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ABSTRACT
We consider the problem of predicting users’ preferences on on-
line platforms. We build on recent findings suggesting that users’
preferences change over time, and that helping users expand their
horizons is important in ensuring that they stay engaged. Most
existing models of user preferences attempt to capture simulta-
neous preferences: “Users who like 𝐴 tend to like 𝐵 as well”. In
this paper, we argue that these models fail to anticipate changing
preferences. To overcome this issue, we seek to understand the
structure that underlies the evolution of user preferences. To this
end, we propose the Preference Transition Model (PTM), a dynamic
model for user preferences towards classes of items. The model
enables the estimation of transition probabilities between classes of
items over time, which can be used to estimate how users’ tastes are
expected to evolve based on their past history. We test our model’s
predictive performance on a number of different prediction tasks
on data from three different domains: music streaming, restaurant
recommendations and movie recommendations, and find that it
outperforms competing approaches. We then focus on a music ap-
plication, and inspect the structure learned by our model. We find
that the PTM uncovers remarkable regularities in users’ preference
trajectories over time. We believe that these findings could inform
a new generation of dynamic, diversity-enhancing recommender
systems.
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1 INTRODUCTION
Online platforms have transformed the way users access informa-
tion, audio and video content, knowledge repositories, and much
more. Over three decades of research and practice have demon-
strated that a) learning users’ preferences, and b) personalizing
users’ experience to match these preferences is immensely valuable
to increase engagement and satisfaction. To this end, recommender
systems have emerged as essential building blocks (Adomavicius
and Tuzhilin, 2005). They help users find their way through large
collections of items and assist them in discovering new content.
∗This work was completed as part of an internship at Spotify.
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They typically build on user preference models that exploit corre-
lations across users’ preferences. As an example within the music
domain, if a user likes The Beatles, that user might also like Simon
& Garfunkel, because other users who listen to the former also
listen to the latter.

The vast majority of these preference models take a static view-
point and try to capture simultaneous preferences. In other words,
they seek to answer the following question: How well does prefer-
ence for item 𝐴 predict preference for item 𝐵? While these models
are effective at finding similar items, they can confine users in so-
called filter bubbles (Pariser, 2011; Nguyen et al., 2014). In a sense,
they successfully exploit narrow preferences but may not help users
explore completely new regions in the space of items. From a user’s
point of view, this can lead to the impression that recommender
systems tend to show “more of the same” (Ma et al., 2016), and that
they do not help expand their horizons.

As online platforms mature, our understanding of users’ prefer-
ences and behaviors is becoming richer and more nuanced. There is
evidence suggesting that traditional approaches, based on matching
users with items similar to those they have liked in the past, fail to
capture important aspects of long-term engagement. In particular,
the following two findings stand out.

(1) Longitudinal traces reveal that the journey of users on online
platform is inherently dynamic, and that their preferences
are fluid (Koren, 2009). Take a music streaming service, for
example: new artists and tracks become available over time,
trends evolve quickly and users’ preferences with them.

(2) Consuming diverse content is linked to users’ engagement
and long-term satisfaction (Fleder and Hosanagar, 2009;
De Choudhury et al., 2011; Ugander et al., 2012; Holtz et al.,
2020). In the context of a music streaming service, for ex-
ample, recent research shows that consumption diversity is
highly correlated with user retention and conversion to a
paid subscription (Anderson et al., 2020).

Previous research has attempted to address these aspects with-
out fundamentally changing the underlying preference model. To
account for preference drift over time, dynamic variants of well-
known preference models have been proposed (Koren, 2009; Charlin
et al., 2015). These models alleviate the staleness problem, but they
do not capture regularities within the preference trajectories them-
selves. In other words, they recognize that users’ preferences today
might be different from a year ago, but they cannot be used to
predict how these preferences will look like one year from now. To
address the lack of diversity in recommendations, some proposals
suggest adding constraints such that sets of recommended items
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Figure 1: Given a dataset of music consumption traces, the
PTM automatically finds the most likely trajectories from
source genres (in green) to destination genres (in red).

cover distinct regions of the item space (Abbassi et al., 2013), or
framing recommendation as a multi-objective problem (Zhang and
Hurley, 2008). These methods may succeed in exposing users to
diverse items, but they again fail to capture how users discover new
items. Arguably, the latter is crucial to ensure that novel recom-
mended items remain relevant.

In this work, we overcome these issues by modeling preference
trajectories explicitly. We assume that we have access to times-
tamped consumption traces for a set of users, and we ask the fol-
lowing question.

Question. How well does preference for item 𝐴 at time 𝑡 predict
preference for item 𝐵 at time 𝑡 + 1?

In contrast to most existing preference models, this question ex-
amines the structure of preferences’ temporal dynamics. It suggests
that users’ changing preferences exhibit some regularities, and that
we might be able to learn these regularities in a data-driven way.

To this end, we propose the Preference Transition Model (PTM),
a dynamic model of preferences that predicts how users move in
the space of items. At its core is a transition matrix that captures
the propensity of interacting with a given item at time 𝑡 + 1 given
all interactions up to time 𝑡 ; this transition matrix provides a rich
representation of the underlying preference dynamics and is highly
interpretable. By design, our model anticipates changes in users’
preferences, and accompanies them through their journey. Further-
more, by taking advantage of the transition structure our model
uncovers, we can gradually bring users towards unexplored regions
of item space, thus increasing diversity in a meaningful way.

We validate our model’s performance on several tasks using four
datasets covering three different application domains. We show
that it predicts users’ future preferences more accurately than com-
peting approaches. Beyond accurate predictions, we find that our
model can identify promising pathways between potentially distant
regions in the space of items. We illustrate this point in Figure 1.
We fit our model on a dataset of music streams and, based on the
learned transition matrix, we compute the most likely trajectory
between any two musical genres (details given in Section 5.2.1).
These trajectories reveal valuable insights that could be turned into
principled, diversity-enhancing recommendations.

Organization of the Paper. After discussing the relevant literature
in Section 2, we introduce the PTM in Section 3. We evaluate its
performance on several datasets in Section 4 and compare it to alter-
native approaches. In Section 5, we dive deeper into an application
to music preferences, and we demonstrates that the model discovers
meaningful structure in the music space. Finally, we conclude in
Section 6.

2 RELATEDWORK
This work is related to several different areas, each of which we
discuss here, emphasising connections and differences.

Dynamic Collaborative Filtering. Our contribution can be broadly
classified within the work on dynamic collaborative filtering in the
context of matrices of counts. Traditionally, models for collabora-
tive filtering give users and items a low-dimensional latent feature
representation. One popular approach for modelling large sparse
matrices of counts is Poisson Matrix Factorisation (PMF, Gopalan
et al. (2015)), which assigns a non-negative latent feature repre-
sentation to users and items. Matrix factorization based on the
minimisation of the Frobenius norm has also been used success-
fully (Zhang et al., 2006; Wang and Zhang, 2013). Furthermore,
many authors have recognised the importance of incorporating
time-evolving features within models for collaborative filtering.
Koren (2009) proposed the popular timeSVD++ method, a dynamic
matrix factorisation technique. Also, PMF has been extended to
allow for dynamically evolving latent features in (Charlin et al.,
2015). Similarly, Schein et al. (2015) use a Bayesian tensor approach
to account for temporal variations in the latent representation. Ten-
sor factorisation methods are also successfully developed in (Xiong
et al., 2010; Karatzoglou et al., 2010). Acharya et al. (2015) assume
a Gamma Process structure for temporal changes in the latent
features, but their inferential procedure is not easily scalable to
large numbers of users or items. Similarly, Li et al. (2011) propose
Dirichlet-distributed latent representations with a Markov prior
structure. Gaussian-based models with Kalman filter updates for
the latent features have also been successfully developed by Gul-
tekin and Paisley (2014). The main difference between our PTM
and existing methodologies is that in this work the distribution of
user activity across classes of items and the total number of interac-
tions in each time period are modelled separately, using a two-stage
Poisson-Multinomial hierarchical distribution. This approach has
the advantage to suitably account for heterogeneity in user activity
over time.

Sequential Recommender Systems. Some authors have addressed
variants of the dynamic recommendation problem by using sequen-
tial models, in particular recurrent neural networks (RNNs). Wu
et al. (2017) introduce recurrent recommender networks, and Beutel
et al. (2018) discuss how to model context in RNN-based recom-
mender systems. RNNs are also commonly used in the context
of session-based recommender systems such as GRU4Rec (Hidasi
et al., [n.d.]). In this work, we are mostly interested in long-term
shifts in user preferences as opposed to short-term sessions, and we
focus on obtaining interpretable insights into how user preferences
change over time. These differentiate our PTM framework from
deep-learning based sequential models proposed in the literature.
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Diversity in Recommender Systems. One of the possible applica-
tions of the model proposed in this paper is to provide more diverse
recommendations to users, as well as promoting new classes of
items for consumption. Traditionally, diversity is included in rec-
ommender systems in a multi-objective framework. In this work,
a different approach is taken, and the diversity stems from rec-
ommendations of new classes of items to explore. An extensive
review of the traditional approaches for promoting diversity within
recommender systems can be found in (Kunaver and Požrl, 2017)
and references therein. Particularly relevant for our application to
music streaming services is (Holtz et al., 2020), which establishes
a connection between engagement and diversity on a streaming
platform.

Estimation of Relationships Between Multivariate Processes. As
described in Section 1, the PTM model proposed in this work is
aimed at estimating relationships between classes of items within
recommender systems. Our approach closely resembles techniques
used in statistics and causal inference for estimating relationships
between multivariate processes. In particular, vector autoregressive
(VAR) processes are traditionally used to establish causal interac-
tions between time series (Arnold et al., 2007; Etesami et al., 2016). In
Section 4.3, we compare our PTM model to VARs. Similarly, Hawkes
processes have also been used for the same purpose on point pro-
cess data (Linderman and Adams, 2014). A more general class of
models are self-exciting point processes (SEPPs, (Mark et al., 2019)),
which could also be used for estimation of the interactions. Both
VAR and Hawkes processes have good theoretical properties for
estimation of a network structure between different processes, both
in terms of Granger causality and directed information (Etesami
et al., 2016; Eichler et al., 2017).

Qualitative Interpretation of Interaction Graphs. Finally, part of
this work could be related to techniques for extracting qualitatively
meaningful network relationships between entities. In particular,
within a music streaming application, the PTM model is used to
discover pathways between genres and how the users explored
the music space. The work of Shahaf and Guestrin (2010), which
describes an algorithm for finding meaningful connections between
news articles, is particularly relevant in this context, and provided
ideas for the analysis in Section 5.

Others. Our work could also be linked to that of Dunlavy et al.
(2011), where, in the context of a link prediction task, a weighted
combination of previous observations is considered and subse-
quently fed into a matrix factorization framework. Finally, the
model proposed in this article could be also related to the work
of McAuley and Leskovec (2013), where the dynamic evolution of
user preferences is related to their expertise, such that user tastes
are expected to change based on the number and type of items
consumed in the past. In this work, the dynamics is induced by an
exponentially weighted moving average distribution, which gives
more weight to recent observations.

3 PREFERENCE TRANSITION MODEL
In this section, we develop the Preference Transition Model (PTM).
We first introduce some notation and formally define our prediction

problem. Then, we proceed to give a detailed description of the
model and related estimation and prediction methods.

3.1 Notation & Problem Statement
We consider a set of 𝑀 users interacting with items over time. We
assume that each item belongs to one of 𝑁 classes, and we divide
the observation period into𝑇 time windows. The exact definition of
a class is domain-dependent. As a running example, we consider a
music streaming application where users listen to tracks of different
musical genres, and we let the item classes be the set of genres. We
let 𝑛𝑡

𝑖 𝑗
∈ N ∪ {0} be the number of times the user 𝑖 interacted with

an item in class 𝑗 within the time window 𝑡 . For example, in the
music streaming domain, 𝑛𝑡

𝑖 𝑗
represents the number of tracks of

genre 𝑗 streamed by user 𝑖 in the time window 𝑡 . We define the
vector of streams for user 𝑖 at time 𝑡 as

𝒏𝑡𝑖 =
[
𝑛𝑡
𝑖1 · · · 𝑛𝑡

𝑖𝑁

]
.

Furthermore, the activity of user 𝑖 in the 𝑡-th time window is the
total number of interactions within the time period:

𝜉𝑡𝑖 =

𝑁∑︁
𝑗=1

𝑛𝑡𝑖 𝑗 .

We assume that 𝜉𝑡
𝑖
> 0 for all users 𝑖 = 1, . . . , 𝑀 and all time win-

dows 𝑡 = 1, . . . ,𝑇 . Combining 𝑛𝑡
𝑖 𝑗

and 𝜉𝑡
𝑖

gives the class distribution
at time 𝑡 :

𝝅𝑡𝑖 =
[
𝜋𝑡
𝑖1 · · · 𝜋𝑡

𝑖𝑁

]
= 𝒏𝑡𝑖 /𝜉

𝑡
𝑖 .

The prediction problem we address can be formalized as follows.
Given {𝒏𝑡

𝑖
: 𝑖, 𝑡 ∈ {1, . . . , 𝑀} × {1, . . . ,𝑇 }}, predict 𝒏𝑇+1

𝑖
or 𝝅𝑇+1

𝑖
for every user 𝑖 ∈ {1, . . . , 𝑀}.

3.2 Statistical Model
We now present a dynamic statistical model to study the evolution
of the counts 𝒏𝑡

𝑖
, and consequently the distributions 𝝅𝑡

𝑖
, over time,

establishing relationships between different classes. We call it the
Preference Transition Model (PTM). The PTM is aimed at jointly
modelling sequences of user activities and class distributions over
time.

First, we postulate that the distribution of preferences of user 𝑖
across classes at time window 𝑡 depends on a combination of the
distributions at the previous time windows. In particular, we let
𝛾 ∈ [0, 1] be an exploration parameter that measures how quickly the
space of classes is explored on average. We assume that𝛾 is the same
for all users. Conditional on 𝛾 , an exponentially weighted moving
average (EWMA, (Roberts, 1959)) class distribution is obtained
within each time window:

𝝅̃𝑡𝑖 = (1 − 𝛾)𝝅̃𝑡−1
𝑖 + 𝛾𝝅𝑡𝑖 , (1)

with initial value 𝝅̃1
𝑖
= 𝝅1

𝑖
. The EWMA distribution 𝝅̃𝑡

𝑖
in Equa-

tion (1) contains information about the entire history of the user
trajectory in the space of items, giving more weight to recent obser-
vations, and exponentially down-weighting previous observations
over time. Using 𝝅̃𝑡

𝑖
, we aim to approximate 𝝅𝑡+1

𝑖
as closely as

possible, up to the effect of the interactions between classes.
Second, we assume that the activity 𝜉𝑡+1

𝑖
of the user 𝑖 at time

window 𝑡+1 has a Poisson distribution with mean 𝜉𝑡
𝑖
, corresponding

to the activity of the user in the previous time window. Furthermore,
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Figure 2: Visual representation of a PTM and corresponding prediction method within a music streaming application.

conditional on the activity at time 𝑡+1, the counts 𝒏𝑡+1
𝑖

are modelled
using a multinomial distribution with probability given by 𝝅̃𝑡

𝑖
, re-

weighted by a𝑁×𝑁 matrix of interactions between classes, encoded
by a stochastic matrix𝑨. In summary, the PTM model can be written
as follows:

𝜉𝑡+1𝑖 ∼ Poisson
(
𝜉𝑡𝑖

)
,

𝒏𝑡+1𝑖 | 𝜉𝑡+1𝑖 , 𝝅̃𝑡𝑖 ∼ Multinomial
(
𝜉𝑡+1𝑖 , 𝝅̃𝑡𝑖 𝑨

)
.

(2)

Here, 𝑨 = {𝑎 𝑗𝑘 } ∈ [0, 1]𝑁×𝑁 is a stochastic matrix where:
(1) all the entries are non-negative: 𝑎 𝑗𝑘 ≥ 0 ∀ 𝑗, 𝑘 = 1, . . . , 𝑁 ,
(2) all the rows sum up to 1:

∑𝑁
𝑘=1 𝑎 𝑗𝑘 = 1 ∀ 𝑗 = 1, . . . , 𝑁 .

A key feature of the PTM model in Equation (2) is that the activity
and the class distribution are modelled separately. The formulation
of the PTM in Equation (2) also closely resembles a first-order
Markov chain, where the states correspond to the classes. Under
this framework, assuming 𝛾 = 1, the entries of 𝑨 take a simple
interpretation: if users were allowed to interact only with one class
at each time point, and that a given user liked class 𝑗 at time 𝑡 , then
𝑎 𝑗𝑘 would represent the probability that the user makes a transition
from class 𝑗 to class 𝑘 at time 𝑡 + 1:

𝑎 𝑗𝑘 = P {class 𝑘 at time 𝑡 + 1 | class 𝑗 at time 𝑡} . (3)

Using Equation (3), 𝑨 assumes a convenient probabilistic interpre-
tation, which could be useful to answer many practical questions
about relationships between classes. In Section 5, this is demon-
strated on a case study where interactions between musical genres
are analysed.

Importantly, 𝑎 𝑗𝑘 in Equation (3) is also not constrained to be
equal to 𝑎𝑘 𝑗 . This introduces a notion of directionality between
classes of items.

3.3 Parameter estimation
Jointly estimating 𝛾 and 𝑨 is a complex task. Any change in the esti-
mate of 𝛾 in any optimisation procedure would require an update to
the EWMA distributions {𝝅̃𝑡

𝑖
}, which makes inference particularly

cumbersome. One could, for example, use coordinate descent on
an objective function of the pair (𝑨, 𝛾), but inferring 𝑨 for a fixed
value of 𝛾 is also computationally expensive, which makes such an

approach computationally impractical. Therefore, a two-step pro-
cedure is proposed. Instead of learning 𝑨 and 𝛾 jointly, we suggest
to first estimate 𝛾 , and subsequently estimate 𝑨 conditional on the
choice of the exploration parameter.

3.3.1 Selecting 𝛾 . A strategy for estimation of 𝛾 is proposed in this
subsection. The EWMA distribution 𝝅̃𝑡

𝑖
should aim to approximate

𝝅𝑡+1
𝑖

closely, up to the effects of the transitions between classes,
handled by 𝑨 instead. To do this, we could minimise the negative
log-likelihood (NLL) under the assumption that 𝑨 = 𝑰𝑁 , where 𝑰𝑁
is the 𝑁 × 𝑁 identity matrix:

𝛾 =
1
𝑀

𝑀∑︁
𝑖=1

argmin
𝛾𝑖 ∈[0,1]

−
𝑇−1∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑛𝑡+1𝑖 𝑗 log
(
𝜋̃𝑡𝑖 𝑗 (𝛾𝑖 )

)
 , (4)

with initial value 𝜋̃1
𝑖 𝑗

= (𝑛1
𝑖 𝑗
+ 1/𝑁 )/(𝜉1

𝑖
+ 1), which avoids the

occurrence of the limit case log(0). In a Bayesian framework, such
an initial value corresponds to the mean of the Dirichlet posterior
distribution of the random variable corresponding to 𝝅1

𝑖
, assuming

a Dirichlet conjugate prior with parameters set to 1/𝑁 .

3.3.2 Estimating 𝑨 conditional on 𝛾 . Conditional on the selected
value of 𝛾 , the model parameters can be estimated by minimising
the negative log-likelihood:

𝑨̂ = argmin
𝑨

−
𝑇−1∑︁
𝑡=1

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑛𝑡+1𝑖 𝑗 log
(
𝑁∑︁
𝑘=1

𝜋̃𝑡
𝑖𝑘
𝑎𝑘 𝑗

) .
Note that the computational complexity for evaluating the objective
function is O(𝑁 ∑𝑇

𝑡=1
∑𝑀
𝑖=1

∑𝑁
𝑗=1 I{𝑛𝑡𝑖 𝑗 > 0}), which is particularly

convenient if the counts are sparse. To solve the optimisation pro-
cedure, we use the Adam algorithm (Kingma and Ba, 2015).

3.4 Prediction
The performance of the PTM is assessed on its ability to predict
future realisations of 𝒏𝑡

𝑖
and 𝝅𝑡

𝑖
. It is therefore required to pro-

pose a prediction mechanism for those quantities. For an estimated
transition matrix 𝑨, the predicted frequency distribution of the
classes at time 𝑡 + 1 is obtained as the conditional expectation
E(𝝅𝑡+1

𝑖
| 𝜉𝑡+1
𝑖
, 𝝅̃𝑡
𝑖
):

𝝅̂𝑡+1𝑖 = 𝝅̃𝑡𝑖 𝑨.
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To obtain a prediction for 𝒏𝑡+1
𝑖

, we use the fact thatE(𝜉𝑡+1
𝑖
| 𝜉𝑡
𝑖
) = 𝜉𝑡

𝑖
from Equation (2), and the law of iterated expectation, which gives:

𝒏̂𝑡+1𝑖 = 𝜉𝑡𝑖 𝝅̃
𝑡
𝑖 𝑨.

A visual representation of the model, and the corresponding pre-
diction procedure, is given in Figure 2.

4 EXPERIMENTS
In this section, we run experiments using different dynamic models
for user preferences, demonstrating that the PTM achieves favorable
performance on four different datasets.

4.1 Datasets
To show the wide applicability of the proposed modelling frame-
work, we consider datasets from three different domains: music
streaming, movie ratings, and restaurant recommendations.
Spotify. The streaming history of a sample of UK users of Spotify,

a music streaming service. Each track is assigned to one of
𝑁 = 4430 musical genres.1

Last.fm. The music streaming history of a sample of users on
Last.fm2 (Celma, 2010). Each stream is assigned one of 𝑁 =

1500 tags matched from the Million Song Dataset3 (Bertin-
Mahieux et al., 2011).

MovieLens 25M. User-movie rating pairs4 (Harper and Konstan,
2015). Each movie is assigned to a tag from a genome of
𝑁 = 1128 tags.

Yelp. Restaurant reviews from the online review service Yelp.5
Each restaurant is associated with one of 𝑁 = 192 different
cuisines.

The raw datasets are preprocessed to ensure that only users
active in each time window are included in the analysis. Summary
statistics for all preprocessed datasets are given in Table 1. For all
datasets, we train models using the first𝑇 − 1 time periods, and we
evaluate the predictive performance by using the last time period.

4.2 Evaluation Tasks and Metrics
In this section, we introduce the four predictive tasks that we will
use to evaluate the PTM and alternative methods. These tasks are
depicted in Figure 3.

Total variation. The total variation between the observed class
distribution 𝝅𝑡

𝑖
and its predicted value 𝝅̂𝑡

𝑖
is:

𝜈𝑖 (𝑡) =
1
2

𝑁∑︁
𝑗=1

���𝜋𝑡𝑖 𝑗 − 𝜋𝑡𝑖 𝑗 ��� .
The minimum value of the score is 0, corresponding to identical dis-
tributions, whereas its maximum is 1. Therefore, the model should
aim at minimising the total variation between the observed and
predicted distributions. This task is evaluated using the average
total variation (ATV) across all users, as represented in Figure 3a.
The total variation task aims at evaluating the global performance

1An interactive map of all the genres is publicly available at https://everynoise.com/.
2Available at http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html.
3Available at: http://millionsongdataset.com/lastfm/.
4Available at: https://grouplens.org/datasets/movielens/25m/.
5Available at: https://www.yelp.com/dataset.

Table 1: Summary statistics of the datasets

Dataset 𝑀 𝑁 𝑇 Interval Start End
Spotify 10000 4430 18 Quarter Q1 2016 Q2 2020
Last.fm 450 1500 6 Quarter Q3 2007 Q4 2008
MovieLens 1320 1128 5 Year 2015 2019
Yelp 1808 192 5 Year 2015 2019

of the model and its ability to predict the entire distribution of
future allocations of user activity to classes.

Plus-minus (+/-). This task evaluates the ability of the model
to predict whether the relative consumption of classes increases
or decreases respectively from 𝝅𝑡

𝑖
to 𝝅𝑡+1

𝑖
. The prediction problem

can be framed as a simple binary classification problem, which is
evaluated using the area under the receiver operating characteristic
curve (ROC-AUC). This procedure is illustrated in Figure 3b. The
task evaluates the performance of the model at estimating future
consumption of items that the user has already interacted with.

New classes (t) and new classes (all). These tasks measure the
model’s ability to predict which new classes the user will interact
with. Using a music streaming example, for the task new class (t), a
genre streamed at time 𝑡 +1 is considered new if it was not streamed
at 𝑡 . On the other hand, in new class (all), a genre is new only if it
was never streamed by the user before time 𝑡 + 1. This task can be
again formulated as binary classification, and is evaluated using
both ROC-AUC and PR-AUC (area under the precision-recall curve).
PR-AUC is expected to more appropriately account for class imbal-
ance. An illustration is given in Figure 3c. The two tasks evaluate
the performance of the model at estimating which completely new
classes of items the user might like.

4.3 Alternative Models and Baselines
We now describe alternative techniques for modelling user prefer-
ences over time that will serve as comparisons for the PTM. These
are a mixture of state-of-the art methods and simple baselines.

Autoregressive Poisson model (Poisson AR). It is assumed that the
counts 𝒏𝑡

𝑖
are distributed according to a Poisson distribution with

rate depending on the observations at the previous time point, as
follows: 𝒏𝑡+1

𝑖
∼ Poisson(𝜆) with 𝜆 = exp[log(𝒏𝑡

𝑖
+ 1)𝑨], where the

exponential and logarithm are applied elementwise to the compo-
nents of the vectors. The parameters are optimised via Adam using
the negative log-likelihood loss function.

Dynamic Poisson factorisation (DPF) Charlin et al. (2015). Users
and classes are assigned 𝐾-dimensional time-dependent latent fea-
tures 𝒖𝑡

𝑖
, 𝒗𝑡
𝑗
∈ R𝐾 , evolving as Gaussian random-walks 𝒖𝑡+1

𝑖
∼

N𝐾 (𝒖𝑡𝑖 , 𝜎
2
𝑢 𝑰𝐾 ) and 𝒗𝑡+1

𝑗
∼ N𝐾 (𝒗𝑡𝑗 , 𝜎

2
𝑣 𝑰𝐾 ). Assuming baseline rates

𝒖̄𝑖 and 𝒗 𝑗 , counts are obtained as 𝑛𝑡
𝑖 𝑗
∼ Poisson(∑𝐾

𝑘=1 exp{𝑢𝑡
𝑖𝑘
+

𝑢𝑖𝑘 } exp{𝑣𝑡
𝑗𝑘
+𝑣 𝑗𝑘 }). The model is fitted using code provided by the

authors.6 The two modeling features that separate the PTM from
6Available at: https://github.com/blei-lab/DynamicPoissonFactorization.

https://everynoise.com/
http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
http://millionsongdataset.com/lastfm/
https://grouplens.org/datasets/movielens/25m/
https://www.yelp.com/dataset
https://github.com/blei-lab/DynamicPoissonFactorization
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Figure 3: Visual representation of the prediction tasks. The color intensity corresponds to the consumption level of each class.

DPF are as follows. First, DPF assumes a low-rank representation of
users and items, whereas the PTM does not. Second, DPF assumes
that the evolution of users preferences are not predictable, and,
therefore, they are modelled as a random walk. Consequently, in
expectation, the latent features at time 𝑡 + 1 are identical to their
values at the previous time window 𝑡 , E(𝒖𝑡+1

𝑖
| 𝒖𝑡
𝑖
) = 𝒖𝑡

𝑖
. In con-

trast, the PTM assumes that the dynamics governing the stochastic
process of class counts are not completely random, and instead
exhibit some structure.

Non-negative matrix factorization (NMF) (see, for example, (Zhang
et al., 2006; Wang and Zhang, 2013)). The 𝑀 × 𝑁 matrix of counts
averaged over time is factorized into the dot product 𝑾𝑯⊤ of two
non-negative matrices 𝑾 ∈ R𝑀×𝐾+ and 𝑯 ∈ R𝑁×𝐾+ of rank 𝐾 ,
obtained by minimisation of the Frobenius norm. The predicted
count at the next time point is predicted as 𝑛̂𝑡+1

𝑖 𝑗
= 𝒘⊤

𝑖
𝒉 𝑗 , where

the two vectors correspond to the 𝑖-th and 𝑗-th row of 𝑾 and 𝑯
respectively.

Previous observation. The predicted distribution of classes at time
𝑡 + 1 is simply the distribution at time 𝑡 . Similarly, the predicted
increase or decrease in the number of streams uses the difference
observed between the two previous time periods. For prediction of
new classes at time 𝑡+1 with respect to 𝑡 , the number of interactions
for each class at time 𝑡 − 1 is used. Observe that this is a special
case of the PTM, with 𝑨 = 𝑰𝑁 and 𝛾 = 1.

4.4 Predictive Performance
We apply every model to each of the four tasks, and we present
the results in Table 2. For the PTM, the value of the exploration
parameter 𝛾 is chosen using the NLL criterion in Equation (4), and
is specified in parentheses in the table.

We observe that the PTM outperforms alternative models on all
tasks and datasets, with the exception of prediction of new genres
on Last.fm, and for total variation on Yelp. In particular, on Last.fm,
DPF slightly outperforms the PTM at predicting new genres with
respect to the entire user history, and the previous observation
baseline achieves the best PR-AUC for prediction of new genres
with respect to the previous time window. On Yelp, non-negative
matrix factorization has a better performance than the PTM for

the task of minimising total variation. We note that both Last.fm
and Yelp are relatively small datasets, and thus they might favor
simpler approaches with fewer parameters. On the Spotify dataset,
which contains a few orders of magnitude more data, the PTM
outperforms competing approaches much more significantly.

Inspecting the results, we find that modeling the changes in the
distribution over items classes separately from the changes in overall
activity—a distinctive feature of our model—is crucial in obtaining
superior predictive performance. The PTM achieves this by the two-
stage modelling approach given in Equation (2). The distribution of
the classes 𝝅𝑡

𝑖
is modeled conditionally on the activity 𝜉𝑡

𝑖
, whereas

all the alternative models attempt to infer the joint distribution,
modelling 𝒏𝑡

𝑖
directly. The impact of this choice, independently of

other modeling decisions, is best seen by comparing the Poisson AR
and PTM models. Both models capture the evolution of preferences
by using a transition matrix, but the former attempts to directly
predict 𝒏𝑡

𝑖
whereas the latter predicts 𝝅𝑡

𝑖
. Empirically, the latter

works better for the datasets studied in this work. Even though the
time periods are relatively long, we find that user activity is highly
heterogeneous across different periods. In direct models for 𝒏𝑡

𝑖
, the

underlying effect of the relationships between classes appears to
be confounded by the differences in activity levels across different
time windows.

In summary, these results show that the PTM achieves favorable
performance on various prediction tasks across multiple different
datasets. Explicitly modeling preference trajectories thus appears
to be beneficial when attempting to predict how tastes change over
time. We believe that these improvements could translate to better
recommender systems that anticipate users’ changing needs.

However, explicitly modeling preference trajectories has a sec-
ond major benefit: it allows us to directly inspect the structure of
the preference graph and develop a qualitative understanding of the
domain under consideration. In the next section, we use the Spotify
dataset as a case study, and demonstrate how the PTM enables us
to interpret and understand the dynamics of changing preferences
in a real-world domain.
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Table 2: Predictive performance of different models on four different datasets. The best result is highlighted in bold.

Total variation Plus-minus (+/-) New classes (𝑡 ) New classes (all)
Dataset Model TV ROC-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC
Spotify PTM (𝛾 = 0.360) 0.378 0.698 0.944 0.267 0.889 0.039

Poisson AR 0.416 0.663 0.915 0.190 0.854 0.033
DPF, 𝐾 = 5 0.909 0.512 0.849 0.051 0.849 0.016
NMF, 𝐾 = 50 0.509 0.646 0.914 0.189 0.853 0.025
Previous obs. 0.389 0.581 0.639 0.221 — —

Last.fm PTM (𝛾 = 0.803) 0.277 0.687 0.677 0.421 0.655 0.183
Poisson AR 0.320 0.646 0.648 0.420 0.600 0.174
DPF, 𝐾 = 5 0.616 0.591 0.659 0.393 0.676 0.201
NMF, 𝐾 = 50 0.294 0.684 0.669 0.416 0.607 0.150
Previous obs. 0.301 0.591 0.634 0.433 — —

MovieLens PTM (𝛾 = 0.495) 0.601 0.685 0.800 0.269 0.790 0.134
Poisson AR 0.637 0.661 0.740 0.207 0.704 0.090
DPF, 𝐾 = 5 0.791 0.548 0.736 0.155 0.724 0.072
NMF, 𝐾 = 50 0.637 0.650 0.782 0.226 0.769 0.108
Previous obs. 0.618 0.558 0.622 0.179 — —

Yelp PTM (𝛾 = 0.439) 0.549 0.716 0.864 0.326 0.834 0.145
Poisson AR 0.597 0.683 0.836 0.267 0.791 0.110
DPF, 𝐾 = 5 0.855 0.584 0.793 0.151 0.766 0.066
NMF, 𝐾 = 50 0.542 0.714 0.825 0.307 0.724 0.077
Previous obs. 0.584 0.575 0.646 0.241 — —

5 SPOTIFY CASE STUDY
In this section, we dive deeper into the Spotify dataset presented in
Section 4.1. We begin by validating the two assumptions that drive
the development of our model. Then, we analyze the transition ma-
trix 𝑨 learned by the PTM, and we find that it contains meaningful
and interpretable insights about the music space.

5.1 Dynamics and Diversity
As discussed in Section 1, the development of our model is driven
by two observations: a) users’ preferences change over time, and
b) higher consumption diversity leads to stronger engagement. In
this section, we validate these observations empirically.

Preferences Change Over Time. To show that the genres users
listen to change over time, we proceed as follows. For each user, we
compute the total variation distance |𝝅1

𝑖
−𝝅𝑡

𝑖
|/2 between their genre

distribution during the first quarter in the dataset and that of every
subsequent quarter 𝑡 = 2, . . . , 18. In Figure 4, we plot the histogram
of distances (smoothed using a kernel density estimator) for each
quarter. The figure shows that, on average, users progressively
shifted away from the genres that they streamed in Q1 2016, and
the difference appears to increase over time.

Diversity is Linked to Engagement. Next, we show that discov-
ering new musical genres correlates with a user’s propensity to
convert to a paid subscription. To this end, we complement the
dataset of Section 4 with another dataset containing 80,000 users
that registered on Spotify before 2019. Every user in this dataset is
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Figure 4: Estimated densities of total variation scores with
respect to Q1 2016.

continuously active on the platform between March 1st and Sep-
tember 30th, 2019, and is using a free (ad-supported) service during
that period. Half of the users in our sample convert to a premium
(paid subscription) service between October 1st and October 31st,
2019, whereas the other half of users do not convert. We partition
each user’s streams into two sets, those that occur between March
1st and August 31st, and those that occur between September 1st

and September 30th. For each user, we look at the genres associated
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Figure 5: Proportion of new genres streamed in September
2019 (with respect to the period March 1st – August 31st)
versus the total number of genres streamed in September
2019.

with every track that they stream, and we compute a) the fraction
of distinct genres streamed for the first time during September, and
b) the total number of distinct genres streamed during September.
Figure 5 plots the average proportion of new genres against the total
number of genres for the two aforementioned groups of users. For
every number of genres (i.e., activity level), users who converted
to the paid subscription service (and thus, presumably, particularly
enjoy the service) listened to a significantly larger fraction of new
genres during September compared to users who did not convert.
This suggests that helping users explore new regions of the music
space can help increase users’ engagement and satisfaction.

5.2 Structure in Preference Trajectories
Next, we inspect the transition matrix 𝑨 learned by the PTM. One
way to interpret this matrix is as the weighted adjacency matrix of
a graph expressing a notion of distance between item classes. In the
context of music streaming, we call this graph the Genre Interaction
Graph (GIG).

First, we expect that the resulting graph has high-weight self-
loops, represented by the diagonal entries in𝑨, since users are likely
to continue listening, at time 𝑡 + 1, to the genres they were already
listening to at time 𝑡 . This is shown in Figure 6, which visualizes the
distribution of the diagonal entries 𝑎 𝑗 𝑗 of 𝑨, sorted by popularity.
We find that users tend to stay in states corresponding to popular
genres with high probability, but are more likely to leave states
towards the low end of the popularity spectrum.

Now we turn to the off-diagonal elements of the GIG, which
represent transitions between musical genres. By examining the
structure of these transitions, it becomes possible to answer ques-
tions regarding the relationships between genres. For example:

(1) Given two genres 𝑖 and 𝑗 , what is the best connecting genre? In
mathematical terms, we can answer this question by finding
the genre 𝑔 that maximises the sequential product of the
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Figure 6: Scatterplot and histogram of the diagonal of 𝑨.

transition probabilities:
𝑔 = argmax

𝑘∈{1,...,𝑁 }\{𝑖, 𝑗 }
𝑎𝑖𝑘𝑎𝑘 𝑗 .

(2) Given that the user streamed genre 𝑖 , what is the most likely
genre that the user will stream in the next time window? In
this case, the solution is given by:

𝑔 = argmax
𝑘∈{1,...,𝑁 }\{𝑖 }

𝑎𝑖𝑘 .

(3) What are the genres with the most asymmetric relationships?
The directional nature of the PTM allows us to find genres 𝑖
and 𝑗 such that 𝑎𝑖 𝑗 and 𝑎 𝑗𝑖 are most different. We can rank
pairs of genres by their absolute difference 𝑑𝑖 𝑗 :

𝑑𝑖 𝑗 = |𝑎𝑖 𝑗 − 𝑎 𝑗𝑖 |.
In Table 3, we report some examples obtained from the estimated

GIG that answer these questions. For a pair of genres (𝑖, 𝑗), we
report the best connecting genre between 𝑖 to 𝑗 , and vice-versa.
Also, we list the top genres that can be reached from 𝑖 and 𝑗 . The
transitions in Table 3 are qualitatively meaningful and accord with
intuitions. For example, the best way to connect the genre Spotify
refers to as Canadian pop (e.g. Justin Bieber, Shawn Mendes and
The Weeknd) to the trap sub-genre of rap (e.g. Migos, Ty Dolla $ign
and Lil Uzi Vert) is estimated to be through Toronto rap (e.g. Drake,
Tory Lanez and PARTYNEXTDOOR). As another example, garage
rock (e.g. The Black Keys) might be linked to Madchester (e.g. Oasis
or Joy Division) via Sheffield indie (e.g. the Arctic Monkeys). If a
music streaming service or similar platform had a goal of helping
users diversify their preferences, these connections would provide
a useful guide.

The model captures many geographical characteristics, despite
geography not being explicitly encoded in the PTM. For example,
for two Italian genres in the table, the estimated transitions are only
towards Italian music. Also, some of the most representative artists
for the genres indietronica and neo-psychedelic are Australian (for
the former, Rüfüs du Sol and Empire of the Sun, and for the latter,
Tame Impala), which explains the link given by Australian psych.

Furthermore, for some of the estimated relationships the direc-
tion of the connection is important. For example, the best connect-
ing genre between pop and rap is pop rap in both directions, but this
is not the case for indietronica and neo-psychedelic. As pictorially
explained in Figure 2, the PTM incorporates a notion of direction-
ality between genres. To reinforce this point, in Table 4 we show
the most asymmetric pairs of genres. In all cases, listeners of genre
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Table 3: Examples of transitions in the estimated genre interaction graph.

Genre 1 Genre 2 Path 1→2 Path 1←2 Top genres reachable from 1 Top genres reachable from 2

pop rap pop-rap pop-rap UK pop, dance pop, electropop UK hip-hop, melodic rap, trap, ATL hip-hop
Canadian pop trap rap Toronto rap pop, rap, pop rap, R&B, Toronto rap Toronto rap, ATL hip-hop, southern hip-hop
melodic rap underground hip-hop emo rap trap emo rap, vapor trap, DFW rap UK alternative hip hop, vapor trap
garage rock Madchester Sheffield indie Sheffield indie modern alternative rock, Sheffield indie Britpop, modern rock, rock, dance rock

moombahton reggaeton latin hip-hop latin hip-hop deep tropical house, electro house latin, latin hip hop, trap latino, reggaeton flow
EDM chillwave progressive house progressive house tropical house, electro house, dance pop indietronica, electronica, indie soul

indietronica neo-psychedelic alternative dance Australian psych electropop, vapor soul, indie pop Australian psych, Edmonton indie, indie soul
Italian pop Italian folk rock classic Italian pop Italian alternative Italian arena pop, classic Italian pop Italian alternative, Italian indie folk

Table 4: The most asymmetric relationships in the estimated
genre interaction graph.

Genre 1 Genre 2 𝑎12 𝑎21

jam band jamgrass 0.0014 0.87
Galician rock Galician indie 0.0030 0.70
British choir cathedral choir 0.0035 0.45
focus jamgrass 0.0002 0.44
instrumental post-rock Polish post-rock 0.0019 0.43
chanson vintage chanson 0.0019 0.43

2 were far more likely to subsequently listen to genre 1 than vice
versa. In many cases, this is intuitive, and furthermore the most
asymmetric relationships are often also hierarchical relationships.
For example, chanson encapsulates vintage chanson, and instrumen-
tal post-rock and polish post-rock have a similar relationship. This
suggests it would be possible to extract a hierarchy over genres
using the GIG.

5.2.1 Most Likely Trajectories. Given two genres 𝑖 and 𝑗 , we can
also use 𝑨 to find a sequence of genres that connects 𝑖 and 𝑗 in such
a way that every individual transition is likely. To this end, we adapt
the criterion of Shahaf and Guestrin (2010) and find a sequence
𝑖, 𝑔1, . . . , 𝑔𝐾 , 𝑗 such that min𝑘 𝑎𝑔𝑘𝑔𝑘+1 is maximized. Additionally,
we slightly penalize longer sequences by adding a regularization
term to the objective.

We illustrate some of these trajectories in Figure 7. Given a
set of source genres (in green) and a set of destination genres (in
red), we plot the subgraph induced by the trajectories between
every source and destination pair. Again, the resulting structure is
highly intuitive. For example, starting from classical music, the late
romantic era acts as a gateway to reach more contemporary genres
of music, bridging centuries of musical history. Similarly, tropical
house, an uplifting and relaxing type of electronic music, connects
edm (electronic dance music) to a large part of the music space.

We envision that these trajectories could be turned into diversity-
enhancing recommendations. Indeed, given a target genre that is
far outside of a user’s current preferences, we can use the graph
to lay out a pathway that progressively brings them there, one
manageable step at a time.

5.3 Visualizing the Item Space
Finally, the representation we learn can help us understand the
macroscale structure of how genres relate to each other. We can

interpret each row of log(𝑨) (where the log is taken elementwise)
as a 𝑁 -dimensional representation of a genre in an Euclidean space.
We project all genres onto two axes of meaning in music: tempo
and energy. We operationalize these axes by defining dimensions as
differences between the vector representations of a pair of genres.
The tempo dimension is defined as speedcore−slow core, and the
energy dimension is defined as death metal−calming instrumental.
The resulting projection is shown in Figure 8. We observe that tempo
and energy are significantly related, with a correlation coefficient
of 𝑟 = 0.39. Furthermore, we can position genres in a semantically
meaningful space just from data on how users transition between
them.

6 CONCLUSION
In this paper, we propose a dynamic model for user preferences
towards items called Preference Transition Model (PTM). The model
is well-suited to sequences of matrices of counts that express how
many times users interacted with existing classes of items over time.
A key feature of the model is that each user’s activity in each time
period, and how their activity is distributed across classes of items,
is modelled separately. Empirically, we found this to be crucial to
learn meaningful relationships between classes of items.

By comparing the PTM to alternative models and baselines on
a number of different datasets, we showed that it outperforms all
other methods. Furthermore, the model output—a matrix of tran-
sition probabilities between item classes—is highly interpretable,
as demonstrated in a case study on the music streaming platform
Spotify.

There are a number of promising directions for future work.
The PTM in its current form does not scale well in the number of
classes 𝑁 , since the matrix 𝑨 contains 𝑁 2 parameters. Low-rank
approximations of 𝑨 could be considered when the number of
classes is large. The learned exploration parameters could also be
parametrized by user features, e.g., age, to understand how the
dynamics of preference change vary with user demographics and
other traits. Also, in this work, the transition matrix 𝑨 is assumed to
be common across all users. In the music domain, previous research
has shown that users could be efficiently classified in meaningful
clusters based on their streaming habits (Dragone et al., 2019). In
principle, this clustering structure could be used to assign group-
specific transition matrices 𝑨 or exploration parameters 𝛾 .

In summary, we have demonstrated that by explicitly model-
ing preference trajectories from raw user interaction data, we can
achieve superior performance across a range of prediction tasks, as
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Figure 7: Graph induced by the most likely trajectories between every pair of source and destination nodes (in green and red,
respectively). The trajectories are automatically learned from the PTM transition matrix 𝑨.
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Figure 8: Projection of each row of the log transition matrix
onto two directions, intuitively corresponding to tempo (𝑥-
axis) and energy (𝑦-axis).

well as learn a useful, interpretable representation of how prefer-
ences change over time. This approach to user preference modeling
could be valuable in settings where tastes change over time, as well
as in the design of recommendation systems that suggest diverse
and novel items in a principled way.
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