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Abstract. We show how certain active transport processes in living cells can be
modeled in terms of a directed search process with stochastic resetting and delays.
Two particular examples are the motor-driven intracellular transport of vesicles
to synaptic targets in the axons and dendrites of neurons, and the cytoneme-
based transport of morphogen to target cells during embryonic development. In
both cases, the restart of the search process following reset has a finite duration
with two components: a finite return time and a refractory period. We use a
probabilistic renewal method to explicitly calculate the splitting probabilities and
conditional mean first passage times (MFPTs) for capture by a finite array of
contiguous targets. We consider two different search scenarios: bounded search
on the interval [0, L], where L is the length of the array, with a refractory boundary
at x = 0 and a reflecting boundary at x = L (model A), and partially bounded
search on the half-line (model B). In the latter case there is a non-zero probability
of failure to find a target in the absence of resetting. We show that both models
have the same splitting probabilities, and that increasing the resetting rate r
increases (reduces) the splitting probability for proximal (distal) targets. On the
other hand the MFPTs for model A are monotonically increasing functions of r,
whereas the MFPTs of model B are non-monotonic with a minimum at an optimal
resetting rate. We also formulate multiple rounds of search-and-capture events
as a G/M/∞ queue and use this to calculate the steady-state accumulation of
resources in the targets.
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1. Introduction

One of the limitations of a purely diffusive process as a mechanism for the stochastic
search for some hidden target in an unbounded domain is that the mean first passage
time (MFPT) for target detection is infinite. However, the introduction of stochastic
resetting, whereby the position of the searcher is reset to a fixed location over a
random sequence of times, leads to a finite MFPT that has a unique minimum as a
function of the resetting rate [12, 13, 14]. These observations have motivated numerous
studies of more general stochastic processes with resetting, including non-diffusive
processes such as Levy flights [20] and active run and tumble particles [15], resetting
in bounded domains [25], resetting followed by a refractory period [16, 23] (which
arises in certain Michaelis-Menten reaction schemes [28, 29, 30]), and resetting with
finite return times [26, 22, 27, 3]. (For further extensions and applications see the
review [17] and references therein.)

Recently, we considered another example of a stochastic process with an infinite
MFPT being rendered finite by resetting, namely, a directed intermittent search
process [7]. In particular, we analyzed a biased velocity jump process in which a
particle switches between a stationary state and right-moving ballistic state according
to a two-state Markov process. The particle can be captured by a target (or one of a
set of targets) at a fixed rate whenever it is in the stationary state and within range
of the target. In addition, the particle can reset its position to the origin at some rate
r. In the absence of resetting there is a non-zero probability that the particle moves
beyond the target(s) without being captured, resulting in an infinite MFPT. Directed
intermittent search with multiple targets also has certain analogies with the example
of mortal walkers, where there are two possible outcomes of the search process, namely,
target detection or death [34, 10, 2].

As highlighted in [7], there are various examples of directed search processes in
cell biology [4], including motor-driven intracellular transport of vesicles to synaptic
targets in the axons and dendrites of neurons [31, 11, 21], and the transport of
morphogen at the tips of growing actin-rich filaments (cytonemes) to target cells
during embryonic development in vertebrates [32, 19, 33]. In the first example the
particle (searcher) represents a molecular motor complex moving along a polymerized
filament such as a microtubule within the axon or dendrite of a neuron, while resetting
corresponds to the removal and return of the complex to the cell body, see Fig. 1.
On the other hand, in the second example the particle represents the tip of a growing
cytoneme, while resetting takes into account the fact that a cytoneme can suddenly
switch to a shrinkage phase and rapidly retract back to the source cell, see Fig. 2. In
our previous study [7], we assumed for simplicity that resetting was instantaneous and
that the particle immediately reentered the search phase. However, this neglects the
fact that the restart of the search process following reset has a finite duration with two
components: a finite return time and a refractory period. In terms of the two given
examples, the return time would depend on the speed of retrograde motor transport
or the rate of cytoneme retraction, while the refractory period would depend on the
time to reload a motor complex with vesicles at the cell body or the time for a new
cytoneme to nucleate from the source cell.

Another important characteristic feature of the cell transport processes shown in
Figs. 1 and 2 is that the arrival of a particle at a target results in the delivery of
some resource. In the case of a motor-cargo complex, the resource could be synaptic
proteins bound to a vesicle [31, 11, 21]. On the other hand, cytonemes in vertebrates
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Figure 1: Search-and-capture model of motor driven intracellular transport. A motor-
cargo complex moves ballistically with speed v+ away from the cell body and searches
for a synaptic target to deliver its cargo. Prior to finding a target, the complex may
randomly switch to a retrograde state (resetting) and return to the cell body at a speed
v−. After a refractory period, a new motor complex is inserted onto the microtubule.

carry morphogen at their tips, which is released to the target cell after being captured
[32, 19, 33]. Following delivery of its cargo, the particle escapes and may return to
its initial (reset) position where it is reloaded with supplies in order to initiate a new
search process. This would then lead to a sequence of search-and-capture events,
whereby resources accumulate in the targets. Assuming that the build up of resources
within each target is counterbalanced by degradation, there will exist a steady-state
number of packets in the long-time limit. One way to calculate the statistics of resource
accumulation is to formulate multiple search-and-capture events as a G/M/∞ queue.
This was originally explored within the context of a cytoneme-based transport model
without resetting, where queueing theory was used to analyze the accumulation of
morphogen in a one-dimensional (1D) array of target cells. More recently, we have
applied queueing theory to a general class of search processes with stochastic resetting
in the case of a single target [9].

In this paper we analyze the effects of finite return times and refractory periods
on directed search processes with stochastic resetting. For simplicity, we assume that
the particle moves with constant speed v+ in the search phase rather than switching
between a moving state and a stationary state as in [7]. (This simplifies the analysis
without affecting the main results of the paper.) We assume that there exists a 1D
array of N contiguous targets of size l with Nl = L. These could represent neighboring
synaptic targets along the axon or dendrite of a neuron (Fig. 1) or a line of target
cells in the case of cytoneme-based transport (Fig. 2). We then consider two different
search scenarios. The first (model A) consists of bounded search on the interval [0, L],
where L is the length of the target array, with a refractory (sticky) boundary at x = 0
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Figure 2: Search-and-capture model of cytoneme-based transport. A cytoneme grows
along the surface of a 1D array of target cells at a speed v+ until it eventually forms
a contact with one of the cells and delivers the morphogen at its tip. Prior to finding
a target, the cytoneme may randomly switch to a retraction phase (resetting) and
return to the origin at speed v−. After a refractory period (nucleation waiting time),
a new cytoneme starts to grow.

and a reflecting boundary at x = L. The latter boundary condition means that if the
particle reaches the end of the domain, then it returns to the origin at constant speed.
The second scenario (model B) involves partially bounded search on the half-line with
a refractory boundary at x = 0. In contrast to model A, in the absence of resetting
there is a non-zero probability that the particle moves beyond x = L without being
captured by a target, which implies that the MFPT to capture is infinite. This is
analogous to the directed search process with multiple targets considered in [7].

The structure of the paper is as follows. The search-and-capture model is
introduced in section 2. In order to develop the analysis of stochastic resetting with
delays, we first consider the simpler problem of directed search on the half-line with a
single target (section 3). In section 4, we extend the analysis to determine the splitting
probabilities and MFPTs for the particle to be captured by one of multiple targets.
We show that models A and B have the same splitting probabilities but different
MFPTs. In section 5 we explore the dependence of the splitting probabilities and
conditional MFPTs on various model parameters, including the speeds of the search
phase (v+) and return phase (v−), and the resetting rate r. We find that increasing
the resetting rate r increases (reduces) the splitting probability for proximal (distal)
targets. On the other hand, the MFPTs for model A are monotonically increasing
functions of r, whereas the MFPTs of model B are non-monotonic with a minimum
at an optimal resetting rate. We also show how increasing the search speed leads to a
more uniform distribution of statistical quantities across the target array. Finally, in
section 6 we analyze the accumulation of resources in the targets following multiple
round of search-and-capture events by extending the queueing theory of [9] to multiple
targets.
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2. Directed search-and-capture model

Consider a particle moving ballistically on the finite interval x ∈ [0, L]. Suppose that
the particle can exist in one of two discrete states: a right-moving (anterograde) state
with speed v+ or a left-moving (retrograde) state with speed v−. The particle can
undergo the state transition v+ → v− at a resetting rate r, after which it returns
to the origin. At the origin the particle enters a refractory state for an exponentially
distributed waiting time with rate η, prior to re-entering the domain in the anterograde
state. Finally, we impose a reflecting boundary condition at x = L, such that if the
particle reaches the end x = L then it switches to the retrograde state and returns
to the origin. The different states of the particle are shown schematically in Fig. 3.
In this paper we are interested in the first passage time problem for the particle to
find one of N contiguous targets of size l with Nl = L. Therefore, we introduce the
additional assumption that the particle can be absorbed anywhere in the domain [0, L]
at a rate κ.

Let pn(x, t) be the probability density that at time t the particle is at X(t) = x
and in either the anterograde state (n = +) or the retrograde state (n = −). Similarly,
let P0(t) denote the probability that the particle is in the refractory state at time t.
The corresponding Chapman-Kolmogorov (CK) equation take the form

Model A

∂p+

∂t
= −v+

∂p+

∂x
− rp+ − κp+, x ∈ (0, L), (2.1a)

∂p−
∂t

= v−
∂p−
∂x

+ rp+, (2.1b)

dP0

dt
= v−p−(0, t)− ηP0(t), (2.1c)

together with the boundary conditions

v+p+(0, t) = ηP0(t), v+p+(L, t) = v−p−(L, t). (2.1d)

We assume that the particle starts in the anterograde state at x = 0. (Note that
equation (2.1c) and the boundary condition at x = 0 are mathematically identical
to so-called sticky boundary conditions used in models of bidirectional transport and

v
+

v
-

r

x = 0 x = L

η

R

Figure 3: Schematic representation of particle states: anterograde state with speed
v+, retrograde state with speed v− and a refractory state R. The refractory period τ
is generated by an exponential waiting time density ψ(τ) = ηe−ητ , and r denotes the
resetting rate.
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microtubular catastrophes [18, 24, 6].) The probability Pk(t) that the particle is
captured by the k-th target at time t is

dPk
dt

= κ

∫ kl

(k−1)l

p+(x, t)dx, k = 1, . . . , N. (2.2)

Summing equations (2.1a) and (2.1b) and then integrating with respect to x over the
interval [0, L] shows that

d

dt

∫ L

0

p(x, t)dx = − [v+p+(x, t)− v−p−(x, t)]|L0 − κ
∫ L

0

p+(x, t)dx,

where p = p+ + p−. Given the boundary conditions (2.1d), it follows that

d

dt

∫ L

0

p(x, t)dx+

N∑
k=0

dPk
dt

= 0,

which ensures conservation of total probability over all events, that is∫ L

0

p(x, t)dx+

N∑
k=0

Pk(t) = 1. (2.3)

An illustration of a sample trajectory of the particle prior to capture is shown in Fig.
4.

We also consider a slightly modified version of model A, in which there is no
reflecting boundary at x = L. Instead, the particle can continue beyond the array of
targets until it resets and switches to the return phase. Now equations (2.1a)–(2.1d)
become

Model B

∂p+

∂t
= −v+

∂p+

∂x
− rp+ − κH(L− x)p+, x ∈ (0,∞), (2.4a)

∂p−
∂t

= v−
∂p−
∂x

+ rp+, x ∈ (0,∞), (2.4b)

dP0

dt
= v−p−(0, t)− ηP0(t), v+p+(0, t) = ηP0(t), (2.4c)

where H(x) is the Heaviside function. There is a major difference between the two
models in the absence of resetting. In the former case (model A), the particle is
captured by one of the targets with probability one when r = 0, which is a consequence
of the reflecting boundary condition at x = L. On the other hand, in the latter case
(model B) there is a nonzero probability of passing beyond the target array and thus
failing to be captured by any target, analogous to the model analyzed in [7]. This will
lead to differences in how the conditional MFPTs vary with the resetting rate (see
section 5).

3. MFPT for a single target

We begin our analysis by considering the simpler problem of a particle moving
rightward on the half-line at a constant speed v+ (as in model B), with a single
target at a fixed location X∗ > 0 and resetting to the origin. If the particle is within
a distance l of the target, l ≤ X∗, then the particle can detect or, equivalently, be
absorbed by the target at a rate κ.
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Figure 4: Directed search-and-capture model with stochastic resetting. Illustration
of a sample trajectory of a particle prior to capture by a target in the domain
[0, L]. Resetting events (indicated by the times σ1, σ2) are Poissonian with a rate
r. The refractory periods τ1, τ2 are generated by an exponential waiting time density
ψ(τ) = ηe−ητ with rate η. In model A there is a reflecting boundary at x = L, whereas
the particle can continue beyond the array in model B.

3.1. MFPT with instantaneous resetting

In the case of instantaneous resetting, we have

∂p+

∂t
= − v+

∂p+

∂x
− κχ(x−X∗)p+ − rp+ + rδ(x). (3.1)

Here χ(x) is an indicator function: χ(x) = 1 if |x| < l and is zero otherwise. Let
Qr(x0, t) denote the survival probability that the particle hasn’t been absorbed by the
target up to time t, having started at x0 :

Qr(x0, t) =

∫ ∞
0

p+(x, t|x0, 0)dx, (3.2)

where we have made the initial condition explicit. In particular, we set Qr(t) =
Qr(0, t). The MFPT Tr to be absorbed by the target can be expressed in terms of the
survival probability according to

Tr = −
∫ ∞

0

t
dQr(t)

dt
dt =

∫ ∞
0

Qr(t)dt. (3.3)

One now observes that Qr can be related to the survival probability without resetting,
Q0, using a last renewal equation [17]:

Qr(x0, t) = e−rtQ0(x0, t) + r

∫ t

0

Q0(t′)Qr(x0, t− t′)e−rt
′
dt′.

The first term on the right-hand side represents trajectories with no resettings. The
integrand in the second term is the contribution from trajectories that last reset at
time t− t′, and consists of the product of the survival probability starting from x = x0

with resetting up to time t−t′ and the survival probability starting from x = 0 without
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any resetting for the time interval of duration t′. Since we have a convolution, it is
natural to introduce the Laplace transform

Q̃r(x0, s) =

∫ ∞
0

Qr(x0, t)e
−stdt.

Laplace transforming the last renewal equation and rearranging gives [17]

Q̃r(x0, s) =
Q̃0(x0, r + s)

1− rQ̃0(r + s)
. (3.4)

Substituting into equation (3.3) with x0 = 0 then shows that the MFPT to reach the
target is

Tr = Q̃r(0) =
Q̃0(r)

1− rQ̃0(r)
. (3.5)

The Laplace transform of Q0(x0, t) can be determined by Laplace transforming
the corresponding backward master equation without resetting, which takes the form

−1 = v+
∂Q̃0(x0, s)

∂x0
− sQ̃0(x0, s)− κχ(x0 −X∗)Q̃0(x0, s).

This equation can be solved separately in the three domains 0 < x0 < X∗ − l,
X∗ − l < x0 < X∗ + l and X∗ + l < x0 < ∞, after imposing continuity across the
boundaries at x0 = X∗ ± l together with the condition Q0(x0, t) = 1 for x0 ≥ X∗ + l.

The latter implies that Q̃0(X∗ + l, s) = 1/s. The final result after setting x0 = 0 is

Q̃0(s) =
1

s

(
1− e−g0(s)(X∗−l)

)
(3.6)

+ e−g0(s)(X∗−l)
[

1

s
e−2lgκ(s) +

1

s+ κ

(
1− e−2lgκ(s)

)]
,

with gκ(s) = (s+ κ)/v+. Note that

lim
t→∞

Q0(t) = lim
s→0

sQ̃0(s) = e−(X∗+l)κ/v+ .
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Figure 5: Plot of Tr as a function of the resetting rate r for various target locations
X∗ and v+ = κ = l = 1. Green dots indicate optimal resetting rates.
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That is, there is a nonzero probability that the particle fails to find the target, which
is equal to the probability that it moves beyond the target without being absorbed.
It follows that the MFPT is infinite. On the other hand,

lim
t→∞

Qr(t) = lim
s→0

sQ̃r(s) = 0,

which implies that the particle is absorbed by the target with probability one.
Stochastic resetting also renders the corresponding MFPT to be finite, as illustrated
in Fig. 5. As found in previous studies of search processes with stochastic resetting,
there exists an optimal resetting rate that minimizes the MFPT.

We now extend the standard renewal equation (3.4) in order to take into account
refractory periods and finite return times. Since they affect the MFPT in an additive
fashion, we consider them separately, starting with refractory periods (see also [16]).
Throughout we take x0 = 0. Note that a more general expression for the MFPT of a
search process with stochastic resetting and delays has recently been derived in Refs.
[27, 3].

3.2. Refractory periods

Let ψ(τ) denote the waiting time density for the refractory period following each
return to the origin, with a finite mean τ . The generalized renewal equation takes the
form

Qr(t) = e−rtQ0(t) + r

∫ t

0

(1−Ψ(σ))e−r(t−σ)Q0(t− σ)dσ

+ r

∫ t

0

Q0(t′)e−rt
′

[∫ t−t′

0

ψ(τ)Qr(t− t′ − τ)dτ

]
dt′. (3.7)

The first term on the right-hand side represents trajectories with no resettings, and
the second term sums over all trajectories that first reset at some time t−σ, 0 ≤ σ ≤ t
and are still in the refractory state at time t. The probability of remaining refractory
for a period t is 1−Ψ(t) with

Ψ(t) =

∫ t

0

ψ(σ)dσ.

The third term is the contribution from trajectories that last reset at time t− t′ − σ,
spent a time σ in the refractory state, and then exited the refractory state at time
t− t′ without any further resettings. Laplace transforming equation (3.7), we have

Q̃r(s) = Q̃0(r + s) + r
1− ψ̃(s)

s
Q̃0(r + s) + rQ̃0(r + s)ψ̃(s)Q̃r(s),

which can be rearranged to yield

Q̃r(s) =

Q̃0(r + s)

[
1 +

r(1− ψ̃(s))
s

]
1− rQ̃0(r + s)ψ̃(s)

. (3.8)

Taking the limit s→ 0 in equation (3.8) using ψ̃(0) = 1 and

lim
s→0

1− ψ(s)

s
= −ψ′(0) =

∫ ∞
0

τψ(τ)dτ ≡ τ ,
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we thus find that the MFPT in the presence of a refractory period is

Tr =
Q̃0(r)[1 + rτ ]

1− rQ̃0(r)
. (3.9)

This reduces to equation (3.5) in the absence of a refractory period.

3.3. Finite return times

Rather than a refractory period, suppose that the particle returns to the origin at a
speed v− following each resetting event. Equation (3.1) becomes

∂p+

∂t
= −v+

∂p+

∂x
− κχ(x−X∗)p+ − rp+, (3.10a)

∂p−
∂t

= v−
∂p−
∂x

+ rp+, x ∈ (0,∞), (3.10b)

v+p+(0, t) = v−p−(0, t). (3.10c)

In order to link up with other work [16, 26], we briefly consider the steady-state density
on the half-line x ∈ [0,∞) in the absence of any targets (κ = 0). Adding equations
(3.10a) and (3.10b) after setting time derivatives to zero, and imposing the reflecting
boundary condition shows that v+p+(x) = v−p−(x). Next, solving equation (3.10a)
gives

p+(x) = p+(0)e−rx/v+ ,

with the constant p+(0) determined from the normalization condition

1 =

∫ ∞
0

[p+(x) + p−(x)]dx =

(
1 +

v+

v−

)
p+(0)

∫ ∞
0

e−ry/v+dy.

Hence,

p+(x) =
v−

v+ + v−

r

v+
e−rx/v+ . (3.11)

In the case of instantaneous reset (v− →∞), we obtain the familiar steady-state

p∞(x) =
r

v+
e−rx/v+ . (3.12)

Consistent with the more general results obtained in [16, 26], the steady-state density
is equal to the density p∞(x) multiplied by the mean fraction of time spent in the
ballistic state.

Turning to the calculation of the MFPT, we have to write down the appropriate
generalization of the renewal equation (3.4):

Qr(t) = e−rtQ0(t) + r

∫ t/ξ+

0

e−r(t−σ)Q0(t− σ)dσ (3.13)

+

∫ t

0

Q0(t′)re−rt
′

[∫ (t−t′)/ξ−

0

Qr(t− t′ − σξ−)re−rσdσ

]
dt′,

where

ξ+ =
v+ + v−
v+

, ξ− =
v+

v−
.

As in equation (3.4), the first term on the right-hand side represents trajectories with
no resettings. The second term sums over all trajectories that first reset at some time
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t − σ, 0 ≤ σ ≤ t/ξ+ and are still in the process of returning to the origin. Since
the particle has been in the ballistic state for time t − σ, it has traveled a distance
v+(t− σ), which means that

σ ≤ v+

v−
(t− σ).

Rearranging this equation yields the constraint that σ ≤ t/ξ+. The third term is the
contribution from trajectories whose last reset occurred at time t− t′− v+σ/V , where
σ is the time spent in the ballistic state prior to resetting, after which the particle
takes a time v+σ/v− to return to the origin, and then an additional time t′ in the
ballistic state without any further resettings. We also require

σ
v+

v−
≤ (t− t′),

which yields the constraint σ ≤ (t− t′)/ξ−.
We now Laplace transform the various terms in equation (3.13). First, set

A(t) :=

∫ t/ξ+

0

e−r(t−σ)Q0(t− σ)dσ =

∫ t

t/ξ

e−rσQ0(σ)dσ,

with ξ−1 = 1− ξ−1
+ . It follows that

dA

dt
= Q0(t)e−rt − ξ−1Q0(t/ξ)e−rt/ξ.

Laplace transforming this equation with A(0) = 0 yields

Ã(s) =
Q̃0(r + s)− Q̃0(r + ξs)

s
. (3.14)

Next, let

B(t) :=

∫ t/ξ−

0

Qr(t− σξ−)re−rσdσ = ξ−1
−

∫ t

0

Qr(t− τ)re−rτ/ξ−dτ.

Hence,

B̃(s) =
Q̃r(s)

sξ− + r
. (3.15)

Finally, Laplace transforming equation (3.13) using equations (3.14) and (3.15) gives

Q̃r(s) = Q̃0(r + s) + r

[
Q̃0(r + s)− Q̃0(r + ξs)

s

]
+

r2

sξ− + r
Q̃0(r + s)Q̃r(s),

which can be rearranged to yield

Q̃r(s) =
Q̃0(r + s) + r

[
Q̃0(r + s)− Q̃0(r + ξs)]

]
/s

1− r2Q̃0(r + s)/(r + sξ−)
. (3.16)

Taking the limit s→ 0 in equation (3.16) using

lim
s→0

Q̃0(r + s)− Q̃0(r + ξs)

s
= (1− ξ)Q̃′0(r) = −v+

v−
Q̃′0(r),

we find that the MFPT in the presence of finite return times is

Tr =
Q̃0(r)− r v+

v− Q̃
′
0(r),

1− rQ̃0(r)
. (3.17)
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Again this reduces to equation (3.5) in the limit v− → ∞ (instantaneous resetting).
Finally, equations (3.9) and (3.17) show that the combined effect of refractory periods
and finite returns times is an MFPT of the form

Tr =
Q̃0(r) + rτQ̃0(r)− r v+

v− Q̃
′
0(r),

1− rQ̃0(r)
. (3.18)

Since Q̃0(r) > 0 and Q̃′0(r) < 0 we see that both types of delay increase the MFPT, as
one would expect. This is consistent with the more general result obtained in [27, 3].

3.4. Alternative renewal method

We now describe an alternative renewal method for calculating MFPTs in the presence
of delays, which is based on conditioning the first passage time on whether or not the
particle resets at least once. This approach was previously applied to the search-and-
capture model of cytoneme-based morphogen transport [6], and has recently been used
to derive a general expression for a search process with stochastic resetting and delays
[27]. We will extend this method to multiple targets in section 4, following along the
lines of [8].

The basic idea is to exploit the fact that resetting eliminates any memory of
previous search stages. Introduce the discrete random variable K(t) ∈ {0, 1}, which
indicates whether the particle has been captured by the target (K(t) = 1) or is still
free (K(t) = 0) in the time interval [0, t]. Consider the following set of first passage
times;

T = inf{t > 0;X∗ − l ≤ X(t) ≤ X∗ + l, K(t) = 1},
S = inf{t > 0;X(t) = 0, K(t) = 0},
R = inf{t > 0;X∗ − l ≤ X(t+ S +N ) ≤ X∗ + l, K(t+ S +N ) = 1}.
Here T is the FPT for finding the target irrespective of the number of resettings, S is
the FPT for the first resetting and return to the origin given that the particle is still
free, N is the first refractory period, and R is the FPT for finding the target given
that at least one resetting has occurred. Next we introduce the sets

Ω = {T <∞}, Γ = {S < T <∞} ⊂ Ω.

That is, Ω is the set of all events for which the particle is eventually absorbed by
the target (which has measure one), and Γ is the subset of events in Ω for which the
particle resets at least once. It immediately follows that

Ω\Γ = {T < S =∞}.
In other words, Ω\Γ is the set of all events for which the particle is captured by the
target without any resetting. We now use a probabilistic argument to calculate the
MFPT Tr = E[T ] in the presence of resetting (r > 0).

Consider the decomposition

E[T ] = E[T 1Ω\Γ] + E[T 1Γ]. (3.19)

The first expectation on the right-hand side can be evaluated by noting that it is the
MFPT for capture by the target without any resetting, and the probability density
for such an event is −e−rτ∂tQ0(t). Hence,

E[T 1Ω\Γ] = −
∫ ∞

0

τe−rτ
∂Q0(τ)

∂τ
dτ =

(
1 + r

d

dr

)
Q̃0(r), (3.20)
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The second expectation can be further decomposed as

E[T 1Γ] = E[(S +N +R)1Γ] = E[S1Γ] + τP[Γ] + E[R1Γ]

= E[S1Γ] + (τ + Tr)P[Γ]. (3.21)

Here E[N ] = τ is the mean refractory period, and we have used the result E[R1Γ] =
TrP[Γ]. The latter follows from the fact that return to the origin restarts the stochastic
process without any memory.

In order to calculate E[S1Γ], it is necessary to incorporate the time to return to
the origin following the first return event. The first resetting occurs with probability
re−rτQ0(τ)dτ in the interval [τ, τ + dτ ]. At time τ the particle is at position v+τ and
thus takes an additional time v+τ/v− to return to x = 0. We thus find

E[S1Γ] =

∫ ∞
0

re−rττ

(
1 +

v+

v−

)
Q0(τ)dτ = −r

(
1 +

v+

v−

)
d

dr
Q̃0(r). (3.22)

Moreover, from the definitions of the first passage times and the effect of resetting,

P[Γ] = P[S <∞]P[R <∞], (3.23)

with P[R <∞] = 1 and

P[S <∞] =

∫ ∞
0

re−rτQ0(τ)dτ = rQ̃0(r). (3.24)

Combining equations (3.20)–(3.24) yields the implicit equation

Tr =

(
1 + r

d

dr

)
Q̃0(r) + rτQ̃0(r)− r

(
1 +

v+

v−

)
d

dr
Q̃0(r) + rQ̃0(r)Tr. (3.25)

Rearranging this equation then recovers the general result (3.18). In the following we
take ψ(τ) to be an exponential waiting time density with rate η so that τ = η−1.

4. Splitting probabilities and conditional MFPTs for multiple targets

We now wish to extend the above probabilistic renewal method to calculate the

splitting probability π
(r)
k that a particle evolving according to model A or B in section

2 is eventually captured by the k-th target,

π
(r)
k = lim

t→∞
Pk(t),

N∑
k=1

π
(r)
k = 1, (4.1)

and the corresponding conditional mean first passage time T
(r)
k . This will generate

expressions for π
(r)
k and T

(r)
k in terms of statistical quantities for the search process

without a return phase (no resetting nor reflection at x = L). Hence, the first step is
to analyze target capture in the absence of a return phase, which means that if the
particle reaches the end x = L then it cannot be captured by any target.

4.1. Target capture without a return phase

Consider the splitting probability πk and conditional MFPT Tk for the particle to be
captured by the k-th target when p−(x, t) ≡ 0 (no return phase), having started in
the search phase at position x = 0 at time t = 0. The first step is to solve equation
(2.1a) with r = 0, which becomes

∂p+

∂t
= −v+

∂p+

∂x
− κp+. (4.2)
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This has the explicit solution

p+(x, t|0, 0) = δ(x− v+t)e
−κt, 0 < t <

L

v+
.

The probability flux into the k-th target is

Jk(t) = κ

∫ kl

(k−1)l

p+(x, t|0, 0)dx = κ

∫ kl

(k−1)l

δ(x− v+t)e
−κtdx = κχk(t)e−κt, (4.3)

where χk(t) = 1 if τk−1 < t < τk and zero otherwise, and we have set τk = kl/v+. Let
Tk denote the FPT that the particle is captured by the k-th target, with Tk = ∞
indicating that it is not captured. The splitting probability that the particle is
captured by the k-th target is

πk := P[0 < Tk <∞] =

∫ ∞
0

Jk(y, t′)dt′ = κ

∫ ∞
0

χk(t)e−κt = e−κτk−1 − e−κτk . (4.4)

Here e−κτk−1 is the probability of reaching the k-th target without being captured by
any upstream targets, so πk is the probability that the particle is captured by the k-th
target before passing to the (k + 1)-th target. It follows that

N∑
k=1

πk = 1− e−κL/v+ , (4.5)

where e−κL/v+ is the probability the particle reaches the end without being captured
by any target in the array.

Given the splitting probability πk, we define the corresponding conditional MFPT
by

Tk = E[Tk|Tk <∞]. (4.6)

In order to determine Tk, it is convenient to consider the probability Πk(t) that the
particle is captured by the k-th target after time t:

Πk(t) = P[t < Tk <∞] =

∫ ∞
t

Jk(t′)dt′. (4.7)

Substituting for Jk(t) using equation (4.3) gives

Πk(t) = H(τk−t)
[
e−κt − e−κτk

]
+H(τk−1−t)

[
e−κτk−1 − e−κt

]
, (4.8)

where H(t) is the Heaviside function. Note that Πk(0) = πk, and the complementary
probability Λk(t) that the particle is captured by the k-th target before time t is

Λk(t) =

∫ t

0

Jk(t′)dt′ =

∫ ∞
0

Jk(t′)dt′ −
∫ ∞
t

Jk(t′)dt′ = πk −Πk(t). (4.9)

The conditional MFPT can now be written as

Tk =

∫ ∞
0

Πk(t)

πk
dt =

Π̃k(0)

πk
,

where Π̃k(s) is the Laplace transform of Πk(τ):

Π̃k(s) =
1

s+ κ

(
1− e−(s+κ)τk

)
− 1

s

(
1− e−sτk

)
e−κτk

− 1

s+ κ

(
1− e−(s+κ)τk−1

)
+

1

s

(
1− e−sτk−1

)
e−κτk−1 . (4.10)

Hence,

πkTk =
πk
κ

+ τke−κτk − τk−1e−κτk−1 . (4.11)
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4.2. Target capture with a return phase: probabilistic renewal method

In order to incorporate the effects of stochastic resetting (or reflection at x = L in
model A) and delays, we introduce the discrete random variable K(t) ∈ {0, 1, . . . , N},
which indicates whether the particle has been captured by the k-th target (K(t) = k,
k 6= 0) or has not been absorbed by any target (K(t) = 0) in the time interval [0, t].
Consider the following set of first passage times;

Tk = inf{t > 0; (k − 1)l ≤ X(t) ≤ kl,K(t) = k},
S = inf{t > 0;X(t) = 0,K(t) = 0},
Rk = inf{t > 0; (k − 1)l ≤ X(t+ S +N ) ≤ kl,K(t+ S +N ) = k}.

Here Tk is the FPT for finding the k-th target irrespective of the number of return
phases, S is the FPT for the first return to the origin given that no target has captured
the particle, N is the first refractory period, and Rk is the FPT for finding the k-th
target given that at least one return phase has occurred. Next we introduce the sets

Ωk = {Tk <∞}, Γk = {S < Tk <∞} ⊂ Ωk,

where Ωk is the set of all events for which the particle is eventually absorbed by the
k-th target, and Γk is the subset of events in Ωk for which the particle returns to the
origin at least once. It immediately follows that

Ωk\Γk = {Tk < S =∞}.
In other words, Ωk\Γk is the set of all events for which the particle is captured by
the k-th target without any returns to the origin via resetting (or reflection at x = L
in the case of model A). We now generalize the probabilistic approach of section 3.4

to calculate the splitting probability π
(r)
k and MFPT T

(r)
k in the presence of resetting

(r > 0).

The splitting probability π
(r)
k can be decomposed as

π
(r)
k := P[Ωk] = P[Ωk\Γk] + P[Γk]. (4.12)

We note that the probability that the particle is captured by the k-th target in the
interval [τ, τ + dτ ] without any returns to the origin is e−rτJk(τ)dτ with Jk(τ) given
by equation (4.3). Hence,

P[Ωk\Γk] =

∫ ∞
0

e−rτJk(τ)dτ = −
∫ ∞

0

e−rτ
dΠk(τ)

dτ
dτ

= −rΠ̃k(r) + πk = rΛ̃k(r). (4.13)

Next, from the definitions of the first passage times, we have

P[Γk] = P[S <∞]P[Rk <∞], (4.14)

and memoryless return to the origin implies that P[Rk < ∞] = π
(r)
k . In the case of

model B

P[S <∞] =

∫ ∞
0

re−rτ

[
1−

N∑
k=1

Λk(τ)

]
dτ

= 1− r
N∑
k=1

Λ̃k(r) = r

N∑
k=1

Π̃k(r) + e−κL/v+ . (4.15)

We have used the fact that the probability of first switching to the shrinking phase in
the time interval [τ, τ + dτ ] is equal to the product of the reset probability re−rτdτ
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and the probability 1 −
∑
k Λk(τ) that the particle hasn’t been captured by a target

up to time τ . The term e−κL/v+ in the final expression arises from the normalization
condition (4.5), and is the probability that the particle reaches the end of the array
at x = L, after which it continues in the anterograde state until the first reset. It
turns out that P[S <∞] is the same for model A. Now we only integrate the resetting
time over the interval τ ∈ [0, L/v+], after which the particle returns to the origin with
probability one:

P[S <∞] =

∫ L/v+

0

re−rτ

[
1−

N∑
k=1

Λk(τ)

]
dτ + e−rL/v+e−κL/v+ .

The second term on the right-hand side is the probability that it reaches the end of
the array without resetting nor target capture. Using the fact that

∑N
k=1 Πk(t) = 0

for t > L/v+, we have∫ L/v+

0

re−rτ

[
1−

N∑
k=1

Λk(τ)

]
dτ =

∫ L/v+

0

re−rτ

[
N∑
k=1

Πk(τ) + e−κL/v+

]
dτ

= r

N∑
k=1

Π̃k(r) + e−κL/v+(1− e−rL/v+),

and we recover equation (4.15). Hence, for both models, equation (4.14) becomes

P[Γk] = π
(r)
k

[
r

N∑
k=1

Π̃k(r) + e−κL/v+

]
. (4.16)

Combining equations (4.13) and (4.16) yields the implicit equation

π
(r)
k = rΛ̃k(r) +

[
1− r

N∑
k=1

Λ̃k(r)

]
π

(r)
k ,

which on rearranging leads to the following result, which holds for both models:

π
(r)
k =

rΛ̃k(r)

r
∑N
l=1 Λ̃l(r)

=
πk − rΠ̃k(r)

1− r
∑N
l=1 Π̃l(r)− e−κL/v+

. (4.17)

Summing both sides of equation (4.17) and using equation (4.5) implies that∑N
k=1 π

(r)
k = 1. In other words, in the presence of reset, the particle is captured

by one of the targets with probability one. Finally, using the fact that

lim
r→0

rΠ̃k(r) = Πk(∞) = 0,

we have

lim
r→0

π
(r)
k =

πk
1− e−κL/v+

= π̂k.

Note that the splitting probability π
(r)
k is independent of the values of the refractory

rate η and the retrograde speed v−. However, implicit in the calculation of π
(r)
k is the

assumption that v−, η > 0, otherwise resetting would not allow the particle to return
to the origin and then escape from the refractory state in a finite time.

The conditional MFPT E[Tk1Ωk ] = π
(r)
k T

(r)
k can be analyzed along similar lines

to the splitting probability by introducing the decomposition

E[Tk1Ωk ] = E[Tk1Ωk\Γk ] + E[Tk1Γk ]. (4.18)
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The first expectation can be evaluated by noting that it is the MFPT for capture by
the k-th target without any resetting, and the probability density for such an event is
e−rτJk(τ)dτ . Hence,

E[Tk1Ωk\Γk ] = −
∫ ∞

0

τe−rτ
dΠk(τ)

dτ
dτ =

[
1 + r

d

dr

]
Π̃k(r). (4.19)

The second expectation can be further decomposed as

E[Tk1Γk ] = E[(S + τ̂ +Rk)1Γk ] = E[S1Γk ] +
1

η
P[Γk] + E[Rk1Γk ]

= E[S1Γk ] +

(
1

η
+ T

(r)
k

)
P[Γk], (4.20)

with P[Γk] given by equation (4.16). Again N denotes the random time spent in the
refractory state at x = 0 before switching back to the search phase, with E[N ] = η−1,

and we have used the result E[Rk1Γk ] = T
(r)
k P[Γk]. The latter follows from the fact

that return to the origin restarts the stochastic process without any memory.
In order to calculate E[S1Γk ], it is necessary to incorporate the time to return

to the origin following the first return event, and this will differ for models A and B.
In the case of model A, the first return is initiated before reaching the end x = L
with probability re−rτ

∑
k Πk(τ)dτ in the interval [τ, τ + dτ ]. At time τ the particle

is at position v+τ and thus takes an additional time v+τ/v− to return to x = 0.
Alternatively, the particle reaches x = L with probability e−κL/v+ after the time
τ = L/v+ and then returns to the origin over a time interval equal to L/v−. We thus
find

E[S1Γk ] = π
(r)
k

{∫ ∞
0

re−rτ
(
τ +

v+τ

v−

)[ N∑
k=1

Πk(τ)

]
dτ +

(
L

v+
+

L

v−

)
e−κL/v+

}

= π
(r)
k

{(
L

v+
+

L

v−

)
e−κL/v+ − r

(
1 +

v+

v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
. (4.21a)

We have used P[Rk <∞] = π
(r)
k and the fact that

∑N
k=1 Πk(τ) = 0 for τ > L/v+. On

the other hand, in the case of model B resetting can occur any time after the particle
passes beyond the array so that

E[S1Γk ] = π
(r)
k

{∫ ∞
0

re−rτ
(
τ +

v+τ

v−

)[ N∑
k=1

Πk(τ)

]
dτ

+e−κL/v+
∫ ∞
L/v+

re−rτ
(
τ +

v+τ

v−

)
dτ

}

=

{(
1 +

v+

v−

)(
1

r
+

L

v+

)
e−(κ+r)L/v+ − r

(
1 +

v+

v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
π

(r)
k .

(4.21b)

Combining equations (4.19) and (4.20) with either (4.21a) or (4.21b) yields an
implicit equation of the form

π
(r)
k T

(r)
k =

[
1 + r

d

dr

]
Π̃k(r) +

{
A− r

(
1 +

v+

v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
π

(r)
k ,
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+

(
1

η
+ T

(r)
k

)
π

(r)
k

[
r

N∑
k=1

Π̃k(r) + e−κL/v+

]
, (4.22)

where

A =


(
L
v+

+ L
v−

)
e−κL/v+ (model A),

(
1 +

v+
v−

)(
1
r + L

v+

)
e−(κ+r)L/v+ (model B).

(4.23)

Rearranging equation (4.22) we obtain the following result for the conditional MFPT:

T
(r)
k =

LΠ̃k(r) + Bπ(r)
k

π
(r)
k

[
1− r

∑N
k=1 Π̃k(r)− e−κL/v+

] . (4.24)

Here

LΠ̃k(r) =

[
1 + r

d

dr

]
Π̃k(r)− r

(
1 +

v+

v−

)[ N∑
k=1

dΠ̃k(r)

dr

]
π

(r)
k , (4.25)

and

B =
1

η

[
r

N∑
k=1

Π̃k(r) + e−κL/v+

]
+A. (4.26)

The MFPTs for models A and B display very different behavior in the limit r → 0.
In particular, it is clear from equation (4.23) that for model B we have A → ∞ as

r → 0, which implies T
(r)
k → ∞ as r → 0. This reflects the fact that the MFPTs for

model B are infinite in the absence of resetting. On the other hand, A is independent
of r for model A, and we find

lim
r→0

T
(r)
k =

1

1− e−κL/v+

[
Π̃k(0)

[
1− e−κL/v+

]
πk

+

[
1

η
+ L

(
1

v+
+

1

v−

)]
e−κL/v+

]
.(4.27)

This expression has an intuitive interpretation. In the limit r → 0, the particle can
only return to the origin by reflecting at the end x = L, which occurs with probability
e−κL/v+ during one search phase. The first term in square brackets is the conditional
MFPT without any returns to the origin, while the second term is the additional time
taken to reach the end and return to the origin once before being captured. The
Taylor expansion

1

1− e−κL/v+
= 1 + e−κL/v+ + e−2κL/v+ + . . .

generates an infinite sum over paths that return to the origin n times with probability
e−nκL/v+ .

5. Results

In this section we illustrate the parameter-dependence of the splitting probability

π
(r)
k and conditional MFPT T

(r)
k , which are given by equations (4.17) and (4.24),

respectively. We fix the units of time and length by setting the capture rate κ = 1
and the target size l = 1. (In the case of cytoneme-based transport, for example, a
target cell is of size 10 µm so that an array of 10 cells has total length L = 100 µm.
Experimental studies of cytoneme-mediated transport of Wnt morphogens zebrafish
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Figure 6: Plot of splitting probability π
(r)
k as a function of target site k, k = 1, . . . , 10,

for various speeds v+. (a) r = 0.1 and (b) r = 5.

[33] and Shh in chicken [32] indicate that the growth rate of a cytoneme is of the order
v+ ∼ 0.01− 0.1 µm/s and contacts are made every 102 seconds, that is, κ ∼ 10−2/s.)

In Fig. 6 we plot π
(r)
k as a function of k for an array of N = 10 targets and various

speeds v+. A number of observations can be made. First, the splitting probability is
a monotonically decreasing function of k. As one might expect, targets closer to the
origin are more likely to capture the particle. Second, increasing v+ tends to mitigate
this effect, leading to a more even distribution of splitting probabilities. In particular,
there is a crossover of the plots for different speeds. In Fig. 7 we show analogous plots

for the conditional MFPT T
(r)
k in the case of model A. In contrast to the splitting

probability, the MFPT depends on the refractory rate η and the retrograde speed

v−. Neither of these parameters qualitatively affects the dependence of T
(r)
k on other

parameters; decreasing η or v− simply shifts parameter curves upwards, since it takes
more time to escape from the refractory state or return to the origin. For the sake of
illustration we set η = v− = 1. One would expect the conditional MFPT to increase

for more distal targets, and this is confirmed in Fig. 7. It can be seen that T
(r)
k grows
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Figure 7: Plot of conditional MFPT T
(r)
k as a function of target site k, k = 1, . . . , 10,

for various search speeds v+ (model A). (a) r = 0.1 and (b) r = 1. Other parameters
are v− = 1 and η = 1.
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Figure 8: (a) Plot of splitting probability π
(r)
k as a function of the resetting rate r for

various targets k. (a) Corresponding plots of conditional MFPT T
(r)
k for model A.

Other parameters are v+ = 5, v− = 1 and η = 1.

approximately linearly with k. Moreover, as with the splitting probability, increasing
v+ tends to flatten the curves so that the MFPT is a weaker function of k and there
is a crossover of plots for different speeds.

Fig. 8, we show plots of π
(r)
k and T

(r)
k (model A) as a function of r for various k and

fixed speed v+ = 5. It can be seen that the splitting probability increases (decreases)
with r in the case of proximal (distal) targets, whereas increasing the resetting rate r

leads to an approximately linear increase of T
(r)
k , irrespective of the target location.

(Analogous results were found in [6].) Hence, the inclusion of resetting in model A
tends to have a detrimental effect on the conditional MFPTs, since resetting is not
required for the particle to return to the origin. On the other hand, the MFPTs are
non-monotonic functions of r in the case of model B, as illustrated in Fig. 9(a). This
is due to the fact that the MFPTs become infinite in the limit r → 0. There now
exists an optimal resetting rate that minimizes T

(r)
k for a given k, as was found for
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Figure 9: Model B. (a) Plot of conditional MFPT T
(r)
k as a function of the resetting

rate r for various targets k and v− = 1. (b) Plot of conditional MFPT T
(r)
k as

a function of the resetting rate r for various return speeds v− and k = 5. Other
parameters are v+ = 5 and η = 1. Green dots indicate optimal resetting rates
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a single target in section 3. In Fig. 9(b) we illustrate the effects of a delay on the
conditional MFPTs by considering different values of the return speed v− for a given
target cell. As expected, the finite return time increases the conditional MFPT and
this effect is larger for slower return speeds v−. Moreover, decreasing v− shifts the
optimal resetting rate to larger values.

6. Multiple search-and-capture events as a G/M/∞ queue

Now suppose that following absorption by a target, the particle delivers a packet
of resources, after which it returns to the origin. It is then supplied with another
resource packet and begins a new search-and-capture process. This leads to a sequence
of search-and-capture events, whereby resources accumulate in the targets. We
also assume that the build up of resources within each target is counterbalanced
by degradation, so that there is a steady-state number of packets in the long-time
limit. The various stages are illustrated in Fig. 10 for cytoneme-based morphogen
transport, where morphogen localized at the tip of a growing cytoneme is delivered
as a “morphogen burst” whenever the cytoneme makes temporary contact with a
target cell before subsequently retracting. As shown elsewhere [6, 9], for each target
the sequence of search-and-capture events can be mapped onto a queuing process
as follows: individual resource packets are analogous to customers, the delivery of a
packet corresponds to a customer arriving at the service station, and the degradation of
a resource packet is the analog of a customer exiting the system after being serviced.
Finally, assuming that the packets are degraded independently of each other, the
effective number of servers in the corresponding queuing model is infinite, that is, the
presence of other customers does not affect the service time of an individual customer.
It follows that the relevant queuing model is the G/M/∞ system. Here the symbol G
denotes a general customer inter-arrival time distribution F (t), the symbol M stands
for a Markovian or exponential service-time distribution Φ(t) = 1 − e−γt, and ‘∞’
denotes infinite servers. We identify φ(t) = −Φ′(t) with the waiting time density for
packet degradation at a rate γ.

grow

 nucleate

deliver and retract

morphogen bursts

time

target ξ 

reset

degrade

Figure 10: Multiple search-and-capture events for cytoneme-based morphogen
transport. Alternating periods of growth, shrinkage, nucleation and target capture
generates a sequence of morphogen bursts in a given target cell that is analogous
to the arrival of customers in a queuing model. This results in the accumulation of
morphogen within the cell, which is the analog of a queue. Degradation corresponds
to exiting of customers after being serviced by an infinite number of servers.
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It remains to determine the distribution F (t). Recall from section 4 that if a
particle starts at x = 0 in the search phase, then the splitting probability of being

captured by the k-th target is π
(r)
k and the conditional MFPT for the event is T

(r)
k ,

see equations (4.17) and (4.24), respectively. The other N − 1 targets do not receive
any resources. Now suppose that the total time for the particle to deliver its cargo,
return to x = 0 and start a new search process is given by the random variable τ̂ ,
which for simplicity is taken to be independent of the location of the target. (This
is reasonable if the sum of the mean nucleation time and the mean unloading time is
much larger than a typical return time.) Let n ≥ 1 label the n-th burst event and
denote the target that receives the n-th packet by kn. If Tn is the time of the n-th
burst, then

Tn = τ̂n + Tkn + Tn−1, n ≥ 1, (6.1)

with E[Tk] = T
(r)
k . The corresponding inter-arrival times are

∆n = τ̂n + Tkn , n ≥ 1.

Finally, given an inter-arrival time ∆, we denote the identity of the target that captures
the particle by K(∆). We can then write for each target k,

Fk(t) = P[∆ < t,K(∆) = k] = P[∆ < t, |K(∆) = k]P[K(∆) = k]

= π
(r)
k

∫ t

0

Fk(∆)d∆, (6.2)

where Fk(∆) is the conditional inter-arrival time density for the k-th target. Let ρ(τ̂)
denote the waiting time density of the delays τ̂n. Then

Fk(∆) =

∫ ∆

0

dt

∫ ∆

0

dτ̂δ(∆− t− τ̂)f
(r)
k (t)ρ(τ̂) =

∫ ∆

0

f
(r)
k (t)ψ1(t−∆)dt,

where f
(r)
k (t) is the conditional first passage time density for a single search-and-

capture event that delivers a packet to the k-th target. In particular,

T
(r)
k =

∫ ∞
0

tf
(r)
k (t)dt. (6.3)

Laplace transforming the convolution equation then yields

F̃k(s) = f̃
(r)
k (s)ρ̃(s). (6.4)

We now focus on a particular labeled target k = ξ. Let M(t) be the number of
resource packets in the target that have not yet degraded. In terms of the sequence
of arrival times Tn, we can write

M(t) =
∑

n,0≤Tn≤t

I(t− Tn, Sn)δkn,ξ, (6.5)

where

I(t− Tn, Sn) =

{
1 if t− Tn ≤ Sn
0 if t− Tn > Sn

. (6.6)

Here Sn is the degradation time of the n-th packet. Introduce the generating function

G(z, t) =

∞∑
l=0

zlP[M(t) = l], (6.7)
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and the binomial moments

Bm(t) =

∞∑
l=r

l!

(l −m)!m!
P[M(t) = l], m = 1, 2, · · · . (6.8)

Suppose that the targets have no resources at time t = 0. We will derive an integral
equation for the generating function G(z, t). Conditioning the first arrival time by
setting T1 = y, we have

M(t) =

{
I(t− y, S1)δk1,ξ +M∗(t− y) if y ≤ t

0 if y > t
,

where M∗(t) has the same distribution as M(t). Note that I(t − y, S1)δk1,ξ and
M∗(t− y) are independent. Moreover,

P[I(t− y, S1) = j] = [1− Φ(t− y)]δj,1 + Φ(t− y)δj,0,

so it follows that∑
j=0,1

zjP[I(t− y, S1) = j] = z + (1− z)Φ(t− y).

The total expectation theorem then yields

E[zI(T1−y,S1)δk1,ξ ] = E
[
E[zI(T1−y,S1)|T1 = y, k1 = ξ]

]
=

∫ ∞
0

[z + (1− z)Φ(t− y)]dFξ(y).

Another application of the total expectation theorem gives

G(z, t) = E[zM(t)] = E
[
E[zM(t)|T1 = y, k1 = ξ]

]
=

N∑
k=1

∫ ∞
t

dFk(y) +

∫ t

0

[z + (1− z)Φ(t− y)]G(z, t− y)dFξ(y)

+
∑
k 6=ξ

∫ t

0

G(z, t− y)dFk(y). (6.9)

Differentiating equation (6.9) with respect to z and using

Bm(t) =
1

r!

dmG(z, t)

dzm

∣∣∣∣
z=1

,

we obtain an iterative integral equation for the Binomial moments:

Bm(t) =

N∑
k=1

∫ t

0

Bm(t− y)dFk(y) +

∫ t

0

Bm−1(t− y)[1− Φ(t− y)]dFξ(y). (6.10)

In order to obtain the steady-state binomial moments, we Laplace transform equation

(6.10) after making the substitutions dFk(y) = π
(r)
k Fk(y)dy and 1− Φ(t) = e−γt:

B̃m(s) = B̃m(s)

N∑
k=1

π
(r)
k F̃k(s) + π

(r)
ξ F̃ξ(s)B̃m−1(s+ γ),

which can be rearranged to give

B̃m(s) =

[
π

(r)
ξ F̃ξ(s)

1−
∑N
k=1 π

(r)
k F̃k(s)

]
B̃m−1(s+ γ). (6.11)
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Multiplying both sides by s and taking the limit s→ 0+ yields

B∗m := lim
t→∞

Bm(t) = lim
s→0+

sB̃m(s) = λξB̃m−1(γ),

where

λξ := lim
s→0+

sπ
(r)
ξ F̃ξ(s)

1−
∑N
k=1 π

(r)
k F̃k(s)

=
π

(r)
ξ∑N

k=1 π
(r)
k (T

(r)
k + 〈τ̂〉)

. (6.12)

We have used L’Hopital’s rule and equation (6.4), together with the following
properties:

f̃
(r)
k (0) = 1 = ρ̃(0),

df̃
(r)
k

ds

∣∣∣∣∣
s=0

= −T (r)
k ,

dρ̃

ds

∣∣∣∣
s=0

= −〈τ̂〉.

Equations (6.11) and (6.12) completely determine the steady-state binomial

moments. In particular, since B0(t) = 1 and B̃0(s) = 1/s, the mean number of
packets in the target k = ξ is

B∗1 ≡ 〈M〉 = lim
t→∞
〈M(t)〉 =

λξ
γ
. (6.13)

Hence, we can interpret λξ as the mean rate at which a packet is delivered to the given
target. Similarly,

B∗2 ≡ lim
t→∞

1

2
(〈M(t)2〉 − 〈M(t)〉) = λξB̃1(γ) =

λξ
2γ

π
(r)
ξ F̃ξ(γ)

1−
∑N
k=1 π

(r)
k F̃k(γ)

. (6.14)

The variance of the number of morphogen packets is

Var[M ] = 2B∗2 +B∗1(1−B∗1) =
λξ
γ

[
π

(r)
ξ F̃ξ(γ)

1−
∑N
k=1 π

(r)
k F̃k(γ)

+ 1− λξ
γ

]
. (6.15)

Although the mean 〈M〉 depends on the quantities π
(r)
k and T

(r)
k calculated in section

4 for a single search-and-capture event, the variance depends on the Laplace transform

of the full first passage time density f
(r)
k according to equation (6.4).

Therefore, suppose that we carry out the leading order asymptotic expansion

F̃k(γ) ∼ F̃k(0) + γ
dF̃k
dγ

∣∣∣∣∣
γ=0

≈ 1− γ[T
(r)
k + 〈τ̂〉].

This will be reasonable provided that γ � [T
(r)
k + 〈τ̂〉]−1 for all k and a chosen

range of r. For the parameter values used in Fig. 9(a) we see that T
(r)
k = O(10) for

0.1 ≤ r ≤ 4 so the inequality will hold if γ = 0.01, say. Substituting the approximation
into equation (6.15) gives

Var[M ] ≈ λξ
γ

[
1

γ

π
(r)
ξ (1− γ[T

(r)
ξ + 〈τ̂〉])∑N

k=1 π
(r)
k [T

(r)
k + 〈τ̂〉]

+ 1− λξ
γ

]
≈ 〈M〉

{
1− λξ(T (r)

ξ + 〈τ̂〉)
}
.

At this level of approximation, we see that the Fano factor FF is

FF =
Var[M ]

〈M〉
≈
{

1− λξ(T (r)
ξ + 〈τ̂〉)

}
, (6.16)



Directed search process with stochastic resetting and delays 25

0

1

2

3

4

5

6

7

8

0.4

0.5

0.6

0.7

0.8

0.9

1

101 2 3 4 5 6 7 8 9
target cell k

r = 4

r = 2

r = 1

r = 0.1

(b)

101 2 3 4 5 6 7 8 9
target cell k

F
a

n
o

 f
a

c
to

r

(a)

m
e

a
n

 <
M

>

Figure 11: Multiple search-and-capture events for model B. (a) Plots of steady-state
mean 〈M〉 as a function of target label k for various resetting rates. (b) Corresponding
plots of the Fano factor. Single-search parameters are v+ = 5, v− = 1, η = 1. Multi-
search parameters are γ = 0.01 and 〈τ̂〉 = 1.

which is independent of the degradation rate γ. In Fig. 11 we show sample plots
of the mean 〈M〉 and the Fano factor as a function of target location for various
resetting rates r. Corresponding plots as a function of r for various targets k are
shown in Fig. 12. The results are based on equations (6.13) and (6.16), respectively.
We take the single-search parameters to be the same as Fig. 9(a) for model B, and
set γ = 0.01, 〈τ̂〉 = 1. A number of observations can be made. First, the steady-state
mean is a monotonically decreasing function of k. (In the application to cytoneme-
based transport this can be interpreted as a morphogen gradient [6].) On the other
hand, the Fano factor is an increasing function of k, approaching unity at distal targets.
(A Fano factor of one indicates Poisson-like noise.) For a fixed target, the mean is a
unimodal function of r whereas the Fano factor is a more complicated function of r
and k. The qualitative behavior of the mean and Fano factor as functions of k are
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Figure 12: Multiple search-and-capture events for model B. (a) Plots of steady-state
mean 〈M〉 as a function of resetting rate r for various targets. (b) Corresponding plots
of the Fano factor. Single-search parameters are v+ = 5, v− = 1, η = 1. Multi-search
parameters are γ = 0.01 and 〈τ̂〉 = 1.
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similar in model A. However, now 〈M〉 is a monotonically decreasing function of r,
whereas the Fano factor is approximately constant as r is varied.

7. Discussion

In this paper we analyzed a directed search-and-capture model with stochastic
resetting, refractory periods and finite return times. We used a probabilistic renewal

method to determine the splitting probability π
(r)
k and MFPT T

(r)
k for a particle to be

captured by the k-th contiguous target in a 1D array. These are given by equations
(4.17) and (4.24), respectively. We also compared search on the bounded domain
[0, L] with partially bounded search on the half-line. In the absence of resetting, the
probability of target capture was equal to one in the first case but less than one in
the second. Hence, the conditional MFPTs for bounded search were monotonically
increasing functions of r, whereas the corresponding MFPTs on the half-line were
non-monotonic with a minimum at an optimal resetting rate. We also formulated the
accumulation of resource packets delivered to the targets by multiple rounds of search-
and-capture events as a G/M/∞ queue [9], and used this to calculate the mean and
variance of the steady-state number of packets in each target. One obvious extension
of the current theory would be to consider search-and-capture processes in higher
dimensions. Another would be to consider multiple parallel searchers. One possible
complicating factor in the latter case would be molecular crowding and exclusion
processes generating correlations between the particles. (See [1] for a recent study of
an exclusion process with stochastic resetting.)

One general issue raised by the current study is to what extent there are practical
benefits of resetting from the biological perspective. One could argue that in the case
of model A, resetting is of little value, since it always leads to a global increase in
the MFPT to a target. This reflects the fact that the probability of eventual capture
by a target is unity. However, as is clear from Fig. 11, the steepness of the spatial
variation of the mean number of resources is sensitive to the value of the resetting
rate. In the case of motor-driven transport, it may be desirable to have a more even
distribution of resources along an axon [5], which would correspond to the small-r
regime. On the other hand, if one were to interpret the resource distribution as a
morphogen concentration gradient, then it may be desirable to have a steeper profile,
which would correspond to a large-r regime. Model B suggest another possible benefit
of resetting, namely, when there is a non-zero probability of failure to find a target,
which would result in an infinite MFPT in the absence of resetting. This issue is
particularly relevant to higher-dimensional search processes where, for example, a
cytoneme may grow in the wrong direction. A similar issue arises in the search-and-
capture model of microtubules by kinetochores during cell mitosis [18, 6].

Acknowledgments

PCB was supported by National Science Foundation grant DMS-1613048.

[1] Basu U, Kundu A and Pal A 2019 Symmetric exclusion process under stochastic resetting Phys.
Rev. E 100 032136

[2] Belan S 2018 Restart could optimize the probability of success in a Bernouilli trial. Phys. Rev.
Lett. 120 080601

[3] Bodrova A S and Sokolov I M 2020 Resetting processes with noninstantaneous return. Phys. Rev.
E 101 052130.



Directed search process with stochastic resetting and delays 27

[4] Bressloff P C and Newby J M 2013 Stochastic models of intracellular transport. Rev. Mod. Phys.
85 135-196

[5] Bressloff P C and Levien E 2015 Synaptic democracy and active intracellular transport in axons.
Phys. Rev. Lett. 114 168101

[6] Bressloff P C and Kim H 2019 Search-and-capture model of cytoneme-mediated morphogen
gradient formation Phys. Rev. E 99 052401.

[7] Bressloff P C 2020 Directed intermittent search with stochastic resetting J. Phys. A: Math. Theor.
53 105001

[8] Bressloff P C 2020 Search processes with stochastic resetting and multiple targets Submitted
[9] Bressloff P C 2020 Queueing theory of search processes with stochastic resetting Submitted
[10] Campos D, Abad E, Mendez V, Yuste S B and Lindenberg K 2015 Optimal search strategies of

space-time coupled random walkers with finite lifetimes. Phys. Rev. E 91 052115
[11] Dynes J and Steward O 2007 Dynamics of bidirectional transport of ARC mRNA in neuronal

dendrites J. Comp. Neurol. 500 433-447
[12] Evans M R and Majumdar S N 2011 Diffusion with stochastic resetting Phys. Rev. Lett.106

160601
[13] Evans M R and Majumdar S N 2011 Diffusion with optimal resetting J. Phys. A Math. Theor.

44 435001
[14] Evans M R and Majumdar S N 2014 Diffusion with resetting in arbitrary spatial dimension J.

Phys. A: Math. Theor. 47 285001
[15] Evans M R and Majumdar S N 2018 Run and tumble particle under resetting: a renewal

approach J. Phys. A: Math. Theor. Math. Theor. 51 475003
[16] Evans M R and Majumdar S N 2019 Effects of refractory period on stochastic resetting J. Phys.

A: Math. Theor. 52 01LT01
[17] Evans M R, Majumdar S N and Schehr G 2020 Stochastic resetting and applications. J. Phys.

A: Math. Theor. 53 193001
[18] Gopalakrishnan M and Govindan B S 2011 A first-passage-time theory for search and capture

of chromosomes by microtubules in mitosis. Bull. Math. Biol. 73 2483-2506
[19] Kornberg T B and Roy S 2014 Cytonemes as specialized signaling filopodia. Development 141

729-736
[20] Kusmierz L, Majumdar S N, Sabhapandit S and Schehr G 2014 First order transition for the

optimal search time of Levy flights with resetting Phys. Rev. Lett. 113 220602
[21] Maeder C I, San-Miguel A, Wu E Y, Lu H and Shen K 2014 Traffic 15 273-291
[22] Maso-Puigdellosas A, Campos D and Mendez V 2019 Transport properties of random walks

under stochastic noninstantaneous resetting. Phys. Rev. E 100 042104
[23] Maso-Puigdellosas A, Campos D and Mendez V 2019 Stochastic movement subject to a reset-

and-residence mechanism: transport properties and first arrival statistics. J. Stat. Mech. 033201
(2019).

[24] Mulder B M 2012 Microtubules interacting with a boundary: Mean length and mean first-passage
times Phys. Rev. E 86 011902

[25] Pal A and Prasad V V 2019 First passage under stochastic resetting in an interval. Phys. Rev.
E 99 032123

[26] Pal A, Kusmierz L and Reuveni S 2019 Invariants of motion with stochastic resetting and space-
time coupled returns New J. Phys. 21 113024

[27] Pal A, Kusmierz L and Reuveni S 2020 Home-range search provides advantage under high
uncertainty. arXiv:1906.06987 (2020).

[28] Reuveni S, Urbakh M and Klafter J 2014 Role of substrate unbinding in Michaelis-Menten
enzymatic reactions Proc. Natl Acad. Sci. USA 111 4391

[29] Rotbart T, Reuveni S and Urbakh M 2015 Michaelis-Menten reaction scheme as a unified
approach towards the optimal restart problem Phys. Rev. E 92 060101

[30] Reuveni S 2016 Optimal stochastic restart renders fluctuations in first-passage times universal
Phys. Rev. Lett. 116 170601

[31] Rook M S, Lu M and Kosik K S 2000 CamKIIα 3’ untranslated regions-directed mRNA
translocation in living neurons: Visualization by GFP linkage J. Neurosci. 20 6385-6393

[32] Sanders, T A, Llagostera E and Barna M 2013 Specialized filopodia direct long-range transport
of SHH during vertebrate tissue patterning. Nature 497 628-632

[33] Stanganello E and Scholpp S 2016 Role of cytonemes in Wnt transport J. Cell Sci. 129 665-672
[34] Yuste S B, Abad E and Lindenberg K 2013 Exploration and trapping of mortal random walkers.

Phys. Rev. Lett. 110 220603


	Introduction
	Directed search-and-capture model
	MFPT for a single target
	MFPT with instantaneous resetting
	Refractory periods
	Finite return times
	Alternative renewal method

	Splitting probabilities and conditional MFPTs for multiple targets
	Target capture without a return phase
	Target capture with a return phase: probabilistic renewal method

	Results
	Multiple search-and-capture events as a G/M/ queue
	Discussion

