
1

Lifelong Learning Meets Dynamic Processes: An
Emerging Streaming Process Prediction Framework

with Delayed Process Output Measurement
Tong Liu, Member, IEEE, Sheng Chen, Fellow, IEEE, Po Yang, Senior Member, IEEE,

Yunpeng Zhu, Member, IEEE, Mehmet Mercangöz, and Chris J. Harris

Abstract—As an emerging machine learning technique, life-
long learning is capable of solving multiple consecutive tasks
based upon previously accumulated knowledge. Although this
is highly desired for streaming process prediction in industry,
lifelong learning methods have so far failed to gain applications
to mainstream adaptive predictive modeling of time-varying
industrial processes. This is because when faced with a new
data batch, existing lifelong learning approaches need both input
and output data to construct local predictors before knowledge
transfer can succeed. But in many process industries, the process
output data is hard to measure online and it often takes time to
acquire them from off-site lab analysis. This delayed acquisition
of target output data makes it challenging to apply lifelong
learning and other existing adaptive mechanisms to dynamic
industrial processes with delayed process output measurement.
To overcome this difficulty, this paper proposes a novel lifelong
learning framework that can rapidly predict new data batches
with input data only before the arrival of the process output
measurement. Specifically, we propose to incorporate process
input information into lifelong learning via coupled dictionary
learning, to enable the prediction of new batches without target
output data. The input feature is linked with a local predictor
through two dictionaries that are coupled by a joint sparse
representation. Because of the learned coupling between the two
spaces, the local predictor for the new batch can be reconstructed
by knowledge transfer given only process inputs. Two industrial
case studies are used to evaluate the effectiveness of our proposed
framework and reveal the intrinsic learning mechanism of our
lifelong process modeling to perform knowledge base adaptation.

Index Terms—Lifelong learning, dynamic industrial processes,
delayed output measurement, process drifts, knowledge transfer

I. INTRODUCTION

Machine learning has taken a center stage in the recent
years for scientific and engineering developments. Inspired by

This work was partly supported by Innovative UK under project 107462.
Mehmet Mercangöz acknowledges support from ABB for the Autonomous
Industrial Systems Laboratory. (Corresponding authors: Po Yang, Mehmet
Mercangöz)

T. Liu and M. Mercangöz are with Department of Chemical En-
gineering, Imperial College London, London SW7 2AZ, UK (E-mails:
tliu.soton@gmail.com, m.mercangoz@imperial.ac.uk).

S. Chen and C.J. Harris are with School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK (E-mails:
sqc@ecs.soton.ac.uk, chrisharris57@msn.com). S. Chen is also with Faculty
of Information Science and Engineering, Ocean University of China, Qingdao
266100 China

P. Yang is with Department of Computer Science, University of Sheffield,
Sheffield S1 4DP, UK (E-mail: po.yang@sheffield.ac.uk).

Y. Zhu is with School of Engineering and Material Science, Queen
Mary University of London, London E1 4NS, UK (E-mail: yun-
peng.zhu@qmul.ac.uk).

human intelligence, the recent advances in deep learning bring
it to new heights [1], and it has been successfully applied
to all walks of life, such as image recognition, natural lan-
guage processing, competitive games (AlphaGo) [2], protein
structure prediction (AlphaFold) [3] and short-term weather
forecasting [4]. Following the success of machine learning in
these areas, process industry has also begun to harvest the
benefits of these breakthroughs [5]. Exploiting the availability
of explosive process data, the current industrial revolution, also
known as Industry 4.0, is focusing on advanced data modeling
and analytics to improve control and high-level decision-
making [6], [7]. Hence, adaptive and accurate modeling of
industrial plants from massive and long-term process data will
aid intelligent and autonomous industrial systems.

The current mainstream paradigm for industrial predictive
models, which can predict the evolution of process output
given process inputs, is to run machine learning algorithms on
a given dataset that was historically collected from industrial
plants, and to hope that the trained model will generalize well
for the new data unseen in training [5], [8], [9]. In machine
learning terminology, this is called isolated learning because
it does not retain and accumulate knowledge learned in the
past training and use it to facilitate future learning. Without
the ability to accumulate knowledge from the past learning,
a machine learning model typically needs a large number of
training samples to learn effectively. In particular, the collected
dataset needs to be informative and sufficiently rich to cover
the whole dynamics of the underlying process. However, this is
often not the case in practice, because many industrial systems
operate in a continuous manner and generate data from their
operation in the form of streams, whose state changes over
time [10], [11]. This time-varying process characteristics can
be caused by many factors, such as changes of raw materials
and operating conditions, mechanical abrasions, and catalyst
deactivation. Due to these process drifts, predictive models
trained over historical dataset become obsolete, as them do
not represent the newly emerged process state.

To tackle the above problem, various adaptive mechanisms
are employed for industrial predictive models, to realize online
adaptation with newly measured labeled samples, i.e., both
process input and output samples, so as to maintain satisfactory
performance over a long operating period [12]. One notable
issue for this online learning is that the model adaptation needs
to be performed at each sampling time with both process input
and output information. This imposes two challenges. First, the
online computation cost by re-estimating model structure and



2

parameters should be sufficiently small to be accommodated
within each sampling period that is determined by control
systems [13]. More importantly, the process output data should
be obtained timely at each time step so that the current
modeling residual can be calculated to perform the model
adaptation. The first issue has been addressed to some extent
by numerous techniques, and some methods are reviewed in
Subsection II-A. However, the need for label or process output
data immediately at every sampling time is often infeasible
in many process industries, because these output variables or
labels are typically hard to measure online and they can be
obtained only through off-line lab analysis [5], which may
take hours. For example, it is essential to monitor the lignite
moisture online for the microwave lignite drying process [14],
which serves as the feedback information for real-time control
of the microwave power to prevent overheating. However,
measurement of lignite moisture takes time and it cannot be
acquired timely at every sampling time in a closed control-
loop. This causes delayed label data acquisition for process
control. As a result, the unavailability of timely process output
data or desired labels makes such online learning strategy
impractical for streaming process prediction application.

1) Isolated learning paradigm

2) Lifelong learning paradigm
Fig. 1. Comparison between isolated learning and lifelong learning.

Different from the aforementioned isolated learning, life-
long learning was proposed to mimic the human learning
ability of accumulating and maintaining knowledge learned
from the past and using it seamlessly for future learning [15].
A simple comparison between the two learning paradigms
is shown in Fig. 1. Isolated learning learns each dataset
independently without knowledge accumulation or transfer.
By contrast, lifelong learning learns consecutive new data
batches based upon the previously built knowledge base (KB)
as well as automatically updates the KB learned from past
encountered data batches upon learning of the new batch [16],
[17]. Three key characteristics of lifelong learning system,
1) continuous learning ability, 2) knowledge accumulation and

maintenance by KB adaptation, and 3) knowledge transfer
to facilitate future learning [18]–[21], makes this emerging
technique suitable to deal with long-term data with changing
dynamic characteristics, which is the case for streaming pro-
cess prediction. Hence, by online learning of the predictive
models on a batch-by-batch base, lifelong learning has some
advantage for streaming process prediction application.

In the lifelong learning community, the efficient lifelong
learning algorithm (ELLA) is one of the most popular methods
[22]. With the assumption that local models of multiple related
tasks share a common knowledge library, ELLA learns new
tasks by selectively transferring knowledge from the KB
and refining the KB over time to incorporate new knowl-
edge learned from current tasks. This framework has been
demonstrated to be effective for handling lifelong regression,
classification and decision-making problems, such as image
recognition [22], [23] and engineering system control [24]–
[27]. However, when faced with a new task or batch, ELLA
needs both input and targeted output data to construct task
model before knowledge transfer can succeed [22]. As men-
tioned before, for many process industries, true process output
data are hard to measure online and it often takes time to
obtain them from off-line lab analysis. Because of this need for
output data in constructing task models for new batches, ELLA
cannot be applied directly to streaming process prediction
with delayed process output data acquisition. This motivates
us to investigate a new lifelong learning framework, which
is capable of adaptively and accurately predicting new data
batches with input data only by knowledge transfer before
observing the true process output.

Motivated by the above background, this paper proposes
a novel lifelong learning framework that makes full use of
process input information to enable predicting consecutive
batches of process data with delayed output measurement.
Specifically, we encode input data into a feature vector that
contains essential process operating information, and treat
these input features as side information to augment local
predictors on each batch data. To enable knowledge transfer
between two spaces, we use coupled dictionary learning to
connect the input’s feature space with the predictor’s parameter
space, where the two spaces are linked through two dictionar-
ies that are coupled by the same sparse coding. Because of the
learned coupling between the two spaces, the lifelong learner is
capable of rapidly reconstructing local predictors for the new
coming batches given only process inputs. This capacity of
‘learning without targeted output’ is very important for lifelong
process modeling, because the output data is often hard to
obtain immediately and the learner requires to quickly make
prediction by knowledge transfer before observing true process
output. Two industrial case studies, involving a penicillin fer-
mentation process and a wastewater treatment plant, are used
to demonstrate the effectiveness of our proposed framework.
Most importantly, we reveal the intrinsic learning mechanism
of this new lifelong process modeling, and demonstrate how
our method deal with process drifts by KB adaptation. In
summary, our novel contributions are listed below.

1) We define the lifelong learning or modeling problem
for dynamic industrial processes for the first time, and



3

propose a novel lifelong learning framework that fully
considers the key characteristics of process drifts and
delayed process output measurement.

2) Based on coupled dictionary learning, we incorporate
process input information into lifelong learning that uses
a factorized representation of the learned knowledge to
facilitate transfer and improve predictive performance.

3) We show that our method is able to accurately predict
new data batches using only process inputs through
unsupervised knowledge transfer.

4) Two industrial case studies are carried out to demonstrate
its effectiveness, and we reveal the intrinsic learning
mechanism based on prior process knowledge.

The rest of this paper is organized as follows. Section II
summarizes the related works. Section III reviews lifelong
learning and presents its challenge in application to industrial
processes. Section IV details the proposed lifelong learning
based streaming process prediction framework, and Section V
evaluates its effectiveness with two industrial case studies.
Section VI concludes the paper with remarks for future works.

II. RELATED WORKS

A. Streaming Modeling of Dynamic Processes

For streaming or online modeling of time-varying dynamic
processes, the key is to update the predictive model’s structure
and parameters to track the changing system dynamics. A
popular method widely used in practice is multiple local
model learning strategy [28], [29]. By partitioning the overall
modeling space into multiple local subspaces, a set of local
models can be constructed to capture the overall process
characteristics. Based on this principle, the selective ensemble
based multiple local model learning enables automatically
identifying newly emerged process patterns by growing the
local model set online [30]. To reduce computation burden,
the growing and pruning selective ensemble regression can
not only learn new process patterns but also discard outdated
patterns by pruning unwanted local models [31], [32]. How-
ever, the local model adaptation for this strategy requires both
process input and output data. When acquisition of output data
is delayed, the local model adaptation cannot take place, and
online prediction has to rely on the existing local model set
given input data, i.e., it reduces to a nonadaptive model.

Inspired by gain scheduling [33], [34], another locally linear
regression partitions the training input space into multiple
subspaces and constructs a local linear model for each region.
During inference or online prediction, appropriate local models
from the trained model set are selected or combined based
on input data using switching or ensemble mechanisms [35],
[36]. However, this locally linear regression is a nonadaptive
model. During online operation, it cannot adapt the local linear
model set even both process input and output are available.
The success of this locally linear regression therefore heavily
depends on sufficiently rich training data to determine all the
number and boundaries of subspaces of the underlying process
in the training phase. If the process operates in real-time with
time-varying data streams, the online prediction performance
of this nonadaptive model may degrade considerably.

Another online modeling strategy is based on global model
learning. A typical approach is to adopt radial basis function
(RBF) network [37], [38]. During online model adaptation, the
output weights of the RBF network are updated by recursive
least square (RLS) to track the time-varying characteristics
[39]. To further enhance the adaptability to nonstationary data,
the fast tunable gradient RBF model adjusts both hidden node
structure and output weights to capture newly emerged process
patterns [40], [41]. This efficient online tracker is further
combined with deep learning technique for high-dimensional
nonstationary process modeling in [42]. Although this method
is very effective and efficient for online process tracking, it
needs both input and output information for model adaptation
at each sampling time. This becomes impractical again when
the acquisition of process output is seriously delayed. It can be
seen that most existing streaming modeling approaches cannot
cope with delayed output measurement in process industry,
and novel real-time learning framework is urgently needed to
tackle this problem.

B. Lifelong Learning

The core idea of lifelong learning is to solve multiple
consecutive tasks over long-time scales upon previously ac-
cumulated knowledge, and ELLA is one of the most popular
approaches [22]. It factorizes the learned task models into
a shared latent dictionary as the KB to facilitate knowledge
transfer as tasks arrive consecutively. When new task arrives,
ELLA transfers knowledge through the shared dictionary to
learn new model, and refines the dictionary with the knowl-
edge learned from the current task. By updating the dictionary
over time, newly acquired knowledge is incorporated into the
KB, thereby improving the performance of previously learned
models. Although ELLA-based methods [22]–[27] achieve
very good performance in many applications, one important
requirement is the need of first gathering sufficient labeled
data for the new coming tasks. This need for labeled data
imposes a serious challenge for practical problems, because
data annotation for every new coming task is time-consuming.
Often a learner is expected to learn new task rapidly without
the delay to wait for labeling task.

To mitigate this difficulty, the work [43] incorporated high-
level task descriptors into lifelong reinforcement learning, and
used both task descriptors and training data to model inter-
task relationships. This method was extended to regression
in [44], where model can be predicted given only input data
and task descriptors for new task. However, this method
requires domain-specific task descriptors that must accurately
characterize the underlying process dynamics. For simple
engineering systems, such as a robotic arm, it is possible
to define a set task descriptors that accurately reflect the
the system’s true underlying dynamics. However, practical
industrial processes are highly complex, and it is difficult if
not impossible to define accurate task descriptors for them.
Consequently, similar to other existing lifelong learning meth-
ods, the lifelong learning with zero-shot knowledge transfer
[43], [44] cannot be applied to practical industrial processes
with delayed process output measurement.



4

Hence, it is necessary and vital to develop new lifelong
process modeling framework for industrial process applica-
tions, where labeled data for new tasks is difficult to obtain
quickly. The novel contribution of this paper is to propose
a new lifelong learning framework for streaming industrial
processes with delayed process output measurement. Note that
unlike the lifelong learning with zero-shot knowledge transfer
[43], [44], our proposed lifelong learning method is capable of
performing unsupervised knowledge transfer with input data
only and there is no need to first define task descriptors.

III. LIFELONG LEARNING FOR INDUSTRIAL PROCESSES

A. Problem Formulation

For a streaming process, let multiple data batches be re-
ceived consecutively as

{
D(1),D(2), · · · ,D(Tmax)

}
. The pre-

dictive model must rapidly predict each new batch by building
upon its previously learned knowledge, and a local predic-
tor f (t) can be constructed on each batch data D(t) ={
x
(t)
i , y

(t)
i

}nt

i=1
, where nt is the number of samples (batch

size), x(t)
i ∈ Rd and y

(t)
i ∈ R are the i-th input sample and

associated output or label sample, respectively, for batch t.
The generic steaming process prediction is formulated as

the following framework. Let T − 1 be the number of batches
with complete process input and output data that the process
has generated so far and

{
f (1), · · · , f (T−1)

}
be the previously

built local predictors. Because of delayed process output
measurement, when new batch T first arrives, it contains
only the process inputs

{
x
(T )
i

}nT

i=1
. The predictor must be

able to accurately predict the true process output y(T )
i based

the process input x(T )
i and the knowledge learned from the

previous batches,
{
f (1), · · · , f (T−1)

}
. Only later when the

true process outputs
{
y
(T )
i

}nT

i=1
for a new batch are acquired,

the predictor f (T ) may then be constructed on the completed
data batch D(T ) =

{
x
(T )
i , y

(T )
i

}nT

i=1
. Ideally, the knowledge

learned from the previous batches should accelerate this model
construction and the constructed f (T ) should contribute its
learned new knowledge to the learned knowledge library.

B. Revisit of ELLA

ELLA [22] learns and maintains a KB L ∈ Rd×k, which
forms a shared basis for all predictors and facilitates knowl-
edge transfer between them. For each batch t, ELLA constructs
a local predictor f (t)(x) = f(x;θ(t)) that is parametrized
by a d-dimensional batch-specific parameter vector θ(t). This
model parameter is a linear combination of the columns of L
using the sparse coefficients s(t) ∈ Rk as θ(t) = Ls(t). The
dictionary L stores chunks of knowledge that are shared for
all the batches, and the sparse code s(t) extracts the relevant
pieces of knowledge for a particular batch t. Hence, this model
parameter factorization enables effective knowledge transfer
among batches. Typically, a local linear model f (t)(x) =
xTθ(t) is adopted, and therefore we must have k ≤ d. This
is because in this case the columns of L, i.e., the dimension
of the KB, cannot exceed the dimension of the input space d.
Typically, k < d as some elements of x may be collinear.

Given the process inputs and outputs
{
x
(t)
i , y

(t)
i

}nt

i=1
for

each batch t, ELLA optimizes the following cost function

min
L,S

1

T

T∑
t=1

(
J
(
θ(t)
)

+ µ
∥∥s(t)∥∥

1

)
+ λ ‖L‖2F , (1)

where J
(
θ(t)
)

= 1
nt

∑nt

i=1 J
(
y
(t)
i − ŷ

(t)
i

)
with J (•) being

the squared-loss function and ŷ
(t)
i = f

(
x
(t)
i ;θ(t)

)
, S =[

s(1) s(2) · · · s(T )
]

is the matrix consisting of all the sparse
coefficient vectors, and the L1 norm is used to control the
sparsity of s(t) with the regularization parameter µ, while
‖•‖F is the Frobenius norm, which regularizes the complexity
of dictionary L with the regularization parameter λ.

To solve this optimization, ELLA takes a second-order
Taylor expansion to approximate the objective around an
estimate θ̂(t) of the local predictor parameters for each batch
D(t), and only updates the coefficients s(t) for the current
batch at each time step. This process reduces the optimization
(1) to the problem of sparsely coding the local predictors in the
shared dictionary L, and it enables solving L and S efficiently
by the following recursive updating rules [22]:

s(t) = arg min
s

∥∥∥θ̂(t) −Ls∥∥∥2
Γ(t)

+ µ ‖s‖1 , (2)

A =A+
(
s(t)
(
s(t)
)T)⊗ Γ(t), (3)

b =b+ vec
[
s(t) ⊗

((
θ̂(t)
)T

Γ(t)
)]
, (4)

L =L+ mat

[(
1

T
A+ λI(kd)

)−1
1

T
b

]
d×k

, (5)

where ‖v‖2A = vTAv, the elements of L are initialized by
taking values randomly from (0, 1), and Γ(t) = Γ

(
θ̂(t)
)

is the Hessian matrix of the loss J
(
θ̂(t)
)
, while ⊗ denotes

the Kronecker product, A ∈ R(kd)×(kd) is initialized to the
all zero-elements matrix, and b ∈ Rkd is initialized to the
all zero-elements vector. Furthermore, the vector stacking
operator vec[•] stacks the columns of matrix one by one
to form a vector, I(kd) is the (kd) × (kd) identity matrix,
and the matrix forming operator mat[•]d×k converts a (dk)-
dimensional vector into a (d× k)-dimensional matrix.

Remark 1: The theoretical justification of using L1 and L2

norms to regularize the model complexity is well understood
in machine learning. In particular, imposing an L1 norm on
the model parameters has the desired property of enforcing the
sparsity of the model, i.e., making many parameters to zero.
Analysis of ELLA is also widely available in the literature.
For example, the convergence analysis of ELLA, (2) to (5), to
the solution of the optimization (1) can be found in [22].

Remark 2: The dictionary size or the sparsity level k is
an important hyper parameter of ELLA, which is obviously
problem dependent. Ideally, it would be highly desirable to
be able to determine the value of k from data. For the single
task learning, this is indeed achievable as the L1 norm of
the encoding vector in the optimization naturally enforces
sparsity and automatically makes k smaller than d according
to the underlying data structure. However, ELLA considers the
multiple tasks, and it is unknown to us how to automatically



5

t tX y

tXt

L K

ts

T NX

T N

Knowledge transfer

Fig. 2. Illustration of industrial lifelong learning system. For historical batches, the process inputs are encoded as feature vector while both input and output
data are used to construct a local predictor. The input features and local predictor are factorized into two dictionaries that are coupled by a joint sparse coding.
When new batch arrives, the learner reconstructs local predictor for new coming batch using solely process inputs by knowledge transfer.

determine an appropriate value for k from data. Therefore, the
dictionary size k is typically chosen empirically as in [22].

C. Challenge for Applying ELLA to Streaming Processes

As can be seen from the updating rules (2) to (5), each time
when a new batch t arrives, ELLA requires first to estimate
an initial local predictor θ̂(t) before it can update s(t) and L.
The updated sparse coding vector s(t) and dictionary L can
then be utilized to construct the new predictor to predict the
true process outputs for new batch t. In other words, the new
local predictor can only be constructed if at least some new
batch data contains both the process inputs and corresponding
process outputs. However, for many streaming processes, it
often takes a long time to acquire process output data. When
encountering a new batch at first glance, typically only the
process input data are available for making predictions. This
imposes a serious challenge for applying existing lifelong
models to streaming processes with delayed process output
measurement, since they need sufficient labeled data for new
tasks to start building new predictors for prediction.

In order to eliminate this need for labeled data for predicting
new batches and hence make the lifelong learning better
suited for industrial process prediction, we propose a novel
lifelong learning framework that makes full use of process
inputs to enable unsupervised knowledge transfer on predicting
new batches. Specifically, upon learning a few batches with
complete process input and output data, future local predictors
for new batches can be constructed given only input data. It is
worth emphasizing again that our scheme is completely novel
and it is very different from the scheme of [43], [44], which
needs input data as well as task descriptors to construct local
predictors for new batches. For a complex industrial process,
it is impossible to craft its task descriptors.

IV. PROPOSED STREAMING PROCESS PREDICTION
FRAMEWORK

Our proposed industrial lifelong learning system is depicted
in Fig. 2. The industrial system operates in real-time to consec-
utively generate multiple data batches in the form of streams.
For each batch of data, we define the process input matrix
X(t) =

[
x
(t)
1 x

(t)
2 · · ·x

(t)
nt

]
∈ Rd×nt and the corresponding

desired output vector y(t) =
[
y
(t)
1 y

(t)
2 · · · y

(t)
nt

]T ∈ Rnt . As a
new batch arrives, knowledge accumulated from the previous
batches is selectively transferred to predict the new batch, and
newly acquired information from the current batch is stored
in the KB for future use. In order to achieve knowledge
transfer on new batch prediction without output data, we
propose to incorporate input features into lifelong modeling
framework via coupled dictionary learning, enabling input
features and the local predictor to augment each other. For
historical batches with complete process input and output data,
the local predictor is constructed, while the input features
are encoded only by process inputs. To link two feature
spaces, we employ two dictionaries that act as knowledge
repositories for the two spaces, and they are coupled by a joint
sparse representation. Because of the learned coupling, the
local predictor for a new coming batch can be reconstructed
given only the process inputs. This capacity of learning new
predictors without targeted output is particularly suitable for
streaming industrial process prediction, where acquisition of
true process output data may encounter long delay. We now
detail each part of our proposed framework.

A. Learning from Historical Batches

1) Local predictor: For historical batch with complete
process input and output data

(
X(t),y(t)

)
, a local model

f(X;θ) = XTθ is constructed. Specifically, the parameter



6

vector of the local model is computed using the regularized
least square (LS) estimator as

θ̂(t) =
(
X(t)

(
X(t)

)T
+ βId

)−1

X(t)y(t), (6)

where β is a small positive regularization parameters, e.g., β =
10−6. The Hessian Γ(t) of the squared-loss function J (θ(t))
around the single task solution θ̂(t) is given by

Γ(t) =
1

2nt

(
X(t)

(
X(t)

)T
+ βId

)
. (7)

Hence for historical data batches, we first compute the predic-
tors parameter vectors θ̂(t) and Hessian matrices Γ(t) before
performing knowledge transfer in the learning process.

2) Input feature: In the process industry, the process in-
puts also known as operational data X(t) are often easy
and quick to acquire online from sensors directly, while the
process output data y(t) are difficult to obtain by online
measurement and they typically take long time to acquire
from off-line lab analysis. In such cases, process output data
experience a delayed acquisition, which makes supervised
modeling impractical. Although input data itself cannot be
used to construct a predictor, it also contains essential process
operational information [45]. It is highly beneficial to use
the input data for unsupervised learning to supplement the
supervised modeling, thereby using it as a ‘backup’ to predict
new batch when desired process output data is unavailable for
constructing the predictor timely.

To incorporate process inputs alone into the learning proce-
dure, the input data matrixX(t) ∈ Rd×nt is transformed into a
d-dimensional feature vector that can link with the predictor’s
parameter vector θ ∈ Rd. To link these two spaces, we can
transformX(t) into the d-dimensional feature vector ψ

(
X(t)

)
,

where ψ(•) is an operator that encodes a matrix into a vector.
The simplest encoding is the direction of the mean value in
each row of X(t). Expressing the i-th column of X(t) as
x
(t)
i =

[
x
(t)
1,i x

(t)
2,i · · ·x

(t)
d,i

]T
, we have

ψ
(
X(t)

)
=

[
x̄
(t)
1 x̄

(t)
2 · · · x̄

(t)
d

]T∥∥∥[x̄(t)1 x̄
(t)
2 · · · x̄

(t)
d

]∥∥∥
2

= x̄(t) ∈ Rd, (8)

where x̄(t)j = 1
nt

∑nt

i=1 xj,i, 1 ≤ j ≤ d. Hence, x̄(t) are the
input features for batch t. We next show how to link input
features with local predictor via coupled dictionary learning.

3) Coupled Dictionary Learning: The idea of coupled
dictionary learning was used in the scheme [43], [44] to link
the high-level task descriptions with the learned model to
achieve knowledge transfer for new tasks [43], [44]. Similarly,
we employ the coupled dictionaries to link the local predictor’s
space with the input features’ space, so as to fully exploit
process input information and achieve predicting a new batch
without the need for process output data.

Recall that the lifelong learning approach factorizes the
predictor parameters θ(t) for each task as a sparse linear com-
bination of a shared dictionary by θ(t) = Ls(t), where each
column of L represents a cohesive chunk of knowledge [22].
The sparse coefficient vectors S encode the local predictors in
the shared dictionary, providing an embedding of the batches

based on how their predictors share knowledge.
In the same way, the input feature vector x̄(t) can also

be linearly factorized using a shared dictionary K ∈ Rd×k

over the process input’s space. K has a similar function with
L, which captures the relationships among the input features
for different batches. In order to link the two spaces, we
enforce the two dictionaries, L and K, to share the same
sparse coefficient vectors S so as to reconstruct both the local
predictors and the input features. Hence, for batch t,

θ(t) = Ls(t), x̄(t) = Ks(t). (9)

Because the two dictionaries are enforced to have the same
sparse code s(t), the relevant pieces of information for the
local predictor becomes coupled with its associated input
features. To optimize the coupled dictionaries L and K, the
objective (1) is reformulated for the coupled dictionaries as

min
L,K,S

1

T

T∑
t=1

(
J
(
θ(t)
)

+ ρ
∥∥x̄(t) −Ks(t)

∥∥2
2

+ µ
∥∥s(t)∥∥

1

)
+ λ

(
‖L‖2F + ‖K‖2F

)
, (10)

where the parameter ρ balances the local predictor’s fit to the
input feature’s fit.

To solve the optimization (10) in a lifelong learning setting,
J
(
θ(t)
)

is approximated by a second-order Taylor expansion
around the regularized LS estimate θ̂(t) given in (6). That is,
we expand J

(
θ(t)
)

around θ̂(t) for each batch as

J
(
θ(t)
)
≈J

(
θ̂(t)
)

+ OJ
(
θ̂(t)
)(
θ(t) − θ̂(t)

)
+

1

2

∥∥∥θ(t) − θ̂(t)∥∥∥2
Γ(t)

, (11)

where O denotes the gradient operator. The first term J
(
θ̂(t)
)

is a constant and can be omitted. Since θ(t) is the minimizer
of the objective J

(
θ(t)
)
, OJ

(
θ̂(t)
)

is zero, and the second
term can also be removed. Thus, the loss function J

(
θ(t)
)

is approximated by the last term of (11), which can be

rewritten as
∥∥∥θ̂(t) −Ls(t)∥∥∥2

Γ(t)
, given θ(t) = Ls(t). With the

approximation (11), the optimization (10) is simplified as

min
L,K,S

1

T

T∑
t=1

(∥∥∥θ̂(t) −Ls(t)∥∥∥2
Γ(t)

+ ρ
∥∥∥x̄(t) −Ks(t)

∥∥∥2
2

+ µ
∥∥∥s(t)∥∥∥

1

)
+ λ
(
‖L‖2F + ‖K‖2F

)
. (12)

Further defining:

Θ(t) =

[
θ̂(t)

x̄(t)

]
, H =

[
L
K

]
, Ψ(t) =

[
Γ(t) 0d×d

0d×d ρId

]
, (13)

where 0d×d is the d × d zero matrix, the optimization (12)
can be rewritten in a concise form as

min
H,S

1

T

T∑
t=1

(∥∥∥Θ(t) −Hs(t)
∥∥∥2
Ψ(t)

+ µ
∥∥∥s(t)∥∥∥

1

)
+ λ‖H‖2F.

(14)

Clearly the optimization (14) has the identical form to (1),
and it can be solved in the same way. Note that (14) can be
decoupled into the two optimization problems of similar form



7

on L and K, respectively. Hence the two dictionaries can be
updated independently.

When batch t arrives, three steps are performed to update
the lifelong learning model, namely, compute s(t), update L
and update K. The sparse vector s(t) is first computed using
the current basis H by solving the following L1-regularized
regression problem, which is a Lasso:

s(t) = arg min
s

∥∥∥Θ(t) −Hs(t)
∥∥∥2
Ψ(t)

+ µ
∥∥∥s(t)∥∥∥

1
. (15)

After s(t) is obtained, the two dictionaries, L and K, are
calculated independently by the recursive updating equations
(3) to (5). In particular, to update the dictionary K, we simply
replace Γ(t) by ρId, θ̂(t) by x̄(t) and L by K in (3) to (5).

B. Predicting a New Batch by Knowledge Transfer

The main advantage of linking the local predictor and the
input features is that we can construct the local predictor
for new batches using only process input data, which is
valuable for streaming processes. This capability of unsuper-
vised knowledge transfer is enabled by the coupled dictionary
learning, which allows us to use input features to recover the
local predictor through coupled dictionaries and sparse coding.

Given the process input data X(T ) for new batch T , we
first encode X(T ) as the feature vector x̄(T ) = ψ

(
X(T )

)
, and

then estimate the sparse coding in the input feature space via
Lasso based on the previously learned dictionary K

ŝ(T ) = arg min
s

∥∥∥x̄(T ) −Ks
∥∥∥2
2

+ µ ‖s‖1 . (16)

Since this estimated ŝ(T ) also serves as the sparse coding for
the latent dictionary L, it can be used to recover the local
predictor for new batch T as

θ̃(T ) =Lŝ(T ). (17)

This new local predictor θ̃(T ) is obtained with the input data
X(T ) only, and it can then be utilized to predict the true
process outputs for new batch T as ŷ(T ) =

(
X(T )

)T
θ̃(T ).

This completely eliminates the need to wait for output data to
construct a model.

It can be seen from (16) and (17) that the construction
of a new local predictor depends on the previously built
dictionary L and the current input features x̄(T ). L contains
the knowledge learned from all the past batches, while the
input features contain the latest process operation information.
Combining both L and x̄(T ) can enhance the predictive
performance of the new model. This is another advantage of
the proposed unsupervised knowledge transfer.

Remark 3: Based on the coupled dictionary learning, the
premise of using the learned dictionary K and input features
to reconstruct the new predictor is that L and K are closely
related. Recall that we factorize the local predictor’s param-
eters and input features as θ(t) = Ls(t) and x̄(t) = Ks(t),
respectively. The dictionary L is basically extracted from the
previously learned local predictors and hence it captures the
inner characteristics of the underlying system or the relation-
ship between process input and output. If we assume that K

and L contain similar knowledge of the process, the input
features given in Subsection IV-A2 must also characterize
the underlying system dynamics as well. In other words, the
predictor’s parameter is an implicit function of the process
input for individual batches. If the process characteristics were
completely independent of the process input, the use of input
features and dictionary K would not be able to reconstruct
an accurate predictor. However, this cannot be the case in
practice. This is because the output is always related to the
input and hence, the process input is closely related to the
system characteristics. Since input features contain essential
process operation knowledge, the integration of the latest
operating information into the previously built KB can enhance
the accuracy of new predictor construction.

C. Algorithm Summary

The proposed lifelong learning framework for industrial
process prediction is summarized in Algorithm 1, which
operates naturally in three stages, namely, initial training,
online prediction, and knowledge base adaptation.
1) Initial training: Multiple historical batches with complete
process input and output data are collected and used to build
the KB for the lifelong learner. After supervised training, the

Algorithm 1 Lifelong learning based streaming process pre-
diction

1: Initial Training
2: Collect historical data batches

{
D(1), · · · ,D(T−1)

}
, deter-

mine dictionary size k, regularization parameters µ and λ,
balance coefficient ρ, and initialize L and K.

3: for (t = 0; t ≤ T − 1; t = t+ 1) do
4: Construct local predictor on

{
X(t),y(t)

}
by computing

model parameter θ̂(t) and Hessian Γ(t) using (6) and (7).
5: Encode X(t) into feature vector x̄(t) using (8).
6: Construct matrices Θ(t), H and Ψ(t) of (13).
7: Solve sparse coding s(t) by Lasso of (15).
8: L← updateL

(
L, s(t), θ̂(t),Γ(t), λ

)
by (3)-(5).

9: K ← updateK
(
K, s(t), x̄(t), ρId, λ

)
by (3)-(5).

10: end for
11: Online Prediction
12: When new batch with only process input data arrives, set

t = t+ 1.
13: Encode X(t) into feature vector x̄(t)) using (8).
14: Solve sparse coding s(t) by Lasso of (16).
15: Recover local predictor by computing its parameter vector

θ̃(T ) using (17).
16: Predict true process output by ŷ(t) =

(
X(t)

)T
θ̃(t).

17: Knowledge Base Adaptation
18: After observing the true process output y(t), construct

local predictor, and compute model parameter θ̂(t) and
Hessian Γ(t) using (6) and (7).

19: Construct matrices Θ(t), H , and Ψ(t) of (13).
20: Solve sparse coding s(t) by Lasso of (15).
21: L← updateL

(
L, s(t), θ̂(t),Γ(t), λ

)
by (3)-(5).

22: K ← updateK
(
K, s(t), x̄(t), ρId, λ

)
by (3)-(5).

23: Return to line 12



8

trained KB, L and K, are kept.
2) Online prediction: When a new data batch with process
input data only arrives, the lifelong learner first constructs
a new local predictor based on the trained KB and input
data by unsupervised knowledge transfer, and then makes the
prediction for the new data patch.
3) KB adaptation: After observing the true output data, the
completed current batch data are used to update the KB so as
to acquire the most up-to-data knowledge.

It is worth recapping that the classic ELLA [22] cannot be
applied to this industrial streaming process prediction appli-
cation. This is because in order to perform online prediction
for new batches, ELLA first requires sufficient labeled data
to identify task relationships before bootstrapping a model
via knowledge transfer. However, the labeled data are not
available for online prediction. Also the scheme of [43],
[44] cannot be applied to this industrial streaming process
prediction application, since it is generally impossible to craft
high-level task descriptors for a practical industrial process. By
contrast, our framework constructs predictors for predicting
new batches by unsupervised knowledge transfer based on
process input information only. Additionally, we employ the
online KB adaptation in our framework because the process
characteristics can change significantly. It is vita to capture
the latest data characteristics in the KB. This is the elegance
of lifelong learning. Hence, our proposed lifelong learning
framework is very suitable for dynamic process prediction and
modeling particularly when the acquisition of process output
data is seriously delayed.

We now analyze the online computational complexity of
learning new batch by our method. The construction of local
predictor by the regularized LS estimator (6) has a complexity
on the order of O(d3). The adaptation of single dictionary
L ∈ Rd×k and sparse coding s(t) ∈ Rk costs O(k2d3).
Since we incorporate input features into lifelong learning
framework by augmenting L ∈ Rd×k into H ∈ R(2d)×k,
the coupled dictionary adaptation costs O

(
k2(2d)3

)
. Thus, the

overall complexity of per-batch adaptation is O
(
d3+k2(2d)3

)
,

which is independent of batch number.
Remark 4: The online operations of our proposed lifelong

learning framework include online prediction and knowledge
base adaptation. Specifically, when a new batch with process
input data only arrives, a local predictor is constructed ex-
plicitly by unsupervised knowledge transfer based on process
input and the constructed model is used to predict the process
outputs for the batch. Later, only when the corresponding true
process output data are available, the supervised knowledge
base adaptation takes place. Since the base model is linear,
i.e., d is very small, and furthermore k < d, the operations
of online prediction and knowledge base adaptation are very
fast, and the operation time of these online operations is well
within the time duration of a batch, which may contains tens
to hundreds of samples. In a nutshell, the online operation
time of our lifelong learning framework is not an issue.

V. EXPERIMENTS

Two industrial applications for a penicillin fermentation
process and a wastewater treatment plant (WWTP) are used

to verify the effectiveness of our proposed lifelong modeling
framework. Three metrics, the mean square error (MSE), mean
absolute error (MAE) and the coefficient of determination
(R2), are utilized to evaluate both training and online pre-
diction performance.

We operate the proposed framework in the following three
different learning modes. 1) Pro-nonadaptive: The training
data is first used to build a KB. During online operation, the
trained KB is fixed and the learner makes prediction after
receiving each batch data. This is essentially Algorithm 1
minus Knowledge Base Adaptation part. 2) Pro-adaptive:
This is the completed Algorithm 1. After online prediction and
when the true process outputs for the current batch become
available, the KB is adapted to capture the system charac-
teristics in the current batch. 3) Pro-idealized: This scheme
continuously operates in training mode. After observing the
complete process input and output data of a new batch, a fully
updated KB is obtained that accumulates all the knowledge
from all the batches. This ‘full’ KB is used to reconstruct
all the individual models for the individual batches. The
individual models then make the ‘prediction’ for the individual
batches. It can be seen that only Pro-nonadaptive and Pro-
adaptive can be applied to the scenario of adaptive online
modeling and prediction for streaming processes with delayed
process output measurement. Pro-idealized is impractical and
is used here to represent the idealized performance limit
(training performance) of the lifelong modeling framework.

Since the base model for the proposed framework is linear,
for a fair comparison, the proposed framework is compared
with state-of-art linear models, including LS, Bayesian aug-
mented Lagrangian (BAL) [46], [47], partial LS (PLS) [6],
[45], RLS [39], [48], and clustering-based locally linear re-
gression (CLR) [35], [36]. For the LS, BAL and PLS, the
training data are used to construct models, and the trained
models are fixed during online operation. For the CLR, the k-
means clustering is first used to partition the training input data
into multiple data clusters, and local models are built by LS
for individual clusters. The number of clusters is determined
by grid-search based on the training MSE. The trained local
linear model set is fixed in online operation. During online
prediction, the Euclidean distances are measured between the
training clusters and the new input data, and the local model
with the closest distance is selected for prediction. We also
modify this CLR with ensemble model learning called ’CLR-
ensemble’, where the trained local models are combined with
weights based on distances for prediction. The standard RLS
performs online prediction and adaptation on the sample-by-
sample base. Specifically, the model adapted at the previous
sample is used to make the prediction on the current input
sample. After this sample prediction, the true process output
sample is assumed available, and the RLS performs the model
adaptation using the process input-output sample pair. We refer
to this standard RLS as ‘RLS-idealized’, which cannot be
used in adaptive online modeling and prediction for streaming
processes with delayed process output measurement. It is used
here to represent the idealized performance limit achievable if
there exists no delay in the acquisition of process output. To
have a fair comparison with our Pro-adaptive, we modify the



9

TABLE I
VARIABLE DESCRIPTION OF PENICILLIN FERMENTATION PROCESS.

Process variables Description
Inputs u1 Aeration rate

u2 Agitator power
u3 Substrate feed rate
u4 Substrate feed temperature
u5 Dissolved oxygen concentration
u6 Culture volume
u7 Carbon dioxide concentration
u8 pH
u9 Fermentor temperature
u10 Generated heat

Outputs y1 Penicillin concentration
y2 Substrate concentration

classic RLS with batch prediction and adaptation called ‘RLS-
batch’. Specifically, the RLS model updated from the previous
batch is used to predict the new batch. After the true process
output data for this new batch have acquired, it updates the
model over the batch, and the updated model will be used
for the prediction of the next batch. It is worth recapping that
LS, BAL, PLS, CLR, CLR-ensemble and our Pro-nonadaptive
are nonadaptive models, i.e., they only make online prediction
with input and do not make model adaptation.

A. Penicillin Fermentation Process

The penicillin fermentation process is a biochemical fed-
batch process with multi-mode time-varying characteristics.
It was widely utilized for performance assessment of adap-
tive modeling approaches [28], [29]. During the fermentation
process, the penicillin and substrate concentrations are two
hard-to-measure process outputs, which may take hours to
acquire from lab analysis. Our goal is to predict these two
process outputs using easy-to-measure process input variables
before obtaining their true values from lab measurements. The
process inputs and outputs are tabulated in Table I. Based
on the knowledge of this process, the process input vector at
sample i is defined as xi = ui =

[
u1i u2i · · ·u10i

]T ∈ R10.
By changing different operating conditions, 1600 samples are
collected from the PenSim tool [28], and they are divided into
the training (800 samples) and online testing (800 samples)
sets. During online operation, batches of data are received
consecutively. In practice, the batch size is determined by
applications, e.g., delayed acquisition time for process output.
In general, a large batch size enables constructing a more
accurate local model for each batch while a small one can
better capture the time-varying local data characteristics of
different batches. Also the batch size should not be too large
so that the process can be approximated by a local linear model
over each batch. The batch size is set to 100 in this experiment.

TABLE II
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING PENICILLIN CONCENTRATION IN PENICILLIN

FERMENTATION PROCESS.

Methods Online Adaptation Initial Training Online Prediction
MSE (dB) MAE R2 MSE (dB) MAE R2

LS nonadaptive -32.10 0.0186 0.9946 -25.19 0.0463 0.9744
BAL nonadaptive -32.10 0.0186 0.9946 -25.15 0.0466 0.9742
PLS nonadaptive -32.02 0.0190 0.9945 -25.29 0.0456 0.9750

CLR nonadaptive -48.08 0.0026 0.9999 -19.26 0.0771 0.8999
nonadaptive (ensemble) -50.89 0.0016 0.9999 -17.98 0.1134 0.8656

RLS batch -32.10 0.0186 0.9946 -4.23 0.4817 -2.1929
idealized (sample by sample) -32.10 0.0186 0.9946 -31.82 0.0176 0.9944

Proposed
nonadaptive -32.54 0.0183 0.9951 -25.48 0.0439 0.9761

adaptive (batch) -32.54 0.0183 0.9951 -28.58 0.0308 0.9883
idealized (all training) -30.71 0.0228 0.9926 -31.65 0.0204 0.9942

TABLE III
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING SUBSTRATE CONCENTRATION IN PENICILLIN

FERMENTATION PROCESS.

Methods Online Adaptation Initial Training Online Prediction
MSE (dB) MAE R2 MSE (dB) MAE R2

LS nonadaptive -31.87 0.0209 0.9944 -23.55 0.0565 0.9603
BAL nonadaptive -28.80 0.0273 0.9886 -25.68 0.0435 0.9757
PLS nonadaptive -30.48 0.0220 0.9923 -25.31 0.0443 0.9736

CLR nonadaptive -44.29 0.0022 0.9997 -17.98 0.0351 0.8572
nonadaptive (ensemble) -45.68 0.0017 0.9998 -9.60 0.3132 0.0153

RLS batch -31.87 0.0209 0.9944 -4.39 0.4017 -2.2637
idealized (sample by sample) -31.87 0.0209 0.9944 -31.46 0.0202 0.9936

Proposed
nonadaptive -34.01 0.0134 0.9966 -28.27 0.0290 0.9866

adaptive (batch) -34.01 0.0134 0.9966 -30.01 0.0237 0.9910
idealized (all training) -32.78 0.0165 0.9954 -34.17 0.0141 0.9966



10

For the proposed framework, the dictionary size k and the
regularization parameters are chosen empirically. Additionally,
ρ is an important parameter that balances the model’s fit to
the input data’s fit [44], and we set ρ = 1 to achieve its best
prediction performance. The forgetting factor of RLS is set to
0.98. The ridge term for LS models is empirically set to 10−5.
The number of latent variables for PLS is set to 6 to attain
its best performance. The augmented Lagrangian parameter
and regularize parameter for BAL are carefully chosen to be
10−3 to obtain its best performance. The number of clusters
for CLR and CLR-ensemble is set to 8, as the training MSE
does not decrease with further increasing of clusters.

The performance comparison of various methods for pre-
dicting penicillin concentration and substrate concentration are
tabulated in Tables II and III, respectively. As expected, the
training performance of the LS, BAL, PLS and RLS are the
same or similar but our proposed lifelong learning framework
attains a slightly better training performance, since it includes
input features in knowledge transfer to enrich the modeling
accuracy. CLR and CLR-ensemble attain much better training
performance than the other methods, because they incorporate
local data characteristics of different regions to enhance the
overall modeling capacity. What really matters however is
the prediction performance. In terms of online prediction
accuracy, the nonadaptive LS, BAL and PLS schemes achieve
similar performance but again our Pro-nonadaptive achieves a
slightly better online prediction performance, again because it

100 200 300 400 500 600 700

Test sample (t)

-0.5

0

0.5

1

1.5

2
Pro-adaptive
RLS-batch
actual output

(a)

100 200 300 400 500 600 700

Test sample (t)

-1

-0.5

0

0.5

1

1.5
Pro-adaptive
RLS-batch
actual output

(b)
Fig. 3. Prediction performance comparison of RLS-batch and Pro-batch for
predicting: (a) penicillin concentration, and (b) substrate concentration in
penicillin fermentation process.

includes input features in constructing predictive model. With
batch adaptation after predicting new batches, our Pro-adaptive
scheme outperforms the Pro-nonadaptive scheme by around
2 dB in the testing MSE. The online prediction accuracy
of CLR and CLR-ensemble degrade spectacularly from the
training accuracy and become even inferior to nonadaptive
single modeling approaches. Its poor prediction performance
may be due to the non-smoothness of the boundaries for the
subspaces identified in training. Also local models learned in
training may not capture newly emerged data states in unseen
data. The RLS-batch has very poor online prediction perfor-
mance. At first glance this may seem strange but it actually
makes sense. RLS algorithm has a short memory, allowing
it to forget the past data and concentrate on the current data
characteristics. Hence after batch adaptation, the model forgets
most of the past knowledge and captures the characteristics of
the current batch. This model is used to predicting the next
batch. For a process with highly time-varying characteristics,
the characteristics of the next new batch can be very different
from those captured in the model, and this is the root cause
of its poor adaptive performance. By contrast, in our Pro-
adaptive scheme, the learned KB contains information from
all the past batches and, moreover, the process operational

100 200 300 400 500 600 700

Test sample (t)

-34

-32

-30

-28

-26

-24

-22

te
st

 M
S

E
 (

dB
) 600 700

-26.5

-25.5

PLS

LS

BAL

Pro-adaptive

Pro-nonadaptive

Pro-idealizedRLS-idealized

(a)

100 200 300 400 500 600 700 800

Test sample (t)

-34

-32

-30

-28

-26

-24

-22

te
st

 M
S

E
 (

dB
)

LS

PLS

BAL

Pro-adaptive

Pro-nonadaptive

Pro-idealized

RLS-idealized

(b)
Fig. 4. Comparison of online MSE learning curves of various methods for
predicting: (a) penicillin concentration, and (b) substrate concentration in
penicillin fermentation process. The curves of RLS-batch, CLR, and CLR-
ensemble are outside the plot.



11

information of the current batch is extracted for unsupervised
model adaptation to accurately predict the current batch. In
Fig. 3, we compare the online predictions of RLS-batch and
our Pro-adaptive with the true process outputs for further
illustration of the above discussion. With sample-by-sample
adaptation, RLS-idealized is capable of attaining the excellent
online prediction performance that is very close to the training
performance. But this adaptive scheme cannot be applied to
the penicillin fermentation process with delayed process output
measurement. Also as expected, the impractical Pro-idealized
provides the ultimate performance limit. The online MSE
learning curves of various methods are compared in Fig. 4,
where the MSE value at test sample t, MSE(t), is calculated
from the first test sample to the t-th test sample as

MSE(t) =
1

t

t∑
i=1

(
yi − ŷi

)2
, (18)

in which yi denotes the i-th process output sample and ŷi is
its prediction.

The prediction errors of our lifelong learning framework
in three different learning modes are compared in Fig. 5. It
can be seen that the performance of Pro-adaptive is much
better than that of Pro-nonadaptive, and it is very close to the

100 200 300 400 500 600 700

Test sample (t)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
re

di
ct

io
n 

er
ro

r

Pro-adaptive
Pro-nonadaptive
Pro-idealized

(a)

100 200 300 400 500 600 700

Test sample (t)

-0.1

-0.05

0

0.05

0.1

0.15

P
re

di
ct

io
n 

er
ro

r

Pro-adaptive
Pro-nonadaptive
Pro-idealized

(b)
Fig. 5. Prediction error comparison of the proposed framework in three
different learning modes for predicting: (a) penicillin concentration, and
(b) substrate concentration in penicillin fermentation process.

1 2 3 4 5 6 7 8

Number of learned tasks in training

-30

-25

-20

-15

-10

-5

te
st

 M
S

E
 (

dB
)

Pro-adaptive
Pro-nonadaptive

(a)

1 2 3 4 5 6 7 8

Number of learned tasks in training

-30

-25

-20

-15

-10

-5

te
st

 M
S

E
 (

dB
)

Pro-adaptive
Pro-nonadaptive

(b)
Fig. 6. Performance of lifelong learning of consecutive training tasks for
predicting (a) penicillin concentration, and (b) substrate concentration in
penicillin fermentation process.

idealized training performance offered by Pro-idealized. This
again demonstrates the importance of online KB adaptation
and knowledge sharing mechanism. To further investigate this
online learning mechanism for building KB, we study the im-
pact of the number of training batches on the online prediction
performance of the two practical lifelong learning schemes,
Pro-nonadaptive and Pro-adaptive, over all the online test
batches. The experimental results are plotted in Fig. 6, where
the effectiveness of the adaptive lifelong model, Pro-adaptive,
is self-evident. On predicting the penicillin concentration, for
example, two training batches are enough for Pro-adaptive
to attain a comparable performance to the case of using all
the 8 training batches. This demonstrates that equipped with
online KB adaptation, the Pro-adaptive scheme is capable of
compensating for lack of training data/tasks by continually
acquiring most up-to-data knowledge online.

B. Wastewater Treatment Plant

The WWTP detailed in [49] is a dynamic process subject
to large perturbations in influent flow rate and pollutant load,
together with uncertainties on the composition of the incoming
wastewater. The operation of this WWTP is to remove organic
matter and perform nitrification and denitrification. To achieve
this aim, it is essential to estimate the flow rate during
the plant operation. The process inputs and output of this
WWTP are listed in Table IV. The influent data are collected
under severe weather condition (combination of dry weather



12

TABLE IV
VARIABLE DESCRIPTION OF WWTP.

Input and output variables Description
u1 Readily biodegradable substrate
u2 Particulate inert organic matter
u3 Slowly biodegradable substrate
u4 Active heterotrophic biomass
u5 NH+

4 + NH3 nitrogen
y Flow rate

and long rainy period), which makes the underlying system
characteristics highly time-varying and imposes a challenge
on predictive models [50]. The plant knowledge suggests
that the plant input vector at sample i can be chosen as
xi = ui =

[
u1i u2i · · ·u5i

]
∈ R5. We collect 1300 samples

from the WWTP dataset, among which the first 500 samples
are used for training, while the rest are for online prediction.
To better capture the local characteristics of this dynamic
process, the batch size is set to 50. Hence, there are total of 26
data batches. The first 10 batches are used for training while
the rest 16 batches are for online prediction and adaptation.
The dictionary size k, regularization parameters and ρ are
set to 2, 10−8, and 1, respectively, for the proposed method.
The number of latent variables for PLS is 3. The augmented
Lagrangian parameter and regularize parameter for BAL are
chosen to be 10−3. The cluster number for CLR and CLR-
ensemble is set to 25 empirically.

The performance comparison for various models are pre-
sented in Table V, and their online MSE learning curves are
given in Fig. 7. Again, the same observations regarding the
various methods compared can be drawn as for the penicillin
fermentation process with two exceptions. First, RLS-batch
in this case achieves a slightly better prediction accuracy
than the nonadaptive LS, BAL and PLS. This is because the
batch size is smaller, and there are sufficient adjacent batches
which have similar characteristics, see the true process output
sequence plotted in Fig. 8. Second, different from the previous
case study, the CLR and CLR-ensemble attain slightly better
online prediction accuracy than the LS, BAL, PLS, RLS-
batch and Pro-nonadaptive. But they are inferior to the Pro-
adaptive, because the trained local models of CLR and CLR-
ensemble cannot capture the abrupt change in testing data.

100 200 300 400 500 600 700 800

Test sample (t)

-45

-40

-35

-30

-25

-20

-15

-10

-5

te
st

 M
S

E
 (

dB
)

Pro-adaptive
Pro-nonadaptive
RLS-idealized
PLS
BAL
LS
Pro-idealized
RLS-batch
CLR
CLR-ensemble

500 800
-12

-9

Fig. 7. Comparison of online MSE learning curves of various methods for
predicting flow rate of WWTP.

200 400 600 800 1000 1200

Training and Testing sample (t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

different dynamics

Training Testing

Fig. 8. Process output (flow rate) of WWTP.

This again demonstrates the importance of model adaptation.
A notable feature in the online MSE learning curves of
Fig. 7 is that around the test sample 300, there is a sharp
deterioration in online prediction accuracy for all the methods.
This ‘abnormal’ phenomenon can be explained by the time-
varying plant characteristics caused by abrupt weather change,
shown in Fig. 8. Like the 500 training samples, the first 300
test samples (samples t = 500 to 800) are taken at a dry
weather period but the next 300 test samples (t = 800 to 1100)
are taken in a long rainy period. Hence, the underlying plant
dynamics experience an abrupt change around t = 800, and

TABLE V
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING FLOW RATE OF WWTP.

Methods Online Adaptation Initial Training Online Prediction
MSE (dB) MAE R2 MSE (dB) MAE R2

LS nonadaptive -31.98 0.0198 0.9625 -10.98 0.1517 -0.2774
BAL nonadaptive -31.98 0.0198 0.9625 -10.95 0.1522 -0.2860
PLS nonadaptive -31.88 0.0198 0.9616 -10.94 0.1531 -0.2873

CLR nonadaptive -49.01 0.0024 0.9993 -11.92 0.1289 -0.0275
nonadaptive (ensemble) -47.95 0.0027 0.9991 -11.64 0.1425 -0.0967

RLS batch -31.98 0.0198 0.9625 -11.05 0.1922 -0.2564
idealized (sample by sample) -31.98 0.0198 0.9625 -18.61 0.0562 0.7796

Proposed
nonadaptive -33.06 0.0168 0.9707 -11.61 0.1485 -0.1045

adaptive (batch) -33.06 0.0168 0.9707 -14.73 0.1019 0.4622
idealized (all training) -21.31 0.0669 0.5616 -19.90 0.0692 0.8364



13

100 200 300 400 500 600 700 800

Test sample (t)

-0.2

0

0.2

0.4

0.6

0.8

1 Pro-adaptive
Pro-nonadaptive
actual output
Pro-idealized

(a)

100 200 300 400 500 600 700 800

Test sample (t)

-0.6

-0.4

-0.2

0

0.2

0.4

P
re

di
ct

io
n 

er
ro

r

Pro-adaptive
Pro-nonadaptive
Pro-idealized

(b)
Fig. 9. Comparison of (a) predicted outputs and (b) prediction errors of
proposed framework in three different learning modes for WWTP.

the data characteristics become very different from those of
the training data. This kind of sudden sharp change is difficult
for any adaptive model to cope well with.

The online prediction results of the proposed framework in
three learning modes are compared in Fig. 9. It can be seen
that Pro-nonadaptive is hardly able to track the abrupt process
drift starting at t = 800, while Pro-adaptive does offer some
capability to track this abrupt change in the plant dynamics.
It is informative to exam the Pro-adaptive scheme’s prediction
behaviors over the rainy period in more details. Observe from
Fig. 9 (a) that for the first rainy data batch (test samples
300 to 350), the local predictor performs poorly, because the
current KB is learned from the previous dry data batches.
After online prediction, the batch adaptation enables the KB
to encode the new rainy characteristics. Consequently, for the
next two batches (test samples 350 to 450), the prediction
accuracy improves significantly. The prediction performance
is degraded again for the next batch (test samples 450 to 500)
as the underlying plant characteristic begins to change to a dry-
weather one. Because online adaptation after batch prediction
is able to capture this new dynamic, the subsequent batch
prediction (test sample 500 onwards) achieves high accurate.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper has proposed a novel lifelong learning frame-
work for online modeling and prediction of industrial time-
varying streaming processes with delayed process output mea-
surement. Our main contribution has been to encode input data

into feature vector that contains essential process operating
information, and to utilize these input features to augment
local predictors on each batch data. We have used coupled dic-
tionary learning to connect the input feature’s space with the
predictor’s parameter space, where the two spaces are linked
through two dictionaries that are coupled by the same sparse
coding. The proposed learning framework has the capability
of unsupervised learning, which enables the learner to rapidly
reconstruct local predictors for the new coming batches given
only process inputs and provide timely predictions for the
true process outputs. Two industrial case studies, involving
a penicillin fermentation process and a wastewater treatment
plant, have been used to demonstrate the effectiveness as well
as the intrinsic learning mechanism of our proposed framework
for online prediction and adaptation of industrial processes
with hard-to-measure process output variables.

This paper has opened up a new research direction for
streaming process data analytics and modeling under the
framework of lifelong learning. There are many theoretical
and practical issues that deserve further investigation. One
important issue is how to define the knowledge base in
lifelong learning by incorporating prior process knowledge [7],
[45] as well as prior knowledge of the underlying process’s
critical constraints [51], [52]. This paper has incorporated
operation knowledge, namely, process inputs, into lifelong
learning to enhance modeling performance and enable online
prediction. Other interpretable process physical features can
also be integrated. Although the delay time of process output
data acquisition is determined by the constraints of industrial
applications, there is a scope for investigating how to choose
appropriate batch size. The base model for lifelong learning
is linear. A long-term research is to study the potential of
adopting a nonlinear base model in lifelong learning.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[2] D. Silver, et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[3] J. Jumper, et al., “Highly accurate protein structure prediction with
AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, Jul. 2021.

[4] S. Ravuri, et al., “ Skillful precipitation nowcasting using deep gener-
ative models of radar,” Nature, vol. 597, no. 7878, pp. 672–677, Sep.
2021.

[5] C. Shang and F. You, “Data analytics and machine learning for smart
process manufacturing: Recent advances and perspectives in the big data
era,” Engineering, vol. 5, no. 6, pp. 1010–1016, Dec. 2019.

[6] S. J Qin, et al., “Bridging systems theory and data science: A unifying
review of dynamic latent variable analytics and process monitoring,”
Annual Reviews in Control, vol. 50, pp. 29–48, Oct. 2020.

[7] M. Mowbray, et al., “Industrial data science – a review of machine
learning applications for chemical and process industries,” Reaction
Chemistry & Engineering, vol. 7, pp. 1471–1509, Apr. 2022.

[8] S. Chen, X. X. Wang, and C. J. Harris, “NARX-based nonlinear system
identification using orthogonal least squares basis hunting,” IEEE Trans.
Control Systems Technology, vol. 16, no. 1, pp. 78–84, Jan. 2008.

[9] S. A. Billings and S. Chen, “The determination of multivariable non-
linear models for dynamic systems,” in Control and Dynamic Systems,
Volume 7 of Neural Network Systems Techniques and Applications, ed.
C.L. Leondes, San Diego: Academic Press, 1998, pp. 231–278.

[10] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Mag., vol. 10, no. 4, pp. 12–25, Nov. 2015.



14

[11] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream processing
platforms for industry 4.0 requirements mapping for a predictive main-
tenance use case,” J. Manufacturing Systems, vol. 54, pp. 138–151, Jan.
2020.

[12] P. Kadlec, R. Grbic, and B. Gabrys, “Review of adaptation mechanisms
for data-driven soft sensors,” Computers & Chemical Engineering,
vol. 35, no. 1, pp. 1–24, Jan. 2011.

[13] H. Chen, Y. Gong, X. Hong, and S. Chen, “A fast adaptive tunable RBF
network for nonstationary systems,” IEEE Trans. Cybernetics, vol. 46,
no. 12, pp. 2683–2692, Dec. 2016.

[14] Y. Yuan, et.al., “Expert control system-based multimode hybrid switch-
ing control strategy for microwave lignite drying,” Drying Technology,
vol. 35, no. 12, pp. 1468–1480, Jun. 2017.

[15] Z. Chen and B. Liu, Lifelong Machine Learning (2nd edition), Morgan
& Claypool Publishers, 2018.

[16] G. Sun, et al., “Representative task self-selection for flexible clustered
lifelong learning,” IEEE Trans. Neural Networks and Learning Systems,
vol. 33, no. 4, pp. 1467–1481, Apr. 2022.

[17] G. Sun, et al., “What and how: Generalized lifelong spectral clustering
via dual memory,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 44, no. 7, pp. 3895–3908, Jul. 2022.

[18] F. Ye and A. G. Bors, “Lifelong mixture of variational autoencoders,”
IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 1,
pp. 461–474, Jan. 2023.

[19] F. Ye and A. G. Bors, “Lifelong teacher-student network learning,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 44, no. 10,
pp. 6280–6296, Oct. 2022.

[20] G. Sun, Y. Cong, and X. Xu, “Active lifelong learning with ‘watchdog’,”
in Proc. AAAI 2018 (New Orleans, LA, USA), Feb. 2-7, 2018, pp. 4107–
4114.

[21] G. Sun, et al., “Lifelong metric learning,” IEEE Trans. Cybernetics,
vol. 49, no. 8, pp. 3168–3179, Aug. 2019.

[22] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning algo-
rithm,” in Proc. ICML 2013 (Atlanta, GA, USA), Jun. 16-21, 2013,
pp. 507–515.

[23] P. Ruvolo and E. Eaton, “Active task selection for lifelong machine
learning,” in Proc. AAAI 2013 (Bellevue, Washington, USA), Jul. 14-
18, 2013, pp. 862–868.

[24] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor, “Online multi-
task learning for policy gradient methods,” in Proc. ICML 2014 (Beijing,
China), Jun. 21-26, 2014, pp. 1206–1214.

[25] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy search for lifelong
reinforcement learning with sublinear regret,” in Proc. ICML 2015 (Lille,
France), Jul. 6-11, 2015, pp. 2361–2369.

[26] H. B. Ammar, E. Eaton, J. M. Luna, and E. Eaton, “Autonomous cross-
domain knowledge transfer in lifelong policy gradient reinforcement
learning,” in Proc. IJCAI 2015 (Buenos Aires, Argentina), Jul. 25-31,
2015, pp. 3345–3351.

[27] J. Mendez, B. Wang, and E. Eaton, “Lifelong policy gradient learning
of factored policies for faster training without forgetting,” in Proc. NIPS
2020 (Vancouver, BC, Canada), Dec. 6-12, 2020, pp. 1–12.

[28] W. Shao, et al., “Online soft sensor design using local partial least
squares models with adaptive process state partition,” Chemometrics and
Intelligent Laboratory Systems, vol. 144, pp. 108–121, May 2015.

[29] H. Jin, et al., “Dual learning-based online ensemble regression approach
for adaptive soft sensor modeling of nonlinear time-varying processes,”
Chemometrics and Intelligent Laboratory Systems, vol. 151, pp. 228–
244, Feb. 2016.

[30] T. Liu, S. Chen, S. Liang, and C.J. Harris, “Selective ensemble of
multiple local model learning for nonlinear and nonstationary systems,”
Neurocomputing, vol. 378, pp. 98–111, Feb. 2020.

[31] T. Liu, S. Chen, S. Liang, and C.J. Harris, “Growing and pruning
selective ensemble regression for nonlinear and nonstationary systems,”
IEEE Access, vol. 8, no. 1, pp. 73278–73292, Apr. 2020.

[32] T. Liu, et al., “Multi-output selective ensemble identification of nonlinear
and nonstationary industrial processes,” IEEE Trans. Neural Networks
and Learning Systems, vol. 33, no. 5, pp. 1867–1880, May 2022.

[33] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Auto-
matica, vol. 36, no. 10, pp. 1401–1425, Oct. 2000.

[34] D. J. Leith and W. E. Leithead, “Survey of gain-scheduling analysis and
design,” Int. J. Control , vol. 73, no. 11, pp. 1001–1025, Nov. 2010.

[35] M. Mojto, K. Lubusky, M. Fikara, and R. Paulen, “Support vector
machine-based design of multi-model inferential sensors,” Computer
Aided Chemical Engineering, vol. 51, pp. 1045–1050, 2022.

[36] B. Ari and H. A. Guvenir “Clustered linear regression,” Knowledge-
Based Systems, vol. 15, no. 3, pp. 169–175, Mar. 2002.

[37] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Networks, vol. 2, no. 2, pp. 302–309, Mar. 1991.

[38] S. Chen, X. Hong, B. L. Luk, and C. J. Harris, “Construction of tunable
radial basis function networks using orthogonal forward selection,” IEEE
Trans. Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 457–
466, Apr. 2009.

[39] S. Chen, “Nonlinear time series modelling and prediction using Gaussian
RBF networks with enhanced clustering and RLS learning,” Electronics
Letters, vol. 31, no. 2, pp. 117–118, Jan. 1995.

[40] T. Liu, et al., “Fast adaptive gradient RBF networks for online learning
of nonstationary time series,” IEEE Trans. Signal Processing, vol. 68,
pp. 2015–2030, Mar. 2020.

[41] T. Liu, et al., “Fast tunable gradient RBF networks for online modeling
of nonlinear and nonstationary dynamic processes,” J. Process Control,
vol. 93, pp. 53–65, Sep. 2020.

[42] T. Liu, et al. , “Deep cascade gradient RBF networks with output-
relevant feature extraction and adaptation for nonlinear and nonsta-
tionary processes,” IEEE Trans. Cybernetics, early access, 2022. DOI:
10.1109/TCYB.2022.3152107.

[43] D. Isele, M. Rostami, and E. Eaton, “Using task features for zero-shot
knowledge transfer in lifelong learning,” in Proc. IJCAI 2016 (New
York, USA), Jul. 9-15, 2016, pp. 1620–1626.

[44] M. Rostami, D. Isele, and E. Eaton, “Using task descriptions in lifelong
machine learning for improved performance and zero-shot transfer,” J.
Artificial Intelligence Research, vol. 67, pp. 673–704, Mar. 2020.

[45] S. J Qin, et al., “Integration of process knowledge and statistical
learning for the Dow data challenge problem,” Computers & Chemical
Engineering, vol. 153, no. 107451, pp. 1–15, Oct. 2021.

[46] X. Tang, L. Zhang, and X. Li, “Bayesian augmented Lagrangian
algorithm for system identification,” Systems & Control Letters, vol. 120,
pp. 9–16, Oct. 2018.

[47] Z. Liu, et al., “Wind turbine blade bearing fault diagnosis under fluc-
tuating speed operations via Bayesian augmented Lagrangian analysis,”
IEEE Trans. Industrial Informatics, vol. 17, no. 7, pp. 4613–4623, Jul.
2021.

[48] C. S. Leung, G. H. Young, J. Sum, and W. K. Kan, “On the regularization
of forgetting recursive least square,” IEEE Trans. Neural Networks,
vol. 10, no. 6, pp. 1482–1486, Nov. 1999.

[49] U. Jeppsson, et al., “Towards a benchmark simulation model for
plant-wide control strategy performance evaluation of WWTPs,” Water
Science & Technology, vol. 53, no. 1, pp. 287–295, Jan. 2006.

[50] Y. Liu, B. Liu, X. Zhao, and M. Xie, “Development of RVM-based
multiple-output soft sensors with serial and parallel stacking strategies,”
IEEE Trans. Control Systems Technology, vol. 27, no. 6, pp. 2727–2734,
Nov. 2019.

[51] X. Hong and S. Chen, “A new RBF neural network with boundary
value constraints,” IEEE Trans. Systems, Man, and Cybernetics, Part B,
vol. 39, no. 1, pp. 298–303, Feb. 2009.

[52] S. Chen, X. Hong, and C. J. Harris, “Grey-box radial basis function
modelling,” Neurocomputing, vol. 74, no. 10, pp. 1564–1571, 2011.

Tong Liu (IEEE Member) received the B.S. degree
in Automation, and the Ph.D. degree in Control The-
ory and Engineering in 2016 and 2021, respectively,
from Chongqing University, China. From 2018 to
2019, He was a visiting PhD student at the School
of Electronics and Computer Science, the University
of Southampton, UK. From 2021 to 2022, he was a
Research Associate at the Department of Computer
Science, the University of Sheffield, UK. He is
currently working at the Sargent Centre for Process
Systems Engineering, Imperial College London. He

has published over 30 papers in the fields of machine learning and data
science. His areas of interest include adaptive and lifelong machine learning,
data modeling and analytics, data-driven optimization and control, with
their applications in industrial automation, precision agriculture, and smart
healthcare.



15

Sheng Chen (IEEE Fellow) received his BEng
degree from the East China Petroleum Institute,
Dongying, China, in 1982, and his PhD degree from
the City University, London, in 1986, both in control
engineering. In 2005, he was awarded the higher
doctoral degree, Doctor of Sciences (DSc), from
the University of Southampton, Southampton, UK.
From 1986 to 1999, He held research and academic
appointments at the Universities of Sheffield, Edin-
burgh and Portsmouth, all in UK. Since 1999, he has
been with the School of Electronics and Computer

Science, the University of Southampton, UK, where he holds the post of
Professor in Intelligent Systems and Signal Processing. Dr Chen’s research in-
terests include adaptive signal processing, wireless communications, modeling
and identification of nonlinear systems, neural network and machine learning,
evolutionary computation methods and optimization. He has published over
700 research papers. Professor Chen has 19,200+ Web of Science citations
with h-index 60 and 37,400+ Google Scholar citations with h-index 82. Dr.
Chen is a Fellow of the United Kingdom Royal Academy of Engineering, a
Fellow of Asia-Pacific Artificial Intelligence Association and a Fellow of IET.
He is one of the original ISI highly cited researcher in engineering (March
2004).

Po Yang (IEEE Senior Member) is currently an
Associate Professor in Large-scale Data Fusion with
the Department of Computer Science, University
of Sheffield, Sheffield, U.K. He received the B.Sc.
degree in computer science from Wuhan Univer-
sity, Wuhan, China, in 2004, the M.Sc. degree in
computer science from Bristol University, Bristol,
U.K., in 2006, and the Ph.D. degree in electronic
engineering from the University of Staffordshire,
Stafford, U.K., in 2011. He was a Postdoctoral
Research Fellow with the Department of Computing,

Bedfordshire University, Luton, U.K. Before he was with the Bedfordshire
University, he was a Research Assistant with the University of Salford. His
main research interests include pervasive computing, data science, mobile
intelligence, computer vision, GPU, and parallel computing.

Yunpeng Zhu (IEEE Member) received the B.S. de-
gree in mechanical engineering and automation and
the M.S. degree in mechanical manufacturing and
automation from Northeastern University, Shenyang,
China, in 2013 and 2015, respectively, and the Ph.D.
degree from the Department of Automatic Control
and Systems Engineering, University of Sheffield,
Sheffield, U.K., in 2020. He was a Research Asso-
ciate with the Department of Automatic Control and
System Engineering, University of Sheffield from
2018 to 2022. He is currently an Assistant Professor

with the School of Engineering and Material Science, Queen Mary University
of London, London, U.K. His research interests include data-driven science
and dynamical systems, nonlinear dynamics, system identification, etc.

Mehmet Mercangöz received his BSc and MSc
degrees from Boazii University, stanbul, Turkey, in
2000 and 2002, respectively and the PhD degree
from the University of California, Santa Barbara,
CA, USA, in 2007, all in chemical engineering. He
joined ABB Corporate Research in Baden-Dttwil,
Switzerland, after completing his PhD degree and
worked as a scientist and principal scientist with the
Control and Optimization Group eventually assum-
ing the group leader role there from 2012 to 2018. In
2018, he was promoted to a senior principal scientist

role at ABB and also started lecturing at ETH Zurich at the Department of
Information Technology and Electrical Engineering, which he continued to
do until 2022. In 2021, he joined the Chemical Engineering Department
of Imperial College London and the Sargent Centre for Process Systems
Engineering as a reader/associate professor, where he currently leads the
Autonomous Industrial Systems Laboratory. His research is focused on the
integration of artificial intelligence technologies into process monitoring,
optimisation, and control applications for increasing the autonomous operation
capabilities of industrial processes. He has authored over 60 research papers
and he is listed as an inventor in over 35 patents and patent applications.

Chris J. Harris received his BSc and MA degrees
from the University of Leicester and the University
of Oxford in UK, respectively, and his PhD de-
gree from the University of Southampton, UK, in
1972. He was awarded the higher doctoral degree,
the Doctor of Sciences (DSc), by the University
of Southampton in 2001. He is Emeritus Research
Professor at the University of Southampton, having
previously held senior academic appointments at
Imperial College, Oxford and Manchester Univer-
sities, as well as Deputy Chief Scientist for the

UK Government. Professor Harris was awarded the IEE senior Achievement
Medal for Data Fusion research and the IEE Faraday Medal for distinguished
international research in Machine Learning. He was elected to Fellow of the
UK Royal Academy of Engineering in 1996. He is the co-author of over 600
scientific research papers during a 60 year research career.


