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ABSTRACT

A fundamental challenge of analyzing human motion is to effec-
tively represent human movements both spatially and temporally.
We propose a contrastive self-supervised strategy to tackle this chal-
lenge. Particularly, we focus on dancing, which involves a high level
of physical and intellectual abilities. Firstly, we deploy Graph and
Residual Neural Networks with Siamese architecture to represent the
dance motion and music features respectively. Secondly, we apply
the InfoNCE loss to contrastively embed the high-dimensional mul-
timedia signals onto the latent space without label supervision. Fi-
nally, our proposed framework is evaluated on a multi-modal Dance-
Music-Level dataset composed of various dance motions, music,
genres and choreographies with dancers of different expertise lev-
els. Experimental results demonstrate the robustness and improve-
ments of our proposed method over 3 baselines and 6 ablation stud-
ies across tasks of dance genres, choreographies classification and
dancer expertise level assessment.

Index Terms— Human Motion analysis, Action Performance
Assessment, Multi-modal Signal Processing

1. INTRODUCTION

It takes time and effort for people to become proficient in the art
of dance. Analysing one’s dance motion is essential for improving
his/her expertise level. Personal trainers’ feedback is usually costly
due to time and location restrictions. In this work, we propose an
automated multi-modal dance performance assessment model that is
capable of continuously monitoring dancers’ movement quality.

Automatic dance performance assessment lies in the intersec-
tion of human motion analysis, skill determination and action per-
formance assessment (AQA). Many seminal works of skill determi-
nation and AQA [1, 2] have focused on Olympic sports or surgeries.
Other human dance motion analysis studies [3, 4] have been suc-
cessful in evaluating elementary dance movements but do not take
the musical features into consideration. Generalizing these methods
to real-world dance scenarios remains challenging.

In this paper, we present a method that addresses the above-
mentioned challenges by combining both motion and music signals,
and developing a contrastive self-supervised network to identify in-
dividuals’ expertise levels conditioned on diverse dance music, gen-
res and choreographies. We adopt the InfoNCE contrastive loss
in this paper as it is capable of learning feature representations in
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representation learning tasks due to its inherent information max-
imization objective [5]. The contributions of this paper are: (i)
We propose a contrastive self-supervised strategy to assess human
dance performance. Specifically, we deploy Spatial-Temporal Graph
Convolutional Network (ST-GCN) [6] and Deep Residual Network
(ResNet-18) [7] encoder to represent dance motion and music fea-
tures. (ii) We evaluate our proposed strategy on the Dance-Music-
Level dataset that contains 5 different dance genres, 20 dance chore-
ographies and 3 expertise levels for each choreography. The corre-
sponding music of each performed choreography is also included.
(iii) We conduct quantitative and qualitative experiments to verify
the effectiveness and generalizability of our model on multimedia
dance-music scenarios.

To our knowledge, the paper is the first attempt to formulate
a novel contrastive learning method, which is capable of not only
determining human dance expertise levels, but also monitoring the
dancers’ level improvements over times. The method outperforms
3 popular classification algorithms [8, 5, 9] in terms of the dance
expertise level classification accuracy.

2. LEARNING TO EVALUATE DANCE SKILLS

In this section, we first formulate the dance motion analysis prob-
lem. We present the self-supervised learning framework to tackle
this problem. Augmentations for motion and music sequences is also
explained. Moreover, we introduce our network that encodes motion
and music features respectively. Fig. 1 shows our framework.

2.1. Problem Definition

Our goal is to determine the expertise level of the dance sequences
performed by multiple individuals conditioned on different dance
music, genres and choreographies. The expertise level determina-
tion involves evaluating the motion quality and the melody matching
between motions and music. Hence, the model input is a set of se-
quences S = {Smotion,Smusic} of dance motion and music.

The whole learning process is explained as follows. We first
extract the features F = {Fmotion,Fmusic} from recorded mo-
tion and music. With these collective features, we train a model
L = M({Fmotion,Fmusic}) that assesses the dance performance,
where L stands for the expertise levels of the trained sequences. The
ground truth of L is annotated by two expert dancers based on the
assessment criteria of body competency, movement fluidity and mu-
sical interpretation from the Royal Academy of Dance [10], which
can be divided into three categories: beginner, intermediate and ex-
pert. We represent the underlying semantic features of the input se-
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Fig. 1: Description of our contrastive self-supervised learning framework. The dance sequences are mapped onto the lower-dimensional latent space by using
ST-GCN and ResNet encoders. The InfoNCE loss is applied to maximize the similar representation in the latent space.

quences in a 2D latent space, which is capable of efficiently sepa-
rating different dance genres, choreographies and expertise levels.
The Euclidean distance (Dij) between two points in the latent space
represents the data similarity. If the distance is smaller, it represents
that two dancing sequences have more chance to belong to the same
class of expertise level. In the pre-train phase, we use InfoNCE loss
to optimize such distances. In the downstream phase, we map the
dancing sequence onto the latent space, followed by using logistic
regression to learn its expertise level (L).

2.2. Spatial-Temporal Data Augmentation

Data augmentation has been proven to be critical in self-supervised
image classification tasks [5]. However, the augmentation methods
in most predictive tasks are only applied to the spatial domain of im-
ages. In this study, we enhance the augmentation methods, where
the augmentations are also applied to the temporal aspect of the se-
quential data. Additionally, we extend RGB image augmentation
techniques to 3D-skeleton data.
Temporal Augmentation: Timing is important to dance. Thus we
adopt temporal augmentation on the sequential dancing data, aiming
to improve temporal robustness. The two augmentation techniques
we propose are: (i) adjusting playback speed and (ii) temporal crop.
Temporal augmentation is applied in both motion and music data
to achieve temporal alignment. Compared to other time-series aug-
mentation methods, these 2 methods are exclusively designed for our
dance performance assessment task to guarantee the expertise level
of the dance sequences remaining same after augmentations.
Spatial Augmentation: We introduce (i) pose translation and (ii)
joint jittering that centered on skeleton data. The pose translation
allows the data to be robust to variant viewpoints or camera posi-
tions. We also propose joint jittering, where a certain joint position
in motion sequences are randomly disrupted. This allows the pro-
posed method to be noise-invariant to the input skeleton data which
might be occasionally partially occluded or disrupted.

2.3. Motion and Music Encoder

ST-GCN Motion Encoder: We adopt ST-GCN [6] to extract the
motion features, which takes advantage of the Graph Neural Net-
work that is capable of automatically learning the spatial and tempo-

ral patterns from human motion. The input of the spatial-temporal
graphs is the sequence of motion mk

i , where i is the index of the
skeletal joints and k is the frame number. Each ST-GCN unit consists
of a graph convolutional network (GCN) layer and a temporal convo-
lution network (TCN) layer. For GCN, graph nodes are constructed
according to the connectivity of the human body’s skeletal structure,
and each node consists of 3D coordinate vectors. As for TCN, each
node of the graphs is connected to the same node in the consecu-
tive frame. We thus have a graph of the skeleton sequences that are
connected by convolution operations frame by frame. The convolu-
tion is performed spatially first then temporally next, which encodes
the complex high-dimensional motions as the reduced-dimensional
feature vector. We denote the ST-GCN encoder as ϕ(·):

pi = ST-GCN(mk
i ) = ϕ(mk

i )

ResNet-18 Music Encoder: To represent the acoustic features
from music, we first perform acoustic feature extraction to facil-
itate the subsequent residual operation. The acoustic feature is
expected to be more informative and non-redundant than the raw
music, where the information is retrieved from given music by us-
ing the audio signal processing library - librosa [11]. Specifically,
there are 5 categories of features F(ai) = {a0,a1, ...,a4} that
are extracted in this study: the Mel-frequency cepstral coefficients
(MFCC), MFCC-delta, constant-Q chromagram, tempogram and
onset strength. Given the constructed acoustic features, we adopt
ResNet-18 ψ(·) to abstract acoustic features as in [12, 13]. The
ablation study conducted in Section 4.3 proves the best results of
feature representation learning by using ST-GCN and ResNet-18
encoders for motion and music.

qi = ResNet(ai) = ψ(ai)

The feature embedding zi of the motion and music is obtained by
concatenating outputs of 2 encoders followed by an MLP layer.

2.4. InfoNCE Contratstive Loss

After obtaining the feature embedding zi, the InfoNCE contrastive
loss [20] is applied because it can efficiently learn latent repre-
sentations and achieve generalizability in various domains [5, 21].
The loss compares the distance to positive examples with the dis-
tance to negative examples for each positive pair of the network



Table 1: Comparison of state-of-art human motion skill and dance dataset

Dataset 3D-Skeleton Music Genres Choreography Expertise Level Subjects Sequences Repeated Motion Fps Seconds
BEST[14] N N 0 0 3 500 500 100 10 25000
JIGSWAS[15] N N 0 0 3 7 103 30 30 515
DanceNet[16] Y Y 2 2 0 2 2 1 60 3472
Dance with Melody[17] Y Y 0 40 0 - 61 1 25 5640
GrooveNet[18] Y Y 4 4 0 1 2 1 100 1380
AIST+[19] Y Y 10 101 0 10 1408 2 60 18694
Dance-Music-Level Y Y 5 20 3 2 6000 100 100 60000

output. There are N examples that are randomly chosen within the
minibatch, and the training is formulated based on the augmented
pairs that are obtained from each example, which resulting 2N data
points. According to [22], apart from the positive example, we
treat the other 2(N − 1) examples within a minibatch as negative
examples. If (i, j) is a positive pair, the loss function is defined as:

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

r=1 1[r ̸=i] exp(sim(zi, zr)/τ)
(1)

where the indicator function 1[r ̸=i] ∈ {0, 1} is estimated to be 1 if
r = i. The final contrastive loss is computed across all positive pairs
within minibatch for both (i, j) and (j, i). Specifically, we can con-
clude from Equation (1) that, the loss value is low if positive samples
are encoded to similar (closer) representations in latent space and
negative samples are encoded to dissimilar (further) representations.

3. DANCE-MUSIC-LEVEL DATASET

We construct and annotate the Dance-Music-Level dataset which
consists of 5 different dance genres: (i) Ballet, (ii) K-pop, (iii) Jazz,
(iv) Hip-hop and (v) Urban. For Ballet and K-pop, there are 5 dif-
ferent choreographies within each genre, while 2 choreographies for
Hip-Hop and 4 choreographies for Jazz and Urban, resulting in 20
diverse choreographies in total. Music for these 20 choreographies is
also included. For different choreographies that belong to the same
dance genre, the provided music and designed dance steps for each
choreography are different. For each choreography, dance motions
from individuals in 3 expertise levels are included, while each exper-
tise level contains 100 dance sequences with the same music. Each
sequence contains one individual’s performance. To sum up, there
are 6000 sequences provided in this dataset (6000 = 20× 3× 100).

Two subjects (1 female and 1 male) are invited to develop this
dataset. Table 1 shows the dataset specification. The first 2 rows are
the motion skill levels datasets that are widely used in AQA studies
[1, 2]. However, there is no other public dataset that describes the
dance motion level. While the rest rows are the dance-music dataset
without different skills level included. There are 2 types of data in
our dataset: motion and music. As for the motion, the data is col-
lected by using OptiTrack motion capture devices, which record the
coordinates of 21 skeletal joints in 3D space at 100fps. To this end,
for a 10 seconds motion sequence, 63,000 feature dimension is ob-
tained, which can be represented as (10, 100, 21, 3). Musical signals
are recorded and temporally aligned with the dance motions by uti-
lizing the robot operating system (ROS)[23]. By using librosa, a 10
seconds music can be represented as 220500 feature dimensions.

4. EXPERIMENTS

We conduct 3 experiments to demonstrate: (i) Pre-train Feature
Representation Evaluation: the validity of our proposed strategy

on motion-music feature representation for different dance genres,
choreographies and expertise levels. (ii) Downstream Tasks and
Expertise Level Modeling: the effectiveness of our approach on ex-
pertise level classification and level improvement modeling, and (iii)
Quantitative Analysis: the results of our method in comparison with
different baselines. The Adam optimizer is used to train all models,
with a batch size of 8 and a learning rate of 3 ×10−4 for 100 epochs.
The model is trained in PyTorch using RTX 3080 GPUs.

4.1. Pre-train Feature Representation Evaluation

We first train a model using all sequences (6000) in our proposed
Dance-Music-Level dataset. To visualize the training feature em-
bedding, the features are mapped onto 2D space by using t-SNE.
For clarity, we show the results from 5 dance genres, (each dance
genre includes 1 choreography, each choreography contains 3 differ-
ent expertise levels data, and each expertise level contains 100 dance
sequences, resulting 1500 sequences 1500 = 5×1×3×100), in Fig.
2(a). Two observations can be summarized from Fig. 2(a): (i) The
proposed method is able to separate different dance genres within the
2D latent space. The 5 selected dance genres are denoted in 5 colors
(red, purple, blue, yellow and green) in the figure. (ii) The method is
also capable of separating different expertise levels of each choreog-
raphy. For example, the beginner, intermediate and expert data for
Ballet choreography are classified into 3 clusters (purple), and far
away from other choreographies data points.

4.2. Downstream Task and Expertise Level Modeling

In this experiment, we split the Dance-Music-Level dataset into two
subsets: training (900) and testing (1200) sequences. We trained
the model with the training dataset of choreographies and tested the
latent representation with unseen choreographies. We select 3 differ-
ent dance genres for training: Ballet, K-pop and Urban. Each genre
contains 1 choreography, and each choreography contains 3 exper-
tise levels with 100 dance sequences included. We then perform a
downstream task to test the model using the testing set, which in-
cludes Hip-Hop, K-pop and Ballet dance. For Ballet and Hip-Hop,
there is 1 choreography for each, while for K-Pop, two choreogra-
phies are included. Fig. 2(b) shows the feature representation of
the downstream testing result. Three observations can be made from
this result: (i) Our method shows the ability of clustering different
unseen dance genres (denoted as purple, yellow and green colors) in
downstream prediction tasks. (ii) The method is capable of cluster-
ing different choreographies (denoted as yellow color) of the same
dance genres in the downstream task. (iii) The proposed strategy also
shows robustness and generalizability in separating different exper-
tise levels for each dance choreography. As we can see from the
Fig. 2(b), for all dance choreographies, including Ballet (purple),
two K-Pop choreographies (yellow), and Hip-Hop (green), the three
expertise levels for each choreography are well separated.
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Fig. 2: Qualitative analysis. (a) Motion and music feature representation of the pre-train tasks. Five different dance genres and three expertise levels for each
genre can be well separated simultaneously. (b) Latent representation of the downstream tasks. Four testing choreographies that are unseen in the pre-train
phase are classified. Three distinct expertise levels for each choreography are also separated. (c) Level improvement modeling. The median Euclidean distance
of a beginner’s 90th-100th dance sequences to the intermediate and expert cluster center is closer than the distance between his/her 1st-10th attempts.

Table 2: Quantitative analysis

Method Motion Encoder Music Encoder Top1 Top5
ResNet-18 LSTM 28.43 72.79
ResNet-50 LSTM 34.56 70.22
ResNet-18 ResNet-18 58.51 87.62
ResNet-50 ResNet-50 64.34 91.12
ST-GCN LSTM 67.83 93.38
ST-GCN ResNet-50 73.65 95.34

Ours ST-GCN ResNet-18 74.26 95.59
MoCo [8] ResNet-50 ResNet-50 14.71 22.16
SimCLR [5] ResNet-50 ResNet-50 64.34 91.12
Cross Entropy [9] ResNet-50 ResNet-50 38.46 51.33
Ours ST-GCN ResNet-18 74.26 95.59

We then analyze the improvement made in dance capability for
individual from a particular expertise level during downstream tasks.
During the data collecting process, as the individual keeps repeating
the same choreography 100 times, his/her performance is expected
to experience an improvement. In 2(c), we first obtain the latent rep-
resentation of an example of testing K-Pop choreography. Similar
to the above experimental results, the latent space shows the clus-
tered 3 expertise levels of data. We then visualize the 1st-10th be-
ginner dance sequences (lilac) and last 90th-100th beginner dance
sequences (dark purple), and measure their median Euclidean dis-
tance to the center of intermediate and expert clusters. Specifically,
the distances of the 1st-10th sequences to the intermediate and expert
clusters are 11 and 26 respectively. While the distances of the last
90th-100th sequences to the intermediate and expert clusters are 20
and 34 respectively, which is closer than the first 10 sequences. This
indicates a level improvement of the beginner’s dance capabilities
when repeatedly performing the same choreography.

4.3. Quantitative Analysis

We compare our proposed contrastive self-supervised method
against: (i) Ablation Study: Using InfoNCE loss with differ-
ent encoder architectures. and (ii) Baselines: using the proposed
encoders with different representation learning methods and loss
functions. For both experiments, we perform downstream logistic
regression to obtain the expertise level classification accuracy. We
split the Dance-Level-Music dataset into 3 subsets: (i) training se-
quences (2700), (ii) downstream LR training sequences (900), and
(iii) downstream LR testing sequences (600). Table 2 shows the

detailed experimental results. For the ablation study, we compare
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Fig. 3: Comparison of four learning mechanisms with varies number of train-
ing sequences used in logistic regression. Our method shows better accuracy
when fewer training sequences are given. The accuracy of our approach ex-
ceeds by 15% compared to simCLR when trained with training sequences.

our proposed ST-GCN and ResNet-18 encoders with other architec-
tures to show the superiority of the designed encoder combination in
representing motion and music features. While for the baselines, we
compare our contrastive self-supervised framework with state-of-
the-art representation learning methods, where our proposed method
achieves the highest classification accuracy. Additionally, we mod-
ify the number of logistic regression training sequences aiming to
show the advantages of our proposed self-supervised method as a
pre-train process. As shown in Fig. 3, our method shows capabili-
ties of achieving the highest accuracy with fewer training sequences,
which is potential to reduce the effort in labeling data.

5. CONCLUSION

We formulate a novel multimedia dance motion analysis problem
and present a contrastive framework to solve it. We evaluate our
proposed method by constructing a multi-modal Dance-Music-Level
dataset including diverse expertise levels of dance motions. The
framework is capable of not only evaluating human dance expertise
levels based on different music, genres, choreographies qualitatively
and quantitatively, but also monitoring the dancers’ level improve-
ments. The method has the potential to be extended to various appli-
cations such as music-aided dance teaching and motion generation.
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