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Abstract

Continuous surveillance of a spatial region using distributed robots and sensors is a well-studied application
in the area of multi-agent systems. This paper investigates a practically-relevant scenario where robotic
sensors are introduced asynchronously and inter-robot communication is discrete, event-driven, local and
asynchronous. Furthermore, we work with lazy robots; i.e., the robots seek to minimize their area of
responsibility by equipartitioning the domain to be covered. We adapt a well-known algorithm which is
practicable and known to generally work well for coverage problems. For a specially chosen geometry of
the spatial domain, we show that there exists a non-trivial sequence of inter-robot communication events
which leads to an instantaneous loss of coverage when the number of robots exceeds a certain threshold.
The same sequence of events preserves coverage and, further, leads to an equipartition of the domain when
the number of robots is smaller than the threshold. This result demonstrates that coverage guarantees for
a given algorithm might be sensitive to the number of robots and, therefore, may not scale in obvious ways.
It also suggests that when such algorithms are to be verified and validated prior to field deployment, the
number of robots or sensors used in test scenarios should match that deployed on the field.

1 Introduction

The development of autonomous vehicles in recent years has expanded the range of tasks that can be carried
out without human intervention. This paper explores one such complex task, namely that of continuous
surveillance of an environment using autonomous mobile robots. The problem of surveillance and monitoring
has multiple facets, depending on the nature of the mission and the sensors and robots involved in the task
[6]. The problem addressed in the paper is effectively that of partitioning an environment for the purpose
of continuous surveillance using a distributed scheme which relies on local, event-triggered communication
between mobile robots. The robots seek to minimize their individual areas of coverage while ensuring that
the environment as a whole is covered. The distributed nature of the communication and task allocation
between the robots leads to the following question with practical ramifications: if a reasonably designed
coverage algorithm is proven to work for some non-trivial range of numbers of robots, can it fail to work
when the number of robots is changed to outside the proven range? We answer this question in the affirmative
by constructing an example.

1.1 Overview of the literature

Optimal sensor placement problems are built upon the premise that the number of sensors and their place-
ment can be mapped to an objective function which needs to be either maximized or minimized subject
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to constraints related to the sensor and the environment. When the objective function satisfies submodu-
larity properties, it is possible to use greedy algorithms to solve these problems up to provable bounds [7].
This approach has been investigated for sensor placement in [13, 12, 14]. Similar work in [20] presents an
efficient path planning algorithm for multiple agents in the presence of resource constraints for the agents.
Integer programming techniques can be employed if the structure of the problem permits appropriate spatial
discretization [5].

All of these approaches assume the existence of a centralized decision-making system that is aware of
all active sensors and can allocate them to individual positions. The centralized decision-making approach
becomes impractical when robotic agents are inserted into environments where continuous communication
with a central node is impossible (e.g., hostile environments or ones which are naturally packed with com-
munication obstacles). In such cases, inter-robot communication is asynchronous, local and event-driven. A
canonical coverage problem is that of partitioning the environment between the mobile robots equitably and
dynamically using a distributed scheme.

Distributed coverage algorithms that achieve a Voronoi partition of convex environments using a dis-
tributed approach were proposed in [8]. The distributed scheme is dynamic, in that the Voronoi partitions
are scaled and rearranged dynamically to yield an optimal partition together with a motion planning algo-
rithm for the mobile robots. This approach has been extended to non-convex domains [17, 3, 2], to robots
with finite communication radii [9], to environments with unknown sensory functions [18] and to problems
where the cost function for a sensor can be augmented or mixed with that of its neighbors [19]. A similar
approach can be used to balance raw coverage (i.e., the area covered) with the quality of the coverage for a
spatial distribution of events [1].

The distinction between continuous coverage and reliable detection of flag events (for which continuous
coverage is sufficient but not necessary) is brought out for time varying environments in [15] wherein sensor
movement is optimized in order to maximise the probability of identifying flag events.

A continuous flow of information may not be required in order to maintain coverage. An algorithm which
uses events triggered by individual agents in order to guarantee coverage is presented in [16]. An algorithm
which caters to gossip-based inter-robot communication has been investigated in [10] where random pairs of
agents are allowed to communicate and relocate based on local information exchange.

1.2 Contribution

The algorithm analyzed in this paper is an adaptation of the algorithm in [10] for robots that use a lazy
scheme (in a sense which will be made precise later) to repartition or resize their areas of responsibility. We
wish to examine whether such lazy behavior (which may be viewed as the equivalent of greedy behavior in
optimization problems with an agent-level penalty function that dominates the global reward function for
coverage) can result in a loss of coverage and the conditions under which coverage is lost.

Towards that end, we construct a simplified example and a sequence of events which leads to an instan-
taneous loss of coverage when the number of robots exceeds a non-trivial threshold. Interestingly, the same
sequence of events actually leads to an equipartition of the domain (i.e., the optimum solution) for a smaller
number of robots. This demonstration suggests that the success of multi-agent algorithms operating in the
presence of restricted communication might be sensitive to the number of agents involved, above and beyond
the known complexities that arise due to the “scale” of the problem or the geometry of the environment.

The rest of the paper is organized as follows. Preliminaries are laid out in Sec. 2, including the class
coverage algorithms considered in the paper. The main theoretical results of the paper are presented in
Sec. 3, and numerical experiments are used to generalize those results in Sec. 4.
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2 Preliminaries

2.1 Unit circle

Let S1 denote the unit circle parametrized by the angular variable θ ∈ [0, 2π). We write θ ∈ S1. Let
θ1, θ2 ∈ S1. The length of the shorter arc between these points is given by

d(θ1, θ2) = d(θ2, θ1) =

{
|θ2 − θ1|, |θ2 − θ1| < π

2π − |θ2 − θ1| otherwise
(1)

The centroid of the two points along the short arc is given by

mid(θ1, θ2) =

{
0.5(θ2 + θ1), |θ2 − θ1| < π

mod(π + 0.5(θ2 + θ1), 2π) otherwise
(2)

The set S1 is isomorphic to a unit circle in the complex plane via the invertible mapping T (θ) = ejθ, θ ∈
S1.

Definition 1 (Positive or clockwise rotation). An arc in S1 is said to be a clockwise or positively directed
arc from θl ∈ S1 to θu ∈ S1 if there exists a continuous function c : [0, 1] → R and ω ≥ 0 such that: (i)
every point on the arc can be represented as c(t) for some t ∈ [0, 1], with c(0) = θl and c(1) = θu; (ii)
T (c(t)) = ejωtT (c(0)); and (iii) c(t1) = c(t2) for t1 6= t2 iff θl = θu and ω = 0.

Definition 2. We say that θu � θl if the shortest arc from θl to θu (in that order) is traced via a clockwise
rotation.

Definition 3. We define the addition operator ⊕ to denote a clockwise rotation on S1; i.e., θ1⊕θ2 denotes a
clockwise rotation of magnitude θ2 starting from θ1. It is clear that θ1⊕θ2 = θ2⊕θ1. We define the operator
	 to denote an anticlockwise rotation on S1: θ1 	 θ2 denotes an anti-clockwise rotation of magnitude θ2
starting with θ1. Finally, the standard summation operator

∑
(·) will denote a sum using ⊕ when the

arguments belong to S1.

If θ2 � θ1, Definition 3 allows us to write

θ1 = mid(θ1, θ2)	 0.5 d(θ1, θ2), θ2 = mid(θ1, θ2)⊕ 0.5 d(θ1, θ2), (3)

2.2 Partitions of closed, bounded regions in R2

Let Q ⊂ R2 be a closed, bounded domain containing N ≥ 1 agents or sensors. Let pi ∈ Q denote the position
of the ith agent. A partition of size N of Q is a set V = {V1, . . . , VN}, where Vi ⊂ Q are closed and satisfy
∪Ni=1Vi = Q. We may further prescribe that each agent lie inside its own partition. The coverage problem
usually considered in the literature involves finding a partition V ∗ which solves the problem

V ∗ = arg min
V
HV (P) ,

n∑
i=1

∫
Vi

fi(‖q − pi‖)dφ(q) (4)

where φ : Q → R+ satisfying
∫
Q
dφ(q) = 1 is a weighting function (also called the sensing function) and

fi : R+ → R+ represents the sensing performance of the agent i as a function of its distance from the sensed
location q ∈ Q. Lloyd’s algorithm and its variants [4] are used to partition Q dynamically into Voronoi
cells which leads, in turn, to the optimal partition which is itself a Voronoi partition. Partitions may also
be constructed organically to satisfy sensing constraints, such as in [11], without solving the optimization
problem above. In this paper, we will consider equipartitions which are defined as follows.
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Definition 4. For N agents located at {p1, . . . , pN}, pi ∈ Q for all i, we call W = {W1, . . . , WN} an
equipartition of Q if it satisfies: (i) Wi ⊆ Q is closed for all i; (ii) pi ∈ Wi; (iii) area(Wi) = area(Wj) =
area(Q)/N for all i, j; and (iv) ∪Ni=1Wi = Q. It follows that int(Wi)∩ int(Wj) = ∅ for i 6= j and pi ∈ int(Wj)
if and only if i = j.

It is clear that an equipartition W solves (4) when φ(q) is uniform and the function fi(·) is identical for
all i.

2.3 Gossip-based coverage algorithms

In this section, we describe the class of distributed coverage algorithms, based on [10], which are subsequently
specialized and analyzed in the paper. Briefly, a sufficient condition for coverage is that the spatial domain
equals the union of the areas assigned to individual agents. This assignment is carried out in a distributed
manner by the agents with the aim of creating an equipartition while ensuring that coverage is not lost. We
make four important assumptions: (1) the agents are assumed to be lazy in a sense that will be made precise
presently; (2) every agent is aware of the geometry of the environment before entry but not of the other
agents; (3) at most one interaction event (defined presently) can occur at any given point in time, and (4)
agents’ response to events, including repartitioning, is instantaneous and is thus complete before the next
event. Unlike [16], we assume that an interaction event cannot be triggered by one or more agents. Rather, we
model it as a random occurrence, which is a proxy for two agents coming within their mutual communication
radius either in the course of exploring their area of responsibility or responding to an environmental event.

Definition 5. Consider an agent in a closed, connected domain Q with area |Q| and suppose that it has
knowledge K about the agents in Q, with |K| equal to the number of agents that it is aware of (including
itself). Suppose that the agent allocates itself a domain A ⊆ Q with area |A|. The agent is said to be lazy
with an ε degree of altruism if

|A| = |Q|
|K|

+ ε

where ε can be time-varying and agent-specific. The agent is said to be lazy (with no mention of altruism) if
ε = 0.

Remark 1. The numerical area |A| of a partition A can be calculated by scaling using the sensor function
φ(q) (q ∈ Q) to ensure that the partitions are equitable. We assume that φ(·) is uniform, so that |A| is the
usual Euclidean area of A.

Definition 6. An interaction event, identified by the time t at which it occurs, is defined as an interac-
tion between precisely two agents i and j. The interaction consists of (i) updating each agent’s knowledge
Ki, Kj ← Ki ∪Kj, and (ii) repartitioning and resizing of their individual areas of responsibility as per the
guiding algorithm. Since we do not model environmental events in this paper, we will use the word event to
refer hereafter to an interaction event.

There are two types of (interaction) events. In the first type, an agent enters the domain for the first time,
with no knowledge of the other agents, and encounters an existing agent. It makes a copy of the knowledge
possessed by the existing agent and the two agents partition the existing agent’s area equitably into disjoint
halves while also taking over responsibility for some of the surrounding area. In the second type of events, an
agent that is already in the domain interacts with another agent that is also in the domain. The two agents
update each other’s information so that both possess the union of their prior individual information. They
repartition their individual areas as per the problem-specific guiding algorithm and the process continues.
The pseudocode is described in Algorithm 1.

We note that several steps of Algorithm 1 have been deliberately left vague. These can be made precise
for individual problems, as we illustrate in the next section. We have only prescribed that (i) exchange of
knowledge should correspond to all agents learning the union of their prior knowledge, and (ii) the areas
assigned or reassigned to all participants in an interaction should have equal magnitudes up to the degree
of altruism of individual agents.
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Algorithm 1 General algorithm for partitioning a domain

Require: A domain Q ∈ R2 and N agents in all
Initialize: time t = 0; initial positions and areas of responsibility for the agents already in Q. The union
of the areas of responsibility of agents in Q equals Q
while Stopping condition not reached do

if Enters new agent j then
New agent j interacts with agent i already in Q
Knowledge exchange Kj ← Ki

Disjoint areas of responsibility assigned Ai, Aj ∈ Q; |Ai| = |Aj | ∼ 1/|Ki|+ ε[t].
else

Existing agents i, j interact
Knowledge sharing: Ki = Kj ← Ki ∪Kj

Areas of responsibility reassigned so that |A{·}| ∼ Q/|K{·} + ε{·}[t]
end if
Stopping condition reached if t = tmax or Q is equipartitioned or no further events are feasible

end while

3 Main Results

In this section, we consider a simplified coverage problem and apply a corresponding manifestation of Algo-
rithm 1 to solve it. We assume that the agents are lazy (i.e., ε = 0 uniformly for all agents). We construct a
sequence of events in Sec. 3.3 which leads to equipartition when the number of agents is less than a certain
threshold, and to loss of coverage when the number of agents exceeds the threshold.

3.1 Geometry of the domain and some notation

Let QA = {(x, y) ∈ R2 | δ2 < x2 + y2 ≤ 1} denote the domain of interest in R2, where 0 < δ � 1. Clearly,
QA is a unit disc with a small hole at the centre. We can recast the problem into one of partitioning the
domain Q = S1 (the unit circle). It is evident from basic geometry that a partition of S1 can be mapped to
an equivalent angular slice of QA. Thus, an equipartition of S1 can be mapped to an equipartition of QA.

The angular position of the ith agent in Q = S1 is denoted by θi ∈ [0, 2π) once it is introduced in the
domain, and ni ≥ 1 denotes the number of agents that it is aware of, including itself. The arc of dominance
of the agent i is denoted by [θli, θ

u
i ] with θui � θli and θci = mid(θli, θ

u
i ). Finally, let Si = d(θli, θ

u
i ). We note

that all of these variables are functions of time t; for brevity, we omit that argument unless necessary.

Definition 7. An agent is said to be lazy if its arc of dominance on S1 has length Si = 2π/ni.

The following result can be derived readily using basic geometry and we omit a formal proof.

Lemma 1. Suppose two lazy agents i and j are aware of ni and nj agents, respectively. Then, the overlap
between their areas of dominance Si,j > 0 if and only if

π

ni
+

π

nj
− d(θci , θ

c
j) > 0

Moreover, if ni > 1 and nj > 1, the overlap is given by

Si,j = min

(
max

(
π

ni
+

π

nj
− d(θci , θ

c
j), 0

)
,

2π

ni
,

2π

nj

)
(5)

If ni = 1, Si,j = 2π/nj, and likewise if nj = 1.
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Definition 8. For every agent j, we denote the area of overlap with its immediate clockwise and anti-
clockwise neighbors by Cuj and Cul , respectively. In terms of the notation introduced in Lemma 1,

Cuj = Sj,k, k = arg min
i6=j
{d(θcj , θ

c
i ) | θci � θcj}

Clj = Sj,k, k = arg min
i6=j
{d(θcj , θ

c
i ) | θci ≺ θcj}

3.2 Addition of a new agent and repartitioning

Suppose that a new agent k is added to Q at time t and it interacts with an agent j that is already in Q. As
per Algorithm 1, they update their knowledge of the number of agents so that nk[t] = nj [t] = nj [t− 1] + 1.
Thereafter, the two agents j and k assign themselves an area of responsibility of size 2π/nk[t] such that the
two arcs intersect at the point θcj [t − 1] (i.e., at the midpoint of agent j’s previous area of responsibility).
The pseudocode for this process is presented in Algorithm 2.

Algorithm 2 New agent repartition algorithm

Require: agent i in Q located at θci and aware of ni(≥ 1) agents
Require: agent j enters Q and interacts with i
nj ← ni + 1, ni ← ni + 1
θui ← θci , θ

l
j ← θci

θli ← θui 	 2π/ni, θ
c
i ← mid(θli, θ

u
i )

θuj ← θlj ⊕ 2π/nj , θ
c
j ← mid(θlj , θ

u
j )

The next result shows that the process of adding a new agent is not detrimental to instantaneous coverage
in itself.

Lemma 2. Suppose that the domain Q = S1 is covered by k > 1 agents and suppose that a new agent k+ 1
is added to the domain Q. Then, Algorithm 2 ensures that instantaneous coverage is not lost. Moreover, the
resulting area of dominance of agent k + 1 overlaps with that of at least one other agent in [1, k]

Proof. When the (k + 1)th is introduced, let i denote the index of the agent with whom it interacts. These
two agents update their knowledge of the number of agents in Q to ni + 1 as per Algorithm 2, where ni is
the number of agents known to the agent i before interacting with agent k + 1. The two agents also assign
themselves disjoint partitions of size Si = Sk+1 = 2π/(ni + 1) each, which yields a joint coverage of size
4π/(ni + 1). We note that

4π/(ni + 1) > 2π/ni for ni > 1 (6)

Algorithm 2 ensures that the areas of dominance of agents i and k + 1 are symmetric about the centroid
of the previous area of dominance (labeled temporarily as Soldi ) of agent i. From (6), it follows that the
combined area of dominance of agents i and k + 1 is a superset of Soldi . Since Q was covered fully by the
k agents before the entry of agent k + 1, agents other than i and k + 1 cover the area outside Soldi . This
completes the proof.

Lemma 2 implies that (i) the domain Q is fully covered, with redundant coverage in some areas, at each
step of agent addition, and (ii) the partition of Q is not an equipartition at the end of agent addition. Since
the agents would ideally aim for an equipartition, that would require further interaction between the agents.

3.3 Sequential interaction of lazy agents

In this section, we construct the sequence of interactions between agents. The sequence has two components.
First, the agents are introduced sequentially as described in Algorithm 3. The sequence continues with inter-
agent interaction chosen from one of Algorithm 4 and Algorithm 5.
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3.3.1 Addition of agents

In the first step (Algorithm 3), agents are introduced sequentially with further prescription that agent j > 1
interacts only with agent j−1 upon entering the domain. This continues until the last agent N is introduced.

Algorithm 3 Special case: sequential addition and interaction

Initialize: domain Q = S1; number of agents n > 2
Initialize: agents added = 2; t = 2; n1 = n2 = 2
Initialize: θc1 = 0, θc2 = π
while agents added < n do

Update time t← t+ 1
Introduce agent t; agents added← agents added+ 1
Agent t interacts with agent t− 1 per Algorithm 2
Update nt−1, nt, θ

c
t−1, θct , and nt−1 = nt = t

end while

We derive analytical expressions for θci [n]; i.e., the centroid locations after all N agents have been intro-
duced in the system.

Lemma 3. Suppose that N > 2 agents are added to the domain Q = S1 as per Algorithm 3. Then, after all
N agents have entered Q and pending any further interactions between agents, the positions of the N agents
are given by

θc1[N ] = 0, θ2[t] =
2π

3

θcp[N ] = π ⊕
p∑

m=3

π

m
	 π

p+ 1
, p ∈ [3, N − 1] (7)

θcn[N ] = π ⊕
N∑
m=3

π

m
(8)

Proof. We prove this result by considering a process wherein, at each time instant t > 0 , an agent is added
to the domain Q = S1. Clearly, at time t = j, the jth agent gets added and it communicates only with agent
j− 1. The domain is partitioned as per Algorithm 2 and the agents move to their individual centroids. This
process continues until all agents N are added to the system (i.e., until t = N).

At t = 2, when agent 2 enters Q, agents 1 and 2 move to locations which are diametrically apart; without
loss of generality, we write θc1[2] = 0 and θc2[2] = π. Their mutual areas of coverage do not overlap.

At time t = 3, agent 3 enters Q and communicates with agent 2; agent 1 does not move. Agents 2 and
3 assign themselves domains of size 2π/3 each; the common boundary of this domain is at the location of
agent 2’s centroid at time t = 1. The new centroid locations are thus given by

θc2[3] = π − π

3
=

2π

3
, θc3[3] = π +

π

3
=

4π

3

This process can be repeated to yield, by induction, that the centroid locations after adding the jth agent
at time 3 ≤ j < n are given by

θck[j] = π ⊕
k∑

m=3

π

m
	 π

k + 1
, 3 ≤ k ≤ j − 1

θck[j] = π ⊕
j∑

m=3

π

m
, k = j (9)

Setting j = N completes the proof.
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3.3.2 Sequential interaction between the agents in Q

Once all N agents have been introduced as per Algorithm 3, we define a sequence of events labeled by
T = {k}, k ∈ N and k ≤ N − 2, such that at instant k, the agent N − k interacts with agent N − k − 1 if
SN−k,N−k−1 > 0 or if θuN−k−1 = θlN−k or θlN−k−1 = θuN−k (i.e., the borders overlap at one end, which we

denote compactly as θu,lN−k−1 = θl,uN−k). Else, the sequence is halted. This sequence is enumerated formally
in Algorithm 4.

Algorithm 4 Pairwise interaction algorithm - 1

Require: N agents introduced as per Algorithm 3
k = 1, run flag = 1
while run flag = 1 and k ≤ N − 2 do

if SN−k,N−k−1 > 0 or θu,lN−k−1 = θl,uN−k then

Update knowledge of (N − k − 1)th agent
θcN−k−1 = θcN−k 	 2π/N

else
run flag = 0; halt sequence
Check for coverage

end if
k ← k + 1

end while

Remark 2. We recall that
∑
m(π/m) is unbounded on R.

1 +

p∑
m=3

1

m
≈


1.95 p = 6

2.09 p = 7

3.999 p = 50

Thus, on S1, after Algorithm 3 is implemented, j > k does not imply that θj > θk (notice the use of > rather
than �). Informally, if the agents could be viewed as connected by a material thread, this thread could circle
S1 multiple times depending on N (at least twice for N > 50).

Remark 2 portends significant complication of our calculations for large values of N . However, it is
possible to show that coverage is lost even for a relatively small number of agents. The next theorem shows
that the events in Algorithm 4 do not lead to an instantaneous loss of coverage if the number of agents is
less than 7. It also shows that coverage can be lost for N = 7 agents. We generalise this result later.

Remark 3. If the number of agents is capped at N ≤ 7, it is easy to show that θcj [N ] > θck[N ] if j > k for
j, k ≤ N − 1. Thus, as long as θcN−1 does not shift, we can use the usual algebraic operators + and − in
place of ⊕ and 	 for calculating the centroid locations resulting from Algorithm 4.

Theorem 1. Let the number of agents be bounded by N ≤ 7. Suppose that the agents are introduced
following Algorithm 3 and they then interact as per Algorithm 4. Then, Algorithm 4 terminates with loss
of instantaneous coverage if and only if N = 7. Moreover, for N ≤ 6, Algorithm 4 terminates with an
equipartition of Q.

Proof. The case for N = 1 and N = 2 is trivial and we omit it for brevity. For N = 3, at the end of
Algorithm 3, θc{1,2,3} = {0, 2π/3, 4π/3}; n{1,2,3} = {2, 3, 3}. Clearly, Cl2 = π/2 + π/3 − 2π/3 = π/6 and

θl2 = π/3. When agents 2 and 1 interact based on Algorithm 4, we get that θc1 = 0 and S1 = 2π/3. Clearly,
the domain Q is equipartitioned.

For the case 4 ≤ N ≤ 7, if Algorithm 4 terminates only after agents 2 and 1 have interacted, then it
follows that all agents have learned about each other; their areas of responsibility thus satisfy Si = 2π/N

8



for all i and that their areas of responsibility do not overlap. Thus, if Algorithm 4 does not terminate before
agents 2 and 1 have interacted, then it follows that Q is equipartitioned.

At the end of Algorithm 3, the agents N and N − 1 only share a boundary and their partitions are
minimally (lazily) sized at 2π/N . Also, let α = θN−1; this will be a useful anchor for the subsequent
calculations, as explained in Remark 3. At time k = 1, the agent N − 1 interacts with agent N − 2; this
results in the agent N − 2 learning about all N agents and assigning itself an arc of responsibility of size
2π/N . Thus,

θcN−2 ← α− 2π

N

The areas of responsibility of agents N − 1 and N − 2 only share a boundary located at α− π/N . Suppose
that this process continues until time step p ∈ T , p ≤ N − 3. Then, at the end of time step p, we get

θcN−p−1 ← α− 2π

N
p, SN−p−1 =

2π

N

At this point, it is worth noting that

θcN−p−2 =

{
π +

∑N−p−2
m=3

π
m −

π
N−p−1 , p < N − 3

0, p = N − 3

where we have prescribed that
∑2

3(·) = 0 with slight abuse of notation. If coverage is to be lost at this point,
the following necessary and sufficient condition follows from Lemma 1:

d(θcN−p−1, θ
c
N−p−2) >

π

N
+

π

N − p− 1
, p ≤ N − 2 (10)

It can be shown readily that Eq. (10) is not satisfied for any permissible p (i.e., p ≤ N − 3) when N ≤ 6.
Thus, at p = N − 2, agents 2 and 1 can interact as per Algorithm 4 to yield an equipartition of Q. On
the other hand, when N = 7, (10) is satisfied for p = 4. Thus, there is no overlap between the areas of
responsibility of agents 1 and 2. It follows readily that there is an instantaneous loss of coverage in Q when
N = 7. This completes the proof.

The loss of coverage for N = 7 is shown in Fig. 1 which shows the status of coverage at each step of
Algorithms 3 and 4.

While Algorithm 4 ensures that coverage is not lost for N ≥ 6, it is possible to find an alternate sequence
of events which lead to loss of coverage for N = 5. The sequence of events is enumerated in Algorithm 5. As
with the previous sequence, the present sequence starts at the of end of Algorithm 3. Thereafter, agent N
interacts with agent 1. Formally, we define a sequence of events labelled by T = {k}, k ∈ N and k ≤ N − 2,
such that at instant 1, the agent N interacts with agent 1 if SN,1 > 0; and for all subsequent k, agent k − 1

interacts with agent k if Sk−1,k > 0 or if θu,lk−1 = θl,uk (i.e., the borders overlap). Else, the sequence is halted.
This sequence is enumerated formally in Algorithm 5.

Theorem 2. Let the number of agents be bounded by N ≤ 5. Suppose that the agents are introduced
following Algorithm 3 and they then interact as per Algorithm 5. Then, Algorithm 5 terminates with loss
of instantaneous coverage if and only if N = 5. Moreover, for N ≤ 4, Algorithm 4 terminates with an
equipartition of Q.

Proof. The result follows trivially for N = 1 and N = 2 (where Algorithm 5 is not necessary). The proof for
the case N = 3 is similar to that for the corresponding case in Thm 1, except that agents 1 and 3 interact
instead of 1 and 2. Thus, we need to address only cases N = 4 and N = 5. At the end of Algorithm 3, we
note that

θcN = π +

N∑
m=3

π

m
=

{
83π/60 N = 4

107π/60 N = 5
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Figure 1: Simulation of 7 agents added sequentially to S1. The first 6 images show the addition of agent
2 - 7. Images 7 - 10 show how repartitioning occurs in an anticlockwise fashion, and where failure occurs
between two agents (the white region in the last plot of the second row).

Algorithm 5 Pairwise interaction algorithm - 2

Require: N agents introduced as per Algorithm 3
k = 1, run flag = 1
Prescribe agent k − 1 for k = 1 is agent N
while run flag = 1 and k ≤ N − 2 do

if Sk−1,k > 0 or θl,uk = θu,lk−1 then

Update knowledge of kth agent
θck = θck−1 ⊕ 2π/N

else
run flag = 0; halt sequence
Check for coverage

end if
k ← k + 1

end while

for N ≤ 5. Moreover, the overlap between agents N and 1 (N ∈ {4, 5}) can be readily shown to be positive.
Thus, at time k = 1 in T , agent 1 moves to

θc1 ← α = θcN ⊕
2π

N
= θNc +

2π

N
− 2π (11)

We have introduced α, as in the proof of Thm 1, to serve as an anchor. In the subsequent interaction p, the
agent p interacts with agent p − 1 assuming that Algorithm 5 has not terminated prematurely before that
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Figure 2: Simulation of 5 agents repartitioning following Algorithm 5. After 2 interactions, coverage is lost
between the 2nd and 3rd agent. The size of the uncovered region 9◦ or 0.157 rad.

instant. If the algorithm first terminates prematurely at p, then a necessary and sufficient condition is that

π

N
+

π

p+ 1
< θcp − θcp−1

⇔ π

N
+

π

p+ 1
< π +

p∑
m=3

π

m
− π

p+ 1
− θcN −

2π(p− 1)

N
+ 2π

⇔ 2πp

N
+

2π

p+ 1
+

N∑
m=p+1

π

m
< 2π +

π

N
(12)

together with p < N . It can be checked readily that the condition is not satisfied for N = 4 and Algorithm 5
terminates with Q being equipartitioned. For N = 5, this condition is satisfied for p = 3; i.e., there is an
instantaneous loss of coverage between agents 2 and 3. This completes the proof.

4 Generalization Using Numerical Experiments

The results presented in the previous section show how a pathological series of interactions can lead to a
loss of coverage when the number of agents is small, but still larger than a critical threshold. The same
machinery can be extended to cases where the number of agents is larger, but closed-form solutions are not
easy to calculate because of the geometric setting of the problem. However, the necessary and sufficient
conditions in Eqs. (10) and (12) can be examined through a numerical parametric study for larger values of
N than those considered in the previous section. We restrict this study to Algorithm 4 and note that the
analysis can be repeated readily for Algorithm 5.

It can be checked readily that the separation between two neighboring agents k and k+1 (2 < k < N−1)
at the end of Algorithm 3 is given by

θck+1 − θck =
(k + 3)π

(k + 1)(k + 2)
, θcN − θcN−1 =

2π

N

Notice that, for large k, θck+1−θck ≈ π/(k+1). When N become large, there exists p such that the application
of Algorithm 4 and the accompanying interaction between agents p+ 1 and p causes θcp ≺ θcp−1 (informally,

agent p “crosses” p − 1) . We refer to this as the C-crossover. There also exists q such that θuq ≺ θlq−1
and Sq,q−1 = 0. We refer to this as the UL-crossover. The crossover index (the agent which crosses over its
predecessor) is shown in Fig. 3, with a crossover value of 0 indicating no crossovers. Note that neither of these
crossovers corresponds to loss of coverage; the UL-crossover means, in particular, that Algorithm 4 cannot
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be applied in its present form once the crossover happens. Moreover, the applicability of the analytical
machinery developed in the proof of Thm 1 is restricted to N ≤ 19.

The application of Algorithm 5 numerically for N ∈ [8, 19] (the case N ≤ 7 is covered using Thm 1)
shows that Algorithm 5 terminates prematurely with loss of continuous coverage as follows: between agents
1 and 2 for N ∈ [7, 11]; between agents 2 and 3 for N ∈ [12, 16]; and between agents 3 and 4 for N ∈ [17, 19].

Figure 3: The index of the first agent (starting with N) to cross its predecessor under Algorithm 4. An
index of 0 implies that no crossover takes place.

Note that a UL-crossover cannot be avoided when events occur as per Algorithm 4 for large N . We
investigate a naive extension whose pseudocode is presented in Algorithm 6. Notice that Algorithm 6
involves a reversion to interaction with the nearest counter-clockwise neighbor and it halts when there is
no overlap between an agent and its nearest counter-clockwise neighbor. From Fig. 4 it is evident that the
uncovered area reduces with increasing N , although the trend is not monotonic. Although the size of the
uncovered area reduces rapidly with increasing N , the partition at the end of Algorithm 6 is seen to not be
an equipartition.

Algorithm 6 Naive extension of Algorithm 4

Require: N agents introduced as per Algorithm 3
Require: Algorithm 4 run until premature termination at agent p
k = 1, run flag = 1, p = N
while run flag = 1 and k ≤ kmax do

Solve pc = arg minj(d(θcp, θ
c
j) | θjc ≺ θcp)

if Sp,j > 0 or θlp = θuj then
Update: θcpc ← θcp 	 2π/N ; p← pc

else
run flag = 0; halt sequence

end if
Check for coverage
if Q is equipartitioned then
run flag = 0; halt sequence

end if
k ← k + 1

end while
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Figure 4: The uncovered area after Algorithm 6 terminates.

5 Concluding Discussion

In this paper, we set out to investigate how the desirable properties of coverage algorithms may change with
the number of agents, when the inter-agent communication is discrete, local, and event-driven. We modified
a well-known coverage algorithm by prescribing that agents use a certain lazy logic to repartition and resize
their areas of responsibility. We applied this algorithm to a simple problem involving lazy agents introduced
sequentially into a 2D annular domain. The annular geometry permitted our analysis to be restricted to
a unit circle. We constructed a sequence of events that yields an equipartitioned domain for a small but
nontrivial number of agents, but fails when the number of agents exceeds a certain threshold. We conducted
numerical experiments to demonstrate how the algorithm performs when the number of agents becomes large
enough to the point where theoretical analysis is no longer feasible using our methods.

Although carried out in a simplified setting, our work illustrates how the performance guarantees of
coverage algorithms can be sensitive to the number of agents, unless the performance guarantees are proven
rigorously beforehand for an arbitrary number of agents (which is difficult for general problems involving
event-triggered, gossip-based communication). It is not a straight-forward scaling problem, and the actual
number of agents plays a critical role in the nature of the guarantees.

We assumed that the agents repartition and resize their areas of responsibility lazily (i.e., with ε = 0
in Algorithm 1). Our results show that a degree of altruism might be necessary in order to guarantee
coverage using a manifestation of Algorithm 1 that works for an arbitrary number of agents. It remains an
open problem to determine if there exists a sequence ε[t] which guarantees that Algorithm 1) leads to an
equipartitioned domain for any sufficiently rich sequence of events.
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