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Abstract. The discovery of various membraneless subcellular structures
(biological condensates) in the cytoplasm and nucleus of cells has generated
considerable interest in the effects of non-equilibrium chemical reactions on liquid-
liquid phase separation and droplet ripening. Examples include the suppression
of droplet ripening due to ATP-driven protein phosphorylation and the spatial
segregation of droplets due to regulation by protein concentration gradients. Most
studies of biological phase separation have focused on 3D droplet formation, for
which mean field methods can be applied. However, mean field theory breaks
down in the case of 2D systems, since the concentration around a droplet varies
as lnR rather than R−1, where R is the distance from the center of a droplet. In
this paper we use the asymptotic theory of diffusion in domains with small holes or
exclusions (strongly localized perturbations) to study the segregation of circular
droplets in gradient systems. We proceed by partitioning the region outside the
droplets into a set of inner regions around each droplet together with an outer
region where mean-field interactions occur. Asymptotically matching the inner
and outer solutions, we derive dynamical equations for the position-dependent
growth and drift of droplets. We thus show how a gradient of regulatory proteins
leads to the segregation of droplets to one end of the domain, as previously found
for 3D droplets.
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1. Introduction

In classical liquid-liquid phase separation a homogeneous solution separates into two
coexisting liquid phases with different densities, a high density phase φb and a low
density phase φa. If the original solution is thermodynamically unstable, then the
kinetics of phase separation involves rapid demixing due to the absence of a nucleation
barrier (spinodal decomposition). Early stages of phase separation involve the
formation of microscopic solute-rich domains dispersed throughout the liquid, which
subsequently grow and coalesce to form macroscopic clusters or droplets. Eventually
the total volume of droplets stabilizes, and the late stage of phase separation is
characterized by a coarsening process known as Ostwald ripening [19]. This is a
diffusion-driven process whereby droplets larger (smaller) than a critical radius Rc
grow (shrink), with Rc itself an increasing function of time, so that ultimately only a
single droplet remains. The diffusive exchange of material from a small droplet to a
large droplet is due to the fact that interfacial tension increases the local concentration
in a neighborhood of a droplet according to the Gibbs-Thompson law; such an increase
is inversely proportional to the droplet radius according to φ(R) = φa(1 + `c/R)
with `c the capillary length. The first quantitative formulation of Ostwald ripening
was developed by Lifshitz and Slyozov [18] and Wagner [22], and is commonly
referred to as classical LSW theory. A crucial assumption of LSW theory is that
the interaction between droplets can be expressed solely through a common mean
field, which determines the so-called supersaturation of the system. This mean field
approximation exploits the fact that the concentration around a droplet varies as 1/r,
where r is the distance from the center of the droplet. However, mean field theory
breaks down in the case of circular droplets in two-dimensional (2D) systems such as
thin films, since the concentration around a droplet varies as ln r rather than r−1.
Thus, more care must be taken in imposing far-field conditions [1, 15].

There is now significant renewed interest in liquid-liquid phase separation
and Ostwald ripening due to the discovery of membraneless subcellular structures
(biological condensates) such as P granules in the cytoplasm and nucleoli in the
nucleus of cells [4, 5, 28, 11, 14, 2, 3, 12, 17]. These structures consist of enhanced
concentrations of various proteins and RNA in a localized domain, without a physical
membrane separating it from the surrounding medium. Proteins are highly mobile
within a biological condensate and are continually exchanged with the cytosol.
Although liquid-liquid phase separation is emerging as the key organizing principle
underlying the formation of biological condensates, the classical theory has been
modified in order to take into account the fact that biological phase separation
can be regulated by active processes such as non-equilibrium chemical reactions.
Examples include the suppression of Ostwald ripening due to ATP-driven protein
phosphorylation [29, 27] and the spatial segregation of droplets due to regulation by
protein concentration gradients [25, 26].

Almost all current theoretical studies of biological phase separation have focused
on 3D spherical droplets, for which mean field approximations hold. However, there
are also examples of phase separation in quasi-2D domains, such as the clustering of
curvature-inducing proteins that regulate cell shape [13]. Moreover, polarized crawling
cells such as keratocytes and fibroblasts are highly flattened and often treated as 2D
systems. 2D active emulsions (thin films) are also of considerable interest within the
wider physics community [26]. Recently, we have shown how asymptotic methods can
be used to study the suppression of Ostwald ripening in a 2D solution undergoing active
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liquid-liquid phase separation [7]. In this paper, we extend these methods to the case
of 2D droplet ripening in a concentration gradient. We assume that droplets are well
separated with mean separation d and characteristic radius R such that R/d = O(ε)
for 0 < ε� 1. We solve the quasi-steady-state diffusion equation by partitioning the
region outside the droplets into a set of inner regions around each droplet together with
an outer region where mean-field interactions occur. The inner and outer solutions are
matched by carrying out an asymptotic expansion in ν = −1/ ln ε. Using a separation
of time scales, we then derive leading order dynamical equations for the position-
dependent growth and drift velocity of the droplets. We also show how finite-size
effects can be incorporated into the theory by including higher-order terms in the
asymptotic expansion, which depend on the positions of the droplets and the boundary
of the 2D domain.

2. Phase separation in a concentration gradient

Protein concentration gradients play an important role during asymmetric cell division
of the C. elegans zygote. Within the context of biological condensates, it has been
found that RNA-protein aggregates in the form of so-called P-granules are segregated
to the posterior side of the cell, and are located in the posterior daughter cell after
division. Moreover, the segregation and ripening of P-granule droplets is driven by
the concentration gradient of a regulatory protein known as Mex-5 [4, 16, 20]. This
has motivated a theoretical study of 3D droplet ripening in a protein concentration
gradient, where both the supersaturation and low density phase concentration are
taken to be position dependent [25, 26]. Here we briefly describe the underlying
model.

Let R denote the regulatory protein and P denote the solute that undergoes phase
separation in a solvent S. The basic regulatory mechanism is taken to be the binding
of R to P , which forms a complex C that cannot phase separate:

R+ P
k


h
C. (2.1)

This has the effect of reducing the volume fraction of solute molecules that can
participate in phase separation. Let φ denote the total volume fraction of solute,
which is given by the sum of contributions from bound (φC) and free (φP ) molecules,

φ = φP + φC .

If φS and φR denote the volume fraction of solvent and free regulator, respectively,
then φ+ φS + φR = 1. We will assume that φR � 1 (dilute regulator concentration)
so that φ + φS ≈ 1. Assuming local equilibrium of the fast binding reactions, and
taking the molecular volumes of C and P to be the same, vC = vP = v, we have
kφPφR/vR = hφC , where vR is the molecular volume of R molecules and φR is the
corresponding volume fraction. Hence,

φP =
φ

1 +KφR
, K =

k

hvR
.

In order to explore the consequences of this binding reaction on phase separation,
consider the classical free energy density of the ternary solution [10]:

f(φ;φR) = kBT

[
1

v
φ lnφ+

1

vS
(1− φ) ln(1− φ) + χ

φ

1 +KφR
(1− φ)

]
, (2.2)
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where vS is the molecular volume of solvent, and χ is the effective interaction energy.
For simplicity, we ignore the mixing entropy of the complex C and only consider
interaction energies between P and S. It follows that the only dependence of the free
energy on the regulator volume fraction φR is via its dependence on φP . Note that
the interaction energy term can be expressed as [25, 26]

E = kBTχeffφ(1− φ), χeff = χ

(
1− KφR

1 +KφR

)
. (2.3)

It follows that increasing the regulator concentration φR leads to a decrease in the
effective interaction parameter χeff .

The free energy density f(φ;φR) for fixed φR has a single minimum for sufficiently
small χeff but switches to two local minima φa,b as χeff crosses a critical point χc. If
one now plots the coexistence curves for φa and φb in the φ-φR plane, one finds that
changing φR moves the system to different points in the phase diagram, which is
how the regulator protein can control phase separation. In particular, suppose that
there exists a spatially varying concentration gradient φR(r) that, for simplicity, varies
linearly in the x-direction, φR(r) = φR(0) − bx. It immediately follows that χeff and
hence φa,b become x-dependent, as illustrated in Fig. 1. One major simplification is to
take vS � v so that the volume fraction φb of the high density phase is approximately
independent of x. One can then focus on determining the spatially varying volume
fraction φ outside the droplets along the lines of Weber et al. [25, 26]. These authors
extend the classical mean field theory of droplet ripening by considering the effects
of a spatially varying volume fraction φa(x) and a time-dependent, spatially varying
far-field φ∞(x, t) that represents the collective effects of surrounding droplets. In
classical LSW theory, the far field φ∞ is spatially uniform during late-stage ripening,
assuming that the mean separation d between droplets satisfies d � R, where R is
the mean droplet radius. Under the further separation of length scales R � d � L,
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Figure 1: Effect of a linearly decreasing regulator concentration φR(x) on phase separation,
x ∈ [0, L]. (a) Sketch of phase transition curve χeff = χc for phase separation as a function
of φ. The variation of χeff with x traces a straight line in the phase diagram that crosses
the critical curve at position xc. (b) Coexistence curves in the (φ, φR)-plane for total solute
concentration φ and regulator concentration φR. The thin straight lines link points within
the phase separation region to the corresponding low and high density phases φa,b on the
coexistence curve. As the position x varies, there is a corresponding change in φR, which
places the system at different points in the phase diagram (red curve). Droplets can only
form at points that lie within the coexistence curve. The position xc marks the boundary
between droplet formation and dissolution.
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where L is the system size, one can partition the system into local regions with a
size corresponding to the intermediate length scale d. Droplets in a local domain
around a spatial position x will have coexisting equilibrium concentrations φa(x), φb
provided that the point (φ, φR(x)) is located inside the phase separation region of the
associated phase diagram, see Fig. 1. Finally, if the common far field concentration
within the local region is φ∞(x, t), then one can define a spatio-temporal dependent
supersaturation ∆(x, t) = φ∞(x, t) − φa(x) and use this to analyze the dynamics of
droplets by modifying classical LSW theory [25, 26]. Since the quasi-steady-state
local solute concentration is not radially symmetric, one finds that the resulting non-
equilibrium fluxes induce both a growth of large droplets at the expense of small
droplets and a net drift of droplets towards regions of low regulator concentration
(high supersaturation). This is analogous to the segregation of P-granules at the
posterior end of C. elegans zygotes.

3. Asymptotic analysis of Ostwald ripening in 2D

As we mentioned in the introduction, classical LSW theory breaks down in the case
of circular droplets in two-dimensional systems, since the concentration around a
droplet varies as lnR rather than R−1. It is then necessary to use some form of
matched asymptotics in order to handle the far-field behavior [15, 7]. Here we use
such methods to analyze 2D droplet ripening in a regulator concentration gradient. In
contrast to the previous analysis of 3D droplets [25, 26], the far-field φ∞ is taken to
be spatially uniform and is determined self-consistently in terms of an area preserving
solvability condition; such a condition is typical of late-stage ripening. This is based
on the separation of length-scales assumed in classical Ostwald ripening, whereby
quasi-stationary fluxes between droplets can be maintained by a concentration profile
that is approximately flat in the far field. (This corresponds to the outer solution of
the matched asymptotic expansion.) It should be noted that such an argument holds
whether or not droplets are uniformly distributed throughout the domain, and is not
invalidated by the presence of a regulator concentration gradient. For the latter only
affects the low density concentration (area fraction) φa in the boundary later around
each droplet. As in classical LSW theory, we will also assume a separation of time-
scales in which the growth and drift of droplets occurs on a much slower time-scale
than diffusion. This means that we can solve the quasi-steady-state diffusion equation
for the solute concentration φ. In section 4, we will use the resulting non-equilibrium
fluxes to determine the droplet dynamics.

Consider N droplets of radii Ri and centers xi, i = 1, . . . , N , located in a bounded
2D domain Ω ⊂ R2. The basic assumption of the asymptotic method is that the
droplets are small and well separated. We fix length scales by setting the mean
separation d = 1 and take the capillary length `c = ε, Ri = ερi with 0 < ε � 1
such that ρi = O(1) and |xi − xj | = O(1) for j 6= i. Note that in order to use
singular perturbation theory with ε treated as an expansion parameter, we require
the size of the droplets to be much smaller than the size of the domain and the
spacing between droplets, and to be comparable to the capillary length. The last
condition is a particularly strong constraint of the analysis. For simplicity, the high
density concentration φb is taken to be x-independent so that we can focus on the
concentration in the domain exterior to the droplets. Suppose that there is a regulator
concentration gradient in the x-direction of the form φR(x) = φR(0) − bx, where
b specifies the steepness of the gradient. Due to the dependence of the effective
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∂nφ = 0

xi

xj

Figure 2: Construction of inner solution. The inner solution is expressed in terms of stretched
coordinates ρi = ε−1(x− xi), where xi is the center of the i-th droplet. The rescaled radius
is ρi and the region outside the droplet is taken to be R2 rather than the bounded domain
Ω. The concentration inside the droplet is given by the constant φb, with a discontinuity at
the interface so that Φ(ρ+

i , θ) = φa,i(θ).

interaction parameter χeff on φR(x), it follows that the low density equilibrium
concentration φa(x) varies around the surface |x − xi| = ερi of the i-th droplet. In
particular, introducing the polar coordinates x = xi + ερi cos θ, y = yi + ερi sin θ and
setting φa,i(θ) = φa(xi + ερi cos θ), we obtain the leading-order Taylor expansion

φa,i(θ) ≈ αi + εβiρi cos θ, (3.1)

with αi = φa(xi) and βi = φ′a(xi).

3.1. Inner solution

First, consider the inner solution around the ith droplet,

Φi(y) = φ(xi + εy), y = ε−1(x− xi),

where we have introduced stretched coordinates and replaced the domain Ω by R2,
see Fig. 2(a). It follows that

1

ρ

∂

∂ρ
ρ
∂Φi
∂ρ

+
1

ρ2

∂2Φi
∂2θ

= 0 for ρi < ρ <∞, (3.2)

with boundary condition

Φi(ρi, θ) = φa,i(θ)

(
1 +

1

ρi

)
. (3.3)

The general solution of Laplace’s equation in polar coordinates is of the form

Φi(ρ, θ) = A0,i +B0,i ln ρ/ρi (3.4)

+

∞∑
n=1

(An,iρ
n +Bn,iρ

−n)[Cn,i cosnθ +Dn,i sinnθ].

On imposing the boundary condition, one finds that

Φi(ρ, θ) = αi

(
1 +

1

ρi

)
+ νBi(ν) ln ρ/ρi + εβiρi

(
1 +

1

ρi

)
ρi
ρ

cos θ. (3.5)

(All coefficients An,i for n ≥ 1 must vanish, otherwise we cannot match with the outer
solution.) We have introduced the small parameter

ν = −1/ln ε, (3.6)
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and for convenience have set B0,i = νBi(ν). The coefficients Bi(ν), i = 1, . . . , N , can
be determined by matching the inner solutions with the outer solution (see below). The
presence of the small parameter ν rather than ε in the matched asymptotic expansion
is a common feature of strongly localized perturbations in 2D domains. It is well-
known that ν → 0 much more slowly than ε → 0. Hence, if one is interested in
obtaining O(ε) accuracy, then it is necessary to sum over the logarithmic terms non-
perturbatively. This can be achieved by matching the inner and outer solutions using
Green’s functions [23], which is equivalent to calculating the asymptotic solution for
all terms of O(νk) for any k.

3.2. Matching with the outer solution

The outer solution is obtained by treating each droplet as a point source/sink, see Fig.
3. The resulting time-independent diffusion equation takes the form

∇2φ = 0, x ∈ Ω\{x1, . . . ,xN}, ∂nφ = 0, x ∈ ∂Ω, (3.7)

together with the matching condition

φ ∼ αj
(

1 +
1

ρj

)
+Bj(ν) + νBj(ν)[ln |x− xj | − ln ρj ] (3.8)

as x→ xj . The next step is to introduce the 2D Neumann Green’s function G(x,y),
which is uniquely defined by [23]

∇2G =
1

|Ω|
− δ(x− y), x ∈ Ω, (3.9)

and

∂nG = 0 on ∂Ω,

∫
Ω

G(x,y)dx = 0 (3.10)

for fixed y. Note that G can be decomposed as

G(x,y) = − ln |x− y|
2π

+R(x,y), (3.11)

where R is the regular part of the Green’s function. The latter is non-singular in the
limit x→ y and incorporates the effects of the boundary conditions. It vanishes when
Ω = R2. We now make the ansatz

φ(x) ∼ φ∞ − 2πν

N∑
i=1

Bi(ν)G(x,xi) (3.12)

for x /∈ {xj , j = 1, . . . , N} for some constant far-field φ∞. Observe that for
x /∈ {xj , j = 1, . . . , N},

∇2φ(x) ∼ −2πν

N∑
i=1

Bi(ν)∇2G(x,xi) = −2πν

|Ω|

N∑
i=1

Bi(ν). (3.13)

Hence, the outer solution satisfies the steady-state diffusion equation if and only if

N∑
i=1

Bi(ν) = 0. (3.14)

As we will show in section 4, this condition ensures that the total area of the droplets
is conserved, which is a typical feature of late-stage Ostwald ripening.
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Figure 3: Construction of the outer solution φ. Each droplet is shrunk to a single point. The
outer solution can be expressed in terms of the corresponding modified Neumann Green’s
function and then matched with the inner solution Φ around each droplet.

In order to match the inner and outer solutions, we note that as x→ xj ,

φ(x)→ φ∞ + νBj(ν) ln |x− xj | − 2πνBj(ν)R(xj ,xj)− 2πν
∑
i 6=j

Bi(ν)G(xj ,xi).

Comparison with the asymptotic limit in equation (3.8) yields the self-consistency
conditions

−(1− ν ln ρj + 2πνR(xj ,xj))Bj(ν)− 2πν
∑
i 6=j

Bi(ν)G(xj ,xi) = αj

(
1 +

1

ρj

)
− φ∞

(3.15)

for j = 1, . . . , N . In particular, equation (3.15a) can be rewritten as a matrix equation

N∑
i=1

(δi,j + νMji)Bi(ν) = φ∞ − αj
(

1 +
1

ρj

)
, (3.16)

with

Mjj = 2πR(xj ,xj)− ln ρj , Mji = 2πG(xj ,xi), j 6= i. (3.17)

We thus obtain the solution

Bi(ν) =

N∑
j=1

[I + νM]−1
ij

(
φ∞ − αj −

αj
ρj

)
, (3.18)

which is clearly non-perturbative with respect to ν. However, for practical calculations,
it is useful to Taylor expand Bi(ν) with respect to ν. This gives

Bi(ν) = φ∞ − αi
(

1 +
1

ρi

)
+ ν

N∑
j=1

Mij

[
φ∞ − αj

(
1 +

1

ρj

)]
+O(ν2). (3.19)

3.3. Calculation of the far field φ∞

It remains to determine φ∞. Early on during phase separation, the fractional area of
droplets is negligible, which suggests identifying φ∞ with the local solute concentration
in the absence of phase separation. This would imply that φ∞ is itself space-dependent
in the presence of a concentration gradient, see Refs. [25, 26]. In this paper we
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assume that the area fraction of droplets reaches a steady-state as phase separation
proceeds so that Ostwald ripening preserves the total area occupied by droplets. This
is equivalent to imposing the area preserving condition (3.14), which in turn requires
that φ∞ is spatially uniform. If the latter did not hold, then equation (3.13) would
have an additional term ∇2φ∞ on the right-hand side, and one could no longer ensure
that

∑
iBi(ν) = 0. One would then need some information about the early-stages of

droplet ripening. Equation (3.18) now implies that

φ∞ =

N∑
i,j=1

[I + νM]−1
ij αj

(
1 +

1

ρj

)
N∑

i,j=1

[I + νM]−1
ij

. (3.20)

Hence, to leading order in ν,

φ∞ = N−1
N∑
j=1

αj

(
1 +

1

ρj

)
+O(ν). (3.21)

Note that in the absence of a regulator concentration gradient, αi = φa for all i, we
have

φ∞ = φa

(
1 +

1

ρharm

)
+O(ν), (3.22)

where ρharm is the harmonic mean,

ρharm =

 1

N

N∑
j=1

1

ρj

−1

. (3.23)

(This is a major difference between classical droplet ripening in 2D and 3D, since in

the latter case φ∞ = φa(1 + 1/ρ̄) with ρ̄ =
∑N
i=1 ρi/N .) Now substituting the leading

order expression for the coefficients Bi into equations (3.5) and (3.12) shows that the
concentration away from droplets (outer solution) is

φ(x) = φ∞ − 2πν

N∑
i=1

(
φ∞ − αi −

αi
ρi

)
G(x,xi) +O(ν2), (3.24)

whereas the inner solution near the i-th droplet with |x− xi| = ερ is

Φi(ρ, θ) = αi

(
1 +

1

ρi

)
+ ν

(
φ∞ − αi −

αi
ρi

)
ln(ρ/ρi)

+ εβiρi

(
1 +

1

ρi

)
ρi
ρ

cos θ +O(ν2). (3.25)

4. Droplet dynamics

On longer time-scales, the droplets can grow, drift or deform due to the normal fluxes of
solute at the interface modifying the location of the interface. The local displacement
δRi(θ, t) of the i-th interface is determined by the normal velocity vi, which for a
circular droplet is obtained by matching the influx of solute molecules into a surface
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arc of length dsi = Ridθ with the local change in area. Assuming that φb � φa,i, we
have

φbvi(θ)dsi = Ji(Ri, θ)dsi,

where Ji(r, θ) = D∇Φi(r/ε, θ) · er. (The flux inside the droplet vanishes as the
concentration is approximately constant.) Hence,

vi(θ) =
D

φb
∇Φi(r/ε, θ) · er. (4.1)

We thus have δRi(θ, t) = vi(θ)δt. We now rescale by setting Ri = ερi and t = ε2τ , so
that

δρi(θ, τ) =
D

φb
∇Φi(ρi, θ) · eρδτ.

From equation (3.5), we have

∇Φi(ρ, θ) · eρ =
νBi(ν)

ρi
− εβi

(
1 +

1

ρi

)
cos θ. (4.2)

with the coefficient Bi(ν) given by equation (3.18). Assuming that the droplet
maintains an approximately spherical shape, we can define the change in radius
according to

δρi(τ) = (2π)−1

∫ 2π

0

δρi(θ, τ)dθ.

That is,

dρi
dτ

=
D

2πφb

∫ 2π

0

∇Φi(ρi, θ) · eρdθ =
DνBi(ν)

ρiφb
. (4.3)

Multiplying both sides of equation (4.3) by ρi, summing over i and imposing the
solvability condition (3.14) implies that

1

2π

N∑
i=1

dAi
dτ

=
Dν

φb

N∑
i=1

Bi(ν) = 0,

where Ai = πρ2
i is the (rescaled) area of the i-th droplet. Hence, equation (3.14)

ensures that the total area of the droplets is conserved. If we now expand Bi(ν)
according to equation (3.19), then we obtain the leading order dynamical equation

dρi
dτ

=
νD

φbρi

[
φ∞ − αi

(
1 +

1

ρi

)]
+O(ν2), (4.4)

which is almost identical to the expected formula for growth of a 2D droplet.
In the absence of a regulator concentration gradient, αi = φa,0 for all i and φa,0

constant, large droplets grow at the expense of small droplets until only one remains.
This is classical Ostwald ripening in 2D. However, in the presence of a concentration
gradient the local equilibria become αi = αi(τ) := φa(xi(τ)), with xi(τ) the time-
dependent x-coordinate of the i-th droplet. That is,

δxi(τ) = (2π)−1

∫ 2π

0

δρi(θ, τ) cos θdθ,

which yields the drift speed

dxi
dτ

=
D

2πφb

∫ 2π

0

∇Φi(ρi, θ) · eρ cos θ dθ = − εD
2φb

βi

(
1 +

1

ρi

)
. (4.5)
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Recall that βi = ∇φa(xi) · ex so sign(βi) determines whether the regulator
concentration increases or decreases with increasing x. Equation (4.5) thus implies
that droplets drift down the regulator concentration gradient. For example, if φR(x)
is a decreasing function of x, then droplets tend to move towards larger values of x. It
follows that αi becomes a decreasing function of τ as the i-th droplet moves to regions
of lower regulator concentration.

Further simplification can be achieved by noting that in 2D there is a separation
of time-scales between the O(ν) rate of growth and the O(ε) rate of drift. More
specifically, since ε| ln ε| → 0 as ε→ 0, we see that for sufficiently small ε and a shallow
concentration gradient (small |βi|) the drift is much slower than the growth. At a given
time τ , droplets upstream of the concentration gradient have larger αi(τ) and are thus
more likely to shrink than downstream droplets of the same size, see equation (4.4).
It follows that on the O(ν) time-scale, downstream droplets will grow at the expense
of upstream droplets. So even in the absence of drift, there will tend to be a higher
concentration of growing droplets towards the right-hand boundary shown in Fig. 4.
On the longer O(ε) time-scale, surviving upstream droplets will drift to the right and
thus further contribute to segregation. Under the assumptions of the model, there are
thus two separate mechanisms for segregation: a spatial gradient of local equilibria
at given time τ , and a slow rightward drift of droplets. Once surviving droplets have
reached one end of the domain, they will have the same local equilibria and normal
Ostwald ripening will tend to occur, with the caveat that the droplets may no longer
have O(1) separation. Finally, it should be noted that the segregation mechanism
in the case of a homogeneous far-field concentration φ∞ differs from the mechanism
considered previously for 3D droplets [25, 26]. In the latter case, segregation is driven
by a spatio-temporal gradient in φ∞ and a spatial gradient in φa. Consequently, one
finds a right-moving dissolution boundary separating growing from shrinking droplets.

φ
R

local equilibrium

more shrinkage

x

more growth

slow drift

Figure 4: Droplet ripening in a regulator concentration gradient. The local equilibrium
φa is larger for upstream droplets and hence there tends to be more shrinkage to the left
compared to the right. Surviving droplets slowly drift to the right ultimately resulting in
droplet segregation at the right-hand boundary.
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4.1. Two droplets

In order to illustrate the effects of higher-order contributions to the coefficients Bi(ν)
on droplet dynamics, we consider the case of two droplets in a circular domain. Since
the Bi(ν) coefficients only appear in the growth dynamics, we ignore the effects of drift
by taking the droplets to have the same low phase concentration α1 = α2 = φa and
set βj = 0. (This is a reasonable leading order approximation for 2D droplets when
there is a separation of time scales between growth and drift as highlighted above.)
The dynamics of the droplet radii can then be analyzed along identical lines to Ref.
[15].

Let Ω ⊂ R2 be the unit circle centered at the origin. (Take the radius L = 1 of
the circle to determine the length-scale.) Suppose that there are two droplets j = 1, 2
in the interior of Ω with initial radii Rj = ερj and centers at xj . For concreteness, we
take x1 = (0,−1/2) and x2 = (0, 2/3) with droplet 1 smaller than droplet 2, see Fig.
5(a). The Neumann Green’s function for such a domain is well-known [15]:

G(x,xj) = − 1

2π
ln(|x− xj |) +R(x,xj)

=
1

2π

[
− ln(|x− xj |)− ln

(∣∣∣∣x|xj | − xj
|xj |

∣∣∣∣)+
1

2
(|x|2 + |xj |2)− 3

4

]
. (4.6)

From equation (3.18) we see that for two droplets we have to invert the matrix

A =

(
1 + 2πR11 − ln ρ1 2πG12

2πG21 1 + 2πR22 − ln ρ2

)
, (4.7)

where Gij = G(xi,xj) and Rjj = R(xj ,xj). It follows that

A−1 = Γ−1

(
1 + ν(2πR22 − ln ρ2) −2πνG12

−2πνG21 1 + ν(2πR11 − ln ρ1)

)
, (4.8)

with

Γ = (1 + ν[2πR11 − ln ρ1])(1 + ν[2πR22 − ln ρ2])− 4π2ν2G12G21.

Introducing a dimensionless time according to the rescaling

τ → τνD

φbL2

and setting φa = 1, equation (4.4) can be rewritten as

dρi
dτ

=
Bi(ν)

ρi
, Bi(ν) =

∑
j=1,2

A−1
ij

[
1

ρharm
− 1

ρj

]
(4.9)

for i = 1, 2. Numerical simulation of the ODEs (4.9) establish that the larger droplet
grows and the smaller droplet shrinks, while preserving the total droplet area. A
comparison of the results based on the leading order expansion of Bi(ν) in equation
(3.19) and the full non-perturbative expression in (3.18) is illustrated in Fig. 5(b).

Following Ref. [15], one can estimate the extinction time T of the smaller droplet
using the leading order dynamics (4.4), which for a pair of droplets becomes

dρj
dτ

=
1

ρj

[
1

ρharm
− 1

ρj

]
. (4.10)

Suppose that ρ1(0) < ρ2(0) as in Fig. 5. First note that

dρ1

dτ
≥ − 1

ρ2
1

,
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Figure 5: Pair of droplets. (a) Initial configuration of a pair of droplets at positions
x1 = (0,−1/2) and x2 = (0, 2/3) with droplet 2 larger than droplet 1. (b) Example
plots of the droplet radii ρi(τ), i = 1, 2, evolving according to equation (4.3) after non-
dimensionalizing the time. Initial radii are ρ1(0) = 0.5, ρ2(0) = 1 and ε = 0.05. Solid curves
denote the solution based on the full non-perturbative expression for the coefficients Bi(ν),
equation (3.18), whereas the dashed curves are based on the leading order approximation
in equation (3.19). The larger droplet grows at the expense of the smaller droplet until the
latter disappears after a finite time. On a slower time scale the droplets will drift down a
regulatory concentration gradient in the x direction.

which on integrating with respect to time gives

ρ1(τ)3 − ρ1(0)3 ≥ −3τ.

Hence, ρ1(τ) ≥ 0 for all times τ ≤ ρ1(0)3/3, which yields a lower bound on the
extinction time, namely, T ≥ ρ1(0)3/3. Next, using the definition of the harmonic
mean, we have

ρ2
1

dρ1

dτ
= ρ1

[
1

2ρ2
+

1

2ρ1
− 1

ρ1

]
=
ρ1

2

[
1

ρ2
− 1

ρ1

]
=
ρ1 − ρ2

2ρ2
≤ ρ1(0)− ρ2(0)

2ρ2(0)
< 0

Again integrating with respect to time shows that

ρ1(τ)3/3− ρ1(0)3/3 ≤ ρ1(0)− ρ2(0)

2ρ2(0)
τ.

It follows that ρ1(τ) is negative (extinct) for times

τ ≥ 2ρ1(0)3ρ2(0)

ρ2(0)− ρ1(0)
,

which yields an upper bound for the extinction time. In summary,

ρ1(0)3

3
≤ T ≤ 2ρ1(0)3ρ2(0)

3[ρ2(0)− ρ1(0)]
. (4.11)

For the plots shown in Fig. 5, we have ρ1(0) = 0.5 and ρ2(0) = 1 so that the extinction
time under the leading-order approximation lies in the range 1/24 ≤ T ≤ 1/6.

Fig. 5 suggests that the leading order approximation captures the qualitative
growth/shrinkage of the droplets. However, there are significant errors in the
extinction time. This reflects the fact that even though ε is small, ε = 0.05, the
actual expansion parameter ν = −1/ ln ε ≈ 1/3. As we have already commented in
section 3.1, the presence of the small parameter ν rather than ε is a common feature
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of strongly localized perturbations in 2D domains. Therefore, in order to obtain
O(ε) accuracy, it is necessary to sum over the logarithmic terms non-perturbatively
as in equation (4.9). Finally note that in the presence of a regulator concentration
gradient in the x direction, the droplets will slowly drift down the gradient. After
non-dimensionalizing time, equation (4.5) becomes

dxi
dτ

= −εβi
2ν

(
1 +

1

ρi

)
= −ε ln ε|βi|

2

(
1 +

1

ρi

)
> 0.

We are assuming that the regulator gradient is a decreasing function of x so βi < 0.
Note that for the value ε = 0.05 used in Fig. 5, −ε ln ε ≈ 0.15 so that the rate of drift
is an order of magnitude slower than the growth/shrinkage of the droplets as given by
equation (4.9). In the analysis of 3D droplets [25, 26], it was shown how relatively fast
segregation of droplets to one end of the concentration gradient could lead to periods of
transient arrest, during which the number and size of droplets remains approximately
constant. This was preceded by a narrowing of the droplet size distribution. The
separation of time-scales that occurs in the case of 2D droplets suggests that this
effect could be inhibited.

5. Discussion

In this paper we used asymptotic methods to investigate the ripening of 2D droplets
in a regulator concentration gradient, which cannot be analyzed using classical
LSW mean field theory. One major assumption of our asymptotic analysis, which
contrasts with the previous analysis of 3D droplets [25, 26], is that the far-field solute
concentration φ∞ is spatially uniform. Mathematically speaking, this is a consequence
of the solvability condition (3.14), which determines φ∞ according to equation (3.20).
From a physical perspective, we are exploiting a separation of length-scales as in
classical late-stage Ostwald ripening, whereby quasi-stationary fluxes between droplets
can be maintained by a concentration profile that is approximately flat in the far field
(the outer solution of our asymptotic analysis). Two additional assumptions of our
analysis are that the droplets are well separated and comparable in size to the capillary
length `c, so it would break down in the case of densely populated large droplets whose
size differ considerably from `c.

The main result of our asymptotic analysis was to identify a possible mechanism
for segregation of 2D droplets in the presence of a regulator concentration gradient and
a homogeneous far field φ∞. Exploiting a separation of time-scales between droplet
growth/shrinkage and drift, we showed that there are two distinct mechanisms for
segregation: a spatial gradient in the local equilibria φa(x), which tends to favor
the growth of downstream droplets, and a slow rightward drift of surviving droplets.
The time course of segregation thus appears to differ from the model of 3D droplets
[25, 26]. However, this reflects the fact that we are considering segregation during
late-stage Ostwald ripening, assuming that the latter can be reached. It is a non-
trivial problem to analyze the time-dependent diffusion process associated with earlier
stages of segregation in 2D. At the very least, we have established that segregation is
consistent with late-stage Ostwald ripening.

One distinctive feature of 2D compared to 3D droplets, which holds whether
or not there is a concentration gradient, is that the matched asymptotics involves an
expansion in the small parameter ν = −1/ ln ε rather than ε. Hence, in order to obtain
O(ε) accuracy, it is necessary to sum all logarithmic terms non-perturbatively using
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Green’s functions [23]. Analogous 2D singular perturbation problems arise in many
other application areas, such as first passage time problems for Brownian motion in
a domain with small traps [9, 8, 24] and diffusion-limited reaction rates in the case of
small targets [21, 6]. These latter studies also reduce the associated boundary value
problem to an N ×N linear system of equations, similar in form to equations (3.15),
where N is now the number of targets. Solving the linear equations numerically yields
a non-perturbative solution that matches well with direct simulations of the full system
for small ε. Although we did not simulate the full system in this paper, we expect
similar agreement to hold. Here we focused instead on extracting general information
about the system by carrying out a regular perturbation expansion in ν. In particular,
we recovered droplet growth dynamics similar in form to classical theory, see equation
(4.4). We also showed that the critical radius for droplet growth depends on the local
supersaturation φ∞ − φa(xi), with φ∞ given by a weighted harmonic mean of the
droplet radii; this is distinct from 3D droplets where φ∞ depends on the arithmetic
mean. Including higher-order contributions to the droplet dynamics then allowed us to
take account of finite-size effects associated with the boundary of the domain and the
positions of the droplets, as determined by the associated Neumann Green’s function.
Thus, even a regular perturbation expansion in ν allows us to include the effects of
droplet interactions that are neglected in mean field approaches. As illustrated in Fig.
5(b) for a pair of droplets, such interactions effect the extinction time of the small
droplet. For the chosen configuration, the extinction time was increased. It would be
interesting to investigate whether or not such a result holds in the case of multiple
droplets and other geometries.

We end by making a few comments about possible biological implications of
our analysis. The main challenge experimentally is to find a cellular preparation
that exhibits biological condensation in a quasi-2D system. As we mentioned in
the introduction, two potential candidates are curvature-inducing proteins in the
plasma membrane that regulate cell shape [13], and polarized crawling cells such as
keratocytes and fibroblasts that are highly flattened. One would then need to identify
an appropriate regulator protein concentration gradient. Our modeling and analysis
would predict that there is segregation of droplets along the regulator concentration
gradient, although the time course of segregation may differ from the 3D case. In
particular, our analysis suggests that there is a separation of time-scales between the
growth and drift of droplets with the former occurring at a rate of O(ν) and the latter
at a rate of O(ε), where ε is the characteristic size of a droplet relative to the domain
size.
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