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Abstract—In seismic inversion, the subsurface model can be 

parameterized by a truncated Fourier series, and the inversion 

problem is then the inversion of the Fourier coefficients. To 

improve the efficiency of the evaluation of the Fourier 

coefficients and the reconstruction of the model from the inverted 

coefficients, we propose to use the efficient implementation of the 

fast Fourier transform (FFT) to speed up these two calculations. 

By using the FFT pair, the computation time for 3D subsurface 

models with realistic size could be reduced by two to three orders 

of magnitude compared to conventional methods. When this 

model parameterization scheme is applied to seismic impedance 

inversion, we proposed two strategies to further improve the 

efficiency. One is to invert the Fourier coefficients from small-

valued numbers to large-valued numbers, and the other is to 

divide the seismic data into subgroups and use part of them for 

the inversion of the Fourier coefficients. Both strategies are 

helpful for efficient inversion of the Fourier coefficients from the 

seismic data. Moreover, thanks to this model parameterization 

scheme, the Fourier coefficients are inverted in a multi-trace 

manner, and the impedance model reconstructed from the 

inverted Fourier coefficients has good spatial continuity. The 

scheme is able to generate stable and continuous impedance 

models from the inversion of seismic data with missing traces, 

with affordable computation times. 

 
Index Terms—Fourier series, Fourier transform, seismic 

inversion, model parameterization.  

 

I. INTRODUCTION 

N seismic inversion, different wavelength components of 

the earth subsurface model have different sensitivities [1]. 

Therefore, Wang and Houseman [2], [3] proposed to 

parameterize the subsurface model by a truncated Fourier 

series, partition the Fourier coefficients into different 

subspaces according to their wavelengths, and develop a 

subspace inversion algorithm for simultaneous inversion of the 

long, medium and short wavelength components of the 

subsurface model. This model parameterization scheme, 

which uses a truncated Fourier series, has been successfully 
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applied to the joint inversion of seismic traveltime and 

amplitude data for interface geometry and velocity variation 

[3], [4], [5], waveform inversion for a two-dimensional (2D) 

impedance model [6], and inversion of amplitude variation 

versus offset (AVO) for elastic parameters [7].  

In this model parameterization scheme, after parameterizing 

the subsurface model with a truncated Fourier series, the 

problem of inverting the subsurface model is transformed into 

the problem of inverting the Fourier coefficients. This model 

parameterization has obvious advantages. One of them, as 

with other model parameterizations based on the wavelet 

transform [8] or the cosine function [9], [10], is that fewer 

parameters need to be inverted compared to the total number 

of parameters of the subsurface model. By increasing the 

number of Fourier coefficients, a hierarchical strategy for 

stepwise inversion of the subsurface model is developed. 

Other advantages are the spatial continuity of the inverted 

subsurface model due to the reconstruction of the model from 

the Fourier coefficients and the implementation of a multi-

trace inversion scheme due to the updating of the Fourier 

coefficients using all or part of the seismic data [6]. This 

multi-trace inversion scheme is insensitive to noisy data, and 

is therefore useful to obtain robust and stable models. Apart 

from the above advantages of model parameterization, we can 

use only seismic data within the region of interest in the 

truncated Fourier series coefficient inversion to save 

computational time. Nunes et al. [11] used a one-dimensional 

(1D) Fourier series to reduce the data size and simulated each 

term of the Fourier series over the region of interest, achieving 

a significant cost reduction in seismic inversion. In addition, 

this parameterization scheme lends itself to parallel 

computation during inversion, resulting in further savings in 

computation time. Due to these advantages, this model 

parameterization scheme has great potential for seismic 

inversion and is useful for subsurface model inversion. 

However, when this model parameterization is applied to 

3D seismic inversion, it is limited by the large amount of time 

required to evaluate the Fourier coefficients and reconstruct 

the subsurface model from the Fourier coefficients. This is 

because the two processes are conventionally realized directly 

by equations defining the Fourier coefficients (see appendix), 

and the subsurface model (see second section), which requires 

many integrations [12]. Although the time required for 1D/2D 

seismic inversion is acceptable, it is not sustainable for 

realistic 3D seismic inversion. This is because the 3D 

subsurface model has model samples along the three 

directions, and the integrations for coefficient estimation and 

model reconstruction are performed in three loops along these 
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directions, which increases the computational time cost. In 

addition, the subsurface model must be reconstructed from the 

Fourier coefficients for the wavefield simulation in each 

iteration. Its computation time is proportional to the time cost 

for the inversion. Therefore, it is necessary to speed up these 

two processes to improve the computational efficiency and 

make the Fourier series-based parameterization scheme 

practical for 3D seismic inversion. In this paper, we present 

the Fourier transform-based methods for computing the 

Fourier coefficients and reconstructing the model. Here, we 

use the fast implementation of the forward and inverse Fourier 

transforms to perform the model fitting and reconstruction.  

With a fast implementation of Fourier coefficient 

estimation and model reconstruction, this model 

parameterization scheme is flexible in seismic inversion, and  

suitable for both prestack and post-stack seismic data [6], [7]. 

Here it is used for the inversion of the 3D impedance model 

from the post-stack seismic cube, which contains some 

randomly distributed null traces. This means that no data were 

recorded in these traces, because the sources/receivers are 

poor or the areas are unsuitable for setting sources/receivers 

during seismic acquisition. Impedance inversion was chosen 

for the application because impedance is an important 

parameter for reservoir description and detection, and because 

post-stack inversion is computationally efficient compared to 

pre-stack data, which is convenient for testing inversion 

strategies and inverted models using the parameterization 

scheme.  

To sum up, we will first present a model parameterization 

scheme based on the truncated Fourier series for a 3D 

subsurface model. Secondly, we will propose to use the fast 

Fourier transform (FFT) to compute the coefficients of the 

truncated Fourier series and to use the inverse FFT to 

reconstruct a 3D model from the inverted coefficients of a 

truncated Fourier series. Thirdly, we will compare the 

computation time for the coefficient evaluation and for the 3D 

model reconstruction between the proposed FFT-based 

methods and the conventional direct computation methods. 

Finally, we will demonstrate the applicability of the method 

for seismic impedance inversion using examples for a 3D 

overthrust model and a field dataset. In the application section, 

we will develop inversion strategies based on the model 

parameterization scheme to further improve the computational 

efficiency. 

II. MODEL PARAMETERIZATION BY THE FOURIER 

SERIES 

The 3D subsurface model is parameterized by a truncated 

Fourier series. Considering a discrete 3D model with limited 

samples ( , , )x y zN N N  in (x, y, z ) directions, the truncated 

Fourier series can be expressed as follows:  
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In this expression,  , , ,a b h  with subscripts  , ,l m n  are 

the  , ,l m n th Fourier coefficients,  , ,L M N  are the number 

of Fourier coefficients in the three dimensions, resulting in 

total number of Fourier coefficients in (1) is 8 L M N   , 

and  , ,x y zk k k    are the fundamental wavenumbers, set as 

2 2 2
,     ,     .x y z

x y z

k k k
N N N

  
                   (3) 

The Fourier series representation  ˆ , ,u p q r  is an 

approximation to the true model  , , ( , , )u p q r u p x q y r z     

because the Fourier series expansion is truncated. The Fourier 

coefficients  , , ,lmn lmn lmna b h  can be calculated by 

integrating the product of  , ,u p q r  with certain sine and 

cosine functions. See the Appendix for the derivation process 

of the equations for the Fourier coefficients. In these 

equations, the coefficients of the truncated Fourier series that 

are not zero are the following:  
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.        (4) 

It is obvious that the direct evaluation of the Fourier 

coefficients (with (A-1) to (A-6) in appendix) and the 

reconstruction of the model from (1) are very time-consuming, 

which may limit the application of model parameterization 

with truncated Fourier series in seismic inversions. To speed 

up the evaluation of the Fourier coefficients and the model 

reconstruction, we propose to perform these processes with 

FFT-based methods. 

III. EVALUATING THE COEFFICIENTS USING THE 

FORWARD FFT 

For a given 3D subsurface model, we propose to evaluate the 

coefficients of the Fourier series using the FFT.  

In the Fourier series shown in (2), each Fourier term is a 

multiplication of cosine and sine functions. Since in a 1D Fourier 

transform spectrum, the real part and the imaginary part of a 
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frequency component are the cosine and sine functions 

respectively, we propose to use a series of 1D Fourier transforms 

to determine the coefficients of the 3D Fourier series to 

parameterize a 3D model.  

We justify this statement with the following two arguments: 

1) The multiple-dimensional Fourier transform can be 

implemented as several successive 1D Fourier transforms 

in sequence. Since this scheme is based on Fourier 

transforms, the accuracy of the model parameterization is 

guaranteed. 

2)  Each of the 1D Fourier transforms can be implemented in a 

fast way, called FFT. Therefore, this method can achieve 

high efficiency when applied to the 3D seismic inversion.  

The determination of the truncated Fourier series coefficients 

can be described in the following three steps.   

The first step is to perform 1D Fourier transform with respect 

to the z direction of the 3D model: 

[ ( )] ( ) ( )R z I zu r z U n k jU n k     ,              (5) 

for 0,1,2, , 1zr N  , and 0,1, 2, , 1zn N  , where 

( )u r z  is referred to a 1D real signal, 1j    is the 

imaginary symbol, and separating each complex-valued 

Fourier component into two parts, 
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the real part ( )R zU n k  is a cosine transform, and the 

imaginary part ( )I zU n k  is a sine transform. Implementation 

over the entire 3D volume will generate two 3D volumes  

( , , )R zU p x q y n k    and ( , , )I zU p x q y n k   .  

The second step is, in a similar way, to perform 1D Fourier 

transform of two 3D volumes { ( , , )R zU p x q y n k   , 

( , , )I zU p x q y n k   } with respect to y as  
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      (7) 

resulting in four 3D volumes in the  , ,y zx k k  domain:           

{ ( , , )RR y zU p x m k n k   , ( , , )IR y zU p x m k n k   , 

( , , )RI y zU p x m k n k   , ( , , )II y zU p x m k n k   }. 

The third step is, once again, to perform 1D Fourier 
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(8) 

which result in eight 3D volumes in the  , ,x y zk k k  domain. 

Explicitly, they are  
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where  , ,  RRR RRR x y zU U l k m k n k     and so on. The 

procedure is summarized in Fig. 1. The 1D Fourier transforms 

in this study are implemented using the free software library 

Fastest Fourier Transform in the West (FFTW), which 

computes the discrete Fourier transform (DFT) [13].  

Comparing (9) with the Fourier coefficients formulas 

presented in (A-1) to (A-6), the coefficients of the Fourier 

series may be evaluated through those Fourier transform 

components as 
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where   
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and 

1

x y zN N N
  .                           (12) 

Equations (10)-(12) explicitly show that the Fourier transform 

components after three times Fourier transform are not equal 

to the Fourier coefficients of the truncated Fourier series. They 

are connected by (10). 

 

 
Fig. 1. Relationship between three times 1D FFT along three 
directions and 3D FFT. 

 

In this study, the estimation of Fourier coefficients using 

(A-1) to (A-6) and (9) to (12) is defined as direct forward 

Fourier series method and forward FFT-based method, 

respectively. 

IV. RECONSTRUCTING THE 3D MODEL BY THE 

INVERSE FFT 

We propose to reconstruct the 3D model by the inverse FFT 

at each iteration of the inversion procedure once the truncated 

Fourier series from the inversion has been obtained. This 

inverse FFT-based scheme significantly improves efficiency 

compared to the conventional direct calculation with (1). 

As shown in Fig. 1, the complex-valued 3D volume is 

formed by the eight Fourier components as follows:  
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This complex-valued 3D volume  , ,U U l m n  is input to an 

inverse 3D FFT to reconstruct a 3D model in the spatial 

domain. In the following section, we will prove that the 3D 
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Considering the original 3D model is real-valued, the 

complex conjugate symmetry is exploited. As described in the 

previous section, the three 1D DFTs are implemented in the 

sequence of z y x  . Based on the complex conjugate 

property, when 0l  , we can get the values of 

, , ,RRR IIR IIIU U U  at  , ,xN l m n  from their counterparts at 

 , ,l m n . When the three 1D DFTs are implemented in the 

sequence of z x y  , in a similar way, we can deduce the 

values at  , ,yl N m n  and  , ,x yN l N m n   from the 

counterparts at  , ,l m n  and  , ,xN l m n . Similarly, when 

the three 1D DFTs are implemented in the sequence of

x y z  , we can obtain values at  , , zl m N n , 

 , ,x zN l m N n  ,  , ,y zl N m N n   and 

 , ,x y zN l N m N n    from those at  , ,l m n  ,  , ,xN l m n , 

 , ,yl N m n  and  , ,x yN l N m n  , respectively. Using the 

relations between the three sequences, the conjugate 

components of , , ,RRR IRR IIIU U U  are listed in Table 1, and 

Table 2 lists the constants 1c ,  2c , …, 8c , needed in Table 1. 

The zero-valued constants mean there are zero values in 

, ,l m n  and its conjugate counterpart does not exist. 

Substituting , , ,RRR IRR IIIU U U  in Table 1 into (15), when 

, , 0l m n  , one may have 

     

   

   

 

, , , , , ,

, , , ,

, , , ,

, , ,

x y

x y z

x z y z

x y z

l m n N l m n l N m n

N l N m n l m N n

N l m N n l N m N n

N l N m N n

      

      

       

    

  (16) 

and set  , , 8l m n  . In the same way,  , , 4,2,1l m n   

when there are one, two and three zeros in  , ,l m n . The 

values of  , ,l m n  are also listed in Table 2. Therefore, (14) 

can be rewritten as  

 2, 2, 2

( , , ) (0,0,0)

( , , ) ( , , ),
x y zN N N

lmn lmn

l m n

u p q r p q r 


           (17) 

From (10) and (11), (17) is equivalent to 
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 2, 2, 2

( , , ) (0,0,0)

( , , ) ( , , ).
x y zN N N

lmn

l m n

u p q r p q r


                (18) 

Equation (18) shows that if = 2+1, 2+1,x yL N M N  

2 +1 zN N , the model can be completely reconstructed 

from the Fourier coefficients. This also means that (1) can be 

realised by an inverse 3D DFT. However, we cannot use the 

Fourier coefficients directly to implement the inverse DFT, 

but we must first reconstruct  , ,U l m n  from the Fourier 

coefficients. Since the Fourier series is truncated, ( , , )L M N  is 

smaller than  2 1, 2 1, 2 1x y zN N N   . Therefore, in the 

construction of  , ,U l m n , the unestimated Fourier 

coefficients are set to zero. For the estimated Fourier 

coefficients, the corresponding , , ,RRR IRR IIIU U U  are 

available from (10), and the conjugate counterparts can be 

calculated using Tables 1 and 2. When  , ,U l m n  is prepared, 

the 3D model is reconstructed after implementing an inverse 

3D FFT. 

TABLE 1  

THE REAL AND IMAGINARY COMPONENTS CONJUGATE TO  

     , , , 0, 1 , 0, 1 , 0, 1x y zl m n l N m N n N        . 

         , ,l m n               , ,xN l m n            , ,yl N m n         , ,x yN l N m n   

( , )

( , )

( , )

( , )

ijk ijk

RRR IRR

ijk ijk

RIR IIR

ijk ijk

RRI IRI

ijk ijk

RII III

U U

U U

U U

U U

 

1

1

1

1

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U

      

2

2

2

2

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U









     

3

3

3

3

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U

 

 

      

4

4

4

4

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U









 

 

     , , zl m N n      , ,x zN l m N n     , ,y zl N m N n     , ,x y zN l N m N n    

( , )

( , )

( , )

( , )

ijk ijk

RRR IRR

ijk ijk

RIR IIR

ijk ijk

RRI IRI

ijk ijk

RII III

U U

U U

U U

U U

 

5

5

5

5

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U

 

 

  

6

6

6

6

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U









    

7

7

7

7

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U

 

 
         

8

8

8

8

( , )

( , )

( , )

( , )

lmn lmn

RRR IRR

lmn lmn

RIR IIR

lmn lmn

RRI IRI

lmn lmn

RII III

c U U

c U U

c U U

c U U









  

 

TABLE 2 
THE c  VALUES FOR THE COMPLEX COUNTERPARTS IN 

THE CONJUGATE POSITIONS 

 

 c1    c2    c3    c4    c5    c6    c7    c8          lmn  

l,m,n>0 

l=0,m,n>0 

m=0,l,n>0 

n=0,l,m>0 

l>0,m=n=0 

m>0,l=n=0 

n>0,l=m=0 

l=m=n=0 

  1     1     1     1     1     1      1     1           8 

  1     0     1     0     1     0      1     0           4 

  1     1     0     0     1     1      0     0           4 

  1     1     1     1     0     0      0     0           4 

  1     1     0     0     0     0      0     0           2 

  1     0     1     0     0     0      0     0           2 

  1     0     0     0     1     0      0     0           2 

  1     0     0     0     0     0      0     0           1 

 

In summary, the procedure for constructing the 3D model 

from the coefficients of the truncated Fourier series consists of 

the following five steps: 

1) Calculating , , ,RRR IRR IIIU U U  from the Fourier 

coefficients according to (10)-(12); 

2) Calculating the conjugate components according to 

Tables 1 and 2; 

3) Set the remaining values of , , ,RRR IRR IIIU U U  to 0; 

4) Use (13) to calculate the complex series ( , , )U l m n ; 

5) Apply an inverse 3D FFT to the 3D complex series 

( , , )U l m n ; the resulting real-valued 3D volume is the 

3D model. 

In this study, the 3D inverse FFT is also realized by the 3D 

inverse DFT in FFTW, requiring only  2 1x y zN N N    

complex-valued ( , , )U l m n  as input [13].  

Similar to the estimation of the Fourier coefficients, the 

reconstruction of the model from the coefficients using (1) to 

(2) and the five-step procedure are called the inverse direct 

Fourier series method or inverse FFT-based method. 

V. APPLICABILITY  

Now, we test the applicability of this model 

parameterization scheme by using the forward and inverse 

FFT pair, for model fitting and model reconstruction. 

A. Model fitting by a truncated Fourier series 

Fig. 2a is a 3D overthrust impedance model, and Fig. 2b is 

the corresponding seismic data cube, generated by the wave 

equation simulation, with some missing traces. The model size 

is 400x yN N  , and 150zN  . In this example, xN  

corresponds to the trace number in the x direction, ranging 
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from 0 to 399, yN  corresponds to the trace number in the y 

direction, varying from 0 to 399, and the vertical index zN  is 

the number of time samples, ranging from 0 s to 0.894 s with 

an interval of 6 ms.  

The time needed to calculate the Fourier coefficients 

depends on the chosen values (L, M, N). Small values of (L, 

M, N) correspond to the low wavenumber components of the 

impedance model, while the large values of (L, M, N) 

correspond to the high wavenumber components. In this study, 

we compare four cases of (L, M, N): (5, 5, 5), (20, 20, 10), (40, 

40, 20) and (201, 201, 76). The time costs of the FFT-based 

method for these four cases are 0.15, 0.162, 0.163 and 0.178 

minutes, respectively. They are almost the same because in 

each case we first implement a triple 1D FFT, and then 

calculate the Fourier coefficients using (10), which accounts 

for the time differences between the different cases. On the 

other hand, if we calculate the Fourier series directly, the time 

costs required for the corresponding four cases are 0.25, 8.03, 

65 and 6164.2 minutes, respectively (Table 3). It is obvious 

that the FFT-based method is significantly faster than the 

direct Fourier series calculation.  

 

 
Fig. 2. (a) The 3D overthrust impedance model. (b) The synthetic seismic data with null traces, generated by wave equation simulation. 

 

 

 
Fig. 3. Eight groups of coefficients selected from the Fourier 
coefficient cubes. The size of each cube is 40 40 20  , because the 
selected number of Fourier coefficients in each direction are (L, M, 
N) = (40, 40, 20). (a) is for coefficients 00na with 

0,1 20l m n    . (b) is for 00lb  with { 0,5 40m n l    }. 

00 (0 5)lb l   is not included because it is much larger than 

00 (5 40)lb l   by two orders of magnitudes, which may result in 
the latter unrecognized. The rest coefficients (c)-(h) are plotted in the 
same way. The red solid curves are from the direct Fourier series 
calculation. The blue dot curves are from the FFT-based method.  

 
Fig. 4. The impedance models, located at y=250 from the 3D model, 
reconstructed from the truncated Fourier series with (L, M, N) equal 
to (5, 5, 5), (20, 20, 10), (40, 40, 20) and (201, 201, 76) from (a)-(d), 
respectively. The curves in the right side of (a-d) are the impedance 
traces at (x, y) = (150, 250). The red curves are extracted from the 
true impedance model, and the blue lines are from the reconstructed 
impedance model. 
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To verify the accuracy of the Fourier coefficients estimated 

by the FFT method, they are compared with the Fourier 

coefficients obtained by the forward direct Fourier series 

method. Since each of the coefficients  , , ,lmn lmn lmna b h  is a 

3D cube with the size of L M N  , we select only a small 

portion of the data from each Fourier coefficient for 

comparison. Fig. 3 shows eight groups of Fourier coefficients 

for (L, M, N) = (40, 40, 20). Fig. 3a is for Fourier coefficients 

00na  with 0,1 20l m n     and Fig. 3b is for coefficients 

00lb  with 0,5 40m n l    . Fig. 3c-h are selected in the 

same way for the other Fourier coefficients. In Fig. 3, the red 

curves are estimated by direct Fourier series calculation, and 

the blue dotted curves are calculated by the FFT-based 

method. The results of the two methods are identical. 

B. Model reconstruction from the Fourier coefficients 

Fig. 4 compares the original impedance profile and the 

models reconstructed from the truncated Fourier series 

coefficients with (L, M, N) = (5, 5, 5), (20, 20, 10), (40, 40, 

20) and (201, 201, 76). The reconstruction method based on 

the inverse FFT and the direct Fourier series construction 

method give identical results. Therefore, Fig. 4 shows only the 

result of the inverse FFT-based method. The sample profiles 

were taken at y=250. The impedance model constructed from 

Fourier coefficients with large values (L, M, N) is much closer 

to the true model. The relative errors of the four cases of (L, 

M, N) are 11.5%, 8.1%, 5.3% and 0.0% respectively. The 

errors decrease as the values of (L, M, N) increase. When (L, 

M, N) = (201, 201, 76), the reconstructed impedance profile 

corresponds exactly the real model. When model 

parameterization with truncated Fourier series is applied to 

seismic inversion, we can increase the number of Fourier 

coefficients from small-valued (L, M, N) to large-valued (L, 

M, N), and thus gradually reconstruct the low- and high-

wavenumber components of the subsurface model. 

The right side of panel a‒d in Fig. 4 compares the 

impedance traces at (x, y) = (150, 250). The red curves are the 

true impedance model traces, and the blue curves are the 

reconstructed impedance traces. Fourier coefficients with 

small values (L, M, N) mainly give the background of the 

impedance model, while the large values (L, M, N) give a 

refined impedance model. When (L, M, N) = (201, 201, 76), 

the red and blue curves overlap, which mean that the 

impedance model has been completely reconstructed from the 

Fourier coefficients.  

Table 3 also lists the time cost of reconstructing the 3D 

model from the truncated Fourier series. The time costs for the 

inverse direct Fourier series method, where the model is 

reconstructed using (1), are 0.24, 7.23, 57.9 and 5550 minutes 

for the four (L, M, N)s, respectively. The time required for the 

inverse FFT-based method is almost the same, about 0.02 

minutes for the four cases, and the slight differences are due to 

the preparation of the complex series ( , , )U l m n . Therefore, 

the inverse FFT-based method can reconstruct the impedance 

model from the truncated Fourier series very fast, which 

makes the 3D seismic inversion for impedance efficient and 

time saving when this model parameterization scheme is 

applied. 

VI. APPLICATION IN SEISMIC IMPEDANCE INVERSION 

A. The inversion theory 

In this section, model parameterization with truncated 

Fourier coefficients is applied to 3D seismic impedance 

inversion from migrated seismic data. The inversion is 

performed using wave equation theory. The equation is 

expressed as follows (Wang, 2016): 
2

2

( , ) ( , )
4 ( ) ( ) 0

w t w t

t

 
   

 

   
  

   
,             (19) 

where ( )   is the impedance in the depth-time domain,   is 

the depth-time, w  is the wavefield, and t  is the travelling 

time.  

Equation (19) is obtained by transforming the traditional 1D 

wave equation from the depth domain to the depth-time 

domain. Then the traditional wave equation with two 

parameters defined by velocity and density becomes a wave 

equation with one parameter, impedance. In this test, the 

waveform inversion method [14], [15], [16] is used to invert 

the impedance from a single seismic trace.  

To invert a 3D impedance model from the seismic cube, we 

combine the 1D impedance inversion with the truncated 

Fourier series. By fitting the 3D impedance model with a 

truncated Fourier series, the impedance inversion problem is 

transformed into the problem of first inverting the Fourier 

coefficients, and then reconstructing the 3D impedance model 

from the inverted Fourier coefficients. In the inversion for 

Fourier coefficients, the misfit function is defined as 

     
2

, ,

1
, , , , , d d d

2
obs syn

x y t

x y t x y t x y t    m w w m ,   (20) 

where  , ,obs x y tw  is the observed waveforms and 

 , , ,syn x y tw m  is the synthetic waveforms generated from the 

model. 

The gradient with respect to the Fourier coefficients, such 

as lmnd , is derived as 

  ( , , , )( , , )

( , , )

( , , ) ( , , , ) d d d d .

 
 

  

   

   
syn

lmn lmnx y z t

obs syn

x y tx y z

d d x y z

x y t x y t t z y x

 



w mm

w w m

     (21) 

It can be seen from (21) that the chain rule is followed to 

obtain the gradients with respect to lmnd , and this procedure 

involves three steps. The first step is to calculate the gradients 

with respect to the impedance at the (x, y)th trace by 

correlation between the forward and backward wavefields. In  

the second step, the gradients at the (x, y)-th trace are used to 

calculate the gradient with respect to lmnd . By parameterizing 

the impedance with the truncated Fourier series, the gradient 

of the impedance is 

 , ,
= sin( )sin( )cos( ),x y z

lmn

x y z
l k p m k q n k r

d


  


       (22) 
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where , ,x p x y q y z r z      . After finishing the second 

step, the final step is to sum up the gradients to lmnd  in all 

traces. 

B. The inversion strategies 

In the inversion of Fourier coefficients, the starting 

evaluation of Fourier coefficients is determined from the 3D 

initial impedance model with the forward FFT-based method, 

and then the Fourier coefficients are inverted with increasing 

number in  , ,L M N . The number of  , ,L M N s increases 

from small to large values. Using the Fourier coefficients with 

the numbers of  , ,L M N , the corresponding 3D impedance 

model can be reconstructed very fast using the inverse FFT-

based method, which is used to calculate the gradients in the 

next iteration.  

For updating Fourier coefficients with each (L, M, N), only 

several subsets of seismic traces are involved. This is because 

the impedance at each position and time is a function of the 

Fourier coefficients, as can be seen from (1) and (2). 

Therefore, impedance traces inverted from one part of the 

seismic cube may be sufficient to update the Fourier 

coefficients, avoiding redundancy and saving computational 

time. If the seismic traces in a subgroup are selected for 

example, every 5 traces, in both the x and y directions from the 

seismic cube, a total of 25 subgroups are generated, which are 
(5) ,1 , 5s,tD s t  . The first data subgroup can be explicitly 

expressed as follows:  

0,0 0,1 0,396 0,399

1,0 1,1 1,396 1,399

(5)

1,1

396,0 396,1 396,396 396,399

399,0 399,1 399,396 399,399

D

 
 
 
 

  
 
 
  

w w w w

w w w w

w w w w

w w w w

 ,       (23) 

where 
p,qw is seismic trace at the pth and qth position, 5 is the 

trace interval for subgroup selection, and the subscript of (5)

1,1D  

is equal to the subscript of 
1,1w , representing the position of 

the first trace selected that satisfies 0   399p, q  . The 

traces {
0 0 399 399, , ,,q p, ,q p,w w w w } are included in each subgroup 

to satisfy the periodic condition of the Fourier series [6]. The 

traces in the remaining 24 subgroups are selected in the same 

way. In the inversion of Fourier coefficients, we can only use 

some subgroups.  

 

TABLE 3 

THE COMPUTATION COST(MINS) FOR EVALUATING THE COEFFICIENTS  

AND FOR RECONSTRUCTING 3D MODEL 

 (L,M,N) (5,5,5) (20,20,10) (40,40,20) (201,201,76) 

Evaluating the 

Fourier series 

from a 3D model  

(mins) 

Forward direct Fourier 

series method 
0.25 8.03 65 6164.2 

Forward FFT-based 

method  
0.15 0.162 0.163 0.178 

Reconstructing 

3D model from 

the Fourier series 

(mins) 

Inverse direct Fourier 

series method 
0.24 7.23 57.9 5550 

Inverse FFT-based 

method  
0.02 0.02 0.02 0.03 

 

To demonstrate the feasibility of model parameterization 

and inversion strategies in 3D seismic impedance inversion, 

both examples of a synthetic overthrust model and a test with 

field data are presented. In the following sections, the 

impedance inversion with model parameterization using 

truncated Fourier series coefficients is referred to as the 

Fourier coefficient-based method.  

C. Synthetic overthrust model example 

In the impedance inversion of the 3D overthrust model, as 

shown in Fig. 2a, we compare the inversion results of the 

trace-by-trace method, and the Fourier coefficient-based 

method, which uses a seismic cube with missing traces. Fig. 

2b shows the corresponding synthetic seismic cube, generated 

using (19). The source for this synthetic data is a Ricker 

wavelet with a main frequency of 10 Hz. In Fig. 2b, 25011 

null traces are randomly distributed in the cube, which 

contains a total of 160000 traces. 

Fig. 5a shows two cross profiles of the overthrust 

impedance model at x=100 and y=100 (Fig. 2a). Fig. 5b is the 

initial impedance profile for the inversion, smoothed with a 

3D smoothing function from the real model. We chose Fig. 5b 

as the initial model because both the trace-by-trace method 

and the Fourier coefficient-based method are local 

optimization methods. In the Fourier coefficient-based 

method, the 1D inversion procedure is a local optimization 

process that determines the dependence on the initial model, 

while the model parameterization with truncated Fourier series 

mainly aims at reducing the number of inverted parameters, 

preserving spatial continuity, and improving robustness, which 

will be demonstrated in the following sections. 

Fig. 5c shows the inverted impedance profiles using the 

trace-by-trace method, in which the impedance traces are not 

recovered at positions with null seismic trace. In this 

inversion, 40 threads ( NPRO 40 ) are used for parallel 

execution and 10 iterations are set as the maximum iterations. 

It takes 4 minutes to complete the inversion of 134989 seismic 

traces, excluding the null traces, on a workstation with 48 

cores and 96 threads. 

In the Fourier coefficient-based method, the initial Fourier 

coefficients with 201, 201, 76L M N    are estimated 

using the forward FFT-based method from the initial 
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impedance model. In this test, every 5 traces in the x and y 

directions are selected from the seismic cube to form a 

subgroup. Table 4 shows the subgroups used for each (L, M, 

N), where 19/25 of the subgroups are used to update the 

Fourier coefficients. 

In the first inversion stage, the inversion begins with (L, M, 

N) = (20, 20, 10), which is approximately one-tenth of 

 2 1, 2 1, 2 1x y zN N N   . In this stage, the inversion is 

performed for a small number of Fourier coefficients, which 

corresponds to the inversion of low-wavenumber components 

of the impedance model. Fig. 6a shows the inverted 

impedance profiles of the first stage. The inversion increases 

the values of (L, M, N) stepwise with a step size of (20, 20, 

10), which is usually fixed at 1~2 times the initial values of (L, 

M, N). Fig. 6b is the result of the second step, when (L, M, N) 

= (40, 40, 20). Fig. 6c-d are the results of the inversion in the 

third and final stage when (L, M, N) = (60, 60, 30) and (80, 80, 

40), respectively. Compared to the trace-by-trace method, the 

inverted impedance profiles are spatially continuous, even if 

there are null traces in the seismic cube, and they are also 

close to the true model profiles. Note that the total number of 

Fourier coefficients in the last stage is 8 80 80 40   , which 

is less than the total number of impedance ( 400 400 150  ).  

We also compare the inverted seismic impedance slices 

with the real model. Fig. 7 shows slices at times 0.24 s, 0.45 s 

and 0.66 s. The comparison shows that the inverted 3D 

impedance model agrees well with to the real model.  

When testing the Fourier coefficient-based method, we use 

the same number (40) of threads to for the parallel 

implementation, as for the trace-by-trace method. The time 

required is 21.5 minutes, with the computation time for the 

four groups of (L, M, N) being about 0.5, 2.0, 5.0, and 14.0 

minutes, respectively. It is clear that Fourier coefficients with 

large values (L, M, N) require more computation time for 

updating. Since the model reconstruction is fast and its time 

cost is almost independent of (L, M, N), the calculation of the 

gradient to the Fourier coefficients and the seismic traces used 

for inversion are responsible for the increasing computation 

time. From Fig. 6, it can be seen that the reconstructed model 

profiles from the inverted Fourier coefficients with large 

values (L, M, N) are closer to the true model profiles. The 

inversion procedure stops when (L, M, N) reaches the 

maximum values of (L, M, N) or the relative errors, between 

the synthetic and the observed data or between the models 

from Fourier coefficients of two adjacent (L, M, N) meet a 

threshold. 

We also compare the inverted seismic impedance slices 

with the real model. Fig. 7 shows slices at times 0.24 s, 0.45 s 

and 0.66 s. The comparison shows that the inverted 3D 

impedance model agrees well with to the real model.  

When testing the Fourier coefficient-based method, we use 

the same number (40) of threads to for the parallel 

implementation, as for the trace-by-trace method. The time 

required is 21.5 minutes, with the computation time for the 

four groups of (L, M, N) being about 0.5, 2.0, 5.0, and 14.0 

minutes, respectively. It is clear that Fourier coefficients with 

large values (L, M, N) require more computation time for 

updating. Since the model reconstruction is fast and its time 

cost is almost independent of (L, M, N), the calculation of the 

gradient to the Fourier coefficients and the seismic traces used 

for inversion are responsible for the increasing computation 

time. From Fig. 6, it can be seen that the reconstructed model 

profiles from the inverted Fourier coefficients with large 

values (L, M, N) are closer to the true model profiles. The 

inversion procedure stops when (L, M, N) reaches the 

maximum values of (L, M, N) or the relative errors, between 

the synthetic and the observed data or between the models 

from Fourier coefficients of two adjacent (L, M, N) meet a 

threshold. 

 

 

TABLE 4 
 SUB-DATA GROUPS USED FOR THE IMPEDANCE 

INVERSION WITH DIFFERENT TRACES SELECTION 

INTERVALS (5 AND 10) 

(L,M,N) 
Sub-data groups used for the impedance 

inversion 

(20,20,10) 

 (5) (5) (5) (5)

1,1 1,5 5,1 5,5, , ,D D D D  





(10) (10) (10) (10) (10)

1,1 1,5 1,9 5,1 5,5

(10) (10) (10) (10)

5,9 9,1 9,5 9,9

, , , , ,

, , ,

D D D D D

D D D D
 

(40,40,20) 





(5) (5) (5) (5) (5)

1,1 1,3 1,5 3,1 3,3

(5) (5) (5) (5)

3,5 5,1 5,3 5,5

, , , , ,

, , ,

D D D D D

D D D D
 





(10) (10) (10) (10) (10) (10)

1,2 1,5 1,8 4,2 4,5 4,8

(10) (10) (10) (10) (10) (10)

7,2 7,5 7,8 10,2 10,5 10,8

, , , , , ,

, , , , ,

D D D D D D

D D D D D D
 

(60,60,30) 

 (5) (5) (5) (5) (5) (5)

2,3 2,4 2,5 5,3 5,4 5,5, , , , ,D D D D D D  





(10) (10) (10) (10) (10)

4,3 4,6 4,9 7,3 7,6

(10) (10) (10) (10)

7,9 10,3 10,6 10,9

, , , , ,

, , ,

D D D D D

D D D D
 

(80,80,40) 

 (5) (5) (5) (5) (5) (5) (5) (5)

2,2 2,4 3,2 3,4 4,2 4,4 5,2 5,4, , , , , , ,D D D D D D D D  





(10) (10) (10) (10) (10)

2,2 2,5 2,8 5,2 5,5

(10) (10) (10) (10)

5,8 8,2 8,5 8,8

, , , , ,

, , ,

D D D D D

D D D D
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Fig. 5. (a) The true impedance profiles. (b) The initial impedance profiles set for the inversion. (c) The inverted impedance profiles obtained by 
the trace-by-trace inversion method. The left and right panels of each subfigures are impedance profiles at x=100 and y=100, respectively. 

 

Here we show how the seismic traces affect the inversion 

results and the computation time by the inversion results when 

the subgroup is selected by every 10 traces in the x and y 

directions. The subgroups used in each case are listed in Table 

4, with 37/100 of the total subgroups included. The other 

parameters are the same as those in the case of intervals with 

5. The inversion takes about 10 minutes. The inverted 

impedance profiles at x=100 and y=100 are shown in Fig. 8. 

Compared to Fig. 6d, it can be seen that some spatial 

discontinuities have occurred in the profiles, indicated by the 

red circles. Therefore, we have to make a trade-off between 

spatial continuity and computation time. A coverage of more 

than 70% of the total subgroups can lead to continuous results. 
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Fig. 6. The inverted impedance profiles when (L, M, N) is equal to (20, 20, 10), (40, 40, 20), (60, 60, 30), and (80, 80, 40) in (a)-(d), 
respectively. The left and right panels of each subfigures are impedance profiles at x=100 and y=100, respectively.  
 

 

We investigate the influences of the values of (L, M, N) 

and the subgroups on the inverted results in two tests. We 

chose both the initial values of (L, M, N) and their 

increments as (10, 10, 5) in the first test and (40, 40, 20) in 

the second test, and stop the inversion when the values of 

(L, M, N) reach (80, 80, 40). In each (L, M, N), about 4 

subgroups in the first test and 25 subgroups in the second 

test are used for the inversion of the Fourier coefficients. 

The other parameters are the same as in Fig. 6. The finally 

reconstructed impedance model profiles in the two tests 

(not shown) are almost identical to those in Fig. 6d, but 

their computation time is about 22 minutes and 52 minutes, 

respectively. When fewer subsets of data are used in the 

second test, the time required is reduced but the inverted 

model is discontinuous. Therefore, considering the 

inversion results, computational efficiency and convenience 

of selecting subgroups, we prefer to select about one-tenth 

of  2 1, 2 1, 2 1x y zN N N    as the initial values for (L, 

M, N), and adjust the subgroups according to the values of 

(L, M, N) in the inversion. 

To test the robustness of the Fourier coefficient-based 

method when applied to noisy seismic data, we added 

Gaussian noise to the seismic cube in Fig. 2b. Fig. 9 is the 

noisy data cube with a signal-to-noise ratio (S/N) of 5. 

Using the same parameters as for impedance inversion from 

noise-free data, the inverted impedance profiles using the 

trace-by-trace method and the Fourier coefficient-based 

method are shown in Fig. 10a and Fig.10b, respectively. It 

is obvious that the latter method gives more continuous and 

stable results of the inverted impedance. 
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Fig. 7. The slices of the impedance model. (a), (b), and (c).are 
slices at 0.24 s, 0.45 s and 0.66 s, respectively. Subfigures in the 
left and right panels are the true and inverted impedance model 
slices, respectively.  

 

 

In earlier tests, about 15% of all traces (160,000) were 

missing. Here we show another case where about 70% of 

the traces are missing and 50673 non-null traces are 

involved in the inversion. The results are shown in Fig. 11. 

It can be seen that the model profiles inverted with the 

Fourier coefficient-based method, shown in Fig. 11a, are 

more stable and continuous than those inverted with the 

trace-by-trace method, shown in Fig. 11b. Comparing to 

other spatial continuity enhancing methods [17], our 

method is independent on the a priori geologic information, 

works well for 3D seismic cube with more missing traces, 

and is affordable for seismic cube with realistic size. 

D. Field seismic data example 

Fig. 12a is 3D seismic cube from the carbonate area, 

which is a post-stack data after migration, and the target 

zone is approximately between 6 and 7 km. There are 302 

traces in both x and y directions, with 19026 missing traces. 

Each trace contains 251 samples with a time interval of 2 

ms and a time range of 3.8 to 4.3 s. The size of the 

impedance model is 302x yN N  , and 110zN  . In this 

field data example, xN  corresponds to the trace number in 

the x direction, ranging from 0 to 301, yN  corresponds to 

the trace number in the y direction, varying from 0 to 301, 

and the vertical index zN  is the impedance sample number, 

which ranges from 3.662 s to 4.316 s with an interval of 6 

ms. Note that impedance values in between 3.662 s and 3.8 

s are equal to the impedance value at 3.8 s in each trace, to 

remove the direct wave. Fig. 12b is the estimated wavelet 

from the seismic cube by the generalized wavelet method 

[18]. Fig. 12c is a spectral profile at x=130, and it can be 

seen that the frequency range of the field data is about 8‒25 

Hz. This is because the target zone is located deep below 

the surface. Influences such as absorption result to the 

amplitudes of high frequencies of the seismic cube with 

relatively low values. In the target area, there are two well-

logs at (x, y) = (87, 22) and (258, 147) with time range of 

4.0‒4.2s and 3.92‒4.12s, respectively, and three horizons at 

about 3.8 s, 3.9 s and 4.2 s.  

It can be seen that in the target area, the seismic cube is 

lack of low and high frequency components, and the well 

and horizontal information are very limited. Besides, since 

the target layer is deep under the surface, reliable geological 

information with high resolution is not available. Therefore, 

to make the inversion results reliable, we will not blindly 

pursued high resolution with such kind of field data. 

In the inversion, to reduce the influence of the lack of 

low frequencies, we built the initial impedance model using 

two well-logs and three horizons. Fig. 13a shows the 

profiles of the initial impedance model at x=258 and y=147, 

which include the low-wavenumber components, and then 

we apply the Fourier coefficient-based method for 

impedance inversion. 

The initial values of (L, M, N) and their increments are 

(15, 15, 8). The final number of terms in the truncated 

Fourier series is (L, M, N) = (60, 60, 32). For the four (L, 

M, N), the time required for a coefficient to model 

calculation using the inverse direct Fourier series method is 

1.3, 11.0, 47.5, and 95.3 minutes, respectively, while the 

corresponding time required using the FFT-based method is 

only 0.9 seconds.  
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Fig. 8. The inverted impedance profiles at x=100 (a) and y=100 (b). The subgroup of seismic data used in this inversion is 

selected every 10 traces in x and y directions from the whole cube. 

 

 

 
Fig. 9. The noise contaminated seismic data with S/N=5. 

 

 

The seismic cube is divided into 16 subgroups, and each of 

them consists of traces selected every 4 traces along the x- and 

y- directions. In the parallel implementation, 40 threads are 

used and the computation time cost is 7.0 minutes. The time 

saving is much greater than the direct Fourier series method, 

which is 2600 minutes (43.3 hours). Fig. 13b and 13c show 

two reconstructed impedance profiles for (L, M, N) = (30, 30, 

16) and (60, 60, 32). The latter shows that the inverted 

impedance profiles have high resolution and good spatial 

continuity. 

 

 

 

 

 
Fig. 10. The inverted impedance profiles from the noise contaminated data in Fig. 9 by the trace by trace method (a) and Fourier coefficients 

based method (b). The left and right panels of each subfigures are impedance profiles at x=100 and y=100, respectively. 
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Fig. 11. The inverted impedance profiles by Fourier coefficients based method (a) and the trace by trace method (b). In this case, about 70% of 
all the traces are missing. The left and right panels of each subfigures are impedance profiles at x=100 and y=100, respectively. 

 

 

 
Fig. 12. (a) A field 3D migrated seismic cube. (b) Estimated seismic wavelet from the seismic cube with reference frequency of 16.5 Hz and 
fractional number u = 2.16. (c) Spectral profile at x=130 with the frequency range of about 8‒25 Hz. 
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Fig. 13. (a) The initial impedance profiles at x=258 and y=147. (b) The reconstructed impedance profiles when (L, M, N) = (30, 30, 16). (c) The 
reconstructed impedance profiles when (L, M, N) = (60, 60, 32). 

 

 

In Fig. 14, we compare the observed traces with the 

synthetic traces generated by the initial and inverted 

impedance models, respectively. We see that the synthetic 

traces generated by the inverted impedance model agree well 

with the observed traces.  

 

 
Fig. 14. Comparisons between the observed (red curves) and 
synthetic (blue curves) traces. The synthetic traces are generated by 
the initial impedance model (a) and the inverted impedance model 
when (L, M, N) = (60, 60, 32) (b). The left panels are at x=258 and 
the right panels are at y=147. 

VII. CONCLUSION 

In seismic inversion, we can parameterize the 3D model of 

the subsurface using a truncated Fourier series. In this study, 

we proposed to determine the coefficients of the truncated 

Fourier series using forward FFT and reconstruct a 3D model 

from the inverted Fourier series using inverse FFT. Using the 

pair of forward and inverse FFT ensures the accuracy of both 

model fitting and reconstruction. Due to the fast 

implementation of the FFT pair, the efficiency is greatly 

improved by this model parameterization scheme. This makes 

the seismic inversion of the subsurface model affordable for 

3D seismic data with a realistic size. 

In seismic inversion with model parameterization using 

truncated Fourier series, we can invert fewer parameters 

because the number of Fourier coefficients to be inverted is 

much smaller than that of the model. We can also design 

inversion strategies to invert the Fourier coefficients from 

small-valued numbers to large-valued numbers for (L, M, N). 

In this way we can not only reconstruct the models step by 

step from low wavenumber components to high wavenumber 

components, but also save computation time and improve 

efficiency.  

When applied to 3D seismic impedance inversion, this 

model parameterization scheme can provide continuous and 

stable impedance results from seismic cubes with missing 

traces and noise. This is because the impedance model is 

reconstructed from the Fourier coefficients and each of them is 

inverted by all the seismic traces used, i.e. the Fourier 

coefficients are updated in a way that includes multiple traces. 

Furthermore, in this way the seismic cube is divided into 

subsets, only a part of which is used for the inversion of the 

coefficients, resulting in a considerable saving of 

computational time. 
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APPENDIX 

FORMULAE OF FOURIER COEFFICIENTS OF A 3D 

PERIODIC FUNCTION 

To deduce the Fourier coefficients formulas, one may start 

from a periodic function  , ,u x y z  with the ranges of 

{ 0 ,0 ,0x X y Y z Z      }, where { , ,X Y Z } are the 

length of the period function in x, y, and z direction. The 

formula for the Fourier series expansion of  , ,u x y z  has a 

similar form as (1) [19]. After setting L M N    in (1), 

2 , 2 , 2x y zk X k Y k Z         in (3), and changing 

{ , ,p x q y r z   } in (2), we will have the Fourier series 

expansion formula for  , ,u x y z .  

To calculate the Fourier series coefficients, such as 
lmna , 

we multiply cos( )cos( )cos( )x y zl k x m k y n k z    to both sides 

of the Fourier series expansion equation for  , ,u x y z , and 

then integrate both sides over the ranges of 

{ 0 ,0 ,0x X y Y z Z      }. Based on the orthogonality 

of the sine and cosine bases, the formula for 
lmna  will be 

derived. The rest Fourier coefficients are derived in the same 

way. Subsequently, we discretize these formulas for the 

Fourier coefficients to get their discrete forms.  

Note that in the discrete forms, { , ,x y zk k k   } are 

following (3). When { 0, 0, 0l m n   }, the nonzero valued 

Fourier coefficients are 
( 1, 1, 1)

( , , ) (0,0,0)

( 1, 1, 1)

( , , ) (0,0,0)

8 ( , , )cos( )cos( )cos( ),
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(A-1) 

where 1 ( )x y zN N N  . 

When 0, 0, 0l m n   , the nonzero valued Fourier 

coefficients are 

( 1, 1, 1)

0

( , , ) (0,0,0)
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(A-2)  

When { 0, 0, 0m l n   }, the nonzero valued Fourier 

coefficients are 
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(A-3) 

When { 0, 0, 0n l m   }, the nonzero valued Fourier 

coefficients are 
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 (A-4)  

When { 0, 0l m n   } or { 0, 0l n m   } or 

{ 0, 0m n l   }, the nonzero valued Fourier coefficients are 
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 (A-5)  

When { 0l m n   }, we have 
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000

( , , ) (0,0,0)
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