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Abstract

Following up on our work on Turing pattern formation in a one-dimensional
reaction-transport model, we explore the emergence of patterns in a two dimen-
sional model described by a system of PDEs for passively transported diffusing
particles (PT) and actively transported motor-driven particles (AT). We first
propose a model where the actively transported particles are taken to be func-
tions of spatial locations x ∈ R and velocity v. We then consider two special
simplifying cases where particles are transported at (i) constant speeds v so that
the concentration of AT particles is taken to be a function of spatial location
and velocity angle θ ∈ S1 and (ii) discrete velocities (still with constant speed)
in directions along a lattice tiling the plane. In the former case the system
is equivariant with respect to the so called shift-twist action of the Euclidean
group E(2) acting on functions on R2 × S1, while in the latter case it is equiv-
ariant with respect to the group DN n R2 where DN (N = 4 for square and
N = 6 for hexagonal) is the holohedry group of the lattice. In both cases, we use
symmetric bifurcation theory to analyze the planforms emerging from a Turing
bifurcation, should it occur. In the discrete velocity square lattice case, we are
able to prove that a Turing bifurcation does indeed occur as the dimensionless
parameter γ = αD/v2 crosses some critical value. Here, D is the diffusion coef-
ficient for the passively diffusing particles and α is the switching rate between
motor states.
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1. Introduction

Recently, we proposed a novel mechanism for Turing pattern formation that
provides a possible explanation for the formation and homeostatic control of
regularly spaced synaptic puncta along the ventral cord of C. elegans during
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development [9]. The corresponding model consisted of two interacting chemi-
cal species, where one is passively diffusing and the other is actively trafficked
by molecular motors. We identified the former as the protein kinase CaMKII
and the latter as the glutamate receptor GLR-1. Motivated by the partic-
ular application to C. elegans, we considered a one-dimensional (1D) hybrid
reaction-transport model, in which the motor-driven chemical switches between
forward and backward moving states. Using linear stability analysis, we derived
conditions on the associated nonlinear reaction functions for which a Turing
instability can occur. In particular, we showed that the dimensionless quantity
γ = αD/v2 had to be sufficiently small for patterns to emerge, where α is the
switching rate between motor states, v is the motor speed, and D is the diffu-
sion coefficient of CaMKII. We thus established that patterns cannot occur in
the fast switching regime (α → ∞), which is the parameter regime where the
model effectively reduces to a two-component reaction-diffusion system. Numer-
ical simulations of the model using experimentally-based parameters generated
patterns with a wavelength consistent with the synaptic spacing found in C.
elegans, after identifying the in-phase CaMKII/GLR-1 concentration peaks as
sites of new synapses. Extending the model to the case of a slowly growing 1D
domain, we subsequently showed how the synaptic density can be maintained
during C. elegans growth, due to the insertion of new concentration peaks as
the length of the domain increases [10].

In this paper, we further explore the emergence of patterns in hybrid reaction-
transport equations by considering a two-dimensional (2D) model. In the case
of neurites of neurons in C. elegans, the microtubles tend to be aligned in par-
allel so that one can treat the active transport process as effectively 1D. On
the other hand, intracellular transport within most non–polarized animal cells
occurs along a microtubular network that projects radially from an organiz-
ing center (centrosome) with outward polarity [8]. This allows the transport
of molecules to and from the nucleus, including viruses that take advantage of
microtubule-based transport in order to reach the nucleus from the cell surface
and release their genome [11]. A detailed microscopic model of intracellular
transport within the cell would need to specify the spatial distribution of micro-
tubular orientations and polarity, in order to specify which velocity states are
available to a motor-cargo complex at a particular spatial location. However, a
simplified model can be obtained under the “homogenization” assumption that
the network is sufficiently dense so that the set of velocity states (and associated
state transitions) available to the diffusing motor complex is independent of po-
sition. In that case, one can effectively represent active transport within the cell
in terms of a higher-dimensional velocity jump process [1, 20, 6], which is analo-
gous to an animal movement model with a turning function [17]. This provides
a biological motivation for extending our previous model to higher dimensions.
(For simplicity, we focus on a 2D model, which is a reasonable approximation
for epithelial cells, for example.)

We consider two types of turning function: (i) all velocity directions are
accessible to a particle independent of position (isotropic velocity case), and
(ii) a finite set of velocity directions are accessible to a particle independent of
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position, which are generated by a planar lattice (discrete velocity case). In
both cases we derive conditions for the existence of a Turing bifurcation from
a uniform state, and use the equivariant branching lemma [14, 25, 13, 18] to
identify the planforms that emerge as primary bifurcations. In particular, we
show that the planforms are nontrivial with regards the relative distribution of
the active and passive chemical species. We note that the isotropic velocity ver-
sion is a novel example of a PDE with so-called Euclidean shift-twist symmetry;
the latter symmetry was originally identified within the context of a neural field
model of visual hallucinations [3, 4]. However, as with previous applications, in
order to exploit finite-dimensional bifurcation theory, it is necessary to restrict
solutions to be doubly-periodic with respect to some planar lattice. One of the
interesting features of the discrete velocity version is that the underlying mi-
crotubular network can provide a physical substrate for such a planar lattice.

The paper is organized as follows. The basic 1D hybrid reaction-transport
model is presented in section 2. A 2D version of the model is introduced in
section 3, where various microtubule network configurations are discussed. The
possible symmetries of the 2D model are described in section 4, and these are
then incorporated into the bifurcation analysis of 2D Turing patterns in sections
5 and 6. Note that in this paper we focus on the existence of Turing patterns
and their symmetries. We do not determine their stability using, for example,
weakly nonlinear analysis to derive a set of amplitude equations. In addition to
the complexity of such an analysis, the resulting amplitude equations are not
sufficient unless one has information about the explicit form of the nonlinearities
and the corresponding model parameters. These are currently not known.

2. One-dimensional model

We begin by describing the 1D hybrid reaction-transport model of Ref. [9],
which couples particles undergoing active bidirectional transport with a pas-
sively diffusing particle, see Fig. 1. Let A(x, t) denote the concentration of
actively transported (AT) particles at position x at time t and let P (x, t) de-
note the corresponding concentration of passively transported (PT) particles
with diffusion coefficient D. We assume that each particle randomly switches
between the two constant velocity states ±v± according to a two-state Markov
process with switching rate α. The AT particles are partitioned into two sub-
populations: those that undergo anterograde (rightward) transport with positive
velocity v+ and density A+(x, t), and those that undergo retrograde (leftward)
transport with negative velocity −v− and density A−(x, t):

A(x, t) = A+(x, t) +A−(x, t). (2.1)
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Figure 1: One-dimensional, three-component hybrid trafficking model. (a) Passively trans-
ported diffusing particles (PT) react with actively transported particles (AT). The latter
switch between forward and backward moving states (traveling with velocities ±v±). (b)
Reaction scheme of model.

The three-component system evolves according to the equations

∂P

∂t
= D

∂2P

∂x2
+ f(P,A) (2.2a)

∂A+

∂t
= −v+

∂A+

∂x
− α(A+ −A−) + g(P,A) (2.2b)

∂A−
∂t

= v−
∂A−
∂x

+ α(A+ −A−) + g(P,A). (2.2c)

The first term on the right-hand side of equation (2.2a) represents diffusive
transport of PT particles and the first term on the right-hand side of equations
(2.2b,c) represents ballistic transport of the AT particles to the right or left,
respectively. The terms ±α(A+−A−) represent the effects of switching between
the two advective states, which for simplicity are taken to be the same. The
reaction terms f and g are taken to be functions of the PT particle concentration
P and the total AT particle concentration A.

It is important to note that three-component models analogous to (2.2) have
been studied extensively within the context of population models of animal
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movement and chemotaxis [21, 16, 17]. Chemotaxis refers to the active directed
movement of cells along a chemical concentration gradient that is generated by
the cells themselves, resulting in macroscopic cell aggregations. The chemical
signal can affect both the rate of switching between different velocity rates
and the velocities themselves. In the case of a 1D velocity-jump process, a
chemotactic model takes the form

∂P

∂t
= D

∂2P

∂x2
+ κA− γP (2.3a)

∂A+

∂t
= −∂v(P )A+

∂x
− α+(P, Px)A+ + α−(P, Px)A− (2.3b)

∂A−
∂t

=
∂v(P )A−

∂x
+ α+(P, Px)A+ − α−(P, Px)A−. (2.3c)

Here P (x, t) represents the concentration of the diffusing chemotactic signal,
which decays at a constant rate γ and is produced at a rate that is propor-
tional to the total cell density A = A+ + A−. The cells have concentration-
dependent velocities ±v(P ) and switching rates α±(P, Px). Note that the
switching rates from the +/− states are taken to be different. If we write
α±(P, Px) = α ∓ Φ(P )Px, then comparison with equations (2.2) shows that
v± → ±v(P ), f(P,A)→ κA− γP and g(P,A)→ ±Φ(P )PxA.

We recently used hybrid reaction-transport equations of the form (2.2) to
analyze Turing patterns in a model for the formation of regularly spaced synap-
tic puncta along the ventral cord of C. elegans during development [9]. In
this model we identified the PT particles as calcium-calmodulin protein kinase
II (CaMKII) and the AT particles as glutamate receptors GLR-1 undergoing
molecular motor-driven transport along microtubules (intracellular filaments).
Using linear stability analysis we derived conditions on the associated nonlinear
interaction functions f, g for which a Turing instability can occur. In the sym-
metric case (v± = v) we found that the dimensionless quantity γ = αD/v2 had
to be sufficiently small for patterns to emerge. One consequence is that patterns
arise outside the parameter regime of fast switching, where the model effectively
reduces to a classical two-component reaction-diffusion (RD) system. The ab-
sence of patterns in the RD model reflects the the fact that the AT particles
are taken to be inhibitors and the PT particles to be activators, which holds
for the particular application to synaptogenesis in C. elegans [9]. However, the
diffusivity of the AT particles (inhibitors) is O(ε) in the fast switching limit.
Note that in the particular application to C. elegans, we considered the classical
activator-inhibitor system of Gierer and Meinhardt (GM) [12]:

f(P,A) = ρ1
P 2

A
− µ1P + η (2.4a)

g(P,A) = ρ2P
2 − µ2A. (2.4b)

Here ρ1, ρ2 represent the strength of interactions, µ1 and µ2 are the respective
decay rates, and η is the production rate of CaMKII. The model was chosen
as CaMKII exhibits autocatalysis, and we required the peaks of CaMKII and
GLR-1 to be in-phase.
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In our previous work we proved that a homogeneous fixed point to Equation
(2.2) undergoes a Turing instability if the following inequalities hold [9]:

γ ≡ αD

v2
< − fP

4gA
<

1

2
, gA < 0, fP > 0, fAgP < 0. (2.5)

At the critical point, the fixed point is marginally stable with respect to exci-
tation of a spatially periodic pattern of critical wavelength 2π/kc. Typically,
varying one of the parameters of the underlying model can then push the as-
sociated real dispersion curve λ = λ(k) above zero in a neighborhood of kc,
resulting in a Turing instability. Whether or not a stable periodic pattern forms
then depends on the nonlinearities of the system, which can be investigated
numerically or using weakly nonlinear analysis.

3. Two-dimensional model

We now consider a 2D hybrid reaction-transport model. Let P (x, t) denote
the concentration of PT particles at position x ∈ R2 at time t. Similarly, let
A(x,v, t) denote the corresponding concentration of AT particles with velocity
v ∈ V ⊂ R2. The 2D generalization of equations (2.2) takes the form

∂P

∂t
= D∇2P + f(P,A) (3.1a)

∂A

∂t
= −v · ∇A− αA+ α

∫
V

T (v,v′)A(x,v′, t)dv′ + g(P,A), (3.1b)

where

A(x, t) =

∫
V

A(x,v, t)dv, (3.2)

and T (v,v′) is the so-called turning distribution [15]. The latter describes the
probability that an AT particle with velocity v′ switches to the velocity v. An-
alytical properties of the associated turning operator and various biology con-
straints have been discussed in detail elsewhere [15, 21, 17], particularly within
the context of animal movement models. Here we consider turning functions
relevant to intracellular transport [7]. In particular, we assume that T is invari-
ant under the change (v,v′) 7→ (σv, σv′) for σ ∈ O(2) since this transformation
leaves distance and angle between v and v′ unchanged. In the following section
we will describe the symmetries of the full model under this constraint, and
then discuss some special cases.

3.1. Symmetries of the full model

It is well known that standard reaction-diffusion equations in R2 are equivari-
ant with respect to the action of the Euclidean group E(2), which is composed of
the semi-direct product of the group of planar rotations and reflections (O(2))
and the group of planar translations (R2). That is, define the action of the
group E(2) on functions u(x) as

σ · u(x) = u(σ−1x), ∀σ ∈ E(2),
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where σ−1x is the inverse of the usual rotation, reflection and translation of
vectors x ∈ R2. The system

∂u

∂t
= G(u),

where G maps the space of functions into itself, is said to be equivariant with
respect to the action of E(2) if σ · G(u) = G(σ · u) for all σ ∈ E(2) and all
functions u. For example, suppose that there are only PT particles so that
equation (3.1a) becomes

∂P (x, t)

∂t
= D∇2P + f(P ).

It is straightforward to show that ∇2 is E(2) equivariant and that f is simply a
function of the argument (thus trivially equivariant), so the full system is E(2)
equivariant.

One major consequence of equivariant systems is that if u(x, t) is a solution,
then so is u(σ−1x, t) for any σ ∈ E(2). Moreover, the linearization of the system
about some homogeneous stationary solution u(x) ≡ u0 is also equivariant.
That is, if we write

∂u

∂t
= Lu

with L = DG|u0 (the differential of G at u0) and u(x) is an eigenfunction of L
then so are u(σ−1x), and the associated eigenvalues are the same. Whenever the
group contains translations, as it does with E(2), then generically, eigenfunc-
tions of L are of the form eik·x with the eigenvalues depending on the wavevector
k. Additionally, if the group contains rotations, then we have a one-parameter
family of eigenfunctions eik·(R−φx) = ei(Rφk)·x (φ ∈ [0, 2π)). In this case, the
eigenvalues only depend on the magnitude of k, i.e. λ = λ(||k||). It follows
that for a system of reaction-diffusion equations exhibiting a Turing bifurcation
(from a uniform steady state to a globally patterned state with a dominant fi-
nite wavenumber kc), there are an infinite number of marginally stable modes
lying on the critical circle ||k|| = kc. The standard way of handling this infinite
degeneracy is to require that solutions are doubly-periodic with respect to one
of the planar lattices listed in Table 3.1 below, resulting in a finite-dimensional
bifurcation problem [25, 13, 18].

Let us now turn our attention back to the hybrid reaction-transport system
(3.1). This system is not equivariant with respect to the standard action of
E(2). First of all, the function A not only depends on x but also on the velocity
v. Hence we must define the action on variables (x,v) ∈ R2 × V . Second,
the kernel T (v,v′) of the integral operator must have a particular structure.
Imposing the O(2) symmetry of T , we define the Euclidean action on functions
(P (x), A(x,v)) as follows:

σ · (P (x), A(x,v)) =

{
(P (σ−1x), A(σ−1x, σ−1v)), σ ∈ O(2)

(P (σ−1x), A(σ−1x,v)), σ ∈ R2.
(3.3)
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By changing variables v′ → σv′, and noting that σV = V and d(σv′) = dv′, we
have ∫

V

A(σ−1x, σ−1v′)dv′ =

∫
V

A(σ−1x,v′)dv′, ∀σ ∈ O(2),

which shows that
∫
A is E(2)-equivariant. Since f and g are functions of P

and
∫
A, it follows that the f and g terms are E(2)-equivariant. Moreover,

since E(2) acts on P in the standard way, it follows that ∇2 is E(2)-equivariant.
Thus it remains to show that the gradient and integral operator are equivariant.

First, we consider the integral operator. For σ ∈ O(2), we must show

σ ·
∫
V

T (v,v′)A(x,v′, t)dv′ =

∫
V

T (v,v′)[σ ·A(x,v′, t)]dv′.

We have

σ ·
∫
V

T (v,v′)A(x,v′, t)dv′ =

∫
V

T (σ−1v,v′)A(σ−1x,v′, t)dv′

=

∫
V

T (σ−1v, σ−1v′)A(σ−1x, σ−1v′, t)dv′

=

∫
V

T (v,v′)A(σ−1x, σ−1v′, t)dv′

=

∫
V

T (v,v′)[σ ·A(x,v′, t)]dv′

where the second line comes from the change of variables v′ → σ−1v′, and the
third line comes from the O(2) invariance assumption for T . Now consider the
gradient term. We must show that

[σ−1v] · [∇xA(x,v)]
∣∣
(x,v)→(σ−1x,σ−1v)

= v · ∇x[A(σ−1x, σ−1v))].

Standard multivariate calculus shows that

∇f(σ−1x) = [σ∇f(x)]
∣∣
x→σ−1x

, ∀σ ∈ O(2)

and therefore

v · ∇x[A(σ−1x, σ−1v)] = v · [σ∇xA(x,v)]
∣∣
(x,v)→(σ−1x,σ−1v)

=
[
σTv

]
· [∇xA(x,v)]

∣∣
(x,v)→(σ−1x,σ−1v)

=
[
σ−1v

]
· [∇xA(x,v)]

∣∣
(x,v)→(σ−1x,σ−1v)

.

Note that the second line follows from the definition of the adjoint with respect
to the standard dot product, and the third line follows from the orthogonality
of σ ∈ O(2). Furthermore, it is clear that the integral operator is equivariant
with respect to translations (x,v) → (x + a,v). Hence, equation (3.1) is E(2)
equivariant.
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If the nonlinearities f and g are odd functions of their arguments then the
system has additional symmetry. In this case, define the pseudoscalar action by

σp
[
P
A

]
=


σs

[
P

A

]
, if σs is a rotation or translation

−σs
[
P

A

]
, if σs is a reflection

(3.4)

where σs is the scalar action defined in equation (3.3). Then equation (3.1) is
equivariant with respect to this action if and only if f and g are odd functions.
Linear systems do not distinguish between scalar and pseudoscalar actions, since
all linear operators equivariant with respect to the scalar action are also equiv-
ariant with respect to the pseudoscalar action. Hence the same eigenfunctions
will arise in both cases. The difference occurs at the nonlinear level when ana-
lyzing the selection of patterns through the Turing bifurcation.

3.2. Isotropic velocities and Euclidean shift-twist symmetry
Intracellular transport within most non–polarized animal cells occurs along

a microtubular network projecting radially from an organizing centers or cen-
trosomes [8]. Large internal stresses can often bend the microtubles, resulting
in a locally disordered network, see Fig. 2. It follows that in vivo transport
on relatively short length scales may be similar to transport observed in vitro,
where microtubular networks are not grown from a centrosome and thus exhibit
orientational and polarity disorder [23, 19]. In the case of a highly disordered,
dense network one can make the simplifying assumption that all velocity di-
rections are accessible to an AT particle independently of position. If we take
the speed to be the same in all directions, then v can be parameterized by the
direction angle θ ∈ [0, 2π)

v(θ) = v(cos θ, sin θ).

Setting A = A(x, θ, t) and T (v(θ),v(θ′)) = T (θ−θ′) with T (θ) an even function,
equations (3.1) become [6]

∂P

∂t
= D∇2P + f(P,A) (3.5a)

∂A

∂t
= −v(θ) · ∇A− αA+ α

∫ 2π

0

T (θ − θ′)A(x, θ′, t)dθ′ + g(P,A),

(3.5b)

with

A(x, t) =

∫ 2π

0

A(x, θ, t)dθ. (3.6)

Note that T has this particular form since T (v,v′) is O(2) invariant and thus
depends on the difference in angles. In the subsequent analysis, it will be conve-
nient to non-dimensionalize this system by performing the change of variables

x→ v

α
x, t→ 1

α
t, f → 1

α
f, g → 1

α
g
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(a) (b)

D

v(θ)

v(θ')

Figure 2: Disordered microtubular network. (a) Random orientational arrangement of micro-
tubules. (b) Hybrid 2D transport in which a particle switches between diffusion and ballistic
motion in a random direction θ. We ignore the polarization of each filament, since we assume
that a bound particle can reverse its direction along a given filament, as in the 1D model.

to obtain the system

∂P

∂t
= γ∇2P + f(P,A) (3.7a)

∂A

∂t
= −~θ · ∇A−A+

∫ 2π

0

T (θ − θ′)A(x, θ′, t)dθ′ + g(P,A), (3.7b)

where we define γ = αD/v2 and ~θ = (cos θ, sin θ). In the analysis below we will
use γ as the bifurcation parameter.

The action defined in equation (3.3) induces a corresponding action of the
Euclidean group on the product space R2 × S1, where S1 denotes the circle.
Rotations and reflections act on S1 according to

Rφv(θ) = Rφv(cos θ, sin θ) = v(cos(θ + φ), sin(θ + φ))

and
κv(θ) = κv(cos θ, sin θ) = v(cos θ,− sin θ) = v(cos θ, sin(−θ))

and therefore the corresponding action on R2 × S1 is

s · (x, θ) = (x + s, θ) s ∈ R2

ϕ · (x, θ) = (Rϕx, θ + ϕ) ϕ ∈ S1

κ · (x, θ) = (κx,−θ).
(3.8)

We define the action on vector functions (P (x), A(x, θ)) by

σ ·
[
P (x)
A(x, θ)

]
=

[
P (σ−1x)

A(σ−1 · (x, θ))

]
for all σ ∈ E(2), (3.9)

where σ−1x means the standard Euclidean action on R2. The same so-called
shift-twist Euclidean group action occurs within the context of continuum neural

10



Lattice `1 `2
ˆ̀

1
ˆ̀

2

Square (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal (1, 0) 1
2 (−1,

√
3) (1, 1√

3
) (0, 2√

3
)

Rhombic (1, 0) (cos η, sin η) (1,− cot η) (0, csc η)

Table 1: Generators for the planar lattices and their dual lattices in the case of unit
lattice spacing (d = 1). The generators of the dual lattice satisfy `i · ˆ̀j = δi,j .

field models of primary visual cortex, where non–local interactions are mediated
by axonal connections between neurons that are tuned to respond to oriented
visual stimuli [3, 4, 24]. They also arise in a general class of non–local population
models describing the aggregation and alignment of oriented objects in two
dimensions, including protein filaments and oriented cells such as fibroblasts
[5].

The proof of equivariance of the hybrid reaction-transport equations (3.5)
immediately follows from the proof in §3.1. Additionally, the system is equiv-
ariant with respect to the pseudoscalar action in equation (3.4) if and only if
f and g are odd functions. Equivariance with respect to the shift-twist action
of the Euclidean group means that the bifurcation analysis of marginally stable
Turing patterns has to deal with the infinite degeneracy arising from rotation
symmetry. In order to handle the infinite degeneracy of the dispersion curves,
one can restrict the class of solutions to be doubly-periodic with respect to a
regular planar lattice L. The lattice L is generated by two linearly independent
vectors `1 and `2:

L = {(m1`1 +m2`2) : m1,m2 ∈ Z} (3.10)

with lattice spacing d = |`j |. Let ψ be the angle between the two basis vectors `1

and `2. We can then distinguish three types of lattice according to the value of ψ:
square lattice (ψ = π/2), rhombic lattice (0 < ψ < π/2, ψ 6= π/3) and hexagonal
(ψ = π/3), see Table 1 and Fig. 3. The three lattices have distinct holohedries,
which are the subgroup of rotations and reflections O(2) that preserves the
lattice. The holohedry of the rhombic lattice is D2, the holohedry of the square
lattice is D4, and the holohedry of the hexagonal lattice is D6. This implies
that there are only a finite number of rotations and reflections to consider for
each lattice. A function f : R2 × S1 → R is doubly periodic with respect to L if

f(x + `, θ) = f(x, θ)

for every ` ∈ L. Restriction to double periodicity means that the original
Euclidean symmetry group is now restricted to the symmetry group of the
lattice, Γ = DN nT2

3.3. Discrete velocities and holohedral symmetry

We now consider an alternative microtubular network configuration, where
the filaments form a dense mesh that tiles the plane, so that at any point x, a
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(a) (b)

l1

l2

(c)

l1

l2

l1

l2

Figure 3: Regular planar lattices. (a) Square configuration (D4). (b) Rhombic configuration
(D2). (c) Hexagonal configuration (D6).

particle switches between a discrete set of velocities. As a further simplification,
suppose that the mesh is formed by one of the regular planar lattices L shown in
Fig. 3. As in the case of the disordered network, we assume that the filaments
are sufficiently dense and an AT particle can move with speed ±v in any of
the discrete directions. In other words, the different ballistic states of an AT
particle are given by

v = ±v`1, ±v`2

for the square and rhombic configurations, and

v = ±v`1, ±v`2, ±v(`1 + `2)

for the hexagonal configuration. It is important to observe that for a dense
network, the lattice structure determines the set of velocity states available to
an AT particle - it does not affect the dependence of concentrations on the
spatial variable x. This is distinct from the role that planar lattices play in
the analysis of reaction-diffusion systems with Euclidean symmetry, where one
imposes double-periodicity with respect to the lattice in order to deal with
infinite degeneracies, see section 4.
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Suppose that the different velocity states are labeled by j = 0, . . . , N − 1
with N = 4 (square, rhombic lattice) or N = 6 (hexagonal lattice). We assume
that each velocity state is equally likely. After non-dimensionalizing as in §3.2,
equation (3.1) becomes

∂P

∂t
= γ∇2P + f(P,A) (3.11a)

∂Aj
∂t

= −`j · ∇Aj −Aj +
1

N − 1

N−1∑
n=0, 6=j

An(x, t) + g(P,A), (3.11b)

where

A(x, t) =

N−1∑
j=0

An(x, t) (3.12)

and Aj denotes the concentration of AT particles in velocity state vj = v`j ,
where `j are the lattice vectors defined in Table (1). Note that the summation on
the right-hand side of equation (3.11a) does not include Aj , since this represents
transitions out of the state j. Each transition is equally likely, so that we have
the normalization 1/(N − 1).

The discrete velocity model explicitly breaks continuous O(2) symmetry.
In particular, Equations (3.11) are equivariant with respect to the semi-direct
product group Γ = DN n R2 acting on the space R2 × V , where DN is the
associated lattice holohedry and V is the discrete set of velocities. The action
on the square lattice is generated by

s · (x,vj) = (x + s,vj) s ∈ R2

Rπ/2 · (x,vj) = (Rπ/2x, Rπ/2vj) = (Rπ/2x,vj+1), j = 0, 1, 2, 3 mod 4

κ · (x,vj) = (κx, κvj) =

{
(κx,vj), j = 0, 2

(κx,vj+2), j = 1, 3 mod 4

(3.13)
where κ is reflection across the first component (x-axis) and vj = v(jπ/2).
Similarly, the action on the hexagonal lattice is

s · (x,vj) = (x + s,vj) s ∈ R2

Rπ/3 · (x,vj) = (Rπ/3x, Rπ/3vj) = (Rπ/3x,vj+1), j = 0, 1, . . . , 5 mod 6

κ · (x,vj) = (κx, κv) =


(κx,vj), j = 0, 3

(κx,v5), j = 1

(κx,v4), j = 2

(3.14)
where vj = v(jπ/3). Note that the action on V can be equivalently expressed
in terms of permutations of the index j, j → σ(j). The corresponding group
action on the functions Aj(x) is given by

σ ·Aj(x) = Aσ−1(j)(σ
−1 · x) for all σ ∈ DN . (3.15)
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Thus we define the action of Γ on functions (P,A)T as

σ

[
P (x)
A(x)

]
=



[
P (σ−1x)

P−1
σ A(σ−1x)

]
, ∀σ ∈ DN[

P (σ−1x)

A(σ−1x)

]
, ∀σ ∈ R2

(3.16)

where A = (A0, ..., AN−1)T and Pσ is the permutation matrix corresponding to
σ. With this action, equation (3.11) is Γ-equivariant. Once again, the system
is also equivariant with respect to the scalar action if and only if f and g are
odd functions.

4. Properties of the linearized system

4.1. Isotropic velocities
For simplicity, we take a uniform turning distribution T (θ) = 1/2π. Suppose

there exists a homogeneous fixed point of equation (3.7) given by

(P (x, t), A(x, θ, t)) = (P ∗, A∗).

Linearizing about this fixed point yields the spectral problem

λp(x) = γ∇2p(x) + fP p(x) + fA

∫
a(x, θ)dθ (4.1a)

λa(x, θ) = −~θ · ∇a(x, θ)− a(x, θ) +

(
1

2π
+ gA

)∫
a(x, θ)dθ + gP p(x).

(4.1b)

These equations can be rewritten in the form

λ

[
p
a

]
= L

[
p
a

]
,

with the linear operator L acting on C2(R2×S1,R2). The fact that L commutes
with the action of O(2) n R2 greatly reduces the complexity of the spectral
problem. First, translation symmetry implies that eigenfunctions are of the
form [

p(x)
a(x, θ)

]
= w(k, θ) ≡ u(θ)eik·x + c.c, u(θ) =

[
p
a(θ)

]
(4.2)

where k ∈ R2, p ∈ C and a(θ) is a complex valued 2π-periodic function. Sub-
stituting (4.2) into equations (4.1) yields the eigenvalue problem

λ(k)p = (−γ||k||2 + fP )p+ fA

∫ 2π

0

a(θ)dθ (4.3a)

λ(k)a(θ) = −
(
i~θ · k + 1

)
a(θ) +

(
1

2π
+ gA

)∫ 2π

0

a(θ)dθ + gP p.

(4.3b)
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The right-hand side defines the linear operator L acting on complex, vector-
valued, 2π-periodic functions u(θ) with parameter k. Hence, we can treat the
eigenvalues as functions of k. Equivariance implies that λ(k) = λ(σk) for
all σ ∈ O(2), so that if u(θ) is an eigenfunction of λ(k) then u(σ−1θ) is an
eigenfunction of λ(σk). This follows from

σ[u(θ)eλt+ik·x] = u(σ−1θ)eλt+ik·(σ
−1x) = u(σ−1θ)eλt+i(σk)·x

by properties of the standard dot product, and σ being represented by orthogo-
nal matrices. It is clear that the eigenvalues of L only depend on the magnitude
||k|| = k and thus, without loss of generality, we can take k = k(1, 0) and study
the reduced system

λp = (−γk2 + fP )p+ fA

∫ 2π

0

a(θ)dθ (4.4a)

λa(θ) = − (ik cos(θ) + 1) a(θ) +

(
1

2π
+ gA

)∫ 2π

0

a(θ)dθ + gP p,(4.4b)

which we rewrite in the more compact form

λ

[
p
a(θ)

]
= L0(k)

[
p
a(θ)

]
. (4.5)

Then, given an eigenspace of L0(k), we obtain a corresponding eigenspace of L
as

Eλ(L) = {u (θ − ϕ) eik(cosϕ,sinϕ)·x + c.c. : u(θ) ∈ Eλ(L0), ϕ ∈ [0, 2π)}

which is necessarily infinite-dimensional. In order to make this eigenspace
amenable to bifurcation theory, we restrict the function space to doubly pe-
riodic functions on a lattice. This consequently reduces O(2)nR2 equivariance
to DNnT2, where DN is the holohedry of the lattice and T2 is the torus. Then
ϕ = 2πn/N , n = 0, ..., N − 1, where N = 2 for the rhombus, N = 4 for the
square, and N = 6 for the hexagonal lattice. Thus Eλ(L) is a 2m, 4m, and 6m
dimensional space, respectively, where m = dim(Eλ(L0)). In general Eλ(L0)
could still be infinite-dimensional. However, in the context of bifurcation the-
ory, we look for a one-dimensional nullspace for L0, and hence the nullspace of
L will be 2, 4, and 6 dimensional for rhombus, square, and hexagonal lattice
respectively.

For each k the associated subspace of eigenfunctions

Wk =
{
u(θ − ϕ)eik·x + c.c

}
, k = k(cosϕ, sinϕ) (4.6)

decomposes into two L0(k)-invariant subspaces

Wk = W+
k ⊕W

−
k , (4.7)
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corresponding to even (respectively, odd) functions in θ

W+
k = {w ∈Wk : u(−θ) = u(θ)} = {w ∈Wk : a(−θ) = a(θ)} (4.8a)

W−k = {w ∈Wk : u(−θ) = −u(θ)} = {w ∈Wk : p = 0, a(−θ) = −a(θ)}.
(4.8b)

This is a consequence of reflection symmetry of the system. Let κk denote
reflections about the wavevector k so that κkk = k. Then κk[u(θ − ϕ)eik·x] =
u(ϕ−θ)eik·x. Since κk is a reflection, any space that it acts on decomposes into
two subspaces – one on which it acts as the identity I and one on which it acts
as −I. Moreover, equivariance implies that L commutes with any reflection in
O(2) and thus

λw = Lw =⇒ λ[κw] = L[κw],

which naturally leads to this particular splitting of Wk. Note, however, that this
does not necessarily imply that W+

k and W−k have the same eigenvalues. The
even and odd functions correspond to scalar and pseudoscalar representations
of the Euclidean group [3, 4, 2].

4.2. Discrete velocities

Now suppose that there exists a homogeneous fixed point solution of equa-
tions (3.11) given by P (x, t) = P s and Aj(x, t) = As for j = 0, . . . , N − 1.
Linearizing about this fixed point yields the spectral problem

λ

[
P
A

]
= L

[
P
A

]
where A = (A0, . . . , AN−1)> and L is the linear operator on C2(R2,RN+1)
defined by

LP ≡ γ(∇2 + fP )P + fA
∑
n

An (4.9a)

LAj ≡ −`j · ∇Aj + (gA − 1)Aj +

(
1

N − 1
+ gA

)∑
n 6=j

An + gPP. (4.9b)

Again, translation symmetry implies that eigenfunctions have the form ueik·x

for some u ∈ CN+1. Substituting this into equation (4.9b) yields the spectral
problem

λp = (−γ||k||2 + fp)p+ fA
∑

an (4.10a)

λaj = −(i`j · k + 1− gA)aj +

(
1

N − 1
+ gA

)∑
n 6=j

an + gpp, (4.10b)

for j = 0, . . . , N−1, which is a matrix eigenvalue problem. In the sequel, we will
denote the coefficient matrix as L(k). In contrast to the previous case, there is
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no longer continuous O(2) symmetry, so the dispersion curves (the relationship
between wavevector k and eigenvalue λ) and coefficients p, aj now depend on
the wave vector k rather than just the magnitude ||k||. Thus we cannot reduce
the system as we did in equation (4.4). However, we can derive other properties
that will help reduce the complexity.

First, we will derive the induced action on functions of the form

w(k) = ueik·x, u =

[
p
a

]
∈ CN+1,

where a = (a0, . . . , aN−1)>. Here translation simply acts as multiplication since

σw(k) = ueik·(x−x0) = e−ik·x0ueik·x = e−ik·x0w(k) ∀x0 ∈ R2.

For σ ∈ DN , we have the induced action

σw(k) = σ[ueik·x] = [P−1
σ u]eik·(σ

−1x) = [P−1
σ u]ei(σk)·x = P−1

σ w(σk)

where Pσ is the permutation matrix corresponding to the group element σ de-
fined in equation (3.16). Similarly, we have the induced action

σ[L(k)w(k)] = P−1
σ L(σk)w(σk) = L(k)P−1

σ w(σk) = L(k)[σw(k)],

where the last expression follows from equivariance. We thus have the identity

L(σk) = PσL(k)P−1
σ , ∀σ ∈ DN . (4.11)

Using this identity, we can infer some details about the structure of the eigenspaces
of L(k).

Lemma 4.1. If {λ,u} is an eigenpair of L(k) then {λ,Pσu} is an eigenpair of
L(σk).

Proof. The proof follows from

L(σk)Pσu = PσL(k)P−1
σ Pσu = PσL(k)u = λPσu.

Proposition 4.3. Both {λ,u} and {λ,P−1
π u} are eigenpairs of L(k).

Proof. Suppose that {λ,u} is an eigenpair of L(k) for a fixed k. Conjugating
the solutions

ueλt+ik·x

of the time-dependent linearized equation reveals that {λ, u} must be an eigen-
pair of L(−k). Since Rπk = −k for all k, it follows from equation (4.11) that

L(k) = L(−k) = L(Rπk) = PπL(k)P−1
π ,

and therefore
L(k)u = λu =⇒ L(k)P−1

π u = λP−1
π u.
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Although L(k) shares the property of real-valued matrices that eigenvalues
always come in conjugate pairs, the eigenvectors do not have this property: the
conjugate of the eigenvector must be accompanied by an appropriate permuta-
tion. As the system has an odd number of eigenvalues (since the matrix has an
odd size), there must be an odd number of real eigenvalues. We are particularly
interested in the existence of a zero eigenvalue with multiplicity 1, since this
corresponds to a local codimension one bifurcation. In this case, the following
corollary describes the form of the null vector.

Corollary 4.5. If λ is a real eigenvalue with multiplicity 1, then its eigenvector
has the form

u =



p
a0

...
aN/2−1

a0

...
aN/2−1


with p ∈ R.

Proof. By proposition 5.2, if λ is real then u and P−1
π u are both its correspond-

ing eigenvectors. Hence, if the eigenspace is one dimensional, they must be equal
(up to a constant multiple). Since P−1

π aj = aj−N/2 (mod N) for j = 1, ..., N ,
then the components of u must satisfy aj+N/2 = aj for j = 0, ..., N/2−1. More-
over, with this choice, all terms in the first equation of (4.10) are real and hence
p must be real.

The consequence of this corollary is the following. In a Turing bifurcation, we
seek a single real eigenvalue crossing the imaginary axis and hence we require a
one dimensional eigenspace for that real eigenvalue. In particular, at bifurcation,
the null vector must have the form given in Corollary 4.5 and this will greatly
reduce the complexity of subsequent analysis in later sections.

Next, to reduce the complexity further, analogous to the isotropic case, define

Wk = {ueik·x + c.c.}.

In general, it is not possible to form the decomposition Wk = W+
k ⊕W

−
k as in

the isotropic case. This is due to the fact that reflections such that κk = k do
not exist in DN unless k is along an axis of reflection for the polygon, in which
case

k = k(±1, 0), k(0,±1), k(±1,±1)

for square
k = k(±1, 0), k(0,±1), k(±1/2,±

√
3/2)

for hexagonal. In terms of Turing bifurcation, we are only concerned with
those k such that the largest eigenvalue λ(k) of L(k) is real and crosses zero
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as the parameter value γ changes. We are unable to determine analytically
the direction for k yielding the largest eigenvalue. However, we numerically
compute the eigenvalues of L(k) for various fP , fA, gP , gA, γ within the range
reported by [9] and observe that the largest eigenvalue occurs for wavevectors
of the form

k =

{
k(`1 + `2) = k(1, 1), N = 4

k(`1 + `3) = k
2 (1,
√

3), N = 6
(4.12)

as well as, due to symmetry, rotations and reflections in DN of those wavevec-
tors. See Fig. 4 for an example. Note that we could set k = k(1, 0) in the
hexagonal case, which coincides with the choice for systems with O(2) symme-
try. However, instead, we choose the form in equation (4.12), so that it looks
analogous to the square case.

Given the above choice, we perform the decomposition Wk = W+
k ⊕ W

−
k

where

W+
k = {w ∈Wk : P−1

κk
u = u}, W−k = {w ∈Wk : P−1

κk
u = −u}

and κk is the reflection, in the scalar representation, across the axis spanned by
k. Denoting u = (p, a0, ..., aN−1)T , observe that

κk


p
a0

a1

a2

a3

 =


p
a1

a0

a3

a2

 for N = 4, κk



p
a0

a1

a2

a3

a4

a5


=



p
a2

a1

a0

a5

a4

a3


for N = 6

6

4

2

-2

-4

-6

0

642-2-4-6 0

6

4

2

-2

-4

-6

0
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Square Hexagonal
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Figure 4: Density plots of the maximum eigenvalues of L(k) as a function of the wavevector
k ∈ R2. Black arrows indicate the direction for k yielding the largest eigenvalue. Parameter
values are fA = −0.1625, fP = 0.8, gA = −1.1, gP = 8.8, γ = 0.005.
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and hence

WS,+
k =




p
a
a
b
b

 eik·x + c.c. : p, a, b ∈ C

 , WS,−
k




0
a
−a
b
−b

 eik·x + c.c. : a, b ∈ C


for N = 4 and

WH,+
k =





p
a
b
a
c
d
c


eik·x + c.c. : p, a, b, c, d ∈ C


, WH,−

k





0
a
0
−a
c
0
−c


eik·x + c.c. : a, c ∈ C


for N = 6. Let V S/H,± ⊂ CN+1 be the subspaces of vectors corresponding to

W
S/H,±
k . By corollary 4.5, if the nullspace at k = kc is one dimensional then

these subspaces take the reduced form

WS,+
kc

=




p
a
a
a
a

 eikc·x + c.c. : p ∈ R, a ∈ C

 or WS,−
kc

=




0
a
−a
a
−a

 eikc·x + c.c. : a ∈ C


for N = 4 and

WH,+
kc

=





p
a
b
a
a

b
a


eikc·x + c.c. : a, b ∈ C


or WH,−

kc





0
a
0
−a
a
0
−a


eikc·x + c.c. : p ∈ R, a ∈ C


for N = 6 depending on the subspace V S/H,± in which u resides.

Finally, restricting the form of k as described above, reduces the eigenvalue
problem to

λp = (−2γk2 + fp)p+ fA
∑

an (4.13a)

λaj = −(ik + 1− gA)aj +

(
1

3
+ gA

)∑
n 6=j

an + gpp, j = 0, 1 (4.13b)

λaj = −(−ik + 1− gA)aj +

(
1

3
+ gA

)∑
n 6=j

an + gpp, j = 2, 3

(4.13c)
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for N = 4 and

λp = (−γk2 + fp)p+ fA
∑

an (4.14a)

λaj = −
(
i
k

2
+ 1− gA

)
aj +

(
1

5
+ gA

)∑
n6=j

an + gpp, j = 0, 2

(4.14b)

λa1 = − (ik + 1− gA) aj +

(
1

5
+ gA

)∑
n 6=j

an + gpp, (4.14c)

λaj = −
(
−ik

2
+ 1− gA

)
a1 +

(
1

5
+ gA

)∑
n 6=j

an + gpp, j = 3, 5

(4.14d)

λa4 = − (−ik + 1− gA) a4 +

(
1

5
+ gA

)∑
n 6=j

an + gpp, (4.14e)

for N = 6. We will write these eigenvalue equations in the more compact form

λ

[
p
a

]
= L

S/H
0 (k)

[
p
a

]
, (4.15)

where LS0 (k) and LH0 (k) are the matrix operators on the square and hexagonal
lattices, respectively.

4.3. Stability to spatially homogeneous perturbations

We now derive conditions for stability with respect to spatially uniform
perturbations for both the isotropic and discrete velocity models, which is a
necessary condition for the occurrence of a Turing bifurcation. We summarize
these results in the following proposition.

Proposition 4.7. Define

βΩ = fP + ΩgA, δ = fP gA − fAgP

where Ω = 2π for the isotropic case and Ω = N for the discrete case. The fixed
point of equation (3.5) is stable with respect to spatially uniform perturbations
if and only if βΩ < 0 and δ > 0.

Proof. Proof in Appendix A.1

4.4. Turing bifurcations

Suppose that the conditions of proposition 4.7 hold. The next step in es-
tablishing the occurrence of a Turing bifurcation is to show that there exists
a critical value of the bifurcation parameter, γ = γc, a critical wavenumber
k = kc 6= 0 and a single real branch of eigenvalues for which λ(kc) = 0. We
show this explicitly in the isotropic case (section 5) and in the discrete case on
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a square lattice (section 6). However, we have not been able to establish the
existence of a critical bifurcation point for discrete velocities on a hexagonal
lattice, and so we will not consider this case further. A Turing bifurcation will
then occur if this real branch (dispersion curve) crosses the k-axis from below
as γ crosses the critical point from above (transversality), assuming that the
real parts of all other solution branches remain below the k-axis. This means
that the homogeneous fixed point is stable for γ > γc, is marginally stable for
γ = γc, and is unstable with respect to a band of modes around k = kc when
γ < γc. We are only able to establish the transversality condition for the square
lattice, see section 6.

Restriction of the original infinite-dimensional system to the finite-dimensional
null-space of marginally stable modes, (after imposing double-periodicity in the
case of isotropic velocities), means that we can then use the equivariant branch-
ing lemma [14, 25, 13, 18] to explicitly determine the planforms that would
emerge through a Turing bifurcation, assuming such a bifurcation occurs. In
particular, they are given by group orbits of the one-dimensional nullspace of
L0(k) in the isotropic case and the nullspace of LS0 (k) in the discrete case on a
square lattice. For completeness, we restate the equivariant branching lemma
here.

Lemma 4.9 (Equivariant branching lemma.). Suppose that u0 is a an equi-
librium of a finite-dimensional dynamical system ∂tu = G(u). Let Σ be a sub-
group of a compact Lie group Γ, where the system is Γ equivariant. Define the
fixed point subspace

Fix(Σ) = {u ∈ null(L)|σu = u,∀σ ∈ Σ}.

Then for each Σ with dim(Fix(Σ)) = 1, there exists a unique equilibrium so-
lution branch bifurcating from u = u0, such that the bifurcating solutions have
symmetry Σ.

5. Planforms for isotropic velocities

5.1. Marginal stability

In the isotropic case we need to determine the nullspace of the linear operator
L0(k) defined by equations (4.4). We first show that there are no eigenfunctions
in the subspace W−k . Suppose (p, a(θ)) ∈ W−k , which implies that a(θ) is odd
and thus

∫
a(θ) = 0. Then equation (4.4) becomes

λp = (−γk2 + fP )p

λa(θ) = gP p− (ik cos(θ) + 1)a(θ).

The second equation implies that

p =
1

gP
(ik cos(θ) + 1 + λ)a(θ).
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Since p is constant in θ, this can hold only if

a(θ) ∝ 1

ik cos(θ) + 1 + λ

which contradicts a(θ) being odd. Note that p must be non-zero, since other-
wise we would have a(θ) = 0. Therefore (p, a(θ)) cannot be an element of the
nullspace when a(θ) is odd. In fact, this same argument shows that elements of
the nullspace must satisfy

∫
a(θ) 6= 0 whether a(θ) is odd or even. This means

a(θ) must have a constant term in its Fourier series.
For (p, a(θ)) ∈ W+

k we can derive a dispersion relation between the eigen-
values λ and wavenumber k, which we present in the following proposition.

Proposition 5.1. For each k ∈ R the corresponding eigenvalues are the zeros
of

d(λ, k) = (λ+ γk2 − fP )
[
((λ+ 1)2 + k2)1/2 − (1 + 2πgA)

]
− 2πfAgP (5.1)

for all

λ 6= −1±
√

(1 + 2πgA)2 − k2,−1± ik cos(ϕ) ϕ ∈ [0, 2π).

Here we define ((λ+ 1)2 + k2)1/2 with branch cut between −1− ik and −1 + ik
with values positive for real values of λ > −1 and negative for real values of λ <
−1. Additionally, for each eigenvalue λ and wavenumber k, the corresponding
eigenfunction is (1, a(θ)) with

a(θ) =
λ+ γk2 − fP
2πfAh(λ, k)

1 + λ− ik cos(θ)

(Re(λ) + 1)2 + (Im(λ) + k cos(θ))2

and
h(λ, k) =

(
(1 + λ)2 + k2

)−1/2

Proof. Proof in Appendix A.2.

Therefore, setting λ = 0 in the dispersion relation (5.1) implies that L0(k) has
a nullspace only if k is a solution of

0 = (γk2 − fP )(
√

1 + k2 − 1)− 2πγgAk
2 + 2πδ. (5.2)

Moreover, by proposition 5.1, as long as
√

1 + k2 6= 1 + 2πgA then the nullspace
is necessarily one dimensional (for fixed k). It remains to find sufficient condi-
tions for a 1D nullspace to exist at a single k = kc > 0 for some γ = γc. These
are stated in the following proposition.

Proposition 5.3. Suppose that the conditions in proposition 4.7 hold and fP , gA
are opposite in sign. If gA < 0 and fP > 0 then there exists a γc such that
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(a) If γ > γc then L0(k) is non-singular for all k.

(b) If γ = γc then L0(k) has exactly one zero eigenvalue for some k = kc with
corresponding nullvector (1, a(θ)), where

a(θ) =
(γck

2
c − fP )

√
1 + k2

c

2πfA

1− ikc cos(θ)

k2
c cos2(θ) + 1

,

and is non-singular for all k 6= kc.

(c) If γ < γc (sufficiently close) then L0(k) has one zero eigenvalue for two
values of k > 0 and is non-singular elsewhere.

If gA > 0 and fP < 0 then the inequalities in (a) and (c) are reversed.

Proof. Proof in Appendix A.3

5.2. Group actions and doubly periodic planforms

We will now find all the one-dimensional fixed point subspaces in order to
apply the equivariant branching lemma. First, using the nullspaces for L0(k) we
apply symmetry to obtain the nullspace of the full operator L. Note that, in the
isotropic case, we obtain a finite-dimensional space by restricting L to doubly
periodic functions on the square and hexagonal lattice. (On the other hand,
such a restriction is not required in the discrete case, since the eigenfunctions
are doubly periodic due to the intrinsic structure of the model.)

Theorem 5.5. In the space of doubly-periodic functions on the lattice L, the
nullspace of the operator L in equation (4.1), at γ = γc, is given by

null(L) =
{
z1u(θ)eik1·x + z2u

(
θ − π

2

)
eik2·x + c.c.

}
∼= C2

for L a square lattice and

null(L) =

{
z1u(θ)eik1·x + z2u

(
θ − 2π

3

)
eik2·x + z3u

(
θ +

2π

3

)
eik3·x + c.c.

}
∼= C3

for L a hexagonal lattice. The wavevectors are

k1 = kc(1, 0), k2 = kc(0, 1)

for square and

k1 = kc(1, 0), k2 =
kc
2

(−1,
√

3), k3 = −(k1 + k2) = −kc
2

(1,
√

3)

for hexagonal. The vector-valued function u(θ) is of the form

u(θ) =

[
1

a(θ)

]
,

where a(θ) is defined in proposition 5.3.
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Proof. The proof follows from proposition 5.3 and DN nT2 equivariance.

We must now determine how the group action affects the entries zn of vectors
of CN . We proceed by computing the actions from the generators κkc (reflection
about the line spanned by kc) and R2π/N , as well as elements in the torus, which
we will denote as [s, t] ∈ T2. The actions are the same between the isotropic
velocities and discrete velocities case. A simple calculation shows that

κ(z1, z2) = ±(z1, z2) (5.3a)

Rπ/2(z1, z2) = (z2, z1) (5.3b)

[s, t](z1, z2) = (e−isz1, e
−itz2). (5.3c)

for N = 4 and

κ(z1, z2, z3) = ±(z1, z3, z2) (5.4a)

Rπ/3(z1, z2, z3) = (z2, z3, z1) (5.4b)

[s, t](z1, z2, z3) = (e−isz1, e
−itz2, e

i(s+t)z3). (5.4c)

for N = 6. The third element of the mapping for [s, t] arises from the choice
k3 = −(k1 + k2). For reflections, the + indicates scalar actions while − indi-
catespseudoscalar actions. For a proof see [4].

Equations (5.3) and (5.4) describe standard actions on CN/2. The one-
dimensional fixed point subspaces have been found in [4], which we summarize
in the following proposition.

Proposition 5.7. The one-dimensional fixed point subspaces along with their
isotropy subgroups are given in the tables below for both the scalar and pseu-
doscalar action, . Here ξ = 2π

N , Dm(σ1, σ2) are the dihedral groups generated
by σ1 and σ2, Zm(σ) are the cyclic groups generated by σ and S1 is generated
by [0, t] ∈ T2.

Scalar Representation
Lattice Pattern Isotropy Subgroup Fixed Point
Square Esquare D4(κk, ξ) (1, 1)

Eroll Z2(κk)⊕ S1 (1, 0)
Hexagonal EhexagonP D6 (1, 1, 1)

EhexagonM D6 (−1,−1,−1)
Eroll Z2(κk)⊕ S1 (1, 0, 0)

Pseudocalar Representation
Lattice Pattern Isotropy Subgroup Fixed Point
Square Osquare D4(κk[1/2, 1/2], ξ) (1, 1)

Oroll Z2(ξ2κk[1/2, 0])⊕ S1 (1, 0)
Hexagonal Ohexagon Z6(ξ) (1, 1, 1)

Otriangle D3(κkξ, ξ
2) (i, i, i)

Orectangle D2(κk, ξ
3) (0, 1,−1)

Oroll Z4(ξ3κk[1/2, 0])⊕ S1 (1, 0, 0)
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For the hexagonal lattice with the scalar representation, the fixed points (1, 1, 1)
and (−1,−1,−1) have the same isotropy subgroup. However, they are not on
the same group orbit and thus generate distinct patterns. This is in contrast
to the pseudoscalar case, where reflections also multiply by −1 and these two
points are on the same group orbit.

We can now use the equivariant branching lemma [14] to determine the
solutions emerging from the Turing bifurcations. Keep in mind that the pseu-
doscalar solutions are only guaranteed to exists when f and g are odd, whereas
the scalar solutions are always guaranteed.

Theorem 5.8. Suppose that the uniform fixed point of equation (3.7) undergoes
a Turing bifurcation at some parameter γ = γc. Then for each isotropy subgroup
Σ in proposition 5.7, there exists a branch of solutions bifurcating from the
uniform fixed point with symmetry group Σ.

Combining theorems 5.3 and 5.5 we see that the planforms are given by[
P (x)
A(x, θ)

]
= z1

[
1

a(θ)

]
eikcx + z2

[
1

a
(
θ − π

2

)] eikcy + c.c.

for a square lattice and[
P (x)
A(x, θ)

]
= z1

[
1

a(θ)

]
eikcx + z2

[
1

a
(
θ − 2π

3

)] ei kc2 (−x+
√

3y)

+ z3

[
1

a
(
θ + 2π

3

)] ei kc2 (−x−
√

3y) + c.c.

for a hexagonal lattice, where

a(θ) =
(γck

2
c − fP )

√
1 + k2

c

2πfA

1− ikc cos(θ)

k2
c cos2(θ) + 1

.

The values of z1, z2, z3 depend on the isotropy subgroup according to proposition
5.7.

Note that the total concentration of AT particles is

A(x) =

∫
A(x, θ)dθ =

γck
2
c − fp
fA

P (x)

and thus is a multiple of the concentration of PT particles. In particular the
patterns are in phase if the constant is positive and antiphase if it is negative.
Using the equality in equation (A.4), we see that

γck
2
c − fP =

2πfAgP√
1 + k2

c − (1 + 2πgA)
< 0

since fAgP < 0 and gA < 0. Thus A and P are in phase if fA < 0 and antiphase
if fA > 0.
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Figure 5: Density plots for P (x) (middle) and A(x, θ) for θ = 0 (right) and θ = π (left). We
set kc = 2 as any other value yields qualitatively similar plots.

We will now analyze the individual concentrations A(x, θ). In the following
we set

φ(θ) = − 1

kc
arg(a(θ)) = − 1

kc
arg(1− ikc cos(θ))

and note that |a(θ)| = r is constant. Then, near bifurcation, solutions have the
following forms up to a real constant multiple.

1. Rolls: Setting (z1, z2) = (1, 0) yields

P (x) = cos(kcx) and a(x, θ) = rP (x− (φ(θ), 0)).

Up to a constant multiple, a(x, θ) is a translated version of P (x) along the
x-axis. Note that φ(θ − π) = −φ(θ) and that A(x, θ − π) corresponds to
particles moving in the opposite direction of A(x, θ). Hence, the shift is
in opposing directions for particles moving in opposite directions. More-
over the shift is positive for θ corresponding to x positive and negative
otherwise. This means that right-moving particles shift P (x) to the right,
while left-moving particles shift P (x) to the left. In Fig. 5 we show
plots of P (x) along with A(x, θ) for θ = 0, π corresponding to right- and
left-moving particles respectively.

2. Squares: Setting (z1, z2) = (1, 1) yields

P (x) = cos(kcx) + cos(kcy) and a(x, θ) = rP (x + (φ(θ), φ(θ − π/2))).

Again, we see that a(x, θ) is a translated version of P (x). In this case
shifts are in both the x and y directions. As in the rolls case, we see that

(φ(θ − π), φ(θ − π − π/2)) = −(φ(θ), φ(θ − π/2))

and the shifts are in opposing directions for AT particles moving in op-
posite directions.. Consider the AT particles moving along the x and
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Figure 6: Density plots for square solutions with θ = 0, π/2, 3π/2 and A(x, θ) are arranged in
those corresponding positions.

y directions A(x, 0), A(x, π/2), A(x, π), and A(x, 3π/2). The translation
vectors are (φ0, 0), (0, φ0), (0,−φ0), and (−φ0, 0), respectively, where

φ0 = φ(0) = − 1

kc
arg(1− kc) > 0.

Hence the left/right moving particles shift P (x) to the left/right respec-
tively, while up/down moving particles shift P (x) up/down respectively.
Other values of θ are more difficult to analyze, but we observe in our sim-
ulations that the translation vector (φ(θ), φ(θ − π/2)) traces out a closed
loop. However, the length of the vector is not constant, so the loop is not
a circle. In Fig. 6 we show P (x) along with A(x, θ) for θ = 0, π/2, π, 3π/2
corresponding to right, up, left, and downward moving particles respec-
tively.

3. Hexagons/Triangles: For hexagonal patterns we set (z1, z2, z3) = ±(1, 1, 1)
to obtain[
P (x)
A(x, θ)

]
=

 C(x) + C
(
−x2 +

√
3y
2

)
+ C

(
−x2 −

√
3y
2

)
r
(
C(x+ φ(θ)) + C+

(
−x2 +

√
3y
2 , θ

)
+ C−

(
−x2 −

√
3y
2 , θ

)) ,
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while setting (z1, z2, z3) = (i, i, i) yields triangular patterns of the form

[
P (x)
A(x, θ)

]
=

 S(x) + S
(
−x2 +

√
3y
2

)
+ S

(
−x2 −

√
3y
2

)
r
(
S(x+ φ(θ)) + S+

(
−x2 +

√
3y
2 , θ

)
+ S−

(
−x2 −

√
3y
2 , θ

)) ,
where

C(x) = cos(kcx) and S(x) = sin(kcx),

and

C±(z, θ) = C(z + φ(θ ∓ 2π/3)), S±(z, θ) = S(z + φ(θ ∓ 2π/3)).

The interpretation in these cases is not as straightforward. Unlike the roll
and square solutions, hexagonal and triangular solutions A(x, θ) are not
simply described by translated versions of P (x). However, the locations
of the maxima of A(x, θ) and P (x) do appear to be translated relative to
each other. For example, the hexagonal solution for P (x) has maximum
concentration at the origin (and vertices of the hexagon). For A(x, θ)
it appears that the max concentration from the origin is translated to
locations in the direction of (cos(θ), sin(θ)). In Fig. 7 we show the density
plot of P (x) along with A(x, θ) for θ = nπ/3, n = 0, ..., 5 corresponding to
particles moving along the directions of the hexagonal lattice. We observe
similar behavior for the triangular solution.

6. Planforms for discrete velocities on a square lattice

6.1. Marginal stability

Following our analysis of the isotropic case, we first show that the nullspace
of LS0 (k), which is defined in equation (4.15), is not contained in V S,−. The
spaces V ±S are defined before equation (4.13).

Proposition 6.1. For each k ∈ R, the subspace V S,− decomposes into the
eigenspaces

V S,− = span




0
1
−1
0
0


⊕ span




0
0
0
1
−1




with nonzero eigenvalues − 4
3 ± ik.

Proof. Proof in Appendix A.4

Thus if LS0 (k) has a nullspace it must be contained in V S,+. It turns out that the
conditions for the existence of a nullspace are identical to the isotropic velocity
case. Therefore, in the following proposition we reference proposition 5.3 and
give the form of the nullvector.
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Figure 7: Same as Fig. 5 for hexagonal solutions with θ = nπ/3, n = 0, ..., 5 with correspond-
ing A(x, θ) in those corresponding positions.

Proposition 6.3. Proposition 5.3 applies to the matrix LS0 (k), except that in
case (b) the null vector is given by

u =


1
a
a
a
a

 , a =
2γck

2
c − fp

4fA

(
1− i3kc

4

)

Proof. Proof in Appendix A.5.

We now show that, at γ = γc and k = kc, all other eigenvalues of L0(k)
have negative real part. One of the necessary and sufficient conditions for the
existence of a nullspace is that gA and fP are opposite in sign. It may be the
case that the following result does not depend on the choice gA < 0 or gA > 0,
but throughout the remaining analysis we will take gA < 0. Not only is this
mathematically convenient, but also this was the choice taken in [9].
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Corollary 6.5. Assume the conditions in propositions 4.7 and 6.3 hold. If
gA < 0 then, at γ = γc and k = kc, all other eigenvalues of L0(k) have negative
real part.

Proof. Proof in Appendix A.6

In the case of discrete velocities on the square lattice, we can additionally
prove that the system undergoes a Turing bifurcation.

Theorem 6.7. Under the restrictions in propositions 4.7 and 6.3, equation
(3.11) (for N = 4) undergoes a Turing bifurcation at γ = γc. At γ = γc
the nullspace is given by

WS ≡ null(L) =

{
2∑

n=1

znune
ikn·x + c.c.

∣∣∣∣ ∀zn ∈ C

}
∼= C2

where
k1 = kc(1, 1), k2 = Rπ/2k1, u1 = u, u2 = P−1

π/2u

and u is given in proposition 6.3. For γ > γc the uniform solution is stable, while
for γ < γc it destabilizes with the dominant growing modes given by null(L).

Proof. The stability results follow from proposition B.1 in the appendix. The
nullspace follows from symmetry. Let the one-dimensional nullspace of LS0 (k)
be spanned by u. Then one solution to the linearized system of (3.11) is given
by ueikc·x. The group orbit of this solution yields other solutions

P−1
σnue

i(σnkc)·x

where we label σn ∈ D4 as

σ1 = I, σ2 = Rπ/2, σ3 = κ, σ4 = κRπ/2, σ4+j = −σj j = 1, 4.

Recall that if {u, λ} is an eigenpair for L(k) then {u, λ} is an eigenpair for
L(−k). Therefore, since λ = 0 at the critical wavevector,

σ4+jkc = −σjkc =⇒ P−1
σ4+j

u = P−1
σj u,

and the nullspace can be represented by{
4∑

n=1

znP−1
σnue

i(σnkc)·x + c.c

∣∣∣∣ ∀zn ∈ C

}
. (6.1)

In general, in contrast to solutions to E(2)-equivariant systems, we have N = 4
linearly independent terms instead of 2. For E(2)-equivariant systems one can
set κkc = kc by taking a rotation, and thus the n = 3, 4 terms are redundant.
However such a rotation does not exist in D4 unless kc happens to lie on an
axis of reflection in D4. In our case we have that kc = kc(`1 + `2) which points
along the diagonal of the square lattice and thus

κkc = −Rπ/2kc.

Therefore, the number of linearly independent terms reduces to 2 and we have
the standard 4 dimensional representation.
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6.2. Planforms on a square lattice

In the following calculations, we make use of the fact that, according to
theorem 6.7, square solutions have the form

p(x)
a0(x)
a1(x)
a2(x)
a3(x)

 = z1


1
a
a
a
a

 eikc(x+y) + z2


1
a
a
a
a

 eikc(−x+y) + c.c.

since P−1
π/2 cyclically shifts the second through fifth components down by one.

We then set values of zn depending on the isotropy subgroup according to
proposition 5.7. Again, looking at the total concentration of AT particles

A(x) =

3∑
n=0

an(x) = 2Re(a)p(x) =
2γck

2
c − fP

2fA
p(x)

we see that it is a constant multiple of the concentration of PT particles. Now

2γck
2
c − fP =

16

3
γcgA −

1

2
fP < 0

since gA < 0 and fP > 0. Thus, as in the isotropic case, A and P are in phase
if fA < 0 and antiphase if fA > 0.

We now analyze the individual components ai(x). Similar to the isotropic
case, we set

φ = − 1

kc
arg(a) = − 1

kc
arg

(
1− i3kc

4

)
,

where a is defined in proposition 6.3. Note that we use “-” so that φ > 0.
Then, near bifurcation, solutions have the following forms up to a real constant
multiple.

1. Rolls: In this case we can set (z1, z2) = (1, 0). Then defining

R(x, y) = cos(kc(x+ y))

we have 
p(x)
a0(x)
a1(x)
a2(x)
a3(x)

 =


R(x, y)

|a|R(x− φ, y)
|a|R(x, y − φ)
|a|R(x+ φ, y)
|a|R(x, y + φ)


In contrast to the isotropic case, we must define the roll pattern with wave
vector k = kc(1, 1) instead of the standard k = kc(1, 0). This is due to the
fact that we found the critical wavevector to have the former form, and
the latter form is not on the same orbit with respect to the group action
of D4.
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2. Squares: In this case we can set (z1, z2) = (1, 1). Then defining

S(x, y) = cos(kc(x+ y)) + cos(kc(−x+ y))

we have 
p(x)
a0(x)
a1(x)
a2(x)
a3(x)

 =


S(x, y)

|a|S(x− φ, y)
|a|S(x, y − φ)
|a|S(x+ φ, y)
|a|S(x, y + φ)


Again, the square solution in this case is distinct from that in the isotropic
case due to the particular direction of the critical wavevector.

Both solution types have the same interpretation as in the isotropic case. The
PT concentration p(x) has its maximum at the origin, modulo the lattice. The
functions a0(x) and a2(x) denote the concentrations of AT particles with ve-
locities in the positive and negative x-directions respectively, while a1(x) and
a4(x) correspond to velocities in the positive and negative y-directions, respec-
tively. Since the functions ai(x) are simply translated versions of p(x), we
see that the concentrations of AT particles with horizontal velocity have max-
ima at (x, y) = (±φ, 0) while those with vertical velocities have maximums at
(x, y) = (0,±φ). This is consistent with what we saw for the isotropic case
when choosing θ = 0, π/2, 3π/2, which directly correspond to a0, ..., a3. The
only difference is the orientation of the pattern. That is, the pattern for p(x) in
the discrete velocity case is a rotated version of the p(x) in the isotropic case.

7. Discussion

In this paper, we used symmetric bifurcation theory to analyze the emer-
gence of Turing patterns in a two dimensional hybrid reaction-transport model.
We assumed that the active particles were transported either (i) isotropically at
a constant speed v or (ii) via a discrete set of velocities (still with constant speed)
in directions along a lattice tiling the plane. In the former case the system was
equivariant with respect to the shift-twist action of the Euclidean group E(2)
acting on functions on R2 × S1, while in the latter case it was equivariant with
respect to the group DNnR2 where DN (N = 4 for square and N = 6 for hexag-
onal) is the holohedry group of the lattice. In the discrete velocity square lattice
case, we derived necessary and sufficient conditions for a Turing bifurcation to
occur as the dimensionless parameter γ = αD/v2 crosses some critical value;
in the other cases we were only able to derive necessary conditions. However,
in all cases we could determine the associated bifurcating planforms. In par-
ticular, we found that the periodically varying AT concentration was a shifted
version of the PT concentration pattern, with the transformation depending on
the velocity direction.

33



y-ξ

y+ξ

hopping

y

-v

v

ξ

Figure 8: Random velocity model of a microtubular network with quenched polarity disor-
der. Active particles move ballistically along parallel tracks in a direction determined by the
polarity of the given track. They also hop between tracks according to an unbiased random
walk.

The main simplification of our model was to treat the microtubular network
as a homogeneous domain, in the sense that at any point the active particles
have access to the same set of velocity directions. As noted in the introduc-
tion, a more detailed microscopic model of intracellular transport within the
cell would need to specify the spatial distribution of microtubular orientations
and polarity, in order to determine which velocity states are available to a
motor-cargo complex at a particular spatial location. This suggests consider-
ing alternative models, in which the discrete nature of microtubular networks
is taken into account. One possibility would be to adapt an alternative for-
mulation of transport on disordered microtubular networks, based on random
velocity fields [26, 22, 19]. In order to illustrate this type of model, consider
a set of equally spaced parallel tracks along the x-axis, say, see Fig. 8. The
tracks are assigned random polarities ±1 with equal probabilities corresponding
to quenched polarity disorder. An active particle undergoes a random walk in
the y–direction, whereas when a particle attaches to a certain track it moves
ballistically with velocity ±1 according to the track’s polarity. It is assumed
that when a particle hops to a neighboring track it binds immediately.

One of the interesting features of the random velocity model is that it ex-
hibits anomalous diffusion. Let X(t) denote the displacement of a random
walker in the longitudinal direction at time t:

X(t) =

∫ t

0

v[y(t′)]dt′. (7.1)

Taking the continuum limit in the y direction means that

p(y, t) =
1√

4πDt
e−y

2/4Dt,

34



where D is the diffusion coefficient, and the velocity field is δ–correlated,

〈v(y)v(y′)〉c = v2ξδ(y − y′).

Here averaging is taken with respect to the quenched polarity disorder and ξ
is the infinitesimal spacing between tracks. Now consider the second moment
〈〈X2(t)〉〉 of the stochastic process averaged with respect to the quenched dis-
order and realizations of the random walk:

〈〈X2(t)〉〉 = 2

∫ t

0

dt1

∫ t1

0

dt2〈〈v[y(t1)]v[y(t2)]〉〉, (7.2)

where

〈〈v[y(t1)]v[y(t2)]〉〉 =

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2〈v(y1)v(y2)〉c

× p(y2, t2)p(y1 − y2, t1 − t2). (7.3)

Using Laplace transforms and the velocity correlation function,

〈〈X̃2(s)〉〉 =
2v2ξ

s
p̃(0, s)

∫ ∞
−∞

p̃(y, s)dy, (7.4)

with

p̃(y, s) =
1√
4Ds

e−|y|
√
s/D.

Performing the integration with respect to y thus shows that 〈〈X̃2(s)〉〉 =
v2ξD−1/2s−5/2, which on inverting the Laplace transform gives

〈〈X2(t)〉〉 =
4v2ξ

3
√
πD

t3/2. (7.5)

This establishes that the random velocity model supports anomalous superdif-
fusion in the x direction. Within the context of the current paper, it would be
interesting to extend the above model by including a second chemical species,
which diffuses in the plane and reacts with the active particles. Again, any sym-
metries of the underlying network configuration will impact the type of patterns
that can emerge.

One final comment is in order. As far as we are aware, higher-dimensional
analogs of synaptogenesis in C. elegans have not yet been observed. Neverthe-
less, the latter example suggests that hybrid reaction-transport processes could
provided an alternative Turing mechanism to classical reaction-diffusion systems
in cells, some of the consequences of which we have explored in this paper.
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Appendix A. Proofs

Appendix A.1. Proof of proposition 4.7

Setting k = 0 in equation (4.3) for the isotropic case, yields

λp = fP p+ fA

∫ 2π

0

a(θ)dθ (A.1)

λa(θ) = gP p− a(θ) +

(
1

2π
+ gA

)∫ 2π

0

a(θ)dθ, (A.2)

while setting k = 0 in equation (4.10) for the discrete case gives

λp = fpp+ fA

N∑
n=1

an (A.3a)

λaj = gpp+ (gA − 1)aj +

(
1

N − 1
+ gA

)∑
n 6=j

an, j = 0, . . . , N − 1. (A.3b)

In both cases, we show that there are two different types of eigenfunctions: (i)∫
a(θ) = 0 for isotropic velocities and

∑
j aj = 0 for discrete velocities, and (ii)

a(θ) and aj are constants.
In the case of type (i) eigenfunctions, we have

λp = fP p

λa(θ) = gP p− a(θ)

for isotropic velocities and

λp = fpp

λaj = gpp−
N

N − 1
aj

for discrete velocities. If p 6= 0, then the second equation for isotropic (discrete)
velocities is satisfied only if a(θ) (aj) is a non-zero constant, which violates∫
a(θ) = 0 (

∑
aj = 0). Thus there are no solutions with p 6= 0. Therefore,

taking p = 0 we find the following eigenvalues and eigenfunctions:

λ = −1, (p, a(θ)) = (0, einθ) for all integers n > 0,

in the isotropic case, and

λ = − N

N − 1
,

[
p
a

]
= e2 − e3, ... eN − eN+1

in the discrete case, where ei are the standard basis vectors for RN+1.
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Now consider type (ii) eigenfunctions for which
∫
a(θ) 6= 0 (

∑
aj 6= 0), in

which case a(θ) = ā (aj = ā) with ā a constant. This yields a standard 2 × 2
eigenvalue problem

λp = fP p+ ΩfAā

λā = gP p+ ΩgAā

where Ω = 2π for the isotropic case and Ω = N for the discrete case. It is a
standard result that both eigenvalues of a 2× 2 matrix have negative real parts
if and only if the trace is negative and the determinant is positive. The trace
and determinant of the coefficient matrix are given by

βΩ = fP + ΩgA and Ωδ = Ω(fP gA − fAgP )

respectively, thus proving the claim since Ω > 0.

Appendix A.2. Dispersion relation: Proof of proposition 5.1

First, we solve equation (4.4b) for a(θ) to obtain

a(θ) =

[(
1

2π
+ gA

)∫
a(θ)dθ + gP p

]
1

ik cos(θ) + 1 + λ
.

Integrating with respect to θ and solving for the integral yields∫
a(θ)dθ =

2πgP ph(λ, k)

1− (1 + 2πgA)h(λ, k)

where we defined

h(λ, k) =
1

2π

∫ 2π

0

1

ik cos(θ) + 1 + λ
dθ = − 1

πk

∮
|z|=1

1

z2 − 2 1+λ
k iz + 1

dz.

We obtain the second equality by complexifying the integral, letting z = eiθ and
writing cos(θ) = (z+ 1/z)/2. We note that if λ+ 1 = iω for ω ∈ R and |ω| ≤ k,
then the integral does not converge.

Imposing consistency, we solve for
∫
a in equation (4.4a) and equate it with

the above expression to yield the dispersion relation

2πgP fAh(λ, k)

1− (1 + 2πgA)h(λ, k)
= λ+ γk2 − fP . (A.4)

We assume p 6= 0 when simplifying the equation. This assumption is justified
because if p = 0, then equation (4.3a) implies

∫
a = 0 and thus (4.3b) implies

λa(θ) = −[ik cos(θ) + 1]a(θ)

which, for k 6= 0, only holds when a(θ) = 0 (the k = 0 case was already
considered in Section 3.2.1). Thus there are no eigenvectors with p = 0 and
a(θ) 6= 0. Moreover, if h(λ, k) = 1 + 2πgA for some (λ, k) then p = 0 necessarily
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by the first expression in this proof. Therefore, it must be that a(θ) = 0 and
the corresponding λ is not an eigenvalue.

Now h(λ, k) can be computed using the residue theorem for complex contour
integrals for k 6= 0. If k = 0 then the integral is

h(λ, 0) =
1

1 + λ
.

Otherwise, the singularities of the integrand are

r±(λ, k) =
i

k

[
1 + λ± ((1 + λ)2 + k2)1/2

]
.

For notational simplicity let ω = (1 + λ)/k so that the singularities can be
written as

r±(ω) = i
[
ω ± (ω2 + 1)1/2

]
where we define (ω2 + 1)1/2 in the usual way with branch cut on (−i∞,−i] ∪
[i, i∞) so that it is continuous on the real line.

Note that |r+| and |r−| cannot both be less than one nor both greater than
one. This can be seen by taking the product

r+r− = 1

and thus |r+||r−| = 1. Therefore, using the residue theorem∮
|z|=1

1

z2 − 2iωz + 1
= 2πi

{
Res(I, r+(ω)), |r+(ω)| < 1

Res(I, r−(ω)), |r−(ω)| < 1

= 2πi

{
Res(I, r+(ω)), |r+(ω)| < 1

Res(I, r−(ω)), |r+(ω)| > 1

= π

{
(ω2 + 1)1/2, |r+(ω)| < 1

−(ω2 + 1)1/2, |r+(ω)| > 1

where I is the integrand. Therefore

h(ω, k) =
1

k

{
(ω2 + 1)−1/2, |r+(ω)| > 1

−(ω2 + 1)−1/2, |r+(ω)| < 1
.

It is straightforward to show that |r+(ω)| < 1 if Re(ω) < 0 and |r+(ω)| > 1 if
Re(ω) > 0 and we can equivalently define

h(ω, k) =
1

k
(ω2 + 1)−1/2

taking the branch cut as the straight line between −ik and ik and letting
h(ω, k) > 0 for real values of ω > 0 and h(ω, k) < 0 for real values of ω < 0.

Rewriting in terms of λ, multiplying (A.4) by ((λ + 1)2 + k2)1/2 and rear-
ranging terms yields the result. The form of the eigenvector is clear by rewriting
the expression for a(θ) in the first equation in this proof and using the equality
in (A.4).
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Appendix A.3. Proof of proposition 5.3

First we rewrite equation (5.2) as

γ

fP
=

w − w1

((w + 1)2 − 1)(w − w2)
(A.5)

where we have set

w =
√

1 + k2 − 1, w1 =
2πδ

fP
, and w2 = 2πgA.

Note that w ≥ 0 and has a monotonic dependence on k ≥ 0. By proposition
4.7, we have that δ = fP gA− fAgP > 0 and fP + 2πgA < 0. The former implies
that w1 and fP have the same sign and the latter implies that w1 and w2 cannot
both be positive. Moreover, there are no solutions when w1 and w2 are both
negative. Hence we require that w1w2 < 0.

We proceed with a graphical construction of the critical values kc and γc. In
Figure A.9 we show qualitative graphs of the right hand side of equation (A.5)
(for both cases of w1w2 < 0) along with the line 2γ/fP for different values of γ.
In both cases it is clear that there exists a γc such that, at γ = γc, there is only
one solution. In the case w2 < 0 < w1, for γ < γc there are two solutions and
for γ > γc there are no solutions. In the case w1 < 0 < w2 the inequalities for
γ are reversed. Since w is monotonic in k ≥ 0, then the same solution structure
applies to k.

Finally, the form of a(θ) follows from proposition 5.1.

w < 0 < w w < 0 < w

2� /f
c

w w

P

 2� /f
c P

12 1 2

wc

wc

Figure A.9: Qualitative graphs of equation A.5. Black lines are graphs of the right hand side,
while colored lines are the left hand side. Blue lines indicate parameter values for which there
exist a single solution and red lines indicate no or two solutions.

39



Appendix A.4. Proof of proposition 6.1

Substituting u ∈ V S,− into equation (4.13) yields the reduced system

λp = (−2γk2 + fp)p

λa = −
(
ik +

4

3

)
a+ gP p

λb = −
(
−ik +

4

3

)
b+ gP p

The 3× 3 system is lower triangular and thus has eigenvalues

λ = −2γk2 + fp, −4

3
± ik,

with corresponding eigenvectorspa
b

 =

 1
3gP

1
4+3fP−6γk2+3ik

1
4+3fP−6γk2−3ik

 ,
0

1
0

 ,
0

0
1


Since the first eigenvector of the reduced system has p 6= 0, it cannot possibly
correspond to a vector in V S,−. The second two reduced eigenvectors correspond
to the vectors, in the full 5× 5 system,

1
−1
0
0

 ,


0
0
1
−1


with eigenvalues − 4

3 ± ik.

Appendix A.5. Proof of proposition 6.3

Substituting u ∈ V S,+ into (4.13) yields the reduced system

λp = (−2γk2 + fP )p+ 2fA(a+ b)

λa = −
(
ik +

2

3
− 2gA

)
a+

(
2

3
+ 2gA

)
b+ gP p

λb = −
(
−ik +

2

3
− 2gA

)
b+

(
2

3
+ 2gA

)
a+ gP p.

The determinant of the matrix is given by

1

3

(
−6γk4 + (32γgA + 3fP )k2 − 16δ

)
.

Setting it equal to zero and rearranging terms yields

2γ

fP
=

k2 − k1

k2(k2 − k2)
(A.6)
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where k1 = 16δ
3fP

and k2 = 16gA
3 . By proposition 4.7 δ = fP gA − fAgP > 0

and βN = fp + NgA < 0. The former implies that k1 has the same sign as fP
and the latter implies that k1 and k2 cannot both be positive. Moreover, k1

and k2 cannot both be negative. If they were, the right hand side of equation
(A.6) would be positive for all k, while the left hand side is negative. Thus
there would be no solutions. Hence a necessary condition for the existence of a
solution is that k1k2 < 0 and consequently fP gA < 0. This together with δ > 0
implies that fAgP < 0. The graph of the right hand side of equation (A.6) is
qualitatively identical to the graph of the right hand side of equation (A.5) and
the left hand sides only differ by a factor of 2. Thus the remainder of the proof
is identical to the proof for proposition 5.3.

Since the nullspace is one-dimensional, Corollary 4.5 along with the fact that
u ∈ V S,+ implies that null-vectors have the form

u =


p
a
a
a
a

 .
Substituting u into the reduced system, setting λ = 0 and p = 1, and solving
for a gives the expression for the null vector.

Appendix A.6. Proof of corollary 6.5

At k = kc, γ = γc the characteristic polynomial of LS0 restricted to V S,+ is
factored as

−1

3
λ
[
3λ2 + (6γck

2
c − 3β + 4)λ+ (3 + 8γc − 24γcgA)k2

c + 12δ − 4β
]
.

Thus the remaining eigenvalues are

1

6

(
−(6γck

2
c − 3β + 4)±

√
(6γck2

c − 3β + 4)2 − 12(3 + 8γc − 24γcgA)k2 − 36δ + 48β
)

(A.7)
The conditions β < 0, δ > 0 established in proposition 4.7, along with the
assumption that gA < 0 and γc > 0, guarantee that the above expression has
negative real part. If these eigenvalues are complex-valued, then the real part
is

−1

6
(6γck

2
c − 3β + 4) < 0.

Otherwise, if they are real, the square root term is bounded by

|6γck2
c − 3β + 4|

and so it is clear that both eigenvalues are negative. This shows that the
nullspace of the full matrix LS0 (k) must be one-dimensional at k = kc and
only has 5 eigenvalues counting multiplicity. Proposition 6.1 shows that there
are 2 eigenvalues corresponding to the subspace V S,− and here we have found
the remaining 3 eigenvalues, two of which have negative real part.
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Appendix B. Bifurcation analysis for square discrete velocities

We now derive conditions for the existence of a Turing bifurcation from the
homogeneous fixed point to doubly periodic solutions for the discrete velocity
model on a square lattice. We use the dimensionless parameter γ as the bifur-
cation parameter and look for a critical value γc such that when γ = γc the
L(k) has a one dimensional nullspaces at some critical wavevector kc (and by
symmetry all orbits σkc, σ ∈ O(2) (or DN ). We must determine conditions
under which the following hold:

(a) Re[λ(0)] < 0 for all γ in some neighborhood of γc

(b) For γ < γc (or γ > γc depending on the direction of bifurcation) sufficiently
close, Re(λ(k)) < 0 for all eigenvalues λ and k ∈ R2

(c) For γ = γc, at k = kc there exists a zero eigenvalue with multiplicity 1
and all other eigenvalues Re(λ(kc)) < 0. For k 6= kc all eigenvalues satisfy
Re(λ(k)) < 0.

(d) For γ > γc (or γ < γc) sufficiently close, there exists a neighborhood
N (kc) of kc such that (i) for each k ∈ N (kc) there is one eigenvalue with
Re(λ(k)) > 0) and all other eigenvalues have Re(λ(k) < 0) and (ii) for each
k /∈ N (kc) all eigenvalues satisfy Re(λ(k)) < 0.

We have already shown (a) and (c) and thus only need to establish (b) and
(d).

Proposition B.1 Assume all the conditions in propositions 4.7 and 6.3 hold,
and take gA < 0, fP > 0. We then have the following:

1. Consider γ > γc sufficiently close. Then for all k ∈ R, all eigenvalues of
L0(k) have negative real part.

2. Consider γ < γc sufficiently close. Then for each k ∈ N(kc) (some neigh-
borhood of kc), L0(k) has a single positive real eigenvalue, with all others
having negative real part. For each k /∈ N(kc) all eigenvalues have negative
real part.

Proof. We first show that at γ = γc, all eigenvalues have negative real part.
First, by proposition 6.1 the eigenvalues from the subspace V − always have
negative real part and therefore we need only consider eigenvalues from V +.
For any k and γ, the characteristic polynomial of L0(k) restricted to V + is

d(λ, k, γ) = −λ3 +

(
β − 2γk2 − 4

3

)
λ2 +

1

3

(
24γgAk

2 + 4β − 12δ − 3k2 − 8γk2
)
λ

+ q(k, γ)

where

q(k, γ) =
1

3

(
−6γk4 + (32γgA + 3fP )k2 − 16δ

)
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is the determinant. Throughout, we will make use of the fact that the non-zero
degree coefficients are all negative for all γ, k since γ, δ > 0 and β, gA < 0.
Moreover, q(k, γc) ≤ 0 for all k with equality if and only if k = kc. Finally note
that proposition 6.3 showed that all roots of d(λ, kc, γc) have negative real part.

For γ = γc and all k 6= kc, the coefficients of d(λ, k, γc) are all negative.
Therefore, by Descarte’s rule of signs there are no positive real roots. Applying
the rule to d(−λ, k, γc) implies that there are either 3 or 1 negative real roots.
If there are 3 then we have completed the proof. Otherwise, there is a conjugate
pair of complex roots. Since at k = kc all roots have negative real part, we must
show that the roots cannot cross the imaginary axis as k increases/decreases
from kc. Thus, set λ = iω, 0 6= ω ∈ R. Setting the real and imaginary parts of
d(iω, k, γc) to zero yields

ω2+
1

3
(24γgAk

2+4β−12δ−3k2−8γk2) = 0 q(k, γc)−
(
β − 2γk2 − 4

3

)
ω2 = 0

which implies that

q(k, γc) = −1

3
(24γcgAk

2 + 4β − 12δ − 3k2 − 8γck
2)

(
β − 2γck

2 − 4

3

)
.

We now compare the coefficients on both sides of the equation. The constant
coefficient on the right hand side is

1

3
(−4β2 +

16

3
β + 12δβ − 16δ) < −16

3
δ

since β < 0, δ > 0. Note that the upper bound is the constant coefficient for
q(k, γc). The k2 coefficient for the right hand side is

−
[
(24γcgA − 3− 8γ)

(
β − 4

3

)
− 2γc(4β − 12δ)

]
< 0

since gA < 0, while the k2 coefficient for q is

1

3
(32γgA + 3fP ) > 0

by the conditions in proposition 6.3. Finally, the k4 coefficient for the right
hand side is

2

3
γc(24γcgA − 3− 8γc) < −2γc

with the upper bound being the k4 coefficient for q. Since there are only even
powers of k, these inequalities imply that q(k, γc) is greater than the right hand
side for all k. Thus, the roots of d cannot cross the imaginary axis, and thus
their real parts remain negative for all k.

Now consider γ < γc sufficiently close. Then, by construction, q(k, γ) ≥ 0 for
k ∈ N(kc) and negative elsewhere. In this case, for all k ∈ N(kc) the coefficients
of d(λ, k, γ) change once, and by Descarte’s rule of signs, there is exactly one
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positive real eigenvalue for each fixed k. This positive eigenvalue arises from the
zero eigenvalue as γ crosses γc. All other roots must have negative real part by
continuiity of roots of the polynomial with respect to parameter changes.

Finally consider γ > γc sufficiently close. In this case q(k, γ) < 0 for all
k ∈ R. Again, by Descarte’s rule of signs, there are no positive real roots and
either 3 or 1 negative real roots. Using the same argument as the γ = γc case
shows that all roots must have negative real part, with one real negative roots
coming from the zero eigenvalue as γ crosses γc.
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