that corresponds to bounded
safety. By grounding bounded safety in PCTL we obtain a principled
way to trade-off safety and exploration with the ∆ parameter. Since
strictly enforcing bounded safety can lead to overly conservative be-
haviour during training, which is not always desirable if we are to
make progress toward the optimal policy.

2.4 Look-ahead Shielding

The general principle of look-ahead shielding is as follows, from the
current state we compute the set of possible future paths and check
if they incur any unsafe states [15]. If the agent proposes an action
that leads the agent down a path with an unavoidable unsafe state,
then the look-ahead shielding procedure should override the agent’s
action with an action leading down a safe path instead, see Fig. 1.

Figure 1. With a Manhattan distance look-ahead of 2 (blue squares) the
robot can avoid the left-most vat of acid, but is unable to determine that the
conveyor belt leads to an unavoidable unsafe state. Without a further look-
ahead horizon, the robot is doomed to fall in the right-most vat of acid during
exploration. This image was created with the assistance of DALL·E 2.

Bounded Prescience Shielding (BPS) [15] is an approach to shield-
ing Atari agents that assumes access to a black-box simulator of the
environment, which can be queried for look-ahead shielding. In the
worst case BPS must enumerate all paths of length H from the cur-
rent state, to find a safe path for the agent to follow. This of course
comes with a substantial computational overhead, even with a rela-
tively small horizon of H = 5.

Our approach most closely resembles latent shielding, [24] which
rolls out learned policies in the latent space of a world model [18, 19]
that approximates the ‘true’ dynamics of the environment for look-
ahead shielding. By simulating futures in a low-level latent space
rather than with a high-fidelity simulator, latent shielding can be used
with a much larger look-ahead horizon (H = 15) and can be de-
ployed during training. As a result we can hope to detect unavoidable
unsafe states that require a larger look-ahead horizon to avoid.

Unfortunately latent shielding [24] is not the be all and end all and
is still fairly short-sighted in comparison to our approach. Rolling out
dynamics models for long horizons is impractical as we will quickly
run into accumulating errors that arise from the approximation error
of the learned model. Instead we use safety critics for bootstrapping
the end of simulated trajectories, to obtain further look-ahead capa-
bilities without running into accumulating errors.

2.5 World Models

World models were first introduced in the titular paper [18]. Built
on the recurrent state space model (RSSM) [20], world models are
trained to learn a compact latent representation of the environment
state and dynamics. Once the dynamics are learnt the world model
can be used to ‘imagine’ possible future trajectories.

We leverage DreamerV3 [22] as our stand-in dynamics model
for look-ahead shielding and policy optimisation. DreamerV3 con-
sists of the following components: (1) the image encoder zt ∼
qθ(zt | ot, ht) that learns a posterior latent representation given
the observation ot and recurrent state ht. (2) The recurrent model
ht = fθ(ht−1, zt−1, at−1), which computes the next deterministic
latents given the past state st−1 = (ht−1, zt−1) and action at−1. (3)
The transition predictor ẑt ∼ pθ(ẑt | ht), which is used as the prior
distribution over the stochastic latents (without ot). (4) The image
decoder ôt ∼ pθ(ôt | ht, zt) which is used to provide high quality
image gradients by minimising reconstruction loss. (5) The predic-
tion heads r̂t ∼ pθ(r̂t | ht, zt) and γ̂t ∼ pθ(γ̂t | ht, zt) trained to
predict reward signals and episode termination respectively.

In DreamerV3 the latents represent categorical variables and the
reward and image prediction heads both parameterise a twohot sym-
log distributions [22]. All components are implemented as neural
networks and optimised with straight through gradients. In addition,
KL-balancing [21] and free-bits [19] are used to regularise the prior
and posterior representations and prevent a degenerate latent space
representation.

Policy optimisation is performed entirely on experience ‘imag-
ined’ in the latent space of the world model. We refer to πtask as
the task policy trained in the world model to maximise expected dis-
counted accumulated reward, that is, optimise the following,

maxEπtask,pθ

[
∞∑
t=1

γ̂t−1r̂t

]
(2)

In addition to the task policy πtask, a task critic denoted vtask, is used
to construct TD-λ targets [39] which are used to help guide the task
policy πtask in a TD-λ actor-critic style algorithm. We refer the reader
to [22] for more precise details.

3 Approximate Model-Based Shielding
In this section we present the AMBS framework, our novel method
for look-ahead shielding RL policies with a learned dynamics model.
We start by giving an overview of the approach, followed by a strong
theoretical basis for AMBS. Specifically, we derive PAC-style proba-
bilistic bounds on estimating the probability of a constraint violation
under both the ‘true’ transition system and a learned approximation.
We show these hold under reasonable assumptions and we demon-
strate when these assumptions hold in specific settings.

3.1 Overview

AMBS is split into two main phases: the learning phase, which in-
cludes (i) dynamics learning, (ii) task policy optimisation with the
standard RL objective, and (iii) safe policy learning and safety critic
optimisation, and the environment interaction phase, which consists
of collecting experience from the environment with the shielded pol-
icy. The new experience is then used to improve the dynamics model.

To obtain a shielded policy, recall that we are interested in verify-
ing PCTL formulas of the form Φ = P≥1−∆(□≤nΨ) (∆-bounded

safety) on the transition system T : S×S → [0, 1] induced by fixing
the task policy πtask for a given POMDP M, where Ψ is the proposi-
tional safety-formula. Quite simply, the shielded policy picks actions
according to πtask provided ∆-bounded safety is satisfied, otherwise
the shielded policy picks actions with a backup policy that should
prevent the agent from committing the possible safety-violation.

To check ∆-bounded safety, we can simulate the transition sys-
tem T by rolling-out the learned world model pθ with actions sam-
pled from the task policy πtask; effectively obtaining an approxi-
mate transition system T̂ : S × S → [0, 1]. Even with access
to the ‘true’ transition system T , exact PCTL model checking is
O(poly(size(T)) · n · |Φ|) which is too big for high-dimensional
settings. Rather, we rely on Monte-Carlo sampling from the approx-
imate transition system T̂ to obtain an estimate µ̃s|=ϕ of the mea-
sure µs|=ϕ, which specifies the probability of satisfying ϕ = □≤nΨ
(bounded safety) from s, under the ‘true’ transition system T .

3.2 Fully Observable Setting

We start by considering the fully observable setting, that is we
are concerned with checking PCTL formula of the form Φ =
P≥1−∆(□≤nΨ) (∆-bounded safety) on the transition system T :
S × S → [0, 1] induced by fixing some given policy π in an MDP
M = (S,A, p, ιinit, R, γ,AP,L). We state the following result,

Theorem 1. Let ϵ > 0, δ > 0, s ∈ S be given. With access to the
‘true’ transition system T , with probability 1 − δ we can obtain an
ϵ-approximate estimate of the measure µs|=ϕ, by sampling m traces
τ ∼ T , provided that,

m ≥ 1

2ϵ2
log

(
2

δ

)
(3)

Proof. The proof is an application of Hoeffding’s inequality [26].
See Appendix B for details.

Suppose that we only have access to an approximate MDP, where
the transition function p is estimated with a learned approximation
p̂, that is, M̂ = (S,A, p̂, ιinit, R, γ,AP,L). As earlier, π and M̂
define an approximate transition system T̂ . We show that we can
obtain an estimate µ̃s|=ϕ for µs|=ϕ by sampling traces from T̂ .

Theorem 2. Let ϵ > 0, δ > 0 be given. Suppose that for all s ∈ S,
the total variation (TV) distance between T (s′ | s)1 and T̂ (s′ | s) is
bounded by some α ≤ ϵ/n. That is,

DTV

(
T (s′ | s), T̂ (s′ | s)

)
≤ α ∀s ∈ S (4)

Now fix an s ∈ S, with probability 1 − δ we can obtain an ϵ-
approximate estimate of the measure µs|=ϕ, by sampling m traces
τ ∼ T̂ , provided that,

m ≥ 2

ϵ2
log

(
2

δ

)
(5)

Proof. The proof follows from Theorem 1 and the simulation lemma
[28] adapted to our purposes, see Appendix B.

The assumption we make in Theorem 2 on the TV distance being
bounded for all states s ∈ S (Eq. 4) is quite strong. In reality we may
only require that the TV distance between T (s′ | s) and T̂ (s′ | s)
is bounded for the safety-relevant subset of the state space.
1 Unless s′ is fixed we define T (s′ | s) as the distribution of next states s′

given s rather than as an explicit probability.

Tabular Case. It may also be interesting to consider under what
conditions the TV distance between T (s′ | s) and T̂ (s′ | s) are
bounded for a given state. In the tabular case we can obtain an
approximate dynamics model p̂(s′ | s, a) for the ‘true’ dynamics
p(s′ | s, a) by using the maximum likelihood principle for categori-
cal variables. Quite simply let,

p̂(s′ | s, a) = c(s′, s, a)

v(s, a)
(6)

where c(s′, s, a) is the visit count of s′, s, a or equivalently the num-
ber of times (s, a) has lead s′ and v(s, a) is the visit count of (s, a)
or similarly the number of times a has been picked from s.

Theorem 3. Let α > 0, δ > 0, s ∈ S be given. With probability 1−δ
the total variation (TV) distance between T (s′ | s) and T̂ (s′ | s)
is upper bounded by α, provided that all actions a ∈ A with non-
negligable probability η ≥ α/(|A||S|) (under π) have been picked
from s at least m times, where

m ≥ |S|2

α2
log

(
2|A||S|

δ

)
(7)

Proof. The proof is an application of Hoeffding’s inequality [26] to
categorical distributions, see Appendix B.

The strong dependence on |S| here can make this result quite un-
wieldy. However, for low-rank or low-dimensional MDPs this de-
pendence on |S| can be suitably replaced. For example in gridworld
environments, where there are only 4 possible next states, |S| can
be replaced with 4. Additionally, for deterministic policies we can
ignore the dependence on |A|.

3.3 Partially Observable Setting

Sample complexity bounds like the one we obtained for the tabular
MDP case are a lot harder to obtain for general POMDPs. To say any-
thing meaningful about learning in POMDPs, various assumptions
can be made about the structure of the environment [29]. We will
reason about the underlying POMDP M in terms of belief states.
Belief states infer a distribution over possible underlying states given
the history of past observations and actions. Formally they are de-
fined as a filtering distribution p(st | ot≤t, a≤t). Importantly, condi-
tioning on the entire history of past observations and actions exposes
more information about the possible underlying states.

However, maintaining an explicit distribution over possible states
is difficult, particularly when we have no idea what the space of pos-
sible states is. Instead it is common to learn a latent representation
bt = f(ot≤t, a≤t) of the history of past observations and actions
that captures the important statistics of the filtering distribution, so
that p(st | ot≤t, a≤t) ≈ p(st | bt). We will denote bt the belief
state, although it is actually a compact latent state representation of
ot≤t, a≤t, rather than a distribution over possible states.

Theorem 4. Let bt be a latent representation (belief state) such that
p(st | ot≤t, a≤t) = p(st | bt). Let the fixed policy π(· | bt) be a
general probability distribution conditional on belief states bt. Let f
be a generic f -divergence measure (TV or similar). Then the follow-
ing holds:

Df (T (s′ | b), T̂ (s′ | b)) ≤ Df (T (b′ | b), T̂ (b′ | b)) (8)

where T and T̂ are the ‘true’ and approximate transition system
respectively, defined now over both states s and belief states b.

Proof. The proof is a direct application of the data-processing in-
equality [2] and we note similar bounds have been derived in previ-
ous work [14]. See Appendix B for details.

What Theorem 4 says, is that by minimising the divergence be-
tween the next belief state b′ in the ‘true’ transition system T and
the approximate transition system T̂ (given the current belief b), we
minimise an upper bound on the divergence between the next un-
derlying state s′ in T and T̂ . This objective is precisely encoded in
the world model loss function of DreamerV3 [22]. And so by using
DreamerV3 (or similar architectures) we aim to minimise the TV
distance between T and T̂ in the hope that we may use the results
stated earlier in this section.

4 AMBS with DreamerV3
In this section we present our practical implementation of AMBS
with DreamerV3 [22]. We start by detailing the important compo-
nents of the algorithm, before describing the shielding procedure in
detail and justifying some of the important algorithmic decisions. An
outline for the full procedure is presented in Appendix A.

4.1 Algorithm Components

RSSM with Costs. We augment DreamerV3 [22] with a cost pre-
dictor head ĉt ∼ pθ(ĉt | ht, zt) used to predict state dependent costs.
Similar to the reward head, the cost predictor is also implemented as a
neural network that parameterises a twohot symlog distribution [22].
Targets for the cost predictor are constructed as follows,

ct =

{
0, if st |= Ψ

C, otherwise
(9)

where st |= Ψ can be determined using the labels L(st) provided at
each timestep (see Section 2.1), and C > 0 is a hyperparameter that
determines the cost of violating the propositional safety-formula Ψ .
We claim that using a cost function in this way rather than a binary
classifier, allows the agent to distribute its uncertainty about a con-
straint violation over consecutive states, since the predicted cost at a
latent state (ht, zt) may lie anywhere on the real number line.

Safe Policy. The safe policy denoted πsafe is used as the backup
policy [23] if we detect that a safety-violation is likely to occur in the
near future when following the task policy πtask. The goal of the safe
policy is to prevent the agent from committing the safety-violation
that was ‘likely’ to happen in the near future.

Unlike classical shielding methods that synthesise a backup policy
ahead of time [3], we must learn a suitable backup policy as we have
no knowledge of the safety-relevant dynamics of the system a priori.
Although, we note that if such a backup policy is available ahead of
time, either because it is easy to determine (i.e. breaking in a car)
or significant engineering effort has gone into creating a backup pol-
icy, then this can be easily integrated into our framework. However,
in general we train a separate policy πsafe and critic vsafe using the
same TD-λ actor-critic style algorithm used for the task policy [22].
However, we minimise expected discounted costs and ignore any re-
ward signals entirely and so specifically we optimise the following
objective,

minEπsafe,pθ

[
∞∑
t=1

γ̂t−1ĉt

]
(10)

In theory, by minimising expected costs we should learn a good
backup policy, since by construction we only incur a cost > 0 when
Ψ is not satisfied.

Safety Critics. Safety critics are used to estimate the expected
discounted costs under the state distribution of the task policy. In
essence, they give us an idea of how safe a given state s ∈ S is if we
were to follow the task policy πtask from that state s. As a result we
can use them to bootstrap the end of ‘imagined’ trajectories for fur-
ther look-ahead capabilities, without having to roll-out the dynamics
model any further. We jointly train two safety critics vC1 and vC2 with
a TD3-style algorithm [13] to prevent overestimation, which is im-
portant for reducing overly conservative behaviour. We also train a
separate safety discount predictor head γ̂safe

t ∼ pθ(γ̂
safe
t | ht, zt) to

help with overestimation. Specifically, vC1 and vC2 estimate the fol-
lowing quantity,

V C(s) = Eπtask,pθ

[
∞∑
t=1

(γ̂safe
t)t−1ĉt

∣∣∣ s0 = s

]
(11)

The safety discount head is a binary classifier that predicts safety-
violations, we use it to implicitly transform the MDP into one where
violating states are terminal, this ensures that the safety critics are
always upper bounded by C and any costs incurred after a safety-
violation are not counted. We note that this is an important property
to maintain for checking bounded safety.

4.2 Shielding Procedure

During environment interaction we deploy our approximate shielding
procedure to try and prevent the task policy πtask from violating the
safety-formula Ψ . Actions that lead to violations in the learned world
model pθ do not count since they are not actually committed in the
‘real world’.

Algorithm 1 details the approximate shielding procedure. It takes
as input an approximation error ϵ, desired safety level ∆ (from the
PCTL formula), the current latent state ŝ = (z, h), an action a pro-
posed by the task policy, the ‘imagination’ horizon H , the look-ahead
shielding horizon T , and the number of samples m, along with the
RSSM components and the learned policies. The shielding proce-
dure works by sampling m traces from the approximate transition
system T̂ (obtained by sampling actions with πtask in pθ), checking
whether each trace satisfies bounded safety and returning the pro-
portion of satisfying traces. If the estimate obtained µ̃s|=ϕ is in the
interval [1 − ∆ + ϵ, 1] then the proposed action a is verified safe,
otherwise we pick an action with the safe policy πsafe instead.

Proposition 5. Suppose we have an estimate µ̃s|=ϕ ∈ [µs|=ϕ −
ϵ, µs|=ϕ + ϵ], if µ̃s|=ϕ ∈ [1 − ∆ + ϵ, 1] then it must be the case
that µs|=ϕ ∈ [1−∆, 1] and therefore s |= P≥1−∆(□≤nΨ).

Proof. Suppose µ̃s|=ϕ ∈ [µs|=ϕ−ϵ, µs|=ϕ+ϵ], µ̃s|=ϕ ∈ [1−∆+ϵ, 1]
and µs|=ϕ ̸∈ [1−∆, 1]. Then µ̃s|=ϕ − µs|=ϕ > ϵ which contradicts
µ̃s|=ϕ ∈ [µs|=ϕ − ϵ, µs|=ϕ + ϵ]. This implies that indeed µs|=ϕ ∈
[1−∆, 1] and therefore s |= P≥1−∆(□≤nΨ) by Eq. 1.

Proposition 5 justifies checking that the condition µ̃s|=ϕ ∈ [1 −
∆ + ϵ, 1] holds in Algorithm 1. Since if µ̃s|=ϕ is an ϵ-estimate of
µs|=ϕ then µ̃s|=ϕ ∈ [1−∆+ϵ, 1] necessarily implies that the current
state s satisfies ∆-bounded safety. We present one more proposition
that is required to understand how we determine (or verify) that a
trace satisfies bounded safety.

Algorithm 1 Approximate Model-Based Shielding (AMBS)
Input: approximation error ϵ, desired safety level ∆, current state
ŝ = (z, h), proposed action a, ‘imagination’ horizon H , look-ahead
shielding horizon T , number of samples m, RSSM pθ , safe policy
πsafe and task policy πtask.
Output: shielded action a′.

for i = 1, ...,m do
Let ŝ0 = (h, z)
// Sample trace
From ŝ0 play a0 and sample trace τ = ŝ1:H with πtask and pθ .
Using τ = ŝ1:H compute sequences ĉ1:H and γ̂1:H with pθ .
// Check trace is satisfying
Xi = 1

[
cost(τ) < γT−1 · C

]
using Eq. 12 or Eq. 13.

end for
Let µ̃s|=ϕ = 1

m

∑m
i=1 Xi

If µ̃s|=ϕ ∈ [1−∆+ ϵ, 1] return a′ = a else return a′ ∼ πsafe

Proposition 6. Suppose we have a trace τ with cost given by,

cost(τ) =
H∑
t=1

(γ̂t)
t−1ĉt (12)

Under the ‘true’ transition system T if cost(τ) < γH−1 · C then
necessarily τ |= □≤HΨ .

Proof. The proof is a straightforward argument. By construction
ct = C if and only if τ [t] ̸|= Ψ , therefore cost(τ) < γH−1 · C
implies that ∀t 1 ≤ t ≤ H we have ct = 0, which implies that
∀t 1 ≤ t ≤ H we have τ [t] |= Ψ .

Furthermore, with safety critics we can compute the cost of a trace
in a similar way:

cost(τ) =
H−1∑
t=1

(γ̂t)
t−1ĉt +min

{
vC1 (hH , ẑt), v

C
2 (hH , ẑt)

}
(13)

Provided that the safety critics accurately capture the expected dis-
counted costs from beyond the ‘imagination’ horizon H then we
can check bounded safety with a larger horizon T > H and de-
rive something similar to Proposition 6. In this situation it may be
clear now why we want the safety critics to be upper bounded by C.
Since a state s ∈ S that satisfies bounded safety could have a value
V C(s) > γT−1 · C if two or more violations occurred beyond the
horizon T ; further in the future than what we care about.

5 Experimental Evaluation
In this section we present the results of running AMBS equipped with
DreamerV3 [22] on a set of Atari games with state-dependent safety-
labels [15]. First, we detail the corresponding safety-formula for each
of the games. We then cover with the training details, followed by the
results and a brief discussion.

Atari Games with Safety-labels. We evaluate each agent on a
set of five Atari games provided in the ALE [8]. Following [33] we
use sticky actions (action repeated with probability 0.25), frame skip
(k = 4), and provide no life information unless it is explicitly en-
coded in the safety-formula. We leverage the state-dependent safety-
labels provided in prior work [15] to construct the safety-formula,
Table 1 outlines each of the Atari environments used in our exper-
iments. For a more precise description of each of the environments

we refer the reader to [33]. We opt for this setting, as opposed to
more standard safe RL benchmarks like SafetyGym [37], as it has
been used in previous work [15, 16] and it provides a richer set of
safety-constraints and corresponding behaviours that much be learnt.

Table 1. Atari environments and their corresponding safety-formula

Environment safety-formula Ψ
Assault ¬hit ∧ ¬overheat

DoubleDunk ¬out-of-bounds ∧ ¬shoot-bf-clear
Enduro ¬crash-car

KungFuMaster ¬loose-life ∧ ¬energy-loss
Seaquest (surface ⇒ diver) ∧ ¬hit ∧ ¬out-of-oxygen

Training Details Each agent is trained on a single Nvidia Tesla
A30 (24GB RAM) GPU and a 24-core/48 thread Intel Xeon CPU
with 256GB RAM. Due to constraints on compute resources, each
agent is trained for 10M environment interactions (40M frames) as
opposed to the typical 50M [21, 22] and our experiments are only
run on one seed.

To test robustness, all hyperparameters are fixed over all runs for
all agents. The hyperparameters of DreamerV3 for the Atari bench-
mark are detailed in [19], most notably the ‘imagination’ horizon
H = 15. The AMBS hyperparameters are also fixed in all experi-
ments as follows, bounded safety level ∆ = 0.1, approximation error
ϵ = 0.09, number of samples m = 512, and look-ahead shielding
horizon T = 30. Additional implementation details and hyperpa-
rameter settings can be found in Appendix C.

Results We evaluate the effectiveness of AMBS equipped with
DreamerV3 [22] by comparing it with the following algorithms,
vanilla DreamerV3 without any shielding procedure or access to the
cost function, a safety-aware DreamerV3 that implements an aug-
mented Lagrangian penalty framework (LAG) [43, 37], since this
method is based on DreamerV3 it should act as a more meaningful
baseline compared to similar model-free counterparts like PPO- and
TRPO- Lagrangian [37] that are not optimised for Atari.

In addition, we provide results for two state-of-the-art (single
GPU) model-free algorithms, Rainbow [25] and Implicit Quantile-
Network (IQN) [12]. While these model-free algorithms don’t really
provide a meaningful baseline, we include them (to the same end
as [15]) to demonstrate that state-of-the-art Atari agents frequently
violate quite straightforward safety properties that we would expect
them to satisfy. We also note that both BPS [15] and classical shield-
ing [3] are too unwieldy to be used during training in this setting,
and so we cannot obtain a meaningful comparison between these ap-
proaches and AMBS.

We compare the five algorithms by recording the cumulative num-
ber of violations and the best episode score obtained during a single
run of 10M environment interactions (40M frames). Table 2 presents
the results. We also provide learning curves for each of the agents in
Appendix D.

Discussion. As we can see in Table 2, our approach (AMBS) com-
pared with the other DreamerV3 [22] based agents dramatically re-
duces the total number of safety-violations during training in all five
of the Atari games. In terms of reward, AMBS also achieves compa-
rable or better best episode scores in all five of the Atari games. This

Table 2. Best episode scores and total violations for the five Atari games. Blank (−) denotes that the agent failed to converge.

DreamerV3 DreamerV3 (AMBS) DreamerV3 (LAG) IQN Rainbow

Assault Best Score ↑ 14738 44467 19832 9959 9632
Violations ↓ 18745 12638 16802 24462 24019

DoubleDunk Best Score ↑ 24 24 24 24 -
Violations ↓ 877499 66248 359018 188363 -

Enduro Best Score ↑ 2369 2367 2365 2375 2383
Violations ↓ 167933 132147 174217 129012 108000

KungFuMaster Best Score ↑ 97000 117200 97200 51600 59500
Violations ↓ 427476 10936 567559 284909 612762

Seaquest Best Score ↑ 4860 145550 1940 34150 1900
Violations ↓ 73641 40147 64679 53516 67101

is likely because the objective of maximising rewards and minimis-
ing constraints are suitably aligned, which we note might not always
be the case. LAG fails to reliably reduce the total number of safety-
violations in all the Atari games, which could suggest this method is
more sensitive to hyperparameter tuning. Clearly the extra machinery
introduced by AMBS helps us to obtain a dynamic algorithm that can
effectively switch between reward maximising and constraint satisfy-
ing policies, which on this set of Atari games demonstrates a signif-
icant improvement in performance compared to other safety-aware
and state-of-the-art algorithms. Interestingly, the model-free algo-
rithms do better across the board on Enduro, it is not immediately
clear why this is the case and this result may need further investiga-
tion. Perhaps it is the case that DreamerV3 is not quite as suited to
Enduro as IQN or Rainbow, although we note that AMBS improves
on DreamerV3 w.r.t. safety-violations while maintaining comparable
performance.

6 Related Work
Model-based RL. Model-based RL as a paradigm for learning

complex policies has become increasingly popular in recent years
due to its superior sample efficiency [19, 27]. Dyna – “an integrated
architecture for learning, planning and reacting” [38] proposed an ar-
chitecture that learns a dynamics model of the environment in addi-
tion to a reward maximising policy. In theory, by utilising the dynam-
ics model for planning and/or policy optimisation we should learn
better policies with fewer experience. Model-based policy optimisa-
tion (MBPO) [27] is a sample-efficient neural architecture for op-
timising policies in learned dynamics model. More recently, more
sophisticated neural architectures such as Dreamer [19] and Dream-
erV2 [21] have been proposed that have demonstrated state-of-the-
art performance on the DeepMind Visual Control Suite [40] and the
Atari benchmark [8, 33] respectively. Our work is built on Dream-
erV3 [22] which has demonstrated superior performance in a number
of domains (with fixed hyperparameters) including the Atari bench-
mark [8, 33] and MineRL [17], which is regarded as a notoriously
difficult exploration challenge in the RL literature.

Shielding. Shield synthesis for RL was first introduced in [3] as
a method for preventing learned policies from entering an unsafe re-
gion of the state space defined by a given temporal logic formula.
In contrast to other safety-aware approaches based on soft penalties
[1, 41], shielding enforces hard constraints by directly overriding un-
safe actions with a verified backup policy. The reactive shield, which
includes the backup policy, is computed ahead of time to ensure no
training violations (correctness). To compute the reactive shield a
safety automaton is constructed from a safety-relevant abstraction of
the game with known dynamics and a safety game [9] is then solved.

Look-ahead shielding [15, 24, 44, 16] is a more dynamic approach
to shielding that aims to alleviate some of the restrictive require-
ments that come with classical shielding. The key benefits of look-
ahead shielding include, (1) better computational efficiency as only
the reachable subset of the state space needs to be checked, (2) can be
applied online in real-time from the current state. Although we note
that look-ahead shielding can be done ahead of time [44] similar to
classical shielding. Inspired by latent shielding [24] our approach
can very much be categorised as an online (approximate) look-ahead
shielding approach.

7 Conclusions

In this paper we introduce and describe approximate model-based
shielding (AMBS), a general purpose framework for shielding RL
policies by simulating and verifying possible futures with a learned
dynamics model. In contrast with the majority of work on shielding
[3], we apply our approach in a much less restrictive setting, where
we only require access to an expert labelling of the states, rather than
having the safety-relevant dynamics be known. In addition, we obtain
further look-ahead capabilities in comparison to previous work, such
as latent shielding [24] and BPS [15], by utilising safety critics that
are trained to predict expected costs.

Compared with other safety-aware approaches, we empirically
show that DreamerV3 [22] augmented with AMBS demonstrates su-
perior performance in terms of episode return and cumulative safety-
violations, on a set of Atari games with state-dependent safety-labels.
We also develop a rigorous set of theoretical results that underpin
AMBS, which includes strong probabilistic guarantees in the tabular
setting. We stress the importance of these results, as it allows oper-
ators to meaningfully choose hyperparameter settings based on their
specific requirements w.r.t. safety-guarantees.

All the components of our algorithm must be learnt from scratch,
which unfortunately means that there are few guarantees during early
stage training. Although in principle we could jump start the learn-
ing process with offline or expert data, this would be an interesting
paradigm to explore. Important future work also includes, empiri-
cally verifying our theoretical results for the tabular setting and ap-
plying AMBS to more standard safe RL benchmarks, like Safety-
Gym [37], that are not frequently used in the shielding literature.

Acknowledgements

This work was supported by UK Research and Innovation [grant
number EP/S023356/1], in the UKRI Centre for Doctoral Training in
Safe and Trusted Artificial Intelligence (www.safeandtrustedai.org).

www.safeandtrustedai.org

References

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel, ‘Con-
strained policy optimization’, in International conference on machine
learning, pp. 22–31. PMLR, (2017).

[2] Syed Mumtaz Ali and Samuel D Silvey, ‘A general class of coefficients
of divergence of one distribution from another’, Journal of the Royal
Statistical Society: Series B (Methodological), 28(1), 131–142, (1966).

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu, ‘Safe reinforcement learn-
ing via shielding’, in Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, (2018).

[4] Eitan Altman, Constrained Markov decision processes: stochastic mod-
eling, Routledge, 1999.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John
Schulman, and Dan Mané, ‘Concrete problems in ai safety’, arXiv
preprint arXiv:1606.06565, (2016).

[6] Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause,
‘Constrained policy optimization via bayesian world models’, arXiv
preprint arXiv:2201.09802, (2022).

[7] Christel Baier and Joost-Pieter Katoen, Principles of model checking,
MIT press, 2008.

[8] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘The arcade
learning environment: An evaluation platform for general agents’, Jour-
nal of Artificial Intelligence Research, 47, 253–279, (jun 2013).

[9] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao
Wang, ‘Shield synthesis: Runtime enforcement for reactive systems’,
in International conference on tools and algorithms for the construc-
tion and analysis of systems, pp. 533–548. Springer, (2015).

[10] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Ku-
mar, and Marc G. Bellemare, ‘Dopamine: A Research Framework for
Deep Reinforcement Learning’, (2018).

[11] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-
Guzman, and Mohammad Ghavamzadeh, ‘Lyapunov-based safe policy
optimization for continuous control’, arXiv preprint arXiv:1901.10031,
(2019).

[12] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos, ‘Im-
plicit quantile networks for distributional reinforcement learning’, in
International conference on machine learning, pp. 1096–1105. PMLR,
(2018).

[13] Scott Fujimoto, Herke Hoof, and David Meger, ‘Addressing function
approximation error in actor-critic methods’, in International confer-
ence on machine learning, pp. 1587–1596. PMLR, (2018).

[14] Tanmay Gangwani, Joel Lehman, Qiang Liu, and Jian Peng, ‘Learning
belief representations for imitation learning in pomdps’, in Uncertainty
in Artificial Intelligence, pp. 1061–1071. PMLR, (2020).

[15] M Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, and
Hjalmar Wijk, ‘Shielding atari games with bounded prescience’, in Pro-
ceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, (2021).

[16] Alexander W Goodall and Francesco Belardinelli, ‘Approximate
shielding of atari agents for safe exploration’, arXiv preprint
arXiv:2304.11104, (2023).

[17] William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton,
Noboru Kuno, Stephanie Milani, Sharada Mohanty, Diego Perez
Liebana, Ruslan Salakhutdinov, Nicholay Topin, et al., ‘Neurips 2019
competition: the minerl competition on sample efficient reinforce-
ment learning using human priors’, arXiv preprint arXiv:1904.10079,
(2019).

[18] David Ha and Jürgen Schmidhuber, ‘Recurrent world models facilitate
policy evolution’, in Advances in Neural Information Processing Sys-
tems, eds., S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, volume 31. Curran Associates, Inc., (2018).

[19] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad
Norouzi, ‘Dream to control: Learning behaviors by latent imagination’,
in International Conference on Learning Representations, (2020).

[20] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David
Ha, Honglak Lee, and James Davidson, ‘Learning latent dynamics for
planning from pixels’, in International conference on machine learn-
ing, pp. 2555–2565. PMLR, (2019).

[21] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy
Ba, ‘Mastering atari with discrete world models’, in International Con-
ference on Learning Representations, (2021).

[22] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap,

‘Mastering diverse domains through world models’, arXiv preprint
arXiv:2301.04104, (2023).

[23] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and
Steffen Udluft, ‘Safe exploration for reinforcement learning.’, in
ESANN, pp. 143–148. Citeseer, (2008).

[24] P He, B Gonzalez Leon, and F Belardinelli, ‘Do androids dream of elec-
tric fences? safety-aware reinforcement learning with latent shielding’.
CEUR Workshop Proceedings.

[25] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver, ‘Rainbow: Combining improvements in deep reinforce-
ment learning’, in Proceedings of the AAAI conference on artificial in-
telligence, volume 32, (2018).

[26] Wassily Hoeffding, ‘Probability inequalities for sums of bounded ran-
dom variables’, The collected works of Wassily Hoeffding, 409–426,
(1994).

[27] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine, ‘When to
trust your model: Model-based policy optimization’, Advances in neu-
ral information processing systems, 32, (2019).

[28] Michael Kearns and Satinder Singh, ‘Near-optimal reinforcement
learning in polynomial time’, Machine learning, 49, 209–232, (2002).

[29] Jonathan N Lee, Alekh Agarwal, Christoph Dann, and Tong Zhang,
‘Learning in pomdps is sample-efficient with hindsight observability’,
arXiv preprint arXiv:2301.13857, (2023).

[30] Yongshuai Liu, Jiaxin Ding, and Xin Liu, ‘Ipo: Interior-point policy
optimization under constraints’, in Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 4940–4947, (2020).

[31] Zuxin Liu, Hongyi Zhou, Baiming Chen, Sicheng Zhong, Mar-
tial Hebert, and Ding Zhao, ‘Constrained model-based reinforce-
ment learning with robust cross-entropy method’, arXiv preprint
arXiv:2010.07968, (2020).

[32] Yuping Luo and Tengyu Ma, ‘Learning barrier certificates: Towards
safe reinforcement learning with zero training-time violations’, Ad-
vances in Neural Information Processing Systems, 34, 25621–25632,
(2021).

[33] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness,
Matthew J. Hausknecht, and Michael Bowling, ‘Revisiting the arcade
learning environment: Evaluation protocols and open problems for gen-
eral agents’, Journal of Artificial Intelligence Research, 61, 523–562,
(2018).

[34] Haritz Odriozola-Olalde, Maider Zamalloa, and Nestor Arana-
Arexolaleiba, ‘Shielded reinforcement learning: A review of reactive
methods for safe learning’, in 2023 IEEE/SICE International Sympo-
sium on System Integration (SII), pp. 1–8. IEEE, (2023).

[35] Martin L Puterman, ‘Markov decision processes’, Handbooks in oper-
ations research and management science, 2, 331–434, (1990).

[36] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar, ‘A game the-
oretic framework for model based reinforcement learning’, in Interna-
tional conference on machine learning, pp. 7953–7963. PMLR, (2020).

[37] Alex Ray, Joshua Achiam, and Dario Amodei, ‘Benchmarking
safe exploration in deep reinforcement learning’, arXiv preprint
arXiv:1910.01708, 7(1), 2, (2019).

[38] Richard S Sutton, ‘Dyna, an integrated architecture for learning, plan-
ning, and reacting’, ACM Sigart Bulletin, 2(4), 160–163, (1991).

[39] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[40] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li,
Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel,
Andrew Lefrancq, et al., ‘Deepmind control suite’, arXiv preprint
arXiv:1801.00690, (2018).

[41] Garrett Thomas, Yuping Luo, and Tengyu Ma, ‘Safe reinforcement
learning by imagining the near future’, Advances in Neural Informa-
tion Processing Systems, 34, 13859–13869, (2021).

[42] Christopher KI Williams and Carl Edward Rasmussen, Gaussian pro-
cesses for machine learning, volume 2, MIT press Cambridge, MA,
2006.

[43] Jorge Nocedal Stephen J Wright. Numerical optimization, 2006.
[44] Wenli Xiao, Yiwei Lyu, and John Dolan, ‘Model-based dynamic shield-

ing for safe and efficient multi-agent reinforcement learning’, arXiv
preprint arXiv:2304.06281, (2023).

[45] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ra-
madge, ‘Projection-based constrained policy optimization’, in Interna-
tional Conference on Learning Representations.

A Algorithms
A.1 DreamerV3 with AMBS

Algorithm 2 DreamerV3 [22] with AMBS
Initialise: replay buffer D with S random episodes and RSSM
parameters θ randomly.

while not converged do
// World model learning
Sample B sequences {⟨ot, at, rt, ct, γ

safe
t , ot+1⟩k+H

t=k } ∼ D.
Update RSSM parameters θ with representation learning [22].
// Task policy optimisation
‘Imagine’ trajectory σ from every ot in every seq. with πtask.
Train πtask with TD-λ actor-critic to optim. Eq. 2.
// Safety critic optimisation
Train vC1 and vC2 with maximum likelihood to estim. Eq. 11.
// Safe policy optimisation
‘Imagine’ trajectory σ from every ot in every seq. with πsafe.
Train πsafe with TD-λ actor-critic to optim. Eq. 10.
// Environment interaction
for k = 1, ...,K do

Observe ot from environment and compute ŝt = (zt, ht).
Sample action a ∼ πtask with the task policy.
Shield the proposed action a′ = shield(a) and play a′.
Observe rt, ot+1 and L(st) and construct ct and γsafe

t .
Append ⟨ot, at, rt, ct, γ

safe
t , ot+1⟩ to D.

end for
end while

B Proofs
We provide proofs for the theorems introduced in Section 3.

B.1 Proof of Theorem 1

Theorem 1 Restated. Let ϵ > 0, δ > 0, s ∈ S be given. With
access to the ‘true’ transition system T , with probability 1−δ we can
obtain an ϵ-approximate estimate of the measure µs|=ϕ, by sampling
m traces τ ∼ T , provided that,

m ≥ 1

2ϵ2
log

(
2

δ

)
Proof. We estimate µs|=ϕ by sampling m traces ⟨τj⟩mj=1 from T .
Let X1, ..., Xm be indicator r.v.s such that,

Xj =

{
1 if τj |= □≤nΨ ,
0 otherwise

Let,

µ̃s|=ϕ =
1

m

m∑
j=1

Xj , where ET [µ̃s|=ϕ] = µs|=ϕ

Then by Hoeffding’s inequality,

P
[
|µ̃s|=ϕ − µs|=ϕ| ≥ ϵ

]
≤ 2 exp

(
−2mϵ2

)
Bounding the RHS from above with δ and rearranging completes the
proof.

The only caveat is arguing that τj |= □≤nΨ is easily checkable.
Indeed this is the case (for polynmial n) because in the fully observ-
able setting we have access to the state and so we can check that
∀i τ [i] |= Ψ .

B.2 Proof of Theorem 2

We split the proof into two parts for Theorem 2, first we present
the error amplification lemma [36], followed by the full proof of
Theorem 2.

Lemma 7 (error amplification). Let T (s′ | s) and T̂ (s′ | s) be two
transition systems with the same initial state distribution ιinit. Let
T t(s) and T̂ t(s) be the marginal state distribution at time t for the
transitions systems T and T̂ respectively. That is,

T t(s) = Pτ∼T [τ [t] = s]

T̂ t(s) = Pτ∼T̂ [τ [t] = s]

Suppose that,

DTV

(
T (s′ | s), T̂ (s′ | s)

)
≤ α ∀s ∈ S

then the marginal distributions are bounded as follows,

DTV

(
T t, T̂ t

)
≤ αt ∀t

Proof. First let us fix some s ∈ S. Then,∣∣T t(s)− T̂ t(s)
∣∣ = ∣∣∣∑

s̄∈S

T (s | s̄)T t−1(s̄)−
∑
s̄∈S

T̂ (s | s̄)T̂ t−1(s̄)
∣∣∣

≤
∑
s̄∈S

∣∣T (s | s̄)T t−1(s̄)− T̂ (s | s̄)T̂ t−1(s̄)
∣∣

≤
∑
s̄∈S

∣∣T t−1(s̄)
(
T (s | s̄)− T̂ (s | s̄)

) ∣∣
+
∣∣T̂ (s | s̄)

(
T t−1(s̄)− T̂ t−1(s̄)

) ∣∣
Using the above inequality we get the following,

2DTV

(
T t, T̂ t

)
=
∑
s∈S

∣∣T t(s)− T̂ t(s)
∣∣

≤
∑
s̄∈S

T t−1(s̄)
∑
s∈S

∣∣T (s | s̄)− T̂ (s | s̄)
∣∣

+
∑
s̄∈S

∣∣T t−1(s̄)− T̂ t−1(s̄)
∣∣

≤ 2α+ 2DTV

(
T t−1, T̂ t−1

)
≤ 2αt

The final inequality holds by applying the the recursion obtained on
t until t = 0 where T and T̂ start from the same initial state distri-
bution ιinit.

Theorem 2 Restated. Let ϵ > 0, δ > 0 be given. Suppose that for
all s ∈ S, the total variation (TV) distance between T (s′ | s) and
T̂ (s′ | s) is bounded by some α ≤ ϵ/n. That is,

DTV

(
T (s′ | s), T̂ (s′ | s)

)
≤ α ∀s ∈ S

Now fix an s ∈ S, with probability 1 − δ we can obtain an ϵ-
approximate estimate of the measure µs|=ϕ, by sampling m traces
τ ∼ T̂ , provided that,

m ≥ 2

ϵ2
log

(
2

δ

)

Proof. Recall that,

µs|=ϕ = µs({τ | τ [0] = s, for all 0 ≤ i ≤ n, τ [i] |= Ψ})

where τ ∼ T . Equivalently we can write,

µs|=ϕ = Pτ∼T [τ |= □≤nΨ]

Similarly, let µ̂s|=ϕ be defined as the true probability under T̂ ,

µ̂s|=ϕ = Pτ∼T̂ [τ |= □≤nΨ]

Let the following denote the average state distribution for T and T̂
respectively,

ρT (s) =
1

n

n∑
i=1

Pτ∼T (τ [i] = s)

ρT̂ (s) =
1

n

n∑
i=1

Pτ∼T̂ (τ [i] = s)

By following the simulation lemma [28], we get the following,∣∣µs|=ϕ − µ̂s|=ϕ

∣∣ = ∣∣Pτ∼T [τ |= □≤nΨ]− Pτ∼T̂ [τ |= □≤nΨ]
∣∣

≤ 1 ·DTV (ρT , ρT̂)

=
1

2

∑
s∈S

∣∣ρT (s)− ρT̂ (s)
∣∣

=
1

2n

∑
s∈S

∣∣∣ n∑
i=1

Pτ∼T (τ [i] = s)− Pτ∼T̂ (τ [i] = s)
∣∣∣

≤ 1

2n

∑
s∈S

n∑
i=1

∣∣∣Pτ∼T (τ [i] = s)− Pτ∼T̂ (τ [i] = s)
∣∣∣

≤ 1

2n

n∑
i=1

αn (Using Lemma 7)

=
αn

2

Now we have that
∣∣µs|=ϕ − µ̂s|=ϕ

∣∣ ≤ (αn)/2 ≤ ϵ/2. It remains to
obtain an ϵ/2-approximation of µ̂|=ϕ. Using the exact same reason-
ing as in the proof of Theorem 1, we estimate µ̂|=ϕ by sampling m

traces ⟨τj⟩mj=1 from T̂ . Then provided,

m ≥ 2

ϵ2
log

(
2

δ

)
with probability 1 − δ we obtain an ϵ/2-approximation of µ̂|=ϕ and
by extension an ϵ-approximation of µ|=ϕ.

B.3 Proof of Theorem 3

Theorem 3 Restated. Let α > 0, δ > 0, s ∈ S be given. With
probability 1− δ the total variation (TV) distance between T (s′ | s)
and T̂ (s′ | s) is upper bounded by α, provided that all actions a ∈
A with non-negligable probability η ≥ α/(|A||S|) (under π) have
been picked from s at least m times, where

m ≥ |S|2

α2
log

(
2|S||A|

δ

)
Proof. Recall that p(s′ | s, a) denotes the probability of transition-
ing to s′ from s when action a is played. Lets first fix s′ and just
consider approximating one of these probabilities. Let,

• p = p(s′ | s, a) and
• m be the number of times a is played from s.
• Let X1, ..., Xm be the indicator r.v.s such that,

Xi =

{
1 if s′ given (s, a)

0 otherwise

• p̂ = 1
m

∑m
i=1 Xi, where E[p̂] = p.

By Hoeffding’s Inequality we have,

P
[
|p̂− p| ≥ α

|S|

]
≤ 2 · exp

(
−2m

α2

|S|2

)
Bounding the RHS from above by δ/(|S||A|) gives us,

m ≥ |S|2

α2
log

(
2|S||A|

δ

)
And so with probability 1 − δ/(|S||A|) we have an α/|S|-
approximation for p provided m satisfies the above bound. Taking
a union bound over all s′ ∈ S and all a ∈ A we have with probabil-
ity at least 1 − δ an α/|S|-approximation p(s′ | s, a) for all s′ ∈ S
and all actions a ∈ A with non-negligible probability η ≥ α

|A| (un-
der π). It remains to show that the TV distance between T (s′ | s)
and T̂ (s′ | s) is upper bounded by α,

2DTV

(
T (s′ | s), T̂ (s′ | s)

)
=
∑
s′∈S

∣∣T (s′ | s)− T̂ (s′ | s)
∣∣

=
∑
s′∈S

∑
a∈A

∣∣p(s′ | s, a)π(a | s)− p̂(s′ | s, a)π(a | s)
∣∣

=
∑
s′∈S

(∑
a∈A:π(a|s)≥η

∣∣p(s′ | s, a)π(a | s)− p̂(s′ | s, a)π(a | s)
∣∣

+
∑

a∈A:π(a|s)<η

∣∣p(s′ | s, a)π(a | s)− p̂(s′ | s, a)π(a | s)
∣∣)

=
∑
s′∈S

(∑
a∈A:π(a|s)≥η

π(a | s)
∣∣p(s′ | s, a)− p̂(s′ | s, a)

∣∣
+

∑
a∈A:π(a|s)<η

π(a | s)
∣∣p(s′ | s, a)− p̂(s′ | s, a)

∣∣)

≤
∑
s′∈S

(∑
a∈A:π(a|s)≥η

π(a | s) α

|S| +
∑

a∈A:π(a|s)<η

π(a | s)

)

≤
∑
s′∈S

(
α

|S| + |A| · η
)

≤
∑
s′∈S

(
α

|S| +
α

|S|

)
≤ 2α

B.4 Proof of Theorem 4

Theorem 4 Restated. Let bt be a latent representation (belief state)
such that p(st | ot≤t, a≤t) = p(st | bt). Let the fixed policy π(· | bt)

be a general probability distribution conditional on belief states bt.
Let f be a generic f -divergence measure (TV or similar). Then the
following holds:

Df (T (s′ | b), T̂ (s′ | b)) ≤ Df (T (b′ | b), T̂ (b′ | b))

where T and T̂ are the ‘true’ and approximate transition system
respectively, defined now over both states s and belief states b.

Proof. First for clarity, we define the transitions systems T and T̂
over states s and belief states b. First we have as before

T (s′ | b) = Pπ,p[st = s′ | bt−1 = b]

T̂ (s′ | b) = Pπ,p̂[st = s′ | bt−1 = b]

Additionally, let,

T (b′ | b) = Pπ,p[bt = b′ | bt−1 = b]

T̂ (b′ | b) = Pπ,p̂[bt = b′ | bt−1 = b]

From these definitions, note that we can immediately define condi-
tional and joint probabilities (i.e. T (s′, b′ | b), T (s′ | b), T (b′ |
s′, b) and similarly for T̂) using the standard laws of probability.

Now we are ready to apply the data-processing inequality [2] for
f-divergences as follows,

Df (T (b′ | b), T̂ (b′ | b))

= Eb′∼T̂

[
f

(
T (b′ | b)
T̂ (b′ | b)

)]

= Es′,b′∼T̂

[
f

(
T (s′, b′ | b)
T̂ (s′, b′ | b)

)]

= Es′∼T̂

[
Eb′∼T̂ f

(
T (s′, b′ | b)
T̂ (s′, b′ | b)

)]

≥ Es′∼T̂

[
f

(
Eb′∼T̂

T (s′, b′ | b)
T̂ (s′, b′ | b)

)]
(Jensen’s)

= Es′∼T̂

[
f

(
Eb′∼T̂

T (s′, b′ | b)T̂ (b′ | s′, b)
T̂ (s′, b′ | b)T (b′ | s′, b)

)]

= Es′∼T̂

[
f

(
Eb′∼T̂

T (s′ | b)
T̂ (s′ | b)

)]

= Es′∼T̂

[
f

(
T (s′ | b)
T̂ (s′ | b)

)]
= Df (T (s′ | b), T̂ (s′ | b))

C Code and Hyperparameters

Here we specify the most important hyperparameters for each of the
agents in our experiments. For more precise implementation details
we refer the reader to https://github.com/sacktock/AMBS.

World Model. As discussed we leverage DreamerV3 [22]. For all
architectural details and hyperparameter choices please refer to [22].

Predictor Heads The cost function and safety discount predic-
tor heads are implemented as neural network architectures similar
to those used for the reward predictor and termination predictor of
DreamerV3 [22]. Specifically the cost function predictor head is im-
plemented in exactly the same was as the reward predictor head ex-
cept it is used to predict cost signals instead of reward signals. Simi-
larly, the safety discount predictor is a binary classifier implemented
in the exact same was as the termination predictor, except one pre-
dicts safety-violations and the other predicts episode termination.

Safe Policy As discussed, the safe policy is trained with the same
TD-λ style actor-critic algorithm that is used for the standard reward
maximising (task) policy of DreamerV3 [22]. The actor and critic
are implemented as neural networks with the same architecture that
is used for the task policy and the hyperparameters are consistent
between the safe policy and the task policy. Other details are outlined
in Table 3.

Safety Critics The safety critics are trained with a TD3-style al-
gorithm [13]. The two critics themselves (and their target networks)
are implemented as neural networks with the same architectures used
for the critics that help train the task policy and safe policy. The hy-
perparameters also are mostly the same and any changes are outlined
in Table 4.

C.1 DreamerV3 Hyperparameters

Table 3. DreamerV3 hyperparameters [22]. Other methods built on Dream-
erV3 such as AMBS and LAG use this set of hyperparameters as well, unless
otherwise specified.

Name Symbol Value
General

Replay capacity - 106

Batch size B 16
Batch Length - 64
Num. Envs - 8
Train ratio - 64

MLP Layers - 5
MLP Units - 512
Activation - LayerNorm + SiLU

World Model
Num. latents - 32

Classes per latent - 32
Num. Layers - 5
Num. Units - 1024

Recon. loss scale βpred 1.0
Dynamics loss scale βdyn 0.5
Represen. loss scale βrep 0.1

Learning rate - 10−4

Adam epsilon ϵadam 10−8

Gradient clipping - 1000
Actor Critic

Imagination horizon H 15
Discount factor γ 0.997

TD lambda λ 0.95
Critic EMA decay - 0.98

Critic EMA regulariser - 1
Return norm. scale Sreward Per(R, 95)− Per(R, 5)
Return norm. limit Lreward 1
Return norm. decay - 0.99
Actor entropy scale ηactor 3 · 10−4

Learning rate - 3 · 10−5

Adam epsilon ϵadam 10−5

Gradient clipping - 100

https://github.com/sacktock/AMBS

C.2 AMBS Hyperparameters

Table 4. AMBS hyperparameters. We note that m > 512 is sufficient for
∆ = 0.1, ϵ = 0.09, δ = 0.01 using a bound similar to Eq. 5 that gives a
bound on overestimating µs|=ϕ.

Name Symbol Value
Shielding

Safety level ∆ 0.1
Approx. error ϵ 0.09
Num. samples m 512

Failure probability δ 0.01
Look-ahead horizon T 30

Cost Value C 10
Safe Policy

See ‘Actor Critic’ table 3
...

Safety Critic
Type - TD3-style [13]

Slow update freq. - 1
Slow update fraction - 0.02

EMA decay - 0.98
EMA regulariser - 1
Cost norm. scale Scost Per(R, 95)− Per(R, 5)
Cost norm. limit Lcost 1
Cost norm. decay - 0.99

Learning rate - 3 · 10−5

Adam epsilon ϵadam 10−5

Gradient clipping - 100

C.3 LAG Hyperparameters

Table 5. LAG hyperparameters [37]. We use the default hyperparameters
provided in [6] for the safety gym benchmark [37].

Name Symbol Value
Penalty Multiplier µk 5 · 10−9

Lagrange Multiplier λk 10−6

Penalty Power σ 10−5

Safety Horizon T 30
Cost Value C 10

Cost Threshold d = C · γT ≈ 9

C.4 IQN Hyperparameters

Table 6. IQN hyperparameters [12] adapted for a fairer comparison as in
[10].

Name Symbol Value
Replay capacity - 106

Batch size B 32
IQN kappa κ 1.0

Num. τ samples - 64
Num. τ ′ samples - 64

Num. quantile samples - 32
Discount factor γ 0.99
Update horizon nhor 3

Update freq. - 4
Target update freq. - 8000
Epsilon greedy min ϵmin 0.01

Epsilon decay period - 250000
Optimiser - Adam

Learning rate - 5 · 10−5

Adam epsilon ϵadam 3.125 · 10−4

C.5 Rainbow Hyperparameters

Table 7. Rainbow hyperparameters as recommended in [25].
Name Symbol Value

Replay capacity - 106

Batch size B 32
Discount factor γ 0.99
Update horizon nhor 3

Update freq. - 4
Target update freq. - 8000
Epsilon greedy min ϵmin 0.01

Epsilon decay period - 250000
Optimiser - Adam

Learning rate - 6.25 · 10−5

Adam epsilon ϵadam 1.5 · 10−4

D Learning Curves

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

5000

10000

15000

20000

Re
tu

rn

Assault

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

5000

10000

15000

20000

25000

Vi
ol

at
io

ns

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

20

10

0

10

20

Re
tu

rn

DoubleDunk

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

200000

400000

600000

800000

Vi
ol

at
io

ns

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

500

1000

1500

2000

Re
tu

rn

Enduro

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

25000

50000

75000

100000

125000

150000

175000

Vi
ol

at
io

ns

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

20000

40000

60000

80000

Re
tu

rn

KungFuMaster

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

100000

200000

300000

400000

500000

600000

Vi
ol

at
io

ns

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

10000

20000

30000

40000

50000

60000

70000

80000

Re
tu

rn

Seaquest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e7

0

10000

20000

30000

40000

50000

60000

70000

Vi
ol

at
io

ns

DreamerV3 DreamerV3 (AMBS) DreamerV3 (LAG) IQN Rainbow

Figure 2. Learning curves for each of the five agents on a small set of Atari games. Each line represents one run over 10M environment interactions (40M
frames). The left plots represent the episode return and the right plots represent the cumulative safety-violations during training.

	Introduction
	Preliminaries
	Problem Setup
	Probabilistic Computation-tree Logic
	Bounded Safety
	Look-ahead Shielding
	World Models

	Approximate Model-Based Shielding
	Overview
	Fully Observable Setting
	Partially Observable Setting

	AMBS with DreamerV3
	Algorithm Components
	Shielding Procedure

	Experimental Evaluation
	Related Work
	Conclusions
	Algorithms
	DreamerV3 with AMBS

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Code and Hyperparameters
	DreamerV3 Hyperparameters
	AMBS Hyperparameters
	LAG Hyperparameters
	IQN Hyperparameters
	Rainbow Hyperparameters

	Learning Curves

