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Abstract. We consider a Brownian particle that switches between two different
diffusion states (D0, D1) according to a two-state Markov chain. We further
assume that the particle’s position is reset to an initial value Xr at a Poisson rate
r, and that the discrete diffusion state is simultaneously reset according to the
stationary distribution ρn, n = 0, 1, of the Markov chain. We derive an explicit
expression for the non-equilibrium steady state (NESS) on R, which is given by the
sum of two decaying exponentials. In the fast switching limit the NESS reduces
to the exponential distribution of pure diffusion with stochastic resetting. The
effective diffusivity is given by the mean D = ρ0D0 + ρ1D1. We then determine
the mean first passage time (MFPT) for the particle to be absorbed by a target at
the origin, having started at the reset position Xr > 0. We proceed by calculating
the survival probability in the absence of resetting and then use a last renewal
equation to determine the survival probability with resetting. Similar to the
NESS, we find that the MFPT depends on the sum of two exponentials, which
reduces to a single exponential in the fast switching limit. Finally, we show that
the MFPT has a unique minimum as a function of the resetting rate, and explore
how the optimal resetting rate depends on other parameters of the system.
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1. Introduction

Advances in single-particle tracking (SPT) and statistical methods suggest that
particles within the plasma membrane of living cells, for example, can switch between
different discrete states with different diffusivities [7, 25, 28]. Such switching could
be due to interactions between proteins and the actin cytoskeleton [18] or due to
protein-lipid interactions [29]. Several theoretical studies of Brownian particles with
switching diffusions have focused on the effects of space-dependent switching rates
and how this provides a mechanism for generating multiplicative noise in the fast
switching limit [3, 4], see also [15]. Space-dependent switching also appears to play a
role in the formation of intracellular protein concentration gradient formation during
the asymmetric division of the Caenorhabditis elegans (C. elegans) zygote [31, 5].

From a mathematical perspective, one can view a Brownian particle with
switching diffusions as an example of a stochastic hybrid system, in which the piecewise
dynamics of a continuous variable (particle position) is coupled with a discrete Markov
chain that keeps track of the discrete state of the particle (diffusion coefficient).
Stochastic hybrid systems are ubiquitous in cell biology [2]. Examples include
membrane voltage fluctuations driven by ion channel noise, and protein concentration
fluctuations driven by promoter noise in gene networks. A special class of stochastic
hybrid system is a velocity jump process, whereby a particle switches between different
motile states. Here the particle could represent a molecular motor on a filament track
[20], the tip of a growing microtubule [8], or the position of a bacterium undergoing
run-and-tumble during chemotaxis [16].

A run-and-tumble model has recently been analyzed in terms of a search process
with stochastic resetting [13]. Resetting refers to the restarting of a stochastic process
from a given initial condition. In the simpler case of pure diffusion, suppose that
the position of the Brownian particle is reset randomly in time at a constant rate
r (Poissonian resetting) to some fixed point Xr. Two characteristic features that
are exhibited by such a process are as follows: (i) convergence to a nontrivial non-
equilibrium stationary state (NESS), and (ii) the existence of an optimal resetting rate
for minimizing the mean search time to find some target [10, 11, 12]. Such behavior has
also been found for more general stochastic search processes with resetting, including
non-diffusive processes such as Levy flights [17] and velocity jump processes [13, 6],
and resetting in potential landscapes [21] and bounded domains [23, 9]. This is
indicative of some form of underlying universality [26, 27, 22, 1]. (For a recent
review see Ref. [14].) One additional requirement for a stochastic hybrid system
with resetting is that one has to specify the resetting protocol for the discrete states.
In the analysis of the run-and-tumble model [13], two different reset protocols were
used: (i) velocity randomization that is independent of the current velocity state and
(ii) velocity resetting that depends on the current state. Note that another example
of a stochastic hybrid system with stochastic resetting was analyzed in Ref. [19].
These authors considered a continuous-time random walk with drift, with the latter
randomly switching directions.

In this paper we investigate the NESS and optimal resetting rate of a one-
dimensional Brownian particle with switching diffusions and stochastic resetting.
For simplicity, we focus on the case of two discrete states with diffusivities D0, D1,
respectively, and space-independent switching rates α, β. We introduce the model
without resetting in section 2, and show how in the fast switching limit one obtains
pure Brownian motion with an effective diffusivity given by D = ρ0D0 + ρ1D1, where
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ρ0 = β/(α + β) and ρ1 = α/(α + β) are the steady-state probabilities of the two-
state Markov chain. In section 3 we derive an explicit expression for the NESS in the
case of position resetting and randomized diffusion resetting. This requires solving a
fourth-order differential equation, which leads to an NESS consisting of a sum of two
decaying exponentials. We also show how the latter reduces to the single exponential
NESS of pure Brownian motion with resetting [10, 11] in the fast switching limit, with
effective diffusivity D. The extension to more than two discrete diffusion states is also
discussed. In section 4, we turn to the first passage time problem of a particle with
switching diffusions on the half-line and an absorbing target at the origin. We use a
last renewal equation to express the survival probability with resetting in terms of the
corresponding survival probability without resetting. We derive an explicit expression
for the Laplace transform of the latter, which again requires solving a fourth-order
ODE, and use this to express the MFPT in terms of a sum of two exponentials.
(As with the NESS, this reduces to a single exponential in the fast switching limit.)
Finally, we show that the MFPT has a unique minimum as a function of the resetting
rate, and explore how the optimal resetting rate depends on other parameters of the
system.

2. Stochastically switching diffusion

Consider a particle diffusing in one dimension that can switch between two different
states n ∈ {0, 1} according to a two-state jump Markov process N(t) ∈ {0, 1}, with

0
α


β

1.

The diffusion coefficient is taken to depend on the state, that is D = Dn when
N(t) = n. For concreteness assume thatD0 ≥ D1. Define pn(x, t) to be the probability
density that the particle is at position x ∈ R and in state n at time t. The stochastic
dynamics of the particle is represented by the hybrid stochastic differential equation
(SDE)

dX(t) =
√

2DndW (t), for N(t) = n. (2.1)

Given the joint Markov process (N(t), X(t)), introduce the probability density pn(x, t)
that the particle is at X(t) = x and in state N(t) = n at time t. The probability
density p evolves according to the forward differential CK equation

∂pn(x, t)

∂t
= Dn

∂2pn(x, t)

∂x2
+
∑
m=0,1

Anmpm(x, t), (2.2)

Here A is the matrix generator

A =

(
−α β
α −β

)
, (2.3)

We will assume the initial conditions

pn(x, 0) = δ(x− x0)ρn. (2.4)

where ρn is the steady-state distribution of the Markov chain:

ρ0 =
β

α+ β
, ρ1 =

α

α+ β
. (2.5)

Hence,

pn(x, t) = ρ0p(x, n, t|x0, 0, 0) + ρ1p(x, n, t|x0, 1, 0),
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where

p(x, n, t|x0,m, 0) = P[X(t) = x,N(t) = n|X(0) = x0, N(0) = m].

2.1. Fast switching limit

Consider the averaged diffusion coefficient

D =
∑
n=0,1

ρnDn. (2.6)

Intuitively speaking, one would expect the hybrid SDE (2.1) to reduce to the SDE

dX(t) =
√

2DdW (t) (2.7)

in the fast switching limit α, β →∞. A heuristic argument is that the Markov chain
then undergoes many jumps over a small time interval ∆t, during which ∆x ≈ 0, and
thus the relative frequency of the two discrete states n is approximately ρn. However,
in order to define what one means by “fast”, we need to have some fundamental
time-scale τ of the system. Here we will take τ to be the observation time, which
means that with high probability the particle will remain within a domain of size L
with τ ≡ minn{L2/Dn}. We then fix the time-scale by setting τ = 1 and rescale the
transition rates according to α, β → α/ε, β/ε, with α, β = O(1), so that ε→ 0 defines
the fast switching limit. (If stochastic resetting is also present, see section 3, then we
can define the fast switching limit relative to the resetting rate r.)

For small but non-zero ε, one can use an adiabatic approximation to reduce
the CK equation (2.2) to a corresponding diffusion equation for the total probability
density p(x, t) =

∑
n=0,1 pn(x, t) [24, 20]. The basic steps are as follows. First,

decompose the probability density pn as

pn(x, t) = p(x, t)ρn + εwn(x, t),

where
∑
n wn(x, t) = 0. Substituting this decomposition into equations (2.2),

summing both sides with respect to n, and using
∑
nAnm = 0 yields an equation

for p,

∂p

∂t
= D

∂2p

∂x2
+ ε

∑
n=0,1

Dn
∂2wn
∂x2

. (2.8)

Next we use equation (2.8) to eliminate ∂p/∂t in the expanded version of equation

(2.2). Introducing the asymptotic expansion wn ∼ w(0)
n + εw

(1)
n +O(ε2) and collecting

the O(1) terms then yields an equation for w
(0)
n , which has a unique solution on

imposing the condition
∑
n w

(0)
n (x, t) = 0. One can thus establish that there is an

O(ε) correction to the diffusion equation of the form

∂p

∂t
∼ D∂2p

∂x2
+ εκ

∂4p

∂x2
(2.9)

with an O(1) coefficient κ, It follows that in the fast switching limit ε → 0, the CK
equation (2.2) reduces to a diffusion equation with effective diffusivity D.

There is one subtle feature of the above adiabatic approximation that arises when
considering boundary value problems. For example, in section 4 we will consider
diffusion on the half line with an absorbing boundary at x = 0. Since the original
system given by equations (2.2) involves two coupled diffusion equations, we need to
impose two absorbing boundary conditions at x = 0. On the other hand, the reduced



Switching diffusions and stochastic resetting 5

diffusion equation (2.9) has a single absorbing boundary condition. We thus have a
singular perturbation problem, in which the solution to equation (2.8) represents an
outer solution that is valid in the bulk of the domain, but has to be matched to an
inner solution at the boundary using the fourth-order derivative term [30, 5]. However,
this is a relatively small effect, and will not be considered further in this paper.

3. Position resetting and randomized diffusivity

Now suppose that the position of the particle is reset to a location Xr at a rate r and
that the diffusion state is reset to n according to the stationary distribution ρn. This
is analogous to the randomized velocity selection in the run-and-tumble model [13].
For simplicity we also set the initial position x0 = Xr so that resetting preserves the
initial conditions (2.4). We can then work with the probability densities

pr,n(x, t) = ρ0pr(x, n, t|Xr, 0, 0) + ρ1pr(x, n, t|Xr, 1, 0), (3.1)

and equation (2.2) is modified according to

∂pr,0
∂t

= D0
∂2pr,0
∂x2

− αpr,0 + βpr,1 − rpr,0 + ρ0rδ(x−Xr), (3.2a)

∂pr,1
∂t

= D1
∂2pr,1
∂x2

+ αpr,0 − βpr,1 − rpr,1 + ρ1rδ(x−Xr). (3.2b)

It follows that the total probability density pr(x, t) = pr,0(x, t) + pr,1(x, t) satisfies the
last renewal equation

pr(x, t) = e−rtp(x, t) + r

∫ t

0

dτe−rτp(x, τ), (3.3)

where p(x, t) is the total probability density without resetting, see equations (2.2).
The first term on the right-hand side represents the contribution from trajectories
without any resetting, which occurs with probability e−rτ , while the second term is
the sum of contributions from trajectories whose last reset occurs at time t− τ .

3.1. Non-equilibrium steady-state

One of the characteristic features of stochastic processes with resetting is that there
exists a nonequilibrium steady-state (NESS) pr,n = p∗n(x). (Equation (2.2) has
a trivial equilibrium steady state that is point-wise zero.) One way to calculate
the NESS is to Laplace transform the renewal equation (3.3) using the convolution
theorem in order to express p̃r(x, s) in terms of p̃(x, s), and then take the limit
p∗n(x) = lims→0 sp̃r,n(x, s). Here it is more convenient to work directly with equations
(3.2a) and (3.2b). Setting time derivatives to zero, and performing the change of
variables P1(x) = p∗1(x)− (α+ r)p∗0(x)/β gives

−ρ0rδ(x−Xr) = D0
d2p∗0
dx2

+ βP1, (3.4a)

−ρ1rδ(x−Xr) = D1
d2P1

dx2
− (β + r)P1 +

α+ r

β
D1

d2p∗0
dx2

− r(r + α+ β)

β
p∗0. (3.4b)

Substituting for P1 in equation (3.4b) using equation (3.4a) leads to the fourth-order
equation

−ρ1rδ(x−Xr) = −D1

β

[
D0

d4p∗0
dx4

+ ρ0rδ
′′(x−Xr)

]
+
r + β

β

(
ρ0rδ(x−Xr) +D0

d2p∗0
dx2

)
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+
r + α

β
D1

d2p∗0
dx2

− r(r + α+ β)

β
p∗0,

which can be rearranged to yield

β + rρ0
D0D1

rδ(x−Xr)−
ρ0r

D0
δ′′(x−Xr) =

d4p∗0
dx4

−
[
r + β

D1
+
r + α

D0

]
d2p∗0
dx2

(3.5)

+
r(r + α+ β)

D0D1
p∗0.

We solve equation (3.5) using Fourier transforms. Setting

p̂∗0(k) =

∫ ∞
−∞

eikxp∗0(x)dx,

we find that

[k4 +B(r)k2 + C(r)]p̂∗(k) = A(r, k)eikXr ,

where

A(r, k) =
β + rρ0
D0D1

r +
k2ρ0r

D0
, B(r) =

r + β

D1
+
r + α

D0
, C(r) =

r(r + α+ β)

D0D1
.

Using the inverse Fourier transform, we have

p∗0(x) =

∫ ∞
−∞

e−ik(x−Xr)
A(r, k)

k4 +B(r)k2 + C(r)

dk

2π

=

∫ ∞
−∞

e−ik(x−Xr)
A(r, k)

(k2 + λ2+(r))(k2 + λ2−(r))

dk

2π
, (3.6)

where

λ2±(r) =
1

2

r + β

D1
+
r + α

D0
±

√[
r + β

D1
+
r + α

D0

]2
− 4r(r + α+ β)

D0D1

 . (3.7)

The integral on the right-hand side of equation (3.6) can be evaluated using contour
integration. First, suppose that x < Xr so that we can close the integral in the
upper-half complex k-plane with poles at k = iλ±. From the residue theorem,

p∗0(x) =
1

λ2+(r)− λ2−(r)

[
A(r, iλ−)

e−λ−(r)|x−Xr|

2λ−(r)
−A(r, iλ+)

e−λ+(r)|x−Xr|

2λ+(r)

]
=

A(r, 0)

λ2+(r)− λ2−(r)

[
e−λ−(r)|x−Xr|

2λ−(r)
− e−λ+(r)|x−Xr|

2λ+(r)

]
− ρ0r

D0

1

λ2+(r)− λ2−(r)

[
λ−(r)

e−λ−(r)|x−Xr|

2
− λ+(r)

e−λ+(r)|x−Xr|

2

]
. (3.8)

Now using equation (3.4a) and the definition of P1 shows that

p∗1(x) = −ρ0r
β
δ(x−Xr)−

D0

β

d2p∗0(x)

dx2
+
r + α

β
p∗0(x), (3.9)

with

D0

β

d2p∗0
dx2

=
D0

β

A(r, 0)

λ2+(r)− λ2−(r)

[
λ−(r)

e−λ−(r)|x−Xr|

2
− λ+(r)

e−λ+(r)|x−Xr|

2

]
− ρ0r

β

1

λ2+(r)− λ2−(r)

[
λ−(r)3

e−λ−(r)|x−Xr|

2
− λ+(r)3

e−λ+(r)|x−Xr|

2

]
− ρ0r

β
δ(x−Xr). (3.10)



Switching diffusions and stochastic resetting 7

Adding equations (3.8) and (3.9) finally yields an explicit expression for the NESS,
which is given by a sum of two exponentials:

p∗(x) = p∗0(x) + p∗1(x) = Λ−(r)e−λ−(r)|x−Xr| + Λ+(r)e−λ+(r)|x−Xr|, (3.11)

with

Λ−(r) =
1

λ2+(r)− λ2−(r)

[
r + α+ β

β
−
D0λ

2
−(r)

β

]
×
{
ρ0r(r + α+ β)

D0D1

1

2λ−(r)
− ρ0r

D0

λ−(r)

2

}
(3.12a)

Λ+(r) = − 1

λ2+(r)− λ2−(r)

[
r + α+ β

β
−
D0λ

2
+(r)

β

]
×
{
ρ0r(r + α+ β)

D0D1

1

2λ+(r)
− ρ0r

D0

λ+(r)

2

}
. (3.12b)

Some useful checks of the above calculation are as follows. First, when D0 =
D1 = D, we recover the classical result for the NESS of a diffusing particle without
switching diffusion [10, 11]. This follows from the fact that√[

s+ β

D
+
s+ α

D

]2
− 4s(s+ α+ β)

D2
=
α+ β

D
, (3.13)

and hence

λ2−(r) =
r

D
, λ2+(r) =

r + α+ β

D
, Λ−(r) =

1

2

√
r

D
, Λ+(r) = 0.

Equation (3.11) thus reduces to the single exponential NESS

p∗D(x) =
1

2

√
r

D
e−
√
r/D|x−Xr|. (3.14)
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Figure 1: Plot of steady-state density p∗(x) as a function of x for different diffusivities
D1 ≤ D0 = 1. Other parameter values are α = β = 0.5, r = 1 and Xr = 0.
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Figure 2: Plot of steady-state density p∗(x) as a function of x for different switching rates
α with α = β. Other parameter values are D0 = 1, D1 = 0.1, r = 1 and Xr = 0.

In Fig. 1 we plot p∗(x) as a function of x for different diffusivities D1 ≤ D0 = 1. It
can be seen that p∗(x) → p∗D(x) as D1 → D0 from below. Second, performing the
rescalings α, β → α/ε, β/ε and carrying out a perturbation expansion in ε shows that
λ+(r) = O(1/ε) while

λ2−(s) =
1

2D0D1ε
{εs(D0 +D1) + (αD1 + βD0)}

×

(
1−

[
1− 4εs(εs+ α+ β)D0D1

[εs(D0 +D1) + (αD1 + βD0)]2

]1/2)
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Figure 3: Plot of steady-state density p∗(x) as a function of x for different resetting rates r.
Other parameter values are α = β = 0.5, D0 = 1, D1 = 0.1 and Xr = 0.
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≈ s(εs+ α+ β)

[εs(D0 +D1) + (αD1 + βD0)]
=

s

D
+O(ε),

Hence, in the limit ε→ 0, we find that

p∗(x) =
1

2

√
r

D
e−
√
r/D|x−Xr|. (3.15)

This is further illustrated in Fig. 2, which plots p∗(x) for different switching rates α
in the case α = β. (Since p∗(x) for Xr = 0 is an even function of x, we only show plots
for positive x. There is a cusp at x = 0.) Finally, in Fig. 3, we show plots of p∗(x)
for different resetting rates r. As might be expected, reducing the rate of resetting
flattens the steady-state density.

3.2. Matrix analysis

An alternative method for analyzing the NESS is to work directly with the generator
A of the Markov chain. Since this equally applies to higher-order models, suppose that
there now exist N discrete states with diffusivities Dn, n = 1, . . . , N . The steady-state
master equation with resetting takes the form

N∑
m=1

[
(Dn

d2

dx2
− r)δn,m +Anm

]
p∗n(x) = −ρnrδ(x−Xr), (3.16)

where A is the generator of the N -state Markov chain. (For N = 2 the matrix A
reduces to equation (2.3).) Fourier transforming the steady-state equation then yields
the matrix equation

N∑
m=1

[
k2δn,m + Σnm

]
p̃∗n(k) =

ρn
Dn

reikXr , (3.17)

with

Σnm =
1

Dn
(rδn,m −Anm) . (3.18)

Denote the eigenvalues of Σ by λ2j , j = 1, . . . , N . We assume that the generator A is
irreducible so that, from the Perron-Frobenius theorem, the eigenvalues µj of A can
be ordered as

0 = µ1 > µ2 ≥ µ3 > . . . ≥ µN .
It then follows that the eigenvalues of Σ are positive, that is, λj is real for all j.

We now invert the matrix equation (3.17) by setting[
k2I + Σ

]−1
=

M(k2)∏N
j=1(k2 + λ2j )

. (3.19)

Taking the inverse Fourier transform then leads to the integral solution

p∗n(x) = r

∫ ∞
−∞

eik(Xr−x)∏N
j=1(k2 + λ2j )

(
N∑
m=1

Mnm(k2)
ρm
Dm

)
dk

2π
. (3.20)

Hence the eigenvalues of Σ determine the poles of the resulting contour integral.
Depending on the sign of x−Xr, we close the contour in the upper-half or lower-half



Switching diffusions and stochastic resetting 10

complex k-plane and use the residue theorem to obtain the following general expression
for the NESS:

p∗n(x) = r

N∑
j=1

e−λj |x−Xr|

2λj

(∑N
m=1Mnm(−λ2j )ρm

)
∏
l 6=j(λ

2
l − λ2j )

. (3.21)

As in the two-state model, we should recover the NESS for pure diffusion whenDn = D
for all n. The simplest way to show this is to set Dn = D in equation (3.17) and sum

both sides with respect to n. Using the fact that
∑N
n=1Anm = 0 for the generator of

a Markov chain and
∑N
n=1 ρn = 1(normalization), we find that

p̃∗n(k) =
reikXr

Dk2 + r
, (3.22)

whose inverse Fourier transform is given by equation (3.14). Similarly, in the fast
switching limit we can rescale the generator so that equation (3.17) becomes

N∑
m=1

[
(Dnk

2 + r)δn,m −Anm
]
p̃∗n(k) = ρnre

ikXr , (3.23)

Introducing the perturbation series expansion

p̃∗n(k) = ρnp
∗(k) + εp̃∗n,1(k) + . . . , (3.24)

we obtain the leading order equation

(k2D + r)p∗(k) = reikXr ,

which thus recovers equation (3.15).

4. Survival probability and mean first passage time

We now turn to the FPT problem consisting of a particle diffusing on the half-line
x > 0 with an absorbing target at x = 0 and initial position x0 = Xr. This means that
equations (3.2a) and (3.2b) are supplemented by the absorbing boundary conditions

p0(0, t) = 0 = p1(0, t). (4.1)

A well-known property of diffusion on the half-line is that the MFPT to reach the
origin is infinite for x0 > 0. One way to render the MFPT finite is to include stochastic
resetting. Let T denote the first passage time to be absorbed at x = 0 having started
at position Xr (and in state m with probability ρm):

T = inf{t > 0; X(t) = 0, X(0) = Xr}. (4.2)

One way to determine the mean first passage time (MFPT) Tr = E[T ] is to consider
the survival probability of the particle, which is defined according to

Qr(Xr, t) =

∫ ∞
0

pr(x, t)dx, pr = pr,0 + pr,1 (4.3)

with pr,n given by equation (3.1). Since resetting preserves the initial conditions, Qr
is related to the survival probability without resetting, Q, in terms of a last renewal
equation [13]:

Qr(Xr, t) = e−rtQ(Xr, t) + r

∫ t

0

Q(Xr, τ)Qr(Xr, t− τ)e−rτdτ. (4.4)
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The first term on the right-hand side represents trajectories with no resettings. The
integrand in the second term is the contribution from trajectories that last reset at
time τ ∈ (0, t), and consists of the product of the survival probability starting from
Xr with resetting up to time t − τ and the survival probability starting from Xr

without any resetting over the time interval τ . Since we have a convolution, it is
natural to introduce the Laplace transform Q̃r(Xr, s) =

∫∞
0
Qr(Xr, t)e

−stdt. Laplace
transforming the last renewal equation and rearranging shows that

Q̃r(Xr, s) =
Q̃(X, r + s)

1− rQ̃(Xr, r + s)
. (4.5)

Finally, the MFPT to be absorbed at the origin is

Tr =

∫ ∞
0

Qr(Xr, t)dt = Q̃r(Xr, 0) =
Q̃(Xr, r)

1− rQ̃(Xr, r)
. (4.6)

We wish to determine the MFPT under the combined effect of switching diffusions
and stochastic resetting.

4.1. Survival probability without resetting

The survival probability without resetting for the initial condition X(0) = x0 can be
decomposed as

Q(x0, t) = ρ0Q0(x0, t) + ρ1Q1(x0, t), (4.7)

where Qn(x0, t) is the survival probability when the initial state of the particle is n.
The Qn satisfy the backward CK equation

∂Q0

∂t
= D0

∂2Q0

∂x20
− αQ0 + αQ1, (4.8a)

∂Q1

∂t
= D1

∂2Q1

∂x20
+ βQ0 − βQ1, (4.8b)

together with the boundary conditions

Q0(0, t) = Q1(0, t) = 0.

Laplace transforming the backward equation gives

−1 = D0
∂2Q̃0

∂x20
− (s+ α)Q̃0 + αQ̃1, (4.9a)

−1 = D1
∂2Q̃1

∂x20
+ βQ̃0 − (s+ β)Q̃1, (4.9b)

It is convenient to introduce the rescaled survival probabilities q̃n = ρnQ̃n, with

−ρ0 = D0
∂2q̃0
∂x20

− (s+ α)q̃0 + βq̃1, (4.10a)

−ρ1 = D1
∂2q̃1
∂x20

+ αq̃0 − (s+ β)q̃1. (4.10b)

Following along analogous lines to section 3, we perform the change of variables
R̃1 = q̃1 − (s+ α)q̃0/β to obtain

−ρ0 = D0
∂2q̃0
∂x20

+ βR̃1, (4.11a)

−ρ1 = D1
∂2R̃1

∂x20
− (s+ β)R̃1 +

s+ α

β
D1

∂2q̃0
∂x20

− s(s+ α+ β)

β
q̃0. (4.11b)
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Substituting for R̃1 in equation (4.11b) using equation (4.11a) leads to the fourth-order
equation

−ρ1 = −D0D1

β

∂4q̃0
∂x40

+
s+ β

β

(
ρ0 +D0

∂2q̃0
∂x20

)
+
s+ α

β
D1

∂2q̃0
∂x20

− s(s+ α+ β)

β
q̃0,

which can be rearranged to yield

β + sρ0
D0D1

=
∂4q̃0
∂x40

−
[
s+ β

D1
+
s+ α

D0

]
∂2q̃0
∂x20

+
s(s+ α+ β)

D0D1
q̃0, (4.12)

The solution is given by

q̃0(x0, s) =
ρ0
s

[
1− a+(s)e−λ+(s)x0 − a−(s)e−λ−(s)x0

]
, (4.13)

where λ2±(s) are given by equation (3.7), and a+(s) + a−(s) = 1 so that the boundary

condition q̃0(0, s) = 0 holds. Finally, equation (4.11a) and the definition of R̃1 shows
that

q̃1 = −ρ0
β
− D0

β

∂2q̃0
∂x20

+
s+ α

β
q̃0 (4.14)

with

∂2q̃0
∂x20

= −ρ0
s

[
a+(s)λ+(s)2e−λ+(s)x0 + a−(s)λ−(s)2e−λ−(s)x0

]
.

Imposing the boundary condition q̃1(0, s) = 0 then gives

s

D0
= a+(s)λ+(s)2 + a−(s)λ−(s)2

=
1

2

[
s+ β

D1
+
s+ α

D0

]
+

√[
s+ β

D1
+
s+ α

D0

]2
− 4s(s+ α+ β)

D0D1

[
a+(s)− a−(s)

2

]
,

that is

a+(s)− a−(s) = −

s+ β

D1
+
α− s
D0√[

s+ β

D1
+
s+ α

D0

]2
− 4s(s+ α+ β)

D0D1

. (4.15)

Combining equations (4.13) and (4.14) thus gives the result

Q̃(x0, s) ≡ q̃0(x0, s) + q̃1(x0, s) (4.16)

=
1

s

[
1− Γ+(s)a+(s)e−λ+(s)x0 − Γ−(s)a−(s)e−λ−(s)x0

]
,

with

Γ±(s) = ρ0

[
s+ α+ β

β
− D0

β
λ±(s)2

]
. (4.17)
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4.2. Mean first passage time with resetting

Substituting equation (4.16) into (4.6) yields the following expression for the MFPT
for a particle with switching diffusions and stochastic resetting:

Tr =

[
1− Γ+(r)a+(r)e−λ+(r)Xr − Γ−(r)a−(r)e−λ−(r)Xr

]
r
[
Γ+(r)a+(r)e−λ+(r)Xr + Γ−(r)a−(r)e−λ−(r)Xr

] . (4.18)

Again we obtain known results in particular cases. First, suppose that D0 = D1 = D,
Equation (3.13) then holds so that

λ2−(r) =
r

D
, λ2+(r) =

r + α+ β

D
, Γ−(r) = a−(r) = 1, Γ+(r) = 0 = a+(r).

Equation (4.18) thus recovers the survival probability of a diffusing particle on the
half-line [10, 11]:

Tr =
1− e−

√
r/DXr

re−
√
r/DXr

=
1

r

(
e
√
r/DXr − 1

)
. (4.19)

In the limit r → 0, the MFPT diverges as Tr ∼
√
r, which recovers the result that the

MFPT of a Brownian particle without resetting to return to the origin is infinite. Tr
also diverges in the limit r →∞, since the particle resets to Xr so often that it never
has the chance to reach the origin. One thus finds that the MFPT has a finite and
unique minimum at an intermediate value of the resetting rate r [10, 11]. Similarly,
performing the rescalings α, β → α/ε, β/ε and carrying out a perturbation expansion
in ε recovers the fast switching limit with D replaced by D in equation (4.19).

In Fig. 4 we show plots of Tr as a function of the resetting rate for various
switching rates α with β = α, D0 = 1 and D1 = 0.1. It can be seen that the MFPT
converges to the fast switching limit as α → ∞. Another feature of the plots is that
for slow resetting the MFPT is a decreasing function of α, whereas the opposite holds
for fast resetting. In Fig. 5 we show analogous plots for fixed α = 0.5 and various

0

1

2

3

4

5

6

7

8

9

10

fast switching

       limit

M
F

P
T

 T
r

4 8 12 16 200

resetting rate r

6 10 14 182

α = 50

α = 0.5

α = 5

α = 0.05

Figure 4: Plot of MFPT Tr as a function of resetting rate for different switching rates α and
β = α. Other parameter values are Xr = 1, D0 = 1 and D1 = 0.1.
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Figure 6: Plot of MFPT Tr as a function of resetting rate for different diffusivities D1,
D1 ≤ D0. Other parameter values are α = β = 0.5, Xr = 1, and D0 = 1. Green dotes
indicate the optimal resetting rate for each curve.

β. Since increasing β increases the amount of time spent in the fast diffusing state
D0, it follows that the MFPT is reduced. Finally, in Fig. 6 the effect of varying D1

with D1 ≤ D0 = 1 is explored. In this case we see that the optimal resetting rate is a
non-monotonic function of D1.
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5. Conclusion

In this paper we analyzed the effects of stochastic resetting on a stochastic hybrid
system consisting of a 1D Brownian particle with switching diffusions. We derived
explicit expressions for the NESS on R and the MFPT on R+ with an absorbing
boundary at x = 0. Consistent with previous studies of stochastic hybrid system with
stochastic resetting [19, 13], the MFPT has a unique minimum as a function of the
resetting rate r. Moreover, the optimal resetting rate and MFPT have a nontrivial
dependence on parameters of the model. For example, increasing the relevant amount
of time in the fast diffusing state reduces the MFPT. An analogous result was found
in [19], where increasing the amount of time in the state drifting towards rather than
away from a target reduced the MFPT. We also showed how one recovers the case of
pure diffusion with resetting in the fast switching limit, with an effective diffusivity
D =

∑
n ρnDn. One of the interesting issues concerning stochastic hybrid systems

with resetting is how one specifies the reset protocol of the discrete state. In this
paper we assumed that the diffusion state was simultaneously reset with particle
position according to a randomization scheme based on the stationary distribution
of the underlying Markov chain. This allowed us to use a simple renewal equation for
the survival probability. As explored elsewhere for the run-and-tumble model [13], one
could consider a more general resetting scheme in which the discrete state just after
reset depends on the state just prior to reset. However, this significantly complicates
the analysis of the renewal equation.
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